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Abstract 

 

This paper explores the evolutionary journey of the approaches and 

processes of Software Systems Engineering (SWSE), from the 

Traditional methods to Contemporary Agile methods and looks at 

elements and issues of importance for future development.  It does 

this through a comprehensive search of the literature and review of 

the findings of an empirical study “Echoes from the Field” [1,2], 

which investigates the common practices and issues within the 

SWSE industry.  Particularly, the paper identifies that the human-

element is common across all the different SWSE approaches and 

processes current and past, and that people and their behaviour can 

have a significant effect on the success of the SWSE endeavour. In 

the literature, there is a focus on developing the approaches of 

SWSE to gain a successful outcome, yet very little focus on 

modelling the effect of human behaviour on the outcome.  To 

understand the human-element effect in SWSE, established theories 

of human behaviour from the management and psychology 

disciplines, such as the Toyota Production System (TPS) or Lean, 

Knowledge Creation Theory (KCT) and Emotional Intelligence (EI), 

are adapted.  The paper concludes that it is not really the approach or 

process that is the key to success, but rather it is the people who use 

these approaches that can make the approach succeed or fail.    

Finally, one of the authors reflects on his experiences of the changes 

in SWSE since he attended the first Software Quality Management 

(SQM) conference 25 years ago. 

Keywords: Human-Element, Agile, Lean, Emotional Intelligence 

(EI), and the Knowledge Creation Theory (KCT). 



1.0  Introduction 

It is intriguing to view the evolution of Software Systems Engineering (SWSE) 

over the decades, from its early beginnings in the 1950’s to its current state. At first 

glance, it appears that the various processes and approaches to software systems 

development and maintenance are quite different from each other.  Each SWSE 

process has different organisation of the four common basic process activities: 

specification, development, validation, and evolution, as defined by Sommerville 

[3]. Yet some of the issues with the different SWSE approaches are common 

across the different approaches, both past and current. 

Such issues are almost constant in their existence across all types of software 

systems development processes over the past 60 years and are most often human-

related. It is recognised in the literature, that the human-element in software 

development plays an integral part in the success of the software systems 

development endeavour. SWSE is, after all, a human-centric craft [1]. Cockburn 

[4] highlights that the fundamental characteristics of “people” have a first-order 

effect on software development, not a lower-order effect. Such a view on the 

importance of the human-element in SWSE was noticed, as early as 1971, in 

Weinberg’s [5] book. What is fascinating is that despite this recognition of the 

“people” factor, developments of new approaches remain focused on the process, 

rather than on the people. Sadly, this is the prominent view in the field, continuing 

to seek the silver bullet solution through the development of process [6].  This 

paper seeks to understand the effect of the human-element on the success of the 

software development and answer the question, “Do people really matter?” 

Section 2.0 describes the evolution of SWSE approaches and processes over the 

last 60 years and highlights some of the common features and issues.  Section 3.0 

tackles how SWSE can be seen as a human-centric activity. Section 4.0 discusses 

some of the empirical findings of the research project “Echoes from the Field” 

[1,2] which explores with SWSE practitioners the common practices and issues 

found within the industry. It describes three key themes relating to people that 

affect SWSE practice and outcome. To understand the human-related issues, 

knowledge of the SWSE discipline is brought together with knowledge from other 

disciplines such as the Japanese management theories of Toyota Production 

System (TPS) also known as Lean, the Knowledge Creation Theory (KCT) and 

Emotional Intelligence (EI) theory from psychology [1]. Section 5.0 describes 

these theories and how they model the effects of human behaviour on people’s 

creative work. 

Insight into the human-element effect in SWSE is drawn from adapting the related 

theories of TPS, KCT and EI to software systems creation, in Section 6.0.  It is 

here that the question in the paper’s title, “Do people matter?” is answered.  A 

deliberately contradictive viewpoint of the standard Agile vs Traditional 

approaches case is provided, with the inclusion of the human-element which is the 

common link in all processes and approaches. The paper finishes with the 

conclusions in Section 7.0.  In a special Reflective Coda (Section 8.0), one of 



authors, Mr Eddie Gray, gives his reflections on the commonalities and changes in 

SWSE since he attended the first Software Quality Management (SQM) conference 

25 years ago. 

2.0 Software Systems Engineering – Journey of 

Development 

According to the literature, the journey of the development of SWSE began with 

what is known as the Traditional approaches such as code and fix [7], then moved 

on to the first published software systems development approach known as the 

phased concept in 1956 by Benington [8], followed by the well-known Waterfall 

approach by Royce [9] in 1970. 

With the need for delivering complex software systems to meet requirements 

within time and budget constraints, various processes and approaches evolved such 

as the Spiral Model [7] in 1988 and the Dynamic Systems Development Methods 

(DSDM) in 1994 [10,11]. Such processes and approaches evolved to overcome the 

weaknesses of previous processes/approaches, to cope with the rapid evolution of 

systems, stakeholder demands, technology, and continuously changing 

environments [12]. 

From 2001 new approaches to software development began to appear in the 

literature, known as the Contemporary Agile approaches, that followed the 

Manifesto for Agile Software Development of 2001 [13]. Examples include Scrum 

[14], eXtreme Programming (XP) [15], Lean Software Development [16], and 

Disciplined Agile Delivery (DAD) [17]. In theory, the use of the Agile approach, 

enables individuals in the development teams to be empowered, more trusted, more 

liberated in their task selection, and most importantly, consulted in the software 

systems development process. Additionally, unnecessary documentation is reduced 

to the minimum [1,13]. 

What is interesting is the appearance of various methods before and after 2001 that 

propose a different view from either Agile or Traditional. For example, the Gilb’s 

Evolutionary (Evo) [18] software development method was proposed ahead of the 

Manifesto for Agile of 2001 as early as 1988. It focuses on early delivery of high 

value to stakeholders by promoting incremental iterative software development 

with an emphasis on clear requirements and delivering value [1]. Another example, 

in 2003 was the suggested balance of both Traditional and Agile approaches for a 

particular project in a particular organisation using a risk management tool [11]. 

One interesting recent change is the evolution of the Spiral Model into the 

Incremental Commitment Spiral Model (ICSM) in 2014 [19]. The ICSM design is 

based on the old spiral model design, but with the inclusion of symbolising systems 

thinking, best practices, and engineering practices. It covers the full system 

development lifecycle, starting from the exploration phase to the operation phase. 



It has the aim of better integrating hardware, software, and human-interaction to 

cope with the rapid pace of change and to add value for the system users [1,19]. 

It can be argued that all processes and approaches have more or less the same 

principles and aims, i.e. to produce software systems on time, within budget, with 

minimal errors, that meet the requirements and add value to stakeholders. 

However, they differ in their operation [1,3,20,21]. 

Both Traditional and Agile approaches have successes and failures in delivering 

software systems. For example, both Traditional and Agile have the failures of 

technical-debt and scope-creep [1,22]. There is no silver bullet [6] solution; 

however, software systems engineers are advised to search and find the best silver 

bullet to develop a certain software system in a certain time and context [1]. 

A review of the literature shows that most, if not all, publications are proponents of 

certain approaches trying to advocate the use of a particular approach over other 

approaches. For example, Sutherland [23] in his book about Scrum claims that 

“The way we work is wrong; this is the solution.” [23, Back cover]. Whereas, 

AlQaisi [1] argues, along the ideas of Cockburn (2000), … [Software Engineering] 

SWE approaches generally try to approach software development on an abstract 

level view at the process level, rather than at the holistic level to consider the 

wider sociotechnical environment. Even when taking the holistic view, the focus 

remains on the mechanistic SWE approach as a first order component rather than 

having the people as a first order component.”[1 p34]. 

The one common element between all methods is the human-element [1].  As can 

be noticed from the literature, there is still a great deal of focus on the 

process/approach view and how to implement it, with no direct consideration, at 

least explicitly on the human-element dynamics [1]. The following section 

discusses how SWSE is human-centric. 

3.0 Software Systems Engineering is Human-Centric 

Software systems engineers are the innovators and creators of the software 

systems. Software development is human-centric and highly dependent on the 

human knowledge, innovation, and judgement, and to a large extent is influenced 

by the psychology and emotions of the engineers [1,2,24]. The findings of the 

empirical study “Echoes from the Field” [1] indicate that the human-centric view is 

especially important when using the Agile approach for software systems 

development. Yet, the literature on SWSE has only limited publications 

researching into the importance of the human-element in software systems 

development [1,2,25,26,27]. 

As early as 1971, Weinberg [5] argues the importance of the psychology of the 

engineers in software systems development. For example, he describes how social 

factors cause different levels of performance amongst software systems engineers. 



Another example is the effect of the environment on individuals and teams. What 

is most interesting is that his speculations and ideas are still valid and are true 

reflections of contemporary SWSE practices and deficiencies [1]. Boehm in 

1991[28] discusses how people and their initiative make projects succeed “Good 

people, with good skills and good judgment, are what make projects work.” [28 

p.41]. Cockburn in 2000 [4] characterises software systems engineers (People) as a 

first order non-linear component in software systems development before the 

process/approach. He argues that it is not the methodological equation of how to 

develop software, it is the effect of “People” on methodologies [1,4]. DeMarco and 

Lister 1988-2013 [25] discuss how major issues in software development are 

human related, such as false assumptions, poor specification of requirements, and 

lack of top management support, not technical. Therefore, such issues are 

complicated and hard to solve [1]. Nevertheless, identifying, acknowledging, and 

dealing with them increases the chances of success. The human-side appears to 

matter much more than the technical side for a successful outcome [1,2,4,25]. 

In 2001 Constantine [26] highlights that change in people’s behaviour is slower 

than technological change. Consequently, the people side of technology shows 

almost stable issues compared to the issues of technological change. He argues that 

projects are still running late, over budget, and not delivering the required software 

system, where people are still facing the same organisational and cultural 

challenges. Good software, successfully delivered comes from the people, not from 

the technical tools. [1,26].  

In 2012 Broza [27] discusses the human-side of Agile, and how to build the 

personal leadership skills of the Agile team. One interesting idea by Broza is his 

model of the evolution of the 3P’s (Product, People, and Process). He states the 

focus on the three P’s differs through time. For example, in the early 

manufacturing theories, the most important P was the process; the second most 

important P was the product, leaving the people the least important of all. 

Conversely, in the contemporary Agile software development, the focus has shifted 

the order of importance of the 3P’s for successful outcome to (People, Product, and 

Process) [1,27]. The argument is that focusing on the process and product over 

people does not work in a knowledge based and therefore people based field such 

as SWSE. 

The following section will discuss some of the findings of the empirical study 

“Echoes from the Field” based on investigation of the current practices in the 

SWSE industry. 

4.0 Brief Discussion of Some Findings from the “Echoes 

from the Field” Study 

This section summarises some related findings from the empirical study “Echoes 

from the Field”. Further details on the study design and implementation can be 



found in [1,2,24]. Figure 1 shows the thematic map of the inductive thematic 

analysis of the findings. 

Experience of 

Software Engineers: 

Co-located 

Autonomous Teams 

Taking Ownership of 

Their Own 

Sociotechnical 

Environment

People: The 

Most Important 

Asset in the 

Company

Fashion of 

Following 

Current 

Paradigm in 

SWE

Corporate 

Culture

Co-located 

Group Culture

‘Teething 

Problems’

 Benefits of Agile 

Practice: Ad hoc

Open-friendly 

Culture: 

Conducive 

Environment

‘Bean Counter’

People Make it 

Happen

Individual 

Differences

Notions of the 

Trend: Agile

‘Arbiter’

‘Diluted Culture’

Talented and 

Knowledgeable  

‘Nerds’

‘The Buzz’

Breaking 

Hierarchical 

Barriers 

Shared Life 

Experiences

 Figure 1: The Thematic Map of the Inductive Thematic Analysis from the Study “Echoes 

from the Field” [1, p171]. 

 

The study [1] showed there is a gap between real-life experience and SWSE 

theories. Most of the current software development methodologies/processes focus 

on the technical processes rather than on the people who implement and execute 

these processes, with the assumption that the processes will always be 

implemented accurately by the people. Such a view neglects the fact that people 

are different as well as emotionally and psychologically influenced [1]. Thus, 

process implementation varies between individuals, teams, and organisations; as 

well as across time with the same individuals, teams, and organisations. This is an 

important consideration when implementing and practicing SWSE [1]. 

In the study [1], software systems engineers describe their experience of practicing 

SWSE as being members of co-located autonomous teams taking ownership of 

their own environment.  The following three key themes relating to people were 

identified to affect SWSE practice and outcome: 1) Teams work autonomously 2) 

Varying depth of the implementation of Agile 3) Apprenticeship style knowledge 

exchange and training. 

Theme 1: “Teams Work Autonomously”. Most of the software systems cannot be 

delivered by any one person single-handedly. The successful delivery of a software 

project requires the collaborative group effort of a project team [1]. The 



participants in the study preferred to work within an autonomous team with 

ownership, strong internal bonds and high level of synergy as well as lively group 

dynamics. Such autonomous teams were suggested to be both more Agile and 

more productive. Some participants described that at the team level, there are more 

informal and ad hoc communications. Some argued that using Agile as a 

development approach increased group dynamics, team autonomy, synergy, and 

team unity; whereas with the old approach, namely Waterfall, the environment felt 

like everyone was competing against one another [1]. 

Theme 2: “Varying Depth of the Implementation of Agile”. An interesting 

aspect of the experience of software systems engineers practicing Agile SWSE, 

was the confusion between the theory and practice of the Agile development 

approaches. For instance, some teams would apply Agile close to the theory, 

whereas others found this challenging. 

It is interesting to note that implementing and practicing Agile methods differs 

between organisations as well. For example, organisation Alpha in the study [1, 2] 

is an older company that has moved to Agile from an older traditional SWSE 

approach such as the Waterfall. Whereas, organisation Beta is a young start-up 

company with slightly less experienced software engineers compared to Alpha. 

The younger software engineers at Beta started software development with Agile 

mainly using Scrum. As a result of their different history, Alpha had more issues 

implementing Agile than Beta did; however, both organisations preferred Agile 

over other processes/approaches. Both organisations perceived the results of using 

Agile as a success [1]. 

Theme 3: “Apprenticeship Style Knowledge Exchange and Training”. 

According to the participants, autonomous teams were generally based on co-

locating within ‘physical proximity’, i.e. at the same physical space on the same 

site [1]. This co-location resulted in a rich interaction, both formal and informal, 

between people that was mostly face-to-face. Such an environment is conducive to 

learning and exchanging knowledge between individuals. A related matter pointed 

out by the participants was the effect of the training budget-cuts on the group 

learning. Interestingly, software systems engineers and managers found solutions 

to the situation, by being creative and practising a form of apprenticeship that 

shares knowledge and experience together. In the example provided by the 

participants, junior team members shadowed more experienced team members to 

gain their training and learning [1]. 

The following section describes theories from related disciplines that can be 

adapted to improve SWSE practices. 

5.0 Related Disciplines and Adapted Theories 

It has been shown that the human-element of SWSE should be treated as of first 

order importance when dealing with software development and maintenance 



[1,4,5]. Yet, in the SWSE literature, there are no theoretical explanations or 

justifications of why the human-element potentially helps success or causes failure. 

Fortunately, there are well-established theories in the fields of industrial 

production, management and psychology that can provide greater understanding of 

the complexity of human behaviour and can help explain the importance of the 

human-element in SWSE development. What follows is a brief summary of the 

most relevant theories. 

5.1 Toyota Production System (Lean) 

Known as Lean or the ‘Toyota Production System’ (TPS) [29], its adoption and use 

is wide spread around the globe in various industries and businesses. According to 

Liker [30], the “Toyota Way” has what is called the 4P’s: Philosophy, 

People/Partners, Process and Problem solving; for organisational excellence and 

for creating learning enterprise [30,31]. Toyota culture is based on “human 

systems” that are put in place to infuse its founding principles of excellence, 

mutual prosperity, and trust with all people inside and outside the company. In 

brief, people are the heart and soul of the “Toyota Way”. The core of TPS is the 

relentless pursuit to eliminate waste or “Muda” [29,30]. Toyota invests long term 

in systems of people, technology, and processes that combine to realise high 

customer value. TPS can be summarised as a culture of respecting people, 

continuous improvement (Kaizen) and eliminating waste. It is a system that is 

designed to provide people with the tools they need to continually improve their 

work [30]. Toyota is serious about long-term thinking philosophy. The Toyota 

problem solving process is based on the Deming’s Plan-Do-Study-Act (PDSA) 

cycle [29,30,32]. 

5.2 Knowledge Creation Theory 

The Knowledge Creation Theory (KCT) by Takeuchi and Nonaka [33] is based on 

the notion of that knowledge is created and can be passed on by establishing 

trusted autonomous teams with cross-functional areas of expertise. Takeuchi and 

Nonaka state that knowledge creation should be at the centre of the organisation’s 

human resources “human-element” strategy. Companies are not machines, but 

living organisms that have their own fundamental purpose, collective sense of 

identity, and their own self-knowledge that shapes them [1]. Furthermore, Nonaka 

[34] describes two types of human knowledge. The first one is the explicit hard 

systematic objective and formal ‘quantifiable’ type that can be articulated in formal 

language i.e. codified in the procedures. The second type is the tacit subjective 

knowledge that is highly subjective and depends on the hunches, insights, and 

intuitions of the employees in the organisations. The second type is hard to 

articulate in formal language. Nonaka and Takeuchi [35] state that the interaction 

between tacit and explicit knowledge is the key dynamic of knowledge creation in 

business organisations. They argue that organisational knowledge creation is a 

spiral process in which tacit knowledge interacts with explicit knowledge 

repeatedly, creating the knowledge spiral. 



5.3 Emotional Intelligence 

Goleman [36] first fashioned the theory and term of Emotional Intelligence (EI) in 

his book entitled “Emotional Intelligence:  Why It Can Matter More Than IQ”. He 

claimed that EI ability counted for 66% of the ability needed for all jobs, and 85% 

for leadership jobs. This concept was supported by research output from the 

industry [37]. EI can be defined as the ability to recognise emotions; “feelings” of 

oneself and those of others, for self-motivation, and for managing emotions well in 

oneself and in handling relationships [36]. EI encompasses personal (individual 

level) competencies that include self-awareness, self-regulation, and self-

motivation; as well as, group (social) competencies that include empathy, people 

(social) skills, and handling relationships [1,36]. 

6.0 Understanding the Human-Element Effect in 

Software Systems Engineering Using Related Theories 

In his PhD thesis, AlQaisi [1] took the established theories of human behaviour 

from other disciplines, namely TPS/Lean, KCT and EI, and adapted them in order 

to explain and provide a deeper understanding of the effects of the human-element 

on SWSE. 

According to the findings of his study [1], software development practices require 

a high level of EI as in any other activities involving people. For example, software 

engineers described their feelings of excitement, motivation, frustration, confusion, 

and sarcasm; and how these related to practice, environment, the surrounding 

people, policies, freedom to create, and restrictions [1]. 

Emotions management and EI theory are important aspects to consider when 

understanding the effect of human behaviour and interaction in SWSE. SWSE is 

not an individual effort. It is a collective effort of a team of software engineers 

working and interacting together to achieve a common goal of developing 

successful software systems. The participating CEO of organisation Beta 

commented on how software engineers are very emotional people, the opposite of 

what people usually think about software engineers [1]. People are different and 

vary in their interaction and communications dynamics. 

Understanding the variety of these human dynamics is vital for successful teams.  

The people dynamics and interactions are an integral part of the human behaviour 

theories KCT, TPS, and EI. People, including teams, interact together to create and 

share knowledge. Software systems development is a creative and a knowledge 

based field. Therefore understanding the effects of human behaviour on that 

knowledge creation using the theories of KCT, TPS and EI might explain why the 

Traditional and Agile approaches have both strengths and weaknesses that are 

related to the people factor which according to the studies outlined above is shown 

to be more important than the process factor. 



Generally, in the SWSE literature, one typically finds listing of the strengths of the 

Agile approaches in comparison with listing of the weaknesses of the Traditional 

approaches. As such, all the traits focus on the process. Accordingly, in Figure 2 it 

is intentional that the diagram is constructed with an alternative focus, indicating 

that both Agile and Traditional approaches sometimes succeed and sometimes fail 

and that Traditional approaches have strengths and Agile approaches also have 

weaknesses.  The key element in identifying routes to success is factoring in the 

middle Human-Element of Figure 2. 

Fail sometimes e.g.:
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- Scope-creep

Strengths e.g.:

- Quicker Response to Change

- Shorter Cycles.

- Flexible to Accommodate 

Change.
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- Not Standardised as Practice.

- Requires Agile Coaches and 
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- Practice Can be Standardised.
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 Human-Effect:
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Psychology. Such as:

 {Passion for Success, Anxiety, 

Ownership, Empowerment, 

Knowledge, Interactions}.

Agile Traditional

 

Figure 2: Agile versus Traditional View: Human-Effect within Software Systems 

Engineering. 

 

Raising the consideration of the contradictive view as in Figure 2 is the intention of 

this paper. All processes and approaches have failures and successes; however, the 

common link is the people who create the potential for the success or failure of 

implementing any software systems development approach. What is interesting is 

that a simple literature search for Agile software systems project failure did not 

result in papers discussing such an important matter. Returning to the 3P’s example 

by Broza [27] in Section 3.0, Agile approaches shifted the order of the 3P’s to 

focus on people as in (People, Product, Process). However, in practice and in the 

literature according to the findings of the study [1,2], the focus is still on the 

process as a first order P. All evidence suggests that focusing on the process and 

product over people does not work in such a creative and knowledge-based field as 

SWSE. 

7.0 Conclusion 

It can be argued that Software Systems Engineering (SWSE) can be considered as 

an interdisciplinary complex field that is heavily reliant on the human innovation, 

creativity, and imagination, and affected by the psychology and emotions of the 



software engineers [1]. The traditional view in the software engineering field, with 

software development approaches such as Agile and the Waterfall for example, is 

focused on the technical side. However, as discussed in [1,2,24] that narrowly 

focused view should be expanded to encompass the wider sociotechnical 

environment that includes not only the technical side, but also the human social 

side. By focusing only on the technical process, the context in which SWSE is 

practiced is missing. SWSE is human-dependent, and thus is highly reliant on the 

context [1]. The human-element dimension is central to SWSE and its successful 

practice. 

All approaches and processes can potentially succeed or fail depending on people. 

It is not about Agile, nor the Traditional approaches, but rather the people who 

practice and use these approaches. Thus, the success of any approach, regardless of 

being Agile or Traditional is based on the software systems engineers - “People”. 

According to the findings of the study “Echoes from the Field” [1], it can be 

argued that it is important to acknowledge the human-element of SWSE as a first 

order component of successful practice and development. 

Software systems engineers preferred as they described: to be co-located within 

autonomous teams that take ownership of their own sociotechnical environment 

and SWSE approach. Once people are trusted and have a sense of ownership, they 

will do their best to make it happen. So, it is the people who choose the appropriate 

process to develop a particular system, in a particular time, within a particular 

context; where the process could be changed across time and context.  It is 

therefore the people’s ability to shape their sociotechnical environment and 

approach that makes the approach or process successful. 

8.0 Reflective Coda by Eddie Gray 

I am in a privileged position to have attended not only the 1st International 

Conference on SQM, in 1993 as a presenter but many more over the 25 years to the 

present day and can therefore reflect on past and recent trends and identify what 

has faded away and what has become more “popular”. The cover of the 

Proceedings of the 1st International Conference on SQM, 1993 pretty much 

summed up the “fashion” or state-of-the-art in SQM in 1993 with its emphasis on 

standards for software quality and software process improvement, ranging from 

ISO0 9001 QMS through CMM to TickIT and TQM. Over the years these have all 

transitioned respectively to ISO 9001:2015, TickITplus and CMMI. How and why 

has this transition happened? 

8.1 Into the Seventh Decade of Software Process Improvement 

Activity 

Solomon says “There is nothing new under the sun”. 



Software process improvement is not a new idea or aim. The first reference to 

improving the programming process appeared in 1951 [38]. To date there has been 

an intensive 66 year effort to improve the software process. 

Various technical innovations have been introduced in the more recent decades, for 

example CASE tools, various programming paradigms, and formal methods and so 

on. The most notable innovations were met with great expectations and various 

‘experts’ greeting each in turn as the panacea to solve most problems. Although 

growth in system size and functional complexity have been facilitated, through the 

years many techniques and tools have been tried and failed to deliver substantial 

global improvements to the software process. None have lived up to the real 

expectations. Technology alone then is clearly not enough. 

Since the mid-1980s interest in the software process and its improvement has 

increased substantially, with the most significant contributing factor being the 

ongoing efforts of the Software Engineering Institute (SEI) at Carnegie-Mellon 

University, Pittsburgh, USA. Leading figures in this camp, such as Humphrey [39] 

and Curtis [40], have been directly responsible for increased industry awareness. 

Bill Curtis [40] of the SEI spoke of the need for PROCESS, PEOPLE and TOOLS 

(TECHNOLOGY), as three prongs of a concerted software productivity and 

quality effort. 

Based on experience and evidence over the years, the trend has been to recognise 

more explicitly that IT systems and software systems are sociotechnical systems -

they cannot be understood without a sense of the relationship between the social 

aspects (organisation and people) and the technical aspects (hardware and 

software) of the system. The social and the technical aspects of a system are 

inextricably linked. Although this is a strand of systems thinking that dates back to 

the early 1950s, it is becoming increasingly recognised, as evidenced in the earlier 

sections of this paper. 

This trend is also reflected in the topic of my presentation at the 1st International 

Conference on SQM, in 1993, the Capability Maturity Model (CMM) which 

developed into Capability Maturity Model Integration (CMMI) for Development. 

The current CMMI model is divided into 22 process areas, of which 5 cover 

organisational aspects and many of the others cover management aspects. 

The CMMI started life in 1987 as the Capability Maturity Model (CMM), a project 

at SEI. The CMM for Software was first published in 1991 and is based on a 

checklist of critical success factors in software development projects during the 

late 1970s and early 1980s. Its success led to the development of CMMs for a 

variety of subjects beyond software. The proliferation of new models was 

confusing, so the government funded a two-year project that involved more than 

200 industry and academic experts to create a single, extensible framework that 

integrated systems engineering, software engineering, and product development. 

The result was CMMI. The most important thing to understand about the CMMI-



DEV is that it is a model. It is not a process or a prescription to be followed. It is a 

set of organisational behaviours that have proven to be of merit in software 

development and systems engineering. Why use such a model? What is its 

purpose? And how best should it be used? These are critical questions and are 

perhaps the most misunderstood issues with CMMI. 

Best practices are intrinsically a matter of opinion since there is no known right 

way to develop or evolve software properly. When people get together and decide 

on best practice, it could be viewed that what is agreed upon is synthetic, from 

imagination to a significant extent, and indeed arising from their opinion(s) of 

software ‘engineering’ state-of-the-art in the 1990s. Perhaps it is not the best 

practice processes choices that are important here for success, so much as that 

people get together and agree, and are motivated to implement and make a success 

of their best practice choices. 
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