108 research outputs found

    An epidemic model based temporal violation prediction strategy for large batch of parallel business cloud workflows

    Full text link
    Temporal violations often take place during the running of large batch of parallel business cloud workflow, which have a serious impact on the on-time completion of massive concurrent user requests. Existing studies have shown that local temporal violations (namely the delays of workflow activities) occurring during cloud workflow execution are the fundamental causes for failed on-time completion. Therefore, accurate prediction of temporal violations is a very important yet challenging task for business cloud workflows. In this paper, based on an epidemic model, a novel temporal violation prediction strategy is proposed to estimate the number of local temporal violations and the number of violations that must be handled so as to achieve a certain on-time completion rate before the execution of workflows. The prediction result can be served as an important reference for temporal violation prevention and handling strategies such as static resource reservation and dynamic provision. Specifically, we first analyze the queuing process of the parallel workflow activities, then we predict the number of potential temporal violations based on a novel temporal violation transmission model inspired by an epidemic model. Comprehensive experimental results demonstrate that our strategy can achieve very high prediction accuracy under different situations

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    ICSEA 2021: the sixteenth international conference on software engineering advances

    Get PDF
    The Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), held on October 3 - 7, 2021 in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. The conference had the following tracks: Advances in fundamentals for software development Advanced mechanisms for software development Advanced design tools for developing software Software engineering for service computing (SOA and Cloud) Advanced facilities for accessing software Software performance Software security, privacy, safeness Advances in software testing Specialized software advanced applications Web Accessibility Open source software Agile and Lean approaches in software engineering Software deployment and maintenance Software engineering techniques, metrics, and formalisms Software economics, adoption, and education Business technology Improving productivity in research on software engineering Trends and achievements Similar to the previous edition, this event continued to be very competitive in its selection process and very well perceived by the international software engineering community. As such, it is attracting excellent contributions and active participation from all over the world. We were very pleased to receive a large amount of top quality contributions. We take here the opportunity to warmly thank all the members of the ICSEA 2021 technical program committee as well as the numerous reviewers. The creation of such a broad and high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and efforts to contribute to the ICSEA 2021. We truly believe that thanks to all these efforts, the final conference program consists of top quality contributions. This event could also not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the ICSEA 2021 organizing committee for their help in handling the logistics and for their work that is making this professional meeting a success. We hope the ICSEA 2021 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in software engineering research

    Systematic review on ai-blockchain based e-healthcare records management systems

    Get PDF
    Electronic health records (EHRs) are digitally saved health records that provide information about a person's health. EHRs are generally shared among healthcare stakeholders, and thus are susceptible to power failures, data misuse, a lack of privacy, security, and an audit trail, among other problems. Blockchain, on the other hand, is a groundbreaking technology that provides a distributed and decentralized environment in which nodes in a list of networks can connect to each other without the need for a central authority. It has the potential to overcome the limits of EHR management and create a more secure, decentralized, and safer environment for exchanging EHR data. Further, blockchain is a distributed ledger on which data can be stored and shared in a cryptographically secure, validated, and mutually agreed-upon manner across all mining nodes. The blockchain stores data with a high level of integrity and robustness, and it cannot be altered. When smart contracts are used to make decisions and conduct analytics with machine-learning algorithms, the results may be trusted and unquestioned. However, Blockchain is not always indestructible and suffers from scalability and complexity issues that might render it inefficient. Combining AI and blockchain technology can handled some of the drawbacks of these two technical ecosystems effectively. AI algorithms rely on data or information to learn, analyze, and reach conclusions. The performance of AI algorithms is enhanced through the data obtained from a data repository or a reliable, secure, trustworthy, and credible platform. Researchers have identified three categories of blockchain-based potential solutions for the management of electronic health records: conceptual, prototype, and implemented. The purpose of this research work is to conduct a Systematic Literature Review (SLR) to identify and assess research articles that were either conceptual or implemented to manage EHRs using blockchain technology. The study conducts a comprehensive evaluation of the literature on blockchain technology and enhanced health record management systems utilizing artificial intelligence technologies. The study examined 189 research papers collected from various publication categories. The in-depth analysis focuses on the privacy, security, accessibility, and scalability of publications. The SLR has illustrated that blockchain technology has the potential to deliver decentralization, security, and privacy that are frequently lacking in traditional EHRs. Additionally, the outcomes of the extensive analysis inform future researchers about the type of blockchain to use in their research. Additionally, methods used in healthcare are summarized per application area while their pros and cons are highlighted. Finally, the emphasized taxonomy combines blockchain and artificial intelligence, which enables us to analyze possible blockchain and artificial intelligence applications in health records management systems. The article ends with a discussion on open issues for research and future directions

    Data Science and Knowledge Discovery

    Get PDF
    Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows using scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data to support the decision process. After collecting the data, it is crucial to discover the knowledge. In this step, Knowledge Discovery (KD) tasks are used to create knowledge from structured and unstructured sources (e.g., text, data, and images). The output needs to be in a readable and interpretable format. It must represent knowledge in a manner that facilitates inferencing. KD is applied in several areas, such as education, health, accounting, energy, and public administration. This book includes fourteen excellent articles which discuss this trending topic and present innovative solutions to show the importance of Data Science and Knowledge Discovery to researchers, managers, industry, society, and other communities. The chapters address several topics like Data mining, Deep Learning, Data Visualization and Analytics, Semantic data, Geospatial and Spatio-Temporal Data, Data Augmentation and Text Mining
    corecore