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Abstract

The recent trend of moving Cloud Computing capabilities to the Edge of the network is
reshaping how applications and their middleware supports are designed, deployed, and op-
erated. This new model envisions a continuum of virtual resources between the traditional
cloud and the network edge, which is potentially more suitable to meet the heterogeneous
Quality of Service (QoS) requirements of diverse application domains and next-generation
applications. Several classes of advanced Internet of Things (IoT) applications, e.g., in the
industrial manufacturing domain, are expected to serve a wide range of applications with
heterogeneous QoS requirements and call for QoS management systems to guarantee/-
control performance indicators, even in the presence of real-world factors such as limited
bandwidth and concurrent virtual resource utilization. The present dissertation proposes
a comprehensive QoS-aware architecture that addresses the challenges of integrating cloud
infrastructure with edge nodes in IoT applications. The architecture provides end-to-end
QoS support by incorporating several components for managing physical and virtual
resources. The proposed architecture features: i) a multilevel middleware for resolving the
convergence between Operational Technology (OT) and Information Technology (IT),
ii) an end-to-end QoS management approach compliant with the Time-Sensitive Net-
working (TSN) standard, iii) new approaches for virtualized network environments, such
as running TSN-based applications under Ultra-low Latency (ULL) constraints in virtual
and 5G environments, and iv) an accelerated and deterministic container overlay network
architecture. Additionally, the QoS-aware architecture includes two novel middlewares: i)
a middleware that transparently integrates multiple acceleration technologies in heteroge-
neous Edge contexts and ii) a QoS-aware middleware for Serverless platforms that leverages
coordination of various QoS mechanisms and virtualized Function-as-a-Service (FaaS)
invocation stack to manage end-to-end QoS metrics. Finally, all architecture components
were tested and evaluated by leveraging realistic testbeds, demonstrating the efficacy of the
proposed solutions.
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Introduction

The widespread adoption of the Internet of Things (IoT) concept has driven an unprece-
dented digitalization process in various domains, such as Automotive, Industry 4.0 (I4.0),
Healthcare, and Smart cities [82]. This trend is propelled by the exponential growth in
connected devices, which collect vast volumes of raw data that should be transformed into
insightful information by the next generation of IoT applications. This transformation
enables the creation of innovative processes, services, and products in various industrial
and societal sectors.

However, this transformation is characterized by high heterogeneity, stemming from
devices with varying computing power, battery life, mobility, and more [17]. As a result,
IoT applications with very different objectives and Quality of Service (QoS) must coexist,
using heterogeneous technologies and resources such as communication protocols, storage,
computing capacity, energy requirements, and security. The traditional cloud-centric
model, which involves a few data centers collecting and processing all data generated by
distant IoT devices, is inadequate in handling these heterogeneous requirements.

In recent years, there has been a notable paradigm shift in the integration of traditional
Cloud infrastructures with diverse virtual and physical resources, leading to the emer-
gence of the Edge Cloud or Cloud Continuum model. This model enables the efficient
partitioning of available resources to meet the specific requirements of different applica-
tions, ensuring workload isolation and distribution across all layers of the infrastructure.
Additionally, the Cloud Continuum model facilitates the establishment of end-to-end
networks capable of meeting stringent Quality of Service (QoS) demands, while also
supporting the development of decentralized and hierarchical programmable network
architectures.

A crucial element in an infrastructure based on the Cloud Continuum model is the
autonomous configuration of end devices and the network itself. It is essential for applica-
tions on end devices to effectively communicate their unique needs to the network control
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List of Tables

plane, which in turn must guarantee QoS for all types of data traffic. Furthermore, the
network should possess the ability to actively monitor and reconfigure itself in response
to changing configurations within a reasonable timeframe.

Despite the considerable potential benefits offered by the Cloud Continuum model, its
adoption in real-world production environments remains limited. For example, industries
such as automation and healthcare have particularly stringent performance constraints
that prove challenging to fulfill using existing resource virtualization technologies. These
applications require the utilization of Ultra-low Latency (ULL) mechanisms for efficient
communication between software components, necessitating the network infrastructure
to ensure sub-millisecond communication between services. Recent advancements in
Cloud Continuum technologies, such as Deterministic Networking (DetNet), Time-
Sensitive Networking (TSN), and 5G, show promise in overcoming these strict constraints
within Local Area Networks (LANs) and over larger distances, respectively.

However, the design, implementation, and deployment of comprehensive systems
capable of meeting these stringent timing requirements present a significant challenge
for researchers, especially with the increasing adoption of virtualization technologies in
computing and networking. Achieving the desired level of service and seamless integration
across all layers of the infrastructure calls for the development of novel management
approaches that can effectively orchestrate computing, storage, and networking resources,
ensuring QoS guarantees for future Internet of Things (IoT) applications. Furthermore,
the Cloud Continuum model opens up possibilities for next-generation applications
that leverage heterogeneous resources in terms of both hardware and software, thereby
necessitating the creation of new system abstractions that transparently provide access to
such a heterogeneous environment.

Given these challenges, this thesis proposes a comprehensive and multi-layered archi-
tecture that aims to ensure adherence to the QoS requirements of next-generation Cloud
Continuum applications in IoT and Industrial IoT systems. The proposed architecture
builds upon prior research and advancements in the field, encompassing three primary
layers: the Infrastructure Layer, the Virtualization Layer, and the Application Layer.

The Infrastructure Layer assumes responsibility for the efficient management and alloca-
tion of physical resources, such as network and computing capabilities. The Virtualization
Layer extends current network and computing virtualization techniques to support ULL
network communications, leveraging modern network acceleration techniques while offer-
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ing a transparent interface to the upper layers. Lastly, the Application Layer encompasses
platforms and middlewares that leverage the underlying layers’ mechanisms to facilitate
the development of QoS-aware applications within IoT contexts.

The thesis is organized clearly and comprehensively, with each chapter building upon
the previous one to provide a thorough understanding of the proposed architecture and
its capabilities.

Chapter 1 presents an overview of the defining characteristics of Cloud Computing
and its limitations, leading to the concept of the Cloud Continuum. The The chapter
also introduces the fundamental principles of the Internet of Things and Industrial IoT
as a representative example of a system that demands the integration of various resources
and the management of data streams with varying Quality of Service (QoS) requirements.

Chapter 2 delves into the concept of Ultra-low Latency (ULL) networks and com-
munication, outlining their defining characteristics and the performance criteria that
must be met. The chapter examines the Time-Sensitive Networking (TSN) standard as a
representative standard for ULL communication in IoT and Industrial IoT applications.
Additionally, the chapter evaluates the role of modern network acceleration technologies
and network virtualization techniques in both classical and containerized virtualization
settings in realizing ULL communications.

Chapter 3 provides an in-depth illustration of the proposed architecture, examining its
objectives, characteristics, and sub-components. The current state-of-the-art in each layer
is also analyzed. A comparison is made between the proposed architecture and previous
works, highlighting the improvements and advancements made in each aspect.

Chapter 4 focuses on the Infrastructure Layer, providing a detailed examination of
middleware for converging Operational Technology (OT) and Information Technology
(IT) to support applications with diverse QoS requirements in Edge Cloud environments.
The chapter also introduces an end-to-end Quality of Service management system for
Time-Sensitive Networking (TSN) networks that aims to ensure consistent QoS while
handling network reconfiguration events and different traffic flows.

Chapter 5 delves into the Virtualization Layer, discussing three distinct components of
the proposed architecture. The first component focuses on a new approach to run TSN-
based applications with ULL constraints in virtual machines by combining a practical
clock synchronization approach with high-performance network virtualization techniques.
The second component presents a system for an accelerated and deterministic container
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overlay network defining new userspace TSN packet scheduler. The third component is
represented by an Edge-oriented general-purpose middleware that offers a uniform access
interface to a wide range of network acceleration technologies and provides a minimal set
of communication primitives to allow the definition of domain-specific abstractions.

Chapter 6 focuses on the Application Layer. It begins by presenting a QoS-aware
middleware for Serverless platforms, which leverages the coordination of various QoS
mechanisms and virtualized FaaS invocation stack to manage end-to-end QoS parameters
such as jitter, latency, and enqueuing time. The chapter then highlights two applications
developed based on the uniform acceleration access middleware presented in Chapter 5: a
Message-oriented Middleware (MOM) and a high-quality image streaming application.

In this thesis’s Conclusion and Future Work chapter, we summarize the main objectives
and outcomes of the work presented. Additionally, we highlight the strengths and limi-
tations of our proposed architecture and provide recommendations for future research
and development in the field. This conclusion serves as a summary of our contributions, a
platform for discussion, and suggestions for future work that can build upon and enhance
our existing proposal.
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1 From the Cloud to a Continuum
of Virtual Resources

Contents

1.1 Introduction to Cloud computing . . . . . . . . . . . . . . 7

1.2 From Fog and Edge Computing to the Cloud Continuum . . 9

In this chapter, we will briefly review the evolution of the Cloud toward a more dis-
tributed model called Edge Cloud or Cloud Continuum. In particular, we will elaborate on
how this model is better suited in the context of the Internet of Things and Industrial In-
ternet of Things (IIoT) as it enables next-generation applications exploiting heterogeneous
resources and multiple data flow with diverse QoS requirements.

1.1 Introduction to Cloud computing

In the last decade, the Cloud has emerged as a disruptive and rapidly evolving technology
that has significantly transformed how organizations operate and deliver value to their
customers. The term “cloud” refers to the delivery of computing services, such as storage,
computing, and applications, via the Internet, without the need to own or manage the
underlying infrastructure leading to a paradigm shift in the traditional role of service
providers in the IT industry [83]. Specifically, the role has been divided into two categories:
infrastructure providers and service providers. Infrastructure providers operating cloud
platforms and using a usage-based pricing model are responsible for leasing resources. On
the other hand, service providers who lease resources from one or more infrastructure
providers are responsible for serving end users. The emergence of Cloud Computing
has significantly impacted the Information Technology industry, with major players such

7



1 From the Cloud to a Continuum of Virtual Resources

as Google, Amazon, and Microsoft competing to provide more robust, reliable, and
cost-effective cloud platforms.

Cloud computing has become a popular choice for businesses due to its numerous
benefits. One of the main benefits is the lack of upfront investment required. With a
pay-as-you-go pricing model, service providers can avoid significant upfront investment in
infrastructure and rent resources from the Cloud as needed, resulting in significant cost
savings. Another advantage of Cloud Computing is the reduced operational costs. By
rapidly allocating and deallocating resources on demand, companies can eliminate the
need for provisioning capacity based on peak loads and achieve significant savings. The
Cloud also offers high scalability, as infrastructure providers aggregate significant resources
from data centers, making them readily available for service providers to rapidly expand
their services to large scales to accommodate rapid increases in demand.

Additionally, Cloud-hosted services typically feature web-based accessibility, allow-
ing easy access through a wide range of Internet-enabled devices. Outsourcing service
infrastructure to the Cloud can also help reduce service providers’ business risks and
maintenance expenses by shifting responsibilities for managing hardware failures and
other risks to infrastructure providers, who often have specialized expertise. This can save
costs through reduced hardware maintenance and staff training expenses.

The architecture of Cloud Computing is modular and can be divided into four layers:
the hardware/datacenter layer, the infrastructure layer, the platform layer, and the appli-
cation layer. The hardware/datacenter layer manages physical resources such as servers,
routers, switches, power, and cooling systems and is responsible for hardware configura-
tion, fault tolerance, traffic management, and power and cooling resource management.
The infrastructure layer, also known as the virtualization layer, creates a pool of storage
and compute resources by partitioning physical resources using virtualization technologies,
enabling dynamic resource allocation. The platform layer, built on top of the infrastruc-
ture layer, consists of operating systems and application frameworks and aims to reduce
the burden of deploying applications directly into Virtual Machines (VMs). The applica-
tion layer is the highest level of the hierarchy. It consists of the actual cloud applications,
which can take advantage of the automatic scaling feature to achieve better performance,
availability, and lower operational costs.

Cloud Computing employs a service-driven business model, where hardware and
platform-level resources are provided as services on an on-demand basis. In practice,

8



1.2 From Fog and Edge Computing to the Cloud Continuum

clouds offer services that can be grouped into three categories: Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). IaaS refers to the on-
demand provisioning of infrastructural resources, usually in terms of VMs. PaaS refers
to providing platform layer resources, including OS support and software development
frameworks. SaaS refers to providing on-demand applications over the Internet.

When moving an enterprise application to the Cloud environment, there are different
types of clouds to consider, each with its benefits and drawbacks. Public clouds are available
to the general public but lack fine-grained control over data, network, and security settings.
Private clouds, also known as Internal clouds, are designed for exclusive use by a single
organization and offer the highest degree of control over performance, reliability, and
security. Hybrid clouds combine public and private Cloud models, offering more flexibility
than public and private clouds.

1.2 From Fog and Edge Computing to the Cloud
Continuum

The ongoing advancement of computing and network infrastructure has resulted in
significant digital transformation and evolution across various industrial sectors. The
increased distribution and heterogeneity of next-generation applications and their diverse
Quality of Service requirements, including low-latency constraints in the hundreds of
microseconds and high levels of reliability, have rendered the traditional Cloud Computing
model inadequate.

In response to this need, various models have emerged in recent years that extend the
Cloud Computing model to a multi-level hierarchical structure encompassing nodes at
the edge of the network infrastructure, referred to as Fog Computing and Edge Computing.
These concepts will be briefly described, with a discussion on how they have led to the
development of a more general term, the Cloud Continuum.

Edge computing is an emerging paradigm aiming to bring computation closer to the
data sources rather than relying on centralized data centers. This paradigm shift is driven
by the need to support the growing Internet of Things devices and the increasing demand
for low latency and high bandwidth applications. The core idea of Edge Computing is to
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1 From the Cloud to a Continuum of Virtual Resources

perform computation and storage at the edge of the network, close to the source of data,
to reduce the amount of data that needs to be transmitted over the network [67].

Researchers have different definitions of Edge Computing, but they all agree on bringing
computation closer to the data sources. For example, Shi et al. [67] define edge computing
as “a new computing mode of network edge execution. The downlink data of edge com-
puting represents cloud service, and the uplink data represents the Internet of Everything.
The edge of edge computing refers to the arbitrary computing and network resources
between the data source and the path of the cloud computing center”. Similarly, Satya-
narayanan, in [64], defines Edge Computing as “a new computing model that deploys
computing and storage resources (such as cloudlets, micro data centers, or fog nodes, etc.)
at the edge of the network closer to mobile devices or sensors”.

Generally speaking, the critical advantage of Edge Computing is that it enables the
processing of data closer to the source, which reduces the amount of data that needs to
be transmitted over the network. This can significantly improve response times, energy
consumption, and security. For example, researchers have shown that using cloudlets
to offload computing tasks for wearable cognitive-assistance systems improves response
times by between 80 and 200ms and reduces energy consumption by 30 to 40%. Edge
Computing can also better protect data by processing it closer to the source. However,
supporting security and privacy can be more challenging in edge computing due to the
network topology, the many inexpensive personal mobile devices in the system, and sensor
unreliability.

In conclusion, Edge Computing is an emerging paradigm aiming to bring computation
closer to the data sources. It enables the processing of data closer to the source, which
reduces the amount of data that needs to be transmitted over the network, leading to
improvements in response times, energy consumption, and security. However, supporting
security and privacy can be more challenging in edge computing due to the network topol-
ogy, the many inexpensive personal mobile devices in the system, and sensor unreliability.
Edge computing is an active research area and will continue evolving as new technologies,
and use cases emerge.

Internet of Things is a computing concept in which many intelligent objects, such as
sensors, actuators, and mobile devices, can sense their surroundings, transmit and process
the acquired data, and provide feedback using wired and wireless Internet standards-based
connections. This concept’s introduction has improved applications’ quality, reducing
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costs and enhancing functionality while offering more accessible access to resources and
greater automation. The application of IoT and Cyber-Physical Systems (CPS) [21] ideas
to the domain of industrial automation led to the definition of Industry 4.0 [79].

As a subset of IoT, the Industrial Internet of Things is the core concept of Industry 4.0.
IIoT is where sensors, software, Machine-to-machine (M2M) collaboration, and various
technologies gather and analyze data from the physical and virtual worlds for optimized
operations and provide better services. For this reason, IoT, IIoT, and Cloud Computing
are crucial for the manufacturing sector.

However, it is essential to note that while Cloud Computing is often advertised as a
solution for IoT-related technological problems, it can be challenging to utilize in safety-
critical systems due to its long end-to-end latency [59]. Instead, the Cloud Continuum
is being proposed as an architectural means to achieve IT/OT convergence by bringing
Cloud computing Closer to the Edge, reducing latency, and providing a more efficient and
secure way to manage the data generated by IoT devices. The Cloud Continuum encom-
passes all computing environments, including edge devices. It offers a more comprehensive
approach to Cloud Computing, enabling real-time data processing, decision-making on
Edge, and improved security, privacy, and compliance.

The integration of these concepts will inevitably lead to an evolution of the industrial
and production sectors, especially regarding the size of the networks in these sectors. An
ecosystem will therefore be created, within which information sharing will be essential
to improve decision-making processes and obtain efficient production concerning the re-
sources used. Also, since systems of this type often exploit rapid communications between
devices, factories, and suppliers, greater flexibility will be required to meet customer needs
in terms of quantity, quality, design, and configuration.
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The need for Ultra-low Latency communications is rapidly increasing due to the grow-
ing demand for near real-time connectivity and high data rates in various fields, such as
critical health care, transportation, industrial automation, autonomous vehicles, Aug-
mented Reality (AR) and Virtual Reality (VR), and robotics. Traditional networks have
successfully reduced end-to-end operational latencies by tens of milliseconds, but cur-
rent and future applications require latencies of a few microseconds or milliseconds [52].

This chapter delves into the key concepts and technologies driving the progress of ULL
networks, particularly by discussing the Time-Sensitive Networking standard and some
innovative network acceleration technologies.
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2.1 Terminology

This section provides an overview of the terminology used to define Ultra-low Latency
communications.

We define latency as the total end-to-end packet delay from the time of initiation of
transmission by the sender to the completion of reception by the receiver. Latency is a crit-
ical parameter in ULL networks because, as anticipated, many ULL applications require
deterministic latency that is often less than a millisecond. Specifically, deterministic latency
means that all frames of a given application traffic flow must not exceed a specific limit
to ensure proper systems operation. This type of specification often results in industrial
automation applications. In other cases, latency must have probabilistic behavior. The
specified delay limit must be met with high probability, but failing to meet it does not
lead to critical problems. For example, this type of latency is often required in multimedia
streaming systems, where rare violations of the delay limit have a negligible impact on the
perceived quality of the multimedia.

The second term that defines ULL networks is latency jitter or jitter for short. Jitter
refers to variations in packet latency that, as in the case of latency, must be very small.
Latency and jitter are the two main metrics that define QoS for ULL networks.

Finally, a secondary requirement, however present in ULL applications, is the through-
put. The latter logically depends on the application’s needs, which can vary widely from
small amounts of IoT data to large exchanges of multimedia data to and from the cloud
or edge in case latency is to be reduced. In particular, autonomous automotive vehicles,
augmented and virtual reality, and robotic applications, all essential elements in modern
Industrial Internet of Things applications, may require high data rates and low end-to-end
latency requirements. For example, high data rates may be needed to carry video feeds
from cameras that monitor vehicles and robots. Therefore, Given the wide range of ULL
applications, which often have very different QoS requirements, a reliable mechanism to
meet these different requirements universally is critical to the success of ULL networks.

2.2 Time-Sensitive Networking

This section will discuss the Time-Sensitive Networking standard and the protocols it
introduces to support ULL applications. This standard builds upon the foundation of
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Ethernet, which has become a popular choice for networking due to its simplicity and low
cost. Ethernet has evolved over the years, and today it supports connections at speeds of
up to 400 Gbps.

Despite the widespread success and adoption of Ethernet, it must be noted that the
basic definition of Ethernet fundamentally lacks deterministic end-to-end flow properties.
This lack of Quality of Service properties makes it difficult to support ULL applications,
such as industrial communications, that require deterministic, real-time packet delivery.

Before the development of Time-Sensitive Networking standards, ULL applications
were often addressed through alternative means, such as point-to-point communications,
circuit switching, or through the use of specialized and semi-proprietary specifications.
These included Fieldbus communication and various variants of Ethernet for use in the
OT domain, such as PROFINET, EtherCAT, Ethernet/IP, and TTEthernet.

These variants of Ethernet, encapsulated under the generic term Industrial Ethernet,
present a significant challenge in the form of compatibility issues among themselves [79].

This has resulted in a fragmented market with multiple incompatible solutions, making it
challenging for users to select the most appropriate solution for their specific needs.

The advent of TSN standards aims to address these limitations and provide a unified,
standardized solution for ULL applications in industrial and OT domains. By incorpo-
rating TSN capabilities, Ethernet can now offer the deterministic and real-time packet
delivery required for mission-critical applications, enabling more widespread adoption of
Ethernet in these domains.

In general, the Ethernet definitions lack the following aspects for supporting ULL
applications:

• Lack of QoS mechanisms to deliver packets in real-time for demanding applications,
such as real-time audio and video delivery.

• Lack of global timing information and synchronization in network elements.

• Lack of network management mechanisms, such as bandwidth reservation mecha-
nisms.

• Lack of policy enforcement mechanisms, such as packet filtering, to ensure a guar-
anteed QoS level for an end-user.
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Motivated by these Ethernet shortcomings, the Institute of Electronics and Electrical
Engineers (IEEE) and the Internet Engineering Task Force (IETF) have proposed new def-
initions to introduce deterministic network packet flow concepts. The IEEE has pursued
the TSN standardization, focusing mainly on the physical layer (layer one, L1) and link
layer (layer two, L2) techniques within the TSN task group in the IEEE 802.1 working
group (WG). The IETF has formed the Deterministic Network (DetNet) working group
focusing on the network layer (L3) and higher layer techniques [52]. These new definitions
aim to bring Ethernet to new heights of performance and efficiency, making it a more
versatile and reliable option for ULL applications.

2.2.1 Time Synchronization

Time synchronization is a crucial aspect of networks, particularly in the context of TSN
applications. These applications require a network-wide precise time synchronization,
establishing a standard time reference shared by all TSN network entities. This time
synchronization is used to determine the opportune moment for data and control signaling
scheduling, ensuring that all devices in the network are working in harmony. To achieve
this, the IEEE 802.1AS stand-alone standard is employed, which uses a specialized profile
of the IEEE 1588 Precision Time Protocol standard called the generic Precision Time
Protocol (gPTP) [39, 72].

gPTP is a specialized protocol that synchronizes clocks between network devices by
passing relevant time event messages. It envisages two main entities, a Clock Master (CM)
and Clock Slaves (CSs), deployed and provisioned on the networked devices. The CM,
also referred to as the Precision Time Protocol (PTP) grandmaster, sends time information
to each of the CSs connected using multicast communication. Each CSs, also called gPTP
instance, must correct the synchronized time received by factoring in the time delay due
to message propagation along the gPTP communication path from the grandmaster to
the PTP instance.

Once all devices are synchronized, we have what is, in effect, a time-aware network also
referred to as a gPTP domain (Figure 2.1). This time-aware network utilizes the peer-path
delay mechanism to compute the residence time, i.e., the ingress-to-egress processing,
queuing, and transmission time within a bridge, and the link latency, i.e., the single hop
propagation delay between adjacent bridges within the time-aware network hierarchy.
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Figure 2.1: Example of a gPTP domain.

The GrandMaster (GM) clock, located at the root of the hierarchy, is used as the reference
for the entire network. The GM clock is the bridge with the most accurate clock source,
selected by the Best Master Clock Algorithm (BMCA).

gPTP systems consist of distributed and interconnected gPTP and non-gPTP devices.
Time-aware bridges and endpoints are gPTP devices, while non-gPTP devices include
passive and active devices that do not contribute to time synchronization in the distributed
network. gPTP uses a master-slave architecture to synchronize the real-time clocks in
all devices in the gPTP domain with the root reference (GM) clock. Synchronization is
accomplished through a two-phase process: gPTP devices establish a master-slave hierar-
chy and then apply clock synchronization operations. In particular, gPTP establishes a
master-slave hierarchy using the BMCA, consisting of two separate algorithms: data set
comparison and state decision. Each gPTP device operates a gPTP engine, i.e., a gPTP
state machine, and employs several gPTP User Datagram Protocol (UDP) IPv4 or IPv6
multicast and unicast messages to establish the appropriate hierarchy correctly synchronize
time.
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2.2.2 Flow Scheduling

The TSN standard provides a primary protocol, called IEEE 802.1Qbv, for supporting
traffic flows with diverse QoS requirements.

To ensure traffic-friendly QoS, such as those in critical control systems with sub-
microsecond latency requirements, the IEEE 802.1Qbv Enhancements to Traffic Schedul-
ing Time-Aware Shaper (TAS) standard has been created [52]. This standard specifies
the planning of critical traffic flows within time-triggered communication windows (Fig-
ure 2.2). These windows are often referred to as secure traffic windows or time-aware
traffic windows, and each of them is divided into multiple time slots that repeat cyclically,
see Figure 2.2a. We can select a series of traffic classes within each time slot so that this slot
is used only to transmit these traffic classes. This way, we can prevent lower-priority traffic,
such as best-effort traffic, from interfering with real-time or scheduled traffic transmis-
sions. A so-called guard band precedes those scheduled traffic windows (Figure 2.2b), and
packets belonging to other traffic classes remain in their buffers until their traffic class can
be transmitted. According to a known and time-aware schedule, the locking mechanism
of these queues is based on open or closed gates. Transmission is therefore controlled
through a Gate Control List (GCL), consisting of several scheduling items [52].

2.2.3 Network Management

Traditionally, one of the essential aspects of the IEEE 802.1 network is using some plug-
and-play mechanisms to add more devices. The standard for providing this type of tool is
IEEE 802.1Qcp YANG Data Model [18]. The YANG data model provides a framework
for periodic status reporting and configuring 802.1 bridges and bridge components. In par-
ticular, YANG is a data modeling language for configuration data, state data, remote pro-
cedure calls, and notifications for network management protocols, e.g., NETCONF [29]

and RESTCONF [16]. The latter represents the Network Configuration Protocols that
provide mechanisms to install, manage, and delete network devices’ configurations. In
addition to a standard model representing a network device’s properties, it is also essential
to define an architecture to connect the different devices and manage and configure them.

For this reason, IEEE 802.1Qcc [47] provides global tools to manage and control the
network. IEEE 802.1Qcc enhances the existing SRP with a User-Network Interface (UNI)
supplemented by a Centralized Network Configuration (CNC) node. The UNI provides
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(b) Time-aware traffic window with the presence of guard bands.

Figure 2.2: Schemes of time-aware traffic window.

a standard method of requesting Layer 2 services. Furthermore, the CNC interacts with
the UNI to offer a centralized means for performing resource reservation, scheduling, and
other types of configuration via a remote management protocol, such as NETCONF
or RESTCONF; hence, 802.1Qcc is compatible with the IETF YANG/NETCONF
data modeling language. An optional Centralized User Configuration (CUC) node
communicates with the CNC via a standard Application Programming Interface (API)
to create a fully centralized network architecture. This CUC can be used to discover end
stations, the talkers, and listeners, to retrieve their capabilities and user requirements, and
to configure delay-optimized TSN features in end stations. In Figure 2.3, we can see a
diagram representing the centralized model we have just introduced.

2.2.4 Integration with 5G

Wireless communication’s general use was limited to open-loop control and Manufac-
turing Execution System (MES) applications due to lack of availability, reliability, and
real-time capabilities [7]. However, several standardization organizations today con-
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Figure 2.3: Fully centralized configuration model for TSN networks.

tribute to 5G standards, including IEEE and IETF, the Third Generation Partnership
Project (3GPP), and the European Telecommunications Standards Institute (ETSI). Fifth-
generation cellular technology (5G) represents a paradigm shift in network connectivity
as 5G is expected to completely overhaul the network infrastructure by establishing an
ULL end-to-end connection. The 5G, therefore, aims to meet the requirements for a wide
range of field-level applications. It will enable the design of easily reconfigurable factories,
reducing cable installation and maintenance and enabling innovative use cases such as
automated guided vehicles (AGVs) with robotic arms.

Additionally, wireless communication systems result in lower installation costs, enabling
large-scale manufacturing facility upgrades. The integration of 5G will improve the
network’s efficiency by improving its utilization and limiting the overhead of the control
plane, thus leading to more significant energy savings.

The benefits of 5G and the corresponding industrial use cases are described in more
detail in [8]. As a result, in combination, TSN and 5G offer wireless and wired solutions to
create the sizeable real-time network needed for Industry 4.0 applications. To ensure the
control application’s deterministic behavior, the network must meet the corresponding
QoS requirements. A solution should use standard Ethernet (IEEE 802.3), WLAN (IEEE
802.11), and 5G (3GPP) technologies, combined with time-sensitive communication
enhancements such as the TSN standards specified by IEEE 802.1.
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2.3 Acceleration Technologies

A key component in achieving the desired QoS in ULL communications is using accelera-
tion technologies. These technologies play a crucial role in facilitating the achievement of
the specified QoS level, thereby improving the overall performance of the communication
system.

Communication links are evolving rapidly to support higher bandwidth and lower
latency, outpacing the evolution rate of other host resources such as core speeds and cache
sizes. This has led to an issue where the Operating System kernel-level networking stack,
designed under the assumption of slower I/O operations, can no longer keep up with the
available access link bandwidths and latencies [22]. This problem is particularly relevant
for Edge Cloud scenarios, as datacenter-like resources are available at the network edge
and latency requirements become extremely demanding [63, 70]. The primary sources of
network overhead in the OS kernel include data copies, inefficient cache usage, protocol
processing delays, and context switches [22, 35, 57].

To fully exploit the communication capabilities of modern hardware, new forms of
highly efficient end-host networking have emerged, such as the Linux eXpress Data Path,
which provides fast in-kernel packet processing [74], the Data Plane Development Kit
and Remote Direct Memory Access, which bypass the kernel and allow direct interac-
tion between userspace and Network Interface Controllers (NICs)[5, 6]. Despite their
differences, all these techniques follow a similar approach to reduce the various sources
of overhead. For example, they remove data copies by giving the user application access
to a memory area where the NIC directly writes incoming data. This way, data is always
in the same physical memory area, and the application and the NIC driver only need to
exchange the address of the relevant data in the shared area. However, the mechanisms
that enable these approaches substantially differ across the different technologies.

The Linux kernel introduced eXpress Data Path (XDP) as the lowest layer of its network
stack, located within the driver of network devices. At this stage, XDP can execute user-
provided code (eBPF programs) for each packet, forwarding it to and from a userspace
socket. This way, XDP allows one to send and receive packages without involving the
other network stack components, thus avoiding expensive operations such as memory
allocation for incoming packets. The price to pay is that some amount of CPU is spent
to forward each packet between the driver and the socket. To use XDP, developers have
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first to open a socket of type AF_XDP and a shared memory area to allow the zero-copy
packet writes/reads (directly or through higher-level libraries such as libxdp [3]). Then,
users send packets by placing data into the memory area and writing a packet descriptor
to the socket. Once received the descriptor, the eBPF program will send the packet on the
network without copies. Packet reception works in the same way, but roles are reversed. If
the network card supports it, it is possible to offload the eBPF program execution to the
hardware. Therefore, this approach bypasses the kernel TCP/IP network stack, achieving
efficient zero-copy and low-overhead data transfers. In turn, however, the user has to
provide its userspace network and transport protocols (e.g., mTCP [40]).

Data Plane Development Kit (DPDK) and Remote Direct Memory Access (RDMA)
take a step further and bypass the OS kernel altogether. This approach reduces scheduling
overhead because there is no context change between userspace and kernel processes on
the critical datapath. DPDK, in particular, consists of a set of C libraries that let users
directly interact with a userspace version of the network device drivers (Poll Mode Drivers,
PMD). Hence, in this case, the user has to provide its protocol stack. The user and the
userspace driver exchange packet data on a shared memory area called mempool. To send a
packet, the user will provide the driver with a pointer to the appropriate memory area.
On the receiving side, to minimize the communication overhead, DPDK dedicates one or
more threads (lcores), each pinned to a separate core, to busy poll for new messages. The
driver places detected packets into the shared memory, and the corresponding pointers are
returned to the user. Although extremely fast, this high resource consumption significantly
limits adopting DPDK in constrained environments. Overall, all these techniques provide
efficient zero-copy and low-overhead data transfers. Still, they require the user to provide
their protocol stack and may have high resource consumption in some cases.

RDMA is a networking technique that allows a process on one machine to directly
access the memory of another process on a remote device. Unlike XDP and DPDK,
this abstraction avoids the need for the user to provide userspace network and transport
protocols. To achieve exceptional performance, including high throughput (∼200Gbps)
and low latency (<1 µs), RDMA offloads the network operations directly to the network
card (NIC). Thus, a compatible network card is required. After registering a memory area
with the network card (memory region), users establish a remote connection by opening a
Queue Pair (QP), which comprises a couple of work queues for send and receive operations.
Indeed, RDMA operations are asynchronous by nature: a node can issue a series of
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Table 2.1: A comparison between the main options for end-host networking in the edge cloud.
Technology Kernel integration API Zero-copy CPU consumption Dedicated Hardware

Kernel TCP/IP In-kernel AF_INET Socket No Per-packet No
XDP In-kernel AF_XDP Socket Yes Per-packet No
DPDK Kernel-bypassing RTE Yes Busy polling No
RDMA Kernel-bypassing Verbs Yes Hardware offloading Yes

service requests to be executed by the hardware, pushing them to the proper queue. Those
requests include the transfer of portions of local memory to remote memory regions
or vice versa. The network card enforces these requests transparently by implementing
hardware protocols such as RDMA over Converged Ethernet (RoCEv2) [12]. There are
two possible kinds of transfers: two-sided, which requires the receiver to listen to incoming
data actively, and one-sided, which allows a process on one machine to asynchronously
access a region of application memory on a remote node. A significant advantage of the
latter is that the remote CPU is not involved in the network operation: an advantageous
property in the Edge context.

Table 2.1 presents a summary of the critical features of XDP, DPDK, and RDMA.
These technologies were initially designed for specific purposes, such as fast packet pro-
cessing in network core routers for XDP and DPDK and HPC networking for RDMA.
However, as their usage expands to include general-purpose end-host networking, they be-
come potent options for supporting the heterogeneous requirements of the Edge scenario.
One significant challenge that developers may face is using custom APIs for accessing
network operations, which can be low-level and complex, potentially overwhelming for
non-experienced system programmers. Additionally, the frequent evolution of these
interfaces can make it challenging to maintain older code.

2.4 Network Virtualization

Next-generation applications based on the Cloud Continuum model demand a seamless
integration of physical and virtual resources. This requirement extends to the ULL com-
munication technologies utilized by these applications, emphasizing the importance of
providing Quality of Service mechanisms for virtualized networks. These mechanisms
must be effective in both traditional virtualization environments and the more lightweight,
container-based virtualization contexts.
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2.4.1 Virtual Machines

A key challenge for virtual machine applications is obtaining efficient access to I/O de-
vices, especially if network performance is critical. The two prominent I/O virtualization
techniques are direct device assignment and paravirtualization. With direct device assign-
ment, a dedicated device instance is assigned exclusively to a VM and becomes invisible
to the host (passthrough). Each VM requires a dedicated physical network adapter if this
instance corresponds to the physical device (physical function, PF). To mitigate this effect,
recent devices support hardware-assisted virtualization (e.g., SR-IOV [4]) that makes them
appear as multiple separate devices called virtual functions (VFs), which can be assigned
to different VMs. Either way, this technique avoids any involvement of the hypervisor:
VMs can access the network as if they were physical hosts and achieve optimal network
performance. However, the direct assignment also tightly couples network devices and
VMs, strongly limiting the flexibility properties of virtualization, e.g., live migration.

On the contrary, the paravirtualization technique trades performance for flexibility.
For each VM, a traditional paravirtualized network stack splits the device driver into a
frontend driver in the guest OS and a backend driver on the host (Figure 2.4), which
exchange commands using a dedicated communication channel. This separation allows
the hypervisor to have complete control of the network state, thus enabling a high degree of
flexibility and introducing overhead on data path operations when crossing the guest/host
boundaries. The backend driver is located in the host kernel space in the traditional
approach. All the traffic should traverse the host network stack, which involves multiple
data copies and context switches [22]. Since this overhead can be significant, it is possible
to move the backend driver in the host userspace and use kernel-bypassing techniques
such as the DPDK to access the physical device with a zero-copy semantic directly.
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Figure 2.4: Network virtualization approaches.
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The de facto standard framework for paravirtualization is virtio [61], which allows the
hypervisor to expose paravirtualized devices to the guest. To reduce the network overhead,
virtio separates the data plane, used for the actual transmission of network traffic between
the host and the guest, and a control plane to exchange control messages about the data
plane. The data plane consists of shared memory regions between the guest’s frontend
driver and the host’s backend driver. Those memory areas, called virtqueues, are organized
as couples of ring buffers that contain data to be received and transmitted, thus simulating
the virtual queues of physical devices. Each virtual device can have zero or more associated
queues, but, importantly, devices with more than one queue can only be used from
virtual machines with two or more virtual CPUs (vCPUs) because each queue must have
its associated thread. On the other hand, the control plane consists of a notification
mechanism to detect and notify data in the queue between the frontend and the backend
driver. This mechanism consists of a direct inter-process communication channel between
the two drivers for network devices.

Once the VM traffic reaches the backend driver, it must be forwarded to a network.
In Cloud environments, the common practice is to connect the VM belonging to the
same tenant to a virtualized overlay network, regardless of the host they are running on.
The critical component to achieve this is the virtual switch. This software application
can isolate and manage traffic among VM on the same host and forward data to remote
switch instances through point-to-point network tunnels. For example, Open vSwitch [58]

is a widely used solution for virtual networking. It can operate at the kernel level and
with DPDK to process traffic faster in the userspace. In the following, we evaluate the
performance of both these options to investigate the cost of virtualization in ultra-low
latency scenarios.

2.4.2 Containers

The popular choice for container networking in containerized environments is the overlay
mode, which is frequently utilized in conjunction with Kubernetes. This mode offers
improved isolation, ease of use, and security. In the overlay mode, containers are connected
through an overlay network spanning multiple physical nodes across different networks.
Each container has a virtual network interface, which can assign an IP address connected
to the external world via a virtual switch in the host operating system’s kernel. This virtual
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switch acts as a bridge between co-located containers and tunnels network traffic to remote
containers across the physical network. This setup results in containers on the same overlay
network having an isolated address namespace and configuration separate from the host
network or other overlays, as depicted in Figure 2.5.

Figure 2.5: Container networking in overlay mode.

When utilizing Kubernetes, containers possess a single network interface for all network
traffic, including management and control plane interactions with the Kubernetes master.
The Multus plugin enables the attachment of additional interfaces to containers to dif-
ferentiate between different traffic classes. Multus is a meta-plugin defining a container
network interface (CNI) that other plugins can implement to configure a Layer 3 network
fabric and provide advanced features. Several plugins exist, such as Flannel, Calico, or
Weave, but none support the creation of an accelerated and deterministic communication
channel among containers. For this reason, sending packets in a container overlay network
incurs substantial overhead, as each outgoing packet must pass through multiple layers of
the networking stack. The packet must traverse the isolated network namespace within
the container, move to the host namespace, and pass through a virtual switch, as depicted
in Figure 2.5. These multiple steps in sending packets in a container overlay network
result in significant per-packet communication overhead, making the current form of
overlay networks unsuitable for time-sensitive Edge applications that require low latency
and real-time response. The extra layers of network traversal add considerable latency
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to the communication process, making it challenging to meet the strict requirements of
these applications. This highlights the need for further optimization and advancements in
container overlay networks to ensure they can meet the demands of time-sensitive Edge
applications.
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In this Chapter, we present a comprehensive examination of a layered architecture that
spans the Cloud Continuum, consisting of various components that work in conjunction
to provide support for next-generation applications with varying QoS requirements. At the
same time, we will delve into the current state of the art for each architectural component
and elaborate on how our proposed solution enhances it.

The proposed QoS-aware Architecture for the Cloud Continuum, shown in Figure 3.1,
comprises three main layers: the Infrastructure layer, the Virtualization layer, and the
Application layer. Additionally, the architecture features two other components: an
end-to-end QoS management and monitoring component that spans all layers and a
horizontal component that transparently provides the services offered by the Virtualization
layer. These components work together to support the architecture and the Edge Cloud
applications deployed. It should be noted that each component of the architecture can be
deployed across the Cloud Continuum, ranging from the data center to the network edge
nodes.
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Figure 3.1: The proposed QoS-aware Architecture for the Cloud Continuum exposes the three
main Layers.

3.1 The Infrastructure Layer

The foundational layer of the architecture is the Infrastructure layer, which encompasses
the underlying physical resources such as computing, network, and storage capabilities.
To cater to the varying resource requirements and Quality of Service demands of future
applications, the physical resources within this layer must be managed unobtrusively. Addi-
tionally, these resources can be distributed across multiple levels of the Cloud Continuum,
providing a flexible and scalable foundation for the architecture.

One key concept that plays a crucial role in managing the resources in the infrastruc-
ture layer is the concept of Slicing. Slicing refers to partitioning the physical resources
into multiple isolated and customizable slices that can be allocated to different tenants,
applications, or services based on their specific requirements. Each slice acts as a separate
and isolated entity within the infrastructure layer, providing a dedicated set of resources
that can be tailored to meet the requirements of a specific tenant or application.

Slicing enables the efficient and effective utilization of physical resources by allowing
for the creation of multiple virtualized instances of the resources within the infrastructure
layer. This enables the deployment of multiple services or applications with different QoS
requirements and resource demands within the same physical infrastructure, maximizing
resource utilization and reducing costs. Additionally, slicing provides the necessary level of
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customization, allowing tenants and applications to control the resources they receive and
enabling the deployment of innovative and highly customized services and applications.

In this scenario, integrating QoS-aware network management and configuration is
imperative as it lays the foundation for more advanced service and application-aware
capabilities. Our architecture primarily focuses on Ultra-low Latency communications,
with a particular focus on the TSN protocol. Therefore, discussing some of the most
relevant management solutions in the current literature is essential.

In [53], an architecture for real-time systems called Time-sensitive Software-defined
Network (TSSDN) is presented. The objective is to schedule and route time-triggered
traffic using commodity hardware via a software-defined networking approach. The
authors present several scheduling algorithms, assigning time slots to time-triggered flows
and minimizing in-network queuing while maximizing the number of co-existing flows.

Gutiérrez et al. propose a heuristic capable of the run-time configuration of fog-enabled
TSN [34, 60]. The authors, in their works, take into account time-critical flows that can
appear and disappear over time. To this end, they adopt a configuration agent architecture
that reacts to network (traffic) changes.

Gerhard et al. in [31] presents an approach that combines SDN and TSN with an empha-
sis on network management and configuration. Their software-defined Flow Reservation
(SDFR) architecture implements the IEEE 802.1Qcc standard and can be integrated with
existing SDN solutions. The proposal allows for the configuration of time-triggered traffic
flows exploiting a southbound interface protocol.

Some encountered literature work relies upon evaluating their proposals through simu-
lation studies and reconfiguration events, which require some run-time capabilities and
are often neglected and not provisioned. The mechanisms necessary to perform the same
steps in end devices are often omitted on static monitoring and reconfiguring network
devices.

Chapter 4 of the present thesis elaborates on a centralized architectural design en-
compassing different functional components. This design expands the notion of self-
(re)configuration and monitoring to all elements in a Time-Sensitive Networking (TSN)
network, thus including end devices. Furthermore, the proposed QoS management ar-
chitecture has been subjected to experimental validation on a practical TSN testbed,
showcasing its ability to adapt dynamically to changes in the network environment.
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3.2 The Virtualization Layer

3.2.1 Network Virtualization

The virtualization layer of our architecture is a key component in providing network
virtualization mechanisms capable of supporting ULL communications. This layer must
support both classical virtualization techniques using virtual machines and container-
based lightweight virtualization methods. In particular, ULL communication protocols,
such as TSN, need two. This layer has slicing systems that divide virtual networks into
slices to accommodate traffic flows with different QoS requirements, which are essential for
ULL communications. In addition, this layer also addresses the challenge of propagating
a global reference time across all virtualized layers, which is critical for synchronizing all
elements participating in Time-Sensitive Networking communications.

In [9], Xen and KVM are proposed as suitable real-time hypervisors for industrial
control systems; however, the evaluation of their characteristics does not consider the
use of deterministic network communication protocols such as TSN. Another recent
work, [33], proposed a container-based architecture for the flexible reconfiguration and
redeployment of specific process control systems, but it does not apply to virtual machines.
The authors evaluate their proposal through a PTP-synchronized testbed. They show
that low-latency QoS requirements can be met. Still, they do not take advantage of the
deterministic scheduling techniques defined in TSN and do not focus on the impact
of network virtualization technique on latency overall. In [48], the feasibility of TSN
virtualization was explored, and three different approaches to enhance hypervisors for
time-triggered communication were discussed. However, the focus of the study was on
architectural principles, and the evaluation was conducted through simulations without
validation on an actual testbed. This study builds upon the previous related works by
evaluating the use of TSN in virtualized industrial control systems using a kernel-bypassing
network virtualization approach. The performance of the virtualized TSN application
is compared against that of the same application running on bare-metal hosts, and the
results are validated on an actual testbed. This provides a comprehensive evaluation of the
use of TSN in virtualized industrial control systems and demonstrates the feasibility of
meeting ULL constraints using a kernel-bypassing network virtualization approach.
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The TSN virtualization approach presented in Section 5.1 of this thesis is based on
several insights the works just discussed. A key aspect of our approach is the use of fast
packet processing techniques, for which a detailed comparison is presented in [11]. The
latter demonstrates the superior performance of kernel-bypassing approaches over tradi-
tional methods. However, this work compares containerized applications (not VMs) with
a different traffic pattern than the one used in our study. Additionally, kernel-bypassing
techniques for meeting the constraints of ULL applications have mainly been explored in
the field of Software-Defined Networking (SDN), where network functions executing
in VMs need to process packets at high speed [80]. Our work is complementary to this
effort as it addresses the user-controlled infrastructure rather than the provider-controlled
portion.

Moving to lightweight virtualization, previous research on the containerization of
critical application components has mainly focused on orchestration strategies and CPU
scheduling, such as in works like [36, 73]. These studies aim to find the best methods
for placing components on appropriate resources and ensuring that those resources can
schedule the execution of containerized applications according to their requirements.
However, these studies do not take into account network and system-related aspects. Our
proposal complements these studies as we believe that network and computing resources
for edge applications should be orchestrated together.

Despite the importance of networking for edge applications, researchers have paid less
attention to the networking requirements of critical applications. For example, Ara et
al. [11] evaluate different kernel-bypass approaches for inter-container communications,
highlighting the potential of DPDK as a network accelerator compared to the kernel-
based approach. However, their contribution is limited to a framework for performance
evaluation.

Slim [84] proposes a solution to reduce the processing overhead on container overlay
networks by avoiding processing packets multiple times on the same host. Instead, it
defines a component that intercepts calls to the socket API and directly translates network
addresses from the overlay into the host namespace (and vice versa). This way, packets
traverse the kernel networking stack only once. SocksDirect [49] uses the same intercep-
tion technique to re-route packages on an accelerated kernel-bypassing datapath, but this
is possible only with the host container networking mode. Both these works introduce
the idea of accelerating container inter-networking, showing significant performance ad-
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vantages for many applications built on top of them. However, these solutions are not
integrated with standard production-ready technologies like Kubernetes, and they target
data center environments and focus on reliable connection-oriented transport protocols
(TCP). They do not support time-sensitive applications such as TSN, an essential require-
ment for edge applications. In this work, we adopt similar techniques (socket interception,
kernel-bypassing) to accelerate network operations. Still, we also provide guarantees on
connection determinism (through TSN) and implement our solution as a plugin for
high-standard development and deployment technologies.

Furthermore, using TSN in virtual environments is a relatively new trend, as the stan-
dard was initially intended for bare-metal industrial applications. Leonardi et al.[48] first
hypothesized this possibility, identifying three distinct architectural approaches to enhance
hypervisor-based virtualization with time-triggered communication.

3.2.2 Transparent Network Acceleration Access

In addition to the network virtualization capabilities, due to increased overhead often
results in utilizing virtualization techniques compared to bare-metal execution. The virtual-
ization layer has to overcome this challenge and ensure optimal performance by exploiting
multiple acceleration technologies. The goal is to manage and deliver these technologies
to upper layers and applications transparently while ensuring optimal performance.

Outside the Edge Cloud, few works have at least partially attempted to provide a uniform
interface for the emerging network acceleration options in data center environments. The
first effort in this direction was libfabric [2], a library that enables RDMA applications
to run even without the necessary supporting hardware. Instead of using the native
API, developers code against a transparent set of communication primitives. If suitable
support is available (e.g., RDMA NIC), then these primitives are efficiently translated to
the native API; otherwise, their semantics are emulated using alternative transports (e.g.,
TCP/IP). However, the libfabric interface is still very low-level, mainly targeting High
Performance Computing (HPC) applications, and non-RDMA transports are intended
for debugging purposes. RocketBufs [37] proposes a buffer abstraction on top of different
network acceleration technologies in the cloud computing domain. This system has several
limitations. It does not allow the same application to specify different requirements for
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different flows, making it unsuitable for the Edge environment. It also shows a significant
performance overhead compared to raw RDMA.

The most significant work in this field is Demikernel [81], which defines a set of userspace
libraries that replace the operating system datapath primitives intending to accelerate new
or existing datacenter applications. Each library implements the same general-purpose
interface for specific networking (DPDK and RDMA) or storage technology, integrating
the missing OS functionalities (e.g., network stack) when needed. Furthermore, Demiker-
nel supports the different data paths as shared libraries. Hence, it is not designed to allow
the same application to access multiple network technology concurrently, a feature usually
required for Edge applications. Even more importantly, if multiple Demikernel applica-
tions run concurrently on the same host, each will activate an instance of its datapath. For
example, each DPDK application would require a separate network card and will spin on
one or more cores.

3.3 The Application Layer

Next-generation IoT applications with diverse QoS requirements are implemented in the
application layer. This layer is closely integrated with the various middleware components,
enabling applications to benefit from the discussed technologies without requiring in-
depth knowledge of their implementation. An example of a middleware implemented in
this layer will be discussed in Section 6.1. In contrast, two examples of edge applications
that seamlessly exploit the underlying layers are analyzed in Section 6.2. The middleware
discussed provides a comprehensive, IoT-focused approach to QoS monitoring, control,
and management for different virtualized resources (such as networking and processing).
It specifically targets deployment environments that utilize edge cloud resources to enable
the Serverless paradigm in the Cloud Continuum.

To the best of our knowledge, the design and implementation of a middleware able to
exploit and coordinate different QoS mechanisms across the stack of virtualized Function
as a Service (FaaS) invocations for the Cloud Continuum are entirely novel in the existing
literature. However, several works have proposed solutions to some of the challenges
addressed by our proposal. Many of them not only paved the way for the development of
TEMPOS but also inspired some architectural and technological choices that we adopted.
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The following concise section aims only to be a representative excerpt of the most influen-
tial published research papers related to that.

The opportunistic usage of Edge Cloud resources to improve latency and jitter has been
extensively discussed in [13, 56] and also represents one of the key factors pushing for wide
adoption of this computing model [38].

The coordination and coupling of different prioritization mechanisms is not a recent
issue, but with the recent advent of next-generation networking, it has gained an increasing
research interest. Since the earliest distributed systems, the need for concatenation of
mechanisms at different stack levels has been a primary problem. To tackle resource
orchestration and partitioning while guaranteeing QoS levels at the Edge, [24] proposes
DRAGON: that paper describes some implementation insights about DRAGON. It
evaluates its performance benefits if compared with traditional orchestration approaches.

The introduction of middleware for concatenating QoS-aware composition mecha-
nisms is a frequent design pattern applied in the literature to reduce complexity. In [65],

the authors propose a technique to couple priority and reservation-based OS and network
QoS management mechanisms through Distributed Object Computing middleware with
adequate performance results. In [69], the authors present a middleware built on CORBA
for providing distributed soft real-time applications with a uniform API to reserve het-
erogeneous resources with real-time scheduling capabilities in a distributed environment:
that solution introduced uniform interfaces to support the reservation of CPU, disk, and
network bandwidth on Linux systems.

Even if Serverless computing and, in particular, FaaS platforms are relatively novel,
some platform improvements have already been proposed in the literature to achieve
better FaaS performance and, in particular, latency reduction. Some papers have proposed
deploying serverless platforms on edge nodes to achieve better QoS [14]. Using different
invocation methods to speed up function startup has been proposed as the exploitation of
cross-compiling to achieve faster executables. For example, in [68], the authors propose
Faaslets, an isolation abstraction that exploits WebAssembly to achieve good isolation and
fast function startup; they also propose an additional optimization with a mechanism to
restore from already initialized snapshots, thus improving platform throughput and tail
latency. In the proposed project Catalyzer [27], the authors propose a serverless sandbox
system to enhance function startup and isolation. To provide fast startup, Catalyzer
exploits a checkpoint mechanism to skip initialization and a new OS primitive to reuse
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the state of the running sandbox; this results in a relevant reduction of the startup time of
function invocations, up to less than 1ms in the best cases.
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This chapter explores the concept of layered middleware for OT/IT convergence, which
serves as a case study for examining the challenges and opportunities presented by ap-
plications that expose traffic flows with different Quality of Service requirements and
extend across the Cloud Continuum. The chapter then introduces an end-to-end QoS
management system for TSN networks, which aims to address the challenge of ensuring
consistent QoS in the presence of diverse traffic flows and changing network conditions.

4.1 A Layered Middleware for OT/IT Convergence

In this first study, we outline a strategy to effectively blur the boundary between the OT and
IT domains, enabling fast, secure, and reliable exchange of operational OT data to the IT
domain. The approach involves a Gateway component positioned on the OT/IT boundary
and a two-layered middleware solution designed to fulfill each domain’s functional and
non-functional requirements.
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Figure 4.1: Architecture overview diagram.

4.1.1 System Components and Integration

Our solution leverages OPC UA Pub/Sub for Machine-to-machine communication at the
OT level while using Apache Kafka, a high-speed, low-latency MOM, for data collection
from multiple OT sites to the IT domain. The OPC UA standard enables data transfer to
higher layers and serves as a low-level interoperability protocol for fast data transmission.
In the IT domain, Kafka enables secure and reliable management of large volumes of data
while providing an extensible framework with a rich set of tools for IT.

The system architecture is presented in Figure 4.1. The dotted line separates the OT, IT,
and Machine layers. The Machine layer is made up of assets that use a variety of low-level,
heterogeneous protocols, with some adhering to standard specifications with open-source
implementation (e.g., OPC UA over TSN), and others being proprietary, closed-source,
and not interoperable (e.g., EtherCAT, PROFINET, Modbus-TCP) [23]. Our proposal
employs the OT layer as a homogenization layer, abstracting the technical details of specific
protocols from the upper layers. The design of the OT layer is pluggable, enabling users
to add components to the infrastructure through specific adapters dynamically.

The adapter, after configuration, collects data using the machine-specific language and
exposes the machine information model through the common OPC UA information
standard. This ensures a consistent representation of information between the machine
and the upper layers. Our design can accommodate various adapter deployment strategies
based on the available computational resources on the industrial asset. If the machine has
enough resources, the adapter can be deployed directly on it; otherwise, it can be deployed
elsewhere and connected to the machine through the network.
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On top of the OPC UA protocol, we use the OPC UA Pub/Sub specification for
message exchange within the single shop floor, where heterogeneous traffic coexists and
varies from safety-critical control traffic to best-effort ones. Data are gathered by the
Gateway component, which listens to OPC UA Pub/Sub endpoints and sends data to the
Kafka MOM. Gateways can be customized using configuration files that specify machine
addresses and registers that must be manipulated and re-exposed on Kafka topics. An
example of the configuration file can be found in Section 4.1.2.

One of the primary goals of the Gateway is to differentiate between heterogeneous
flows, including raw sensor data and data derived from monitoring processes on the shop
floor. Raw sensor data represent information that industrial machines expose, containing
data regarding their internal state. At the same time, the monitoring flow consists of data
and metrics related to networks, industrial processes, and more.

On the producer side, prioritization of monitoring and controlling data traffic is crucial
for efficient system operation. Different topics and partitioning levels are utilized for dif-
ferent data types to ensure this. Monitoring and control topics are configured with a single
partition and higher replication degree to guarantee the total ordering of sent messages and
increased fault tolerance. Meanwhile, raw sensor data topics are configured with multiple
partitions and lower replication degrees to achieve higher input and throughput rates and
reduced memory usage.

At the consumer end, Apache Kafka provides differentiated semantics for commit
management, specifically At-Most-Once, At-Least-Once, and Exactly-Once [26]. The
Exactly-Once semantic is utilized for monitoring and controll data, while for data traffic,
the At-Least-Once semantic is utilized to ensure faster reading.

Regarding security, Apache Kafka offers Access Control Lists (ACLs) through the
use of ACL Authorizers [25]. This feature can play a crucial role in maintaining the
confidentiality of industrial data by allowing for the application of fine-grained access
policies on topics through the definition of authorized reader and writer groups.

When considering the stringent latency requirements at the OT layer, direct exposure
to the external world is not assumed, and as such, significant security mechanisms are not
in place. Instead, the software in this domain is certified not to pose any threat. Despite
this, it is still important to investigate potential solutions for improving security, and the
adoption of lightweight security mechanisms is currently being considered as a solution
to this issue.
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4.1.2 Bootstrapping the System

The system can be bootstrapped by providing configuration parameters that bind the
components together and facilitate the exchange of structured information with the IT
layer. The bootstrapping process consists of the following steps:

• Configuration. The Gateway component is provided with a structured configu-
ration file that contains information about OPC UA-enabled assets, such as IP
addresses and multicast network groups, for registering the internal state of in-
dustrial assets. The configuration file also includes information about the Kafka
endpoints and topics for publishing messages, QoS level mappings, and publication
frequency. For clarity, an example configuration file is included in Listing 4.2.

• Discovery. The Gateway verifies data representation by querying the OPC UA
server(s). During this phase, the Gateway also checks the consistency of OPC
UA-reported registers with the configuration file.

• Operation. Once the discovery phase is successful, the Gateway subscribes to the
multicast network groups and begins to flow messages. Upon receipt, the messages
are unmarshaled to JSON in a specific protocol dialect. The messages can be sent
on different channels based on their data type. For example, messages classified
as control flows are sent with a high-quality and ordered level, guaranteeing fast
and reliable delivery. In contrast, sensor messages can be sent with a non-ordered
semantic based on customer-specific policies.

After the bootstrapping process is complete, the data can be fetched from the Kafka
topics, and multiple consumers can access the data based on specific access policies. The
decoupling of the OT and IT layers through the use of a lightweight and configurable
Gateway enables advanced control features to address reliability and scalability in scenarios
of high ingress traffic.

4.1.3 Experimental Analysis

The experiment’s objective is to demonstrate our proposed architecture’s efficacy in ful-
filling diverse constraints while maintaining effectiveness. The experiment aims to exhibit
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1 {

2 "machines": [

3 {

4 "name": "MACHINE_1",

5 "ip_address": "192.168.0.3",

6 "transport_profile": "http://opcfoundation.org/UA-Profile/Transport/

pubsub-udp-uadp",

7 "network_address_url": "224.0.0.18:4840"

8 }

9 ],

10 "kafka": {

11 "cluster_ip_addresses": [

12 "192.168.1.2"

13 ],

14 "topic": "myTopic"

15 },

16 "publishers": [

17 {

18 "data_group_name": "datagroup-1",

19 "writer_group_id": "1",

20 "registers": [

21 "PRESSURE_1",

22 "OVEN_TEMPERATURE_1"

23 ],

24 "interval": "100",

25 "QoS": "data"

26 }

27 ]

28 }

Figure 4.2: Example of JSON configuration file used by the Gateway.

the capacity of the architecture to meet the QoS requirements of low-latency flows at the
OT layer while concurrently evaluating its capability to provide high-throughput and
quality data to the IT layer. For this purpose, we have established a testbed as depicted in
Figure 4.1.
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Table 4.1: Testbed deployment: components, OS, and hardware characteristics.

Name Component Operating System CPU RAM Network

Node 1 Machine
Simulator 1

Ubuntu
20.04.3 LTS

Intel Core i5-2400
CPU @ 3.10GHz 8 GB 1 Gpbs

Node 2 Machine
Simulator 2

Node 3 Gateway

Node 4 Kafka
Consumer

Node 5 Apache
Kafka

Ubuntu
20.04.3 LTS

Intel Core i5-3470
CPU @ 3.20GHz 16 GB 1 Gpbs

Experimental Settings

To evaluate the total functional potential of our proposal, we have established a real
testbed comprising five nodes, each with various hosting functionalities related to the
OT and IT layer. The nodes are interconnected through a dedicated network with a
1GB switch. While this network configuration may not be representative of a typical
deployment scenario, it serves the purpose of this study, which is to test and assess the
functional components of the architecture in an operational setting. The deployed nodes’
characteristics are listed in Table 4.1 for completeness.

The infrastructure comprises two nodes dedicated to traffic simulation. The simulation
relies on custom-built software packages that emulate industrial machinery traffic based
on actual machinery specifications. The simulation process is described in detail in a
previous [20].

Node 1 simulates an industrial asset by exposing its internal operational state via the
Modbus/TCP protocol. A Modbus adapter at the machine layer reads and extracts the
information in a protocol-agnostic format, which is then structured using the OPC UA
data model. Depending on the configuration and purpose, the adapter acts as both a
subscriber and publisher of data. The structured data is transmitted through the OPC
UA Pub/Sub protocol and made available to all other entities in the network. Node 2,
acting as an OPC UA Subscriber, receives the data emitted by Node 1 and simulates a
typical sensors-to-controller scenario.

44



4.1 A Layered Middleware for OT/IT Convergence

Node 3 hosts the Gateway component and subscribes to the messages sent by the
simulator in Node 1, the same messages received by the simulator in Node 2. Node 4 is a
Docker-based Kafka deployment that receives messages produced by the Gateway acting
as a producer. Finally, Node 5 hosts a Kafka consumer, consisting of a custom program
that receives messages from specific Kafka topics. This consumer enables us to estimate
the transit time for a message from Node 1 to reach the IT department of the factory or
the Cloud.

PTP (Section 2.2.1) synchronizes nodes for accurate time measurement. The node
hosting the Gateway is configured as the controller and serves as a reference clock for all
other participants in the PTP domain while the others act as responders.

Experimental Results

The proposed architecture results were evaluated by measuring the latency from the OT-to-
IT layer under varying traffic regimes. Figures 4.3 and 4.4 show the latency measurements,
respectively, in the OT layer (Node 1 to Node 2) and the end-to-end latency from the
OT layer to the Kafka consumer in the IT layer (Node 5). Latency was calculated as the
time interval between receiving and transmitting messages at the application layer, with
message rates ranging from 400 to 1500 messages per second.
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Figure 4.3: Machine-to-machine communication latency under varying message load of the OT
layer.
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Figure 4.4: Machine-to-consumer communication latency under varying message load of the IT
layer.

The results of our experiment are shown in Figures 4.3 and 4.4. Figure 4.3 shows
that the latency between the two simulated machines remains stable while increasing
the number of messages/second up to 1500 per second. This is a critical result, as it
demonstrates that the proposed system can maintain low latency communication between
the OT layer machines, a requirement in industrial control systems. The observed latency
is always below 1ms, which is the typical latency expected in the OT layer, particularly
for the communication between different machines or Programmable Logic Controllers
(PLCs).

Figure 4.4 shows the end-to-end latency measured at the IT level for the same message
rate range, exhibiting a latency that is an order of magnitude higher than the one observed
in the OT level. This increase is expected when considering the additional components
and processing the message must go through before reaching the IT layer and the latency
introduced by the Kafka MOM features. The Kafka MOM has been configured to manage
the forwarding of the messages to the consumer by imposing a total ordering and ensuring
exactly-once semantics, which is particularly important when conveying safety-critical
information from the OT.

The effects of the aforementioned semantics are visible in the 1500 message/second
configuration, causing a significant increase in latency. In this setting, the rate mismatch
of servicing the incoming data, marshaling messages to the IT-layer compliant format,
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and emitting the messages to the output queue creates an increasing backlog of messages
over time. This trend highlights the importance of implementing selective pre-processing
in the OT layer, such as filtering and aggregation, to coordinate the different layers better
and alleviate the burden at the OT/IT bridging point.

This conclusion is further confirmed by the data shown in Figure 4.5, which shows the
Gateway CPU usage, evidencing an increase in the CPU usage trend, augmenting with
the increase of the message arrival rate. Despite this increase, plenty of resources can still
be devoted to other computational tasks.
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Figure 4.5: Gateway CPU usage under varying message loads.

The experiment’s findings validate our hypothesis of implementing customized solu-
tions for the Operational Technology and Information Technology layers while utilizing
an Edge Cloud infrastructure that houses specific functions connecting the two domains.
Analysis of the OT layer reveals latency values within sub-millisecond ranges, meeting
the stringent latency demands for critical OT traffic. Furthermore, the utilization of
Kafka affords increased versatility in the IT layer, enabling traffic categorization through a
comprehensive set of configurable options.
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4.2 End-to-end QoS Management in TSN Networks

One of the key factors of the Cloud Continuum model and the middleware just presented
is their flexibility. Thus, an essential aspect of systems of this type is the self-configuration
of end devices and the network. Applications on end devices must be able to announce
their communication needs to the network control plane, ensuring QoS for all types of
data traffic. In addition, the network must perform rapid reconfiguration, that is, react to
changed configurations, with a reasonably short delay during execution.

For these reasons, we propose a centralized architectural solution and functional build-
ing blocks, extending the concept of self-(re)configuration and monitoring to all network
elements, including end devices. Then, the proposed solution is validated on a real TSN
testbed, showcasing its capability to adapt to network changes dynamically.

4.2.1 System Configuration

Since the end devices considered in this thesis project will be mainly based on Linux systems,
we have identified the perfect candidate for their configuration in the Netlink protocol.
Netlink is used to transfer information between the kernel and user-space processes [54].

It consists of a standard sockets-based interface for user space processes and an internal
kernel API for kernel modules. Netlink is made up of several subsystems and protocols
called Netlink families. These families are used to select the kernel module or Netlink
group we want to communicate with. We will use the NETLINK_ROUTE family, often referred
to as rtnetlink. This subsystem allows receiving routing and link updates. It may also
modify the routing tables (IPv4 and IPv6), IP addresses, link parameters, neighbor setups,
queuing disciplines, traffic classes, and packet classifiers.

To support a stream of TSN packets, we will use two new queuing disciplines (qdiscs)
built into the Linux kernel. The first, called taprio qdisc, implements a simplified ver-
sion of the scheduling defined by IEEE 802.1Qbv, which allows the configuration of a
sequence of gate states. Each gate state permits outbound traffic from a specific subset
of traffic classes. This first qdisc supports what we have called Time-Aware Scheduler.
The second discipline is called etf (Earliest TxTime First) qdisc. This queuing discipline
allows applications to control when a packet must be removed from the network device’s
queue. If offload is configured and supported by the Network Interface Controller (NIC),
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it will also check when packets leave the NIC. This last property allows forwarding the
packets within the scheduling windows and, above all, in the time slots set through TSN.

As already pointed out several times, all the network devices must be synchronized for
communication with ultra-low latency constraints. In the case of end devices, the programs
used for this synchronization are part of the linuxptp package and are, respectively:

• ptp4l represents an implementation of the Precision Time Protocol (PTP) accord-
ing to IEEE standard 1588 for Linux.

• phc2sys, the program that synchronizes two clocks in the system. Typically, it
synchronizes the system clock to a PTP hardware clock (PHC), synchronized by
the ptp4l program.

4.2.2 System Architecture

Fig. 4.6 provides a high-level overview of our proposal. Architecturally, we follow the
centralized management and configuration model comprising the CUC, CNC, and UNI
entities. The solution comprises several components, each of which plays a particular role
in managing and servicing the different actors of a TSN network. The following sections
will explore these components’ roles in further detail.
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Figure 4.6: Proposed QoS Management Architecture.

49



4 The Infrastructure Layer

Centralized Network and User Configuration

We designed two modules for infrastructure configuration, assuming that network devices
and end devices utilize distinct configuration methods.

The Centralized Network Configuration component engages in direct communication
with network devices through the NETCONF protocol, gathering information on their
capabilities and configurations, which is then stored in the Knowledge Base (as described
in Section 4.2.2. Specifically, communication is established through NETCONF over
SSH [78]. Additionally, the Centralized Network Configuration (CNC) module is re-
sponsible for managing network devices and ensuring adherence to the QoS requirements
stipulated by TSN endpoints for communication.

The CNC implements the following mechanisms to achieve its goals:

• Management of PTP-based synchronization service by sending commands to initi-
ate the PTP service directly to switches.

• Establishment of VLANs to distinguish between communication flows with vary-
ing QoS needs.

• Distribution of network schedule, including the configuration of communication
window parameters and gate control lists for ports connected to end devices.

From a monitoring perspective, the module leverages the NETCONF Event Notifica-
tions protocol to monitor network devices by subscribing to relevant notification events.
This allows real-time event notifications to be received by the CNC from the switch,
providing information on the switch’s current state. Through this mechanism, it becomes
possible to monitor various metrics and events, such as configuration changes, errors, and
performance metrics related to the data plane.

The second module, denoted as the Centralized User Configuration, works in conjunc-
tion with the TSN Agent (as described in Section 4.2.2) to orchestrate the configuration
of TSN streams, ensuring that they meet the specified QoS requirements as imposed by
end devices, while also managing the PTP service running on them. Unlike the CNC, the
Centralized User Configuration (CUC) module is not built on the NETCONF protocol.
Still, instead, it has been designed to be compatible with various communication protocols
such as OPC UA PubSub, DDS, and gRPC. The module communicates with the end
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device through messages containing configuration parameters, which can be sent in either
direction between the CUC and the device. Upon receipt of a message, the TSN Agent
software module installed in the end device interfaces directly with the operating system
and uses the parameters to configure all TSN-related services.

Knowledge Base

The Knowledge Base serves as the repository for information regarding all managed ele-
ments in the network, including end devices. The information stored here encompasses a
wide range of data, including device configurations, physical and overlay network topolo-
gies, and active communication flows. The knowledge base is constructed through periodic
updates sent by all participants in the TSN network through the CUC-CNC interface.
This data can be easily accessed and queried, for example, in the event of reconfiguration ac-
tivities within the network. A centralized knowledge base facilitates effective management
and orchestration of TSN communication, ensuring that network devices are configured
optimally to meet the specified QoS requirements.

TSN Agent and Fault Detection

The TSN Agent is a crucial component in the TSN architecture and represents the module
deployed on the end device tasked with communication with the CUC. The main role
of the TSN Agent is to request the setup and configuration of viable QoS-aware TSN
streams from the CUC.

To act upon the request, the CUC first queries the Knowledge Base to retrieve all
relevant information about the network and its components. Based on this information,
the CUC computes a viable schedule and sends the configuration parameters to the TSN
Agent. Furthermore, the CUC communicates with the CNC to manage the network
path configuration and set up the end-to-end TSN stream.

The TSN Agent exploits Netlink, a standard socket-based interface that allows user
space applications to communicate and modify the settings of kernel modules. Specifically,
the TSN Agent utilizes the NETLINK_ROUTE subsystem, often referred to as rtnetlink, to
receive routing and link updates. This interface enables the TSN agent to modify routing
tables (IPv4 and IPv6), link parameters, neighbor settings, queuing disciplines, and more.
All of these features are essential to support and enact the concept of a TSN stream.
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To implement the TSN stream in end devices, the TSN Agent utilizes two new queuing
disciplines (qdiscs) built into the Linux kernel:

• taprio (Time Aware Priority Shaper) implements a simplified version of the schedul-
ing defined by IEEE 802.1Qbv (Section 2.2.2).

• etf (Earliest TxTime First) qdisc, which allows applications to set a transmission
time for each packet, information the scheduler uses to dequeue and forward it over
the TSN network.

Regarding the synchronization of the end devices, the TSN Agent implements this
feature is exploiting the linuxptp package.

In terms of monitoring, the TSN Agent exploits the capability of Netlink to subscribe
to one or more multicast groups to receive networking events. The TSN Agent subscribes
to the group on RTMGRP_LINK of the NETLINK_ROUTE family, which allows it to receive events
related to network interface configuration and status updates.

An essential aspect of the TSN infrastructure is to monitor the system and react if a
fault is detected. In case of a fault, the priority is to activate an alarm mechanism. However,
a dynamic reconfiguration of the communication flows can also be performed if possible.
For example, two communication channels connect the end devices in a reference system.
If one channel is unavailable, it is possible to reconfigure the TSN stream to continue
functioning using the available channel.

The system’s architecture presents various reconfiguration mechanisms, each operating
distinctly. One key aspect of the architecture is the utilization of the Netlink protocol,
which enables real-time detection of changes in the state of network interfaces. The system
can trigger reconfiguration processes by receiving events related to these changes, i.e., link
creation, deletion, or status changes.

One of the reconfiguration mechanisms, exclusive to the talker side, involves monitoring
error messages generated during message transmission. The Linux kernel provides a
mechanism for indicating the success or failure of a message transmission request at the
end of the send request. In the event of an error, such as an attempt to forward a packet
outside the communication window set via taprio qdisc or if the send time, which we
can see as a deadline, set via etf qdisc is not met, the error message queue is read and a
reconfiguration process may be triggered.
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The final reconfiguration mechanism leverages information from both the talker and
listener sides of the communication. This mechanism is based on the fact that communica-
tion time slots are configured through periodic publication cycles with a specific deadline.
The listener can determine if a packet has been delivered within the time-aware window
by knowing the publication cycle and the deadline. However, this information may be
incomplete, as the packet may still be delivered in the next communication window along
with the next packet. To address this issue, a unique identifier, such as a sequence number,
may be included in the message to provide insight into any late or lost packets in the
communication path. This information is critical for evaluating essential metrics in ULL
communications, such as latency and jitter.

4.2.3 In-the-field Experimental Validation

Experimental Settings

We now report experiments demonstrating the proposed approach’s effectiveness in han-
dling reconfiguration events at runtime. To achieve this, a real testbed was constructed
based on the architecture depicted in Fig 4.6. The testbed consists of two main compo-
nents: a talker (T) and a listener (L), each represented by a UP Xtreme board. The boards
have 4 TSN NICs (Intel I210), an Intel Core i3-8145UE CPU with 2/4 cores, and 8GB
of RAM.

The boards are connected via two distinct physical paths, as shown in Fig 4.6. The first
path (represented in blue) connects T’s NIC (T1) to L’s NIC (L1) through Switch 1 (SW1),
which we refer to as Stream 1 (S1). The second path (represented in orange) connects T’s
NIC (T2) to L’s NIC (L2) through Stream 2 (S2), which crosses Switch 2 (SW2) and
Switch 3 (SW3). The two streams are configured with different VLANs.

The experiment uses UDP traffic with a payload size of 32, 64, 128, or 256 bytes. A
total of 105 packets are sent for each configuration, with a regular interval of 1ms. The
first set of experiments measures the latency and jitter of the time-critical flows.

The second experiment demonstrates the ability of the TSN Agents to identify a link-
drop event. In this scenario, the talker communicates with the listener using the S1 stream.
After a drop occurs between T and SW1, the agent stops the transmission of the talker
through NIC (T1), requests a new configuration from the CUC, and reschedules it via
the alternative S2. The TSN Agent then updates the network scheduling parameters
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and initiates the PTP functionality to resynchronize the clocks before restarting the
transmission via NIC (T2). Upon completion, packets can flow through the alternative
S2.
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Figure 4.7: Jitter and latency of the received UDP packets; metrics are expressed for each packet
size and stream.

Experimental Results

The experiment results are depicted in Figure 4.7, which displays the jitter and latency
values for both the S1 and S2 streams. The graph indicates that the flow QoS meets the
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specified 1ms requirement. It is worth noting that the jitter remains relatively constant
across different payload sizes and communication streams. However, the latency increases
when communicating via S2 compared to S1. This can be attributed to the fact that S2
passes through two additional switches (SW2 and SW3), leading to an increase in latency
by a few microseconds. Despite this, the proposed approach can fulfill the specified QoS
constraints for all configurations.

Fig 4.8 shows the result of the reconfiguration scenario, where the communication is
initially serviced via S1 and, following a link-drop event, goes through S2. The reconfigu-
ration process is seamless, and the flow can quickly be rerouted to the viable alternative
S2 with a downtime period due to the reconfiguration of about 150ms. This downtime
period is minimal, considering the complex nature of the reconfiguration process, which
involves updating the network scheduling parameters and communicating with the CUC
to request a new configuration.
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This chapter discusses several virtualization solutions that enable critical TSN-based
applications to leverage virtualized networks and processing resources. Next, we present a
middleware solution that can transparently unify access to different network communica-
tion acceleration technologies.

5.1 TSN-enabled Virtual Environments

As a first solution, we developed a framework that exploits TSN protocols in virtual
environments targetting Ultra-low Latency communications in 5G scenarios. Specifically,
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Figure 5.1: A typical latency budget distribution for ULL applications.

as a potential operational scenario in which this solution would be advantageous, we take
that of industrial applications in which a robotic device, called a subscriber, periodically
exchanges messages with a remote software component, called a publisher, located in a
separate facility and connected via a network managed only partially by the user. An
essential requirement in this scenario is that the end-to-end transmission of each message
occurs within a minimum and specific time interval, often on the order of 1ms. To meet
this strict deadline, developers typically have only a limited portion of the overall latency
budget available. Therefore, a significant amount of the latency must be allocated to the
transmission provider responsible for wide-area propagation, as illustrated in Figure 5.1.
Since this type of industrial communication is often periodic, a standard method of
ensuring low latencies is to reserve specific time slots for each transmission through TSN
protocols, effectively making the network and all the communication deterministic.

Currently, two main barriers impede the adoption of virtualization solutions and limit
the usage of TSN protocols to bare-metal applications. Firstly, current virtualization
techniques do not provide virtual network devices with a paravirtualized hardware clock,
which results in the use of a software mode for PTP-based synchronization, leading
to a lack of precise time synchronization. Secondly, Virtual Machines require virtual
network devices that are efficient in their operations and support multiple queues, as the
packet I/O and processing operations between the host and guest machines can cause
significant overhead and negatively impact the effort to achieve bounded end-to-end
latency. The following sections describe how we address these critical issues for mission-
critical applications.
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5.1.1 Paravirtualized PTP Clock and TSN-capable NIC

Our first contribution is designing a virtualization approach for TSN networks, as illus-
trated in Figure 5.2. To support ULL communications, the network frame scheduler
standardized in the IEEE 802.1Qbv necessitates the synchronization of clocks among all
participants in the TSN network (as discussed in Section 2.2.1). To achieve this in virtual
machines, we first utilize a PTP service to synchronize all physical hosts. Then, we provide
the guest operating system with a paravirtualized clock that is transparently synchronized
with the host’s real-time clock by the hypervisor. This approach effectively creates a virtu-
alized PTP clock (referred to as vPTP) that each VM can use as a reference to synchronize
its system clock through an Network Time Protocol (NTP) daemon. However, due to the
high number of indirection levels involved, the real-time clocks (i.e., CLOCK_REALTIME) of
the host and guest may be affected by NTP adjustments and diverge over time. To address
this, Linux-4.11 introduced specific PTP devices for Kernel-based Virtual Machine (KVM)
and Hyper-V. These devices are not connected to the PTP protocol and do not work with
network devices, but they are exposed as PTP devices (/dev/ptp*), making them usable
by existing time synchronization software. Specifically, the type of KVM clock we use
is called kvm-clock1 and implements the pvclock protocol2. This type of clock, as men-
tioned, allows guest machines to read and consequently track the host wall clock time,
automatically synchronizing their system clocks. In addition, this approach also allows us
to have a PTP service, e.g., linuxptp, active only in the host machine.

KVM Host 1 KVM Host 2

VM1

Service 1

vPTP vNIC

VM2

Service 2

vNIC vPTP

vSwitch

NIC

Âptp

VM2

Service 3
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vSwitch

NIC

Âptp

TSN Switch

Figure 5.2: Virtualization architecture for TSN-based networks.

1https://www.linux-kvm.org/page/KVMClock
2https://wiki.osdev.org/Timekeeping_in_virtual_machines
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Once the synchronization mechanism is in place, effectively implementing the time-
aware traffic windows defined by the IEEE 802.1Qbv standard requires network interfaces
to support multiple broadcast queues. Each queue can be associated with a different class
of traffic. Within VMs, paravirtualized devices emulate multi-queue transmission support
across multiple virtqueues. However, an important constraint is that a virtual device with
multiple queues must be associated with a VM with two or more virtual CPUs. This is
because each queue must have its associated thread, even if the VM is provided with a
physical TSN-enabled network card through a passthrough mechanism. In this case, it is
possible to synchronize the VM directly using the physical network card and, if available,
use offload mechanisms for traffic scheduling to improve performance.

5.1.2 Network Virtualization

The efficiency of how the host processes packets to and from Virtual Machines is a vital
aspect of virtual networking. Inefficiencies in this area can impede meeting tight latency
deadlines and make guest-level time-sensitive scheduling ineffective. Our framework
examines two network paravirtualization techniques (Figure 5.3, which distinguish how
packets are processed (datapath operations). One method is to process packets within
the host’s kernel, while the other is to process them directly within the user space. The
kernel-based approach is currently the most mature as vendors widely support it and
enable integration with other tools for monitoring and control (e.g., Conntrack, BPF).
However, this option may cause poor network performance due to multiple data copies
and context switches. On the other hand, kernel-bypassing techniques provide better
performance by interacting directly with the device driver but have higher CPU utilization
(one or more host cores dedicated to poll incoming messages) and less integration with
kernel-based tools. In the context of our work, both options support the TSN protocol
within a VM, and developers can choose the most appropriate based on their performance
and resource usage constraints.

Overall, our TSN virtualization proposal enables existing TSN-based applications to
operate seamlessly within virtual machines without modifying the source code. Depending
on the network virtualization approach chosen, developers can optimize TSN traffic in
the VMs for either the best possible network performance or the lowest resource usage,
depending on their specific requirements.
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Figure 5.3: Network virtualization approaches. On the left, direct device assignment. On the right,
paravirtualization with kernel-level (center) or user-level (right) network virtualization.

5.1.3 Experimental evaluation

In this section, we evaluate the performance of our virtualization framework. To do this,
we created a simple TSN application consisting of one publisher and one subscriber, both
running on virtual machines located on two separate hosts. We conducted a latency test
where the publisher sent UDP packets with a 1ms publishing cycle. This type of traffic,
common in real TSN applications, put the entire network pipeline under pressure and
highlights any sources of latency overhead. Specifically, the test measures two key indicators
for TSN communications: end-to-end latency and jitter. The end-to-end latency is the
time between when a message is scheduled for transmission by the publisher and when the
subscriber receives it. Jitter measures how much the actual arrival time of each message
differs from its expected arrival time. More precisely, if ti is the arrival time of the i-th
message, its jitter is defined as Jitter(i) = ti − (ti−1 + T ), where T is the transmission
period, i.e., T = 1ms. Finally, the clocks of the two virtual machines were synchronized
using the mechanism outlined in Section 5.1.1.

Experimental Settings

To demonstrate that this communication meets ULL requirements, we set a threshold of
1ms as the maximum acceptable end-to-end latency for each message. As said before, we
must consider that in real-world production environments, about 60% of this time will be
used by the wide-area network provider to propagate data over 5G networks, which is out
of the control of end-system developers (Figure 5.2). We adopted an end-system developer
perspective to address this constraint and designed our testbed as two physical hosts directly
interconnected by an Ethernet cable, assuming negligible propagation time between them.
Consequently, our ULL deadline becomes 0.4ms of end-to-end latency between the two
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TSN application components. In particular, our test environment consists of two UP
Xtreme boards, each equipped with 4 TSN NICs (Intel I210), an Intel i3-8145UE 2/4
CPU, and 8GB of RAM. The two hosts run Ubuntu 20.04 with Linux kernel 5.4.0 and
are connected directly through an Ethernet cable. The TSN application components run
in VMs that use the same OS as the host and are managed by QEMU/KVM (v4.2.1).
Network virtualization is implemented through the virtio framework [61] and OVS [58]

(v2.13.3) in two variations: using the kernel-based datapath and the kernel-bypassing
DPDK library [6] (v19.11.7).

Under those assumptions, we conducted latency and jitter tests using typical message
payload sizes in TSN applications (16, 64, and 256 bytes). We repeated the tests using a
virtual switch with a kernel-based datapath and a kernel-bypassing approach, and each
test lasted for 100 s. We also tested the communication properties on bare-metal hosts to
evaluate the overall effect of the virtualization framework.

Performance Results

The results of the latency tests are shown in Figure 5.5 and Figure 5.4. Let us first consider
the behavior of the virtualized applications. We note that the option with the kernel-based
datapath struggles to meet our target deadline: in particular, Figure 5.4 shows that the
average message latency, computed every 10 s on all the messages exchanged since the
previous measurement, is just below the threshold. We observe the same if we consider the
median values reported in Figure 5.5 for all the considered payload sides, which means that
about half of the measures exceed the ULL constraints. Furthermore, despite using the
TSN protocol to reduce latency variability, the jitter remains relatively high (Figure 5.6).

On the other hand, when considering the kernel-bypassing approach, the opposite
behavior is observed. The average latency remains just above 100 µs during all the experi-
ments, and the overall median value is around 120 µs for all message sizes. This median
value is about 3.25 times lower than the kernel-based alternative and represents just 30%
of the total available latency budget. Additionally, the jitter is minimal for all cases, so
this option can effectively preserve the determinism provided by TSN. While it would
be interesting to investigate whether this approach can maintain this behavior even on a
saturated network, this aspect is not discussed in this work. However, our experiments
show that latency does not change significantly when the network between the two VMs
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Figure 5.4: End-to-end latency averaged every 10 s for 64 bytes payload size. The red line is the
latency threshold.
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Figure 5.5: End-to-end latency for different payload sizes and network virtualization techniques.

is saturated. Therefore, we conclude that the kernel-bypassing network virtualization
approach can effectively allow virtualized TSN applications to respect the ULL constraints
and preserve a reduced latency variability.

The primary distinction between the two approaches under consideration is their
method of handling packets between the external network and the virtio backend driver, as
depicted in Figure 5.3. The traditional kernel-based approach necessitates the forwarding
of packets by the virtual switch dataplane to traverse the Linux kernel networking stack,
a process that is known to be relatively slow due to scheduling, interrupts, data copies,
and context switches. As such, it is not unexpected that network performance in terms of
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Figure 5.6: End-to-end jitter for different payload sizes and network virtualization techniques.

latency and jitter is significantly improved when bypassing this stack entirely. While this
speed improvement is achieved at the cost of a significant proportion of CPU cores being
dedicated to packet processing, usually around 100% of the cores used, and an increase
in complexity in network setup and management, the kernel-bypassing approach on the
host can fully satisfy our ULL constraints.

Finally, the performance of our virtualized TSN application was compared against that
of the same application running on bare-metal hosts. For the 64 bytes case, the average
latency of the bare-metal application was consistently around 175 µs, with a median of
190 µs, and a slight jitter. These values are approximately two times lower than the kernel-
based virtualization approach. This difference can be attributed to the fact that in the
former, each UDP packet only traverses the host kernel, whereas, in the latter, the packets
are also managed by the guest kernel.

Interestingly, the kernel-bypassing virtualization approach performed even better than
the bare-metal alternative. This behavior can be explained by the fact that the kernel-
bypassing technique is more efficient than the operations in the host kernel, as it avoids
data copies. Additionally, the network operations in the host kernel require a context
switch to a kernel thread, whereas the guest kernel executes in the same process as the VM.
Thus, on our testbed, once a single UDP packet with a payload of 64 bytes is received
by the host network device, it takes 20 µs to be delivered to the application on the guest,
whereas the same operation on the same packet takes 70 µs through the host kernel. These
factors, combined with a traffic pattern that magnifies any network overhead, explain
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this performance effect. Our virtualized TSN application was even faster than the bare-
metal equivalent (36% lower latency, considering the median value for 64B packets)
and provided almost the same jitter. To obtain a more appropriate comparison, it would
be necessary to create a kernel-bypassing TSN host application and compare it against
our current best option. However, the TSN scheduler is currently only implemented in
the kernel. In the subsequent section, we partially address this issue by demonstrating a
prototype of a user-space TSN scheduler operating in containerized environments.

In summary, the performance results presented in this study indicate that latency-
sensitive TSN applications can adhere to the ULL constraints even when executed in
virtual machines. Specifically, it was shown that kernel-based network virtualization
solutions result in a high degree of latency variability and cannot meet the target deadline.
On the other hand, kernel-bypassing techniques yield exceptional results, consuming only
30% of the available latency budget.

5.2 Overlay Network for Time-Sensitive
Containerized Environments

In the preceding section, we presented a framework designed to address the overhead
associated with virtualization and capable of meeting stringent performance requirements.
However, virtual machines are known to have scalability issues. As such, the next step
is to shift towards a more lightweight virtualization technique, such as containerization.
Containers offered reduced overhead and increased scalability compared to hypervisor-
based virtual machines, making them a more suitable option for running services and
applications on edge devices with limited resources. Additionally, containerization allows
for a unified service provisioning platform that can adhere to applications’ Quality of
Service specifications.

Kubernetes, in its whole or reduced forms, is the established industry standard for
resource management and orchestration. It provides automatic deployment, monitoring,
and migration of containerized application components across a shared infrastructure
while enforcing applications’ QoS specifications. However, it should be noted that con-
tainerization alone is not sufficient to support the highly distributed nature of Edge Cloud
applications. Network and system-level considerations are also of paramount importance.
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Figure 5.7: The architecture for an accelerated and deterministic overlay network, implemented as
a Kubernetes CNI plugin.

In this section, we introduce a cost-efficient solution that enables accelerated and determin-
istic communication among containerized applications by proposing a novel architecture
for a container overlay network that integrates two techniques for ULL communications.

5.2.1 KuberneTSN

The architecture of KuberneTSN is devised to establish a unique container overlay network
that is both accelerated and deterministic, accommodating the time-sensitive demands
of containerized business or control logic. To attain this, modifications are made to the
outgoing container traffic’s packet processing pipeline by incorporating two architectural
elements: a user library referred to as LibKTSN and a daemon referred to as KTSNd.
Figure 5.7 depicts the role of these components in forming a new data path for time-
sensitive traffic.

LibKTSN offers a standard POSIX socket interface to application binaries, allowing
for the interception of send operations on a datagram socket and forwarding the packets
to a memory region shared with the KTSNd daemon. Our emphasis is on providing time-
sensitive traffic services. Hence, we capture only outgoing transmissions with a precise
transmission time, i.e., TSN traffic, using the SO_TXTIME socket option, where other packets
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are redirected onto the standard data path. This strategy enables TSN networking without
the need to modify container images, unlike current alternatives (refer to Section 2.4).
LibKTSN is the only component of our solution that needs to be present within the
application container. It is supplied as a shared library that can be loaded using the flag
LD_PRELOAD with no modifications to the application code.

The KTSNd daemon is a crucial component of our proposed solution, as it functions
as both a packet scheduler and a network accelerator. Upon detecting a new packet from
an application, KTSNd schedules its transmission based on the application-provided
transmission time. While the design of the daemon is agnostic to the specific schedul-
ing strategy, by default, it utilizes a Time-Aware Shaper (TAS) compliant with the IEEE
802.1Qbv standard (as outlined in Section 2.2.2). This packet scheduling option is cur-
rently unavailable for containerized applications, as popular virtual switches (e.g., Linux
bridge, Open vSwitch, etc.) do not support it. Our solution allows for deterministic
packet scheduling for unmodified application binaries running in containers.

When it is time to transmit a scheduled packet, the scheduler must send it on the
network on behalf of the original application, preserving the source MAC, IP addresses,
and UDP ports while minimizing packet processing delays to meet the user-required
transmission time as precisely as possible. We adopt a kernel-bypassing approach to satisfy
these requirements and move the entire transmission pipeline to userspace. This allows us
to avoid the expensive double-crossing of the kernel networking stack and unnecessary
user/kernel thread context switches (as discussed in Section 2.4). Instead, we provide our
own simple and efficient UDP/IP stack implementation directly within KTSNd and use
the DPDK library to forward packets on the virtual L2 link. This choice enables us to
preserve the original packet metadata, as we can manipulate protocol headers directly and
significantly reduce the processing overhead.

As shown in Figure 5.7, packets are then handled by a userspace virtual switch that, in
turn, should provide its UDP/IP userspace stack to forward them on the physical network.
In our implementation, we adopt a widely-used and state-of-the-art userspace virtual
switch, Open vSwitch [58], which also uses DPDK for kernel-bypassing.

The simple yet powerful design makes KuberneTSN easy to integrate into standard plat-
forms such as the Kubernetes orchestrator in its various distributions, making it suitable
for use in critical networked applications with stringent requirements. To facilitate this,
we have developed a Kubernetes network plugin, tsn-cni, that implements our proposed
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architecture. Specifically, tsn-cni implements the Multus CNI interface [46] to create
a Layer 3 network fabric that incorporates our accelerated and deterministic data path.
The plugin requires applications to include LibKTSN in their execution environment,
encapsulating the KTSNd daemon in a separate container. This approach is beneficial for
supporting time-sensitive edge applications: by allowing for the use of multiple network
plugins at the same time, developers can choose standard ones (e.g., Flannel, Calico) for
best-effort traffic, and tsn-cni for time-sensitive networking, as shown in Fig. 5.7. As a
result, KuberneTSN and its tsn-cni implementation enhance Edge Cloud’s capabilities by
supporting deterministic networking and integrating this option into a familiar ecosystem
for application designers. By identifying application components as time-sensitive, devel-
opers can instruct Kubernetes to automatically deploy KTSNd alongside the application
containers, thus transparently obtaining support for performance-sensitive workloads.

5.2.2 Experimental evaluation

In this section, we evaluate the performance of the tsn-cni plugin, which implements
the KuberneTSN architecture. This experimental assessment aims twofold: to demon-
strate that the proposed accelerated datapath is indeed faster than current state-of-the-art
networking options and to show that our solution can provide deterministic guarantees.
Specifically, we compare tsn-cni against two alternatives. The first is a bare-metal setting
that reproduces the way typical TSN applications are deployed to assess the overhead
introduced by the virtualization layer. The second is Flannel, a popular CNI plugin for
Kubernetes. Flannel uses a Linux bridge combined with VXLAN encapsulation in its
recommended configuration to implement the virtual switch, thus building an overlay
network corresponding to the regular data path of Figure 5.7. By comparing tsn-cni and
Flannel, we assess whether KuberneTSN meets its design goal of providing additional
performance benefits and deterministic properties to inter-container networking.

For this evaluation, we constructed a simple TSN application consisting of two pro-
cesses, a talker and a listener, each running inside a container on two remote hosts. We
then set up a latency test in which the talker sends UDP packets with a cycle of 1ms. The
test measures two critical indicators of time-sensitive communications: end-to-end latency
and jitter, defined as in Section 5.1.3. It’s worth noting that the bare-metal and the tsn-cni
test suites are implemented as actual TSN applications, which associate a desired transmis-
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sion time to each packet. However, this option is not available for the test using Flannel
as a communication choice, as TSN scheduling would not be enforced (as discussed in
Section 2.4). Instead, the only alternative is to send one message and then sleep, repeating
this behavior every time T .

Experimental Settings

The evaluation and analysis of the performance of the proposed architecture are conducted
on a real testbed that simulates an Edge deployment scenario. The testbed consists of two
Dell Workstations equipped with an Intel I225 NIC, an Intel i9-10980XE 18/36 CPU, and
64GB of RAM. The two hosts are interconnected via a physical TSN-compliant switch.
The hosts run Ubuntu 22.04 with Linux kernel 5.16. When using Open vSwitch [58],

we utilize its two variants: kernel-bypassing on the sender side and kernel-based on the
receiver side. In KTSNd, we use the same version of DPDK as OVS, i.e., v21.11. As TSN
requires, the two hosts’ clocks are synchronized using two PTP daemons. Additionally,
we pin the processes to dedicated cores to avoid bias in the measurements caused by the
CPU scheduling policy.

End-to-end Latency

As illustrated in Figure 5.8a, the end-to-end latency and jitter were measured for three
typical data sizes (64B, 256B, 1024B) for each of the considered deployment scenarios:
bare-metal and containerized applications with tsn-cni or Flannel as network plugin. A first
observation is that the performance of tsn-cni is consistently excellent, with median latency
values ranging from 21.5 µs in the case of small packets (64B) to 41.7 µs for 1024B.
These values are almost identical to those registered for the bare metal deployment, with a
small variation in the ns scale starting to appear for the 1KB packet size. Latency variability
is negligible in both cases.

If we consider Flannel, we note a slight but evident latency increase (12% on average).
This results from the expensive in-kernel packet processing, which we avoid thanks to the
kernel bypassing technique embodied in our solution. The same trend observed for latency
is confirmed by the analysis of the jitter metric reported in Fig. 5.8b: the median value is
zero in almost all cases, and the variability is negligible. Therefore, we can conclude that
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KuberneTSN and its tsn-cni implementation minimize the packet processing overhead
for containerized applications, achieving the goal of an accelerated data path.
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Figure 5.8: Performance comparison among three deployment options for the latency test ap-
plication: bare metal, containerized with tsn-cni, containerized with Flannel. The
experiment is repeated for increasing payload sizes: 64B, 256B, 1024B.

Our experiments show that both tsn-cni and Flannel exhibit low latency numbers.
However, our kernel-bypassing solution using tsn-cni demonstrates lower median latency
values. In principle, one could expect even better performance from tsn-cni, as raw DPDK
is known for its high performance [11]. However, the implementation of OVS-DPDK
introduces a non-negligible overhead on our userspace datapath, accounting for at least
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23% of the total reported latency. Despite this, we decided to retain it in our system as it is
a widely-used tool supported by an active community and offers a wide range of additional
features for virtual networking, such as OpenFlow programmability, compared to the
Linux Bridge used by Flannel.

Determinism Support

To evaluate the ability of KuberneTSN to provide deterministic guarantees to time-
sensitive flows, we analyzed the latency test results. We plotted the respective Cumulative
Distribution Function (CDF) in Figure 5.9. Ideally, the curve should be as vertical as
possible, indicating a highly predictable packet reception time. As shown in the figure,
the bare-metal application and the containerized application using tsn-cni exhibit similar
performance and are very close to the ideal behavior. Specifically, for tsn-cni the 90% and
the 99% probability correspond to 26.4 µs and 28.1 µs respectively. On the other hand,
for Flannel, these thresholds correspond to 29.6 µs and 30.7 µs respectively, indicating a
less precise arrival time interval.
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Figure 5.9: CDF with packets of 256 bytes.

This difference highlights the advantage of using KuberneTSN for time-sensitive traf-
fic. The main reason for this behavior is how the test application sends messages. It is
impossible to explicitly set a transmission time when using Flannel, as this feature is not
supported in containerized environments. Therefore, we are limited to using a classic send-
and-sleep loop, mimicking a periodic send operation. This difference has minimal impact

71



5 The virtualization layer

on our experiment as we do not have other competing flows; however, in Section 6.1, we
will demonstrate that time-sensitive flows require dedicated support. tsn-cni serves this
purpose by providing dedicated support to containerized applications, enabling them to
meet the requirements of heterogeneous flows in mixed-criticality scenarios.

In conclusion, our implementation and evaluation of KuberneTSN as a network plugin
for Kubernetes, tsn-cni, has demonstrated its effectiveness in providing accelerated and
deterministic performance for containerized networks. The kernel-bypassing approach
and novel userspace TSN packet scheduler used in KuberneTSN allows for minimal
packet processing delays, making it suitable for time-sensitive Edge applications. Our
experiments have confirmed that containerized applications using tsn-cni exhibit the same
performance and determinism as bare-metal applications, outperforming the widely used
Flannel network plugin.

5.3 SELENE: SElective acceLEration at the
Network Edge

In this section, we introduce SELENE. A new communication middleware designed
and optimized for Edge Cloud applications with intelligent logic, strict performance
requirements, and various resource constraints. SELENE is the first middleware that
enables developers to select the most appropriate transport technology through high-level
policies, thus separating application code from the specific transport technology. This
capability of SELENE makes modern network acceleration techniques transparent to the
final user, resulting in increased code portability, improved network performance, and
preserving domain independence. SELENE has two main components: a runtime, which
is the core of the middleware and must be running on each participating host, and a client
library that provides the application’s API, allowing them to interact with the runtime.

In the following sections, we will provide more detailed information about the SELENE
API and how it supports the diversity of edge applications (Section 5.3.1 and Section 5.3.2).
Additionally, we will give an overview of the runtime architecture to understand how the
SELENE primitives are implemented using underlying technologies (Section 5.3.3).
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5.3.1 SELENE API

The SELENE client library provides a minimal interface that serves three main purposes:

1. It is designed to be easy for developers, in contrast to the current interfaces of
network acceleration techniques which require knowledge of complex and low-
level details.

2. The interface is expressive enough to allow for efficient implementation of diverse
domain-specific abstractions on top of SELENE.

3. The interface is agnostic to underlying transport protocols and only exposes high-
level policies to inform the middleware about the quality requirements of different
data flows.

The SELENE API defines a few basic concepts to keep the interface as simple as possible.
A communication channel represents a unidirectional data flow between endpoints, which
can interact locally or through the network. A channel exists within a stream, an abstract
concept that associates quality requirements to one or more channels. In the context of a
stream, a communication channel is established between endpoints called sources, which
produce data, and sinks, which consume data. Each channel is uniquely identified by an
application-provided channel id, which developers must choose based on their higher-
level business logic. For example, a SELENE-based Message-oriented Middleware would
typically assign channel ids according to topic names. Figure 5.10 illustrates an example of
a SELENE channel, where sources and sinks opened within the same stream and with the
same channel id will communicate on the same channel.

Stream

Source
(id=4)

Sink
(id=4)

Figure 5.10: A SELENE channel is created between sources and sinks with the same channel id
within the same stream.

The concept of the stream is crucial in the interface. Only sources and sinks belonging to
the same stream can exchange data because the stream defines the quality requirements for

73



5 The virtualization layer

communication. Depending on these requirements, SELENE will transparently map the
channel to a technology-specific concept, for example, a kernel-based socket. Direct data
forwarding using shared memory is also enabled when sinks and sources are co-located.

1 /* Open and close a session */

2 int init_session();

3 int close_session();

4

5 /* Stream */

6 stream_t create_stream(options_t opts);

7 void close_stream(stream_t stream);

8

9 /* Source APIs */

10 source_t create_source(stream_t stream, int channel);

11 void close_source(source_t source);

12 buffer_t get_buffer(source_t src, size_t size, int flags);

13 int emit_data(source_t src, buffer_t buffer);

14 int check_emit_outcome(source_t source, int id);

15

16 /* Sink APIs */

17 sink_t create_sink(stream_t stream, int channel, data_cb cb);

18 void close_sink(sink_t sink);

19 int data_available(sink_t sink, int flags);

20 buffer_t consume_data(sink_t sink, int flags);

21 void release_buffer(sink_t sink, buffer_t buffer);

Figure 5.11: The SELENE API.

Figure 5.11 illustrates the complete SELENE APIs. An application must open a commu-
nication session with the local runtime to use the API. Then, one or more streams can be
opened by specifying a set of quality options, which are covered in detail in Section 5.3.2.
Once a stream is open, communication channels can be created by creating sinks and
sources and defining the desired channels using the channel id mechanism previously
described.

All the available operations on sinks and sources are asynchronous to facilitate zero-copy
communication. To send a new message from a source, developers must first request a
memory area (buffer) from the runtime. Then, the application can write the message into
that buffer and emit it, signaling to the middleware that the data is ready to be sent. This
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operation returns a token that can later be used to retrieve the outcome of the operation.
Similarly to Demikernel [81], the API does not offer after-write protection: developers
must not modify the buffer content once it has been emitted. On the sink side, there
are three different ways to receive data, similar to the DDS middleware [32]. Users can
register a callback that will be called every time a new message is received for that sink.
Alternatively, users can directly call the consume operation, which can be configured to
either return immediately, regardless of the presence of new data or to block until new
data is available. New data is returned as a pointer to a memory area borrowed from the
runtime to preserve the zero-copy semantic. Once the user has finished processing the
data, the memory should be returned to the middleware by explicitly releasing the buffer.

We believe this set of primitives meets our design goals of simplicity, flexibility, and
transparency to multiple network acceleration options. At the same time, this API is
expressive enough to define very different higher-level interfaces. To demonstrate this, in
Section 6.2, we will present our experience implementing and deploying two very different
applications, a Message-oriented Middleware and an image streaming framework. Both
applications were easy to develop and demonstrated a significant performance advantage
from the selective acceleration capabilities guaranteed by SELENE.

5.3.2 SELENE QoS policies

An essential aspect of this work is associating a set of quality requirements to each commu-
nication channel through the stream concept. These requirements are defined in terms
of high-level Quality of Service policies, making the SELENE interface transparent to
low-level network details. In line with our goal of maximum simplicity, we have reduced
the number of available options to the essential. Currently, SELENE defines three possible
quality options that can be associated with a stream: the degree of datapath acceleration, the
level of tolerable resource consumption, and the time-sensitive constraints of a data stream.

The datapath acceleration policy informs the middleware whether a specific data flow
requires any network acceleration or if regular kernel-based networking is sufficient. In
case acceleration is needed, edge developers must have control over the associated cost.
To achieve this, users can use the resource consumption policy to specify whether resource
usage is a concern when mapping data flows to specific technologies. For example, DPDK
requires high CPU consumption, which may be unacceptable in some contexts. Finally, a
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third policy allows users to characterize data flows based on their time sensitiveness. This
policy specifies the packet scheduling strategy for the packets of that flow. By default, a
FIFO scheduler handles all the packets and sends them to the network as soon as the user
code emits them. However, if the stream is labeled as time-sensitive, a TSN-compliant
scheduling strategy [30] can be used to provide deterministic network behavior (see Sec-
tion 5.3.3).

Upon initiating a new stream, SELENE dynamically maps the stream’s quality require-
ments to the most appropriate network technologies available within the given deployment
environment based on a user-configured mapping strategy. Without a custom strategy,
SELENE employs the following approach: if no acceleration is necessary, the kernel-based
UDP is utilized. Otherwise, Remote Direct Memory Access is employed as it offers su-
perior network performance with minimal resource usage, as network operations are
offloaded to the Network Interface Card (NIC) [44]. However, RDMA is currently not
widely adopted in Edge contexts and is generally limited to small-scale data centers close to
data sources. As an alternative, SELENE maps user code to the Data Plane Development
Kit if resource usage is not a concern or to eXpress Data Path if it is. XDP may result
in slower performance but does not necessitate a dedicated set of CPU cores for detect-
ing incoming packets. The mapping process is executed by SELENE at runtime upon
the creation of a stream, and the user code remains unchanged regardless of the actual
deployment execution.

It should be noted that SELENE only considers these policies as suggestions for appli-
cation performance requirements and makes a best-effort attempt to align quality and
existing technologies. If acceleration is required, but no acceleration technology is available,
SELENE will revert to the standard kernel-based network stack and provide a warning to
the user.

SELENE, by design, does not offer additional policies to control other aspects of
communication. As such, there are no means to control network operation semantics.
Currently, SELENE only provides uniform access to the underlying network technologies
without introducing any enhancing mechanisms such as flow or congestion control. It
is the responsibility of the user to design such mechanisms as part of their custom logic,
thus allowing for easy implementation of existing solutions on top of SELENE, such as
OMG DDS [32] and its reliable solution RTPS [71].

76



5.3 SELENE: SElective acceLEration at the Network Edge

Similarly, SELENE does not impose fault tolerance semantics or protocols, as developers
are responsible for implementing the most appropriate solution for their specific use case.

5.3.3 SELENE runtime

The SELENE runtime architecture consists of three main components, illustrated in
Figure 5.12. These components include a memory manager, a packet scheduler, and a
set of polling threads. The memory manager is crucial as it effectively implements the
abstraction that decouples the homogeneous interface presented to the applications from
the highly heterogeneous details of each transport technology. As discussed in Section 2.3,
all the considered technologies adopt a similar approach to achieve zero-copy data transfers,
which is to place data to send or receive in a shared memory area registered with the NIC
for Direct Memory Access.

Based on this insight, the SELENE runtime has been designed with a technology-
agnostic mechanism for zero-copy communication, implemented using shared memory.
This abstraction is then implemented differently for different transport options. At system
startup, the memory manager reserves two memory areas, referred to as memory pools, to
contain outgoing and incoming application data. These areas are divided into memory
slots, uniquely identified within the collection by a slot id. When a new application
connects to the runtime, it maps parts of the memory pools to its address space. From
then on, the application and the memory manager communicate by exchanging slot ids
that refer to relevant parts of the memory pools.

Figure 5.13 illustrates the communication flow between a sink and a source in the
SELENE runtime. As a preliminary operation, each application must connect to the
runtime by calling the init_session function. After connecting, the application requests
the manager to send a new packet to a memory slot 1 . If a free slot is available, the manager
sends the corresponding slot id to the client library, which provides the application with
a pointer to the associated memory area. This lets the user write the packet content in
the shared memory directly. Once the writing is completed, the application emits the
packet 2 , and the SELENE client library communicates the corresponding slot id to
the runtime. The packet scheduler then schedules the packets for sending according to
the time sensitiveness policy. By default, the scheduler adopts a First-In-First-Out (FIFO)
strategy. The scheduler supports the TSN standard for time-sensitive data, implementing
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Figure 5.12: The SELENE Architecture.

the IEEE 802.1Qbv time-aware scheduler [52], which is designed explicitly for real-time
applications.

On the receiving side, the mechanism works symmetrically. The NIC places the newly
arrived packets in a designated memory area. When the manager detects them, it sends the
relevant slot ids to the client library, which offers the applications a pointer to the same
memory where the data has been previously placed 3 . Once the application has processed
the data, it must return the token to the runtime to make it available for subsequent
operations 4 .

This design allows SELENE to avoid data copies on the data path by only exchanging a
slot id between the runtime and the client library. However, as these components reside in
separate processes, this interaction may become a performance bottleneck. To mitigate
this risk, we handle this communication through state-of-the-art lock-free queues [1, 75].

Implementing this general mechanism for the different available network technologies
is the responsibility of the core polling threads. These threads, one per available transport
technology, continuously execute a send and a receive operation. The send operation sends
the scheduled packets on the existing network using the low-level API of each specific
technology. Before this, in the case of DPDK and XDP, the packet processing engine
processes the scheduled packets through our custom userspace implementation of the
transport (UDP) and network (IP) protocols. On the reception side, the polling threads
use technology-specific APIs to check for newly arrived packets. If necessary, new packets
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Figure 5.13: SELENE communication flow.

are first processed by the packet processing engine and then dispatched to the relevant
applications according to the previously described mechanisms.

To conserve resources, we provide a mechanism that dynamically pauses the thread
operations when they are not needed. For instance, if no application requires accelerated
endpoints, the corresponding threads are paused. This allows for efficient resource usage
and improved performance in the edge context.

5.3.4 Evaluation over Real Testbeds

Our evaluation demonstrates that our abstraction layer introduces minimal overhead
compared to each native communication technology. We also compare SELENE to
Demikernel [81], the most comprehensive and state-of-the-art alternative for transparently
accessing kernel-bypassing technologies, and show that the additional dynamic capabilities
provided by SELENE come with comparable or even better performance.

For this evaluation, we developed a C prototype of the SELENE runtime that supports
two network technologies: kernel-based UDP and DPDK. Integrating RDMA and XDP
is still ongoing work. However, we prioritized the two former options as they are the most
commonly adopted in the Edge Cloud ecosystem. Unlike RDMA, they do not require
special hardware and are easy to use from virtual environments (VMs, containers). They
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also represent the differences between the kernel-based and kernel-bypassing networking
approaches.

Experimental setup

We evaluate SELENE in two testbeds to assess its performance under different conditions.
The first testbed is a local setup, where two nodes are directly interconnected to minimize
network operations’ overhead and highlight the impact of SELENE on the measured
metrics. The second testbed is a public cloud infrastructure (CloudLab [28]), where we
reserved two interconnected nodes by a switch. The hardware and OS specifications of the
nodes in both the testbeds are reported in Table 5.1. For DPDK, we used version 21.11 3.

Testbed OS CPU RAM NIC Switch

Local Ubuntu 22.04 18-core Intel i9-10980XE @ 3.00GHz 64GB Mellanox DX-6 100Gbps —
Public cloud Ubuntu 22.04 32-core AMD 7452 @ 2.35GHz 128GB Mellanox DX-5 100Gbps Dell Z9264F-ON

Table 5.1: Setup of the local and public testbed for SELENE evaluation.

To minimize OS-induced latency, we pinned processes to cores (one core per network
technology, one to test applications). We also increased the Linux socket buffers to allow
receivers to keep up with the highest possible send rate. Unless otherwise specified, we did
not adopt further optimizations.

Latency and throughput benchmarks

To demonstrate that SELENE introduces minimal overhead compared to using each native
technology directly, we built a benchmarking application for latency and throughput. For
latency, we used a simple ping-pong application designed to highlight any overhead in the
send and receive pipeline. It measures the round-trip time (RTT) of a single message sent
from one host and immediately echoed by a remote receiver. We repeated this test for 1
million messages. The throughput benchmark is a stress test application that evaluates
how much of the available network bandwidth is practically achievable when a sender
continuously sends 1 million messages at full speed to a remote receiver. We measured
throughput as the amount of payload data (goodput) received in the time unit. We ran every
throughput experiment 10 times. We implemented the benchmarking application in three

3https://core.dpdk.org/download/
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versions: one that uses UDP sockets, one that uses native DPDK, and one that uses the
SELENE API. We found that even for such a simple benchmarking application, SELENE
minimizes the amount of code necessary for networking, as Table 5.2 summarizes, without
requiring developers to understand the details of each technology.

Interface Lines of Code (LoC) Increase

SELENE 189 —
UDP socket 227 +20%
DPDK 384 +103%

Table 5.2: LoC to implement the benchmarking application.

Figure 5.14a and Figure 5.14b report the latency of SELENE for increasing payload
sizes when using two different datapath acceleration QoS: slow, which maps network oper-
ations to UDP sockets, and fast, which maps to DPDK. Overall, we noted no significant
difference among different payload sizes. In the local testbed, we observed that SELENE
fast keeps very close to raw DPDK, with an increase of the median RTT values of at most
1 µs. The same gap separates SELENE slow from the pure kernel-based UDP benchmark.
Hence, we can conclude that SELENE introduces on average a 500 ns overhead on each
UDP packet both in fast and slow mode. In the public cloud setup, we noted a general
increase in RTT values, as expected, because of the introduction of a switch between the
two hosts. According to our measurements, the switch added, on average 1.7 µs, and
packets had to traverse it twice. However, SELENE’s latency increased more than expected,
adding around 1.7 µs to the raw DPDK median values. We investigated this increase by
breaking the latency value into its main components in Figure 5.15. In addition to the
expected growth of the network latency, we also observed a significantly higher time spent
by SELENE in the send and receive operations.

The cause of this behavior is that the processor on the cloud servers is significantly slower
than in our local testbed4. Although SELENE tries to minimize the processor intervention
on the critical path, the requirement to support multiple applications running as separate
processes makes it hard to reduce further the number of CPU cycles required for internal
operations. A possible direction to reduce this overhead is to parallelize our send-and-

4https://www.cpubenchmark.net/high_end_cpus.html
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(c) Round-Trip Time (RTT) for increasing payload sizes.

receive routines over multiple cores. In our prototype, we decided not to implement this
feature, considering the usually limited resources of edge hosts.

To provide a comprehensive understanding of the performance of SELENE, we present
an expansion of our latency experiments in Figure 5.16 by including a more comprehensive
range of systems and reporting the average RTT for a 64B payload size. Specifically, we
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Figure 5.15: SELENE fast latency breakdown (64B)

have implemented two versions of the benchmark utilizing pure UDP sockets, one using
a blocking receive and one utilizing a continuously polling non-blocking socket. As
expected, the former exhibits a slower performance than the latter, as process wake-ups
introduce significant latency overhead. Additionally, we have evaluated the performance of
Demikernel by binding it to two of its offered libraries, namely Catnap and Catnip. These
libraries correspond to SELENE with slow and fast datapath QoS, respectively. Our results
indicate that the Catnap library performs slightly slower than the native socket application
in both testbeds. The slow datapath of SELENE displays a performance comparable to
that of Catnap in our local setup, with an average latency of 1.9 µs in the cloud setting.

Furthermore, we observe a similar trend as previously discussed when utilizing the
DPDK library. On the local testbed, the fast datapath of SELENE exhibits an additional
latency of 690 ns compared to the raw DPDK performance. In the cloud setting, all the
latencies increase. However, the Catnip library preserves a similar gap to raw DPDK. The
Demikernel exhibits a more straightforward logic for payload delivery, as it is a library
compiled with the application. The fast datapath of SELENE may suffer from a slower
processor. However, it still demonstrates a competitive latency performance, despite the
added dynamicity it offers to multiple concurrent applications.

In addition to latency, network bandwidth is a crucial metric in Edge Cloud applications,
as they often require the rapid transfer of large data payloads, such as camera images, for
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Figure 5.16: Average RTT of raw network technologies, SELENE, and Demikernel for 64B payload
size.

remote analysis. Our findings indicate no significant performance difference between the
two testbeds regarding bandwidth utilization. We only present data for the local setup in
Figure 5.17a. The figure illustrates the throughput of SELENE fast and SELENE slow
compared to the corresponding Demikernel libraries, kernel-based UDP sockets, and raw
DPDK for increasing payload sizes. To avoid fragmentation overhead, jumbo frames are
enabled for payloads larger than 1.5 kB. Our results show that raw DPDK can quickly
saturate the network interface card (NIC) as it does not perform any data processing.
Despite the need for inter-process communication, SELENE fast demonstrates the second-
best performance, reaching peaks of 90Gbps for the largest payload size, whereas Catnip
exhibits a significantly lower throughput. This difference reflects the distinct utilization of
the underlying DPDK library: Catnip is optimized for latency [81] and sends one packet
at a time on the network, whereas SELENE employs a form of opportunistic batching [41,

43] at the sender side. This technique sends messages ready to be sent in a batch, but
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the system never waits for a fixed-size batch to fill up. As previously demonstrated, this
approach allows for the highest throughput under heavy traffic without significantly
harming latency. When this technique is not employed, such as in SELENE slow, we
observe that Demikernel and SELENE perform similarly.
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Figure 5.17: Throughput benchmark for SELENE and the other reference systems.

In our experimentation, we have demonstrated that SELENE can support multiple
applications on the same host simultaneously. Figure 5.17b illustrates this by conducting
a throughput test with an increasing number of sinks connected to the runtime on the
receiver host, all listening on the same channel id, but from separate applications. The plot
depicts the average throughput received by all sinks for a payload size of 1 kB. It can be
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observed that for up to 6 concurrent sinks, the average received throughput only drops
by 8%, while a significant degradation is observed with eight sinks at (−39%). This is
noteworthy as multiple concurrent applications in an Edge context are not typical.

Our experiments demonstrate that SELENE can achieve µs-scale latencies and tens
of Gbps bandwidth utilization, which is competitive or even better performance than
other kernel-bypassing systems across different environments. Additionally, SELENE
offers added dynamicity, portability, and flexibility to developers without significant
performance degradation.
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6.1 TEMPOS: a Time–Effective Middleware for
Priority Oriented Serverless

The proposed TEMPOS middleware is a novel solution designed to address the advanced
Quality of Service management requirements in Function-as-a-Service (Faas) infrastruc-
tures. The main objective of TEMPOS is to provide a unified and simplified approach
to managing the heterogeneity and complexity of Edge deployment environments while
ensuring the separation of quality of service levels among the workflows being executed.
To accomplish this, TEMPOS uses an orchestrator that coordinates and combines var-
ious technologies for prioritization and reservation available across the entire stack of
virtualization layers involved in FaaS infrastructures.

TEMPOS’s ability to abstract away complexity makes it suitable for many applications,
such as Smart Tourism, Industry 4.0, and Smart Agriculture. The TEMPOS abstractions
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only require the definition of business logic in the form of a workflow and an associated
QoS level. TEMPOS continuously monitors the QoS support of targeted resources in
the deployment environment components and updates the configuration of the FaaS
components accordingly, ensuring that service level agreements are met.

The current implementation of TEMPOS assumes that the necessary middleware and
FaaS components are already installed and configured. However, we are exploring the
integration of TEMPOS with existing orchestration features for QoS-aware dynamic
deployment, which can further enhance the capabilities of the TEMPOS middleware.

TEMPOS’s architecture is designed with extensibility and flexibility in mind to ac-
commodate different application scenarios, deployment sites, and technologies. The
architecture comprises three functional slices: Bridging, Delivery, and Processing, and a
TEMPOS component called the Controller, which is responsible for orchestrating these
slices. The slices are designed to interact with each other only through a set of predefined
interfaces, such as UDP ports, which creates a contract among the slices and allows each
one to be independent of the specific technologies or protocols used by the other slices.

6.1.1 The TEMPOS Architecture

The next sections introduce the different slices that compose the TEMPOS architecture.

Controller

The TEMPOS Controller is the central control point for configuring and managing the
TEMPOS slices and customer-defined workflows. In particular, the Controller represents
the endpoint facilitating the process for application developers by providing a simple
interface for configuring the infrastructure. For this purpose, the Controller is responsible
for mapping and matching the desired QoS levels to the different slices and handling the
deployment and modification of workflows at runtime.

The process of configuring the TEMPOS infrastructure involves the following steps:

• Receive and remap the configuration for all components of the TEMPOS infras-
tructure from the developer/deployer, which includes configuring the Channels
and Topics with the different QoS levels offered by the middleware.
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• Receive the set of workflows and associated QoS levels from the developer/deployer
and map them to the underlying infrastructure.

The Controller handles these reconfiguration events by interacting synchronously
with the TEMPOS slices. This ensures that the QoS required for the whole application
is preserved. The developer/deployer can also request the configuration of workflows
at runtime, as the Controller exposes APIs for deploying new workflows or modifying
existing ones. The workflows can be defined with per-flow granularity, which means that
the QoS levels are specified for each flow and not just for a single invocation.

Delivery slice

The Delivery slice of TEMPOS is responsible for realizing QoS-aware event distribution
among TEMPOS components. The TEMPOS event distribution process is achieved
through interworking different communication technologies and protocols, along with
services in the duty of orchestrating and composing them. Then, a series of abstractions
are introduced to easily extend the set of supported technologies and provide developer-
s/deployers with a simplified view.

The core component of the Delivery slice is a novel Message-oriented Middleware that
can dynamically exploit different mechanisms and technologies to achieve QoS differen-
tiation. This MOM decouples interactions among TEMPOS components and enables
advanced features such as load balancing and automatic fault tolerance. It also has a trans-
parency feature that allows for dynamically adding and scaling TEMPOS middleware
components. The synergy between the TEMPOS MOM and Controller completely hides
the internal complexity of our middleware from the application developers’ perspective,
thus achieving an essential feature of Serverless computational models.

Applications and middleware components can connect to the MOM to send or receive
messages by creating a Channel. The TEMPOS Channel is an abstraction that defines
a connection between any TEMPOS components. Since the Delivery slice potentially
covers several communication environments, a Channel is characterized by a specific
communication protocol and, if supported, a prioritization or reservation technique. To
support a wide range of environments, the MOM uses a mechanism based on the concept
of an Adaptor. Adapters allow for supporting many Channels and interacting with them
seamlessly and simultaneously.
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Messages received by a specific Channel are processed in priority order through priority
queues. The TEMPOS MOM processes events in parallel, prioritizing those associated
with higher QoS. This allows for high flexibility and adaptability in the TEMPOS system,
making it well-suited for use in highly heterogeneous contexts.

To provide our middleware with a consistent end-to-end quality abstraction, we intro-
duced the concept of QoS-aware Topic, a logical grouping of channels that share common
QoS requirements and characteristics, formally defined as:

T =



Cin1
Cin2

...
CinN

, Q ,


Ceg1

Ceg2

...
CegN




where

T = Topic, Q = Priority Queue,

Cin = Channel Ingress, Ceg = Channel Egress

The TEMPOS system utilizes the concept of a QoS-aware Topic to coordinate and
abstract the different QoS levels available through the channels and associated priority
queues of the MOM. Each Topic is associated with a specific QoS derived from the
associated channels’ performance and the processing slice’s processing performance. This
abstraction allows application developers/deployers to express their QoS requirements
at a higher level of granularity rather than having to configure individual channels. The
QoS-aware Topic is a key concept in the TEMPOS system, as it allows for a consistent
end-to-end quality abstraction across the entire middleware, providing developers with a
single and transparent view, even when leveraging different QoS-sensitive technologies
such as TSN, 5G slicing, or Wi-Fi 6 prioritization.

To allow for differentiated message distribution policies among the subscribers of
a TEMPOS Topic, we also inherited, from classical MOM solutions, the concept of
Subscription Groups. In the classical pub-sub model, each subscriber of a topic receives all
messages sent through it. Through the mechanism of Subscription Groups, each message
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is sent to only one of the subscribers in each group, thus realizing a load-balancing feature
among the subscribers. Indeed, load balancing is an essential capability of a MOM in
the context of FaaS platforms, as it enables the distribution of workflow requests across
multiple executor nodes.

To manage the distribution of messages among subscribers of a TEMPOS Topic, TEM-
POS utilizes the concept of Subscription Groups. This concept, inherited from traditional
MOM solutions, allows for differentiated message distribution policies. In a classical Pub-
/Sub model, all topic subscribers receive all messages sent through it. However, with
Subscription Groups, each message is only sent to one subscriber in each group, providing
a load-balancing feature. This capability is crucial in the context of FaaS platforms as it
enables the distribution of workflow requests across multiple executor nodes, ensuring
efficient and effective processing.

Bridging slice

The Bridge slice is a fundamental abstraction in the TEMPOS platform, responsible for
providing a consistent and unified interface for external entities to access and utilize the
services distributed through the platform. The Bridge slice employs components and
mechanisms that transform external events into an internal representation that can be
managed by other slices and transparently processed by functions. The central component
of the Bridge slice is the Trigger, which serves as the main entry point for incoming requests
from external sources.

The main responsibility of the Trigger is to forward every piece of information sensed or
received to the MOM after adapting and encapsulating it in the form of events. The Trigger
acts as a bridge between the external world and TEMPOS, adapting external protocols,
representations, and QoS levels to internal ones. This allows for seamless integration of
external entities with the TEMPOS platform, regardless of the specific communication
technology or protocol being used.

In addition, the Trigger is the first TEMPOS component to differentiate and charac-
terize event quality by exposing a different endpoint for each supported QoS level. This
allows for fine-grained control over the quality of service provided to external entities,
ensuring that the platform can meet the diverse and dynamic requirements of different
use cases.
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The location transparency introduced by the MOM also enables the deployment of
triggers to adapt to different scenarios and needs. We have designed and implemented
three deployment options for the Trigger, depending on its closeness to either the MOM
or the external source.

In the first deployment scenario (Figure 6.1 case A ), the Trigger is situated alongside
the event source. This configuration allows for easy support of delivery quality between
the source and the trigger, as they are located on the same host. However, this pattern
limits the ability to use the trigger for multiple sources and necessitates that the source
device has sufficient resources to host the trigger execution.

In the second scenario, i.e., Figure 6.1 case B , the Trigger is positioned between external
sources and the MOM. In this scenario, we can ensure that the delivery of information
between the source and the trigger is of adequate quality. The Trigger can be located on any
node accessible by both MOM and sources and can also serve as a gateway between different
networks. In this configuration, multiple sources can address the Trigger, maximizing
resource usage and potentially causing conflicts. However, concurrent transmission of
incoming events belonging to the same quality class can result in conflicts; thus, a fine-
grained distribution and allocation of triggers are advisable to prevent quality degradation.

In the final case, Figure 6.1 case C , the external source already implements QoS con-
cepts and exchanges information in events. This scenario encompasses use cases where
TEMPOS is integrated into an existing infrastructure that already utilizes some form of
event exchange, such as an Enterprise Service Bus (ESB) infrastructure. In this context, the
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Trigger is placed within the TEMPOS MOM and acts as a connector to external sources.
The Trigger is still responsible for mapping arguments, queues, and qualities of an external
system to internal ones.

Processing slice

The final abstraction in the TEMPOS pipeline is the Processing slice, which is respon-
sible for executing user-defined business logic and ensuring that the Quality of Service
requirements are met.

The Processing layer is designed to take the burden off the customer of knowing both
the characteristics of the processing environment and the computing resources used to
execute a specific workflow. This allows the customer to define both the business logic and
QoS requirements without worrying about how the platform implements the support
that can satisfy them. Specifically, the processing is done through user-defined business
code loaded in advance.

The main component responsible for the Processing layer behavior is the Invoker. The
Invoker is the terminal part of each output channel and waits for the arrival of events to
be processed by functions. Invoker instantiates the associated function ahead of time at
each event arrival through the user-provided configuration and then forwards the event to
the function.

No TEMPOS components, except the Controller, are aware of how a specific Invoker
will process an event; Invoker is, therefore, the component in charge of managing the
life cycle, the execution environment, and the invocation of the functions in such a way
as to reach the target QoS for that workflow. TEMPOS Invokers can be specialized to
exploit different function invocation methods and execution environments depending on
deployment scenarios and achieving better performance or resource-saving.

This specialization can take advantage of the opportunistic composition of different
technologies available in the environment of execution of the Invoker, e.g., Operating
System, Hypervisor, or realized by the Invoker itself. So, for its execution, the same
workflow can exploit different technologies and optimizations at the same time, e.g.,
concurrent usage of an execution environment for two different functions or re-usage of
the same function instance for subsequent requests.
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Regarding QoS-aware processing, Invoker can employ its internal techniques and the
ones possibly present at the Executor Node, e.g., Operating System prioritization. This
allows the Invoker to manage the execution of functions in a way that guarantees the
target QoS for that workflow. Thanks to the Invoker abstraction, TEMPOS can execute
heterogeneous functions while employing different QoS mechanisms and policies without
causing side effects on other components or executor nodes.

6.1.2 The TEMPOS prototype

This section provides insight into the primary implementation of the TEMPOS architec-
ture, starting with the QoS Level and then moving on to the System Level (as shown in
Figure 6.2).
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Figure 6.2: Multilevel representation of TEMPOS architecture foreseeing the three slices and the
three conceptual layers.

Quality of Service Levels

The TEMPOS middleware currently offers application developers two distinct Quality
of Service levels: the Best-effort Quality (BQ) and the Strict Quality (SQ). The BQ level is
intended when communication and function invocation do not have strict latency and
jitter requirements. The SQ level, on the other hand, is designed for the execution of
functions that require more stringent and soft real-time QoS, such as those that need to
meet tight deadlines.
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Controller

The TEMPOS middleware includes a Controller module that manages all other TEMPOS
entities. The Controller is implemented as a Linux daemon process and is responsible for
initializing and configuring the entire TEMPOS middleware. For the initialization to be
successful, the application developer/deployer must provide a configuration file, currently
in the TOML format, which contains all the information needed for the Controller to
interact with other entities such as the MOM, Triggers, and Invokers, as well as the specifi-
cation of the requested QoS levels for connections between components and function
execution at each targeted node.

Once the initialization phase is complete, the Controller waits for reconfiguration/-
management requests from the developer/deployer, making the Controller and the entire
middleware reconfigurable and modifiable at run-time. The current implementation
exposes the Controller functionality through REST APIs.

When the Controller receives a request, it performs the necessary reconfiguration by
interacting synchronously with the entities involved in each slice. These entities, in turn,
expose specific management interfaces and handle the configuration requests in an ad-hoc
process outside the interactions of the TEMPOS workflows defined by the developer/de-
ployer. In future work, we plan to implement this configuration mechanism through a
special configuration topic on the MOM, where different TEMPOS components can
subscribe to receive updated configurations.

Additionally, the Controller maintains an internal representation of all TEMPOS
components, which is updated with each request, allowing for a centralized and updated
view of the entire middleware deployment environment. This means that during the
configuration phase, there is no need for direct interaction between the different TEM-
POS components as the MOM mediates communication to guarantee strong decoupling
between the infrastructure entities.

Message-oriented Middleware

The TEMPOS Message-oriented Middleware is a crucial component of the TEMPOS
architecture. It is designed to provide transparent and flexible management of different
QoS levels for real-time and best-effort traffic. The MOM comprises two queues for SQ
and BQ traffic. These queues are implemented using two different network sockets and
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two threads. The sockets are used to separate messages into two separate queues. At the
same time, each thread is a priority queue processor, as they are scheduled according to
the Linux real-time scheduler. The first thread handles all messages labeled with strict
quality and runs with a higher priority than the best-effort thread. By default, the lowest
priority (0) is used for BQ, while the highest priority (99) is associated with SQ. However,
the application developer can use the Controller to specify the type of Linux real-time
scheduler and set different values for the priorities of the threads associated with the
queues, making the MOM more flexible and able to introduce additional queues with
intermediate quality in the future.

One of the critical features of the TEMPOS MOM is its transparency of the protocols
used by the underlying network. This is achieved through TEMPOS middleware elements
called Adapters, which are implemented using a plugin-based mechanism within the
MOM. Each plugin represents a set of well-defined interfaces that specify how to: open a
connection, configure the QoS level of a newly created connection, send messages through
the connection, and safely close the connection. The association between one or more
channels connected to the MOM and one of the queue processors realizes the concept of
a TEMPOS Topic. The TEMPOS components, including the MOM, are implemented
using the Rust programming language, and the plugin system is based on the dynamic
library loading mechanism. This allows the MOM to load plugins at runtime according
to the configuration received from the Controller.

We have implemented a TSN-based plugin exploiting the IEEE 802.1Qbv standard. As
discussed in Section 2.2.2, this standard aims to support the best-effort and real-time traffic
within TSN networks and defines a mechanism to support different time-critical flows.
It uses the concept of time-triggered communication windows, divided into multiple
time slots associated with selected traffic classes and repeated cyclically. This allows for
minimizing the interference of best-effort traffic with priority traffic, referred to as strict
communication QoS level. Overall, the TEMPOS MOM provides a flexible and transpar-
ent way of managing different QoS levels for real-time and best-effort traffic within TSN
networks.
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Trigger

The Trigger is the TEMPOS component responsible for forwarding events issued by
one or more sources to the MOM, thus defining the core part of the Bridging slice. We
developed the Trigger as an always-running Linux process listening on a network socket
to provide a unique implementation for the different deployment scenarios presented in
Section 6.1.1. Thus, an event issued by a source (e.g., a sensor) is received by the Trigger via
the network or, if possible, taking advantage of an IPC mechanism. This can be applied
to optimize communication in the case of the co-located deployment scenario. Once
executed, the Trigger receives the configuration containing the QoS level to be used from
the Controller and then opens a second connection, i.e., the Channel used to communicate
with the MOM. Different from the MOM, we consider the implementation of each
Trigger as limited to a single protocol, be it TSN, Wi-Fi 6, or any other protocol providing
a priority-based communication mechanism. At the moment, we have completed the
implementation of the co-located trigger model by exploiting TSN-based communication.

Invoker

The Invoker is implemented as a multi-threaded TEMPOS component, which spawns
two main threads. The first manages configuration requests from Controller, while
the second handles actual invocations. Once started, Invoker receives its configuration
from Controller and sets its QoS level based on the application developer’s specification.
Moreover, we developed three distinct invocation mechanisms, and the developer must
express which one to use in the configuration request. The three invocation methods,
namely DLF (Dynamically Loaded Function), WASMF (WASM Function), and FSpawn
(Function Spawn), are designed to support different use cases. In the next sub-sections,
we will introduce these methods in detail.

DLF (Dynamically Loaded Function) The DLF mechanism is based on dynamic
library loading technique, which is commonly used to combine multiple functions into a
single unit that can be shared by multiple processes at run-time, thus saving disk space and
RAM. Although multiple processes can use the library code simultaneously, its variables
remain isolated. In this method, the Invoker uses POSIX standard APIs to handle the
dynamic loading of the library by calling dlopen to open the requested shared object file,
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dlsym to load the symbol related to the main library entry point, and dlclose to unload
the function after execution [45]. The developer must ensure the function is exposed
within the library with the name and arguments expected by the Invoker. This invocation
method is suitable for executing functions with high performance and strict requirements
and is primarily aimed at our strict QoS level [42].

WASMF (WASM Function) The WASMF invocation method is similar to DLF, adopt-
ing the exact underlying loading mechanism. However, it uses the Wasmer library [76], a
complete WASM engine, to handle the loading and execution of the function. The engine
is initialized in the startup phase of the Invoker, and when a function request is received,
the engine dynamically loads the shared library containing the requested function. To
ensure correct loading, the library must be compiled using a WASM code generator, such
as Cranelift [77], which converts a target-independent intermediate representation into
executable machine code. Once the function is executed, the engine removes the WASM
code from its internal store. This invocation method allows developers to implement
functions in their preferred programming language and achieve good performance and
quality results.

FSpawn (Function Spawn) The last invocation mechanism, FSpawn, uses the classic
Unix idiom of fork() followed by exec() to execute a different program in a child process.
However, if the Invoker is deployed on a node that supports the posix_spawn API, it
is used instead of the fork() and exec() scheme to achieve better performance in case
the parent process has a larger size or memory layout [15]. This invocation method is
flexible and standard, allowing functions to be executed in arbitrary environments. As a
first implementation, we leveraged FSpawn to execute the function as a Linux user-space
process. Alternatively, a function can also be spawned inside an already-started Docker
container, providing all the necessary dependencies for execution.

6.1.3 Experimental Evaluation

To conduct a quantitive evaluation of the efficacy of TEMPOS, we have developed a
series of testbeds to analyze the behaviors of several of its primary components. The
objectives of these testbeds are to demonstrate that the TEMPOS middleware can support
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differentiated end-to-end Quality of Service levels while providing application developers
with a simplified interaction and instrumentation interface. Special attention was given to
demonstrating the ability of TEMPOS to orchestrate and compose different mechanisms
to achieve highly differentiated QoS for different workflows. Furthermore, these testbeds
also validate the implementation of the TEMPOS stack under a range of load conditions.

It should be noted that the performance results achievable by TEMPOS are dependent
on the characteristics of resources in the targeted deployment environment. As such, the
following series of testbeds can serve as a preliminary step toward calibrating resources in
target deployment scenarios with similar technological stacks. Our testbeds are designed
to simulate a worst-case scenario where the number of concurrent requests places the
TEMPOS middleware under stress. In particular, we have organized our testbeds into
three cases, each aimed at stressing the event-delivery process, the event processing, or the
overall middleware.

In the first case, we test the behavior of TEMPOS event delivery under different load
conditions, thus emulating diverse resource competition scenarios of workflows. The
specific goal is to demonstrate the ability of our middleware to chain different QoS mech-
anisms while maintaining guarantees about latency and jitter.

The second case demonstrates the TEMPOS’s ability to hide heterogeneity while still
providing a strong differentiation of QoS. For this reason, in this testbed case, we trigger
the execution of a complex and computationally heavy function, representative of many
common workloads (as outlined in Algorithm 1) while employing all the different function
invocation methods currently supported in our TEMPOS prototype.

In the final testbed case, we sought to evaluate TEMPOS’s capability to compose
mechanisms for QoS at different TEMPOS slices to achieve configurable and complete
end-to-end QoS across various workflows. To accomplish this, we implemented and
configured two distinct workflows, each invoking the same function (Algorithm 1), with
one being configured at the BQ level and the other at the SQ level. All tests were designed
to increase the number of requests for each workflow to examine TEMPOS’s behavior
under challenging dynamic changes in the supported service load. The results obtained
were analyzed and discussed by presenting the overhead quotas introduced by individual
TEMPOS components.

To thoroughly evaluate the feasibility and effectiveness of TEMPOS in Edge Cloud
deployment environments, we have designed and executed a series of experiments on a
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Algorithm 1 Pseudo code showing the operations performed by the function used in
the tests: deserialization, count of occurrence in the text, and repetitions of operations of
square root and power based on the index value.

1: function main(e : Event) ▷ The function entry point
2: message, pattern← deserialize(e)
3: occur ← count_occurence(message, pattern)
4: res← 0
5: for i← 0, occur do
6: if i mod 2 = 0 then
7: res← res+ pow(i)
8: else
9: res← res+ sqrt(i)

10: end if
11: end for
12: output(res)
13: end function

testbed consisting of three TSN-enabled nodes (Table 6.1). The nodes were chosen to
have limited computational resources to simulate real-world scenarios where resources are
constrained. The testbed was designed to investigate the ability of TEMPOS to compose
mechanisms for Quality of Service at different TEMPOS slices to achieve configurable and
complete end-to-end QoS over different workflows. As a small note, Node A and Node B
are introduced and employed only in the second testbed case to examine the variation of
invocation method performance.

Table 6.1: Specifications of the nodes used for the evaluation testbed.
Node Tag Model CPU Memory TSN driver

A Custom Workstation AMD Ryzen 3700X 8/16 CPU 32 GB 1× Intel I211
B Dell Optiplex 3010 Intel Core i5-3470 4/4 CPU 10 GB -
C UP Core Plus board Intel Atom E3950 4/4 CPU 8 GB 4× Intel I210

D,E UP Xtreme board Intel Core i3-8145UE 2/4 CPU 8 GB 4× Intel I210

We selected to co-locate Triggers and the data Producer on Node E to simulate a practical
scenario where two edge nodes cannot communicate through the utilization of differenti-
ated QoS mechanisms. This decision to assign one of the two resource-rich nodes to these
TEMPOS components is primarily driven by the requirement to generate high and precise
loads to stress our middleware. Node D, the second most performant board, hosted an
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Figure 6.3: First testbed section showing performance of Delivery slice. (a) Average end-to-end
latency of best effort and Strict effort traffic when executed in separate environments. (b)
Average end-to-end latency of best effort and Strict effort traffic with 1 and 3 concurrent
best effort producers and one strict effort.

instance of the TEMPOS MOM. Furthermore, we chose to deploy all invokers on the
node with fewer resources to highlight concurrent resource requests and potential QoS
conflicts in the processing slice, which is a common situation in practice.
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The three nodes of our testbed were interconnected through a Relyum RELY-TSN-
BRIDGE Ethernet switch, configured with a TSN setup that implements differentiated
QoSchannels for the ingress/egress of topics. To establish the selected QoS mechanism for
TEMPOS’ best effort and strict effort levels, we utilized two qdiscs queuing disciplines built
into the Linux kernel: taprio (Time-Aware Priority Shaper) implementing a simplified
version of the scheduling defined by IEEE 802.1Qbv and etf (Earliest TxTime First) qdisc
that allows applications to set a transmission time for each packet (this information is
then used by the scheduler to de-queue the packet and forward it over the network). It
should be noted that applications based on the IEEE 802.1Qbv standard must rely on
a single-time reference. To this end, in our testbed, each TEMPOS node participates in
electing a controlling entity, determined by the Best Master Clock Algorithm (BMCA):
this controlling node, referred to as the PTP grandmaster, sends clock information to each
of the Clock Slaves connected to it; once all TEMPOS devices are synchronized, we have
what is effectively a time-aware network of nodes, i.e., a ready-to-use gPTP domain.

In our testbed, we created two time-aware TSN windows of 1ms, i.e., between Trigger
and the MOM and between the MOM and Invoker. Each window was divided into two
time slots, one for SQ and one for BQ, each of 500 µs; the first SQ slot was scheduled in the
first half of the first window, where the second SQ slot was skewed of 300 µs concerning
the starting time of the MOM-Invoker window; this configuration enables strict TEMPOS
traffic to find the gate open at each step, with no additional delays.

Event delivery

In the first testbed case, we aimed to demonstrate TEMPOS’s ability to prioritize event
delivery based on workflow QoS. Specifically, we submitted a constant rate of 1000 events
per second to the Trigger for a time-lapse of 5 minutes. We then measured the difference
between the timestamp corresponding to the event creation at the Trigger and the one
reported at its delivery. We alternated the activation of SQ and BQ workflows to observe
the behaviors of the two in a scenario with no perturbation due to concurrency. The
results in Figure 6.3b show that lower end-to-end latency and jitter characterize the events
belonging to the SQ workflow compared to those of the BQ workflow.
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The end-to-end latency for SQ workflow events settled to 501 µs on average, demon-
strating that TEMPOS is compatible with very challenging contexts that call for less than
1ms response time, such as soft real-time ones.

It is worth noting that a clear differentiation between TEMPOS QoS levels is possible
thanks to the combined exploitation of prioritization mechanisms acting at the network
and event processing layers. In particular, the lower jitter is mainly due to the strict
scheduling of events and the synchronization of TSN windows in the ingress and egress
of the topic. The maximum latency that we measured throughout all tests for each hop is
223 µs for the delivery of one event to the TEMPOS MOM, 57 µs for event processing,
and 299 µs for event delivery to Invoker. Overall, once transmitted by the Trigger, a packet
reaches Invoker in no more than 700 µs, in full compliance with what is configured as the
QoS request in the testbed setup.

Additionally, it is essential to note that the high priority assigned to the queue processor
for SQ events prevents other applications in the user space running at the edge node (such
as the MOM control thread) from stealing resources for event processing; this does not
happen for BQ. TEMPOS considers these measurements the baselines for event delivery
in the ideal case of the absence of perturbations.

In the second test of this testbed case, we investigate how the TEMPOS event-delivery
mechanisms behave when multiple workflows are active and in competition for resources.
This test consists of two rounds:

1. A constant rate of 1000 events per second per each active flow is submitted for 5
minutes, with one best QoS and one strict QoS workflow concurrently active.

2. The number of active best QoS workflows is increased to 3 while maintaining a
constant rate of 1000 events per second per each active flow.

We decided to increase only the number of best QoS workflows in this test because the
configuration of the current testbed makes the simultaneous sending of more than 1000

strict messages per second impossible. Moreover, in most practical scenarios, most events
tend to belong to the Best-quality type.

The study results, as depicted in Figure 6.3a, demonstrate that the strict-quality latency
is not significantly impacted by the concurrent execution of one or more best-effort
workflows. In both rounds of experimentation, the latency remained under the threshold
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of 600 µs, indicating that the concurrent execution of best-effort workflows does not
result in significant penalties on strict-quality latency.

As a second-level observation, it was noted that the jitter was negligible in the first
round of experimentation, despite the concurrent presence of two active flows of event
delivery. However, a noticeable increase in jitter was observed in the second round of exper-
imentation. This increase in jitter can be attributed to using a new API, NAPI (Network
API), a device driver packet processing extension implemented to improve networking
performance. In particular, NAPI implements an interrupt mitigation mechanism for
network devices, which allows for the utilization of both interrupt request (IRQ) and
polling-based packet reception modes. The utilization of the NAPI polling mode allows
for substantial acceleration in terms of latency. It allows the kernel to periodically check
incoming network packets without interruption, as explained in [55, 62]. However, this
acceleration comes at the expense of increased jitter and CPU utilization.

In conclusion, the results indicate that the concurrent execution of BQ workflows does
not result in significant penalties on SQ latency. Additionally, the utilization of the NAPI
API allows for substantial acceleration in terms of latency but comes at the expense of
increased jitter and CPU utilization. The ability to disable this feature through TEM-
POS abstractions provides flexibility in the system’s configuration, enabling performance
optimization for a specific use case.

Processing

After validating the QoS-constrained delivery features of TEMPOS, we present a series
of tests to show the TEMPOS performance in event processing. The following tests are
therefore implemented by considering the Processing Layer only, with local-to-nodes
function triggering.

The first test focuses on how different invocation and execution environments perform
when run over heterogeneous hardware. To this purpose, we consecutively invoked the
same function (Algorithm 1), programmed in a compiled language, for 2 minutes when
invoked with the mechanism of DLF, WASMF, and FSpawn. We next repeated the
test with the FSpawn mechanism but with two different versions of the same function
implemented in two different interpreted languages, i.e., Python and JavaScript. These
tests are repeated on nodes A, B, and C (Table 6.2) as representative of three very different
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Figure 6.4: Mean execution times for the different invocation methods gathered in a run of 5 min.
Each run repeated on nodes A, B, and C.

cases of resource availability on Edge hosts. All the results show that the employed hardware
sensibly influences startup and execution times, with latency minor than 1ms easily
achievable on medium-top class hardware.

The DLF execution showed the best performance in terms of execution time, with
latency near to 100 µs, making it the fastest mechanism to invoke functions. This opens up
the application of TEMPOS in many challenging and latency-sensitive use cases where sub-
millisecond end-to-end latency is needed. However, DLF restricts the usable programming
languages to the only ones compatible with the generation of shared libraries.

Table 6.2: Number of invocations executed by the different invocation methods during the pro-
cessing test (5 min. run).

Invocation Mode Node A Node B Node D

DLF 1884× 103 1004× 103 428× 103

WASMF 183× 103 85× 103 22× 103

FSpawn (Rust) 142× 103 42× 103 25× 103

FSpawn (Python) 5× 103 2× 103 855
FSpawn (Node.js) 1× 103 940 303
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(c) Test results using WASMF invocation model.

Figure 6.5: Testbed results of concurrent invocation of functions configured with different QoS.

The execution of the FSpawn mechanism demonstrated maximum flexibility, as it
could run every language executable in a Linux environment. However, it exhibited poor
performance in total execution time, with latencies reaching hundreds of milliseconds,
particularly when running non-compiled languages (see Figure 6.4). Despite its flexibility,
the measured performance of FSpawn renders it infeasible for deployment scenarios where
end-to-end latency needs to be below the threshold of 1ms.

The execution through WASMF performed one order of magnitude worse than DLF
and only slightly better than the execution of a compiled function with FSpawn, with
an execution time on the order of 1ms. However, this mechanism demonstrated the
potential to significantly reduce the execution and startup time of many non-compiled
languages.

Table 6.2 illustrates that the choice of the appropriate invocation mechanism is a trade-
off between the freedom of implementation language selection and the number of exe-
cutable functions on a given hardware infrastructure. The initial test results also serve
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as a baseline for subsequent results, as the first test was conducted without concurrent
execution among workflows.

In the second test, we separately experimented again with the three invocation mech-
anisms, i.e., DLF, WASMF, FSpawn, but this time with concurrent invocations of 6
functions: 2 executed with SQ level and 4 with the BQ one. The level of parallelism was se-
lected based on the number of cores available on the utilized nodes (Node C, see Table 6.1)
and the need to create challenging resource conflicts among workloads in our tests. As
illustrated in Figure 6.5, our queuing mechanism was able to prioritize strict quality when
resource conflicts occurred effectively: the execution time of SQ functions was almost
half that of BQ functions. In other words, the Invoker demonstrated the capability to
correctly apply the requested prioritization even with heterogeneous mechanisms and in
different execution environments.

Furthermore, the reported results revealed a negligible variability in execution time for
SQ functions, in contrast to BQ functions. BQ functions displayed a significant variation
in execution time on the order of hundreds to thousands of milliseconds, depending on
the method used. Therefore, using SQ functions not only enables a reduction in latency
but also allows for stricter predictability of processing time. The Invoker demonstrated
the capability to execute heterogeneous workloads transparently while leveraging diverse
technologies in infrastructure nodes.

Full Stack

This section presents results about the TEMPOS system’s ability to coordinate and con-
catenate different QoS mechanisms in each slice to achieve the targeted end-to-end quality
for the workflows. We deployed on Node E two data producers and two Triggers config-
ured with BQ and SQ levels, and on Node B, we deployed 3 Invokers with SQ configuration
and 3 with BQ.

We then created and deployed two workflows executing the same function and triggered
by the same event but configured one with BQ and one with SQ. Subsequently, we linearly
increased the number of events submitted to the Triggers until reaching 1000 events
per second for each workflow. The experiment was repeated firstly with only one active
workflow, then with both workflows concurrently active.
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Figure 6.6: End-to-end test performance of the TEMPOS platform.
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As predictable from the results of the previous sub-section, in an isolation case with
only one workflow active per time, the SQ end-to-end latency is considerably better, with
an average of 3.34ms than BQ, which settled to an average of 3.96ms, as also shown in
Figure 6.6a. This difference in latency can be attributed to the QoS mechanisms imple-
mented in the TEMPOS middleware, which prioritizes the execution of SQ workflows
over BQ workflows.

It is also noteworthy that this behavior is maintained for the entire test duration, with
different request rates, thus demonstrating the elasticity of the TEMPOS middleware.
In the concurrent scenario, with both workflows active and competing for resources,
the two workflows coexist and do not affect each other’s performance until reaching the
critical threshold of 500 messages per second. Until this threshold, we can also observe
that both workflows behave similarly as in the previous experiments, where they were
executed separately. However, over the critical threshold, we can observe that conflicts
among workflows become critical, and the BQ workflows progressively degrade their
performance. This clearly indicates the effectiveness of the implemented QoS mechanisms
in managing resource allocation and preventing bottlenecks.

It is also worth mentioning that the latency performance of SQ workflows remains
consistently approximately 3.1ms despite the constrained hardware adopted and the
concurrency with other workflows. This is a testament to the efficiency and scalability
of the TEMPOS middleware in managing multiple workflows and ensuring the optimal
performance of each workflow.

Zooming in on the performance behavior of some single TEMPOS components, we
can observe (Figure 6.6b) how QoS mechanisms are correctly applied across all the hops
of the technological stack. We can observe how, in each trait of the invocation stack, SQ
performs almost identically when executed in concurrency with other workflows, while BQ
workflows degrade their performance when competing with other active workflows. This
further emphasizes the effectiveness of the implemented QoS mechanisms in managing
resource allocation and ensuring the optimal performance of each workflow.

Let us finally note that in Figure 6.6b the “BQ Conc.” MOM-Invk bar is almost the
same as the Invok bar because the time is taken as the difference between the invoker
function invocation instant and the sending message instant from the MOM. Given
that the invoker reception is sync-blocking, that message waits in the invoker socket until
the previous invocation is completed. This indicates that the MOM component can
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handle the concurrency efficiently and does not introduce any significant overhead in the
end-to-end latency.

In conclusion, the results of this experiment demonstrate the effectiveness of the TEM-
POS middleware in managing multiple workflows and ensuring the optimal performance
of each workflow, even in a concurrent scenario with constrained hardware. The imple-
mented QoS mechanisms effectively manage resource allocation and prevent bottlenecks,
resulting in the consistent and predictable performance of the system.

6.2 SELENE-based applications

In Chapter 5, we discussed that a primary objective of the design of SELENE is to facilitate
the development of a diverse range of applications with disparate requirements on Edge
Cloud nodes (Section 5.3). To validate this design goal, we utilized the SELENE API to
construct two representative Edge applications, a Message-oriented Middleware (Lunar
MoM) and a data streaming framework (Lunar Streaming). Our results demonstrate that
these simple applications are fully portable across various network technologies due to
their SELENE-based implementation and can attain performance comparable to or even
better than widely used systems of similar nature.

6.2.1 LUNAR MoM

To demonstrate the ease of implementation and scalability of SELENE, we have devel-
oped a decentralized Message-oriented Middleware system, called LunarMoM, using the
SELENE API. MOMs are commonly used in heterogeneous systems at the network edge
for asynchronous, low-overhead communication. Depending on the deployment scenario
and application needs, they can be either centralized or decentralized. They implement
the publish-subscribe communication pattern, with the main concepts being topics, which
are abstract named queues, and publishers and subscribers as producers and consumers of
these queues.

Mapping the MOM abstractions to the SELENE primitives is straightforward. The
LunarMoM application, which consists of only 135 lines of C code, defines two main
primitives for publishing or subscribing to a topic: lunar_publish and lunar_subscribe.
The publish function takes the topic name and a callback function as arguments. The
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topic name is passed to a hashing function to obtain the topic id and to open a SELENE
source if this is the first publication for that topic. Then, it obtains a buffer from SELENE,
executes the user callback to fill it, and sends it. Under the hood, SELENE will deliver the
messages to the reachable remote SELENE daemons and return them to the subscribed
sinks. The subscriber function works symmetrically.
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Figure 6.7: Performance benchmark for Lunar MoM and other reference systems.

Our demonstration of LunarMoM, a decentralized messaging system built using the
SELENE API, shows that it offers an efficient option for the Edge Cloud. To evaluate its
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performance, we compared LunarMoM against two widely used decentralized messaging
systems in that environment, OMG DDS and ZeroMQ. We configured these systems to
use a UDP transport without additional semantic reliability. We conducted performance
benchmarks using a ping-pong pattern to measure the round-trip time (RTT) between a
publisher and a remote subscriber and a throughput test to evaluate effective bandwidth
utilization. The tests were conducted on the local testbed described in Section 5.3.4

The results, as shown in Figure 6.7a, indicate that LunarMoM has the lowest latency in
both fast (using DPDK) and slow (using UDP) modes. Compared to the raw SELENE
performance (Figure 5.14a), we observed that LunarMoM adds ns-scale overhead to SE-
LENE, resulting in stable low latency. The performance of Cyclone (+45%) is comparable
to that of systems that use blocking sockets in their receiver thread, although with higher
variability. ZeroMQ’s UDP support, on the other hand, adds additional 20 µs latency
compared to Cyclone. Similar considerations apply to the throughput evaluation (Fig-
ure 6.7b), where DPDK allows LunarMoM to significantly increase bandwidth utilization,
while Cyclone and LunarMoM slow have similar behavior. ZeroMQ showed unstable
performance and was excluded from the graph.

In conclusion, our experimentation demonstrates that SELENE dramatically simplifies
the development of a lightweight messaging system that outperforms currently available
alternatives, with ns-scale latency overhead compared to the SELENE interface. Addi-
tionally, LunarMoM is portable across all supported kernel-based and kernel-bypassing
technologies, making it a promising solution for data dissemination at the network edge.
LunarMoM is still a prototype, but we believe it shows how existing messaging systems
could significantly leverage SELENE to improve their performance and portability.

6.2.2 LUNAR Streaming framework

In edge cloud scenarios, we often need to deal with real-time streaming and analysis of
large amounts of data, such as intelligent applications based on Machine Learning (ML)
or image processing. Especially in an industrial setting, it is common to have applications
where cameras take images of a product during different stages of production and transmit
them in real time to a central computing node for processing. If defects are present in the
semi-finished product, a control application interacts with the production line to handle
the failure.

112



6.2 SELENE-based applications

Resolution HD Full HD 2K 4K 8K

Size (MB) 2.76 6.22 11.6 24.88 99.53

Table 6.3: Size of the images sent in the streaming benchmark.

To support Quality of Service requirements, streaming applications frequently use
data fragmentation and compression techniques. For our prototype, Lunar Streaming,
we decided to use only fragmentation, leaving compression as future development, as
it is outside the scope of our test framework. Lunar Streaming exposes a simple set of
APIs, allowing clients to connect to the server application, which must implement a
simple interface by exposing two methods: get_frame and wait_next. The first allows
getting a new frame, while the second pause the server waiting for the next frame. To start
streaming, the server application must invoke lnr_s_loop, which performs the following
steps: requesting a new frame, fragmenting and sending the frame, and waiting for the
next frame to restart the loop until the end of streaming.

We tested Lunar Streaming by implementing a simple application that streams raw
images, i.e., for each image frame, we send RGB values for every pixel. We used sample
images of different standard sizes (Table 6.3) and compared our SELENE-based imple-
mentation with one that uses the sendfile primitive. Since sendfile sends data directly
from a file descriptor loaded into the kernel without involving user space, it implements a
sender-side zero-copy technique. For this reason, we believe it can be a good reference for
our framework.

To demonstrate the performance of our streaming prototype, Lunar Streaming, we
evaluated the following:

1. The number of frames per second (FPS) the client application can handle (Fig-
ure 6.8a)

2. The average end-to-end latency for frame transmission (Figure 6.8b), i.e., the time
between the server application sending a frame (including fragmentation) and the
client application receiving the reconstructed frame.

As seen from the results, Lunar Streaming achieves outstanding performance in both
latency and FPS, particularly in the fast case. In particular, for images up to 4k, we can
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support frame rates above 100 FPS and even above 1000 FPS for low-quality images.
Latency never exceeds 10ms for pictures up to a maximum resolution of 4k, making
Lunar Streaming an excellent candidate for applications such as the tactile internet [66] or
real-time simulations (e.g., Cloud Gaming [51]).

Finally, it is worth noting that streaming applications typically send various media, such
as video and images, in a compressed format. For example, HVEC, VP9, or the newer
VVC are commonly used as video CODECs [50] and are transmitted using protocols
such as RTP or WebRTC [19]. While implementing a full stack of streaming protocols is
beyond the scope of this work, it is essential to note that by sending raw images alone, we
have already obtained excellent results. This highlights that SELENE can be effectively
used to accelerate existing streaming frameworks [10].
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6.2 SELENE-based applications
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Figure 6.8: Performance benchmark for Lunar Stream and sendfile.
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7 Conclusions and Future Work

In conclusion, this thesis work has thoroughly investigated the evolution of IoT applica-
tions and the challenges posed by integrating cloud infrastructures with edge nodes. The
traditional cloud-centric model has become insufficient to meet the growing demands of
next-generation IoT applications, leading to the development of the Cloud Continuum
model. This new model provides a more fluid approach to managing heterogeneous
physical and virtualized resources while ensuring that different QoS requirements are met.

Despite the availability of various solutions to address the individual problems asso-
ciated with network communications in such environments, there remains a lack of a
comprehensive system architecture that can provide end-to-end QoS support for IoT
applications. This gap in the literature prompted the research presented in this thesis,
which proposed a new architecture designed to address this issue.

In the following paragraphs, we will revisit our proposed architecture’s critical compo-
nents highlighting its strengths and weaknesses. Additionally, we will discuss potential
future developments aimed at addressing any limitations.

Chapter 4 presents a practical solution to the OT/IT convergence issue by utilizing the
Edge Cloud paradigm to blur the OT/IT separation. The solution employs a two-layered
MOM approach as an interoperability layer at the OT and facilitates the rapid transfer
of large data volumes to the IT. The proposal’s validity was demonstrated through a
real-world testbed utilizing machine data and showing the capability of the components
to handle increasing data volumes efficiently.

As ongoing research, we are examining the feasibility of implementing a pluggable pro-
cessing mechanism at the Gateway for OT data filtering and aggregation. This mechanism
aims to alleviate the pressure on the upward path by providing dynamic and selective
processing at the edge, possibly adopting an event-centric serverless processing model,
as discussed in Section 6.1. Additionally, we are investigating the implementation of a
load-balancing mechanism at the gateway to enhance the reliability and scalability of the
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proposal under increasing traffic pressure from the OT layer. Another area of investigation
is enabling secure IT-to-OT data flow to facilitate the deployment of future cognitive
agents at the IT layer.

Later in the same chapter, we presented a practical, end-to-end TSN-compliant QoS
management approach that can handle reconfiguration events and was validated in a
real testbed. We are exploring integrating SDN concepts to enhance the approach. SDN
decouples the control plane from the data plane and centralizes control through a controller
that sets forwarding tables for all switches, addressing traditional network management
complexities and compatibility issues. Our system could utilize an SDN controller, such
as OpenDaylight or ONOS, to configure switches with different capabilities or protocols
via a connection to the CNC.

In Chapter 5, two novel approaches were presented for virtualized network environ-
ments. The first approach aimed to execute TSN-based applications with Ultra-low
Latency constraints in virtual machines by combining a practical clock synchronization
approach for remote VMs with high-performance network virtualization techniques. The
solution was validated in a real testbed and demonstrated the ability to respect ULL con-
straints, allowing unmodified critical applications to benefit from virtualization advantages.
Future work includes exploring other kernel-bypassing techniques, such as XDP, Open
vSwitch (OVS) DPDK offload, RDMA, or SmartNICs, to support high-performance
packet processing with fewer resources.

The second approach was KuberneTSN, an accelerated and deterministic container
overlay network architecture that uses a novel userspace TSN packet scheduler and a
kernel-bypassing approach to minimize packet processing delays. KuberneTSN was im-
plemented as a network plugin for the Kubernetes orchestrator, tsn-cni, and evaluated on
a real testbed, outperforming the widely used Flannel network plugin for containerized
applications. Future work includes performance characterization under different traffic
conditions and demonstration of tsn-cni with other network plugins. In the long term, as
performance-critical AI/ML components move to the network Edge, a systematic perfor-
mance study of the inter-container datapath will be conducted to identify optimization
opportunities. Also, the full implementation of the TSN user-space scheduler may unlock
these approaches’ full potential.

In Chapter 5, the SELENE middleware was introduced as a solution for integrating
heterogeneous communication technologies, including kernel UDP/IP, XDP, DPDK,
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and RDMA, at the Network Edge. The SELENE middleware offers a simple yet flex-
ible API, allowing for the development of a wide range of portable Edge applications
with multiple data flows with varying requirements, as shown in Section 6.2. The user
only needs to specify high-level requirements for these flows, and the SELENE runtime
will efficiently allocate the most appropriate technology in the dynamically determined
deployment environment.

Developing SELENE raised several important research questions in network Edge. The
following are the significant open challenges in the deployment of SELENE:

• Receiver-side overhead: The current implementation of SELENE dedicates a single
core to network operations, leading to pressure on the receive pipeline. Two possible
solutions are offloading operations to hardware devices or parallelizing them across
multiple cores.

• Zero-copy fragmentation: The current implementation does not support UDP/IP
packet fragmentation and relies on jumbo frames. A technique for zero-copy data
reconstruction remains an open challenge.

• Scheduling: A careful scheduling strategy is crucial for high-performance systems
like SELENE. The prototype uses a FIFO strategy, but future work will intro-
duce TSN-compliant scheduling for improved network latency for time-critical
applications.

• Virtualization: Network acceleration techniques often contrast with virtualization
principles, and virtualized network acceleration is a crucial research direction for
solutions like SELENE.

• Security: Security implications of SELENE have not been studied yet and represent
the biggest challenge, especially at the network Edge. Leveraging programmable
network hardware to increase security is the most promising approach.

Finally, in Chapter 6 we presented TEMPOS, a QoS-aware middleware for serverless
platforms. TEMPOS integrates different QoS mechanisms provided by individual tech-
nologies, such as Linux real-time scheduling and Time-Sensitive Networking protocols,
to manage end-to-end QoS in terms of jitter, latency, and en-queuing time. The main idea
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behind TEMPOS is to provide a flexible API that eases the development of portable Edge
applications by allowing the user to specify high-level requirements for data flows. The
TEMPOS runtime then maps these requirements to the most appropriate technology
available in the deployment environment.

To evaluate the validity of TEMPOS, we conducted a series of real testbed experiments.
The results showed that TEMPOS effectively differentiated workflows based on the as-
signed QoS level. QoS awareness was preserved throughout the entire invocation stack,
with the delivery layer achieving nearly twice the performance for event delivery for SQ
workflows compared to BQ workflows, even under concurrent execution. The TEM-
POS processing slice also leveraged multiple invocation methods seamlessly, ensuring that
higher priority (SQ) workflows executed twice as fast as lower priority (BQ) workflows.

In future work, we plan to integrate TEMPOS with a resource orchestrator for the full
Cloud Continuum chain, including 5G micro-datacenters and traditional geographically
distant cloud data centers. This integration will allow TEMPOS to handle both network
and computing resources fully. Additionally, we aim to introduce new levels of QoS
considering latency and jitter differentiation and the semantics of delivery and throughput
while expanding support to resources not considered in this work, such as storage or
hardware accelerators.

In conclusion, future developments in the field of architecture entail the integration of
various works discussed in the thesis to realize layered architecture, as outlined in Chapter 3.
This integration will involve exploring solutions that serve as connectors between different
levels and modules. Moreover, the scope of these future directions extends beyond the
network domain and encompasses computing aspects such as GPU, CPU, and acceleration
technologies like FPGAs, as well as the storage component.

Expanding the studied approaches from the network domain to the computational
domain is essential. This expansion involves applying the methodologies and insights
gained from network-related investigations to the computing infrastructure. By doing so,
overall system performance and efficiency can be enhanced through the optimization and
offloading of computationally intensive tasks onto suitable computational resources.

Additionally, the exploration and development of monitoring and observability com-
ponents are of utmost importance. These components play a crucial role in ensuring
the reliability, performance, and security of the architecture. By improving and broad-
ening the capabilities of the monitoring and observability component, a comprehensive
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understanding of system behavior can be achieved, enabling proactive management and
mitigation of potential issues.

The proposed future directions aim to fulfill the architectural requirements of a com-
prehensive system capable of effectively supporting and adapting to the evolving landscape
of IoT applications. By incorporating the findings from various works and expanding their
coverage to encompass a wider range of components and technologies, the architecture
can provide end-to-end quality of service (QoS) support, ensuring efficient and reliable
operation of IoT applications in dynamic and challenging environments.
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