32,926 research outputs found

    Scalable QoS-aware Mobility for Future Mobile Operators

    Get PDF
    Telecom operators and Internet service providers are heading for a new shift in communications paradigms. The forthcoming convergence of cellular and wireless data networks is often manifested in an “all IP approach” in which all communications are based on an end-to-end IP protocol framework. The approach to network design becomes user and service-centered, so that continuous reachability of mobile users and sustained communication capabilities are default requirements for a prospective architecture. In this article, we describe a network architecture which is able to provide seamless communication mobility, triggered either by the user or by the network, across multiple technologies. The architecture allows for media independent handovers and supports optimized mobility and resource management functions. The main focus of the article is on major technical highlights of mobility and quality-of-service (QoS) management subsystems for converged networks.Publicad

    Interoperability of Integrated Services and Differentiated Services Architectures

    Get PDF
    The current trends in the development of real-time Internet applications and the rapid growth of mobile systems, indicate that the future Internet architecture will have to support various applications with different Quality of Service (QoS) requirements, regardless of whether they are running on a fixed or mobile terminals. Enabling end-to-end QoS over the Internet introduces complexity in several areas starting from applications, network architectures, but also in network management and business models. It becomes even more complex when one is introducing QoS in an environment of mobile hosts, wireless networks and different access technologies, due to scarce resources. Consequently, QoS deployment in the Internet represents one of the most challenging research topics of computer networks community today. The efforts to enable end-to-end QoS over the Internet have led to the development of two architectures, the Integrated Services architecture and more recently, the Differentiated Services architecture. Although fundamentally different, both architectures are designed for QoS support on the Internet. The focus of this document is the interoperability between the Integrated and Differentiated Services architectures with the objective on applicability to both end-to-end wired and wireless Internet QoS deployment. This document presents a general Integrated Services / Differentiated Services architecture design with specific requirements and accordingly a detail design of the boundary router. The role of this boundary router is to handle the Integrated and Differentiated Services interoperability, in a wired and wireless Internet environment. In order to prove the feasibility of the boundary router design a basic prototype implementation has been developed

    QoS management and control for an all-IP WiMAX network architecture: Design, implementation and evaluation

    Get PDF
    The IEEE 802.16 standard provides a specification for a fixed and mobile broadband wireless access system, offering high data rate transmission of multimedia services with different Quality-of-Service (QoS) requirements through the air interface. The WiMAX Forum, going beyond the air interface, defined an end-to-end WiMAX network architecture, based on an all-IP platform in order to complete the standards required for a commercial rollout of WiMAX as broadband wireless access solution. As the WiMAX network architecture is only a functional specification, this paper focuses on an innovative solution for an end-to-end WiMAX network architecture offering in compliance with the WiMAX Forum specification. To our best knowledge, this is the first WiMAX architecture built by a research consortium globally and was performed within the framework of the European IST project WEIRD (WiMAX Extension to Isolated Research Data networks). One of the principal features of our architecture is support for end-to-end QoS achieved by the integration of resource control in the WiMAX wireless link and the resource management in the wired domains in the network core. In this paper we present the architectural design of these QoS features in the overall WiMAX all-IP framework and their functional as well as performance evaluation. The presented results can safely be considered as unique and timely for any WiMAX system integrator

    End-to-end QoE optimization through overlay network deployment

    Get PDF
    In this paper an overlay network for end-to-end QoE management is presented. The goal of this infrastructure is QoE optimization by routing around failures in the IP network and optimizing the bandwidth usage on the last mile to the client. The overlay network consists of components that are located both in the core and at the edge of the network. A number of overlay servers perform end-to-end QoS monitoring and maintain an overlay topology, allowing them to route around link failures and congestion. Overlay access components situated at the edge of the network are responsible for determining whether packets are sent to the overlay network, while proxy components manage the bandwidth on the last mile. This paper gives a detailed overview of the end-to-end architecture together with representative experimental results which comprehensively demonstrate the overlay network's ability to optimize the QoE

    Efficiency of PRI and WRR DiffServ scheduling mechanisms for real-time services on UMTS environment

    Get PDF
    The next generation of mobile phones will be probably all-IP based enabling users to access Internet services. In order to make this possible a satisfactory quality of service, at least equal to the fixed Internet, must be ensured. To achieve this goal an end-to-end QoS system must be constructed. Another fact is the dominance of IP over other technologies due, in large measure, to its characteristic of working with heterogeneous technologies. Consequently, being IP the common denominator on a heterogeneous environment, it is important to develop end-to-end IP QoS guarantees for the different applications over distinct access technologies. This is particularly important for cellular wireless networks due to the ever growing expansion of mobile phone users. One way to contribute to this goal is to apply DiffServ QoS mechanisms to UMTS technology in order to model an End-to-End QoS communication system. A mapping of DiffServ CodePoints into UMTS classes can be applied in order to get efficient PHB configurations. This paper proposes an architecture to support end-to-end quality of service to several application services running on mobile UMTS user agents and communicating with servers located in a wired internet. The proposed architecture is based on a DiffServ model, where QoS parameters are set either by the user agent or by the SGSN. In particular, RED queue management and PRI or WRR scheduling policies are enforced. Different UMTS traffic classes are mapped into different DiffServ parameters. The performance of this architecture has been evaluated by simulation using NS, assuming different network load scenarios. In particular, the delay and packet loss experienced by VoIP, Video, FTP and HTTP traffic are evaluated in the cases of PRI and WRR scheduling policies, and compared to those measured when DiffServ is not implemented. Finally, a revenue function to estimate the profits that an ISP could expect by using a DiffServ implementation on IP UMTS core routers is proposed.(undefined

    QoS-aware architectures, technologies, and middleware for the cloud continuum

    Get PDF
    The recent trend of moving Cloud Computing capabilities to the Edge of the network is reshaping how applications and their middleware supports are designed, deployed, and operated. This new model envisions a continuum of virtual resources between the traditional cloud and the network edge, which is potentially more suitable to meet the heterogeneous Quality of Service (QoS) requirements of diverse application domains and next-generation applications. Several classes of advanced Internet of Things (IoT) applications, e.g., in the industrial manufacturing domain, are expected to serve a wide range of applications with heterogeneous QoS requirements and call for QoS management systems to guarantee/control performance indicators, even in the presence of real-world factors such as limited bandwidth and concurrent virtual resource utilization. The present dissertation proposes a comprehensive QoS-aware architecture that addresses the challenges of integrating cloud infrastructure with edge nodes in IoT applications. The architecture provides end-to-end QoS support by incorporating several components for managing physical and virtual resources. The proposed architecture features: i) a multilevel middleware for resolving the convergence between Operational Technology (OT) and Information Technology (IT), ii) an end-to-end QoS management approach compliant with the Time-Sensitive Networking (TSN) standard, iii) new approaches for virtualized network environments, such as running TSN-based applications under Ultra-low Latency (ULL) constraints in virtual and 5G environments, and iv) an accelerated and deterministic container overlay network architecture. Additionally, the QoS-aware architecture includes two novel middlewares: i) a middleware that transparently integrates multiple acceleration technologies in heterogeneous Edge contexts and ii) a QoS-aware middleware for Serverless platforms that leverages coordination of various QoS mechanisms and virtualized Function-as-a-Service (FaaS) invocation stack to manage end-to-end QoS metrics. Finally, all architecture components were tested and evaluated by leveraging realistic testbeds, demonstrating the efficacy of the proposed solutions

    Linking session based services with transport plane resources in IP multimedia subsystems.

    Get PDF
    The massive success and proliferation of Internet technologies has forced network operators to recognise the benefits of an IP-based communications framework. The IP Multimedia Subsystem (IMS) has been proposed as a candidate technology to provide a non-disruptive strategy in the move to all-IP and to facilitate the true convergence of data and real-time multimedia services. Despite the obvious advantages of creating a controlled environment for deploying IP services, and hence increasing the value of the telco bundle, there are several challenges that face IMS deployment. The most critical is that posed by the widespread proliferation ofWeb 2.0 services. This environment is not seen as robust enough to be used by network operators for revenue generating services. However IMS operators will need to justify charging for services that are typically available free of charge in the Internet space. Reliability and guaranteed transport of multimedia services by the efficient management of resources will be critical to differentiate IMS services. This thesis investigates resource management within the IMS framework. The standardisation of NGN/IMS resource management frameworks has been fragmented, resulting in weak functional and interface specifications. To facilitate more coherent, focused research and address interoperability concerns that could hamper deployment, a Common Policy and Charging Control (PCC) architecture is presented that defines a set of generic terms and functional elements. A review of related literature and standardisation reveals severe shortcomings regarding vertical and horizontal coordination of resources in the IMS framework. The deployment of new services should not require QoS standardisation or network upgrade, though in the current architecture advanced multimedia services are not catered for. It has been found that end-to-end QoS mechanisms in the Common PCC framework are elementary. To address these challenges and assist network operators when formulating their iii NGN strategies, this thesis proposes an application driven policy control architecture that incorporates end-user and service requirements into the QoS negotiation procedure. This architecture facilitates full interaction between service control and resource control planes, and between application developers and the policies that govern resource control. Furthermore, a novel, session based end-to-end policy control architecture is proposed to support inter-domain coordination across IMS domains. This architecture uses SIP inherent routing information to discover the routes traversed by the signalling and the associated routes traversed by the media. This mechanism effectively allows applications to issue resource requests from their home domain and enable end-to-end QoS connectivity across all traversed transport segments. Standard interfaces are used and transport plane overhaul is not necessary for this functionality. The Common PCC, application driven and session based end-to-end architectures are implemented in a standards compliant and entirely open source practical testbed. This demonstrates proof of concept and provides a platform for performance evaluations. It has been found that while there is a cost in delay and traffic overhead when implementing the complete architecture, this cost falls within established criteria and will have an acceptable effect on end-user experience. The open nature of the practical testbed ensures that all evaluations are fully reproducible and provides a convenient point of departure for future work. While it is important to leave room for flexibility and vendor innovation, it is critical that the harmonisation of NGN/IMS resource management frameworks takes place and that the architectures proposed in this thesis be further developed and integrated into the single set of specifications. The alternative is general interoperability issues that could render end-to-end QoS provisioning for advanced multimedia services almost impossible

    Network Service Customization: End-Point Perspective (Proposal)

    Get PDF
    An important problem with cell-switched technologies such as Asynchronous Transfer Mode (ATM) is the provision of customized multiplexing behavior to applications. This customization takes the form of setting up processes in the network and end-points to meet application Quality of Service (QoS) requirements. The proposed thesis work examines the necessary components of a software architecture to provide QoS in the end-points of a cell-switched network. An architecture has been developed, and the thesis work will refine it using a driving application of the full-feedback teleoperation of a robotics system. Preliminary experimental results indicate that such teleoperation is possible using general-purpose workstations and a lightly-loaded ATM link. An important result of the experimental portion of the thesis work will be a study of the domain of applicability for various resource management techniques

    Network on Chip: a New Approach of QoS Metric Modeling Based on Calculus Theory

    Full text link
    A NoC is composed by IP cores (Intellectual Propriety) and switches connected among themselves by communication channels. End-to-End Delay (EED) communication is accomplished by the exchange of data among IP cores. Often, the structure of particular messages is not adequate for the communication purposes. This leads to the concept of packet switching. In the context of NoCs, packets are composed by header, payload, and trailer. Packets are divided into small pieces called Flits. It appears of importance, to meet the required performance in NoC hardware resources. It should be specified in an earlier step of the system design. The main attention should be given to the choice of some network parameters such as the physical buffer size in the node. The EED and packet loss are some of the critical QoS metrics. Some real-time and multimedia applications bound up these parameters and require specific hardware resources and particular management approaches in the NoC switch. A traffic contract (SLA, Service Level Agreement) specifies the ability of a network or protocol to give guaranteed performance, throughput or latency bounds based on mutually agreed measures, usually by prioritizing traffic. A defined Quality of Service (QoS) may be required for some types of network real time traffic or multimedia applications. The main goal of this paper is, using the Network on Chip modeling architecture, to define a QoS metric. We focus on the network delay bound and packet losses. This approach is based on the Network Calculus theory, a mathematical model to represent the data flows behavior between IPs interconnected over NoC. We propose an approach of QoS-metric based on QoS-parameter prioritization factors for multi applications-service using calculus model

    Multiview real-time media distribution for next generation networks

    Get PDF
    With the massive deployment of broadband access to the end-users, the continuous improvement of the hardware capabilities of end devices and better video compression techniques, acceptable conditions have been met to unleash over-the-top bandwidth demanding and time-stringent P2P applications, such as multiview real-time media distribution. Such applications enable the transmission of multiple views of the same scene, providing consumers with a more immersive visual experience. This article proposes an architecture to distribute multiview real-time media content using a hybrid DVB-T2, client-server and P2P paradigms, supported by an also novel QoS solution. The approach minimizes packet delay, interar- rival jitter, inter-ISP traffic and traffic at the ISP core network, which are some of the main drawbacks of P2P networks, whilst still meeting stringent QoS demands. The proposed architecture uses DVB-T2 to distribute a self-contained and fully decodable base-layer video signal, assumed to be always available to the end-user, and an IP network to distribute in parallel - with increased delay - additional IP video streams. The result is a decoded video quality that adapts to individual end-user conditions and maxi- mizes viewing experience. To achieve its target goal this architecture: defines new services for the ISP’s services network and new roles for the ISP core, edge and border routers; makes use of pure IP mul- ticast transmission at the ISP’s core network, greatly minimizing bandwidth consumption; constructs a geographically contained P2P network that uses P2P application-level multicast trees to assist the dis- tribution of the IP video streams at the ISP access networks, greatly reducing inter-ISP traffic, and; de- scribes a novel QoS control architecture that takes advantage of the Internet resource over-provisioning techniques to meet stringent QoS demands in a scalable manner. The proposed architecture has been im- plemented in both real test bed implementation and ns-2 simulations. Results have shown a highly scal- able P2P overlay construction algorithm, with very fast computation of application-level multicast trees (in the order of milliseconds), and efficient reaction to peer-churn with no perceptually annoying impair- ments noticed. Furthermore, enormous bandwidth savings are achieved at the ISP core network, which considerable lower management and investment costs in infrastructure. The QoS based results have also shown that the proposed approach effectively deploys a fast and scalable resource and admission control mechanism, considerably lowering signalling events using a per-class over-provisioning approach thus preventing per-flow QoS reservation signalling messages. Moreover, it is aware of network link resources in real-time and supports for service differentiation and network convergence by guaranteeing that each admitted traffic flow receives the contracted QoS. Finally, the proposed architecture for Multiview Real- Time Media Distribution for Next Generation Networks, as a component for a large project demonstrator, has been evaluated by an independent panel of experts following ITU recommendations, obtaining an excellent evaluation as computed by Mean Opinion Score.info:eu-repo/semantics/publishedVersio
    • 

    corecore