
Some Findings Concerning Requirements in 
Agile Methodologies 

Pilar Rodríguez, Agustín Yagüe, Pedro P. Alarcón, and Juan Garbajosa 

Technical University of Madrid (UPM) 
SYST Research Group 

E.U. Informática. Otra. Valencia Km. 7. E-28031 Madrid 

Abs t r ac t . Agile methods have appeared as an attractive alternative to 
conventional methodologies. These methods try to reduce the time to 
market and, indirectly, the cost of the product through flexible devel
opment and deep customer involvement. The processes related to re
quirements have been extensively studied in literature, in most cases in 
the frame of conventional methods. However, conclusions of conventional 
methodologies could not be necessarily valid for Agile; in some issues, 
conventional and Agile processes are radically different. As recent surveys 
report, inadequate project requirements is one of the most conflictive is
sues in agile approaches and better understanding about this is needed. 
This paper describes some findings concerning requirements activities in 
a project developed under an agile methodology. The project intended 
to evolve an existing product and, therefore, some background informa-
tion was available. The major difñculties encountered were related to 
non-functional needs and management of requirements dependencies. 

1 Introduction 

Software industry is facing the fact tha t time to market is progressively becoming 
shorter. Agile approaches appeared as an attractive alternative to adapt the 
development to the unavoidable market changes, characterized by a continuous 
dynamism and variability [1]. Agile methods are suitable when the customer 
needs are quickly emerging and changing [2,3]. Their popularity is growing as 
they are able to bet ter meet customer needs, improved quality software, faster 
t ime to delivery and lower development cost [4]. Assessments of agile in relation 
with other process models can be found in literature [5,6,7]. 

The experience tha t is being obtained from scaling up agile process models to 
large industrial projects and organizations [8]1 is showing us a radical breach be-
tween agile and other more conventional or traditional approaches. Agile process 
models, differently from more conventional software engineering process models, 
are structured into valúes, principies and practices [9,10]. As reported in [8] one 



of the reasons for this breach can be understood by the required application of 
agüe valúes and principies to large projects and organizations; and not so much 
by the already well known practices such as continuous integration, integrated 
testing, or incremental delivery. 

As it is nowadays accepted, the product quality is particularly dependent on 
how requirements engineering practices have been performed [11,12]. In [13,14] 
the differences between requirements speciñcation in conventional and agüe ap-
proaches are analyzed. Conventional methodologies are focused on antícípatíon 
abítitíes and can be termed as plan based [15,16] because these process models 
are deñned in such a way that the later an error is discovered, the more expensive 
wül be to correct it. They intend to identify a complete set of requirements in the 
requirement phase, what is always difñcult to achieve. Once requirement phase 
is ended changes are always regarded as negative. Deñning this complete set of 
requirements is essential for the soundness of the project, and if the problem 
domain is not well deñned, this wül affect negatively to the rest of the project 
[17,18,19]. As opposed to this, agüe methods perceive each change like a chance 
to improve the system and increase the customer satisfaction. So, respondíng to 
change over followíng a plan[9] is one of the agüe valúes. Agüe teams do not 
try to avoid changes but try to understand what is behind them, seek to em
brace them; the resulting set of requirements, after introducing a change, wül 
be evaluated and rated searching for those requirements that wül deliver the 
highest valué to the customer. Therefore, change is considered as a normal and 
characteristic condition of software development. 

One of the main aims of agüe methods is to reduce the cost caused by these 
changes in requirements simplifying the requirements management and docu-
mentation tasks. Agüe methods promote a fast and continuous communication 
between customers and development team. Face to face communication and fre-
quent feedback are the most signiñcant practices concerning to requirements 
engineering in these approaches [20]. The deñnition of tasks related to require
ments is very often kept informal in agüe approaches. Therefore, although there 
are evidences of the advantages that agüe methodologies provide in small-scale 
projects, it is stül difñcult to scale to large projects applying among others the 
principie responding to change over following a plan. 

Being Agüe a relative young process model, there are few studies with rele-
vant results about the elicitation and management of requirements. However, a 
recent survey [4] points out that inadequate project requirements and instability 
of requirements are among the important limitations of agüe methods currently. 
Other papers, such as [20,13,21,22,23,24] report some problems in this área but 
do not analyze them in depth. Some of the open issues in agüe methodologies 
concern elicitation of non-functional requirements and requirements documen-
tation tasks. 

In practice there are not studies that compare empirical results of agüe and 
conventional projects referred to the same product. It is clear that it would be 
expensive to have two teams developing the same product. However in our case 
we had the opportunity to monitor the agüe evolution of an existing product, 



TOPENprimer, developed initially following a conventional approach. The ex-
isting requirements speciñcation had been performed in compliance with IEEE2 

requirements speciñcation standard 830-1998 [25]. This was a good opportunity 
to get a better understanding of how Agile manages customer needs. That is how 
we were able to isolate speciñc requirements, understand the impact oí missing 
requirements that were not identiñed at the supposedly appropriate moment oí 
the agile development process. The study was performed considering the back-
ground on qualitative methods presented in [26]. 

The remainder of the paper is organized into four sections: Section 2 discusses 
related work about requirements engineering in agile approaches. Section 3 de
scribes the case study in which the work is based and the process used in the 
development. Section 4, illustrates the identiñed issues with speciñc examples. 
Section 5 provides a reflection on the implications of the identiñed issues and 
possible correction mechanisms. Finally, Section 6 summarizes the ñndings and 
elabórate on future work. 

2 Background and Related Work 

Although some authors assert that agile methodologies are just oíd wine in new 
bottles 3, other studies show that product development in agile environments 
is very different to that in conventional environments [11,13,14,28]. Several ex-
perience reports, such as [29,30,31,32], describe success stories of using agile 
approaches. However, they do not usually provide enough context information 
or are merely a lessons learned report based on expert opinions do not focused 
on requirements. Others are designed to give recommendations and general rules 
for the agile methodologies use [3,33,34]. Requirements Engineering (RE) activ-
ities are considered critical to any software development process. It has been 
recognized that problems associated with the requirements área are among the 
major reason for software project failures [35,4]. The effort to explore and reñne 
RE has grown up in the last years, as is pointed out by Nuseibeh in [11] and 
Cheng and Atlee in [12] in their studies about the current and the future in 
RE. However, there are still few studies about how real agile projects identify 
and manage the customer needs, and some authors suggest that the key issue 
is this [36]. Detractors argüe that the quest for speed in software development 
may have the undesirable effect of weakening principies of purposefulness, ap-
propriateness and truthfulness [37]. In contrast, current studies begin to identify 
and give solutions to existing problems. For example, in [21] to make an explicit 
requirements stage with customer is proposed or in [36] to add a conventional 
requirements stage. Araujo proposes to incorpórate aspect orientation concepts 
in [38], in [39] it is proposed to deal with crosscutting requirements and in [40] 
to establish traceability. Other studies such as [22] are focused on giving high-
level recommendations about identiñcation and deñnition of customer needs in 



agüe. In [41] the result of an experiment about the application of Requirements 
Interaction Management (RIM) process is showed. This study proposes changes 
in the agüe requirement process, particularly in eXtreme Programming. Other 
publications, such as [20,13] identify some of the presented aspects in this paper 
but without going into them and point out the need to explicitly consider non-
functional requirements management in Agüe. However, none of these studies 
had the opportunity of compare the result of an agüe and a conventional project 
referred to the same product as it is the case of this work. And ñnally, several 
studies such as [42,41,43,44] have been focused on interaction requirements and 
the conflicts related to this interaction. However, they are mostly focused on 
conventional methodologies. 

3 Case Study: From TOPENprimer to TOPENbiogas 

In this section we wül provide a description of the case study in which the 
work is based. Subsection 3.1 describes the features of the product that has 
been evolved. The objective is to describe the project scope. In subsection 3.2, 
the used process is briefly described, focusing on the activities about customer 
needs management. Finally, in subsection 3.3 a list of some features existing in 
the initial product that were dropped in result product is presented; also a list 
of new features is included. 

3.1 The Evolution Product Description 

The case study was focused on the evolution of TOPENprimer. TOPENprimer 
was developed under a conventional methodology. It is based on the TOPEN 
(Test Operatíon ENvíronment) architecture [45], that defines a domain specific 
environment for testing, monitoring and operating complex systems. TOPEN 
architecture is made up of four distributed components: Topen Engine is the 
kernel architecture. Míssíon Information Base(MIB) contains the datábase and 
the business rules. Gateway is the element that interacts with the System Under 
Test (SUT). And, finally, TOE is the user graphical interface. TOPEN follows a 
software product line approach [45] and it is specially designed to be adaptable 
to different application domains with a limited cost. For this reason, the evolu
tion to a new domain implied, in general, a well-identified number of changes. 
On the one hand, this limits the scope of the study but, on the other, makes the 
study manageable. However taking advantage of the agüe approach no feature 
was taken for granted in advance. The project consisted in the required evolution 
of TOPENprimer to support a new application domain. The target application 
domain was a biogas power production plant that had to be tested and moni-
tored. TOPENbiogas was the result product in this project. In parallel, a biogas 
power plant simulator was developed in order to validate TOPENbiogas before 
its deployment in the real plant. More details about the evolution project are 
available in [46]. Some features of the product scope are shown in table 1. 



Table 1. Characteristics of initial product TOPENprimer 

Contextual 
Factor 
Structure 
Size 

Technical 
Factors 

Characteristic 
Product 
Architecture 
System Code Lines 
Number of classes 
Code Lines 
by Component 

Number of classes 
by component 

Programming 
Language 
Communication 

TOPENprimer 

Four distributed components 
30667 
216 
MIB: 7779 
TopenEngine: 8372 
Gateway: 907 
TOE: 13609 
MIB: 48 
TopenEngine: 55 
Gateway: 10 
TOE: 103 
Java 

Sockets, RMI 

3.2 The Agüe Development Process Description 

The work reported here has been carried out within ITEA2 Flexí project [47]. 
Serum [48] was used as the management methodology as it widely extended 
and Flexi partners were familiar with it. The constant feedback loops constitute 
the core element of the methodology. The development process is divided into 
short iterations called sprints. Figure 1 shows the Serum project eyele. The 
sprint starts with a planníng and ñnishes with revíew and retrospectíve stages. 
Features to be implemented in the system are registered in an artifact called 
Product Backlog (PB). In our case each feature was deñned of a simple and clear 
way in form of User Story [49], in business language and prioritized by business 
valué. At the beginning of each sprint, the Product Owner decides which PB 

Pre-game 

User Stories 

Sprint 
Backlog 

Planning 
Development 

t SPRINT 
2-4 Weeks 1~ Product 

FeedBack 
Retros pe ctive Review 

Fig. 1. Agüe Development Model with SCRUM 



Ítems should be developed in that sprint. As can be seen in figure 1, there is not 
a specific task to pick up requirements. Pre-game is the most approximate stage 
because of its aims. In this stage, the serum team, together with the customer, 
prepares a list of needs that the system should have in form of user stories. 

3.3 Some New and Dropped Features 

Some of the original TOPENprimer functionalities were modified. Manager fa-
cility was removed. Managers would have implemented operation views of the 
biogas plant; this feature is required to support cooperation of several stake-
holders, e.g. an operator and an engineer. This could have been useful but it 
could be considered in a future upgraded versión. A second issue was the Biogas 
plant visualization. Though the graphical user interface was important, it was 
agreed to postpone its implementation. A third issue was a Natural language 
facility. In TOPENprimer test/operation procedures are translated into natural 
language; the implementation of this feature was postponed. Finally, Opera
tion Commands had some changes because some elements of the test/operation 
language (i.e. wait, for, repeat until, while, createNE or deleteNE) were not 
supported in the implemented versión. 

With respect to new features, a new kind of operation errors was considered 
because the complexity of the plant and its level of criticality were higher than 
that of slot machines. For instance, a gate cannot be cióse if it has not been 
opened before is a very critical restriction. Second, some internal identiñers were 
updated. This was transparent to the user, but implied a higher cost at MIB 
datábase level. Finally, command validation was done both at the real plant 
(simulator of real plant) and at TOPENbiogas. In TOPENprimer this validation 
was only done in the TOPEN environment. 

4 Identifled Issues in the Case Study 

The Serum methodology was tailored according to the speciñe project needs and 
the structure of the team. The project was developed in six sprints, ñfteen days 
long each. The serum team was made out of eight members (some of them with 
part-time). The customer provided the background documentation to define the 
User Stories and took part in the process, though a proxy customer was also 
used. This section describes some problems discovered during the study. Five 
fundamental issues were identified related to requirements working with Serum 
methodology. In particular, the issues identified include requirements elicitation 
tasks, crosseutting requirements, derived requirements, granularity requirements 
and requirements documentation. These issues are not mutually exclusive. 

4.1 Requirements Elicitation 

Requirements elicitation activity intends to identify and understand customer 
needs. In agüe approaches development tasks are not centered in a complete and 
well-defined set of requirements. User needs are incrementally elicited. In [14] 



this closed relation with the customer is reported as very successful. However, 
we have íound tha t it oíten happens tha t the customer is focused on issues on 
what the system has to do, forgetting other aspects, tha t may be become critical, 
such as the use oí resources, maintenance, portability, saíety security or design. 
Most o í these could be classiñed as non-íunctional requirements4 . This happens 
because the customer usually does not have a visión oí technical aspects. The 
problem is not so much how to express these requirements but the impact tha t 
may have on the product if they are not introduced at the right development 
stage. 

r ^ | Customer elicited requirements 

ggg Developmentteam elicited 
requirements 

| J Both elicited requirements 

i | Non evidentway requirements 

H 

Development Team 

Fig. 2. System view from the team and customer 

Actually it might be thought tha t most oí the non-íunctional requirements 
should be known in the ñrst stages of the development [13]. Although agüe 
approaches contémplate an extensive use of refactoring techniques, the impact, 
e.g. to re-design a client-server architecture from a centralized could be dramatic . 
In our opinión, two main perspectives could be identiñed during the requirement 
elicitation: the customer view and the team view. Figure 2 shows it graphically. 
The customer perspective is functionality oriented leaving some product aspects 
out of its visibility such as technical ones. At the other side, the development 
team perspective, depicted in the grid área, covers some requirements derived 
from the customer needs and some others of which the customer might not 
be aware of at all because of their nature. These include platform constraints, 
technical issues, and even development methodologies issues. As it can be shown 
in figure 2, there are some áreas without any visibility. This is because at the 
beginning of the project all the requirements are not available. 

Non Funcional Functional 
Requirements ¡ Requirements 



4.2 Crosscut t ing Requirements 

One of the features that had a strong impact on the project was the transversal 
nature of some requirements. This is the case of non-functional with respect 
to functional requirements, but non-functional requirements do not have the 
exclusivity of transversality. This is similar to the crosscutting concerns concept 
[38,50]. That is, non-functional requirements may be associated to many user 
stories. These crosscutting needs are difñcult to break down into user stories 
such as in the case of safety. There is also no explicit way to express user stories 
interactions. A crosscut requirement is spread over several user stories, therefore, 
some tasks like planning, effort estimation or testing are affected. In the study 
case presented, this type of requirements has been managed under a new concept 
called System Story and that will be presented in the subsection 4.5. A speciñc 
example about this problem is shown in table 2. For example, if TOPENbiogas 
has to get access to the biogas plant locally and remotely; then all commands 
to be implemented have to consider this feature and planning, effort estimation 
and validation tasks are concerned. If it is identiñed too late it could have very 
serious implications on the product architecture what could delay unnecessarily 
get to an acceptable product. 

Table 2. Example of Crosscutting Requirement 

Formal Requirement Deflnition 
TOPEN environment can be accessed either locally or remotely 
System Story 
Id SS 
SS6 

Who 
Test Engineer 

What 
Access the environment 
locally or remotely 

Why 
Opérate and monitor 
Shredding Tank 

4.3 Derived Requirements 

Some required features could seem quite obvious and easy to obtain from the 
customer view. However, they could have an impact in the development tasks 
because some implicit related requirements are not still considered. In the study 
case, this type of hidden needs was classiñed as derived requirements (referring to 
those requirements that were derived from the analysis of other requirements). 
The communication protocols that use the TOPENbiogas commands are an 
example of this. These protocols are different if the environment works in local 
or remote access. In local, TOPENbiogas can check the components status in 
situ but not in remote. For this reason, the protocol has to be redeñned to 
support other additional information when TOPENbiogas is working in remote 
access, as is shown in the table 2. 

4.4 Gr anular ity 

Some user needs can be required at a lower level of detail. This happens not 
only in agüe, of course, but in not conventional approaches the impact can be 



lower as long as a long and detailed requirement process takes place. The issue in 
agüe is to minimize the impact in case a requirement has to be split into lower 
granularity level ones. This is the case, for example, of the variables that are 
used to monitor the Shreddíng Tank, one component of the biogas plant. In a 
ñrst iteration, the Shredding Tank was considered as the component to monitor. 
However, as the project went on, lower granularity variables, that have to be 
monitored too, appeared. The features of these variables affected the operation 
commands format that originally was deñned in a too simplistic way. The result 
was to have to re-implement all the components. A lot of work was, probably 
unnecessarüy, lost. 

4.5 Customer Needs Documentation in Form of Stories 

Finally, we found an important problem when we tried to represent some cus
tomer needs as user stories, which were already known in the initial product 
TOPENprimer. Those TOPENprimer requirements classiñed as functional could 
be written in user stories without problems. The problem appeared when we 
tried to include some needs such as the required datábase management system 
or the response time of TOPENbiogas. We found difñculties because the inclu
sión of features classiñed by conventional methodologies as non-functional, in 
the widest sense of this term, is not clearly deñned in agüe methodologies. We 
tested different solutions along the development. One was that these needs were 
included into user stories themselves. We considered this alternative because user 
stories describe features required by user and, anyway, non-functional require
ments are special user expectations. However, according to Kassab [51], non 
functional requirements management is different to functional. Besides, many 
non-functional requirements often concern múltiple user stories. In our project 
a new concept called System Story was used. System Stories have been deñned 
as "an added element to Agüe methodologies that is used to collect any feature 
that customer/'stakeholders want the system have related to non-functional re
quirements that could not he allocated in user stories" 

5 Discussion 

The results achieved in the previous section show that, in agüe methodologies, 
customer requirements elicitation and management require further maturation 
[39]. Therefore effectiveness can improve in the future. This section presents a 
discussion and some analysis of the previous results. 

5.1 User Stories Interaction 

User stories represent product needs that are deñned and implemented in re-
duced time slot. Agüe teams manage a high number of user stories, that grows 
up during the development duration, e.g. the Product Backlog in Serum or the 
analog element in other agüe methods is a dynamic artifact. As consequence of 



Hidden 
Requirements " 

Hidden 
Requirements'' 

Sprint N 
Backlog 

Sprint N 

Fig. 3. Proposed life cicle for an Agüe development 

it, and from our own experience, the Product Backlog management is a com-
plex task in agüe methodologies like SCRUM. To consider that each user stories 
can be implemented independently of others is an error according to our ex
perience. Several studies such as [42,41,43,44,17] have considered interaction of 
requirements and the conflicts related to this interaction. Most of the problems 
identiñed in section 4 are derived from these implicit requirement interactions 
what implies an overload to Product Backlog management.Although communi-
cation of team members is one of the principies of the Agüe manifestó, some 
speciñc mechanisms to manage user stories dependencies should be advisable. 

Table 3. Examples of User Story 

User Story 
Id US 
US31 

US40 

Who 
Test Engineer 

Test Engineer 

What 
To change the shred-
ding speed of the Tank 
To receive alert of Tank 
over-temperature 

Why 
To opérate Shredding 
Tank 
To monitor Shredding 
Tank 

5.2 A Way to Review Stages 

It seems reevaluation after each sprint should include not only well identiñed 
needs, but also other requirements such as crosscutting or derived requirements. 
Obviously the risk is loosing agility. In the case study we use the revaluation 
and re-prioritization of requirements stage at the end of each sprint to evalúate 
user stories that involve functional requirements from the perspective of poten-
tial non-functional requirements that are usually identiñed in a less obvious way. 
Figure 3 shows the proposed process. An example in our case study was in the 
Gateway component. It didnot appear in user stories because it is transparent 
to the user but was discovered in a revaluation stage. This component had to be 
completely redesigned and implemented to be adapted to the new communica-
tion protocol of the biogas plant. 



5.3 Managing Non-functional Needs 

As it has been shown in the study case, non-functional requirements management 
is one of the tasks that causes more problems in agüe methodologies and it 
have not been still found a right solution. There are two tendencies related to 
this problem. On the one hand, an important agüe methodologies sector thinks 
that user stories are able to represent any system need, both functional and 
non functional, and they do not consider a possible needs classiñcation in agüe 
approaches. On the other hand, there is an increasingly number of studies that 
ñnd many difñculties to deal all requirements in the same way. They think that 
all customer needs are not equal and, therefore, it is necessary to distinguish 
some requirements be-cause their importance or management is different. For 
example, Bostrom et al. in [52] make a differentiation with security requirements 
suggesting Abuser Stories and Security-related User Stories to consider these 
needs. In the case study presented, we have found numerous problems to deal 
all needs equal, mainly management problems, and we have chosen to make 
different between functional and non-functional needs appointing the concept to 
System Story (see section 4.5) 

6 Conclusions and Future Work 

This paper presents some ñnding for requirements processes. These ñndings 
might be currently limiting the success of agüe approaches. Elicitation and man
agement of customer needs, specially non-functional, is an issue that requires 
further research; to get a better understanding of the inner relation between func
tional and non functional may yield in improved Agüe approaches. Requirements 
dependencies is another important issue underlying many identiñed problems 
in this work, such as the management of crosscutting or derived requirements. 
These identiñed issues may be also relevant in conventional processes but this 
paper is an attempt to stress that they may be more critical for Agüe processes. 
Read in other way, Agüe processes may get a higher beneñt if the research 
community progresses within this direction. The work planned for the future 
is dealing with gaining a better empirical knowledge combined with formal ap
proaches. Another issue is studying how improved team cooperation can help in 
situations in which the mentioned issues come up. 

Acknowledgements 

The work reported has been partially sponsored by the Spanish MEC and MI-
CYT under OVAL/PM TIC2006-14840 and FLEXI FIT-340005-2007-37 (ITEA2 
6022). Besides, we would like to express public gratitude to BiogasFuelCell for 
their help in the application domain and Answare-tech, a partner in FLEXI. We 
are also grateful to the rest of the team: A. Espinoza, G. Rueda, J. Pérez, J. 
Díaz, A. Gómez and R. Cavero. 



References 

1. Boehm, B.: A view of 20th and 21st century software engineering. In: ICSE 
2006: Proceedings of the 28th international conference on Software engineering, 
pp. 12-29. ACM, New York (2006) 

2. Lindvall, M., Basili, V.R., Boehm, B.W., Costa, R, Dangle, K., Shull, F., Tesonero, 
R., Williams, L.A., Zelkowitz, M.V.: Empirical findings in agüe methods. In: Wells, 
D., Williams, L. (eds.) XP 2002. LNCS, vol. 2418, pp. 197-207. Springer, Heidelberg 
(2002) 

3. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agüe method-
ologies. Commun. ACM 48(5), 72-78 (2005) 

4. Vijayasarathy, L.R., Turk, D.: Agüe software development: A survey of early 
adopters. Journal of Information Technology Management 19(2) (2008) 

5. Boehm, B.W., Turner, R.: Balancing agility and discipline: Evaluating and inte-
grating agüe and plan-driven methods. In: ICSE, pp. 718-719. IEEE Computer 
Society Press, Los Alamitos (2004) 

6. Boehm, B.W., Turner, R.: Management challenges to implementing agüe processes 
in traditional development organizations. IEEE Software 22(5), 30-39 (2005) 

7. Lamían, C , Basili, V.R.: Iterative and incremental development: A brief history. 
Computer 36(6), 47-56 (2003) 

8. Vilki, K.: Juggling with the paradoxes of agüe transformation. Flexi Newslet-
ter 2(1), 3-5 (2008) 

9. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, 
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, 
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifestó for agüe 
software development (2001) 

10. Beck, K., Andrés, C : Extreme Programming Explained: Embrace Change, 2nd 
edn. Addison-Wesley Professional, Reading (2004) 

11. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE 
2000: Proceedings of the Conference on The Future of Software Engineering, 
pp. 35-46. ACM Press, New York (2000) 

12. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. 
In: FOSE 2007: 2007 Future of Software Engineering, Washington, DC, USA, 
pp. 285-303. IEEE Computer Society Press, Los Alamitos (2007) 

13. Paetsch, F., Eberlein, A., Maurer, F.: Requirements engineering and agüe software 
development. In: WETICE 2003: Proceedings of the Twelfth International Work-
shop on Enabling Technologies, Washington, DC, USA, p. 308. IEEE Computer 
Society, Los Alamitos (2003) 

14. Sillitti, A., Ceschi, M., Russo, B., Succi, G.: Managing uncertainty in requirements: 
A survey in documentation-driven and agüe companies. In: METRICS 2005: Pro
ceedings of the l l t h IEEE International Software Metrics Symposium, Washington, 
DC, USA, p. 17. IEEE Computer Society, Los Alamitos (2005) 

15. Muer, R.: Managing Software or Growth without fear, control, and the manufac-
turing mindset. Addison-Wesley Professional, Reading (2003) 

16. Boehm, B.W.: Software Engineering Economics. Prentice-Hall Advances in Com-
puting Science & Technology Series. Prentice Hall PTR, Englewood Cliffs (1981) 

17. Damián, D., Chisan, J.: An empirical study of the complex relationships be-
tween requirements engineering processes and other processes that lead to payoffs 
in productivity, quality, and risk management. IEEE Trans. Softw. Eng. 32(7), 
433-453 (2006) 



18. Damián, D., Chisan, J., Vaidyanathasamy, L., Pal, Y.: Requirements engineer-
ing and downstream software development: Findings from a case study. Empirical 
Softw. Engg. 10(3), 255-283 (2005) 

19. Basili, V.R., McGarry, F.E., Pajerski, R., Zelkowitz, M.V.: Lessons learned from 
25 years of process improvement: the rise and fall of the nasa software engineering 
laboratory. In: ICSE 2002: Proceedings of the 24th International Conference on 
Software Engineering, pp. 69-79. ACM, New York (2002) 

20. Cao, L., Ramesh, B.: Agüe requirements engineering practices: An empirical study. 
IEEE Software 25(1), 60-67 (2008) 

21. Grünbacher, P., Hofer, C : Complementing xp with requirements negotiation. 
In: Proceedings 3rd Int. Conf. Extreme Programming and Agüe Processes in Soft
ware Engineering, pp. 105-108. Springer, Heidelberg (2002) 

22. Eberlein, A., Leite, J.: Agüe requirements definition: A view from requirements 
engineering. In: International Workshop on Time-Constrained Requirements Engi
neering, Essen, Germany (September 2002) 

23. Dyba, T., Dingsoyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9-10), 833-859 (2008) 

24. Neill, C.J., Laplante, P.A.: Requirements engineering: The state of the practice. 
IEEE Softw. 20(6), 40-45 (2003) 

25. IEEE: IEEE Std 830-1998: IEEE Recommended Practice for Software Require
ments Specifications (1998) 

26. Seaman, C : Qualitative methods in empirical studies of software engineering. IEEE 
Transactions on Software Engineering 25(4), 557-572 (1999) 

27. Merisalo-Rantanen, H., Tuunanen, T., Rossi, M.: Is extreme programming just oíd 
wine in new bottles: A comparison of two cases. J. Datábase Manag. 16(4), 41-61 
(2005) 

28. Ceschi, M., Sillitti, A., Succi, G., De Panfilis, S.: Project management in planbased 
and agile companies. IEEE Software 22(3), 21-27 (2005) 

29. Sutherland, J.: Inventing and reinventing serum in five companies (2001), 
h t t p : / / w w w . a g i l e a l l i a n c e . o r g / s y s t e m / a r t i c l e / f i l e / 8 8 8 / f i l e . p d f 
(accesed, May 2008) 

30. Schwaber, K.: Agile Project Management With Serum. Microsoft Press, Redmond 
(2004) 

31. Mann, C , Maurer, F.: A case study on the impact of serum on overtime and 
customer satisfaction. In: ADC 2005: Proceedings of the Agile Development Con
ference, Washington, DC, USA, pp. 70-79. IEEE Computer Society, Los Alamitos 
(2005) 

32. Capiluppi, A., Fernandez-Ramil, J., Higman, J., Sharp, H.C., Smith, N.: An em
pirical study of the evolution of an agile-developed software system. In: ICSE 2007: 
Proceedings of the 29th international conference on Software Engineering, Wash
ington, DC, USA, pp. 511-518. IEEE Computer Society, Los Alamitos (2007) 

33. Baker, S.: Formalizing agility, part 2: how an agile organization embraced the cmmi. 
In: Agile Conference, p. 8 (July 2006) 

34. Baker, S.W., Thomas, J.C.: Agile principies as a leadership valué system: How agile 
memes survive and thrive in a corporate it culture. In: AGILE 2007: Proceedings 
of the AGILE 2007, Washington, DC, USA, pp. 415-420. IEEE Computer Society, 
Los Alamitos (2007) 

35. Zowghi, D., Paryani, S.: Teaching requirements engineering through role playing: 
lessons learnt. In: Zowghi, D., Paryani, S. (eds.) Proceedings. l l t h IEEE Interna
tional Conference on Requirements Engineering, pp. 233-241 (September 2003) 

http://www.agilealliance.org/system/article/file/888/file.pdf


36. Nawrocki, J.R., Michal Jasi, n., Walter, B., Wojciechowski, A.: Extreme program-
ming modified: Embrace requirements engineering practices. In: RE 2002: Proceed-
ings of the lOth Anniversary IEEE Joint International Conference on Requirements 
Engineering, Washington, DC, USA, pp. 303-310. IEEE Computer Society, Los 
Alamitos (2002) 

37. Pinheiro, F.A.C.: Viewpoints: Requirements honesty. Requir. Eng. 8(3), 183-192 
(2003) 

38. Araujo, J., Ribeiro, J.: Towards an aspect-oriented agüe requirements approach. 
In: Eighth International Workshop on Principies of Software Evolution, pp. 140-143 
(September 2005) 

39. Ribeiro, J.C., Araujo, J.: Asporas: A requirements agüe approach based on sce-
narios and aspects. In: Second International Conference on Research Challenges in 
Information Science. RCIS 2008, pp. 313-324 (June 2008) 

40. Lee, M.: Just-in-time requirements analysisthe engine that drives the planning 
game. In: Proc. 3rd Intl. Conf. Extreme Programming and Agüe Processes in Soft
ware Eng. (XP 2002), pp. 138-141 (2002) 

41. Woit, D.M.: Requirements interaction management in an extreme programming 
environment: a case study. In: ICSE 2005: Proceedings of the 27th international 
conference on Software engineering, pp. 489-494. ACM, New York (2005) 

42. Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements interaction man
agement. ACM Comput. Surv. 35(2), 132-190 (2003) 

43. Shehata, M., Eberlein, A., Fapojuwo, A.: Using semi-formal methods for detecting 
interactions among smart homes policies. Sci. Comput. Program. 67(2-3), 125-161 
(2007) 

44. Kim, M., Park, S., Sugumaran, V., Yang, H.: Managing requirements conflicts 
in software product lines: A goal and scenario based approach. Data Knowl. 
Eng. 61(3), 417-432 (2007) 

45. Magro, B., Garbajosa, J., Pérez, J.: A software product line definition for valida-
tion environments. In: 12th International Conference on Software Product Line, 
pp. 45-54 (September 2008) 

46. Rodríguez, P., Yague, A., Alarcon, P., Garbajosa, J.: Metodologías agües desde 
la perspectiva de la especificación de requisitos funcionales y no funcionales. 
In: 13th Conference on Software Engineering and Databases, JISBD 2008 (2008) 

47. The Flexi Research Project: Itea 2 flexi 
48. Schwaber, K., Beedle, M.: Agüe Software Development with Serum. Prentice Hall 

PTR, Upper Saddle River (2001) 
49. Cohn, M.: User Stories Applied: For Agüe Software Development. The Addison-

Wesley Signature Series. Addison-Wesley Professional, Reading (2004) 
50. Murphy, G.C., Walker, R.J., Baniassad, E.L.A., Robillard, M.P., Lai, A., Kersten, 

M.A.: Does aspect-oriented programming work? Commun. ACM 44(10), 75-77 
(2001) 

51. Kassab, M., Daneva, M., Ormandjieva, O.: Scope management of non-functional 
requirements. In: 33rd EUROMICRO Conference on Software Engineering and 
Advanced Applications, pp. 409-417 (August 2007) 

52. Bostrom, G., Wáyrynen, J., Bodén, M., Beznosov, K., Kruchten, P.: Extending xp 
practices to support security requirements engineering. In: SESS 2006: Proceedings 
of the 2006 international workshop on Software engineering for secure systems, 
pp. 11-18. ACM, New York (2006) 


