26,678 research outputs found

    An empirical study of system design instability metric and design evolution in an agile software process

    Get PDF
    Software project tracking and project plan adjustment are two important software engineering activities. The class growth shows the design evolution of the software. The System Design Instability (SDI) metric indicates the progress of an object oriented (OO) project once the project is set in motion. The SDI metric provides information on project evolution to project managers for possible adjustment to the project plan. The objectives of this paper are to test if the System Design Instability metric can be used to estimate and re-plan software projects in an XPlike agile process and study system design evolution in the Agile software process. We present an empirical study of the class growth and the SDI metric in two OO systems, developed using an agile process similar to Extreme Programming (XP). We analyzed the system evolutionary data collected on a daily basis from the two systems. We concluded that: the systems’ class growth follows observable trends, the SDI metric can indicate project progress with certain trends, and the SDI metric is correlated with XP activities. In both of the analyzed systems, we observed two consistent jumps in the SDI metric values in early and late development phases. Part of the results agrees with a previous empirical study in another environmen

    An empirical study of system design instability metric and design evolution in an agile software process

    Get PDF
    Software project tracking and project plan adjustment are two important software engineering activities. The class growth shows the design evolution of the software. The System Design Instability (SDI) metric indicates the progress of an object oriented (OO) project once the project is set in motion. The SDI metric provides information on project evolution to project managers for possible adjustment to the project plan. The objectives of this paper are to test if the System Design Instability metric can be used to estimate and re-plan software projects in an XPlike agile process and study system design evolution in the Agile software process. We present an empirical study of the class growth and the SDI metric in two OO systems, developed using an agile process similar to Extreme Programming (XP). We analyzed the system evolutionary data collected on a daily basis from the two systems. We concluded that: the systems’ class growth follows observable trends, the SDI metric can indicate project progress with certain trends, and the SDI metric is correlated with XP activities. In both of the analyzed systems, we observed two consistent jumps in the SDI metric values in early and late development phases. Part of the results agrees with a previous empirical study in another environmen

    Some Findings Concerning Requirements in Agile Methodologies

    Get PDF
    gile methods have appeared as an attractive alternative to conventional methodologies. These methods try to reduce the time to market and, indirectly, the cost of the product through flexible development and deep customer involvement. The processes related to requirements have been extensively studied in literature, in most cases in the frame of conventional methods. However, conclusions of conventional methodologies could not be necessarily valid for Agile; in some issues, conventional and Agile processes are radically different. As recent surveys report, inadequate project requirements is one of the most conflictive issues in agile approaches and better understanding about this is needed. This paper describes some findings concerning requirements activities in a project developed under an agile methodology. The project intended to evolve an existing product and, therefore, some background information was available. The major difficulties encountered were related to non-functional needs and management of requirements dependencies

    Estimating, planning and managing Agile Web development projects under a value-based perspective

    Get PDF
    Context: The processes of estimating, planning and managing are crucial for software development projects, since the results must be related to several business strategies. The broad expansion of the Internet and the global and interconnected economy make Web development projects be often characterized by expressions like delivering as soon as possible, reducing time to market and adapting to undefined requirements. In this kind of environment, traditional methodologies based on predictive techniques sometimes do not offer very satisfactory results. The rise of Agile methodologies and practices has provided some useful tools that, combined with Web Engineering techniques, can help to establish a framework to estimate, manage and plan Web development projects. Objective: This paper presents a proposal for estimating, planning and managing Web projects, by combining some existing Agile techniques with Web Engineering principles, presenting them as an unified framework which uses the business value to guide the delivery of features. Method: The proposal is analyzed by means of a case study, including a real-life project, in order to obtain relevant conclusions. Results: The results achieved after using the framework in a development project are presented, including interesting results on project planning and estimation, as well as on team productivity throughout the project. Conclusion: It is concluded that the framework can be useful in order to better manage Web-based projects, through a continuous value-based estimation and management process.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-

    What influences the speed of prototyping? An empirical investigation of twenty software startups

    Full text link
    It is essential for startups to quickly experiment business ideas by building tangible prototypes and collecting user feedback on them. As prototyping is an inevitable part of learning for early stage software startups, how fast startups can learn depends on how fast they can prototype. Despite of the importance, there is a lack of research about prototyping in software startups. In this study, we aimed at understanding what are factors influencing different types of prototyping activities. We conducted a multiple case study on twenty European software startups. The results are two folds, firstly we propose a prototype-centric learning model in early stage software startups. Secondly, we identify factors occur as barriers but also facilitators for prototyping in early stage software startups. The factors are grouped into (1) artifacts, (2) team competence, (3) collaboration, (4) customer and (5) process dimensions. To speed up a startups progress at the early stage, it is important to incorporate the learning objective into a well-defined collaborative approach of prototypingComment: This is the author's version of the work. Copyright owner's version can be accessed at doi.org/10.1007/978-3-319-57633-6_2, XP2017, Cologne, German

    Software systems engineering: a journey to contemporary agile and beyond, do people matter?

    Get PDF
    It is fascinating to view the evolution of software systems engineering over the decades. At the first glance, it could be perceived that the various approaches and processes are different. Are they indeed different? This paper will briefly discuss such a journey relating to findings from an empirical study in some organisations in the UK. Some of the issues described in the literature and by practitioners are common across different software system engineering approaches over the time. It can be argued that human-element of software development plays an integral part in the success of software systems development endeavour. After all, software engineering is a human-centric craft. In order to understand such issues, we crossed the discipline to other disciplines in order to adapt theories and principles that will help to better understand and tackle such matter. Other disciplines have well established human related theories and principles that can be useful. From Japanese management philosophies, we have adapted Lean and knowledge management theories. From psychology, we have adapted Emotional Intelligence (EI). With such an interdisciplinary view, some of the issues can be addressed adequately. Which bring the question: is it really the process or the people? The second author will reflect on his experience attending the first SQM conference 25 years ago. The reflection will discuss the evolution of software systems engineering, and what was changed since then, if at all changed

    Catching up with Method and Process Practice: An Industry-Informed Baseline for Researchers

    Get PDF
    Software development methods are usually not applied by the book.companies are under pressure to continuously deploy software products that meet market needs and stakeholders\u27 requests. To implement efficient and effective development processes, companies utilize multiple frameworks, methods and practices, and combine these into hybrid methods. A common combination contains a rich management framework to organize and steer projects complemented with a number of smaller practices providing the development teams with tools to complete their tasks. In this paper, based on 732 data points collected through an international survey, we study the software development process use in practice. Our results show that 76.8% of the companies implement hybrid methods.company size as well as the strategy in devising and evolving hybrid methods affect the suitability of the chosen process to reach company or project goals. Our findings show that companies that combine planned improvement programs with process evolution can increase their process\u27 suitability by up to 5%
    corecore