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Resumo

Nos últimos anos, têm sido feitos avanços significativos no desenvolvimento de métodos biométri-
cos mais seguros e confiáveis, que envolvem a medição e análise das características físicas ou
comportamentais de um indivíduo. Uma tendência emergente nesse domínio é a utilização de
características fisiológicas como traços biométricos, com os wearable devices desempenhando um
papel fundamental na aquisição desses sinais de forma não invasiva e confortável. Esses disposi-
tivos oferecem a possibilidade de monitorar a saúde de um indivíduo durante as atividades diárias,
tornando-os altamente relevantes no mundo automatizado moderno.

Esta tese de mestrado explora a aplicação de wearable devices na aquisição de sinais fisiológi-
cos e seu papel no reconhecimento individual, particularmente em contextos de saúde e segu-
rança. Especificamente, o foco é um processo de identificação humana baseado no eletrocardio-
grama (ECG), bem como a investigação se há vantagem na integração de sinais de respiração com
sinais de ECG para fins de identificação em ambientes de trabalho de alto risco, como bombeiros,
por exemplo. Nessas situações, os trabalhadores frequentemente precisam usar equipamentos de
proteção (como luvas, capacetes, óculos, roupas à prova de fogo, entre outros) que inviabilizam
métodos de identificação mais tradicionais, como digitar códigos ou leitura de impressões digitais.
Nesse contexto, a utilização de sinais biológicos medidos continuamente por wearable devices
constitui uma alternativa viável. Para garantir a praticidade de uma futura utilização em wearable
devices com capacidades de processamento limitadas, são examinados modelos de classificação
baseados em métodos tradicionais de machine learning.

A pesquisa inclui a aquisição de um conjunto de dados de 24 pessoas, submetido e aprovado
pela comissão de ética da instituição INESC TEC. Além disso, também inclui a validação dos
sinais coletados, tanto de respiração quanto de ECG, pelo dispositivo VitalSticker produzido no
INESC TEC. Além disso, foi realizado um estudo envolvendo diferentes algoritmos de machine
learning aplicados ao conjunto de dados coletados. Como entrada para os algoritmos utilizados, o
conjunto de dados foi dividido em grupos de 24, 10 e 5 pessoas, fornecendo dados de respiração e
ECG em todos eles. Os resultados demonstram que o classificador Support Vector Machine supera
os outros métodos nos casos em que apenas os sinais de ECG são utilizados, e o classification
Random Forest nos casos em que é utilizada a combinação dos sinais de ECG com a respiração.
Os resultados revelam que os sinais de ECG isoladamente apresentam alta accuracy no processo
de identificação, alcançando 86% de accuracy com o conjunto de dados de 10 pessoas. A avaliação
predominante de 10 pessoas é devida a ser o número mais próximo de indivíduos designados para
compor uma equipe responsável por um trabalho de alto risco. No entanto, quando combinados
com os sinais de respiração, os valores de accuracy aumentam, atingindo 91% com o mesmo
conjunto de dados de 10 pessoas, apoiando a hipótese de que a combinação dos sinais de ECG
com a respiração seja vantajosa com os dados adquiridos nesta pesquisa.

Este trabalho destaca a importância dos wearable devices na melhoria das medidas de segu-
rança, ressaltando os problemas e as oportunidades relacionados à coleta de sinais fisiológicos e
sua utilização em ambientes de trabalho de alto risco.
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Abstract

In recent years, significant advancements have been made in the development of more secure and
reliable biometric methods, which involve measuring and analyzing an individual’s physical or
behavioral characteristics. An emerging trend in this field is the use of physiological features as
biometric traits, with wearable devices playing a crucial role in non-invasively and comfortably
acquiring these signals. These devices offer the possibility of monitoring an individual’s health
during daily activities, making them highly relevant in the modern automated world.

This master’s thesis explores the application of wearable devices in acquiring physiological
signals and their role in individual recognition, particularly in health and safety contexts. Specifi-
cally, the focus is on a human identification process based on electrocardiogram (ECG), as well as
investigating whether there is an advantage in integrating respiratory signals with ECG signals for
identification purposes in high-risk work environments, such as firefighters. In such environments,
workers often need to wear protective equipment (such as gloves, helmets, goggles, fire-resistant
suits, among others) that make more traditional identification methods, like typing codes or fin-
gerprint reading, ineffective. In this context, the continuous measurement of biological signals by
wearable devices offers a viable alternative. To ensure the feasibility of future use in wearable
devices with limited processing capabilities, classification models based on traditional machine
learning methods are examined.

The research involves acquiring a dataset of 24 individuals, which was submitted to and ap-
proved by the ethics committee of the INESC TEC institution. Additionally, it also includes vali-
dating the collected respiratory and ECG signals using the VitalSticker device developed at INESC
TEC. Furthermore, a study involving different machine learning algorithms applied to the col-
lected dataset was conducted.As input to the algorithms used, the dataset was divided into groups
of 24, 10, and 5 individuals, with both respiratory and ECG data provided in all of them. The
results demonstrate that the Support Vector Machine classifier outperforms other methods when
using only ECG signals, and the Random Forest classifier when combining ECG with respira-
tory signals. The findings reveal that ECG signals alone exhibit high accuracy in the identification
process, achieving 86% accuracy with the 10-person dataset. The predominant evaluation of 10 in-
dividuals is due to it being the closest number of designated individuals for a high-risk work team.
However, when combined with respiratory signals, the accuracy values increases, reaching 91%
with the same 10-person dataset, supporting the hypothesis that combining ECG and respiratory
signals is advantageous with the data acquired in this research.

This research highlights the importance of wearable devices in enhancing safety measures, ad-
dressing the issues and opportunities related to collecting physiological signals and their utilization
in high-risk work environments.
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Chapter 1

Introduction

1.1 Context

Wearable health devices are an emerging technology not only for clinical markets but also for

accessing the well-being of a person. These devices measure and monitor different physiological

signals in scenarios such as an individual’s daily activities or even hazardous scenarios. The

principal advantages of these devices for the aforementioned cases are the low computational

effort and the low energy consumption requirements. Moreover, the small size of these devices

and the integration of textiles and electronics becomes another benefit for the user’s comfort.

In hazardous working environments where safety is paramount, implementing biometric iden-

tification methods becomes crucial, particularly for professionals in industries such as oil and gas

maintenance, emergency interventions, and industrial firefighting. These environments often in-

volve high temperatures and necessitate Personal Protective Equipment (PPE) clothing, making

conventional identification techniques impractical.

PPE is the equipment worn to minimize exposure to hazards that cause serious workplace

injuries and illnesses, and it is classified into four categories of protection: eye and face, hand,

body, respiratory, and hearing. There are PPE levels of clothing, which means a individual can

use some of this clothing to protect one of the four categories or all of them, at figure 1.1 there

are some examples of them. Dangerous situations lead us to re-think physiological biometrics

requiring a vital human signal, namely their electrocardiogram (ECG) or respiration signal, as an

option for authenticating a subject.

The inherent risks associated with these professions highlight the need for stringent access

control measures in hazardous or high-security facilities. In such scenarios, traditional identifi-

cation methods like face, fingerprint, or retina recognition may prove incompatible or unreliable

due to the inability to expose a part of the body while wearing PPE clothing. To address these

challenges, physiological biometric technologies that leverage vital human signals have become

increasingly relevant. These technologies utilize physiological signals such as electrocardiogram

(ECG) and respiration, which can be acquired even when the individual is wearing full-body PPE

attire. Employing these vital signs as authentication mechanisms significantly reduces the risk of

1
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forgery, as these signals are inherently unique to each individual and challenging to replicate or

copy.

With industry 5.0, the main paradigm “is the shift of focus from technology-driven progress to

a thoroughly human-centric approach”[1]. The human-machine collaboration in hazardous envi-

ronments emphasizes the importance of specialized human interventions while ensuring optimal

performance and efficiency. By implementing physiological biometric identification methods, rig-

orous access control can be maintained, allowing only qualified personnel with verified vital sig-

nals to access hazardous or high-security areas. This advanced authentication approach enhances

security and enables seamless operations in environments where traditional identification methods

would be impractical or incompatible.

Human authentication is the ability to verify that a user is indeed the individual they claim

to be within a specific system, granting or denying privileges accordingly. On the other hand,

identification refers to possessing unique characteristics that set an individual apart from others.

The authentication process implies that exists an identification process as well. [2]

Figure 1.1: Examples of PPE clothing [3]

Electrocardiography (ECG) is a physiological biometric technique that gives information about

the heart’s structure and operation. ECG signals are a recent and less used method of biometric

identification, but literature confirmed that fiducial ECG features and heartbeat waveform are pos-

sible approaches for human identification. Consequently, these signals correspond to an option

when the traditional identity recognition methods are unreliable, or their acquisition is unfeasi-

ble, but the use of electrodes is possible. Additionally, ECG biometric systems can continuously

monitor the identity [4] and the health of the users, because this signal is unique and intrinsic to

each individual. Wearable devices are more than suitable to monitor ECG continuously, and com-

bined with an identification algorithm can easily provide authentication information, working as a

biometric continuous method.
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On the other hand, at an exploratory level, it would be interesting to verify the role and benefit

of using respiration signals in the identification and monitoring of an individual operating in haz-

ardous scenarios. The respiration signals are another important vital indicator for human beings.

There are a few studies about their contribution to identifying a subject. However, respiration

signals as a complement to ECG data might increase the performance of classifying methods.

Wearable devices can acquire both of these types of signals.

1.2 Motivation

In a world where technology is always around us, the better way to use it is to help someone or

facilitate our lives. The possibility of monitoring and making the work of professionals easier with

wearable devices has made this topic grow in recent years.

The real-time monitoring of professionals engaged in hazardous occupations holds great po-

tential for enhancing their work efficiency and ensuring their well-being. Wearable devices equipped

with sensors can provide valuable insights into vital signs, enabling timely interventions and pre-

venting potential health risks. This capability not only contributes to the improvement of working

conditions but also promotes the overall safety and productivity of professionals.

Moreover, wearable devices provide a unique chance to improve authentication processes with

minimal user intervention. These devices can provide a safe and seamless authentication mecha-

nism by gathering essential signals such as ECG and other physiological data. Continuous real-

time transmission of these signals enables the creation of robust identification systems capable of

reliably recognising individuals. This technology eliminates the need for traditional authentica-

tion methods such as passwords or physical tokens, expediting the authentication process while

increasing security.

Combining the benefits of wearable technology, real-time capture of biometric signals, and

continuous transmission for authentication purposes could revolutionise how people are authenti-

cated. This innovative approach has the potential to provide faster, more secure, and user-friendly

authentication experiences, improving efficiency and convenience in various domains.

Given these considerations, this research aims to investigate the possibilities of wearable de-

vices and vital signal-based authentication systems. This study intends to contribute to developing

efficient, secure, and non-intrusive authentication systems for a wide range of applications by

investigating the integration of real-time vital signals and continuous transmission.

1.3 Objetives

This master’s thesis aims to contribute to advancing wearable technology for continuous signal

acquisition and improving the reliability of human identification systems based on biometric data.

Particularly, in working enviroments where workers often need to wear protective equipment and

are not able to remove it to be identificated. The focus will be on studying and assisting in im-

proving the bioemtrics capabilities of the wearable device produced by INESC TEC, VitalSticker
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[5]. This device collects ECG and respiration signals, and the objective is to enhance its accuracy

for more precise data acquisition.

This works starts by acquiring a 24 subjects dataset, after its design, submission and approval

by the institutional Ethics committee. With the data collected, a study will be perfomed to com-

prove the VitalSticker device signal quality against Medical Certificated devices (for the ECG and

the respiration signals). Additionally, a ECG-driven human identification approach will be im-

plemented and compare it to the related literature [4]. Furthermore, this research will look into

the relationship between respiration patterns and biometric identification and develop appropriate

feature extraction and merging approaches to investigate the eventual benefit of the combination

between ECG and respiration data. It will be used tradicional machine learning approaches for the

identification process with the data collected.

To summarise, the following are the dissertation’s objectives:

• Study and comprove the signal quality of the wearable device produced by INESCTEC,

VitalSticker, which collects ECG and respiration signals.

• Acquire Electrocardiogram (ECG) and Respiration signals from VitalSticker device.

• Develop an ECG-based human identification, using the data acquired with VitalSticker

• Investigate the potential benefits of incorporating respiration data alongside ECG signals in

the human identification system.

• Conduct research and training on machine learning approaches to develop a robust biometric

classification method

1.4 Contributions

This section outlines the contributions made in this research, which focuses on leveraging wear-

able devices for human identification based on electrocardiogram (ECG) and respiration signals

acquired by VitalSticker device.

This master’s thesis made also a significant contribution by co-authoring an article titled ’Vi-

talSticker: A novel multimodal physiological wearable patch device for health monitoring’ [5],

which focused on the wearable device used in this research. This article was successfully accepted

at the renowned ENBENG 2023 conference, highlighting its academic and scientific significance.

The acceptance and presentation of this work in the conference proceedings emphasises the recog-

nition and importance of the wearable device research. It attests to the developments and insights

achieved by using this device, as well as establishing its significance in the sector. The article’s

collective effort displays the commitment to advance the understanding and application of wear-

able technology in real-world applications. The accepted paper can be depicted in appendix C.
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1.5 Document Structure

The document structure of this master’s thesis is organized into several chapters, each contributing

to a comprehensive presentation of the research. The first chapter (1) serves as the introduction,

providing the necessary context and motivation for the study. It outlines the objectives to be

achieved throughout the thesis.

The second chapter (2), titled "State of the Art," establishes a solid foundation and understand-

ing of the current state of the technology areas relevant to this research. It includes thoroughly

examining the field’s accomplishments and trends, establishing the framework for the succeeding

chapters.

Chapter 3, focuses on the methodology employed in this research. It begins by describing the

signal acquisition process and provides detailed insights into the dataset collected. It also delves

into signal validation and analysis techniques, presenting a systematic approach to handling and

interpreting the collected signals.

In Chapter 4, the emphasis shifts towards the performance evaluation of the machine learning

classifiers for human identification. This chapter examines the classifiers’ effectiveness and tests

their capacity to reliably classify individuals based on biometric signals, ECG and Respiration.

Finally, Chapter 5 has the study’s conclusion, summarizing the key findings and insights de-

rived from the research. Moreover, it offers valuable suggestions for potential future work in the

field of biometric identification using vital human signals, paving the way for further advance-

ments and innovation in this area.
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Chapter 2

State of the Art

The perspective of monitoring the human health, identification processes of professionals working

in hazardous situations, like firefighters, leads to the combination of wearable devices and biomet-

ric recognition areas. This section provides state of the art in these two areas and discusses typical

vital signal processing and possible classification procedure for identifying subjects.

2.1 Wearable Devices for physiological monitoring in hazardous sce-
narios

The modernization and automation of the world require more specialized people to do the main-

tenance of machines or places that might have a high level of danger. Nowadays, the combination

of this factor and the requirement for workers’ well-being in risky professions are significant fac-

tors for the industry. The better way to achieve these specifications is to monitor continuously the

employees’ health to assure their safety and protection. Additionally, guaranteeing the security of

the restricted places they need to work on is another crucial factor to have in account. If besides

transmitting vital parameters from the users, was possible to control the access of restricted and

dangerous areas, that might be a huge help to companies leading with these recent problems.

Wearable devices can be a solution to the problems described previously. According to the

International Data Corporation, the wearable shipment volume is expected to grow 12.4% and

reached approximately 637.1 million units in 2024 [6].

Therefore, wearable health devices are increasingly helping self-tracking as well as providing

data to health professionals. These devices include electronics in small dimensions that are easily

adaptable and have the advantage of minimising discomfort and interference with daily human

activities. Use different sensors which can detect and analyse the physical and physiological status

of the human body [7]. Additionally, wearable devices have the benefit of having a lower cost,

higher processing speed and mobility and sensibility while the data is being collected. It represent

an advantage when used in hazardous scenarios, because it does not cause any impediment for

workers to perform their tasks.

7
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Wearable devices can have various forms, from wristwatches, ear devices, adhesive patches,

or even t-shirts with embedded electronics, which help create the concept of smart textiles. The

materials used to develop these devices need to be flexible and have a large diversity of sizes and

shapes to be more customised for individuals. A good fit to the human body improves the quality

of the signal collected and also reduces the noise from the measurement [8].

2.1.1 Generic system architecture

The generic architecture of wearable health device (WHD) systems can be expressed in Figure

2.1. This architecture might be used in the future for an advanced phase of this dissertation. This

picture separates the different phases of how the process of collecting the vital signal works with

a wearable device.

Figure 2.1: Architecture of wearable devices system [9]

The first phase (A - 2.1) designed for Body Area Network (BAN) involves low-cost, low-

power consumption, and small sensor nodes. The nodes are responsible for capturing the signals,

pre-processing them, and also have communication capabilities. Second phase (B- 2.1) is where

the vital signals are received. The portable unit is responsible for amplifying or filtering the signals

collected and transforming them into digital ones. Additionally, the portable unit also extracts the

features from the vital parameters. Furthermore, the raw data received can be transmitted or stored

in a local memory to be processed or used after (C- 2.1 – offline monitoring).

The principal wireless protocols for transmitting the data acquired are Bluetooth, Wi-fi, Zig-

Bee, and LoRa (Long Range radio). They differ mostly in the maximum range and data rate trans-

mission and also power consumption. The LoRa is the one with more maximum range, the Wi-fi

is the one with the maximum data rate, and finally, the Bluetooth has less power consumption. The

lower requirements of power consumption and cost of Bluetooth make them an ideal candidate to

be used in wearable devices. Moreover, Bluetooth Low-Energy (BLE) is a recent technology that
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consumes even less power, is also of short-range frequency, and enables incorporation in small

devices, like wearable devices [9].

Real-time monitoring (phase D) is another feature associated with the use of wearable devices.

This offers the possibility of people monitoring themselves while they perform daily activities,

because with the data transmission via Bluetooth, they have free and easy access to their vital

signals [9].

2.1.2 Vital Parameters

Wearable devices can be comfortable and noninvasive when continuously monitoring a human’s

vital signals. Some physiological signals they can measure are body, temperature, heartbeat, res-

piration rate, and blood pressure. These signals are useful for fitness monitoring and medical

diagnosis.

This section describes how the process of acquiring some vital signals from wearable devices

works. More particularly, the ECG and respiration signals because they will be used in the follow-

ing stages of this dissertation.

2.1.2.1 Electrocardiogram

As it was mentioned before, an electrical sensor in a wearable device is capable of collecting heart

activity. To obtain electrocardiography in used skin electrodes that capture the depolarisation

from the heart. This process conventionally uses 12 electrodes and an electrode gel. However, this

can be done with two electrodes on the chest which offers a more practical way to integrate into

wearable devices[8]. Wearable devices can measure a simple heart rate and an ECG waveform,

depending on the sensor and the quality of the signal collected. The literature defends that exist

three types of devices that acquired heart activity: (1) Heart Rate (HR) – devices that collect R-

peaks but not the entire ECG waveform; (2) R-R interval – devices that acquired the time difference

between R-peaks in ECG signals; (3) ECG – devices that can collect the ECG waveform. In figure

2.2 is possible to visualise some of the wearable devices described [9].

An electrocardiogram (ECG) is a physiological signal that measures the contraction and recov-

ery of the heart. ECG uses electrodes attached to the skin of a person to describe the activity of the

heart and provide information about the heart rate, rhythm, and morphology[4]. The contraction of

the heart muscle generates electrical currents which represent the polarization and depolarization

of the heart. The electrodes measure that current, and the signal resulting is called ECG.

A normal ECG consists of a P wave, a QRS complex, and a T wave (Figure 2.3). This infor-

mation is the key to ECG-based biometrics. The first wave (P) results from the depolarisation of

the heart and starts with the atrial contraction. The QRS complex is the combination of the Q, R,

and S waves, and results from the depolarisation of the ventricles that came before their contrac-

tion. This complex has the largest amplitude of the waveform and depends on the heart rate, so the

lower the heartbeat is, the wider the QRS complex [10]. Additionally, the temporal distances QR

and RS are asymmetric and can change with the heart rate or respiration [4]. Finally, the T wave



10 State of the Art

Figure 2.2: Heart activity trackers divided [9]

represents the repolarization of the ventricles and occurs approximately 300 milliseconds after the

QRS complex. Following the T wave, the U wave occurs as a low-amplitude wave that may not

always be visible. ECG is a valuable tool for diagnosing cardiac diseases for being painless, easy

to measure, and non-surgical[10]. Figure 2.3 and table 2.1 show the format of a ECG waveform

and the its features with a brief description of them.

Figure 2.3: ECG waveform and fiducial points [11]
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Feature Description Duration

RR interval
The RR interval represents the duration between
two consecutive R-waves (ventricular depolarization)
on the ECG waveform.

0.6-1.2s

P wave P-wave represents atrial depolarization 80-120ms

PR interval

The PR interval represents the duration from the
beginning of the P-wave to the start of the QRS complex,
reflecting the time taken for the electrical signal to
travel from the atria to the ventricles.

120-200ms

QRS complex
The QRS complex represents ventricular depolarization,
indicating the contraction of the ventricles.

70-120ms

ST interval
The ST interval represents the time between the end of the
QRS complex and the beginning of the T-wave. It reflects
the early phase of ventricular repolarization

120ms

T wave
The T-wave represents ventricular repolarization, indicating
the recovery of the ventricles.

< 250ms

QT interval
The QT interval represents the total duration of ventricular
depolarization and repolarization. It is measured from the
beginning of the QRS complex to the end of the T-wave.

420ms

U wave
The U-wave is a small and often subtle waveform that
follows the T-wave.

<100ms

Table 2.1: ECG features [12] [13] [14]

2.1.2.2 Respiration signal

The sensors capable of collecting respiration signals can do it by measuring the flow of breath,

the pressure in the chest, and the expansion or contraction of the abdomen during breathing. Most

sensors, in contact with skin, detect the body’s volume or pressure change. For that, the wearable

device must be as comfortable as possible and have a high level of sensibility. Some examples

of sensor technologies are acoustic, resistive, inductive, acceleration, pressure, electromyography,

impedance, and infrared. The materials used to measure this type of signal must be conductive or

dielectric. After acquiring the signal, to remove interference and noise from the body motion, it is

usually used band-pass filters [8].

The respiration signal represents the breathing process, including a pattern of inhalation and

exhalation. Inspiration or inhalation involves the contraction of the diaphragm and the expansion

of the chest cavity or abdomen because of the increased airflow drawn into the lungs. Opposite in

the expiration or exhalation occurs the relaxation of the diaphragm and the chest cavity returns to

a rest position. In this phase, the airflow into the lung decrease. The respiration rate is an essential

parameter for health monitoring. This parameter refers to the number of breaths taken in a minute

and indicates the frequency of the respiration signal and the pace of the breathing cycle.

Figure 2.4 presents a recording of human breathing, representing an example of the respiration

signal that can be captured from a wearable device.
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Figure 2.4: (A) Human respiration signal (B) The same respiration signal after removing drift and
noise, and estimating features with BreathMetrics [15]

2.2 Biometrics recognition methods

Biometrics is the measurement of unique physiological characteristics for identification purposes

that can be used for digital authentication and access control. Biometric technology makes signing

into accounts and security protocols quicker and easy for the user and much harder for possible

attacks. However, there is a risk of fraud or identity theft with the increased use of biometric data.

Biometric data can be derived from an individual’s intrinsic characteristics (biometric recogni-

tion) that include anatomical (such as the face, fingerprints, and iris), physiological (electrocardio-

gram, electroencephalogram, photoplethysmogram), and behavioral traits (the way of walk)[16].

The principal advantages of biometric security are the considerable difficulty of hacking be-

cause of the extreme complexity and randomness of biometric data, which is fast and easy to

obtain from the user, and always available wherever a person is without additional authentication

devices. These factors make biometric recognition a good choice for cases like public security,

military operations, healthcare or commercial applications, remote access, or even travel control.

In hazardous scenarios, where the workers need to use PPE clothing, physiological biometrics

are increasingly gaining importance, because there are the best and sometimes the unique way to

restrict access to diverse areas. This type of biometric security will guarantee not only the moni-

toring of the individuals but also prevent unwanted people to enter private and reserved places.

The first technologies to be explored in the field of biometrics were fingerprint, retina, face,

iris, and voice recognition. The principal and more robust recognition techniques are face and

fingerprint recognition, and the last one is considered the most mature, with algorithms that obtain

the best accuracy levels[4]. However, there are many drawbacks to both of them that introduce



2.2 Biometrics recognition methods 13

variability to the features and compromise the ability of the classifier. Some factors are the mod-

ifications in a person’s facial expressions depending on her emotional state, the person’s age, and

also the environment, because the algorithms are highly influenced by, for example, illumination.

Furthermore, in the case of fingerprint recognition, the use of synthetic material or unconstrained

environments compromises the acquiring data process which leads to the rejection of the inputs[4].

The most widely used methods with good performance require an algorithm with high complexity

at the computational level.

Figure 2.5 presents a comprehensive overview of the speed rates associated with various bio-

metric methods, as documented in the literature. The analysis reveals that fingerprint and hand

geometry exhibit relatively slower speeds among the considered methods, while iris recognition

stands out as the fastest method available.

Figure 2.5: Speed Rate (SR) range values for some state-of-the-art biometrictechniques [4]

2.2.1 Electrocardiogram biometry

In order to overcome aspects that can affect the algorithm to identify a subject that was aforemen-

tioned, the ECG was introduced as an option for biometrics. ECG, besides providing liveliness

detection, confers information to identify a subject[4].

ECG signals present a variability intra-subject and inter-subject. The first is mainly explored

for health statistics and monitoring while, the second is useful to distinguish individuals in bio-

metric recognition. Both variabilities fall in the heart geometry, amplitude, and duration between

the fiducial points, cardiac conditions, or electrode characteristics and placement [17]. This inter-

subject variability confers the ECG information on identity and guarantees that the ECG signal

is difficult to steal and mimic which represents a high-security measure to use for recognition[4],

[16].

The goal of the ECG biometric methods is to recognize a person in less time as possible with

a fewer computational cost to use in wearable devices[4]. With the advance of the years, the

heartbeats needed to ensure a good classification and identification of a subject using ECG tend

to be less. It started with the information extracted from 10 heartbeats and an accuracy of 98%,

but with a high computational cost and a complex implementation [18]. However, recently is,
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already possible to achieve an accuracy of 97.5% with a only two heartbeats and with a method

computational simpler and embedded in a small device [4].

For biometric identification systems using ECG signals, the following steps are usually cov-

ered: (1) preprocessing of ECG data; (2) feature extraction; (3) classification process [19].

The acquisition process is susceptible to noise and interference, and the ECG data depend

on the characteristics and placement of the electrodes. Because of that, there is a need for pre-

processing of the data. In approaches for on-the-person signals, the most used techniques to

remove noise and interferences are using bandpass, lowpass, highpass, and notch filters[17].

(1) Preprocessing: In order to facilitate the calculation of PQRST points and the filter-

ing/smoothing of signals in the context of ECG analysis, it is essential to perform a preprocessing

step on the raw ECG signal [20]. The raw signal often contains different types of noise, including

baseline drift, high-frequency noises, and interference from external components. These noise

types can be caused by muscle movements, external interferences, and other activities [20].

Preprocessing plays a crucial role due to the susceptibility of ECG signals to noise interference

[17]. The term "artefact" is commonly used to describe non-natural components that can disrupt

ECG signals. Artefacts result from electrical disturbances caused by factors such as electrical

noise within the body, external sources, improper placement of electrodes, or hardware malfunc-

tions [21]. It is important to note that the placement of electrodes influences the amplitude and

shape of the ECG waveform, with greater distances between electrodes resulting in weaker signal

acquisition [17].

Removing artefacts is essential to interpret the heart’s waveform accurately. ECG signals

exhibit various types of noise sources and artefacts [17]. These include:

• Powerline interference (AC interference): This interference arises from the sinusoidal

current of the acquisition equipment’s energy source, potentially altering the electrical fre-

quency (typically 50Hz in Europe). Consequently, the interference appears as high-frequency

noise and a thickened ECG line in the signal. Causes of this interference may include discon-

nected electrodes or electromagnetic interference generated by the power supply [21][22].

• Baseline wonder: This noise is caused by patient breathing or movements and dirty or

loosely attached electrodes. It leads to low-frequency undulations in the signal baseline,

posing challenges in detecting signal peaks [21][22].

• Electromyographic interference: Electromyographic signals are induced by the electric

impulses used by muscles to contract. These signals can interfere with the collection of ECG

signals, resulting in high-frequency, high-amplitude peaks or short-term bursts [21][22].

• Electrode movement: Patient movements can alter the skin impedance around the elec-

trodes, causing high-amplitude artefacts in the signal[22].

• Lead reversal: This interference refers to the incorrect placement of electrodes, such as

reversing leads, which can lead to inaccurate measurements of potentials[21].
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By employing appropriate preprocessing techniques, such as using band-pass filters, and applying

mean filters for signal smoothing [20], it is possible to address these sources of noise and artefacts.

This approach enhances the quality and reliability of subsequent stages of ECG signal analysis in

the study.

(2) Feature Extraction: Feature extraction from ECG signals can be accomplished using

fiducial points and non-fiducial features. Fiducial point extraction employs temporal features such

as the duration of heartbeat waves, time intervals between fiducial points, peak amplitudes, and

morphological features [19]. On the other hand, non-fiducial feature extraction involves statistical

and transformation techniques[23].

A robust QRS recognition algorithm is crucial in analysing ECG waveforms using various

instruments. The erroneous detection of the QRS complex can result in unnecessary data trans-

mission and excessive memory storage of captured ECG segments [24]. However, detecting the

QRS complex poses challenges due to its variability and multiple types of noise in the ECG signal.

The Pan-Tompkins Algorithm is a commonly used and efficient algorithm for QRS detection. It

employs digital filters to mitigate the influence of muscle noise, electrode motion, powerline in-

terference, baseline wander, and high-frequency characteristics of T-waves while simultaneously

improving the signal-to-noise ratio [24]. The choice of this algorithm for the dissertation is mo-

tivated by its utilisation of integer arithmetic, low memory consumption, and minimal compu-

tational time. Consequently, it can be implemented as a real-time filter on the microcontroller

(BGM220P) for signal acquisition.

The Pan Tompkins algorithm [24] performs real-time QRS detection by applying processing

steps to a digital signal obtained from an analogue-to-digital converter. The algorithm initiates

with a bandpass filter to suppress low-pass interference, muscle noise, and T-wave interference.

The bandpass filter consists of cascaded low-pass and high-pass filters. Subsequently, the ECG

signal undergoes differentiation to extract QRS-complex slope information. The differentiated sig-

nal is squared and passed through a moving-window integrator to derive waveform information.

The integration window spans 30 samples (150ms). The rising edge of the integrated waveform

corresponds to the QRS complex, with the duration representing the width of the QRS complex.

The algorithm dynamically adjusts thresholds and limits for the RR interval periodically, accom-

modating inter-patient variability and changes in ECG morphology within a single patient.

In the Pan-Tompkins algorithm [24], the identification of fiducial points (peaks) relies on

changes in signal direction within a specific time interval. It first detects the QRS complex and

the corresponding RR interval. The identification of the T-wave occurs when the maximum slope

between two consecutive RR intervals is half that of the preceding QRS waveform. This algorithm

accurately utilises the ECG signal, with only a 0.675% failure rate in detecting the fiducial points.

With the extraction of the principal peaks of an ECG waveform (P, QRS and T), it is possible

to calculate time intervals and wave amplitudes that can be included as features to include in the

classification algorithm.

Other feature extraction techniques that have been utilised include the Discrete Wavelet Trans-

form (DWT), Continuous Wavelet Transform (CWT), Discrete Cosine Transform (DCT), S-Transform



16 State of the Art

(ST), and Discrete Fourier Transform (DFT). However, most of these techniques demonstrate

a considerable degree of complexity and are time-consuming when it comes to noise removal

during the feature extraction process. In contrast, the Pan-Tompkins algorithm necessitates less

computational effort while attaining enhanced efficiency [13].

Overall, the combination of preprocessing techniques and the Pan Tompkins Algorithm offers

a comprehensive approach to reliable ECG signal analysis, ensuring accurate detection of fiducial

points and enhancing the overall interpretation of ECG waveform.

(3) Classification Process: The last step in biometric systems is the identification process,

consisting in use of classification methods, such as machine learning models. Some those methods

based on the closest distance between samples [25] or classifiers based on distance such as, K-

Nearest Neighbour (KNN) or Support Vector Machine (SVM) classifiers [26] [4] which have been

widely explored by the literature. In addition, other methods learn the non-linear relations between

the input samples. Some examples of that are the Neural Networks (NN) for the QRS detection

[27], and the Convolution Neural Networks (CNN) [28] [29]. Another possible option proposed in

[19] is a Cascaded CNN composed of the combination of an F-CNN (CNN for feature extraction

of heartbeats) and M-CNN (CNN for biometric comparison).

2.2.2 Respiration biometry

Recently, respiration signals have been used as a vital parameter in biometric recognition. This

signal like the ECG signal can be measured using different wearable devices and does not require

extra effort for the individual to be collected.

Researchers discovered that the breathing pattern is influenced by sex and the thoracoabdomi-

nal motion by age [30], but generally breathing movements do not vary significantly with increas-

ing age [31]. Additionally, in the literature, it was found studies that defend the existence of unique

characteristics from the respiration signals which makes it possible to identify different subjects

from these kinds of signals.

Some methods are free from the involvement of the user and use the Wi-fi infrastructure to

recognize unique physiological characteristics of an individual in the user’s respiratory motions.

Existing studies indicated that respiration motions can distinguish humans without any extra in-

formation. The method described in [32] is non-intrusive and can use any Wifi mobile device to

automatically identify a user. The process of extracting the features was based on the waveform

morphology analysis and Fuzzy Wavelet Packet Transformation (FWPT) of the respiratory sig-

nals in Channel State Information (CSI) readings from Wi-fi devices. The interference and noise

presented in the data were mitigated with an Empirical Mode Decomposition (EMD) based filter.

Furthermore, with a deep learning algorithm, they were able to identify the legitimate user and the

existence of spoofing attacks. The results they obtained achieved a 95% authentication success

rate, a 92% of accuracy in detecting spoofing attacks, and less than a 5% false positive rate. An-

other method using Wi-fi devices was described in [33]. The researchers also used CSI of Wi-fi

signals to sense human respiration and then were capable of identifying a subject with 97.5% of

accuracy for 11 users in different scenarios.
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In [34] the combination of respiratory signature extraction feature with machine learning clas-

sifiers make it possible to authenticate the identity of a subject. For the separation of the individ-

ual’s characteristics, a dynamic segmentation algorithm was used, and after a diagonalization of

the eigematrices algorithm to isolate the different breathing patterns. Finally, it was used the k-

nearest neighbour (KNN) and the support vector machine (SVM) for subject authentication. With

these two Machine Learning (ML) classifiers, the accuracy obtained was 97.5% for a two-subject

and 98.33% for a single-subject experiment. The SVM algorithm was also used in [35] for the

same purpose. Another possible ML algorithm used in other approaches for identifying a subject

using respiration patterns was an artificial neural network (ANN) that acquired the data from a

knitted piezoresistive smart chest band [36].

Approaches utilizing radar for identifying authentication are other options presented in the

literature [37], [38], [39]. Radar has the advantage of not requiring direct contact with the body

or an intentional engagement of the individual in the authentication system [39]. Biotag [38] is

a continuous user verification system that uses a low-cost Radio Frequency Identification (RFID)

technology to find unique physiological signals of the individual’s respirations motions. In this

method, the extraction of the characteristic with biometric information was based on the wave-

form morphology analysis and the fuzzy wavelet packet transformation of the respirations signals.

The respiration signals showed different amplitudes and patterns from person to person, so the fea-

tures extracted were generally effective for identifying a user and always available independently

of the source of the RFID used for measurements. Additionally, for the classification process,

they adapted the gradient boosting decision tree (GBDT) and achieved a 95.2% and 94.8% on

verification accuracy on random attack and imitation attack scenarios [38].

Another study has captured the breathing patterns from the post-physiological activity and

sedentary conditions to defend the existence of unique features in the breath movement that confers

identity to a person using radar. Even when the breath pattern changes, for example, after a short

time exercising, it changes consistently for each individual and permits his recognition [39].

Finally, in [40] was developed a wearable mask to track respiration in free-living conditions.

With Principle Component Analysis (PCA) algorithms, they identified unique respirations patterns

of the user. The wearable device communicated via wireless and was capable of measuring health

information such as respiratory volume, waveform, exhalation peak flow rate, and also recognize

an individual from his respiration pattern.

The studies mentioned confirm that respiratory patterns can be a good biometric for continuous

user verification.

2.3 Conclusion

In conclusion, this section has provided an overview of the state of the art, highlighting the method-

ologies and techniques employed to capture the signal and process it in the context of this master
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thesis. Furthermore, it introduced the wearable device utilised, a small electronic device capa-

ble of acquiring electrocardiogram (ECG) and respiration signals in real time. The device offers

portability, practicality and utilises the Bluetooth Low Energy (BLE) communication protocol.

The collection of the ECG signal involved a two-electrode setup, enabling high-quality wave-

form extraction beyond just obtaining the heart rate. The collected ECG signal underwent various

signal processing techniques to ensure accurate analysis. These techniques included the applica-

tion of bandpass and low-pass filters, effectively filtering and removing noise and artefacts typ-

ically present in raw ECG signals. Additionally, the Pan-Tompkins algorithm was employed to

locate crucial fiducial points within the ECG waveform, facilitating identifying and analysing of

distinct features.

Regarding the respiration signal, the wearable device measured the impedance between the

two electrodes, enabling the capture of the respiration waveform. Subsequently, a Butterworth

filter was applied to the acquired signal to eliminate unwanted noise and ensure signal fidelity.

By detecting peaks and valleys within the respiration waveform, essential parameters such as

inspiration and expiration amplitude and duration were extracted, providing valuable insights into

the individual’s respiratory pattern.

According to current literature, each person’s ECG and respiratory signals display unique

features, and this master thesis focuses on human identification utilising these signals. To achieve

this system, a machine learning (ML) classifier will be used, using the gathered signals and their

relevant attributes to construct an identification model.

The subsequent chapters will describe the full implementation and assessment of the suggested

technique, reflecting on its feasibility and efficacy.
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Dataset and Signal Quality Validation

3.1 Signal Acquisition Setup

In order to capture accurate physiological data from a group of individuals, a hardware setup

was employed to acquire electrocardiogram (ECG) and respiration signals. This section provides

an overview of the hardware components utilized, their specifications, and their relevance to the

research objectives.

3.1.1 Hardware

The ECG and respiration signals were captured using the wearable device called VitalSticker [5]

(Figure 3.2), designed and produced by INESCTEC, capable of precise measurements.

(a) Front view (b) Back view

Figure 3.1: The wearable device VitalSticker [5]

The sensors employed in the measurements of ECG and respiration utilize a peripheral with

programmable gain amplifiers and high-resolution 24-bit analogue-to-digital converters (ADC).

This peripheral can measure high-quality lead ECGs with two contacts and a customizable vir-

tual right leg (RL) driver reference. Additionally, it features a module for measuring respiration

impedance that enables the acquisition of a respiration waveform. The sampling rate for both

signals was set at 250 Hz and the measurement range was +/- 350mV [5], ensuring high-fidelity

data acquisition. In the process of obtaining accurate physiological signals, a 2-electrode setup

was utilized. This setup employed a bipolar chest lead configuration to measure the participants’

electrocardiogram (ECG) signals. The two electrodes were carefully positioned on the anterior

chest region, as shown in Figure 3.2a, or inside a thoracic band also positioned in the chest region

19
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(Figure 3.2b). They were placed strategically to ensure accurate signal acquisition and capture the

heart’s electrical activity. It is important to note that although this bipolar chest lead design us-

ing two electrodes provides helpful information about cardiac electrical activity, it is a simplified

version compared to the conventional 12-lead ECG method. The 12-lead ECG system considered

the industry standard in clinical practices, provides a more comprehensive evaluation by including

additional electrode placements on various body parts [41].

(a) VitalSticker with electrodes

(b) VitalSticker with the thoracic band

Figure 3.2: A visual representation of the VitalSticker device in use

In addition to measuring the electrocardiogram (ECG) signals, the experimental setup allowed

for the simultaneous acquisition of respiration data using the impedance method. The impedance

method measures the electrical impedance changes brought about by the expansion and contrac-

tion of the chest during respiration [42]. The electrode placements were selected to ensure accurate

capture of variations in chest volume. Applying a small alternating current through one electrode

and measuring the resulting voltage through the other electrode made it possible to assess the
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impedance changes in the chest. These impedance changes were then used to derive a respiration

waveform, reflecting the participants’ breathing patterns. It is important to note that the respira-

tion waveform acquired through the impedance method provides valuable information about the

respiratory rate and pattern [42].

During the experiment, the electrodes were adequately positioned and adhered to minimize

the likelihood of artefacts or signal interference. The participants were instructed to relax their

breathing while seated and to refrain from any vigorous activity that could affect the accuracy

of the respiration waveform. The recorded signals were subsequently processed and analyzed

to extract relevant parameters, such as heart rate, respiration rate, wave morphology, and other

ECG/respiration characteristics of interest.

Before the data collection phase, meticulous calibration and setup procedures were carried out

to ensure the accuracy and reliability of the acquired signals. The ECG electrodes were carefully

checked for proper adhesion, and impedance levels were verified to be within acceptable ranges.

Furthermore, a median filter was implemented in the VitalSticker device to preprocess the ECG

signal to remove the baseline wander from the raw data (a more detailed explanation of this filter

will be in section 3.3.1). The device also incorporated noise reduction filters to mitigate the effects

of body movement and electromagnetic interference, reducing the impact of principal noises.

3.1.2 Bluetooth communication

To ensure seamless data acquisition, a Bluetooth-based transmission system (Bluetooth 5.2 Low

Energy (BLE) communication) was utilized to wirelessly transmit the acquired signals from the

sensors to the data collection device, such as a computer. This wireless communication method

provided several advantages, including convenience, mobility, and reduced participant discomfort

during the data collection.

Precautions were taken to minimize signal loss, interference, and latency associated with Blue-

tooth transmission to ensure the transmitted data’s reliability and integrity. These measures in-

volved maintaining proximity between the sensors and the data collection device and selecting

Bluetooth modules with robust signal transmission capabilities. Furthermore, an auxiliary buffer

was implemented in the Bluetooth stack to prevent data loss, guaranteeing the availability of the

primary buffer for receiving new data sent by the sensors. The buffer size had 99 bytes for ECG

and respiration signals, accommodating 33 samples at a transmission frequency of 7.6Hz [5].

3.2 Dataset and Data Collecting Protocol

3.2.1 Ethics Approval Process

The study was conducted according to ethical guidelines and obtained INESCTEC’s ethics com-

mittee’s approval. Before participating in the study, all participants provided informed consent by

signing a consent form. These forms comprehensively detailed the study’s objectives, procedures,

and guaranteed the confidentiality and anonymity of participants’ data. Additionally, participants
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were explicitly informed of their right to withdraw from the study at any point without without

consequences.

For further reference, the appendix section (B) includes the collection protocol, the informed

consent for study participation form, and the email correspondence containing the proposal ap-

proval from the ethics committee at INESC TEC. These documents serve as concrete evidence

of the ethical procedures followed throughout the study, ensuring the protection of participants’

rights and upholding the integrity of the research process.

3.2.2 Dataset Collection Process

The dataset was collected from a group of twenty-four (24) healthy individuals (without respira-

tory or cardiac problems), consisting of fourteen (14) women and ten (10) men, with ages ranging

from 20 to 62. The data collection procedure involved participants assuming a sitting posture

while wearing the VitalSticker wearable device, which consisted of two certified electrodes and

a thoracic band. In addition to the sitting posture, data was recorded while participants engaged

in activities such as walking, including ascending and descending stairs. These conditions were

chosen to assess participants’ physiological responses in different contexts. The recordings were

conducted in the morning and afternoon sessions of 3 minutes for each participant, allowing for

an exploration of potential variations in the signals throughout the day. Table 3.1 and 3.2 resumes

the participant demographics information and the dataset characteristics, respectively.

Table 3.1: Participant Demographics

Table 3.2: Dataset Characteristics

The VitalSticker wearable device was used for capturing ECG and respiration signals. It op-

erated at a sampling rate of 250 Hz, as mentioned in section section 3.1.1, and the recorded data

was stored in CSV format.

After the recording sessions, participants were asked to provide feedback regarding their com-

fort level while wearing the VitalSticker device. An analysis of the collected data revealed in-

teresting insights. The average comfort rating for the thoracic band was higher than that for the
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electrodes. This observation is depicted in figure 3.3, which presents a graphical representation

of the comfort ratings. The comparison between electrode comfort and band comfort provides

valuable information regarding the participants’ subjective experience during the data collection

process.

Figure 3.3: Comfort analysis between electrodes and thoracic band

As already mentioned, the collection process involved the utilization of electrodes and a tho-

racic band. While the subjects thought the thoracic band had a higher level of comfort (figure 3.3),

the signal quality did not outperform the electrodes. Consequently, the signal obtained with the

electrodes was chosen for subsequent analysis and classification throughout this dissertation. The

decision was made because the electrodes provided a slightly superior signal to the band. It is

worth noting that this disparity in signal quality could be attributed to the band being a prototype,

and the electrodes integrated into it had lower quality than those with gel application.

Simultaneously with the main experiment, parallel research was conducted to confirm the reli-

ability of the respiration signal collected by the VitalSticker device. A small group of five individ-

uals participated in this validation study. The setup used for the main experiment, which included

the VitalSticker wearable device with electrodes and a thoracic band, was employed for respiration

signal acquisition. A CPAP/APAP device (Figure 3.4) that can measure respiratory signals was

used to establish a baseline and compare the signal quality. This machine is widely used in clinical

settings to monitor respiration during sleep, particularly for individuals with sleep apnea. It was

the ideal reference for verifying the respiratory signal obtained from the VitalSticker device due

to its medical-grade capability and established reliability. The CPAP/APAP machine recorded the

respiration signals of the participants while they slept, capturing a range of breathing patterns and

dynamics. A comprehensive assessment of the signal quality was achieved by comparing the res-

piration signals acquired by the VitalSticker with those obtained from the CPAP/APAP machine.

This validation study played a vital role in ensuring the reliability and accuracy of the respiration

signals captured by the VitalSticker device, enhancing the credibility of the findings related to res-

piratory analysis in the main experiment (section 3.3.2 will provide more information about this
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comparison).

Figure 3.4: CPAP/APAP respiratory machine and nose mask

3.3 Signal Analysis

This study aims to identify and authenticate a small group of people based on their ECG and

respiration signals. Initially, the analysis focused solely on the ECG signal, as numerous studies

have already demonstrated its effectiveness in this context (Chapter 2). However, including the

respiration signal aims to investigate its potential contribution to the identification/authentication

processes.

Signal analysis is crucial to extracting meaningful information from the collected physiologi-

cal signals. One of the primary reasons for conducting signal analysis is to address the presence

of everyday noises typically captured during signal collection, such as baseline wander, muscle

movements, and other interferences. These noises can hinder the accuracy and reliability of the

signals, making preprocessing and signal quality validation essential steps in the analysis process.

In this study, the signals analysed are the ECG and respiration signals. The ECG signal

provides valuable insights into the heart’s electrical activity, while the respiration signal reflects

breathing patterns. Both signals are relevant to the research objectives, as they can contribute

to the accurate identification/authentication of individuals with the unique characteristics of each

individual that they provide.

Before validating the quality of the acquired data, extracting relevant features from the signals

is essential after the processing phase. These steps are crucial for the subsequent classification

process using machine learning algorithms. By extracting meaningful features and ensuring the

quality of the signals, the classification algorithm can effectively distinguish and classify individ-

uals based on their ECG and respiration signals. These steps will be explained in the following

sections.

3.3.1 Signal processing and feature extraction

ECG signal

Signal processing
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A series of processing steps were performed in the ECG signal to ensure the quality and relia-

bility of the acquired physiological signals. A median filter was incorporated within the firmware

of the employed wearable device (VitalSticker) to eliminate the baseline wander present in the

collected signal [5], as mentioned in the previous section. This particular filter was selected due to

its ability to preserve the waveform integrity of the signal without introducing significant compu-

tational overhead. Alternative filters such as high-pass filters (FIR, IIR), Wavelet transform, and

mean filters were considered. However, they either required excessive computational resources

or introduced additional artefacts to the signal waveform, which could adversely affect the subse-

quent feature extraction process.

The implemented median filter utilizes a sliding window with 150 samples, which is approx-

imately the number of samples from the P wave to the T wave passing through the QRS point of

the ECG waveform. It calculates the median value within this window and subtracts it from all

other signal elements. As a result, the filtered signal is centred around zero, effectively removing

the baseline wander typically present in the ECG waveform without compromising its integrity.

Figure 3.5 illustrate the function of the filter. The amplitude shown in Figure 3.5a is provided

directly from the devices in bits. After applying the filter, a conversion to mV units was performed

according to the characteristics of the ADC system in VitalSticker device [5], as can be observed

in Figure 3.5b.

After the signal acquisition, a thorough analysis and processing were performed. Noise re-

moval techniques were applied to the raw physiological signal to mitigate noise and artefacts,

including filtering and artefact removal. The BioSPPy toolbox [43] [44], implemented in Python,

was employed for signal filtering using a bandpass and FIR filter (with a sampling frequency of

250 Hz, a frequency range of [3, 45] for passband and an order of 0.3× sampling f requency) and

QRS complex detection. The Pan-Tompkins algorithm [24] was utilized to identify the R peaks

accurately. The Q and S peaks were later identified by utilizing the capabilities of the chosen tool-

box and the R peak positions. Further analysis was then conducted on the two remaining waves of

interest that were still present, the T and P waves.

The localization of the P peaks in all heartbeats posed the most significant challenge during

the signal analysis. In order to attain accurate results, modifications were made to the functionality

of the BioSPPy toolbox to ensure precise identification of the P peak positions.

For quality control, a visual analysis was conducted on the collected signals to verify the

correct placement of the peaks and exclude any outliers exhibiting significantly deviant distances.

Figure 3.6 illustrates a portion of the raw signal with the median filter to remove the baseline

wander, already implemented in the firmware of the VitalSticker device, and the filtered ECG

signal zoomed. The graph prominently displays the distinctive peaks, identified and marked with

vertical lines of different colours for each peak. This visual representation serves as a valuable

reference, allowing for clear visualization of the relevant points and aiding in understanding the

subsequent feature extraction process. Each processing step was meticulously executed, carefully

considering relevant parameters to optimize the quality and usability of the signals. Once the

precise locations of the key points in the ECG signal were obtained, a set of features was extracted
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(a) Raw ECG signal

(b) ECG signal with median filter

Figure 3.5: The effect of the median filter

from these positions.

Feature extraction
As mentioned, feature extraction can be performed using fiducial and non-fiducial features. In

this study, fiducial points of the ECG signal were utilized to extract features for the identification

algorithm. In particular, temporal characteristics were derived from the waveform by utilizing the

precise positions of the critical ECG peaks acquired during the signal processing stage. Informa-

tive temporal features were derived by calculating various time intervals between fiducial points,

such as ST, RT, QT, RR, and others.

These temporal features were selected based on their potential significance in capturing es-

sential characteristics of the ECG waveform related to individual identification [4]. The chosen

features allow for the characterization of essential intervals and durations between specific fiducial

points, providing insights into the underlying physiological processes of the heart. By incorporat-

ing these features into the classification algorithm, distinctive patterns within these time intervals

may aid in accurately authenticating individuals.

It is important to note that these specific temporal features were selected based on existing

literature and domain knowledge [4] [13] [14]. These justifications provide a strong rationale for
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Figure 3.6: Raw ECG signal only with the median filter(top graph) and filtered ECG signal (bottom
graph) with the signal peaks identified

including these temporal features in the machine learning classification algorithm.

However, it is essential to acknowledge potential limitations and considerations regarding the

chosen features. Variability in the ECG morphology among individuals and potential confound-

ing factors, such as physiological conditions or medication usage, may impact the reliability and

generalizability of these temporal features. Careful evaluation and validation of these features are

necessary to ensure their robustness and suitability for the authentication classification algorithm.

Strategically extracting temporal features based on fiducial points offers a promising approach

for achieving accurate and reliable identification/authentication. By considering the physiologi-

cal relevance of these features and addressing their limitations, the classification algorithm can

effectively use the unique patterns within the time intervals of the ECG waveform to authenticate

individuals with a wearable device.

After extracting the relevant features from the acquired ECG signal, the next step involved

computing the temporal distances between the key fiducial points, namely Q, R, S, and T, for

each individual’s heartbeat. These temporal distances were subsequently utilized as features for

the classification task. Specific criteria were applied to filter out noisy heartbeats to ensure the

reliability of the extracted features. This was achieved by applying a series of conditions to ensure

the reliability and accuracy of the selected heartbeats. The following conditions were used to filter

out noisy heartbeats [4]:

1. Heartbeats with a temporal distance between the Q and R peaks exceeding 0.075 seconds

were excluded from the analysis. This criterion ensured that only heartbeats with a suitable

time delay between these fiducial points were considered.

QR <= 0.075s (3.1)

2. Another constraint was established on the QT interval to RR interval square root ratio.
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Heartbeats outside of the 0.200 to 0.360 range for this ratio were considered noisy and

eliminated from the data set. This criterion was used to keep the temporal link between

these intervals consistent.

0.200s <
QT√
RR

< 0.360s (3.2)

3. In addition to the above conditions, particular attention was given to the P peaks, which

are often more challenging for the algorithm to detect accurately. To address this, outliers

among the P peaks were removed by deleting those with a distance RT considerably different

from the mean distance, taking into account the mean distance plus or minus the standard

deviation of the varied RT of each person’s heartbeats. By doing so, P peaks that deviated

significantly from the typical distance were excluded from the dataset, ensuring a more

reliable analysis.

The feature vectors associated with noisy heartbeats were efficiently eliminated by applying

these severe constraints, ensuring that only high-quality and trustworthy heartbeats were included

in the subsequent analysis.

The steps for the ECG signal analysis were based in a already existed pipeline defined in

[4]. Figure 3.7 illustrates the pipeline followed for analysing this vital signal, including all the

processing steps and the identification process with machine learning algorithms using this signal.

Respiration signal

Signal processing

The respiration signal was subjected to a comprehensive processing procedure similar to the

ECG signal, as discussed in the preceding section. The BioSPPy toolbox [43] was employed to

facilitate this processing. Initially, a Butterworth filter (with order = 2 and a sampling rate of 250

Hz) was implemented to reduce unwanted noise and artefacts, enhancing the overall signal quality.

The identification of valleys and peaks in the respiration signal involved detecting zero cross-

ings with the help of BioSPPy toolbox, which correspond to points where the signal intersects the

zero axis. By utilizing the positions of these zero crossings, the precise locations of the valleys

and peaks were derived. Figure 3.8 visually depicts the respiration signal, illustrating both the raw

and filtered segments, with vertical lines indicating the presence of valleys and peaks.

Following this, a detailed analysis was conducted for each respiration cycle, focusing specifi-

cally on the characteristics associated with individual breaths. Each respiration cycle encompasses

a valley, a peak, and another valley. Within each cycle, several parameters were computed to cap-

ture essential characteristics. Specifically, the amplitudes of inspiration and expiration, which

signify the magnitudes of the inhalation and exhalation phases, were determined. Additionally,

the durations of the inspiration and expiration steps were measured, offering valuable insights into

the time spent in each phase.
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Figure 3.7: Pipeline scheme of the ECG identification algorithm. (1) filter the raw signal;(2) find
the fiducial points; (3) distance measure computed; (4) remove noisy heartbeats; (5) normalize
features (with the training data); (6) train the data; (7) test phase [4]

By incorporating these computed parameters, a more comprehensive understanding of the

respiration signal was attained, enabling the extraction of essential features for subsequent identi-

fication purposes [35] [34].

Feature extraction

For the feature extraction of the respiration signal, several parameters were computed for each

respiration cycle to capture essential characteristics. The previously mentioned parameters include

the inspiration and expiration amplitudes, which indicate the magnitudes of the inhalation and ex-

halation phases, and the lengths of the inspiration and expiration steps, which provide information

about the time spent in each phase. The initial valley, peak, and second valley positions were used

to determine these parameters throughout each respiration cycle.

In addition, inspiratory and expiratory velocities [34] were extracted from the respiratory sig-

nal. Inspiratory velocity represents the pace of air entering the lungs during inhalation, while

expiratory velocity measures the rate of air expelled during exhalation. They were calculated by

subtracting the amplitude value of a peak value and dividing the result by half a respiration cycle,

depending if it is inhalation or exhalation. These velocities provide valuable insights into breathing

patterns and dynamics.
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Figure 3.8: Raw and filtered respiration signals

Furthermore, the respiratory rate was calculated by dividing a minute (60s) by the duration of a

complete respiratory cycle. This measurement gives an essential indicator of breathing frequency.

These features offer valuable information for respiratory monitoring and assessment and po-

tential applications in human identification processes[35] [34].

In order to ensure the reliability of the extracted features, the following criteria were applied

to each respiration cycle:

1. Elimination based on Amplitude: If the amplitude of either the inspiration or expiration is

too small, specifically less than or equal to 20% of the mean peak-to-valley amplitude, the

associated pair of peak and valley is deleted [45]. This criterion helps remove insignificant

or noisy cycles from the analysis.

2. Elimination based on Duration: Empirical observations showed that the respiration du-

ration could vary significantly, ranging from 0.9 seconds during heavy exercise (such as

running) to 12.5 seconds during activities like a conversation. To ensure consistency, only

time intervals from valley to valley falling within the range of 0.9 seconds to 12.5 seconds

were accepted [46] [45]. Respiration cycles with durations outside this range were ignored.

3. The ratio of Duration to Amplitude: After analyzing the waveform and considering the

mean ratio of all respiration cycles, a threshold was set to filter out cycles deviating sig-

nificantly from the expected waveform characteristics. If the ratio of inspiration duration

to inspiration amplitude or expiration duration to expiration amplitude ratio was less than

0.003, the corresponding respiration cycle was excluded. This criteria was based in [46]

which defends that the ratio of inspiratory to expiratory duration and amplitude should not

be more than 1.5.
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The reliability and quality of the retrieved characteristics were improved by applying these

criteria to each respiration cycle, ensuring that only significant cycles were evaluated for further

classification and authentication.

The steps for the respiration signal analysis were based in the ECG signal pipeline defined in

[4]. Figure 3.9 illustrates the pipeline followed for analysing this vital signal, including all the

processing steps and the identification process with machine learning algorithms using this signal.

Figure 3.9: Pipeline scheme of the respiration identification algorithm. (1) filter the raw signal;(2)
find the fiducial points; (3) distance measure computed; (4) remove noisy breaths; (5) normalize
features (with the training data); (6) train the data; (7) test phase [4]

3.3.2 Quality Signal Validation

3.3.2.1 ECG Validation study

The purpose of these experiments is to validate and analyse the signal quality of the ECG data

gathered using the wearable device VitalSticker, which served as the primary tool for building the

dataset. In the context of the master’s thesis, it is essential to ensure the reliability and accuracy of

the collected ECG signals.
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Validating the signal quality holds significant importance for several reasons. Firstly, accurate

ECG measurements are crucial for the reliable diagnosis and monitoring of various cardiac con-

ditions. Secondly, ECG data possesses inherent characteristics that make it a promising biometric

authentication modality, capable of uniquely identifying individuals. Therefore, ensuring the pre-

cision and fidelity of VitalSticker’s signal acquisition is imperative. By doing so, the credibility

of the dataset employed in the research can be firmly established, enhancing the reliability and

credibility of the identification and authentication methods proposed.

These experiments are performed using both VitalSticker and VitalJacket® [47] (figure 3.10)

devices to identify and quantify any potential performance limitations or errors in these devices,

allowing for a comprehensive evaluation of the dataset’s reliability. VitalJacket®, a medically cer-

tified device to the MDD 93/42 EEC for ambulatory cardiology, is utilized alongside VitalSticker

to provide a comparative analysis of signal quality.The Vital-Jacket® is designed to enable pa-

tients’ mobility in cardiology and sports applications. It is a lightweight, comfortable, and flexible

jacket worn discreetly underneath clothing. Equipped with sensors, including three electrodes, the

VitalJacket® accurately measures vital signs such as heart rate, respiratory rate, blood pressure,

and body temperature. These sensors wirelessly communicate the data they collect to a receiver

the patient can carry around in their pocket or belt. Subsequently, the receiver can be connected to

a computer or mobile device for real-time monitoring and further analysis of the acquired data.

Figure 3.10: The certificated wearable device VitalJacket® [48]

However, as VitalSticker serves as the primary device employed throughout the research, the

reliability and validity of its signal directly impact the credibility of the research outcomes. There-

fore, a thorough understanding and justification of the importance of validating the ECG signal

quality collected with VitalSticker become paramount. By validating the signal quality, the overall

credibility of the research findings is strengthened, ensuring robust and reliable conclusions.

In summary, these experiments aim to validate and analyse the signal quality of the ECG

data collected with VitalSticker. This validation technique contributes to the overall credibility

and integrity of the study results by guaranteeing the reliability and correctness of the collected

signals.
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3.3.2.2 Experiment A: Comparing VitalSticker and VitalJacket Performance with an ECG
Simulator

In this experiment, a comparison was made between the performance of VitalSticker and Vital-

Jacket. The validation process involved using an ECG simulator, the PS-2006 microprocessor-

based Patient Simulator 3.11.

The specifications of the ECG simulator include various features such as ECG simulation

with four waveforms, constant QRS duration, and six machine performance testing waveforms,

including Holter simulation.

The ECG simulator features six patient lead snap connectors and offers the capability to gen-

erate ECG signals at different heart rates. For this experiment, signals were generated at two heart

rates: 60 beats per minute (bpm) and 120 bpm. The simulator provides a constant ECG signal at

the specified heart rates. Figure 3.12 presents a schematic diagram illustrating the experimental

setup of Experience A with the three devices used and the five electrodes represented by the blue

circles.

Figure 3.11: PS-2006 microprocessor-based ECG Patient Simulator [49]
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Figure 3.12: Schematic representation of experiment A setup

The known RR intervals for these heart rates were determined to establish a baseline for com-

parison. With a constant heartbeat, the RR interval can be calculated as the reciprocal of the heart

rate. For example, the RR interval at 60 bpm equals 60 seconds divided by 60 bpm or 1 second.

Similarly, at 120 bpm, the RR interval equals 0.5 seconds, representing 60 seconds divided by 120

bpm. In order to assess and contrast the RR intervals received from the wearable devices, these

known RR intervals were used as a benchmark.Figure 3.13 illustrate the protocol diagram of the

analysis done in next section.

Figure 3.13: Protocol Diagram of experiment A

By utilizing the ECG simulator and establishing the known RR intervals for the heart rates of

interest, a reliable baseline was created to evaluate the performance of VitalSticker and VitalJacket.

The signals generated by the simulator were regarded as the objective and correct standards to

evaluate and contrast the RR intervals obtained by the wearable devices. By comparing the RR

values from the wearable devices to the baseline set by the ECG simulator, it was possible to

evaluate the precision and dependability of the measures. Figure 3.14 shows three peaks zoomed

of VitalSticker and VitalJacket® signal synchronised. The R peaks of both signals are not in the

same time position, which causes the errors analysed in the next section.
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Figure 3.14: VitalSticker and VitalJacket® signals

Error analysis

In this section, the resolution and errors observed for both VitalSticker and VitalJacket will be

discussed. The testing took place at heart rates of 60 and 120 beats per minute for 2 minutes

corresponding to 120 and 240 heartbeats, respectively.

Starting with the resolution of the devices, VitalJacket has a better sampling frequency of 500

Hz compared to VitalSticker’s 250 Hz (sample rate). When analysing the errors, this resolution

difference will be taken into consideration.

The results in tables 3.3 and 3.4 show, at 60 bpm, that VitalSticker had 37 inaccuracies over

the 2-minute test period at 60 bpm, each with a magnitude of 0.004 seconds, in line with time

the resolution of 1/250 Hz = 0.004 seconds, representing the error of one sample. Assuming all

the absolute values of the errors, the maximum accumulative error will be calculated multiplied

by the 37 times the error occurs by 0.004 seconds. It can be used to determine the VitalSticker’s

cumulative error, which equals 0.148 seconds. VitalJacket, on the other hand, displayed 117 faults

with a resolution of 1/500 Hz = 0.002 seconds and an average magnitude of 0.002 seconds. In

the same perspective, the maximum cumulative error of VitalJacket® may be calculated as 117

mistakes multiplied by 0.002 seconds, which results in an error of 0.234 seconds.

Table 3.3: 60bpm analysis
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Table 3.4: 120bpm analysis

In addition to the previous analysis, another test was conducted using a simulator to compare

the performance of both VitalSticker and VitalJacket over a 5 minutes test duration. The 5 minutes

correspond to 300 heartbeats at 60 bpm and 600 at 120 bpm. The results of this performed tests,

including the maximum error of the RR interval, the number of errors, and the cumulative error

for each device, are summarized in the tables of figures 3.3 and 3.4.

Results discussion

The evaluation of the results reveals critical implications for the overall signal quality and reliabil-

ity of the collected ECG data. When monitoring ECG signals over a longer duration, the cumula-

tive effects of errors become particularly significant, potentially introducing a time-dependent bias

and compromising the accuracy of derived parameters.

A comparison between the VitalSticker and VitalJacket devices brings to light a trade-off be-

tween the magnitude and accumulation of errors. While VitalJacket exhibits smaller errors in terms

of magnitude, it accumulates a higher number of errors over time. On the other hand, VitalSticker,

despite having larger errors, demonstrates fewer cumulative errors. This trade-off emphasizes the

importance of carefully considering error resolution and the cumulative effects when evaluating

the signal quality of wearable ECG devices.

However, it should be noted that the errors observed in both devices fall within the range of

approximately one sample, indicating an intrinsic error inherent to the devices themselves. Con-

sequently, both devices exhibit an expected error that does not exceed the resolution limitations of

the respective device.

In conclusion, the comprehensive analysis conducted with the VitalSticker device, along with

the evaluation of error magnitude and accumulation, highlights its excellent performance in acquir-

ing ECG signals. This comparative assessment, when considering the already medically validated

performance of the VitalJacket device in acquiring ECG signals, underscores the importance of

thoroughly assessing the performance of ECG devices.
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3.3.2.3 Experiment B: A Comparative Analysis of VitalSticker and VitalJacket® with Real
Person ECG Signals

In Experiment B, the signals from three individuals were collected and synchronized to compare

the performance of VitalSticker. The collection of signals involved the placement of electrodes on

the individuals. With VitalSticker, two electrodes were positioned in the middle of each person’s

chest. With VitalJacket, three electrodes were utilized, with two electrodes positioned directly

above the VitalSticker electrodes in a vertical line. The third electrode of the VitalJacket was

placed near the top of the right leg. Both devices simultaneously collected signals from each

person for approximately 3 minutes. To ensure accurate synchronization of the signals, an external

artefact was created simultaneously on both devices (the person jumped). Figure 3.15 represents

the moment where the participant jumped and served as the moment for synchronization of the

two signals of the different devices.

Figure 3.15

The fiducial points (R and T peaks) measured were calculated using the algorithm described

in previous sections, which involved processing, filtering, and extracting the peaks of the ECG

signal. This experiment focused on the time distance between R peaks in sequential heartbeats

and the time distance between the R peak and the T peak within the same heartbeat. Both intervals

were compared in the synchronized signals obtained from VitalSticker and VitalJacket.

Given that VitalJacket is a medically certified device, it was chosen as the baseline for assess-

ing the signal quality of VitalSticker. The research aims to assess the accuracy and dependability

of VitalSticker in capturing and processing ECG signals by contrasting its performance with that

of VitalJacket®.

This experimental setup allowed for a direct comparison between VitalSticker and VitalJacket

using synchronized signals collected from real individuals. By using VitalJacket as the baseline,

the analysis sought to determine the signal quality of VitalSticker and identify any potential dif-

ferences or limitations in its performance. Figure 3.16 represents the protocol diagram of this
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experiment.

Figure 3.16: Protocol Diagram of experiment B

Error analysis

The error analysis focused on the temporal distances between the R-peaks (RR interval) and the

RT intervals, representing the duration between the R-peak and the T-peak, obtained from the

ECG signals of VitalSticker and VitalJacket. The signals were lined up by the same starting R-

peak to ensure synchronization. The RR and RT measurements were calculated for each heartbeat

using individual A, B, and C signals. The aim was to compare the measurements obtained from

VitalSticker and VitalJacket and assess the level of error in the signals.

For each subject, the time intervals of RR and RT obtained from VitalSticker and VitalJacket®

were compiled into vectors (Figure 3.17).VitalSticker’s RR time distance vector was deducted

from VitalJacket®’s associated RR time distance vector. Similarly, VitalJacket®’s associated RT

time distance vector was removed from VitalSticker’s RT time distance vector. These comparisons

made it possible to quantify the variations in RR and RT readings between the two devices.

Figure 3.17: Time intervals calculated for the error analysis (RR and RT distance) in both devices

The average difference (AD), standard deviation (σ ), root mean square error (RMSE - equa-

tion 3.1), and mean absolute percentage error (MAPE - equation 3.2) were all calculated as part of

the error analysis [50]. The average difference (AD) and standard deviation (σ ) were determined

to analyze the discrepancy between the measurements obtained from VitalSticker and VitalJacket.
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The RMSE quantified the overall error magnitude, while the MAPE expressed the error as a per-

centage of the actual value.

RMSE =

√
∑

N
i=1 ||y(i)− y∗(i)||

N
(3.3)

MAPE =
1
N
×

N

∑
i=1

y(i)− y∗(i)
y

(3.4)

The obtained results for individuals A and B are summarized in following table.

Table 3.5: Experiment B results; AD: average difference; (σ ): standard deviation; RMSE: root
mean square erro; MAPE: mean absolute percentage error

The results demonstrate that the RR error for all individuals was below one per cent, illustrat-

ing good accuracy in measuring RR intervals. The RT error, on the other hand, was roughly 3%,

indicating a significantly higher error level in the measurement of RT intervals. These findings

provide insights into the performance and reliability of VitalSticker and VitalJacket® in capturing

and analyzing ECG signals.

The error analysis involved a comprehensive comparison of the RR and RT measurements

obtained from VitalSticker and VitalJacket®. The results demonstrate the level of error present in

the signals and contribute to the evaluation of the signal quality and reliability of both devices.

Results discussion

The analysis of the errors in the context of evaluating VitalSticker signal quality reveals promising

findings. The observed errors were relatively small, indicating that VitalSticker exhibits good

accuracy and quality in collecting ECG signals. This is significant as it demonstrates the device’s

ability to capture reliable and precise data.

The small RR error observed in VitalSticker’s measurements further reinforces its accuracy.

The RR interval, representing the time difference, is critical in analysing heart rate variability and

cardiac rhythm. VitalSticker achieved a small RR error comparable to the medically approved

VitalJacket suggests that VitalSticker has good accuracy in measuring heart rate and ensuring

reliable ECG data collection.

However, it is important to consider the slightly higher RT error observed in the measure-

ments. The RT interval presents challenges due to the T-wave’s lower visibility compared to the
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prominent R-peak. Consequently, a slightly higher error in the RT interval is comprehensible.

While the minor delays or errors in the RT measurements do not necessarily invalidate the usabil-

ity of the ECG data collected with VitalSticker, they should be considered during data analysis

and interpretation.

In conclusion, the comparison of VitalSticker with the medically approved VitalJacket indi-

cates that VitalSticker has the capability to acquire high-quality ECG signals. The minor errors

in the RR measures emphasise their reliability and precision. While the slightly higher RT errors

require attention, they may be handled through optimisation techniques and are not detrimental to

the general usability of the VitalSticker ECG data. These findings contribute to the understanding

and validation VitalSticker’s signal quality, supporting its potential as a valuable tool for ECG

monitoring and analysis in various applications.

3.3.2.4 Conclusions of the ECG quality signal validation

The key findings from both experiments consistently demonstrated that VitalSticker provides a

good quality signal when collecting ECG signals. Experiment A, comparing VitalSticker with a

certified device (VitalJacket), confirmed the device’s comparable signal quality. Experiment B,

utilizing real-person ECG signals, revealed small errors in RR and RT measurements, indicating

the accuracy and reliability of VitalSticker.

The objective of validating the signal quality of ECG data with VitalSticker has been success-

fully achieved. These findings have implications for the credibility and precision of ECG data as

a biometric method and for monitoring. However, it is critical to recognize the tests’ limitations,

which include the limited sample size and specific settings. Future research should concentrate on

greater sample numbers, diversified groups, and performance investigation under various physio-

logical situations or activities.

In conclusion, the findings of these research studies significantly corroborate the validity and

reliability of the ECG data gathered by VitalSticker. The device frequently produced high-quality

signals, showing its value in healthcare research. These findings contribute to the advancement of

wearable ECG monitoring technology and underscore the importance of VitalSticker in reliable

ECG data collection.

3.3.2.5 Respiration Validation study

The purpose of this study was to validate the respiration signal obtained from the VitalSticker

device and assess its quality to use it in conjunction with the ECG signal in the classification

process to identify a person.

It was essential to compare the VitalSticker device’s respiration signal to a well-established

baseline to confirm its validity and dependability. This study selected the respiration signal ob-

tained from a CPAP/APAP respiratory machine as the baseline for comparison. The respiratory

machine used in this study was the iBreeze CPAP /APAP machine, a medically certified device
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commonly employed for measuring respiration signals in individuals, particularly those with sleep

apnea.

The advanced algorithms of the iBreeze CPAP/APAP machine allow for the identification

and analysis of a wide range of respiratory events, ensuring accurate and gentle regulation of its

airflow. This feature contributes to the machine’s ability to provide optimal therapy to people

suffering from respiratory problems. Furthermore, the iBreeze CPAP/APAP machine enables the

preservation of therapy findings on an SD card. This data includes sleep and compliance informa-

tion, which may be examined on the machine’s screen or a Windows computer with the included

PC software. The Intelligent Pressure Release (IPR) functionality of the iBreeze APAP machine is

a standout feature. During sleep apnea treatment, many individuals may find it difficult to exhale

against high air pressure. When IPR is on, the machine provides lower pressure during exhale than

during inhalation, improving comfort and satisfaction during continuous positive airway pressure

therapy.

By utilizing the CPAP/APAP machine as the ground truth, we aimed to evaluate the perfor-

mance of the VitalSticker device and gain insights into its ability to capture and represent respira-

tory patterns accurately. The goal is to examine the fidelity and dependability of the VitalSticker

device for capturing respiration signals by comparing the respiration signals received from the

VitalSticker device and the CPAP/APAP machine. This assessment was critical in assessing the

VitalSticker device’s suitability for incorporation into the categorization process used to identify

persons.

The validation tests were conducted with participants wearing a nose mask incorporated with

the CPAP/APAP machine. This setup ensured that the respiration signals captured by both the

VitalSticker device and the CPAP/APAP machine were obtained simultaneously and under similar

conditions, simulating a real-life respiratory monitoring scenario.

Validating the respiration signal captured by the VitalSticker device and establishing its relia-

bility would significantly enhance the accuracy and effectiveness of the classification process. As

a result, the VitalSticker technology has potential uses in various disciplines, including healthcare,

fitness monitoring, and biometric identification.

In the following sections, we will describe the methodology employed for data collection and

analysis, present the results of the comparison between the VitalSticker device and the CPAP/APAP

machine, and discuss the implications of our findings concerning the validation of the VitalSticker

device for respiration signal capture.

Experiment setup

The respiratory validation experiment involved the participation of five individuals who simultane-

ously used the VitalSticker device and a nose mask connected to a CPAP/APAP machine, figures

3.18a and 3.18b illustrate how the two devices are used. Figure 3.19 illustrates the protocol dia-

gram of this experience. The participants were selected to be healthy and within the age range of

23 to 50.
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(a) Nose mask of CPAP/APAP ma-
chine [51]

(b) VitalSticker with two elec-
trodes

Figure 3.18: Visual illustration of how the two devices were used in the study

In the experiment, the participants were seated and instructed to breathe normally through

their nose. The setup involved the placement of the VitalSticker and two electrodes on the chest in

capturing the respiratory impedance of the thoracic cavity between them. Simultaneously, the par-

ticipant used a nose mask CPAP/APAP machine, which delivered constant pressurized air through

a mask.

The machine delivered constant pressurized air through the mask, automatically adjusting

the positive airway pressure based on the participants’ breathing needs. The respiratory signal

recorded by the CPAP/APAP machine was obtained directly from the airway of the participants,

providing information on their breathing patterns. In contrast, the VitalSticker device captured the

respiratory signal by measuring the impedance variation in the thoracic cavity during inhalation

and exhalation. This measurement was achieved using two electrodes placed on the participant’s

chest. When a participant inhaled, the impedance in the thoracic cavity increased, and as they

exhaled, it decreased [52]. These impedance changes were converted into voltage fluctuations that

formed the respiratory signal of the VitalSticker device.

It is essential to highlight the distinction in the data acquisition processes between the two

devices. While the CPAP/APAP machine directly measured the respiratory signal from the airway,

the VitalSticker device relied on capturing the impedance changes in the thoracic cavity. This

fundamental difference in acquisition methods leads to variations in the amplitude and waveform

characteristics of the respiratory signals obtained from each device.

Therefore, it is essential to consider that although the data acquisition was synchronized, the

respiratory signals collected by the CPAP/APAP machine and the VitalSticker device may exhibit

temporal asynchrony due to the different physiological sources being measured. Additionally, the

CPAP/APAP machine’s delivery of pressure during inhalation may cause the inspiratory process

to be slower compared to the expiratory process. In contrast, the impedance shift measured by the

VitalSticker device remains relatively constant throughout both inhalation and exhalation.

It is worth mentioning that all participants provided informed consent before participating in

the study. The INESCTEC ethics committee approved the research protocol to ensure the ethical
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Figure 3.19: Protocol Diagram of the Validation study of the Respiration Signal

considerations and protection of the participant’s rights and well-being.

Results

The recorded respiratory signals from the VitalSticker and the CPAP/APAP machine are similar,

yet there are also some discrepancies. For the comparison of these signals, two analysis approaches

were employed.

Firstly, a specific time duration was analysed for each participant using both devices and

counted the number of respiratory cycles representing two valleys and one peak. Table 3.6 contains

a table with the comparison between the two devices, indicating that they are generally aligned

but occasionally diverge by a maximum of one peak. Typically the VitalSticker tended to exhibit

an additional peak compared to the CPAP/APAP machine. Additionally, Using the CPAP/APAP

machine as the ground truth, the mean absolute percentage error (MAPE) [50] was determined

for the vector comprising the number of breathing cycles from both devices. MAPE error was

calculated to be 2.5%.

Table 3.6: Table with the breathing cycles comparison between CPAP/APAP machine and Vital-
Sticker

In the second analysis, the MAPE was calculated for the differences between the devices in

respiration rate, peak duration, and respiration cycle duration. Table 3.7 contains the results of

all participants. The respiration rate is calculated by dividing 60 seconds by the time between

successive peaks, which is divided by the sampling rate. Moreover, the time disparities between

valleys were used to compute the duration of respiratory cycles, whereas time differences between

peaks were used to calculate peak duration. Notably, the error in peak duration measurements was
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often lower than in valley duration measurements. This discrepancy can be attributed to the distinct

data acquisition processes of the two devices. The CPAP/APAP machine measures the respiration

signal based on the induced pressure in the patient, resulting in potentially longer inspiratory

processes and shorter expiratory processes compared to the VitalSticker device. Although this

compensates for synchronisation, the differences in valleys are more prone to error, leading to the

observed results.

Table 3.7: Table with MAPE analysis

Following this observation, figure 3.20 and 3.21 were generated to illustrate the phenomenon

visually; the second figure is an ampliation of the first one to understand better the time differ-

ences of both devices and the desynchronization associated with that. Figure 3.21 highlights a

distinct pattern between the two devices, particularly evident between the 50th and 100th second.

In this interval, the inhalation time recorded by the CPAP/APAP machine appears longer than

the VitalSticker device. The observed differences in inhalation duration between the CPAP/APAP

machine and the VitalSticker device align with their respective data acquisition processes. The

CPAP/APAP machine measures the respiration signal based on induced pressure, potentially re-

sulting in longer inspiratory processes. In contrast, the VitalSticker device captures the respiratory

signal through impedance variations, which may lead to shorter inhalation durations. This dis-

crepancy in inhalation times contributes to the variations observed in the valleys of the respiratory

signals. Summarising, the figure provides visual evidence supporting the notion that these devices

capture respiration signals differently, emphasizing the potential impact of the data acquisition

process on the observed variations between them.
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Figure 3.20: Respiratory signal from a participant. (A) signal from CPAP/APAP machine; (B)
signal from VitalSticker

Figure 3.21: Zoomed figure of the respiratory signal. (A) signal from CPAP/APAP machine; (B)
signal from VitalSticker

In addition, two Bland-Altman plots were generated to assess between the devices regarding

the duration of peaks and respiratory cycles. The Bland-Altman plot illustrates the level of agree-

ment between the two measuring methods by showing the difference between the values against

their average. The graphs (in Figures 3.22 and 3.23) for both parameters exhibited most of the data

points clustered around the mean difference and within two times the standard deviation of the

data. This indicates reasonable agreement between the VitalSticker device and the CPAP/APAP

machine.
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Figure 3.22: Bland-Altman Plot of time duration between peaks

Figure 3.23: Bland-Altman Plot of Respiratory Cycle duration

Discussion

For the cycle count, VitalSticker and CPAP/APAP machine are very similar, thus validating the

breathing cycles on the VitalSticker device. For the cycle alignment, the variations in inhalation
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and exhalation duration and, consequently, the errors associated can be attributed to the distinct

data acquisition processes employed by the devices. The CPAP/APAP machine, which measures

respiration based on induced pressure, tends to have longer inspiratory and faster expiratory pro-

cesses than the VitalSticker device, which captures signals through impedance variations in the

thoracic cavity. However, this was expected as the CPAP/APAP machine induces air pressure

through the nose mask resulting in longer inspiratory processes, which leads to the difference in

the VitalSticker results.

These differences directly impact the valleys and peaks of the respiratory signals. Addition-

ally, participant-related factors, including breathing patterns and anatomical variations, could have

contributed to the discrepancies.

3.3.2.6 Conclusions of the Respiration quality signal validation

In conclusion, this study successfully validated the respiration signal collected with the Vital-

Sticker device by comparing it with the CPAP/APAP machine. The VitalSticker device pro-

vides a non-invasive and simple approach for measuring breathing, with results equivalent to a

CPAP/APAP machine. The study underlines the importance of considering the data acquisition

method as well as the potential impact of device-specific characteristics on signal measurements.

Overall, this research advances our understanding of respiratory monitoring devices, and the Vi-

talSticker device shows promise as a dependable instrument for recording respiration signals.
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Chapter 4

Machine Learning Classifiers for
Biometric Identification

The primary goal of this research is to investigate the potential benefits of incorporating respiration

data alongside ECG signals in the classification system of the wearable device. Integrating these

two physiological signals aims to enhance the accuracy and robustness of biometric identification.

Biometric identification using ECG and respiration signals holds great significance in health-

care and security. As described in previous chapters, ECG signals provide unique patterns that

can be used for individual identification. Respiration signals, however, reflect individual breathing

patterns and can provide extra information for more exact identification. Combining these two

signals can potentially increase biometric identification systems’ reliability and accuracy.

This research will explore machine learning approaches for developing a biometric classifi-

cation method using ECG and respiration signals. The classifiers that will be examined include

Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Decision Tree, Gaussian Naive

Bayes and Random Forest. These classifiers were chosen for their proven effectiveness in biomet-

ric identification tasks and their potential to be implemented in a lightweight algorithm suitable

for a wearable device [53] [54], such as a microcontroller integrated into VitalSticker, used in the

master’s thesis for acquiring the data.

This study seeks to create an efficient and accurate biometric classification algorithm that can

be deployed on a wearable device and enable real-time identification of persons based on ECG and

breathing signals. A system like this would be helpful in various industries, including healthcare,

security, and personalised monitoring.

In the following sections of this chapter, we will show the approach used for training and

testing the ML classifiers, review the results and performance analysis, and investigate the possible

benefits of adding respiration data in enhancing biometric identification.

49
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4.1 Experiment Setup

This section will provide an overview of the experimental setup, including details about the dataset,

the participants involved, feature extraction from ECG and respiratory signals, and the preprocess-

ing steps applied to the data.

4.1.1 Dataset Description

Three ML experiments were carried out with the dataset collected, the detailed explanation about

it is in section 3.2. In the first test, we utilized the entire dataset, consisting of 24 individuals.

Subsequently, we performed two additional tests with 10 and 5 participants, respectively. This

variation in participant numbers is rooted in the context of this study, which focuses on utilizing

vital parameters for biometric authentication/identification in hazardous scenarios. In such situa-

tions, access to restricted areas is limited, and the number of individuals to be identified is typically

small, ranging from 5 to 10 persons.

4.1.2 Feature Extraction from ECG and Respiratory Signals

The methodology described in [4] was followed to extract relevant features from the ECG signals.

This study, which achieved an accuracy of 97% using SVM with 10 participants, identified the

most significant features of the ECG signal for person identification. Based on their findings,

the following features were selected: the duration between fiducial points of an ECG waveform,

namely ST, RT, and QT.

Regarding the feature extraction from respiratory signals, it relied on the research conducted

in [35] and [34]. These studies also utilized the same features to identify individuals using the

respiratory signal. In [35], the authors achieved an accuracy of 100% with 6 participants, employ-

ing an SVM classifier. Similarly, in [34], a remarkable accuracy of 97% was achieved using SVM

and 87% using KNN classifiers, with 20 participants. It is worth noting that the signal acquisi-

tion method in this research differed from the referenced studies (RADAR), as this one utilized a

wearable device (VitalSticker). From the signals acquired through this alternative approach, the

selected features were the duration of inspiration and expiration, respiration rate, and the speed of

inhalation and exhalation as the features for analysis.

Preprocessing Steps

All signals were preprocessed before feature extraction, as outlined in previous chapters. These

processes included the essential techniques for cleaning and enhancing the signals, assuring the

correctness and dependability of the subsequent feature extraction process.

Following these steps established an experimental setup, enabling an investigation into the

potential of utilizing vital parameters for biometric authentication/identification in hazardous sce-

narios.
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4.2 Performance Evaluation of ECG-Driven ML Classifiers

This section presents the results of training and testing machine learning classifiers using only the

ECG data from the collected dataset. The following five classifiers were tested: Support Vector

Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, Gaussian Naive Bayes (GNB), and

Random Forest. These classifiers are chosen for their lightweight nature, making them suitable

for integration into wearable devices. They are particularly well-suited for scenarios with limited

data and real-time identification of a small group of individuals.

To evaluate the performance of the classifiers, the entire dataset consisting of 24 individuals

was utilized for training and testing. The results were carefully analyzed, and the two classifiers

demonstrating the best performance were further evaluated using subsets of 10 and 5 individuals’

data. This additional evaluation allowed for the selection of the best ML classifier for ECG data,

considering the specific characteristics of this dataset. Figure 4.1 illustrates the schematic of the

classficiation steps done.

Figure 4.1: Schematic representation of the classification steps using only the ECG signal

4.2.1 Normalization process

The features and pre-processing techniques applied to the ECG signal were discussed in previous

chapters. However, in accordance with [4], a normalization method based on the average RR

distance across all subjects in the training set was adopted. This approach offers the advantage of

providing an independent classification of the subject’s heart rate, contrasting with other methods

in the literature that employ subject-specific RR values. Consequently, this research utilized the

RR distance of the training set to normalize all the ECG data features.

Normalizing the features with the training set’s RR distance ensures comparability and consis-

tency across different individuals. This normalization method accounts for individual variations

in heart rate, thereby enhancing the classifier’s ability to generalize and make accurate predictions

across diverse subjects.
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4.2.2 Classifiers Training and Evaluation

The ML classifiers chosen for this study demonstrate high effectiveness in classification tasks,

particularly for small datasets. The selected classifiers include Support Vector Machine (SVM),

K-Nearest Neighbor (KNN), Decision Tree, Gaussian Naive Bayes (GNB), and Random Forest.

1. Support Vector Machines (SVM): SVM is a powerful binary classification algorithm that

constructs a hyperplane in a high-dimensional feature space. Its objective is to maximise the

margin between classes while identifying the optimal separation boundary. SVM handles

complex decision boundaries and performs well with small to medium-sized datasets [55]

2. K-Nearest Neighbors (KNN): KNN is a non-parametric algorithm that classifies new in-

stances based on the majority vote of their k nearest neighbours in the feature space. Unlike

other classifiers, KNN does not assume any specific underlying data distribution and can

effectively handle continuous and categorical features [56]

3. Decision Trees: Decision Trees are tree-based models that recursively partition the feature

space, making decisions at each node based on specific criteria. These classifiers offer

interpretability and can capture non-linear relationships within the data. They are well-

suited for scenarios where understanding the decision-making process is crucial [57]

4. Gaussian Naive Bayes: Gaussian Naive Bayes is a probabilistic classifier that assumes the

features follow a Gaussian distribution. Applying Bayes’ theorem calculates the posterior

probability of each class given the input features, enabling the selection of the class with the

highest probability. [58]

5. Random Forest: Random Forest is an ensemble learning method that combines multiple

decision trees. Bootstrapping and random feature selection create a robust and diverse set

of trees. Random Forest is known for handling high-dimensional data, reducing overfitting,

and providing reliable predictions [59]

The selection of these ML classifiers aims to leverage their distinct properties and capabilities

to achieve accurate and reliable classification results on the ECG dataset used in this study.

Parameter Selection

For each classifier, the parameters that could optimize their performance on the data were selected.

The parameter selection involves the knowledge of each one and empirical experimentation. The

tool used for parameter selection and the training process was the Python library scikit-learn. The

library used already includes all the classifiers that were used for this study, as well as multiple

parameter options for each classifier [60]. The parameters tested in each classifier are described

below:
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• Support Vector Machines: SVM required tuning parameters such as the regularization pa-

rameter (C)- which trades off correct classification of training examples against maximiza-

tion of the decision function’s margin- and the gamma parameter (γ)- how far the influence

of a single training example reaches. The kernel used was a radial basis function based on

[4]. The experiments include different parameter combinations to find the optimal settings

that yield the best classification performance.

• K-Nearest Neighbors: The main parameter is k, representing the number of nearest neigh-

bours to consider. It explored different values of k to find the optimal balance between

overfitting (low k) and over smoothing (high k). However, it also tested the distance compu-

tation metric, the algorithm to compute the nearest neighbour and the Weight function used

in prediction.

• Decision Tree: The parameters focused on the maximum tree depth, minimum samples

required to split, minimum samples required at a leaf node and the function to measure the

quality of a split. These parameters help to prevent overfitting and ensure reasonable tree

complexity.

• Gaussian Naive Bayes: This classifier does not have many tunable parameters that could

be beneficially explored for this dataset in specific.

• Random Forest:Parameters considered for Random Forest included the number of trees in

the ensemble, the maximum number of features to consider at each split, and some others

also explored in the Decision Tree classifier. The aim was to balance model complexity and

diversity among the constituent trees.

Training Procedure

During the training of all classifiers, cross-validation techniques were employed, specifically k-

fold cross-validation, to evaluate the models’ generalization capabilities and mitigate the risk of

overfitting. Additionally, hyperparameter tuning was conducted to identify each classifier’s opti-

mal combination of parameters. The grid search method was utilized for this purpose.

Once each classifier’s optimal parameters were determined, the models were trained with 80%

of the data and evaluated based on their performance with the rest 20% of the data. This approach

ensured that the classifiers were fine-tuned and assessed accurately, enabling to make reliable

conclusions about their capabilities and suitability for the classficiation task.

Evaluation Metrics

In order to evaluate the performance of the different classifiers, the metrics used include accuracy,

precision, recall, specificity and F1-score. The analyse of these metrics provides quantitative

measures to determine the effectiveness of the classifiers and will help to choose the most suitable

with ECG data. A more detailed explanation of the metrics is explained next [61]:
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• Accuracy: This metric is the most used and is defined as the number of correct predictions

overall predictions. The result provides a percentage representing the proportion of accu-

rately predicted cases compared to the total number of instances. Mathematically, accuracy

is defined as:

Accuracy =
Number_o f _correct_classi f ied_intances

Total_number_o f instances

• Precision: This measure how many positive predicts were correct (true positives). Precision

provides insights into the classifier’s ability to make accurate optimistic predictions. This

metric formula is:

Precision =
Number_o f _correct_predicted_positive_instances

Number_o f _total_positive_predictions

=
True_positive

True_positive+False_positives

• Recall/Sensitivity: Measure how many positive cases the classifier correctly predicted over

all the positive cases in the data. The recall is a valuable metric for correctly evaluating the

classifier’s ability to capture positive instances. Mathematically defined as:

Recall =
True_positive

True_positive+False_negatives

• Specificity: This metric measures the proportion of correctly predicted negative instances

out of all actual negative instances. It provides insights into a classifier’s ability to identify

true negatives.

Speci f icity =
True_Negatives

True_negatives+False_positives

• F1-Score: F1-Score is a measure combining both precision and recall into a single value.

This composite metric provides a balanced measure of the classified performance and is

beneficial when dealing with imbalanced datasets, where precision and recall might have

different priorities. The formula to calculate it is:

F1_score = 2× Precision×Recall
Precision+Recall

The evaluation metrics mentioned above are widely used in classification tasks and provide

valuable insights into the performance of the classifiers and will help decide the best classification

method for the dataset used.

4.2.3 Classifiers Results

The evaluation of the classifiers using only ECG data was conducted with datasets consisting of 24,

10, and 5 individuals. The initial analysis focused on the performance metrics described earlier,
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utilising the dataset of 24 individuals.

Table 4.1 presents the evaluation metrics for all classifiers using the dataset of 24 individuals.

Remarkably, all classifiers had excellent specificity ratings, demonstrating their ability to recognise

negative cases reliably. Due to the high specificity of all classifiers, this metric is less critical and

will be discarded in the selection process.

Table 4.1: Performance evaluation of a ECG-driven identification algorithm in a 24 people dataset

When analysing the results in Table 4.1, the Gaussian Naive Bayes classifier exhibited the

lowest performance compared to the other classifiers on all metrics. Consequently, it was excluded

from further consideration as the worst-performing classifier for the given dataset.

The next phase involved evaluating the performance of the four remaining classifiers (SVM,

KNN, Decision Tree, and Random Forest) using reduced datasets containing 10 and 5 individuals,

respectively. The results of these evaluations are presented in Table 4.2 and Table 4.3.

Table 4.2: Performance evaluation of a ECG-driven identification algorithm in a 10 people dataset

When evaluating performance on the 10-person dataset, the test set evaluation metrics were

given more weight than the training set assessment metrics. The SVM classifier outperformed the

others, followed by the KNN classifier. Both classifiers produced encouraging results, proving

their ability to identify instances within the smaller dataset correctly.

On the other hand, the 5-person dataset produced a slightly different outcome. In this case, the

Random Forest classifier outperformed the other evaluation criteria discussed before. Notably, the

SVM classifier remained a strong contender, performing only 1% worse than the Random Forest

classifier.
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Table 4.3: Performance evaluation of a ECG-driven identification algorithm in a 5 people dataset

These findings show that the performance of the classifiers varies according to the size of

the dataset. The SVM classifier consistently showed competitive performance, while the KNN

classifier demonstrated its potential on larger datasets. In addition, a Random Forest classification

performed exceptionally well for smaller datasets showing that it was able to do so efficiently with

limited data samples.

The results obtained from these evaluations provide valuable insights into the effectiveness of

classifiers across different dataset sizes, enabling better decision-making on which classification

model to use alongside respiratory data in future analyses. Based on the performance observed,

it is worth noting that the SVM classifier consistently demonstrated competitive results across the

various dataset sizes tested. Therefore, considering its strong performance and robustness, the

SVM classifier will be selected as the primary classification model when combining the ECG data

with respiratory data. This choice ensures the incorporation of a dependable and accurate classi-

fier capable of efficiently leveraging both types of physiological inputs to improve the wearable

device’s overall performance and prediction capabilities.

Comparison with literature

The research that forms the basis of this ECG-based machine learning classifier for human iden-

tification is BEAT-ID [4]. Similar to this work, it also utilizes the SVM classifier and ECG data

as input. However, the main difference lies in the dataset used. While this work created a new

dataset, the referenced paper employs ECG signals from the Physionet database. A comparison of

the results from both approaches is presented in Table 4.4, which shows that the accuracy values in

this work are slightly lower than those reported in BEAT-ID [4]. This discrepancy can be attributed

to the differences in the datasets. The ECG signals from the Physionet database have a high level

of quality as they are clinical signals acquired with 12-lead electrodes. On the other hand, the

ECG signal collected by a wearable device (VitalSticker) using only two electrodes presents more

noise, resulting in lower accuracy compared to the literature.
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Table 4.4: Accuracy comparison between BEAT-ID [4] and this work of an ECG-driven identifi-
cation algorithm

4.2.4 Confusion Matrix of the best ECG data classifer

The best classifier based on the evaluation results was the Support Vector Machine (SVM). To pro-

vide a comprehensive understanding of its performance, the confusion matrixes of the testing set

for the SVM classifier on the ECG data on 24, 10 and 5 persons will be presented. The confusion

matrix provides a precise breakdown of the classifier’s predictions, allowing us to evaluate it in

terms of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Figure 4.2 depicts the SVM classifier’s overall performance in the first test using a dataset of

24 persons. Classifications 0, 1, 3, 7, 8, and 9 had the highest accuracy, with the fewest misclassi-

fications indicated by non-zero values outside the diagonal. In contrast, classes 14, 20 and 21 had

a high number of misclassifications due to the fewer data available to them.

Figure 4.2: Confusion Matrix of 24 persons testing dataset of an ECG-driven identication algo-
rithm

On the 10-person dataset, SVM classier demonstrated a stronger performance (figure 4.3). It

correctly classified the majority of instances for each class, indicated by high values along the

diagonal. However, there were a few misclassifications, principally in classes 2 and 7.
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In the test with five persons dataset, the confusion matrix (figure 4.4) reflects the high ac-

curacy of the classifier in small datasets. Classes 0, 1, 2, 3, and 4 had flawless or near-perfect

categorization, with only a few misclassifications in other classes.

On these test sets, the SVM classifier performed well overall, achieving high accuracy in many

cases.

Figure 4.3: Confusion Matrix of 10 persons testing dataset of an ECG-driven identication algo-
rithm

Figure 4.4: Confusion Matrix of 5 persons testing dataset of an ECG-driven identication algorithm
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4.3 Performance Evaluation of Combined ECG and Respiratory ML
Classifiers

This section focuses on the performance evaluation of machine learning (ML) classifiers using

a combined matrix that incorporates ECG and respiratory data. The objective is to analyze the

classification performance when these two datasets are integrated.

However, the number of respiratory samples is lower than the number of ECG samples be-

cause, based on the collected data, the average duration of a respiratory cycle corresponds to five

heartbeats. As a result, the respiration cycles were duplicated in proportion to obtain a square

matrix for the classification process. This approach allows us to utilize all the data from the ECG

dataset without losing any, which is crucial because ECG features have discriminant characteris-

tics for person identification. By combining these datasets, a more comprehensive analysis can be

conducted, specifically regarding classification performance.

While existing literature suggests the potential use of respiratory signals for person identi-

fication, their discriminatory capabilities might be inferior to ECG data. However, combining

these two signals may significantly improve classification performance. Therefore, the primary

focus of this section is to assess whether the integration of ECG and respiratory data enhances the

identification process.

By evaluating the performance of ML classifiers on the joint matrix, this study aims to provide

insights into the effectiveness and potential limitations of combining these two types of physiolog-

ical data. The findings will contribute to a deeper understanding of the implications and feasibility

of utilizing a joint matrix approach for classification tasks in the context of ECG and respiratory

signals. Figure 4.5 illustrates the schematic of the classficiation steps done

Figure 4.5: Schematic representation of the classification steps using ECG and Respiration signals
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4.3.1 Normalization process

After preprocessing the ECG and respiration signals and extracting the relevant features for ML

classifiers, the normalization of the data is typically performed. The normalization process is

crucial for the following reasons:

1. Comparable Scale: The features in the dataset may vary significantly in terms of scale and

range. Normalization ensures that all features are brought to a comparable scale, preventing

the dominance of certain features and avoiding biases towards specific attributes.

2. Convergence and Stability: Normalization can enhance the convergence speed and im-

prove the algorithm’s stability during training, leading to more efficient and reliable results.

In the context of this study, where combined data from two vital signals (ECG and respiration)

are used, the values often differ in magnitude. To achieve accurate and reliable results, a small

study was conducted to determine the most suitable normalization technique for the dataset. The

performance of each normalization technique in terms of accuracy, precision, recall, and F1 score

was averaged.

The study utilized a reduced dataset comprising 24 individuals for all the classifiers. This re-

duced dataset included the combined ECG and respiration data without duplicating the respiratory

data, and it had fewer samples from the ECG dataset to match the number of respiration samples.

Reducing the dataset for normalization analysis offers several benefits, including the elimination

of redundant information and resource optimization in terms of computational effort and memory

usage.

Furthermore, the study evaluated three normalization techniques: Z-Score, MinMax, and Log-

arithmic Transformation [62]. The performance of each technique was compared to the dataset

without any normalization (raw data), which served as the ground truth for comparison.

The normalization techniques used in this study are as follows:

• Z-Score Normalization / Standardization: This technique transforms the data into a

mean of zero and a standard deviation of one. Z-Score normalization is widespread as it

preserves the distribution shape and effectively handles outliers.

x
′
i,n =

xi,n −µ

γ

Where xi,n is the original value, µ is the mean of the data and γ is the standard desviation.

• MinMax Normalization: This technique scales the data to 0 and 1. It is particularly useful

when the attributes’ absolute values or range are crucial. MinMax normalization preserves

the relative relationships between data points and is suitable for distance-based classifiers

such as KNN.

xscaled =
x− xmin

xmax − xmin
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• Logarithmic Transformation: This normalization technique is advantageous when the

data covers a wide range. The scale is compressed by applying a logarithmic transformation

to the data, making it more suitable for classifiers that assume a normal distribution or

exhibit improved performance with normalized data.

xscale = log(xi +1)

Where the logaritm have base e

Table 4.5 presents the average values of various evaluation metrics for each normalization

technique across the SVM, KNN, Decision Tree, and Random Forest classifiers. The evaluation

was conducted on the test set, considered the most crucial set for model evaluation.

Table 4.5: Performance evaluation of the normalization techniques in the (ECG + Respiration)
driven identification

The analysis reveals that Z-Score normalization performs better than other normalization tech-

niques. It yields higher values for almost all of the evaluated metrics, indicating better classifi-

cation results. However, it is important to note that the performance difference between Z-Score

normalization and Min-Max normalization is relatively tiny. In contrast, the results obtained with-

out normalization exhibit noticeably poorer performance than the normalized approaches. This

emphasizes the importance of applying appropriate normalization techniques to ensure reliable

and accurate model outcomes. Based on the results obtained, the subsequent steps of the study

proceeded with the utilization of Z-Score normalization on the dataset.

4.3.2 Classifiers Training and Evaluation

As previously mentioned, the classifiers SVM, KNN, Decision Tree, and Random Forest were

employed for training and evaluation. The parameters for these classifiers were chosen through

the Grid Search method, which was also applied in evaluating their performance on the ECG

dataset. The evaluation process focuses on several fundamental metrics to comprehensively assess

the classifiers’ performance, including accuracy, precision, recall and F1-score.
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The evaluation was conducted on datasets of 24, 10, and 5 individuals. The first two datasets

were used to test all classifiers and to determine the performance of the best classifier — with the

highest scores across the generated assessment measures.

The study aims to provide insights into the performance and effectiveness of the selected clas-

sifiers on identifying persons by examining these datasets and employing a thorough evaluation

methodology, emphasize the ability to classify ECG and respiratory data in different dataset sizes.

4.3.3 Classifiers Results

The evaluation metrics were calculated for each classifier, and the performance of the classifiers is

presented in Tables 4.6, 4.7 and 4.8, representing the 24-person, 10-person, and 5-person datasets,

respectively.

Table 4.6: Performance evaluation of the 24-persons dataset in the (ECG + Respiration) driven
identification; In bold is represented the classifier with the high evaluated metrics

Table 4.7: Performance evaluation of the 10-persons dataset in the (ECG + Respiration) driven
identification; In bold is represented the classifier with the high evaluated metrics

As it was mentioned before the high values of specificity ratings, demonstrate the classifiers’

ability to recognise negative cases reliably. Due to the high specificity of all classifiers, this metric

is less critical and will be discarded in the selection process.

Throughout all datasets, the Random Forest classifier consistently displayed the best over-

all performance based on the examined metrics across all datasets. The SVM classifier had the

second-highest values for the 24 and 10-person datasets. KNN and Decision Tree classifiers per-

formed well in the 5-person dataset achieving the second-best value of the evaluation performance.

In the 24 and 10-person datasets, the Decision Tree classifier had the worst performance among

them.
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Table 4.8: Performance evaluation of the 5-persons dataset in the (ECG + Respiration) driven
identification; In bold is represented the classifier with the high evaluated metrics

It is worth mentioning that specific classifiers got 100% evaluation metrics on the training set

(the KNN classifier), indicating that overfitting occurs when training the techniques, despite the

data previously being normalised to prevent it.

Based on these results, the Random Forest classifier performed the best in identifying individ-

uals using the combined ECG and respiration dataset.

4.3.4 Results discussion

In order to compare the ground truth accuracy of the combined matrix with ECG and respiration

data, two datasets were utilized: one containing only ECG data and another containing only res-

piration data. The classifiers employed for this analysis were SVM and Random Forest, chosen

based on their superior evaluation metrics in the ECG-only and combined ECG and respiration

datasets, respectively. The objective was to examine the disparities in classification when using

the two vital signals separately versus in combination.

Table 4.9 presents the evaluation metrics of SVM and Random Forest using the ECG-only

dataset. In contrast, Table 4.10 displays the corresponding evaluation metrics for the same classi-

fiers applied to the respiration-only dataset.

Table 4.9: Performance evaluation of SVM Random Forest classifiers only with ECG data
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Table 4.10: Performance evaluation of SVM and Random Forest classifiers only with Respiratory
data

The results reveal that when utilizing only the respiration information, either with SVM or

Random Forest, the classifiers performed significantly poorer compared to the dataset with ECG

data and the combined dataset with both signals. This finding challenges the existing literature,

suggesting that the respiration signal alone can reliably identify individuals in this dataset.

Furthermore, when comparing the ECG-only dataset to the combined dataset, the evaluation

metrics consistently exhibited higher values for the combined dataset. Regardless of whether we

compare the same classifiers or the best classifiers for each dataset, the combined dataset consis-

tently demonstrated better performance. The disparity becomes less pronounced when reducing

the number of individuals in the dataset.

Focusing specifically on the 10-person dataset, which approximates the number of individuals

typically found in hazardous environments or restricted areas, the combined dataset outperformed

the ECG dataset by approximately 5% and the respiration dataset by 57% when employing the

best classifier in all cases. This outcome underscores the benefits of incorporating both ECG and

respiration signals in the identification process, as adding respiration data to ECG improved the

accuracy of human identification.

Overall, these findings emphasize the advantage of utilizing the combined ECG and respiration

datasets over the individual datasets, providing valuable insights into the classification differences

between these two vital signals when used in isolation or combination.

The confusion matrices corresponding to each dataset are shown in Figures 4.6a and ??, which

use the combined ECG and respiration dataset and ECG-only dataset, respectively. These matrices

were generated using the testing set of each 10-persons dataset (20% of the data). The two con-

fusion matrices exhibit similarity, with both displaying a prominently highlighted diagonal region

characterized by darker colors, indicating a good classifier performance. However, in the com-

bined ECG and respiration dataset (4.6a), the occurrences of misclassifications are comparatively

fewer. In several instances, the colors outside of the diagonal region appear lighter when compared

to the dataset containing only ECG data. This observation reaffirms that the integration of both
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vital signals yields advantages in the identification process.
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(a) 10 persons dataset with ECG and respiration data and the Random Forest classifier

(b) 10 persons dataset with only ECG data and the SVM classifier

Figure 4.6: Confusion Matrix of the test set



Chapter 5

Conclusions and Future Work

In recent years, with the increasing automation and digitization of various aspects of our lives,

robust and secure individual recognition methods have become critical and necessary. This has

led to interest in the development of biometric-based identification systems, which use a person’s

unique physiological or behavioural features to identify them. Wearable devices have emerged as

a potential technology in this area, enabling the opportunity to capture physiological signals in a

non-invasive and easy manner. This research investigates the use of wearable devices for physio-

logical signal collecting and their significance in individual recognition, specifically in health and

security situations.

This master’s thesis explores the application of wearable devices in acquiring physiological

signals for individual recognition. The focus is on utilizing electrocardiogram (ECG) signals as a

biometric trait and investigating the integration of respiration signals for improved identification.

The wearable device VitalSticker, produced in INESC TEC, was used to acquire the signals. In

summary, the main objectives of this master’s thesis were achieved, and in order to achieve them,

this research passes through several essential steps.

Initially, the study of VitalSticker devices was done. Adhering to the ethical considerations

provided by the INESC TEC ethical committee, a dataset of signals from 24 participants was col-

lected. The signals were then carefully processed, and relevant features were extracted for further

analysis. Additionally, signal validation was conducted to ensure the accuracy and reliability of

the acquired ECG and respiration signals.

Various classifiers (five) were assessed to determine the most suitable models for analyzing the

collected vital data. In the evaluation phase, three datasets comprising 24, 10, and 5 individuals

were utilized to assess the performance of the developed models. The study’s results highlight the

effectiveness of the Support Vector Machine (SVM) classifier, which outperformed other meth-

ods in ECG dataset and Random Forest in the combined dataset (ECG and respiration signals).

Notably, the findings demonstrate that ECG signals alone exhibit a accuracy rate in the identi-

fication process of 86% with the 10-person dataset. However, when combined with respiration

signals, the accuracy values increases, reaching 91% with the same 10-person dataset. The litera-

ture [4], which this work was based, achieve a 97.5% of accuracy in a 10-persons dataset, but with
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a different dataset (Physionet database) with high quality signals.

The comparison between the performance of the ECG-only dataset and the combined ECG

and respiration dataset revealed that the combined dataset exhibited superior performance. The

improvement demonstrated that combining these vital signals is an advantage in a identification

process leading to a biometric marker for individual identification.

These findings offer insight into employing ECG and respiration signals as a reliable biometric

marker for individual identification. While the findings are encouraging, more studies can be done

to increase the classifier’s effectiveness by expanding the dataset size, for example.

In conclusion, this work significantly contributes to the field of biometrics and lays the foun-

dation for future research endeavours. It highlights the efficacy of ECG and respiration signals

acquired from tiny wearables in accurately identifying individuals and paves the way for further

advancements in this field of study. The research outcomes underscore the potential of wearable

devices in improving security measures and emphasize the importance of physiological signal

collection in various applications, particularly in health and security.

5.1 Future Work

Future work should prioritise the implementation of the ML classifier in the wearable device (A).

This implementation holds great potential as it would enable the device to accurately identify

the user and serve as an effective authentication method in hazardous scenarios. With additional

time and resources, the integration of the ML classifier into the wearable device can be achieved,

leading to improved user authentication and enhanced safety measures.

Furthermore, other potential approaches exist to develop the combination between the ECG

and respiration signals. One possible example could involve using two classifiers in series, where

the ECG data is the first classified, and then a reduced dataset (such as the top 5 persons with

the highest probability from the ECG classifier) is used as input for another classifier that utilises

respiration data. This approach could be explored to assess if it improves the overall performance

of the identification system.

Moreover, further research can focus on optimising the performance and efficiency of the ML

classifier, ensuring its seamless integration into the functionality of the wearable device. Address-

ing these aspects allows a more secure and reliable identification that could be used for authenti-

cation systems to be developed for use in hazardous environments.
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Edge computing

As it was mentioned in the future work of this research (5.1), the next crucial step is the imple-

mentation of a machine learning (ML) classifier within the wearable device. This implementation

enables real-time identification and authentication, presenting promising opportunities.

The following section provides an overview of the current state of edge computing in wearable

devices, highlighting the existing computational capabilities within these devices where sensors

are typically situated.

A.1 Edge computing for wearable devices

Conventional wearable devices typically collect data and transmit it to external servers for off-

chip computing and processing. This approach required a high power consumption and operation

speed of the sensing systems. In addition, in the case of real-time sensing data, it also results in an

intense hardware occupation [7]. Consequently, this method goes against the goals of the general

systems.

Wearable devices are constantly trying to balance the trade-off between battery life and com-

putational capacity. Without processing any collected samples (low computation capacity), the

amount of raw data sent to external systems will be higher, which results in higher energy con-

sumption. On the other hand, the battery life of the wearable will last longer because it does not

include any data analysis. Furthermore, these devices present drawbacks such as being powered

by a battery, with a limit energy capacity, and difficulty processing complex algorithms, which

might be resolved with edge technology[6].

The modern embedded systems lead us to push computing closer to where the sensors are

located gathering data (edge of the network). Edge computing appeared as a more power-efficient

technique that reduces the required internet bandwidth. Besides that, it also provides lower latency

because raw data does not need to be transferred to other systems for processing, which means

decisions can be on real time on the device and for wearable technology [7], [6]. The Edge

concept in wearable devices’ microcontroller aims to integrate data processing algorithms rather

than just the typical tasks of a microcontroller. This means that data is collected and processed
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locally, which enables the systems to maximize their performance without compromising their

memory budget [7] and also increases its resiliency because it can operate autonomously.

In the context of wearable devices, Edge computing offers more resources without increasing

the weight or the size optimising the process of transmitting data, for example. In addition, with

the integration of wearable devices and edge computing, the battery life balance of the devices

improves and the communication protocols become more energy-efficient [6]. Moreover, with the

local processing, the edge approach also ensures that the detailed raw data is not shared with a

third-party system, only inference results and metadata, therefore being less susceptible to ethical

issues.

All the benefits described above contribute to the decision of developing this dissertation based

on an edge computing approach. This approach defends that the classification matrix, developed

after training the classifier, should be integrated into the microcontroller. However, this technique

could be more deeply explored by integrating the training process of ML classifiers into the MCU

as well.

A.1.1 Embedded computing machine learning tools

Embedded computing machine learning techniques are a quickly spreading technology. It finds

practical use in wearable health monitoring systems, wireless surveillance systems, and on many

Internet of Things (IoT) systems. Besides all the benefits it brings for being based on edge com-

puting, with TinyML, which refers to ML model compression that runs in ultra-low-power micro-

controllers, is possible to increase the power autonomy of ML applications.

TinyML combines lightweight ML models with the accuracy of a typical neural network.

In addition, this approach allows offline inference without requiring data to be transferred [63].

Lightweight machine learning models aim to reduce memory and latency while retaining the per-

formance of the other ML models. In [63] are presented some of these models like a ProtoNN,

which is a lightweight KNN classifier, a lightweight convolution network, or a temporal convolu-

tion network (TCNs).

The goal of embedded ML techniques is not only to perform the model execution and infer-

ence on embedded devices but also to train the ML models. A develop a recent tool to integrate

lightweight ML models to run on microcontrollers (MCU) is the TensorFlow Lite. This frame-

work provides the necessary tools for running neural networks effectively on embedded devices

with a few kilobytes of memory. Besides having the possibility of running on multiple MCU

cores, its interpreter is flexible and easy to adapt to new applications and features[64]. In this way,

TensorFlow Lite tries to address the major issues of TinyML, such as the hardware and software

heterogeneity (making it a challenge for TinyML to adopt a given learning method) and the lack

of benchmarking tools (in case of inference modes that consume a great amount of memory) [65].
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Ethics Approval

B.1 Ethics Approval Documentation

In order to ensure the integrity and ethical conduct of research (3.2.1), it is essential to critical

to follow the established guidelines and obtain the necessary approvals. This section presents the

documentation that validates the ethical considerations undertaken for the current study. The three

essential files for the approval were:

• Informed Consent of the Participants: This document stands as a testament to the volun-

tary participation of individuals, acknowledging their autonomy and ensuring that they have

been adequately informed about the research purpose, procedures, and associated risks or

benefits. In order to meet ethical norms and respect participants’ rights to make informed

decisions regarding their engagement, this informed consent must be obtained.

• Data Collection Protocol: Document that describes the approach employed for this study.

It details the methods, procedures, and instruments used to collect data, reflecting trans-

parency and adherence to ethical guidelines.

• Email of Ethics Approval: This approval is the official documentation approving the re-

search project’s adherence to ethical principles. This email confirms that the study method-

ology has undergone rigorous evaluation and received approval from the ethics committee

at INESCTEC. It attests to the research’s ethical integrity and provides credibility for the

study.
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Por favor indique:                                                   ____________SIM       ____________ NAO 

 

Partilha de Dados Pessoais: Os dados/resultados anónimos e em conjunto poderão ser divulgados/publicados no 
âmbito de publicações científicas, podendo envolver equipas de investigação de diversas instituições. Após a 
anonimização destes dados, os documentos de base, que possuam alguma relação com uma possível 

identificação, serão destruídos num prazo de 6 meses.  

 

 

Encarregado de Proteção de Dados: Para quaisquer questões, exercício de direitos do titular dos dados pessoais, 
pedidos ou reclamações relativas ao tratamento de dados pessoais, contacte por favor, o nosso encarregado de 
proteção de dados, através do contacto: dpo@inesctec.pt  

Adicionalmente, se algum problema ou anomalia fisiológica for detetada nos dados recolhidos, deseja ser 
informado dessa situação? 

 Por favor indique:                 ____________SIM       ____________ NÃO 

 

Caso responda positivamente indique o seu contacto (email ou tel):____________________________________ 

 
 
Direitos do Titular dos Dados:  Enquanto titular dos dados, a lei reconhece-lhe os seguintes direitos: Informação, 
Acesso, Retificação, Apagamento, Oposição e Portabilidade. No caso de desistência não há prejuízo no tratamento 
de dados recolhidos até então, sendo estes tornados totalmente anonimizados. Para o exercício de algum dos seus 
direitos utilize o seguinte endereço de e-mail: duarte.f.dias@inesctec.pt. 
 
O exercício dos direitos poderá ver-se afastado ou limitado, no respeito pelos termos e condições previstos na 
legislação nacional e da UE aplicável, na medida em que tal exercício seja suscetível de tornar impossível ou 
prejudicar gravemente a obtenção dos objetivos do tratamento para fins de investigação e apenas na medida do 
necessário para a prossecução daqueles fins. 
 



 
 

versão 1.0 21-03-2022 

A lei confere-lhe, igualmente, o direito de apresentação de queixas perante uma Autoridade europeia de 

supervisão, sendo que em Portugal a Autoridade competente é a Comissão Nacional de Proteção de Dados 

(www.cnpd.pt). 

3.TERMO DE CONSENTIMENTO INFORMADO 

1. Li e compreendi a informação sobre o estudo, incluindo a identidade do Responsável, o tipo de 
dados que vai ser recolhido, o objetivo da recolha e do respetivo tratamento. 

2. Li e compreendi a informação sobre como os dados serão armazenados e durante quanto tempo, 
incluindo o que acontecerá aos meus dados no caso de desistir de participar no estudo. 

3. Foi-me dada a oportunidade de fazer perguntas e de esclarecer todas as dúvidas sobre este estudo. 
4. Compreendo que posso desistir desta participação em qualquer momento, sem necessitar de dar 

justificações e sem que sofra penalizações ou que questionem as minhas razões. 
5. Percebi de que forma poderei comunicar a minha desistência, bem como exercer os meus direitos 

enquanto titular dos dados.  
1.  

 
 
 
 
 
 
 
 

O  Participante: 

Declaro ter lido e compreendido este documento, bem como as informações verbais que me foram fornecidas 

previamente. Desta forma, aceito participar neste estudo e permito a utilização dos dados que forneço de forma 

voluntária. 

 

Nome: … … … … … … … … … … … … … … … … … … … … … … … … 

Assinatura: … … … … … … … … … … … … … … … … … … … … … … … …  Data: ……  /……  /……….. 

 



Considerações no âmbito do estudo para a recolha de dados 
para melhoria de algoritmos de biometria 

 

Âmbito 

O estudo em causa decorre no âmbito da identificação biométrica de indivíduos a partir 

de sinais fisiológicos dos mesmos usando técnicas de processamento de sinal e modelos 

de aprendizagem computacional.  

Este estudo de autenticação biométrica surgiu da necessidade de melhoramento do 

controlo de acesso a áreas reservadas. Apresenta como objetivo facilitar esse acesso e 

garantir um melhor controlo de segurança. A recolha de dados de indivíduos saudáveis 

ajudará a desenvolver os métodos biométricos que vão ser utilizados no processo de 

identificação. 

 

Método para recrutamento de voluntários  

Com o objetivo de angariar voluntários, pretende-se apresentar este estudo, de uma 

forma clara e objetiva, aos colaboradores do INESC TEC e membros da comunidade da 

FEUP. Será disponibilizado aos participantes o contacto do investigador responsável 

pelo estudo – Duarte Dias, para que os potenciais interessados possam demonstrar o 

seu interesse em participar no estudo de uma forma totalmente voluntária e informada. 

Pretende-se recolher dados de aproximadamente 20 a 30 indivíduos, sendo que este 

serão totalmente anonimizados. A gestão dos dados recolhidos está descrita no 

consentimento. 

 

Critérios de exclusão 

 Doenças cardíaca ou respiratórias 

 

 



Material  

 Elétrodos e Banda torácica e aplicação respetiva 

 VitalSticker (protótipo proprietário do INESC TEC de aquisição de sinais vitais) 

 Computador para aquisição dos dados localmente. 

 Máscara facial Auto-CPAP / APAP 

 Câmara e suporte 

 Consentimento informado para a participação no estudo 

 Questionário demográfico  

 

Local do estudo  

O estudo será realizado no INESC TEC, numa sala de trabalho e num corredor do edifício 

que possibilite uma caminhada de 3 a 5min. 

 

Protocolo 

Os dados requeridos englobam:  

1) a recolha de dados demográficos, nomeadamente o género e a idade; 

2) a recolha de dados inerciais, sinais de eletrocardiograma (ECG) e respiratórios no 

contexto de análise dos movimentos do participante, sendo que estes contextos serão 

os seguintes: a) sentado; b) de pé; c) em andamento; d) em andamento (atividade 

normal) a realizar a ação de abrir portas. 

3) Esta recolha será realizada durante 3 vezes ao dia: manhã, almoço e tarde.  

 



27/06/2023, 19:41 mafalda.a.ferreira@inesctec.pt – Correio

https://mail.inesctec.pt/owa/#path=/mail/AAMkAGM5ZGNkOWJlLTA2YjctNDhmNi1hNGRkLTUzYTBkYTlhMzJkYwAuAAAAAAAKdHNYWFrSRov… 1/1

[PROCESSOS] Processo Propostas de Projeto PP2023-0030:
Aprovado

A seguinte proposta está pendente de uma ação sua:

Número Processo: PP2023-0030
Nome: PP2023-0030: Biometrics
Estado Atual: Aprovada
Consultar em: https://intranet.inesctec.pt/atividades/proposta-projeto/cber/PP2023-0030

Cumprimentos,
SIG

sig-suporte@inesctec.pt
seg 13-02-2023 19:28

Para:Duarte Filipe Dias <duarte.f.dias@inesctec.pt>; Susana Cristina Rodrigues <susana.c.rodrigues@inesctec.pt>; Mafalda Alexandra
Ferreira <mafalda.a.ferreira@inesctec.pt>;
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Abstract - Wearable Health Devices (WHDs) are increasingly 

becoming an integral part of daily life and significantly 

contributing to self-monitoring in healthcare. WHDs have a 

wide range of applications, ranging from sports to clinical 

settings, where the monitoring of cardiovascular health, 

particularly through ECG, plays a crucial role. This study 

introduces a unique WHD called VitalSticker, which exhibits 

distinctive features such as having a comfortable tiny patch 

form-factor to be attached to the chest, collecting multiple vital 

signs with medical-grade quality (ECG, respiration, 

temperature and actigraphy) and seamlessly sending data to a 

companion app. This paper encompasses a detailed description 

of the hardware, firmware, and case design of the WHD. A study 

was conducted to assess the quality of the ECG signal acquired 

by VitalSticker, comparing it with the signal obtained from a 

CE medical-grade certified ambulatory device. The results 

demonstrate that our VitalSticker achieves similar medical-

grade quality when compared to the reference device, 

surpassing its counterpart in several specifications. 

Furthermore, this study presents the successful implementation 

of an ECG baseline wander correction filter that runs on the 

tiny on-board wearable microcontroller without introducing 

any artifacts into the ECG signal, reducing the need for further 

processing for this outside the wearable patch. 

Keywords - Wearable Health Devices, Hardware, Firmware, 

Vital Signs, Electrocardiogram, Baseline wander. 

I. INTRODUCTION 

 Wearable Health Devices (WHDs) are an emerging 

technology with proven impact in the healthcare area namely 

in telecare monitoring and personalized health applications. 

The combination of wearable technology with the Internet of 

Things (IoT) is leading to the fast adoption of wearable 

devices at a global scale with expected 14% annual market 

growth from 2023 to 2030 [1,2]. WHDs aim to measure, 

monitor and analyze physiological signals from the human 

body, to screen, diagnose (certified medical device) or just 

self-monitor for possible diseases. WHDs have a large area of 

applicability (clinical, sports, occupational health, etc.) and 

different requirements according to the use case, such as 

comfort, size, medical certification, battery duration, and 

signal quality, among others [3]. Current technology trends 

are making these devices smaller, with lower power 

consumption, wireless connectivity, and accuracy levels 

dependent on their application [4]. For example, in the area of 

cardiovascular monitoring, one of the most advanced devices 

is the Chest Monitor from Biobeat® [3], which is a medical-

certified device (for some physiological metrics) and needs a 

high level of accuracy on signal acquisition; on the other hand, 

for example, the Garmin Vívoactive® 4 [5] watch is a 

sport/fitness WHD that aims to monitor the human physiology 

but does not need clinical accuracy [3].  

WHDs most popular wireless transmission is Bluetooth and 

Bluetooth Low-Energy (BLE). Although this protocols only 

have a maximum range of about 100m, the data rate of it is in 

the range of 1-3Mbps, and the power consumption is 

significantly low (about 2.3-100mW) compared with Wi-Fi 

and ZigBee – two common wireless protocols in IoT 

technologies [3]. Using these wireless technologies, WHDs 

have an advantage in real-time health monitoring, making it 

possible to monitor a human during their daily activities from 

anywhere using an internet connection. The signals acquired 

by the user can be easily transmitted via Bluetooth to a 

gateway (portable devices, smartphones, computers, etc.) for 

visualization and further analysis [3]. Processing 

physiological signals in real-time on the WHDs raises 

constraints in terms of power efficiency, fast response, and 

accuracy in data processing. The solution to this problem is to 

find a balance between energy consumption and 

computational capacity [4]. 

The signal pre-processing in this work is focused on the 

ECG [7]. The ECG raw signal may present low-frequency 

noise, such as baseline drift due to human activity and high-

frequency noises such as electromagnetic interference and 

muscular activity [8]. The baseline wonder is one of the most 

common noise types which can be removed with some 

techniques that include high-pass, moving-average, wavelet, 

or median filters [9].  

This study introduces a unique WHD called VitalSticker, 

which exhibits distinctive features such as having a 

comfortable tiny patch form-factor to be attached to the chest, 

collects multiple vital signs with medical-grade quality (ECG, 

respiration, temperature and actigraphy) and seamlessly send 

data to a companion app. We present the full development of 

VitalSticker, namely its design, hardware, firmware 

workflow, energy consumption, ECG signal quality analysis, 

a successful implementation of an ECG baseline wander 

correction filter that runs on the tiny on-board wearable 

microcontroller and power consumption reduction approaches 

that offers our patch a top-notch specification set for log-term 

ambulatory cardiovascular monitoring scenarios. 

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 101037419. 



II. VITALSTICKER DESIGN & DEVELOPMENT 

The development of VitalSticker was based on more than 

20 years of research in embedded physiological data 

acquisition systems, which had already resulted in the first 

medically certified wearable device – VitalJacket® [10]. 

Based on this accumulated knowledge, research needs and 

existing systems on the market, a new system was designed. 

This was achieved through incremental developments of 

different versions leading to the one that is presented in this 

work. The device presented is the final working version and 

allows for the acquisition of the ECG and respiration signal 

with a medical-grade level of accuracy. Besides this, it also 

allows for the acquisition of skin temperature and inertial 

movements of the individual wearing it. The device 

development compromises the hardware, the firmware and 

the case design. 

A. Hardware 

VitalSticker was developed based on a hardware module 
containing a MicroController Unit (MCU) capable of 
Bluetooth 5.2 Low Energy (BLE) communication supported 
by a secondary radio subsystem MCU that manages Bluetooth 
related operations allowing the main MCU to run more 
complex applications having more time for processing. The 
module has its own built-in antenna certified for medical 
applications and an Integrated Development Environment 
(IDE) which integrates Bluetooth Generic ATTribute profile 
(GATT) configuration tools. 

Regarding the sensors integrated in the VitalSticker, they 
allow the acquisition of motion and vital signals at a specific 
rate (TABLE I). Motion signals are measured using an Inertial 
Measurement Unit (IMU), allowing the acquisition of 
accelerometer, gyroscope, and magnetometer data. The 
surface body temperature device requires the use of a 
Negative Temperature Coefficient (NTC) thermistor that is 
then placed outside the case for skin contact and temperature 
reading. ECG and respiration measurements were made using 
a peripheral with programable gain amplifiers and high-
resolution 24-bit Analog-to-Digital Converters (ADC). This 
peripheral contains a programmable virtual Right Leg (RL) 
driver reference allowing the measurement of high-quality 
one Lead ECG with only two contacts. It also has a respiration 
impedance measurement module allowing the acquisition of 
respiration waveform. 

VitalSticker Printed Circuit Board (PCB) was designed 
with the Altium Designer PCB CAD. This software allows for 
the simulation of every aspect needed by using 3D models of 
every component which was a key developing tool since the 
main objective was to obtain the most compact possible 
device without compromising the intended functionality and 
autonomy.  The size of the wearable was determined by the 
size of the Bluetooth module and the snap connectors needed 
for attaching the electrodes meaning that the final width 
achieved was 20 mm, the length of 62 mm and 8.2 mm height 
(Fig.1). Almost every component was placed on the top layer 
and the components were chosen to be lower than the height 
of the Bluetooth module - this led to the need of using a mid-
layer USB type-C connector to reduce the thickness of the 
final device. A button was implemented to turn ON/OFF the 
device and also to be used as a push-button. The height of this 
component was chosen per the Bluetooth module, enabling it 

to be pressed easily in the final assembly. In the bottom layer 
only a few components were placed, leaving most of the space 
for the battery between the snap connectors. All the 
components were soldered at INESC TEC making use of the 
Ersa i-tool and rework soldering station. It was possible to 
design a 2-layer PCB integrating every component and 
following safe design rules and good signal isolation where 
needed. In terms of ground planes, there were three isolated 
plans, one for the battery/charging, another one for the digital 
signals, and another one for the analog signals. These plans 
were isolated using ferrite inductors to reduce high-frequency 
noise significantly impacting the analogic signals acquired. 

The battery had a limited available space being limited by 
the height and distance between the snaps (38 mm) and the 
PCB width. A lithium polymer battery with a capacity of 
150mAh and respective protective circuits was used 
measuring 30 (L) * 20 (W) * 3 (H) mm. This battery combined 
with power management based on efficient switching power 
regulators allowed for the autonomy of up to 27 hours of 
consecutive active use (acquiring all the sensors data and 
sending it by Bluetooth), leading to an average current 
consumption of 5,49 mA. This value was acquired using the 
Nordic® Power Profiler Kit II and the respective software 
provided by Nordic®. 

A limiting factor in terms of hardware was the ECG and 
respiration peripheral since it required an ultra-low-noise 
regulator leading to the use of a low-dropout regulator which 
is less efficient. Nevertheless, careful and efficient firmware 
was designed and developed to help improve the autonomy of 
the device by adjusting the acquisition and transmission 
frequencies of the peripherals’ data. 

TABLE I. SIGNALS ACQUISITION SPECIFICATIONS 

 

 
Fig. 1. Altium Designer 3D model generated of the PCB finished design. 

B. Firmware 

Simplicity Studio 5, the IDE from Silicon Labs, was used 
to develop the firmware. A pre-configuration of the Bluetooth 
communication protocol was used, so the major effort in this 
protocol implementation was on the reconfiguration of the 
GATT by creating our own service and characteristics needed 
for the intended data transmission, having each one a 
generated Universally Unique IDentifier (UUID). 

The firmware was designed to be as low power as 
possible, making a compromise between data sensor 
acquisition frequency and Bluetooth transmission frequency. 
This compromise led to a reduced acquisition frequency of 
some sensors to give priority to the ECG acquisition. When 
the device is turned on (Fig. 2) it starts the initialization of all 
the components of the system and the configuration of each 
peripheral. Then it starts the Bluetooth advertising (every 
second), and the system stays on standby waiting for a 

Signal Measurement Frequency Measurement Range 

ECG 250 Hz 24-bits ADC (+/- 350 mV) 

Respiration 250 Hz 24-bits ADC (+/- 350 mV) 

Accelerometer 

Gyroscope 

Magnetometer 

25 Hz 

-4 to 4 g 

-2000 to 2000 º/s 

-4900 to 4900 µT 

Body temperature 0,5 Hz 0 to 70 ºC 



connection and the request for data notifications. If a 
connection is established it enters the sensor data processing 
loop in which data from the different sensors is periodically 
acquired, using a specific timer for each sensor. This data is 
placed on a buffer that is sent via Bluetooth whenever it is full. 
To avoid data loss, this buffer is copied into an auxiliary one 
for the Bluetooth Stack, making the main buffer immediately 
available to receive new data from the sensors. 

The sensor data processing loop is suspended whenever 
the system detects an external interruption, or if it is necessary 
to process any Bluetooth event. ECG/Respiration peripheral 
is configured to work in a continuous data acquisition mode 
and whenever data is ready to be acquired an interruption is 
generated. The MCU was configured to prioritize the external 
interruptions so that it could be possible to acquire the signals 
in real-time without losing any data. In terms of the Bluetooth 
events, the system must have time to process them to maintain 
stable and reliable communication, which is not a problem 
because data is buffered/copied so that they can have a lower 
priority. 

 

Fig. 2. Simplified firmware fluxogram of the developed system. 

To improve the device autonomy, it was necessary to test 
different measurement frequencies for the IMU and body 
temperature sensors to guarantee a good data flow and 
sampling rate according to human movement and to reduce 
battery consumption. Another important factor that 
significantly affected the power consumption was the 
Bluetooth data transmission, so a small study was made to 
analyze the best balance between transmission frequency and 
data buffer size for each sensor signal. The best results 
obtained for the buffer size and transmission frequency are 
present in TABLE II 

C. Case personalized design 

A personalized case was designed to ensure a minimal 

thickness but high robustness. There were five main concerns 

considered during the design of the case: 1) the material used 

could not be porous or toxic to be able to be in contact with 

the skin; 2) minimal possible thickness to be as much 

comfortable as possible; 3) allow the use of the button 

through the case, the connection on the USB type-C port and 

easy visualization of the light from the LEDs; 4) keep all 

electronic components, including the battery, safe and well-

secured, without moving inside the case; 5) connection of the 

case with the snap buttons to ensure that the force exerted on 

the device does not go into the PCB but to the snaps. Fig. 3 

shows the result obtained through SLA 3D-printed 

manufacturing process using formlabs clear resin which fills 

all the concerns above. The last concern was possible to 

achieve by designing a personalized socket for the snap 

buttons to fit in, allowing to secure them to the case. The 

case’s final dimensions are 65 (L) * 23 (W) * 10 (H) mm. 
 

A) 

 

C) 

 

B) 

 
Fig. 3.  VitalSticker case printed in formlabs clear resin. A) front view; B) 

back view; C) representation of the device in use. 

TABLE II. SIGNALS BUFFER SIZE AND TRANSMISSION FREQUENCY 

USED ON THE BLUETOOTH TO REDUCE CURRENT CONSUMPTION TO 5.49 MA 

III.  ECG SIGNAL QUALITY ANALYSIS AND DISCUSSION 

A study was performed to compare the ECG signals 

obtained from the VitalSticker and from a medical-grade CE-

certified ECG signal and actigraphy in real time called 

VitalJacket®. For the comparative study, the ECG signal of 

an individual was recorded using both devices 

simultaneously with a duration of five minutes. 

A. Signal Acquisition & Comparative Study 

ECG, represented in Fig. 4, was one of the signals 

acquired from both devices. These devices have two main 

differences: VitalSticker has a sampling frequency of 250Hz 

and a 24-bit resolution, while VitalJacket’s sample frequency 

is 500Hz and has an 8-bit resolution. Usually, with less 

resolution, the acquired signal has less quality and 

information because the ECG signal has a low voltage 

amplitude variation (in the millivolt scale).  

Fig. 4.  Raw ECG signal from VitalJacket (A) and VitalSticker (B). 

Amplitude in mV. Sampling frequency: A - 500Hz; B - 250Hz. 

Analyzing VitalJacket® (Fig. 4-A) and the VitalSticker 

(Fig. 4-B) signals it is noticeable that the prominent 

differences in the graphs are related to technological 

advancements. The amplitudes of the different waves are due 

to the location of the electrodes on the chest, leading to ECG 

waveform different amplitude distribution. 

VitalSticker quality was analyzed statistically by 

comparing it with VitalJacket® (ground truth). The analysis 

focused on the temporal distances between the R-peaks (RR 

interval) and the RT intervals. To ensure synchronization, the 

signals were aligned by the same initial R-peak. The temporal 

RR distance and the RT distance for each heartbeat in both 

devices were calculated for two subjects using our ECG 

fiducial points detector algorithm reported in [7]. 

Signal Buffer size Transmission frequency 

ECG 99 bytes (33 samples) 7.6 Hz 

Respiration 99 bytes (33 samples) 7.6 Hz 

Accelerometer 

Gyroscope 

Magnetometer 

180 bytes (5 samples per 

sensor per dimension) 
5 Hz 

Body temperature 2 bytes (1 sample) 0.5 Hz 

A) 

 

B) 

 



Subsequently, the difference between the signal of both 

devices was calculated: each interval (RR and RT) of 

VitalSticker was subtracted from the corresponding interval 

of the VitalJacket®. This comparison was performed for two 

subjects (A and B) computing for each one the Average 

Difference (AD), standard deviation (σ), relative error (δ), 

and Root Mean Square (RMS) error for both RR and RT time 

distances (TABLE III). 

TABLE III. STATISTICAL ANALYSIS OF THE VITALSTICKER SIGNAL 

QUALITY USING VITALJACKET® SIGNAL HAS THE GROUND TRUTH. 
(TEMPORAL RESOLUTION: VITALJACKET®= 0.002S; VITALSTICKER=0.004S)  

B. Baseline wander filter 

Although being more precise and with a high-resolution 

signal, VitalSticker measurements present baseline noise due 

to movement and respiration of the user - low-frequency 

artifact in the ECG [9]. This effect can be observed in the raw 

signal acquired from VitalSticker (Fig. 5-A). Additionally, 

the use of an internal RL virtual reference in the 

ECG/respiration module without readjustment to baseline 

changes contributes to this low-frequency baseline noise. To 

address this issue, a low-pass filter was integrated into the 

MCU firmware. In this work, it was implemented and 

compared a median and an average filter to correct the 

baseline wander, both with a window of 150 samples (0.6 

seconds) – a window chosen after different heart rate samples 

analysis. A study was conducted considering artifacts created 

by the filter, time usage by the filter on the MCU, and power 

consumption of the device. While the median filter exhibited 

higher computational timing (0.715µs > 0.02µs) and current 

consumption increment (0.97mA > 0.8mA) compared with 

the average filter, it did not introduce any artifact to the ECG 

signal as shown in Fig. 5-D. The artifact in Fig. 5-C (average 

filter) exemplifies the signal distortion caused by his type of 

filtering (P-wave is distorted). Taking this into account the 

VitalSticker firmware was upgraded with a median filter (Fig. 

5-B) on the “Sensor data and processing loop” block (Fig. 2), 

with a real-time visualization delay of 0.3 seconds. As a result 

of the baseline wander correction, the ECG signal size was 

reduced from a 24-bit unsigned integer to a 16-bit signed 

integer. This reduction made it possible to reduce the payload 

of the Bluetooth transmission associated with the ECG signal 

from 99 bytes to 66 bytes and this helped compensate for the 

power consumption increase associated with the filter. 
 

A) 

 

B) 

 
C) 

 

D) 

 

E) 

 
Fig. 5. ECG signal from the VitalSticker: A) ECG raw signal with no 
filtering; B) ECG signal with median filter for baseline wander correction; 

C) ECG raw signal zoom in; D)  ECG signal zoom in with median filter; E) 

ECG signal zoom in with mean filter. 

IV. CONCLUSIONS AND FUTURE WORK 

 This research presented the developments of a wearable 
capable of acquiring real-time vital signs with a focus on high-
quality ECG. This work also provided a hardware flexible 
platform to research and develop new signal pre-processing 
and analysis based on each individual signal (respiration, body 
temperature, and inertial data) or on a multimodal approach. 
Some of these research lines are already being conducted by 
our laboratory, such as the computation of core temperature 
and integration of movement analysis. 
 The signal comparison of VitalSticker with VitalJacket® 
supports the fact that our device can acquire high-quality ECG 
signals by achieving ~1 samples error (0.38 % max error) in 
RR interval and ~2 samples error (3.70 % max error) in the 
RT interval. Although this level of error is considered good, it 
shows that further research can be conducted with more 
subjects to understand the consistency of the results. The 
implementation of the baseline wander correction filter was 
successfully integrated, ensuring real-time performance, and 
improving signal output stability. The smaller signal bitwise 
achieved by this integration helped compensate for the power 
consumption increase associated its computation. 
 Furthermore, more tests are being conducted with a bigger 
population to validate the ECG and perform a validation of the 
respiration waveform that VitalSticker is also acquiring 
simultaneously. 
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