Provided by Ghent University Academic Bibliography

Metadata, citation and similar papers at core.ac.uk

End-to-end QoE Optimization Through Overlay
Network Deployment

Bart De Vleeschauwer, Filip De Turck, Bart Dhoedt and Piet Demeester
Ghent University - IBBT - IMEC, Department of Information Technology
Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium
Email: bart.devleeschauwer @intec.ugent.be

Maarten Wijnants, Wim Lamotte
Hasselt University and Interdisciplinary institute for BroadBand Technology (IBBT)
Expertise Centre for Digital Media and transnationale Universiteit Limburg
Wetenschapspark 2, BE-3590 Diepenbeek, Belgium
Email: maarten.wijnants,wim.lamotte @uhasselt.be

Abstract—1In this paper an overlay network for end-to-end
QoE management is presented. The goal of this infrastructure is
QoE optimization by routing around failures in the IP network
and optimizing the bandwidth usage on the last mile to the
client. The overlay network consists of components that are
located both in the core and at the edge of the network. A
number of overlay servers perform end-to-end QoS monitoring
and maintain an overlay topology, allowing them to route around
link failures and congestion. Overlay access components situated
at the edge of the network are responsible for determining
whether packets are sent to the overlay network, while proxy
components manage the bandwidth on the last mile. This paper
gives a detailed overview of the end-to-end architecture together
with representative experimental results which comprehensively
demonstrate the overlay network’s ability to optimize the QoE.

I. INTRODUCTION

Originally, the Internet was mainly used for services like
web surfing, file transfer and email. However, the last years
have seen a continuous rise in the usage of the Internet for
multimedia applications. Examples include video services such
as IPTV, VoIP services such as Skype and online gaming
applications. Since these services are much more sensitive
to packet loss, bandwidth restrictions, delay and jitter than
traditional services such as web browsing, these anomalies
will have a great impact on the Quality of Experience (QoE).
For instance, even a small amount of packet loss will result in
visual artifacts for an IPTV service, while a high delay will
greatly impact the fluidity of interactive applications.

Packet loss, increased delay and a restricted amount of
bandwidth can have several causes. One problem that can oc-
cur is suboptimal routing between Internet hosts. The Internet
routing service is Best-Effort, meaning that no guarantees are
given on the available bandwidth and the delay. While some
solutions are available to provide Quality of Service (QoS)
in one network, like IntServ and DiffServ, these approaches
were never able to offer a full end-to-end solution, due to
scalability issues and the requirement of implementing these
technologies in all the Autonomous Systems (AS) of the
Internet. The problem of defining and implementing Service

Level Agreements between the ASs has not yet been solved
either. As a result, routing in the Internet is not always able
to find the best path in terms of QoS. Instead, Internet routing
will find a path that has a low number of intermediate hops but
might have a large delay or an amount of packet loss. Finally,
when a problem occurs in the AS graph, the routers may take
considerable time to route around this problem, resulting in
periods of connectivity loss that can even be in the order
of minutes [1]. The last mile can also impose a bandwidth
bottleneck to the end device. In particular, the amount of
downstream bandwidth that is available on the last mile might
not suffice to support all services which a client is currently
using. This may result in congestion on the last mile, resulting
in packet loss and an increase in delay.

To provide a solution to these problems, we propose to
use an overlay network that is able to optimize the end-to-
end QoE. This overlay network is responsible for routing
around problems in the core network and for managing the
bandwidth on the last mile. It consists of overlay servers that
are located in the core network and that offer a resilient overlay
routing infrastructure. In addition to this, the overlay network
contains components that are located close to the multimedia
clients and servers. These overlay access components are
responsible for determining whether packets can benefit from
overlay network routing and they provide transparent access
to the overlay routing infrastructure. The overlay network
also contains Network Intelligence Proxies that are situated at
the network edge. These NIProxies are responsible for client
bandwidth management and in addition have the ability to
perform processing on network flows containing multimedia
content. As an example, the proxies can be equipped with
real-time video transcoding functionality, which would enable
them to reduce the bandwidth requirements of video flows on-
the-fly. In this paper we give an overview of the architecture
of the overlay network and show it is able to maintain a high
QoE when packet loss occurs in the network and when the
bandwidth on the access line is restricted.

This paper is structured as follows: In section II a brief

https://core.ac.uk/display/55687088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

overview is given of related work. Section III describes the
full architecture of the proposed overlay network while section
IV harbors a thorough evaluation of the overlay network
and demonstrates its ability to improve the QoE. Finally,
conclusions are drawn in section V.

II. RELATED WORK

In previous research, the usage of overlay network technol-
ogy for enhancing network routing has also been looked at.
The RON project [2] describes a system for routing around
network failures in which all involved parties deploy an
overlay server. The main difference with our work is that we
offer an overlay solution that is able to give end users access
to the overlay network without requiring them to run overlay
servers themselves. This results in a more scalable approach
than the RON which can only have 50 overlay sites. In [3],
we have described algorithms for determining the optimal
locations for the overlay servers and [4] introduces a number
of algorithms for the management of the overlay topology.
Overlay networks can also be used for overlay multicasting,
when no network layer multicasting support is available. In [5]
we developed an algorithm for the bounded diameter minimal
cost Steiner tree problem.

Managing client downstream bandwidth is another topic
of active research; see, for instance, the work presented
in [6], [7] and [8]. The NIProxy distinguishes itself from
these approaches in that the latter are concerned with QoS
provision (i.e. guaranteeing that the requirements of data flows
are satisfied), whereas the NIProxy’s bandwidth distribution
mechanism pursues the more high-level goal of maximizing
the multimedia experience provided to users of networked ap-
plications. To achieve this objective, the NIProxy extensively
exploits its application awareness, a feature that is lacking in
many related systems. The NIProxy’s application awareness
also differentiates it from related work on multimedia service
provision like, for instance, [9] and [10]. Finally, another
unique characteristic of the NIProxy is that it integrates
bandwidth management and multimedia service provision in
a single system in such a manner that interoperation between
both mechanisms is supported.

III. OVERLAY NETWORK ARCHITECTURE

This sections contains an overview of the overlay architec-
ture for end-to-end QoE management. In Fig. 1 the end-to-end
architecture is shown. The abbreviations OS, AC and NIProxy
are used for the Overlay Servers, the Overlay Access Compo-

nents and the Network Intelligence Proxies respectively.
A. Overlay Server

The overlay servers (OS) are located in several Autonomous
Systems in the Internet. They sustain the connectivity between
each other. To do this, they maintain overlay routing tables
that map target OS IP addresses to the next hop OS IP
address. When an overlay packet arrives at an overlay server,
it consults its routing table to determine the next overlay hop
IP address and sends the packet to the next OS. This process is
repeated until the target overlay server is reached. The overlay

Doile aa |

AC NIProxy

;

]
‘oo __________Glient |

A——

{
1
1
1
1
1
1
1
1
1
1
1

Fig. 1. The overlay network architecture

packets contain an overlay header with information on the
target overlay server, the overlay access component that a
packet needs to be sent to and a field for the type of QoS the
packet expects (Fig. 2). This header is inserted between the
UDP header and the packet payload. If the final overlay server
receives a packet, it will forward it to the access component
who is responsible for further handling it.

P ‘UDPI Last OS IP I QoS Type I ACIP

I Data I

Fig. 2. The overlay header format

Overlay Head:

To construct the routing tables, the OSs maintain an overlay
topology that contains information on the connectivity between
pairs of overlay servers. This information is retrieved by
performing active monitoring. The overlay servers send ICMP
echo messages to their neighbours in the overlay topology and
by analysing these probe messages, they deduce values for the
delay and packet loss on the overlay edges. This information
is subsequently exchanged between overlay servers, allowing
them to share a view on the connectivity in the whole overlay
network. It is stored in an overlay topology that is used
to construct the overlay routing tables. In [4] a number of
algorithms are described to construct and manage the overlay
topology. When a connectivity problem is detected, the overlay
servers will update their routing tables. This will cause them
to use one or more intermediate overlay hops to forward the
packets around the compromised link(s).

B. Overlay Network Access Component

While the overlay servers maintain a resilient overlay
routing network, extra components are required to give end
users access to this service, since we cannot assume all
end users will deploy overlay servers themselves. Therefore,
we designed and implemented an overlay network access
component. These components are deployed on or close to the
end device. They are responsible for determining when traffic
is sent to the actual overlay servers. The rationale behind this
is that it is not always necessary to use the overlay network
resources. More specifically, when there is no congestion or
other problem on the path between source and destination,
the overlay network should not be used. The AC monitors the
quality of the connection. If a problem with QoS is detected or

if the AC detects that the connectivity to the destination is lost,
it will send the packets to its closest overlay server, which will
forward it to an access component close to the target node. In
this way, the AC is able to maintain the connectivity between
source and target node. The access to the overlay network is
transparent for the service itself. To provide its service, the
AC peforms the following tasks:

o The AC maintains a connection to at least one overlay
server. All the overlay traffic of the AC will be sent to
this overlay server.

o When the AC detects that the device is communicating
with another IP host, it determines whether the other party
is also a client of the overlay network. If this is the case,
it will start a probing thread that will periodically send
packets to the AC at the other side, which will send an
immediate reply. Based on these probe packets, the AC
will analyse the connectivity and maintain values for the
delay and the packet loss that is occurring on the path.

o If the QoS of a connection falls below a certain threshold
(e.g. a delay that is above 200 milliseconds or packet
loss), the AC decides that the packets of the connection
need to be sent via the overlay network. Any subsequent
packet belonging to that connection that arrives at the
AC is encapsulated in an overlay header and is sent via
the overlay network to the AC at the other side. The last
overlay hop address that is filled in in the overlay packet
header is the address of the overlay server to which the
other AC is connected, the field for the access component
is completed with the address of the AC at the other side.

« When an AC receives an overlay packet, it removes the
overlay header and forwards the packet further to its
destination, as if no overlay handling was done.

« When a connection is no longer active, this is detected
via a time-out. When this happens, the AC stops probing
the QoS of the path and removes the connection from its
connection table.

os1.051 | ™.
| 0s3.053 ol —

| osa084 | /1 \

082.082 / /
=
T

@ Overlay Server

g Overlay Access Component

Problem
dHop 08 |

Client 2

Client 1 Tar. Client - <AC, Last OS>

_| Routing Info

Fig. 3. An example overlay scenario. The routing tables of the overlay
servers and the routing info that is maintained at the ACs, mapping the target
IP addresses to the overlay AC and the OS at the other side, are shown.

In Fig. 3, a scenario is shown where an edge in the network
has a degraded performance. More specifically, an IP link that
is used on the direct path between overlay servers OS1 and

0S4 suffers from congestion. Therefore, the overlay servers
will change their routing tables accordingly. The problematic
link will also impact the communication session between
clients 1 and 2. As a result, the ACs will send the traffic
via the alternative overlay path.

The advantage of using ACs that are located close to the
clients is that we are able to offer an overlay routing service to
end users, located anywhere in the Internet. It suffices that an
AC is deployed close to the end device, to be able to offer the
overlay routing capabilities to all their services. The AC can
be deployed on the end device itself, but can also be situated
on an intermediate device like a residential gateway, an access
node or a proxy close to the end user.

C. The Network Intelligence Proxy

Using the components discussed thus far, the proposed
overlay network is able to provide resilient routing in the core
of the network. However, to create a true end-to-end solution
which spans the entire delivery path from content source to
sink, the last mile of this path should also be managed. The
overlay architecture therefore also contains Network Intelli-
gence Proxy instances, network intermediaries which aim to
optimize last mile content delivery to clients [11]. As its name
implies, the NIProxy attempts to accomplish this high-level
objective by incorporating different types of awareness or
context in the transportation network. More specifically, the
NIProxy is at the moment network- as well as application-
aware. The NIProxy’s network awareness comprises knowl-
edge of the current state of the network and, in particular, the
capacity of client network connections, whereas its applica-
tion awareness encompasses knowledge of the application(s)
clients are currently running. In contrast to the network aware-
ness, which consists of objective measurements indicating,
for instance, the current throughput, latency and packet loss
rate of a client’s access link, the information constituting
the NIProxy’s application awareness is application-specific
and can hence vary depending on the kind of application
under consideration. The importance assigned by the client
to the different network flows (or types of flows, e.g. audio or
video) that are exchanged as part of a networked application
is an example of knowledge which could contribute to the
NIProxy’s application awareness.

Based on its dual awareness, the NIProxy attempts to
improve the user QoE in two complementary ways. First
of all, the NIProxy provides automatic client downstream
bandwidth management, meaning it is capable of dynamically
distributing the downstream bandwidth available to a client
over all network flows in which the client is currently inter-
ested. More specifically, based on its network awareness the
NIProxy prevents over-encumbrance of the client’s network
connection, while its application awareness is exploited to
create an intelligent allocation of the downstream bandwidth
that is actually available. Secondly, the NIProxy is capable of
applying processing on network flows containing multimedia
content and hence also acts as multimedia service provision
platform for its clients. As stated in our previous work [11], a

major feature of the NIProxy is that interoperability between
both its QoE-increasing mechanisms is supported. This enables
a level of QoE maximization that could not be achieved by
any of the two mechanisms separately.

From a more technical point of view, the NIProxy’s band-
width management mechanism operates by organizing all
network streams in which a client is interested in a stream
hierarchy. Such a stream hierarchy has a tree-like structure that
is composed of both internal and leaf nodes. The internal hier-
archy nodes implement a certain bandwidth distribution strat-
egy, whereas the leaf nodes correspond to an actual network
flow (e.g. a specific video stream). Different types of internal
nodes are available, each with their distinct characteristics and
capabilities (see [11] for more information). By adequately
constructing the stream hierarchy, it is possible to express rela-
tionships between network flows or, conversely, to differentiate
between them (or between collections of flows, e.g. audio
versus video). The NIProxy’s multimedia service provision
functionality on the other hand is implemented using a plug-
in approach. In particular, each provided service corresponds
to a NIProxy plug-in that can be (un)loaded dynamically
as it becomes needed (or obsolete). In our previous work
[11], we described the implementation of an example plug-in
which extends the NIProxy’s functionality with real-time video
transcoding capabilities. This service enables the NIProxy to
reduce the bandwidth requirements of video streams by on-
the-fly transcoding them to a lower quality.

Although NIProxy instances could theoretically be intro-
duced nearly anywhere in the network topology, in practice
they should be deployed relatively close to end users to be able
to produce meaningful results (i.e. to be able to significantly
improve user QoE). More specifically, optimal results will
be produced in case the NIProxy is incorporated at locations
where network performance degrades significantly. A typical
example of such a location is the junction point separating
the core of the network from the access network. Thanks to
its ability to manage and possibly adapt network traffic, the
NIProxy is capable of mitigating the mismatch in network
performance that exists at such junction points.

The NIProxy concentrates on the last network hop(s) in
the content delivery path. In particular, based on the current
limitations of the last mile, NIProxy instances attempt to
manage the transmission of content over it in such a manner
that the user’s QoE is optimized. This however immediately
also uncovers an important hiatus in the NIProxy’s current
implementation: the NIProxy expects to receive the content
which it needs to forward over these last hops flawlessly (i.e. in
time and free of errors). For instance, in terms of the example
given in the previous paragraph, the NIProxy assumes the
network core to operate impeccably. Of course, this will not
necessarily always be the case; as an example, packet loss
could be present in the core of the network due to congestion.
Integrating the NIProxy with the previously discussed overlay
server components resolves this hiatus and results in an overlay
network supporting true end-to-end QoE optimization, as will
be demonstrated in the next section.

Fig. 4. The overlay network testbed

IV. EVALUATION

A testbed was constructed, containing three overlay servers,
a NIProxy (PRO), a streaming server (S) and a multimedia
client (CL). The NIProxy is located between the network and
the client and fulfills the role of access node. Access com-
ponents are deployed on the NIProxy and on the multimedia
server. The topology of the testbed is shown in Fig. 4. For the
test, the server sends 4 video streams to the multimedia client.
The network is impaired in two ways. Impairment nodes are
used to artificially introduce random packet loss in the core
network. At the same time, a bandwidth restriction is enforced
on the last mile.

03
=e= Standard Routing
=== Overlay Routing

0.25

o
N

gmf\ | o Overlay Tink _ Packets
N Ml
0.1
[T Y 0S2-0S3 0
LR VAI RN 0S1-083 7545
0.05 s
TABLE 1

ssssmsanerans
10 20 30 40 50
time (seconds)

OVERLAY LINK USAGE

Fig. 5. The packet loss ratio between the server and the proxy with and
without overlay routing.

The graph shown in Fig. 5 shows the packet loss ratio
per second for a 50 second period with and without overlay
routing. Throughout the test, an average packet loss of 10 %
was present in the network, between (S, OS2) and (OS3, PRO,
CL). One can see that when the overlay network is deployed,
no packet loss occurs. The reason for this is that the overlay
servers detect that there is packet loss and offer an alternative
route that has better QoS characteristics. Table I shows the
number of packets that were routed via the overlay edges
during the 50 second interval; here we clearly see that the
0S2-0S3 link is avoided. Without the overlay network, the
packets are sent through the lossy part of the network, resulting
in packets being lost. On the client’s screen, the packet loss
in the core network resulted in visual artifacts, which have
a great impact on the QoE. By optimizing the route that is
followed, the overlay servers and access components are able
to deliver the video packets reliably to the NIProxy, which
is responsible for further managing the bandwidth on the last
mile.

Once the packets have been received by the NIProxy, it
manages their final delivery to the client. The performed

test consisted of 5 consecutive intervals, where each interval
transition was caused by a change in one or more conditions.
In particular, the transition from the first to the second and
from the fourth to the fifth interval was initiated by a change
in the downstream bandwidth available on the client’s last
mile network connection, whereas the other interval transitions
were the result of client-initiated shifts in stream importance.
The bandwidth fluctuations were automatically discovered by
the NIProxy thanks to its network awareness. In contrast, the
stream importance information was provided to the NIProxy
in the form of application awareness and served as basis to
construct and maintain the client’s stream hierarchy during the
experiment, which is illustrated in Fig. 6. As can be seen, an
internal node of type priority was used to differentiate between
the different video flows'. Also note from this figure that
not one but two leaf nodes were incorporated in the stream
hierarchy for each video stream. One node corresponded to
the original version (OV) of the video stream (i.e. the video
stream as it was transmitted by the streaming server), whereas
the other node represented the transcoded version (TV) of
this stream (i.e. the version generated by the NIProxy’s video
transcoding service). Both qualities were grouped together
using an internal mutex node to guarantee that at most one
version was assigned bandwidth.

Based on the just described stream hierarchy, the NIProxy
managed the client’s downstream bandwidth as illustrated
by the network trace depicted in Fig. 7. A first important
observation is that the downstream capacity of the last mile of
the client’s network connection was at all times respected. This
result can be attributed to the NIProxy’s network awareness
and the outcome was an optimal reception of the forwarded
flows at client-side (i.e. the video streams that were actually
forwarded to the client were delivered with minimal delay and
packet loss). Secondly, the network trace also comprehensively
demonstrates the influence of the NIProxy’s application aware-
ness on the produced bandwidth distribution. In particular, as
can be seen in Fig. 7, the bandwidth requirements of the
least important video streams were reduced by transcoding
them to a lower quality, this way preserving client downstream
bandwidth for the forwarding of more important video flows.
As a result, at any time during the experiment, the client
received the video streams it deemed most significant at that
moment at the highest quality possible.

V. CONCLUSION

In this paper, we have described an overlay network for
end-to-end QoE management. It consists of components in the
network core and at the edge. The overlay network achieves
an optimization of the standard network routing service and
optimizes the bandwidth usage on the last mile. In the evalu-
ation section, we have shown that the overlay network is able

'A priority node partitions bandwidth among its children according to
their current priority value: bandwidth is first assigned to the child with the
highest priority value, any remaining bandwidth is subsequently assigned to
the child with the second highest priority, etcetera. In the experiment, the
steam importance values specified by the client were mapped to priorities.

ROQT NODE

@ OEEE

Fig. 6. Stream hierarchy based on which the NIProxy managed client
downstream bandwidth. The priority values assigned to the different video
flows are grouped horizontally per experiment interval(s).

MAX
ss0 ——} ——
300 oA g

250 V4OV / vaov
P R ¥v4 - Tvarv D ovarv T
H e
H vaov | y Varv | vsov
F 80 f e - VIOV | s of e
00| V2OV v2ov | vzov
* Mv1 ov 8 v1 ov M8 v1 ov 8 v1 ov B v1 ov

[l 5 10 15 20 25 30 35 40 45 50

Fig. 7. Stacked graph illustrating all video traffic received by the client. The
dashed vertical lines separate the different experiment intervals.

to enhance the QoE. By providing resilient overlay routing in
the network core, packet loss was eliminated, while congestion
of the last mile was avoided by intelligently apportioning
bandwidth to individual network flows at the edge.

REFERENCES

[1] N. Feamster, D. G. Andersen, H. Balakrishnan, and F. Kaashoek,
“Measuring the effects of internet path faults on reactive routing,” in
ACM Sigmetrics - Performance, San Diego, USA, 2003.

[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, ‘“Resilient
overlay networks,” in Symposium on Operating Systems Principles,
2001, pp. 131-145.

[3] B. De Vleeschauwer, F. De Turck, B. Dhoedt, and P. Demeester, “On
the construction of qos enabled overlay networks,” in Quality of Future
Internet Services (QofIS), ser. Lecture Notes in Computer Science, vol.
3266, Barcelona, Spain, september 2004, pp. 164-173.

[4] ——, “Dynamic algorithms to provide a robust and scalable overlay
routing service,” in International Conference on Information Networing
(ICOIN), ser. Lecture Notes in Computer Science, vol. 3961, Sendai,
Japan, 2006, pp. 945-954.

[5] ——, “Online management of QoS enabled overlay multicast services,”
in Proceedings of The IEEE Global Telecommunications Conference
(GLOBECOM), San Fransisco, USA, November 2007.

[6] E. Kusmierek, B.-Y. Choi, Z. Duan, and Z.-L. Zhang, “An Integrated
Network Resource and QoS Management Framework,” in Proceedings of
the IEEE Workshop on IP Operations and Management (IPOM), Dallas,
USA, October 2002, pp. 68-72.

[71 M. Furini and D. Towsley, “Real-Time Traffic Transmission over the
Internet,” IEEE Transactions on Multimedia, vol. 3, no. 1, pp. 33-40,
March 2001.

[8] V. Hnatyshin and A. S. Sethi, “Architecture for Dynamic and Fair Dis-
tribution of Bandwidth,” International Journal of Network Management,
vol. 16, no. 5, pp. 317-336, September/October 2006.

[9] K. Nahrstedt, B. Yu, J. Liang, and Y. Cui, “Hourglass Multimedia

Content and Service Composition Framework for Smart Room Environ-

ments,” Elsevier Journal on Pervasive and Mobile Computing, vol. 1,

no. 1, pp. 43-75, March 2005.

R. Mohan, J. R. Smith, and C.-S. Li, “Adapting Multimedia Internet

Content for Universal Access,” IEEE Transactions on Multimedia, vol. 1,

no. 1, pp. 104-114, March 1999.

M. Wijnants and W. Lamotte, “The NIProxy: a Flexible Proxy Server

Supporting Client Bandwidth Management and Multimedia Service

Provision,” in Proceedings of the IEEE International Symposium on a

World of Wireless, Mobile and Multimedia Networks (WoWMoM 2007),

Helsinki, Finland, June 2007.

(10]

(11]

