6,127 research outputs found

    Privacy Preserving Utility Mining: A Survey

    Full text link
    In big data era, the collected data usually contains rich information and hidden knowledge. Utility-oriented pattern mining and analytics have shown a powerful ability to explore these ubiquitous data, which may be collected from various fields and applications, such as market basket analysis, retail, click-stream analysis, medical analysis, and bioinformatics. However, analysis of these data with sensitive private information raises privacy concerns. To achieve better trade-off between utility maximizing and privacy preserving, Privacy-Preserving Utility Mining (PPUM) has become a critical issue in recent years. In this paper, we provide a comprehensive overview of PPUM. We first present the background of utility mining, privacy-preserving data mining and PPUM, then introduce the related preliminaries and problem formulation of PPUM, as well as some key evaluation criteria for PPUM. In particular, we present and discuss the current state-of-the-art PPUM algorithms, as well as their advantages and deficiencies in detail. Finally, we highlight and discuss some technical challenges and open directions for future research on PPUM.Comment: 2018 IEEE International Conference on Big Data, 10 page

    Privacy-enhancing Aggregation of Internet of Things Data via Sensors Grouping

    Full text link
    Big data collection practices using Internet of Things (IoT) pervasive technologies are often privacy-intrusive and result in surveillance, profiling, and discriminatory actions over citizens that in turn undermine the participation of citizens to the development of sustainable smart cities. Nevertheless, real-time data analytics and aggregate information from IoT devices open up tremendous opportunities for managing smart city infrastructures. The privacy-enhancing aggregation of distributed sensor data, such as residential energy consumption or traffic information, is the research focus of this paper. Citizens have the option to choose their privacy level by reducing the quality of the shared data at a cost of a lower accuracy in data analytics services. A baseline scenario is considered in which IoT sensor data are shared directly with an untrustworthy central aggregator. A grouping mechanism is introduced that improves privacy by sharing data aggregated first at a group level compared as opposed to sharing data directly to the central aggregator. Group-level aggregation obfuscates sensor data of individuals, in a similar fashion as differential privacy and homomorphic encryption schemes, thus inference of privacy-sensitive information from single sensors becomes computationally harder compared to the baseline scenario. The proposed system is evaluated using real-world data from two smart city pilot projects. Privacy under grouping increases, while preserving the accuracy of the baseline scenario. Intra-group influences of privacy by one group member on the other ones are measured and fairness on privacy is found to be maximized between group members with similar privacy choices. Several grouping strategies are compared. Grouping by proximity of privacy choices provides the highest privacy gains. The implications of the strategy on the design of incentives mechanisms are discussed
    • …
    corecore