896 research outputs found

    A survey of techniques and technologies for web-based real-time interactive rendering

    Get PDF
    When exploring a virtual environment, realism depends mainly on two factors: realistic images and real-time feedback (motions, behaviour etc.). In this context, photo realism and physical validity of computer generated images required by emerging applications, such as advanced e-commerce, still impose major challenges in the area of rendering research whereas the complexity of lighting phenomena further requires powerful and predictable computing if time constraints must be attained. In this technical report we address the state-of-the-art on rendering, trying to put the focus on approaches, techniques and technologies that might enable real-time interactive web-based clientserver rendering systems. The focus is on the end-systems and not the networking technologies used to interconnect client(s) and server(s).Siemens; Bertelsmann mediaSystems GmbH; Eptron Multimedia; Instituto Politécnico do Porto - ISEP-IPP; Institute Laboratory for Mixed Realities at the Academy of Media Arts Cologne, LMR; MÀlardalen Real-Time Research Centre (MRTC) at MÀlardalen University in VÀsterÄs; Q-Systems

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given

    Redundant movements in autonomous mobility: experimental and theoretical analysis

    Get PDF
    <p>Distributed load balancers exhibit thrashing where tasks are repeatedly moved between locations due to incomplete global load information. This paper shows that systems of autonomous mobile programs (AMPs) exhibit the same behaviour, and identifies two types of redundant movement (greedy effect). AMPs are unusual in that, in place of some external load management system, each AMP periodically recalculates network and program parameters and may independently move to a better execution environment. Load management emerges from the behaviour of collections of AMPs.</p> <p>The paper explores the extent of greedy effects by simulating collections of AMPs and proposes negotiating AMPs (NAMPs) to ameliorate the problem. We present the design of AMPs with a competitive negotiation scheme (cNAMPs), and compare their performance with AMPs by simulation. We establish new properties of balanced networks of AMPs, and use these to provide a theoretical analysis of greedy effects.</p&gt

    High-fidelity rendering on shared computational resources

    Get PDF
    The generation of high-fidelity imagery is a computationally expensive process and parallel computing has been traditionally employed to alleviate this cost. However, traditional parallel rendering has been restricted to expensive shared memory or dedicated distributed processors. In contrast, parallel computing on shared resources such as a computational or a desktop grid, offers a low cost alternative. But, the prevalent rendering systems are currently incapable of seamlessly handling such shared resources as they suffer from high latencies, restricted bandwidth and volatility. A conventional approach of rescheduling failed jobs in a volatile environment inhibits performance by using redundant computations. Instead, clever task subdivision along with image reconstruction techniques provides an unrestrictive fault-tolerance mechanism, which is highly suitable for high-fidelity rendering. This thesis presents novel fault-tolerant parallel rendering algorithms for effectively tapping the enormous inexpensive computational power provided by shared resources. A first of its kind system for fully dynamic high-fidelity interactive rendering on idle resources is presented which is key for providing an immediate feedback to the changes made by a user. The system achieves interactivity by monitoring and adapting computations according to run-time variations in the computational power and employs a spatio-temporal image reconstruction technique for enhancing the visual fidelity. Furthermore, algorithms described for time-constrained offline rendering of still images and animation sequences, make it possible to deliver the results in a user-defined limit. These novel methods enable the employment of variable resources in deadline-driven environments

    Parallel For Loops on Heterogeneous Resources

    Get PDF
    In recent years, Graphics Processing Units (GPUs) have piqued the interest of researchers in scientific computing. Their immense floating point throughput and massive parallelism make them ideal for not just graphical applications, but many general algorithms as well. Load balancing applications and taking advantage of all computational resources in a machine is a difficult challenge, especially when the resources are heterogeneous. This dissertation presents the clUtil library, which vastly simplifies developing OpenCL applications for heterogeneous systems. The core focus of this dissertation lies in clUtil\u27s ParallelFor construct and our novel PINA scheduler which can efficiently load balance work onto multiple GPUs and CPUs simultaneously

    Guaranteed bandwidth implementation of message passing interface on workstation clusters

    Get PDF
    Due to their wide availability, networks of workstations (NOW) are an attractive platform for parallel processing. Parallel programming environments such as Parallel Virtual Machine (PVM), and Message Passing Interface (MPI) offer the user a convenient way to express parallel computing and communication for a network of workstations. Currently, a number of MPI implementations are available that offer low (average ) latency and high bandwidth environments to users by utilizing an efficient MPI library specification and high speed networks. In addition to high bandwidth and low average latency requirements, mission critical distributed applications, audio/video communications require a completely different type of service, guaranteed bandwidth and worst case delays (worst case latency) to be guaranteed by underlying protocol. The hypothesis presented in this paper is that it is possible to provide an application a low level reliable transport protocol with performance and guaranteed bandwidth as close to the hardware on which it is executing. The hypothesis is proven by designing and implementing a reliable high performance message passing protocol interface which also provides the guaranteed bandwidth to MPI and to mission critical distributed MPI applications. This protocol interface works with the Fiber Distributed Data Interface (FDDI) driver which has been designed and implemented for Performance Technology Inc. commercial high performance FDDI product, the Station Management Software 7.3, and the ADI / MPICH (Argonne National Laboratory and Mississippi State University\u27s free MPI implementation)

    Architectures for ubiquitous 3D on heterogeneous computing platforms

    Get PDF
    Today, a wide scope for 3D graphics applications exists, including domains such as scientific visualization, 3D-enabled web pages, and entertainment. At the same time, the devices and platforms that run and display the applications are more heterogeneous than ever. Display environments range from mobile devices to desktop systems and ultimately to distributed displays that facilitate collaborative interaction. While the capability of the client devices may vary considerably, the visualization experiences running on them should be consistent. The field of application should dictate how and on what devices users access the application, not the technical requirements to realize the 3D output. The goal of this thesis is to examine the diverse challenges involved in providing consistent and scalable visualization experiences to heterogeneous computing platforms and display setups. While we could not address the myriad of possible use cases, we developed a comprehensive set of rendering architectures in the major domains of scientific and medical visualization, web-based 3D applications, and movie virtual production. To provide the required service quality, performance, and scalability for different client devices and displays, our architectures focus on the efficient utilization and combination of the available client, server, and network resources. We present innovative solutions that incorporate methods for hybrid and distributed rendering as well as means to manage data sets and stream rendering results. We establish the browser as a promising platform for accessible and portable visualization services. We collaborated with experts from the medical field and the movie industry to evaluate the usability of our technology in real-world scenarios. The presented architectures achieve a wide coverage of display and rendering setups and at the same time share major components and concepts. Thus, they build a strong foundation for a unified system that supports a variety of use cases.Heutzutage existiert ein großer Anwendungsbereich fĂŒr 3D-Grafikapplikationen wie wissenschaftliche Visualisierungen, 3D-Inhalte in Webseiten, und Unterhaltungssoftware. Gleichzeitig sind die GerĂ€te und Plattformen, welche die Anwendungen ausfĂŒhren und anzeigen, heterogener als je zuvor. AnzeigegerĂ€te reichen von mobilen GerĂ€ten zu Desktop-Systemen bis hin zu verteilten Bildschirmumgebungen, die eine kollaborative Anwendung begĂŒnstigen. WĂ€hrend die LeistungsfĂ€higkeit der GerĂ€te stark schwanken kann, sollten die dort laufenden Visualisierungen konsistent sein. Das Anwendungsfeld sollte bestimmen, wie und auf welchem GerĂ€t Benutzer auf die Anwendung zugreifen, nicht die technischen Voraussetzungen zur Erzeugung der 3D-Grafik. Das Ziel dieser Thesis ist es, die diversen Herausforderungen zu untersuchen, die bei der Bereitstellung von konsistenten und skalierbaren Visualisierungsanwendungen auf heterogenen Plattformen eine Rolle spielen. WĂ€hrend wir nicht die Vielzahl an möglichen AnwendungsfĂ€llen abdecken konnten, haben wir eine reprĂ€sentative Auswahl an Rendering-Architekturen in den Kernbereichen wissenschaftliche Visualisierung, web-basierte 3D-Anwendungen, und virtuelle Filmproduktion entwickelt. Um die geforderte QualitĂ€t, Leistung, und Skalierbarkeit fĂŒr verschiedene Client-GerĂ€te und -Anzeigen zu gewĂ€hrleisten, fokussieren sich unsere Architekturen auf die effiziente Nutzung und Kombination der verfĂŒgbaren Client-, Server-, und Netzwerkressourcen. Wir prĂ€sentieren innovative Lösungen, die hybrides und verteiltes Rendering als auch das Verwalten der DatensĂ€tze und Streaming der 3D-Ausgabe umfassen. Wir etablieren den Web-Browser als vielversprechende Plattform fĂŒr zugĂ€ngliche und portierbare Visualisierungsdienste. Um die Verwendbarkeit unserer Technologie in realitĂ€tsnahen Szenarien zu testen, haben wir mit Experten aus der Medizin und Filmindustrie zusammengearbeitet. Unsere Architekturen erreichen eine umfassende Abdeckung von Anzeige- und Rendering-Szenarien und teilen sich gleichzeitig wesentliche Komponenten und Konzepte. Sie bilden daher eine starke Grundlage fĂŒr ein einheitliches System, das eine Vielzahl an AnwendungsfĂ€llen unterstĂŒtzt
    • 

    corecore