382 research outputs found

    An Enhanced Electrocardiogram biometric authentication system using machine learning

    Get PDF
    Traditional authentication systems use alphanumeric or graphical passwords, or token-based techniques that require “something you know and something you have”. The disadvantages of these systems include the risks of forgetfulness, loss, and theft. To address these shortcomings, biometric authentication is rapidly replacing traditional authentication methods and is becoming an everyday part of life. The electrocardiogram (ECG) is one of the most recent traits considered for biometric purposes, and three typical use cases have been described: security checks, hospitals and wearable devices. Here we describe an ECG-based authentication system suitable for security checks and hospital environments. The proposed authentication system will help investigators studying ECG-based biometric authentication techniques to define dataset boundaries and to acquire high-quality training data. We evaluated the performance of the proposed system using a confusion matrix and also by applying the Amang ECG (amgecg) toolbox in MATLAB to investigate two parameters that directly affect the accuracy of authentication: the ECG slicing time (sliding window) and sampling time. Using this approach, we found that accuracy was optimized by using a sliding window of 0.4 s and a sampling time of 37 s

    Securing the Biometric through ECG using Machine Learning Techniques

    Get PDF
    In the current era, biometrics is widely used for maintaining the security. To extract the information from the biomedical signals, biomedical signal processing is needed. One of the significant tools used for the diagnostic is electrocardiogram (ECG). The main reason behind this is the certain uniqueness in the ECG signals of the individual.  In this paper, the focus will be on distinguishing the individual on the basis of ECG signals using feature extraction approaches and the machine learning algorithms. Other than preprocessing approach, the discrete cosine transform is applied to perform the extraction. The classification between the signals of the individuals is carried out using the Support Vector Machine and K-Nearest Neighbor machine learning techniques.  The classification accuracy achieved through SVM is 87% and K-NN has achieved a classification accuracy of 96.6% with k=3. The work has shown how machine learning can be used to classify the ECG signal

    Modified Firefly Optimization with Deep Learning based Multimodal Biometric Verification Model

    Get PDF
    Biometric security has become a main concern in the data security field. Over the years, initiatives in the biometrics field had an increasing growth rate. The multimodal biometric method with greater recognition and precision rate for smart cities remains to be a challenge. By comparison, made with the single biometric recognition, we considered the multimodal biometric recognition related to finger vein and fingerprint since it has high security, accurate recognition, and convenient sample collection. This article presents a Modified Firefly Optimization with Deep Learning based Multimodal Biometric Verification (MFFODL-MBV) model. The presented MFFODL-MBV technique performs biometric verification using multiple biometrics such as fingerprint, DNA, and microarray. In the presented MFFODL-MBV technique, EfficientNet model is employed for feature extraction. For biometric recognition, MFFO algorithm with long short-term memory (LSTM) model is applied with MFFO algorithm as hyperparameter optimizer. To ensure the improved outcomes of the MFFODL-MBV approach, a widespread experimental analysis was performed. The wide-ranging experimental analysis reported improvements in the MFFODL-MBV technique over other models

    ECG Biometric Authentication: A Comparative Analysis

    Get PDF
    Robust authentication and identification methods become an indispensable urgent task to protect the integrity of the devices and the sensitive data. Passwords have provided access control and authentication, but have shown their inherent vulnerabilities. The speed and convenience factor are what makes biometrics the ideal authentication solution as they could have a low probability of circumvention. To overcome the limitations of the traditional biometric systems, electrocardiogram (ECG) has received the most attention from the biometrics community due to the highly individualized nature of the ECG signals and the fact that they are ubiquitous and difficult to counterfeit. However, one of the main challenges in ECG-based biometric development is the lack of large ECG databases. In this paper, we contribute to creating a new large gallery off-the-person ECG datasets that can provide new opportunities for the ECG biometric research community. We explore the impact of filtering type, segmentation, feature extraction, and health status on ECG biometric by using the evaluation metrics. Our results have shown that our ECG biometric authentication outperforms existing methods lacking the ability to efficiently extract features, filtering, segmentation, and matching. This is evident by obtaining 100% accuracy for PTB, MIT-BHI, CEBSDB, CYBHI, ECG-ID, and in-house ECG-BG database in spite of noisy, unhealthy ECG signals while performing five-fold cross-validation. In addition, an average of 2.11% EER among 1,694 subjects is obtained

    A Wearable Wrist Band-Type System for Multimodal Biometrics Integrated with Multispectral Skin Photomatrix and Electrocardiogram Sensors

    Get PDF
    Multimodal biometrics are promising for providing a strong security level for personal authentication, yet the implementation of a multimodal biometric system for practical usage need to meet such criteria that multimodal biometric signals should be easy to acquire but not easily compromised. We developed a wearable wrist band integrated with multispectral skin photomatrix (MSP) and electrocardiogram (ECG) sensors to improve the issues of collectability, performance and circumvention of multimodal biometric authentication. The band was designed to ensure collectability by sensing both MSP and ECG easily and to achieve high authentication performance with low computation, efficient memory usage, and relatively fast response. Acquisition of MSP and ECG using contact-based sensors could also prevent remote access to personal data. Personal authentication with multimodal biometrics using the integrated wearable wrist band was evaluated in 150 subjects and resulted in 0.2% equal error rate ( EER ) and 100% detection probability at 1% FAR (false acceptance rate) ( PD.1 ), which is comparable to other state-of-the-art multimodal biometrics. An additional investigation with a separate MSP sensor, which enhanced contact with the skin, along with ECG reached 0.1% EER and 100% PD.1 , showing a great potential of our in-house wearable band for practical applications. The results of this study demonstrate that our newly developed wearable wrist band may provide a reliable and easy-to-use multimodal biometric solution for personal authentication

    PIN generation using EEG : a stability study

    Get PDF
    In a previous study, it has been shown that brain activity, i.e. electroencephalogram (EEG) signals, can be used to generate personal identification number (PIN). The method was based on brain–computer interface (BCI) technology using a P300-based BCI approach and showed that a single-channel EEG was sufficient to generate PIN without any error for three subjects. The advantage of this method is obviously its better fraud resistance compared to conventional methods of PIN generation such as entering the numbers using a keypad. Here, we investigate the stability of these EEG signals when used with a neural network classifier, i.e. to investigate the changes in the performance of the method over time. Our results, based on recording conducted over a period of three months, indicate that a single channel is no longer sufficient and a multiple electrode configuration is necessary to maintain acceptable performances. Alternatively, a recording session to retrain the neural network classifier can be conducted on shorter intervals, though practically this might not be viable

    A Survey Study of the Current Challenges and Opportunities of Deploying the ECG Biometric Authentication Method in IoT and 5G Environments

    Get PDF
    The environment prototype of the Internet of Things (IoT) has opened the horizon for researchers to utilize such environments in deploying useful new techniques and methods in different fields and areas. The deployment process takes place when numerous IoT devices are utilized in the implementation phase for new techniques and methods. With the wide use of IoT devices in our daily lives in many fields, personal identification is becoming increasingly important for our society. This survey aims to demonstrate various aspects related to the implementation of biometric authentication in healthcare monitoring systems based on acquiring vital ECG signals via designated wearable devices that are compatible with 5G technology. The nature of ECG signals and current ongoing research related to ECG authentication are investigated in this survey along with the factors that may affect the signal acquisition process. In addition, the survey addresses the psycho-physiological factors that pose a challenge to the usage of ECG signals as a biometric trait in biometric authentication systems along with other challenges that must be addressed and resolved in any future related research.

    Cybersecurity in implantable medical devices

    Get PDF
    Mención Internacional en el título de doctorImplantable Medical Devices (IMDs) are electronic devices implanted within the body to treat a medical condition, monitor the state or improve the functioning of some body part, or just to provide the patient with a capability that he did not possess before [86]. Current examples of IMDs include pacemakers and defibrillators to monitor and treat cardiac conditions; neurostimulators for deep brain stimulation in cases such as epilepsy or Parkinson; drug delivery systems in the form of infusion pumps; and a variety of biosensors to acquire and process different biosignals. Some of the newest IMDs have started to incorporate numerous communication and networking functions—usually known as “telemetry”—, as well as increasingly more sophisticated computing capabilities. This has provided implants with more intelligence and patients with more autonomy, as medical personnel can access data and reconfigure the implant remotely (i.e., without the patient being physically present in medical facilities). Apart from a significant cost reduction, telemetry and computing capabilities also allow healthcare providers to constantly monitor the patient’s condition and to develop new diagnostic techniques based on an Intra Body Network (IBN) of medical devices [25, 26, 201]. Evolving from a mere electromechanical IMD to one with more advanced computing and communication capabilities has many benefits but also entails numerous security and privacy risks for the patient. The majority of such risks are relatively well known in classical computing scenarios, though in many respects their repercussions are far more critical in the case of implants. Attacks against an IMD can put at risk the safety of the patient who carries it, with fatal consequences in certain cases. Causing an intentional malfunction of an implant can lead to death and, as recognized by the U.S. Food and Drug Administration (FDA), such deliberate attacks could be far more difficult to detect than accidental ones [61]. Furthermore, these devices store and transmit very sensitive medical information that requires protection, as dictated by European (e.g., Directive 95/46/ECC) and U.S. (e.g., CFR 164.312) Directives [94, 204]. The wireless communication capabilities present in many modern IMDs are a major source of security risks, particularly while the patient is in open (i.e., non-medical) environments. To begin with, the implant becomes no longer “invisible”, as its presence could be remotely detected [48]. Furthermore, it facilitates the access to transmitted data by eavesdroppers who simply listen to the (insecure) channel [83]. This could result in a major privacy breach, as IMDs store sensitive information such as vital signals, diagnosed conditions, therapies, and a variety of personal data (e.g., birth date, name, and other medically relevant identifiers). A vulnerable communication channel also makes it easier to attack the implant in ways similar to those used against more common computing devices [118, 129, 156], i.e., by forging, altering, or replying previously captured messages [82]. This could potentially allow an adversary to monitor and modify the implant without necessarily being close to the victim [164]. In this regard, the concerns of former U.S. vice-president Dick Cheney constitute an excellent example: he had his Implantable Cardioverter Defibrillator (ICD) replaced by another without WiFi capability [219]. While there are still no known real-world incidents, several attacks on IMDs have been successfully demonstrated in the lab [83, 133, 143]. These attacks have shown how an adversary can disable or reprogram therapies on an ICD with wireless connectivity, and even inducing a shock state to the patient [65]. Other attacks deplete the battery and render the device inoperative [91], which often implies that the patient must undergo a surgical procedure to have the IMD replaced. Moreover, in the case of cardiac implants, they have a switch that can be turned off merely by applying a magnetic field [149]. The existence of this mechanism is motivated by the need to shield ICDs to electromagnetic fields, for instance when the patient undergoes cardiac surgery using electrocautery devices [47]. However, this could be easily exploited by an attacker, since activating such a primitive mechanism does not require any kind of authentication. In order to prevent attacks, it is imperative that the new generation of IMDs will be equipped with strong mechanisms guaranteeing basic security properties such as confidentiality, integrity, and availability. For example, mutual authentication between the IMD and medical personnel is essential, as both parties must be confident that the other end is who claims to be. In the case of the IMD, only commands coming from authenticated parties should be considered, while medical personnel should not trust any message claiming to come from the IMD unless sufficient guarantees are given. Preserving the confidentiality of the information stored in and transmitted by the IMD is another mandatory aspect. The device must implement appropriate security policies that restrict what entities can reconfigure the IMD or get access to the information stored in it, ensuring that only authorized operations are executed. Similarly, security mechanisms have to be implemented to protect the content of messages exchanged through an insecure wireless channel. Integrity protection is equally important to ensure that information has not been modified in transit. For example, if the information sent by the implant to the Programmer is altered, the doctor might make a wrong decision. Conversely, if a command sent to the implant is forged, modified, or simply contains errors, its execution could result in a compromise of the patient’s physical integrity. Technical security mechanisms should be incorporated in the design phase and complemented with appropriate legal and administrative measures. Current legislation is rather permissive in this regard, allowing the use of implants like ICDs that do not incorporate any security mechanisms. Regulatory authorities like the FDA in the U.S or the EMA (European Medicines Agency) in Europe should promote metrics and frameworks for assessing the security of IMDs. These assessments should be mandatory by law, requiring an adequate security level for an implant before approving its use. Moreover, both the security measures supported on each IMD and the security assessment results should be made public. Prudent engineering practices well known in the safety and security domains should be followed in the design of IMDs. If hardware errors are detected, it often entails a replacement of the implant, with the associated risks linked to a surgery. One of the main sources of failure when treating or monitoring a patient is precisely malfunctions of the device itself. These failures are known as “recalls” or “advisories”, and it is estimated that they affect around 2.6% of patients carrying an implant. Furthermore, the software running on the device should strictly support the functionalities required to perform the medical and operational tasks for what it was designed, and no more [66, 134, 213]. In Chapter 1, we present a survey of security and privacy issues in IMDs, discuss the most relevant mechanisms proposed to address these challenges, and analyze their suitability, advantages, and main drawbacks. In Chapter 2, we show how the use of highly compressed electrocardiogram (ECG) signals (only 24 coefficients of Hadamard Transform) is enough to unequivocally identify individuals with a high performance (classification accuracy of 97% and with identification system errors in the order of 10−2). In Chapter 3 we introduce a new Continuous Authentication scheme that, contrarily to previous works in this area, considers ECG signals as continuous data streams. The proposed ECG-based CA system is intended for real-time applications and is able to offer an accuracy up to 96%, with an almost perfect system performance (kappa statistic > 80%). In Chapter 4, we propose a distance bounding protocol to manage access control of IMDs: ACIMD. ACIMD combines two features namely identity verification (authentication) and proximity verification (distance checking). The authentication mechanism we developed conforms to the ISO/IEC 9798-2 standard and is performed using the whole ECG signal of a device holder, which is hardly replicable by a distant attacker. We evaluate the performance of ACIMD using ECG signals of 199 individuals over 24 hours, considering three adversary strategies. Results show that an accuracy of 87.07% in authentication can be achieved. Finally, in Chapter 5 we extract some conclusions and summarize the published works (i.e., scientific journals with high impact factor and prestigious international conferences).Los Dispositivos Médicos Implantables (DMIs) son dispositivos electrónicos implantados dentro del cuerpo para tratar una enfermedad, controlar el estado o mejorar el funcionamiento de alguna parte del cuerpo, o simplemente para proporcionar al paciente una capacidad que no poseía antes [86]. Ejemplos actuales de DMI incluyen marcapasos y desfibriladores para monitorear y tratar afecciones cardíacas; neuroestimuladores para la estimulación cerebral profunda en casos como la epilepsia o el Parkinson; sistemas de administración de fármacos en forma de bombas de infusión; y una variedad de biosensores para adquirir y procesar diferentes bioseñales. Los DMIs más modernos han comenzado a incorporar numerosas funciones de comunicación y redes (generalmente conocidas como telemetría) así como capacidades de computación cada vez más sofisticadas. Esto ha propiciado implantes con mayor inteligencia y pacientes con más autonomía, ya que el personal médico puede acceder a los datos y reconfigurar el implante de forma remota (es decir, sin que el paciente esté físicamente presente en las instalaciones médicas). Aparte de una importante reducción de costos, las capacidades de telemetría y cómputo también permiten a los profesionales de la atención médica monitorear constantemente la condición del paciente y desarrollar nuevas técnicas de diagnóstico basadas en una Intra Body Network (IBN) de dispositivos médicos [25, 26, 201]. Evolucionar desde un DMI electromecánico a uno con capacidades de cómputo y de comunicación más avanzadas tiene muchos beneficios pero también conlleva numerosos riesgos de seguridad y privacidad para el paciente. La mayoría de estos riesgos son relativamente bien conocidos en los escenarios clásicos de comunicaciones entre dispositivos, aunque en muchos aspectos sus repercusiones son mucho más críticas en el caso de los implantes. Los ataques contra un DMI pueden poner en riesgo la seguridad del paciente que lo porta, con consecuencias fatales en ciertos casos. Causar un mal funcionamiento intencionado en un implante puede causar la muerte y, tal como lo reconoce la Food and Drug Administration (FDA) de EE.UU, tales ataques deliberados podrían ser mucho más difíciles de detectar que los ataques accidentales [61]. Además, estos dispositivos almacenan y transmiten información médica muy delicada que requiere se protegida, según lo dictado por las directivas europeas (por ejemplo, la Directiva 95/46/ECC) y estadunidenses (por ejemplo, la Directiva CFR 164.312) [94, 204]. Si bien todavía no se conocen incidentes reales, se han demostrado con éxito varios ataques contra DMIs en el laboratorio [83, 133, 143]. Estos ataques han demostrado cómo un adversario puede desactivar o reprogramar terapias en un marcapasos con conectividad inalámbrica e incluso inducir un estado de shock al paciente [65]. Otros ataques agotan la batería y dejan al dispositivo inoperativo [91], lo que a menudo implica que el paciente deba someterse a un procedimiento quirúrgico para reemplazar la batería del DMI. Además, en el caso de los implantes cardíacos, tienen un interruptor cuya posición de desconexión se consigue simplemente aplicando un campo magnético intenso [149]. La existencia de este mecanismo está motivada por la necesidad de proteger a los DMIs frete a posibles campos electromagnéticos, por ejemplo, cuando el paciente se somete a una cirugía cardíaca usando dispositivos de electrocauterización [47]. Sin embargo, esto podría ser explotado fácilmente por un atacante, ya que la activación de dicho mecanismo primitivo no requiere ningún tipo de autenticación. Garantizar la confidencialidad de la información almacenada y transmitida por el DMI es otro aspecto obligatorio. El dispositivo debe implementar políticas de seguridad apropiadas que restrinjan qué entidades pueden reconfigurar el DMI o acceder a la información almacenada en él, asegurando que sólo se ejecuten las operaciones autorizadas. De la misma manera, mecanismos de seguridad deben ser implementados para proteger el contenido de los mensajes intercambiados a través de un canal inalámbrico no seguro. La protección de la integridad es igualmente importante para garantizar que la información no se haya modificado durante el tránsito. Por ejemplo, si la información enviada por el implante al programador se altera, el médico podría tomar una decisión equivocada. Por el contrario, si un comando enviado al implante se falsifica, modifica o simplemente contiene errores, su ejecución podría comprometer la integridad física del paciente. Los mecanismos de seguridad deberían incorporarse en la fase de diseño y complementarse con medidas legales y administrativas apropiadas. La legislación actual es bastante permisiva a este respecto, lo que permite el uso de implantes como marcapasos que no incorporen ningún mecanismo de seguridad. Las autoridades reguladoras como la FDA en los Estados Unidos o la EMA (Agencia Europea de Medicamentos) en Europa deberían promover métricas y marcos para evaluar la seguridad de los DMIs. Estas evaluaciones deberían ser obligatorias por ley, requiriendo un nivel de seguridad adecuado para un implante antes de aprobar su uso. Además, tanto las medidas de seguridad implementadas en cada DMI como los resultados de la evaluación de su seguridad deberían hacerse públicos. Buenas prácticas de ingeniería en los dominios de la protección y la seguridad deberían seguirse en el diseño de los DMIs. Si se detectan errores de hardware, a menudo esto implica un reemplazo del implante, con los riesgos asociados y vinculados a una cirugía. Una de las principales fuentes de fallo al tratar o monitorear a un paciente es precisamente el mal funcionamiento del dispositivo. Estos fallos se conocen como “retiradas”, y se estima que afectan a aproximadamente el 2,6 % de los pacientes que llevan un implante. Además, el software que se ejecuta en el dispositivo debe soportar estrictamente las funcionalidades requeridas para realizar las tareas médicas y operativas para las que fue diseñado, y no más [66, 134, 213]. En el Capítulo 1, presentamos un estado de la cuestión sobre cuestiones de seguridad y privacidad en DMIs, discutimos los mecanismos más relevantes propuestos para abordar estos desafíos y analizamos su idoneidad, ventajas y principales inconvenientes. En el Capítulo 2, mostramos cómo el uso de señales electrocardiográficas (ECGs) altamente comprimidas (sólo 24 coeficientes de la Transformada Hadamard) es suficiente para identificar inequívocamente individuos con un alto rendimiento (precisión de clasificación del 97% y errores del sistema de identificación del orden de 10−2). En el Capítulo 3 presentamos un nuevo esquema de Autenticación Continua (AC) que, contrariamente a los trabajos previos en esta área, considera las señales ECG como flujos de datos continuos. El sistema propuesto de AC basado en señales cardíacas está diseñado para aplicaciones en tiempo real y puede ofrecer una precisión de hasta el 96%, con un rendimiento del sistema casi perfecto (estadístico kappa > 80 %). En el Capítulo 4, proponemos un protocolo de verificación de la distancia para gestionar el control de acceso al DMI: ACIMD. ACIMD combina dos características, verificación de identidad (autenticación) y verificación de la proximidad (comprobación de la distancia). El mecanismo de autenticación es compatible con el estándar ISO/IEC 9798-2 y se realiza utilizando la señal ECG con todas sus ondas, lo cual es difícilmente replicable por un atacante que se encuentre distante. Hemos evaluado el rendimiento de ACIMD usando señales ECG de 199 individuos durante 24 horas, y hemos considerando tres estrategias posibles para el adversario. Los resultados muestran que se puede lograr una precisión del 87.07% en la au tenticación. Finalmente, en el Capítulo 5 extraemos algunas conclusiones y resumimos los trabajos publicados (es decir, revistas científicas con alto factor de impacto y conferencias internacionales prestigiosas).Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Arturo Ribagorda Garnacho.- Secretario: Jorge Blasco Alís.- Vocal: Jesús García López de Lacall
    corecore