195 research outputs found

    Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems

    Get PDF
    Researchers who investigate in any area related to computational algorithms (both dening new algorithms or improving existing ones) usually nd large diculties to test their work. Comparisons among dierent researches in this eld are often a hard task, due to the ambiguity or lack of detail in the presentation of the work and its results. On many occasions, the replication of the work conducted by other researchers is required, which leads to a waste of time and a delay in the research advances. The authors of this study propose a procedure to introduce new techniques and their results in the eld of routing problems. In this paper this procedure is detailed, and a set of good practices to follow are deeply described. It is noteworthy that this procedure can be applied to any combinatorial optimization problem. Anyway, the literature of this study is focused on routing problems. This eld has been chosen because of its importance in real world, and its relevance in the actual literature

    Nature-inspired heuristics for the multiple-vehicle selective pickup and delivery problem under maximum profit and incentive fairness criteria

    Get PDF
    This work focuses on wide-scale freight transportation logistics motivated by the sharp increase of on-line shopping stores and the upsurge of Internet as the most frequently utilized selling channel during the last decade. This huge ecosystem of one-click-away catalogs has ultimately unleashed the need for efficient algorithms aimed at properly scheduling the underlying transportation resources in an efficient fashion, especially over the so-called last mile of the distribution chain. In this context the selective pickup and delivery problem focuses on determining the optimal subset of packets that should be picked from its origin city and delivered to their corresponding destination within a given time frame, often driven by the maximization of the total profit of the courier service company. This manuscript tackles a realistic variant of this problem where the transportation fleet is composed by more than one vehicle, which further complicates the selection of packets due to the subsequent need for coordinating the delivery service from the command center. In particular the addressed problem includes a second optimization metric aimed at reflecting a fair share of the net benefit among the company staff based on their driven distance. To efficiently solve this optimization problem, several nature-inspired metaheuristic solvers are analyzed and statistically compared to each other under different parameters of the problem setup. Finally, results obtained over a realistic scenario over the province of Bizkaia (Spain) using emulated data will be explored so as to shed light on the practical applicability of the analyzed heuristics

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems

    A Discrete and Improved Bat Algorithm for solving a medical goods distribution problem with pharmacological waste collection

    Get PDF
    The work presented in this paper is focused on the resolution of a real-world drugs distribution problem with pharmacological waste collection. With the aim of properly meeting all the real-world restrictions that comprise this complex problem, we have modeled it as a multi-attribute or rich vehicle routing problem (RVRP). The problem has been modeled as a Clustered Vehicle Routing Problem with Pickups and Deliveries, Asymmetric Variable Costs, Forbidden Roads and Cost Constraints. To the best of authors knowledge, this is the first time that such a RVRP problem is tackled in the literature. For this reason, a benchmark composed of 24 datasets, from 60 to 1000 customers, has also been designed. For the developing of this benchmark, we have used real geographical positions located in Bizkaia, Spain. Furthermore, for the proper dealing of the proposed RVRP, we have developed a Discrete and Improved Bat Algorithm (DaIBA). The main feature of this adaptation is the use of the well-known Hamming Distance to calculate the differences between the bats. An effective improvement has been also contemplated for the proposed DaIBA, which consists on the existence of two different neighborhood structures, which are explored depending on the bat's distance regarding the best individual of the swarm. For the experimentation, we have compared the performance of our presented DaIBA with three additional approaches: an evolutionary algorithm, an evolutionary simulated annealing and a firefly algorithm. Additionally, with the intention of obtaining rigorous conclusions, two different statistical tests have been conducted: the Friedman's non-parametric test and the Holm's post-hoc test. Furthermore, an additional experimentation has been performed in terms of convergence. Finally, the obtained outcomes conclude that the proposed DaIBA is a promising technique for addressing the designed problem

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems

    Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and Research Opportunities

    Full text link
    Evolutionary algorithms (EA), a class of stochastic search methods based on the principles of natural evolution, have received widespread acclaim for their exceptional performance in various real-world optimization problems. While researchers worldwide have proposed a wide variety of EAs, certain limitations remain, such as slow convergence speed and poor generalization capabilities. Consequently, numerous scholars actively explore improvements to algorithmic structures, operators, search patterns, etc., to enhance their optimization performance. Reinforcement learning (RL) integrated as a component in the EA framework has demonstrated superior performance in recent years. This paper presents a comprehensive survey on integrating reinforcement learning into the evolutionary algorithm, referred to as reinforcement learning-assisted evolutionary algorithm (RL-EA). We begin with the conceptual outlines of reinforcement learning and the evolutionary algorithm. We then provide a taxonomy of RL-EA. Subsequently, we discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature. The RL-assisted procedure is divided according to the implemented functions including solution generation, learnable objective function, algorithm/operator/sub-population selection, parameter adaptation, and other strategies. Finally, we analyze potential directions for future research. This survey serves as a rich resource for researchers interested in RL-EA as it overviews the current state-of-the-art and highlights the associated challenges. By leveraging this survey, readers can swiftly gain insights into RL-EA to develop efficient algorithms, thereby fostering further advancements in this emerging field.Comment: 26 pages, 16 figure
    corecore