
Software systems engineering: a journey to contemporary agile and beyond, do people
matter?
AlQaisi, Raid; Gray, Eddie; Steves, Bonnie

Published in:
Software Quality Management XXV

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
AlQaisi, R, Gray, E & Steves, B 2017, Software systems engineering: a journey to contemporary agile and
beyond, do people matter? in P Marchbank, M Ross & G Staples (eds), Software Quality Management XXV:
Achieving Software Quality in Development and Use. British Computer Society, pp. 159-173.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

https://researchonline.gcu.ac.uk/en/publications/d91bb61a-f5aa-4131-ad05-564093eb9b3c

Software Systems Engineering: A Journey to

Contemporary Agile and Beyond, Do People

Matter?

Raid AlQaisi1, Eddie Gray1, Bonnie Steves2

1School of Engineering and Built Environment, Glasgow Caledonian University,

Glasgow, G4 0BA, UK.

raid.alqaisi@gcu.ac.uk, e.gray@gcu.ac.uk

2The Graduate School, Glasgow Caledonian University,

Glasgow, G4 0BA, UK.

b.steves@gcu.ac.uk

Abstract

This paper explores the evolutionary journey of the approaches and

processes of Software Systems Engineering (SWSE), from the

Traditional methods to Contemporary Agile methods and looks at

elements and issues of importance for future development. It does

this through a comprehensive search of the literature and review of

the findings of an empirical study “Echoes from the Field” [1,2],

which investigates the common practices and issues within the

SWSE industry. Particularly, the paper identifies that the human-

element is common across all the different SWSE approaches and

processes current and past, and that people and their behaviour can

have a significant effect on the success of the SWSE endeavour. In

the literature, there is a focus on developing the approaches of

SWSE to gain a successful outcome, yet very little focus on

modelling the effect of human behaviour on the outcome. To

understand the human-element effect in SWSE, established theories

of human behaviour from the management and psychology

disciplines, such as the Toyota Production System (TPS) or Lean,

Knowledge Creation Theory (KCT) and Emotional Intelligence (EI),

are adapted. The paper concludes that it is not really the approach or

process that is the key to success, but rather it is the people who use

these approaches that can make the approach succeed or fail.

Finally, one of the authors reflects on his experiences of the changes

in SWSE since he attended the first Software Quality Management

(SQM) conference 25 years ago.

Keywords: Human-Element, Agile, Lean, Emotional Intelligence

(EI), and the Knowledge Creation Theory (KCT).

1.0 Introduction

It is intriguing to view the evolution of Software Systems Engineering (SWSE)

over the decades, from its early beginnings in the 1950’s to its current state. At first

glance, it appears that the various processes and approaches to software systems

development and maintenance are quite different from each other. Each SWSE

process has different organisation of the four common basic process activities:

specification, development, validation, and evolution, as defined by Sommerville

[3]. Yet some of the issues with the different SWSE approaches are common

across the different approaches, both past and current.

Such issues are almost constant in their existence across all types of software

systems development processes over the past 60 years and are most often human-

related. It is recognised in the literature, that the human-element in software

development plays an integral part in the success of the software systems

development endeavour. SWSE is, after all, a human-centric craft [1]. Cockburn

[4] highlights that the fundamental characteristics of “people” have a first-order

effect on software development, not a lower-order effect. Such a view on the

importance of the human-element in SWSE was noticed, as early as 1971, in

Weinberg’s [5] book. What is fascinating is that despite this recognition of the

“people” factor, developments of new approaches remain focused on the process,

rather than on the people. Sadly, this is the prominent view in the field, continuing

to seek the silver bullet solution through the development of process [6]. This

paper seeks to understand the effect of the human-element on the success of the

software development and answer the question, “Do people really matter?”

Section 2.0 describes the evolution of SWSE approaches and processes over the

last 60 years and highlights some of the common features and issues. Section 3.0

tackles how SWSE can be seen as a human-centric activity. Section 4.0 discusses

some of the empirical findings of the research project “Echoes from the Field”

[1,2] which explores with SWSE practitioners the common practices and issues

found within the industry. It describes three key themes relating to people that

affect SWSE practice and outcome. To understand the human-related issues,

knowledge of the SWSE discipline is brought together with knowledge from other

disciplines such as the Japanese management theories of Toyota Production

System (TPS) also known as Lean, the Knowledge Creation Theory (KCT) and

Emotional Intelligence (EI) theory from psychology [1]. Section 5.0 describes

these theories and how they model the effects of human behaviour on people’s

creative work.

Insight into the human-element effect in SWSE is drawn from adapting the related

theories of TPS, KCT and EI to software systems creation, in Section 6.0. It is

here that the question in the paper’s title, “Do people matter?” is answered. A

deliberately contradictive viewpoint of the standard Agile vs Traditional

approaches case is provided, with the inclusion of the human-element which is the

common link in all processes and approaches. The paper finishes with the

conclusions in Section 7.0. In a special Reflective Coda (Section 8.0), one of

authors, Mr Eddie Gray, gives his reflections on the commonalities and changes in

SWSE since he attended the first Software Quality Management (SQM) conference

25 years ago.

2.0 Software Systems Engineering – Journey of

Development

According to the literature, the journey of the development of SWSE began with

what is known as the Traditional approaches such as code and fix [7], then moved

on to the first published software systems development approach known as the

phased concept in 1956 by Benington [8], followed by the well-known Waterfall

approach by Royce [9] in 1970.

With the need for delivering complex software systems to meet requirements

within time and budget constraints, various processes and approaches evolved such

as the Spiral Model [7] in 1988 and the Dynamic Systems Development Methods

(DSDM) in 1994 [10,11]. Such processes and approaches evolved to overcome the

weaknesses of previous processes/approaches, to cope with the rapid evolution of

systems, stakeholder demands, technology, and continuously changing

environments [12].

From 2001 new approaches to software development began to appear in the

literature, known as the Contemporary Agile approaches, that followed the

Manifesto for Agile Software Development of 2001 [13]. Examples include Scrum

[14], eXtreme Programming (XP) [15], Lean Software Development [16], and

Disciplined Agile Delivery (DAD) [17]. In theory, the use of the Agile approach,

enables individuals in the development teams to be empowered, more trusted, more

liberated in their task selection, and most importantly, consulted in the software

systems development process. Additionally, unnecessary documentation is reduced

to the minimum [1,13].

What is interesting is the appearance of various methods before and after 2001 that

propose a different view from either Agile or Traditional. For example, the Gilb’s

Evolutionary (Evo) [18] software development method was proposed ahead of the

Manifesto for Agile of 2001 as early as 1988. It focuses on early delivery of high

value to stakeholders by promoting incremental iterative software development

with an emphasis on clear requirements and delivering value [1]. Another example,

in 2003 was the suggested balance of both Traditional and Agile approaches for a

particular project in a particular organisation using a risk management tool [11].

One interesting recent change is the evolution of the Spiral Model into the

Incremental Commitment Spiral Model (ICSM) in 2014 [19]. The ICSM design is

based on the old spiral model design, but with the inclusion of symbolising systems

thinking, best practices, and engineering practices. It covers the full system

development lifecycle, starting from the exploration phase to the operation phase.

It has the aim of better integrating hardware, software, and human-interaction to

cope with the rapid pace of change and to add value for the system users [1,19].

It can be argued that all processes and approaches have more or less the same

principles and aims, i.e. to produce software systems on time, within budget, with

minimal errors, that meet the requirements and add value to stakeholders.

However, they differ in their operation [1,3,20,21].

Both Traditional and Agile approaches have successes and failures in delivering

software systems. For example, both Traditional and Agile have the failures of

technical-debt and scope-creep [1,22]. There is no silver bullet [6] solution;

however, software systems engineers are advised to search and find the best silver

bullet to develop a certain software system in a certain time and context [1].

A review of the literature shows that most, if not all, publications are proponents of

certain approaches trying to advocate the use of a particular approach over other

approaches. For example, Sutherland [23] in his book about Scrum claims that

“The way we work is wrong; this is the solution.” [23, Back cover]. Whereas,

AlQaisi [1] argues, along the ideas of Cockburn (2000), … [Software Engineering]

SWE approaches generally try to approach software development on an abstract

level view at the process level, rather than at the holistic level to consider the

wider sociotechnical environment. Even when taking the holistic view, the focus

remains on the mechanistic SWE approach as a first order component rather than

having the people as a first order component.”[1 p34].

The one common element between all methods is the human-element [1]. As can

be noticed from the literature, there is still a great deal of focus on the

process/approach view and how to implement it, with no direct consideration, at

least explicitly on the human-element dynamics [1]. The following section

discusses how SWSE is human-centric.

3.0 Software Systems Engineering is Human-Centric

Software systems engineers are the innovators and creators of the software

systems. Software development is human-centric and highly dependent on the

human knowledge, innovation, and judgement, and to a large extent is influenced

by the psychology and emotions of the engineers [1,2,24]. The findings of the

empirical study “Echoes from the Field” [1] indicate that the human-centric view is

especially important when using the Agile approach for software systems

development. Yet, the literature on SWSE has only limited publications

researching into the importance of the human-element in software systems

development [1,2,25,26,27].

As early as 1971, Weinberg [5] argues the importance of the psychology of the

engineers in software systems development. For example, he describes how social

factors cause different levels of performance amongst software systems engineers.

Another example is the effect of the environment on individuals and teams. What

is most interesting is that his speculations and ideas are still valid and are true

reflections of contemporary SWSE practices and deficiencies [1]. Boehm in

1991[28] discusses how people and their initiative make projects succeed “Good

people, with good skills and good judgment, are what make projects work.” [28

p.41]. Cockburn in 2000 [4] characterises software systems engineers (People) as a

first order non-linear component in software systems development before the

process/approach. He argues that it is not the methodological equation of how to

develop software, it is the effect of “People” on methodologies [1,4]. DeMarco and

Lister 1988-2013 [25] discuss how major issues in software development are

human related, such as false assumptions, poor specification of requirements, and

lack of top management support, not technical. Therefore, such issues are

complicated and hard to solve [1]. Nevertheless, identifying, acknowledging, and

dealing with them increases the chances of success. The human-side appears to

matter much more than the technical side for a successful outcome [1,2,4,25].

In 2001 Constantine [26] highlights that change in people’s behaviour is slower

than technological change. Consequently, the people side of technology shows

almost stable issues compared to the issues of technological change. He argues that

projects are still running late, over budget, and not delivering the required software

system, where people are still facing the same organisational and cultural

challenges. Good software, successfully delivered comes from the people, not from

the technical tools. [1,26].

In 2012 Broza [27] discusses the human-side of Agile, and how to build the

personal leadership skills of the Agile team. One interesting idea by Broza is his

model of the evolution of the 3P’s (Product, People, and Process). He states the

focus on the three P’s differs through time. For example, in the early

manufacturing theories, the most important P was the process; the second most

important P was the product, leaving the people the least important of all.

Conversely, in the contemporary Agile software development, the focus has shifted

the order of importance of the 3P’s for successful outcome to (People, Product, and

Process) [1,27]. The argument is that focusing on the process and product over

people does not work in a knowledge based and therefore people based field such

as SWSE.

The following section will discuss some of the findings of the empirical study

“Echoes from the Field” based on investigation of the current practices in the

SWSE industry.

4.0 Brief Discussion of Some Findings from the “Echoes

from the Field” Study

This section summarises some related findings from the empirical study “Echoes

from the Field”. Further details on the study design and implementation can be

found in [1,2,24]. Figure 1 shows the thematic map of the inductive thematic

analysis of the findings.

Experience of

Software Engineers:

Co-located

Autonomous Teams

Taking Ownership of

Their Own

Sociotechnical

Environment

People: The

Most Important

Asset in the

Company

Fashion of

Following

Current

Paradigm in

SWE

Corporate

Culture

Co-located

Group Culture

‘Teething

Problems’

 Benefits of Agile

Practice: Ad hoc

Open-friendly

Culture:

Conducive

Environment

‘Bean Counter’

People Make it

Happen

Individual

Differences

Notions of the

Trend: Agile

‘Arbiter’

‘Diluted Culture’

Talented and

Knowledgeable

‘Nerds’

‘The Buzz’

Breaking

Hierarchical

Barriers

Shared Life

Experiences

 Figure 1: The Thematic Map of the Inductive Thematic Analysis from the Study “Echoes

from the Field” [1, p171].

The study [1] showed there is a gap between real-life experience and SWSE

theories. Most of the current software development methodologies/processes focus

on the technical processes rather than on the people who implement and execute

these processes, with the assumption that the processes will always be

implemented accurately by the people. Such a view neglects the fact that people

are different as well as emotionally and psychologically influenced [1]. Thus,

process implementation varies between individuals, teams, and organisations; as

well as across time with the same individuals, teams, and organisations. This is an

important consideration when implementing and practicing SWSE [1].

In the study [1], software systems engineers describe their experience of practicing

SWSE as being members of co-located autonomous teams taking ownership of

their own environment. The following three key themes relating to people were

identified to affect SWSE practice and outcome: 1) Teams work autonomously 2)

Varying depth of the implementation of Agile 3) Apprenticeship style knowledge

exchange and training.

Theme 1: “Teams Work Autonomously”. Most of the software systems cannot be

delivered by any one person single-handedly. The successful delivery of a software

project requires the collaborative group effort of a project team [1]. The

participants in the study preferred to work within an autonomous team with

ownership, strong internal bonds and high level of synergy as well as lively group

dynamics. Such autonomous teams were suggested to be both more Agile and

more productive. Some participants described that at the team level, there are more

informal and ad hoc communications. Some argued that using Agile as a

development approach increased group dynamics, team autonomy, synergy, and

team unity; whereas with the old approach, namely Waterfall, the environment felt

like everyone was competing against one another [1].

Theme 2: “Varying Depth of the Implementation of Agile”. An interesting

aspect of the experience of software systems engineers practicing Agile SWSE,

was the confusion between the theory and practice of the Agile development

approaches. For instance, some teams would apply Agile close to the theory,

whereas others found this challenging.

It is interesting to note that implementing and practicing Agile methods differs

between organisations as well. For example, organisation Alpha in the study [1, 2]

is an older company that has moved to Agile from an older traditional SWSE

approach such as the Waterfall. Whereas, organisation Beta is a young start-up

company with slightly less experienced software engineers compared to Alpha.

The younger software engineers at Beta started software development with Agile

mainly using Scrum. As a result of their different history, Alpha had more issues

implementing Agile than Beta did; however, both organisations preferred Agile

over other processes/approaches. Both organisations perceived the results of using

Agile as a success [1].

Theme 3: “Apprenticeship Style Knowledge Exchange and Training”.

According to the participants, autonomous teams were generally based on co-

locating within ‘physical proximity’, i.e. at the same physical space on the same

site [1]. This co-location resulted in a rich interaction, both formal and informal,

between people that was mostly face-to-face. Such an environment is conducive to

learning and exchanging knowledge between individuals. A related matter pointed

out by the participants was the effect of the training budget-cuts on the group

learning. Interestingly, software systems engineers and managers found solutions

to the situation, by being creative and practising a form of apprenticeship that

shares knowledge and experience together. In the example provided by the

participants, junior team members shadowed more experienced team members to

gain their training and learning [1].

The following section describes theories from related disciplines that can be

adapted to improve SWSE practices.

5.0 Related Disciplines and Adapted Theories

It has been shown that the human-element of SWSE should be treated as of first

order importance when dealing with software development and maintenance

[1,4,5]. Yet, in the SWSE literature, there are no theoretical explanations or

justifications of why the human-element potentially helps success or causes failure.

Fortunately, there are well-established theories in the fields of industrial

production, management and psychology that can provide greater understanding of

the complexity of human behaviour and can help explain the importance of the

human-element in SWSE development. What follows is a brief summary of the

most relevant theories.

5.1 Toyota Production System (Lean)

Known as Lean or the ‘Toyota Production System’ (TPS) [29], its adoption and use

is wide spread around the globe in various industries and businesses. According to

Liker [30], the “Toyota Way” has what is called the 4P’s: Philosophy,

People/Partners, Process and Problem solving; for organisational excellence and

for creating learning enterprise [30,31]. Toyota culture is based on “human

systems” that are put in place to infuse its founding principles of excellence,

mutual prosperity, and trust with all people inside and outside the company. In

brief, people are the heart and soul of the “Toyota Way”. The core of TPS is the

relentless pursuit to eliminate waste or “Muda” [29,30]. Toyota invests long term

in systems of people, technology, and processes that combine to realise high

customer value. TPS can be summarised as a culture of respecting people,

continuous improvement (Kaizen) and eliminating waste. It is a system that is

designed to provide people with the tools they need to continually improve their

work [30]. Toyota is serious about long-term thinking philosophy. The Toyota

problem solving process is based on the Deming’s Plan-Do-Study-Act (PDSA)

cycle [29,30,32].

5.2 Knowledge Creation Theory

The Knowledge Creation Theory (KCT) by Takeuchi and Nonaka [33] is based on

the notion of that knowledge is created and can be passed on by establishing

trusted autonomous teams with cross-functional areas of expertise. Takeuchi and

Nonaka state that knowledge creation should be at the centre of the organisation’s

human resources “human-element” strategy. Companies are not machines, but

living organisms that have their own fundamental purpose, collective sense of

identity, and their own self-knowledge that shapes them [1]. Furthermore, Nonaka

[34] describes two types of human knowledge. The first one is the explicit hard

systematic objective and formal ‘quantifiable’ type that can be articulated in formal

language i.e. codified in the procedures. The second type is the tacit subjective

knowledge that is highly subjective and depends on the hunches, insights, and

intuitions of the employees in the organisations. The second type is hard to

articulate in formal language. Nonaka and Takeuchi [35] state that the interaction

between tacit and explicit knowledge is the key dynamic of knowledge creation in

business organisations. They argue that organisational knowledge creation is a

spiral process in which tacit knowledge interacts with explicit knowledge

repeatedly, creating the knowledge spiral.

5.3 Emotional Intelligence

Goleman [36] first fashioned the theory and term of Emotional Intelligence (EI) in

his book entitled “Emotional Intelligence: Why It Can Matter More Than IQ”. He

claimed that EI ability counted for 66% of the ability needed for all jobs, and 85%

for leadership jobs. This concept was supported by research output from the

industry [37]. EI can be defined as the ability to recognise emotions; “feelings” of

oneself and those of others, for self-motivation, and for managing emotions well in

oneself and in handling relationships [36]. EI encompasses personal (individual

level) competencies that include self-awareness, self-regulation, and self-

motivation; as well as, group (social) competencies that include empathy, people

(social) skills, and handling relationships [1,36].

6.0 Understanding the Human-Element Effect in

Software Systems Engineering Using Related Theories

In his PhD thesis, AlQaisi [1] took the established theories of human behaviour

from other disciplines, namely TPS/Lean, KCT and EI, and adapted them in order

to explain and provide a deeper understanding of the effects of the human-element

on SWSE.

According to the findings of his study [1], software development practices require

a high level of EI as in any other activities involving people. For example, software

engineers described their feelings of excitement, motivation, frustration, confusion,

and sarcasm; and how these related to practice, environment, the surrounding

people, policies, freedom to create, and restrictions [1].

Emotions management and EI theory are important aspects to consider when

understanding the effect of human behaviour and interaction in SWSE. SWSE is

not an individual effort. It is a collective effort of a team of software engineers

working and interacting together to achieve a common goal of developing

successful software systems. The participating CEO of organisation Beta

commented on how software engineers are very emotional people, the opposite of

what people usually think about software engineers [1]. People are different and

vary in their interaction and communications dynamics.

Understanding the variety of these human dynamics is vital for successful teams.

The people dynamics and interactions are an integral part of the human behaviour

theories KCT, TPS, and EI. People, including teams, interact together to create and

share knowledge. Software systems development is a creative and a knowledge

based field. Therefore understanding the effects of human behaviour on that

knowledge creation using the theories of KCT, TPS and EI might explain why the

Traditional and Agile approaches have both strengths and weaknesses that are

related to the people factor which according to the studies outlined above is shown

to be more important than the process factor.

Generally, in the SWSE literature, one typically finds listing of the strengths of the

Agile approaches in comparison with listing of the weaknesses of the Traditional

approaches. As such, all the traits focus on the process. Accordingly, in Figure 2 it

is intentional that the diagram is constructed with an alternative focus, indicating

that both Agile and Traditional approaches sometimes succeed and sometimes fail

and that Traditional approaches have strengths and Agile approaches also have

weaknesses. The key element in identifying routes to success is factoring in the

middle Human-Element of Figure 2.

Fail sometimes e.g.:

- Technical-debt

- Scope-creep

Strengths e.g.:

- Quicker Response to Change

- Shorter Cycles.

- Flexible to Accommodate

Change.

Weaknesses e.g.:

- Requires Specialised

Training.

- Not Standardised as Practice.

- Requires Agile Coaches and

Evangelists.

Succeed sometimes e.g.:

- Deliver value on time, budget,

and requirements.

Weaknesses e.g.:

- Slower Response to Change.

- Longer Cycles.

- Rigid and Hard to

Accommodate Change.

Strengths e.g.:

- Specialised Training not a

Must.

- Practice Can be Standardised.

- Does not Require Coaches

and Evangelists.

 Human-Effect:

Human-Dynamics:

Creativity, Innovation,

Imagination, Emotions, and

Psychology. Such as:

 {Passion for Success, Anxiety,

Ownership, Empowerment,

Knowledge, Interactions}.

Agile Traditional

Figure 2: Agile versus Traditional View: Human-Effect within Software Systems

Engineering.

Raising the consideration of the contradictive view as in Figure 2 is the intention of

this paper. All processes and approaches have failures and successes; however, the

common link is the people who create the potential for the success or failure of

implementing any software systems development approach. What is interesting is

that a simple literature search for Agile software systems project failure did not

result in papers discussing such an important matter. Returning to the 3P’s example

by Broza [27] in Section 3.0, Agile approaches shifted the order of the 3P’s to

focus on people as in (People, Product, Process). However, in practice and in the

literature according to the findings of the study [1,2], the focus is still on the

process as a first order P. All evidence suggests that focusing on the process and

product over people does not work in such a creative and knowledge-based field as

SWSE.

7.0 Conclusion

It can be argued that Software Systems Engineering (SWSE) can be considered as

an interdisciplinary complex field that is heavily reliant on the human innovation,

creativity, and imagination, and affected by the psychology and emotions of the

software engineers [1]. The traditional view in the software engineering field, with

software development approaches such as Agile and the Waterfall for example, is

focused on the technical side. However, as discussed in [1,2,24] that narrowly

focused view should be expanded to encompass the wider sociotechnical

environment that includes not only the technical side, but also the human social

side. By focusing only on the technical process, the context in which SWSE is

practiced is missing. SWSE is human-dependent, and thus is highly reliant on the

context [1]. The human-element dimension is central to SWSE and its successful

practice.

All approaches and processes can potentially succeed or fail depending on people.

It is not about Agile, nor the Traditional approaches, but rather the people who

practice and use these approaches. Thus, the success of any approach, regardless of

being Agile or Traditional is based on the software systems engineers - “People”.

According to the findings of the study “Echoes from the Field” [1], it can be

argued that it is important to acknowledge the human-element of SWSE as a first

order component of successful practice and development.

Software systems engineers preferred as they described: to be co-located within

autonomous teams that take ownership of their own sociotechnical environment

and SWSE approach. Once people are trusted and have a sense of ownership, they

will do their best to make it happen. So, it is the people who choose the appropriate

process to develop a particular system, in a particular time, within a particular

context; where the process could be changed across time and context. It is

therefore the people’s ability to shape their sociotechnical environment and

approach that makes the approach or process successful.

8.0 Reflective Coda by Eddie Gray

I am in a privileged position to have attended not only the 1st International

Conference on SQM, in 1993 as a presenter but many more over the 25 years to the

present day and can therefore reflect on past and recent trends and identify what

has faded away and what has become more “popular”. The cover of the

Proceedings of the 1st International Conference on SQM, 1993 pretty much

summed up the “fashion” or state-of-the-art in SQM in 1993 with its emphasis on

standards for software quality and software process improvement, ranging from

ISO0 9001 QMS through CMM to TickIT and TQM. Over the years these have all

transitioned respectively to ISO 9001:2015, TickITplus and CMMI. How and why

has this transition happened?

8.1 Into the Seventh Decade of Software Process Improvement

Activity

Solomon says “There is nothing new under the sun”.

Software process improvement is not a new idea or aim. The first reference to

improving the programming process appeared in 1951 [38]. To date there has been

an intensive 66 year effort to improve the software process.

Various technical innovations have been introduced in the more recent decades, for

example CASE tools, various programming paradigms, and formal methods and so

on. The most notable innovations were met with great expectations and various

‘experts’ greeting each in turn as the panacea to solve most problems. Although

growth in system size and functional complexity have been facilitated, through the

years many techniques and tools have been tried and failed to deliver substantial

global improvements to the software process. None have lived up to the real

expectations. Technology alone then is clearly not enough.

Since the mid-1980s interest in the software process and its improvement has

increased substantially, with the most significant contributing factor being the

ongoing efforts of the Software Engineering Institute (SEI) at Carnegie-Mellon

University, Pittsburgh, USA. Leading figures in this camp, such as Humphrey [39]

and Curtis [40], have been directly responsible for increased industry awareness.

Bill Curtis [40] of the SEI spoke of the need for PROCESS, PEOPLE and TOOLS

(TECHNOLOGY), as three prongs of a concerted software productivity and

quality effort.

Based on experience and evidence over the years, the trend has been to recognise

more explicitly that IT systems and software systems are sociotechnical systems -

they cannot be understood without a sense of the relationship between the social

aspects (organisation and people) and the technical aspects (hardware and

software) of the system. The social and the technical aspects of a system are

inextricably linked. Although this is a strand of systems thinking that dates back to

the early 1950s, it is becoming increasingly recognised, as evidenced in the earlier

sections of this paper.

This trend is also reflected in the topic of my presentation at the 1st International

Conference on SQM, in 1993, the Capability Maturity Model (CMM) which

developed into Capability Maturity Model Integration (CMMI) for Development.

The current CMMI model is divided into 22 process areas, of which 5 cover

organisational aspects and many of the others cover management aspects.

The CMMI started life in 1987 as the Capability Maturity Model (CMM), a project

at SEI. The CMM for Software was first published in 1991 and is based on a

checklist of critical success factors in software development projects during the

late 1970s and early 1980s. Its success led to the development of CMMs for a

variety of subjects beyond software. The proliferation of new models was

confusing, so the government funded a two-year project that involved more than

200 industry and academic experts to create a single, extensible framework that

integrated systems engineering, software engineering, and product development.

The result was CMMI. The most important thing to understand about the CMMI-

DEV is that it is a model. It is not a process or a prescription to be followed. It is a

set of organisational behaviours that have proven to be of merit in software

development and systems engineering. Why use such a model? What is its

purpose? And how best should it be used? These are critical questions and are

perhaps the most misunderstood issues with CMMI.

Best practices are intrinsically a matter of opinion since there is no known right

way to develop or evolve software properly. When people get together and decide

on best practice, it could be viewed that what is agreed upon is synthetic, from

imagination to a significant extent, and indeed arising from their opinion(s) of

software ‘engineering’ state-of-the-art in the 1990s. Perhaps it is not the best

practice processes choices that are important here for success, so much as that

people get together and agree, and are motivated to implement and make a success

of their best practice choices.

9.0 References

1 AlQaisi R, Software and Systems Adaptive Value Engineering (2SAVE)

Framework Based on the Empirical Study ‘Echoes from the Field’, PhD

Thesis, Glasgow Caledonian University, Glasgow, UK, 2015

2 AlQaisi R, Gray E, Echoes from the Field: An Empirical Study of

Contemporary Software Engineering Practices in Some Software

Development Organisations in the UK, proceedings of SQM 2013, pp 47-62,

London, 2013

3 Sommerville I, Software Engineering, 9th Edition, Addison-Wesley 2011,

ISBN-13: 978-0137053469

4 Cockburn A R, Characterizing People as Non-Linear, First-Order Components

in Software Development, the 4th International Multi-Conference on Systems,

Cybernetics and Informatics, Orlando, Florida, USA, 2000

5 Weinberg G M, The Psychology of Computer Programming, First Edition,

Litton Educational Publishing 1971, ISBN-13: 978-0442292645

6 Brooks F P Jr (1987). No Silver Bullet Essence and Accidents of Software

Engineering. Computer, 20(4), pp 10-19

7 Boehm B (1988). A Spiral Model of Software Development and

Enhancement. Computer, 21(5), pp 61-72

8 Benington H D, (1983). Production of Large Computer Programs, Annals of

the History of Computing, 5(4), pp 350-361

9 Royce W, Managing the Development of Large Software Systems,

Proceedings of the IEEE/WESCON conference, pp 328-339, USA, 1970

10 Abrahamsson P, Outi S, Ronkainen J, (2002). Agile Software Development

Methods. First Edition. Finland: VTT Electonics

11 Boehm B, Turner R B, Balancing Agility and Discipline: A Guide for the

Perplexed. Addison-Wesley 2003, ISBN-13: 978-0321186126

12 AlQaisi R, Gray E, Empirical study of unpredictable culture in reality:

Delivering value to stakeholders or developing requirements for senior

management, Proceedings of the APCOSEC 2013 Systems Engineering

annual conference, pp 1-15, Yokohama, Japan, 2013

13 The Agile Alliance. (2001). Manifesto for Agile Software Development.

Retrieved 22nd June 2013, from the Agile Alliance: http://agilemanifesto.org/

14 Scrum Alliance. (2010). Scrum Guide by Schwaber K, Sutherland J. Retrieved

19th April 2010, from the Scrum Alliance:

https://www.scrumalliance.org/why-scrum/scrum-resources

15 Beck K, Extreme Programming Explained: Embrace Change, First Edition,

Addison-Wesley 2000, ISBN-13: 978-0201616415

16 Poppendieck M, Poppendieck T, Lean Software Development An Agile

Toolkit, First Edition, Addison-Wesley 2003 ISBN-13: 978-0321150783

17 Ambler S, Lines M, Disciplined Agile Delivery; A Practitioner's Guide to

Agile Software Delivery in the Enterprise, First Edition, IBM Press 2012

ISBN-13: 978-0132810135

18 Gilb. (2014). Evo Manuscript Edition by Gilb K T. Retrieved 30th May 2013,

from Gilb: www.gilb.com

19 Boehm B, Lane J A, Koolmanojwong S, Turner R, Incremental Commitment

Spiral Model: Principles and Practices for Successful Systems and Software,

First Edition, Addison Wesley 2014, USA. ISBN-13: 978-0321808226

20 Copeland L, Choosing The Best Of The Plan-Driven and Agile Development

Methods, Conference & EXPO Presentation, Better Software Conference &

EXPO 2008, Presentation, USA, 2008

21 Gilb T, Competitive Engineering: A Handbook for Systems Engineering

Requirements Engineering, and Software Engineering Using Planguage, First

Edition, Elsevier 2005, ISBN-13: 978-0750665070

22 Microsoft. (2011). Ten Year Agile Retrospective: How We Can Improve in

the Next Ten Years, by Sutherland J. Retrieved 10th September 2014, from

Microsoft: http://msdn.microsoft.com/en-us/library/hh350860.aspx

23 Sutherland J, SCRUM: A Revolutionary Approach to Building Teams,

Beating Deadlines and Boosting Productivity, First Edition, Crown Publishing

Group 2014, ISBN-13: 978-1847941084

24 AlQaisi R, Gray E, Moffat D, Wang B, ‘Echoes From The Field’ Study

Outcome and Discussion: Reflections on Software Systems Engineering

Practice, Proceedings of the 26th Annual INCOSE International Symposium

2013, pp 1.15, Edinburgh, UK, 2016

25 DeMarco T, Lister T, Peopleware: Productive Projects and Teams, Third

Edition, Addison-Wesley 2013, ISBN-13: 978-0321934116

26 Constantine L L, The Peopleware Papers, First Edition, Yourdon Press 2001,

ISBN: 978-0130601230

27 Broza G, The Human Side of Agile - How to Help Your Team Deliver, First

Edition, 3P Vantage Media 2012, ISBN-13: 978-0988001626

28 Boehm B (1991). Software Risk Management: Principles and Practices,

Software, IEEE, 8(1), pp 32-41

29 Ohno T, Toyota Production System: Beyond Large-Scale Production, First

Edition, CRC Press 1988, ISBN-13: 978-0915299140

30 Liker J K, The Toyota Way: 14 Management Principles from the World's

Greatest Manufacturer, First Edition, McGraw-Hill 2004, ISBN-13: 978-

0071392310

31 Liker J K, Hoseus M, Toyota Culture: The Heart and Soul of the Toyota Way,

First Edition, McGraw-Hill 2008, ISBN-13: 978-0071492171

32 Moen R D, Norman C L (2010). Circling Back: Clearing up Myths About the

Deming Cycle and Seeing How it Keeps Evolving, Quality Progress, 43(11),

pp. 22-28

33 Takeuchi H, Nonaka I (1986) The New New Product Development Game,

Harvard Business Review, 64(1), pp. 137-146

34 Nonaka I (1991). The Knowledge-Creating Company, Harvard Business

Review, 69(6), pp. 96-104

35 Nonaka I, Takeuchi H, The Knowledge-Creating Company: How Japanese

Companies Create the Dynamics of Innovation, First Edition, Oxford

University Press 1995, ISBN-13: 978-0195092691

36 Goleman D, Emotional Intelligence: Why It Can Matter More Than IQ, First

Edition, Bloomsbury Publishing 1996, ISBN-13: 978-0747526223

37 Kunnanatt J T (2004). Emotional Intelligence: The New Science of

Interpersonal Effectiveness, Human Resource Development Quarterly, 15(4),

pp. 489-495

38 Wilkes MV, Wheeler D J, Gill S. The Preparation of Programs for an

Electronic Digital Computer, Addison-Wesley 1951, ISBN-13:

9780938228035

39 Humphrey W S, Managing the Software Process, First Edition, SEI series on

Software Engineering, Addison Wesley 1989, ISBN-13: 978-0201180954

40 Curtis W, Software process improvement and the superior software

organisation, proceedings of the Software Process Modelling in Practice

conference 1993, pp. 22-23, London, UK, 1993

