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AUTOMATIC SCHEDULING AND DYNAMIC LOAD
SHARING OF PARALLEL COMPUTATIONS ON
HETEROGENEOUS WORKSTATION CLUSTERS

1. INTRODUCTION

1.1. BACKGROUND

Parallel computing on workstation clusters has become a very viable option

for optimal use of available resources. Workstations connected by an interconnection

network can be considered to be a single computing entity that can handle com-

putation intensive tasks that would otherwise take too long on a particular work-

station. Extremely powerful processors like the Digital Alpha, U1traSPARC, Intel

P6 and high bandwidth, low latency networks have ensured that parallel computing

on workstation clusters is an alternative to expensive, dedicated, high performance

parallel machines. Educational institutions and the industry are increasingly unwill-

ing to make a huge investment and commitment on a particular parallel machine or

parallel architecture in the absence of any consensus on an industry standard or the

best architecture.

Workstation clusters are popular for a number of reasons. Typically, because

of the small client base, new parallel machines with the latest processors take more

time to be available than workstations using the very same processors. This lag

and the extremely rapid rate at which processor speeds have doubled over the last
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decade roughly once every eighteen months have resulted in parallel machines

that have consistently smaller MFLOPS ratings per processor than the processors

used in high-end workstations. The complex nature of the underlying operating

system and specialized hardware has made parallel machines more prone to failure

than workstations. Upgrading parallel machines is also neither easy nor inexpen-

sive. Workstations can be added to a existing network within hours. They also

allow individual users to do word processing, send and receive e-mail and run other

applications in addition to performing parallel computations. Since a larger volume

of workstations are sold per year in comparison to dedicated parallel machines, the

performance to price ratio is very favorable for workstations. When users run inter-

active applications, a number of CPU cycles are wasted which could possibly have

been used for some useful purpose. This availability of free CPU cycles as well as

the better performance to price ratio could be the best motivating factors for the

rapid growth of parallel computing on workstation clusters.

Programming on workstation clusters introduces a number of problems that

never existed with parallel machines. The primary stumbling block is the absence

of environments that provide true operating system and vendor independence. This

is needed to harness all the available resources as educational institutions and the

industry typically have workstations from different vendors. A number of machines

use different forms of data representations and alignment characteristics. This ne-

cessitates the use of using a machine independent form of data representation like

XDR or ISIS which have their associated overheads. The available memory and CPU

speed of the workstations also vary widely among themselves. Machines can be con-

nected by FDDI, ATM, Ethernet or some other local area network. Debugging and

development of applications on workstation clusters is very difficult because of the



3

absence of convenient tools. Each machine in a typical network is not available for

dedicated parallel use. This means at different instants, the workload on individual

workstations will vary. To efficiently use such a cluster, it is imperative that we

use an adaptive load balancing scheme that reduces the total turnaround times for

parallel jobs by moving work from heavily loaded processors to more lightly loaded

ones.

A number of libraries and environments have been developed to provide some

level of support to heterogeneous computing. PVM, P4, Mentat, Charm, Dataparal-

lel C and Condor are some examples. Some low level debugging tools like Xab exist

but very few comprehensive debugging tools are available for heterogeneous clusters.

Several of the languages and environments support the data parallel paradigm while

others follow the control parallel paradigm.

1.2. RELATED WORK

Despite the plethora of environments and libraries available, the amount of

related work is not significant. Libraries like PVM [8], P4, TCGMSG are low level

message passing libraries and provide very little run-time support. Sprite [3], Con-

dor [14] and Stealth [12] look at problems of extremely large data sizes with little or

no communication. Transfer of data in such environments usually implies a process

migration. This necessitates a complicated method of checkpointing and restart or

redundant process execution on multiple workstations. The class of problems this

report looks into is what is referred to as medium grain-sized parallel problems and

run-time environments that provide some degree of support, particularly automatic

scheduling and dynamic load balancing.
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1.2.1. Mentat

Mentat is a dynamic, object oriented parallel programming system developed

at the University of Virginia [9]. Parallel programs are written in an object oriented

language called the Mentat Programming Language (MPL) which can then be run

on heterogeneous workstation clusters. Typical MPL programs look very similar to

C++ programs with the keyword mentat used to distinguish classes which can be

run in parallel. Mentat adopts a data-flow model of programming with the program

graph constructed at run-time by observing data dependencies as the execution un-
folds.

The Mentat Run-time System has an Instantiation Manager (IM) running

on each workstation which handle scheduling and instantiation decisions of newly

created Mentat objects. The IM uses the services of the Fully Automated Load Co-

ordinator for Networks (FALCON), a heuristic scheduler based on a sender-initiated

adaptive load sharing strategy. FALCON makes decisions on newly created work

using a threshold policy. As per this policy, a task originating at a node is accepted

for processing if the local state of the system is below a threshold. Otherwise an

attempt is made to transfer the task to other suitable workstations. The work-

station to which the task is migrated to is selected on a random, round-robin or

best-most-recently basis. Once the work has been accepted for processing it cannot

be migrated later to other processors.
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1.2.2. Paralex

Para lex [1] is a parallel programming environment for distributed systems de-

veloped jointly at Cornell University and the University of Bologna. Para lex is also

based on a data-flow model, with Para lex programs being composed of nodes and

links. Programs are written using a graphical editor which specifies the dependen-

cies in the program. It uses the ISIS toolkit to ensure uniform data representation

and provides some fault tolerance and distributed debugging support.

Para lex maps computations by ascertaining dependencies in the task graph.

Computations involving dependencies are grouped into chains. A chain is defined

as a sequence of nodes in the task graph that need to be executed sequentially due

to data dependence constraints. At load time, the run-time system schedules chains

to workstations. Each workstation has a daemon process which constantly monitors

the load. If two consecutive load measurements differ from each other by a certain

threshold, the daemon broadcasts this information to an ISIS process group. Each

Para lex process that wishes to, can collect load information by joining this process

group and listening to load messages. Whenever the process controller for this ISIS

process group becomes aware of the execution of a new node in the task graph, it

examines future nodes in the graph that begin new chains. If they exist, the con-

troller examines the load on the participating workstations and decides who should

be in charge of the new chain. If a new mapping, different from the default mapping

is proposed, then the new chain is started as per the new mapping and the previous

default mapping is discarded. This is achieved by changing the coordinator for the

Para lex chain. Thus, the run-time system constantly improves itself over the default

mapping. The controller and the mapping process is never absolutely necessary for
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program execution. If the controller fails, then new chains are simply spawned as

per the default load time mapping. However, once a chain has been mapped to a

processor it cannot be migrated until a new chain boundary is reached.

1.2.3. Dataparallel C

Dataparallel C is a SIMD style language [15] and run-time environment quite

similar to C. Dataparallel C was developed jointly at Oregon State University and

the University of New Hampshire and currently runs on a variety of parallel ma-

chines and heterogeneous workstation clusters. The programming model is based

upon virtual processors, global name space, and synchronous execution of a single

instruction stream. Conceptually, the sequential portion of the Dataparallel C pro-

gram executes on a front end, while the parallel portion executes on a large number

of virtual processors. In its current implementation, each physical processor emu-

lates the front end as well as its share of the virtual processors.

Load is balanced among heterogeneous workstations by varying the number

of virtual processors emulated by each physical processor. At load time, the Dat-

aparallel C compiler distributes virtual processors based on the relative speeds of

individual workstations. Later work can be potentially migrated among processors

whenever a new parallel portion of the Dataparallel C code is executed. To measure

the rate at which each workstation is doing work, each workstation constantly mon-

itors the average computation time per virtual processors emulated. Periodically,

this information is shared with all other processors participating in the computa-

tions. The Dataparallel C run-time system estimates the time taken to perform

an average load redistribution and then sets the time difference between two in-
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formation exchanges so that the estimated load redistribution time is only a small

fraction of the time between two information exchanges. After the load information

exchange, each workstation decides how many virtual processors it should ideally be

emulating. If this ideal figure is close to the actual number being emulated, no work

migration is performed. In fact, if on any one of the processors, the difference is

less than 5%, no work migration is initiated. Otherwise work is migrated by moving

virtual processors so that the number emulated on each physical processor is equal

to the ideal, calculated number.

1.2.4. Dome

Dome is a parallel programming environment [2], developed at the School

of Computer Science of Carnegie Mellon University by Adam Beguelin and others.

Dome was built for heterogeneous workstation clusters and is actually an acronym

for Distributed Object Migration Environment. The run-time system and language

is built on top of PVM [8]. The Dome language is object based and data parallel
in design. It uses a run-time environment which provides support for architecture

independent checkpoint and restart.

Dome balances load by performing periodic synchronizations and data mi-

gration among parallel tasks. Load balancing phases in Dome are triggered when

a certain number of operations are over on Dome objects. During a load balancing

phase, tasks exchange information regarding their performance during the previous

work phase. Dome tasks communicate with each other using a ring topology. Each

task exchanges its performance information with its left and right neighbor in the

ring. Based on this information, portions of Dome tasks are migrated. The data
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movement is therefore only between neighbors and so expensive global synchroniza-

tions can be avoided. However, since only local synchronizatons are performed, the

rate of convergence to the ideal distribution is slow.

1.3. OVERVIEW

Load distribution strategies can be classified into different categories depend-

ing on their nature and method of work migration. Chapter 2 examines some of

these differences and classifies the different strategies under some broad categories.

A complete and effective load distribution strategy should have some components

which ensure that it gives good overall performance under all conditions of load.

These components are discussed in detail in this chapter. The Charm Parallel Pro-

gramming Environment and Run-time Environment are discussed in Chapter 3.

Chapter 4 examines the actual strategy used by the load distribution scheme to

schedule and migrate work to ensure that all workstations finish off available work

as close as possible to each other. The load distribution strategy was tested on a

series of application test programs. The programs in this test suite are described in

Chapter 5. Chapter 6 describes the evaluation methods used to prove the effective-

ness of the load distribution strategy and various monitoring systems to gather data

and convert it into intelligent information through graphical animations. Chapter

7 summarizes the results obtained and demonstrates the effectiveness of the load

distribution strategy. The report ends with a brief summary of the work done which

includes its advantages, shortfalls and possible avenues for future development.
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2. LOAD DISTRIBUTION SCHEMES

2.1. MOTIVATION

Workstations of different processing speeds and architectures have different

performance characteristics. In addition, multiple jobs and users make workloads on

heterogeneous workstations highly variable. It is therefore very difficult to predict

the total time taken by a parallel job if no dynamic scheduling or load sharing is

performed. Several studies have shown that substantial performance increases can

be obtained [5] [13] when intelligent dynamic scheduling is used.

2.2. SCHEDULING STRATEGIES

Tasks can be scheduled in two ways. Static Scheduling refers to schedul-
ing decisions made at compile-time using a priori knowledge of the system while

Run-time Scheduling uses current system state information to make scheduling de-
cisions. In general, run-time scheduling gives much better performance increases

[17]. Run-time scheduling algorithms have the potential to outperform static algo-

rithms because of the use of system state information which improves the quality of
their scheduling decisions.

2.2.1. Static Scheduling

Static scheduling divides the work based on decisions at compile time and

does not adapt to changing network conditions. It does not give very good perfor-

mance increases due to a number of reasons.
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Task Sizes: Task times can vary dramatically from predicted compile-time

estimates due to system load and un-predicted program behavior.

Number of Processors: Allocation of tasks at compile time is based on as-
sumptions that a certain number of processors will be available for use which

need not always be the case.

Branch Conditions: Due to the unpredictability of branch conditions at com-
pile time, actual times can vary from forecasted estimates.

Depths of Recursion: In some problems, especially divide and conquer prob-

lems, unknown depths can increase task sizes as well as control the dynamic
creation of other tasks.

Overheads: Network delays and memory latencies are very unpredictable and

may cause less or more overhead than anticipated.

2.2.2. Run-time Scheduling

Run-time scheduling strategies, based on scheduling of tasks at load-time

usually perform much better because of their adaptive nature. These strategies use

current system state information to influence their scheduling decisions.

Load Sharing: Dynamic scheduling schemes usually employ a load sharing
strategy that shares the workload among participating processors.

Utilization: Since dynamic scheduling schemes are better equipped to dis-
tribute the available work, overall utilization of the workstation cluster will be
higher.
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Adaptability: Dynamic scheduling strategies are usually designed to adapt to
varying loads on workstations.

2.2.3. Workload Descriptors

A suitable index of workload on a workstation is a key issue in determining

the efficacy of scheduling and dynamic load balancing heuristics. The load index of

a workstation is a measure which indicates the performance of a task when executed

on it. A number of such measures of load have been proposed [13]. To be effec-

tive, load index readings taken when tasks initiate should correlate well with task

response times. Commonly used indices are length of task queue length, available

free memory, context switch rate, system call rate, CPU utilization, idle time, and
length of run queue over the last one minute. Combinations of these descriptors

can also be used as indices of load. However studies [13] have indicated that the

combinations may fare worse than simple descriptors.

Various run-time systems use some of these descriptors. The V-system [17]

uses CPU utilization. It measures this by running a background process, with the
lowest priority, that periodically increments a counter. The counter is then period-

ically polled to find what proportion of the CPU has been idle. Condor [17] uses
idle time to detect potential workstations. It transfers work only if the workstation

has been idle for 12.5 seconds. A local scheduler then checks for user activity every

30 seconds. On detection of user activity for two consecutive 30 second intervals,

the scheduler preempts the task after saving its current state. If the owner remains

active for 5 minutes or more, the foreign task is transferred back to the originating

workstation. The Stealth [17] Distributed Scheduler relies on CPU utilization and
available memory to migrate tasks.
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2.3. DYNAMIC LOAD DISTRIBUTION

Despite intelligent scheduling methods, due to the variable nature of work-

load on workstations, some form of task migrating mechanism must exist to prop-
erly utilize the capabilities of workstations by transferring work from heavily loaded

workstation to more lightly loaded ones. Two general methods of deciding when
to transfer work exist. Load Sharing is a method by which load is transferred from

heavily loaded workstations to idling workstations. Usually, anticipatory transfers

are made from heavily loaded workstations to workstations which have a high prob-

ability of idling soon. Thus, system utilization is enhanced by ensuring that the
participating workstations idle for the minimum possible time. Load Balancing al-

gorithms [5] go further by trying to equalize the load on all workstations. Load
balancing can potentially reduce the standard and mean deviation of task response

times, relative to load sharing algorithms, but the higher transfer rates can poten-
tially outweigh the performance improvements.

Typically, a load distribution algorithm has several components. These com-

ponents together ensure the proper functioning of the load distribution strategy.
Usually, load distribution strategies are centralized or distributed or a combination
of both. Centralized policies use one workstation, called a controller or scheduler,

which decides when and how to transfer work. In distributed policies, workstations

individually and independently handle their task migration decisions. However, they

might rely on information received from other workstations to improve the quality

of their decisions. Work transfers can be preemptive or non-preemptive. Preemptive

transfers involve transferring partially executed tasks. This operation is quite ex-
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pensive, involving storing the current virtual memory image, process control block,

un-read I/O buffers and messages, file pointers, timers that have been set and so on

[17]. Non-preemptive task transfers however, involve tasks that have not yet begun

execution and hence do not require transferring the task's current state. Usually,

load distribution strategies have the following components :

Information Policy

Location Policy

Selection Policy

Transfer Policy

2.3.1. Information Policy

Information about participating workstations must be disseminated to others

to help workstations make intelligent decisions on whom to ask for work. The

information sent must indicate in some way the current processing speed of the

workstation and the amount of work left in the task queue of the workstation. The

information policy decides when and whom to send this information.

Demand driven policies make a workstation collect information from other

workstations only when it either becomes a sender or a receiver, thereby making

it a suitable candidate to initiate load transfers. Demand driven policies can be

sender, receiver or symmetrically initiated. In sender-initiated policies, senders look

for receivers to transfer their workload to. Receiver initiated policies, on the other

hand, solicit offers from potential senders. Symmetrically initiated policies use a

combination of both, with load sharing decisions being initiated by both heavily

loaded senders or idling receivers.
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Periodic policies, either centralized or decentralized, send information at pre-

defined intervals. Periodic policies are not very adaptive. The benefits of sending

status information when all workstations are heavily loaded is minimal because all

processors have enough work and are busy finishing off pending work. In fact,

sending status information can just slow down the over-all processing speed of the

run-time system due to the increased individual workloads caused by sending and

receiving messages at individual workstations.

State driven policies operate by sending status messages only when the work-

load status of the workstation changes by a certain predetermined amount. Under

a centralized scheme, the workstations would report their current state to a central-

ized collecting point while a distributed policy would send the new state information

to its peers.

2.3.2. Location Policy

The location policy decides which workstation to query for work or trans-

fer work to. Centralized policies react by querying a controller about workstations

which want to get rid of extra work or want some work to prevent idling. De-

centralized policies use methods like polling where a workstation sends requests to

all its peers for work. Polling algorithms sometimes use a system of bids to select

potential workstations. This system works quite well under conditions of low and

medium load. It however performs poorly when the system is heavily loaded, the

reason being that at higher system loads, the overhead involved in finding a desti-

nation processor may outweigh any performance gains. Drafting algorithms on the

other hand select one heavily loaded processor and drafts it by requesting work from

it. This scheme performs well under heavy loads but suffers from over-draining of
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resources from the heavily loaded processor due to being drafted by several idling

workstations. Thus there is a potential for over-migration of jobs.

2.3.3. Selection Policy

Selection policies decide what tasks should be migrated and what should not

be. It often makes sense to migrate computationally intensive tasks while tasks

that are not computationally intensive are usually better off executed on the same

processor that created it. Unfortunately, it is not easy to predict what tasks will be

computationally intensive and what tasks won't be. However, intelligent compilers

or the programmer's explicit directives can be used to generate some information

about the type of the task at its creation. This information is later evaluated by

the selection policy to select tasks. Most load balancing schemes use much simpler

methods. Almost all of them only migrate tasks that haven't begun execution to

avoid expensive techniques like checkpointing or transferring the process image in-

formation. One of the most commonly used strategies is to transfer tasks in FIFO

order. Thus, tasks that have been waiting for the maximum time in the task queue

get transferred first. A variant of this scheme is to use the LIFO order where the

tasks that came in last are migrated first. Such a scheme can be useful for heuristic

searches where the latest tasks probably have the best chance of delivering results.

Another important criteria for the selection policy is the amount of data that needs

to be transferred for the task to run to completion on the destination processor. If

the amount of data to be transferred is large, the time spent in moving the data

may offset any performance gains.
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2.3.4. Transfer Policy

The transfer policy determines the nature and method of work transfer. Some

transfer policies are receiver initiated while others are sender initiated. Receiver ini-

tiated policies are activated when a workstation is idling for lack of work or is about

to idle for lack of work. Sender initiated policies on the other hand are triggered

when the load or number of tasks on a machine exceeds certain limits. Such policies

do not perform well in conditions of high overall load [4] but are quite effective in

low and medium load cases. Receiver initiated policies, however, are more effective

in cases of high overall load compared to low and medium load conditions. The

method of transfer often varies from algorithm to algorithm. Simple schemes grab

work or offload work without permission from the other workstation. More com-

plicated schemes are more cooperative, doing the transfer based on some mutual

agreement reached beforehand. This might however involve a handshaking format

and the additional overhead involved may not be worth the performance improve-

ments. Symmetrically initiated transfers are used by load sharing schemes where

work transfers are initiated when a node becomes a sender as well as a receiver.
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3. THE CHARM PARALLEL PROGRAMMING ENVIRONMENT

3.1. LANGUAGE SPECIFICATIONS

Charm is a machine independent, parallel programming language and run-

time support system first developed at the University of Illinois at Urbana-

Champaign. The language is based on an object based, message driven, MIMD

paradigm [6]. The most basic object capable of parallel work is called a chare (an

archaic synonym for chore). Chares can be spawned and executed by the program-

mer. A chare definition consists of local variables and a set of entry point functions.

It may also include private functions. Each chare has a unique id on execution.

Chares can also send messages to and from themselves on knowing the relevant

chare id. Messages to chares are received at entry points, which are specified por-

tions of a chare that are capable of receiving messages. On receiving a message at an

entry point, the code associated with the entry point is executed. After execution,

chares switch to a suspended stage. Suspended chares can be made to wake up by

sending messages to specified entry points within that chare from other live chares.

From a programmer's point of view, the system operates with a pool of

messages. These include messages specifying the creation of new chares as well as

messages for existing chares. Each processor picks up a message from this pool,

executes the entry point indicated by it, possibly modifying the local variables of

the associated chare instance and depositing new messages in the systems pool. It

then returns to pick another message from the pool. Two messages directed to the

same chare are not concurrently executed. Also, execution at an entry point on a



18

processor is not interrupted to execute another entry point on the same. Messages

to chares are sent using the SendMsg() as well as other calls all of which are non-

blocking. It is also worth emphasizing that although Charm provides a number of

send calls, it provides no corresponding receive calls. Instead, execution is driven

by the existence of arrived messages.

Various information sharing abstractions and high level primitives exist in

Charm. Read Only variables are variables whose values are initialized at the begin-

ning of the computation. The chares on any processor can access this value. The

system may implement this as a single shared copy on shared memory machines or

as a private copy on individual processors. Read only variables are the only global

variables permitted in Charm. Distributed tables is a collection of [key,data] pairs.

It supports insert, find and delete operations. As the name suggests, the pairs can

be distributed across processors and a call to find data associated with a particular

key, results in data being send to a specified entry point within a named chare.

Accumulators are shared data structures which are useful to maintain global totals.

Finally, branch-office chares are high level primitives that are basically chares which

are replicated or has branches on all processors. Branch-office chares are typically

used for distributed data structures and for handling local services.

Charm programs are written as modules so that they can be reused or called

from other modules with minor modifications. Typically, every Charm program has

a main chare from which all program execution begins. Subsequent tasks are created

dynamically from this chare. These tasks can be chares or branch-office chares. To

illustrate this process, the following Hello World program is written using branch-

office chares. On execution, the program will printout the string Hello World on
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all participating workstations. The entry points Datalnit and Charelnit on the

main chare are executed first, in order. On receiving the initialization messages,

the entry point Print on the branch-office chares are executed on each processor.

After execution, the termination detection algorithm detects the finish of all useful

activity and therefore returns control to the programmer by calling the QUIESCENCE

entry point at which the programmer decides to terminate execution.

module HELLO {

chare main

{

int BocNum;

entry DataInit :

{

DummyMsg *msg;

msg=(DummyMsg *)CkAllocMsg(DummyMsg);

BocNum = CreateBoc(hello, hello @Print, msg);

}-

entry Charelnit:

{}

entry QUIESCENCE:

{

CkExit();

}

}
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BranchOffice hello

{

entry Print:(DummyMsg *msg)

{

CkPrintf(" Pe[ %d]: Hello World \n",McMyPeNum());

}

}

} /* module */

Charm can also be used as a as a universal back-end for visual programming

tools like Dagger and DP-Charm - a data parallel language developed on Charm

which implements a subset of the official HPF (High Performance Fortran) lan-

guage. Charm programs are translated into C by a Charm translator. Entry points

within a chare usually execute C code. Charm programs are essentially a superset

of C excluding static and global variables. The chare instances themselves are sim-

ply data areas within a Charm process and most high level Charm abstracts get

translated into C structures.

3.2. RUNTIME ENVIRONMENT

The Charm environment runs on several shared memory and distributed

memory machines including the NCUBE, iPSC/860, Sequent, Meiko CS-2 and the

CM-5. The environment is also available for a network of SPARCStations. The

Charm environment was subsequently ported to run on HP and IBM RS6000 work-

stations at Oregon State University. Charm, when running on workstation clusters,
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uses TCP/IP and UDP for all inter-workstation communications with the major-

ity of it being UDP. Since UDP does not provide guarantees on inter-processor

communications, a sliding window protocol is used to ensure that communication

in Charm is guaranteed. The run-time system also automatically handles its own

memory management and dynamic load balancing.

The Charm run-time system for workstation clusters was modified at Oregon

State University to better support truly heterogeneous computing. During startup,

the Charm run-time system looks up a file to find information on how to run the
Charm program in parallel. This information includes the names of the worksta-

tions, login names, relative speeds of the machines, password, path-name directions

on where the Charm run-time system can be located on that machine and model

number of the workstation. Since the Charm run-time environment makes no as-

sumptions, it is possible to run programs on machines where the user does not have

the same password or login names and not supported by a Network File System.

In fact theoretically, with the available information, we can run a Charm program

on workstations that are located anywhere on the Internet. Even if the machines

are on the same local area network and with the same Network File System, the

Charm system allows simultaneous compilations of the source code for each of the

different machine architectures. The run-time system is also intelligent enough to

locate the correct binary (depending on the machine architecture) to execute. The

Charm run-time system takes care of various housekeeping facilities like termination

detection and dynamic load balancing by in-built branch-office chares.

The dynamic load balancing module [18] on the distributed memory version

of the Charm is implemented by a Load Balancing branch-office chare (LDB-BOC).
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A load balancing BOC has one instance resident on each processor. It provides

entry points and function calls and interacts with other Charm system BOCs to

dynamically balance the load. Each processor creates and initializes the LDB-BOC.

At the Branchlnit entry point, the number and names of neighbors are recorded and

stored in the data area of the BOC. This depends on the interconnection network

amongst the processors. However, in a workstation cluster, since all workstations

can communicate with all other workstations, we can personalize the neighbor list

according to the machines we would like to use and the neighbor connections desired.

This neighbor information is later used by the LDB-BOC to ask other processors for

work or to exchange status updation messages with. The load balancing strategy

decides which tasks should be relocated on other processors and when this needs

to be performed. The load balancing BOC is designed in such a way that it can

call different load balancing strategies by linking the Charm library with the correct

load balancing object files. So we can very easily use the Charm run-time system

as a test-bed for different load balancing strategies. A number of load balancing

strategies are provided with the Charm distribution. These include placement of

chares randomly, on a priority basis and on other more complicated strategies.
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4. THE LOAD DISTRIBUTION STRATEGY

4.1. LOAD SHARING ON THE ETHERNET

When load sharing on the Ethernet, the sine qua non is to balance work and

exchange load information only if it is absolutely necessary to do so. The high mes-

sage latency and low network bandwidth force load sharing strategies to be effective

only if they transfer or exchange the minimum amount of information. An efficient

run-time scheduling portion can help by ensuring that only a minimal amount of

work needs to be transferred by the dynamic load sharing portion of the load dis-

tribution scheme. The initial distribution is done in a centralized manner from one

node, referred to as the scheduler. Subsequent dynamic load sharing is performed
in a distributed adaptive fashion, based on status information exchanged between

neighboring nodes. Dynamic requests for more work are triggered only when a pro-

cessor is about to idle for lack of work. No periodic global distribution of work is

performed as this potentially wastes network bandwidth, delays computation, en-

courages constant migration of work and promotes back and forth exchanging of

work popularly known as the ping pong effect. Another important feature of the

load sharing algorithm is that all status information exchanged between neighbor

nodes is in terms of time units. In addition, work requested by a node, when it runs

out of work, is calculated on the basis of time units. This potentially eliminates

inconsistencies or errors due to the variable nature of work in MIMD computation.

Each unit of work is referred to as a chare in the Charm environment used to im-

plement the load sharing scheme.
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4.2. RUN-TIME SCHEDULING

Heterogeneous workstations have varied processing speeds. The rate at which

they do work depends on factors like the clock speed, CPU, math co-processor and

compiler optimizations. Generally, SPEC_INT92 and SPEC_FP92 ratings are used

to categorize the performance of a workstation for integer and floating point cal-

culations respectively. Parallel application programs typically use both integer and

floating point operations. This means that rating machines solely on SPEC_FP92 or

SPECJNT92 will not accurately reflect their processing speed for a specific appli-

cation program. However, it is difficult to measure the actual percentages of integer

and floating point operations in a typical parallel application. Since parallel appli-

cations are run a large number of times, it is often a worthwhile investment to run

each application with a reduced problem size once for each type of workstation that

will take part in the computations. This is will represent the best measure of the ac-

tual rate of processing of the workstation for the application's unique mix of integer

and floating point operations. The ratios of the time obtained for each workstation

can be used as the relative processing speed of the workstation for that application.

When measuring the processing speed of workstations, care must be taken to see

that the workstation is running no other computation or I/O intensive tasks. Dis-

tributing work based on processing speeds of workstations would have been enough

if they were available for dedicated use. However, most workstations operate in a

multi-user environment running both interactive as well as computation intensive

jobs. Hence, the actual available processing power of a workstation is dependent on

the processing speed of the workstation under conditions of no or very light load

as well as the current load. The emphasis of the current load on scheduling should

not be underestimated. The presence of just one another computation intensive job
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will effectively double the total time taken since now only half of the CPU cycles are

available for use.

Various effective and useful measures of load have been proposed. The most

commonly used indices are the average task queue lengths, available memory, con-

text switch rate, system call rate, CPU utilization or a combination of these. Most

of the above information is stored in kernel memory and the user needs special priv-

ileges to access them. The time taken to access this information involves expensive

system calls and varies dramatically, based on the operating system, vendor and

hardware CPU used. Hence, in the interests of portability and un-obtrusiveness,

simple methods of measuring load are often used. Studies [13] completed in the

past have also indicated that using complex measures of load have little or no per-

formance gains over simpler load indices. Moreover, the best indicator of load was

found to be the task queue length.

Definition 1 The load on a workstation is defined as the average number of

runnable processes over the past one minute incremented by one.

Runnable processes are considered to be those processes that can possibly run

at that instance if enough CPU resources were available and excludesprocesses which

have been stopped or are waiting for I/O. This measure was used due to its easy

availability through standard UNIX commands like uptime. Load is incremented

by one to take into account the additional load caused by the new Charm process.
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4.2.1. Processing Capacities

The run-time scheduling phase of Charm is based on the Relative Processing

Capacities of participating workstations. The run-time scheduler distributes tasks

initially to all workstations based on this information. This information is obtained

from archived data about machines and from polling workstations about their status
at the onset of computation.

Definition 2 The Relative Processing Capacity (RPC) of a workstation is defined

as the ratio of the relative processing speed of the workstation to the load on that

workstation.

RPC Relative Processing Speed=
Load

Definition 3 The Relative Processing Speed (RPS) of workstation i and applica-

tion program p, represented by RPS(i,p), is calculated by measuring the time T(f,p)

needed by the fastest workstation and dividing it by the the time T(i,p) needed by

workstation i to complete the same application program with a reduced problem size.

RPS(i, p) . T fT((i: P)

Since this number varies for each workstation and application program, the

values have to be calibrated once for each workstation and application if high effi-

ciency and throughput are needed. However, if high efficiency is not desired, heuris-

tic values based on the estimated mix of integer and floating operations can be

used along with SPEC_INT92 and SPEC_FP92 ratings. In such cases the Approxi-

mate Relative Speed is defined as follows in terms of Processing Speed (PS) for the

workstation i, the fastest workstation f and application program p.
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Definition 4 The Approximate Relative Processing Speed (ARPS) of workstation i

and application program p is defined as the ratio of PS(i,p) to PS(f,p).

ARPS(i,p) PS(i,p)
PS(LP)

where PS = % of integer ops x SPEC1NT92 + % of FP ops x SPEC1'P92.

The Charm run-time environment on startup determines the Relative Pro-

cessing Capacities of all participating workstations. It then lets the scheduling

processor, know these rates. When work or chares are spawned on the scheduling

processor the run-time system automatically takes care of chare distribution based

on the RPCs of participating workstations. In Charm, where work is almost always

spawned dynamically, it is difficult to predict at compile-time exactly how many

chares will be spawned. The scheduling strategy therefore assumes that a minimum

quantum of chares will be spawned and schedules the spawned chares based on this

quantum. If more than the quantum of chares are actually spawned, the scheduling

strategy schedules additional chares assuming another quantum of chares will be

spawned. The Charm environment schedules work spawned only on the scheduler.

Work spawned on other processors is always enqueued locally.

4.2.2. Scheduling Hints

Ideally, the scheduling strategy should be totally transparent to the appli-
cation programmer. The above implementation makes this scheduling user trans-

parent. However, sometimes programmers may want to achieve better performance

from the scheduling strategy. The Charm scheduling strategy adapts by listening

to scheduling directives from the user and trying to act accordingly. These hints

are not required to be followed. The user is therefore cautioned never to program
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assuming that his directives will always be followed implicitly. The distribution of

chares can also be important to achieve good performance. If for example, neigh-

boring chares communicate more often, the programmer can profit by distributing

adjacent chares on the same processor based on their RPCs. Currently, directives

exist for distributing chares contiguously, interleaved or not to schedule at all (en-
queue locally). Contiguous distribution implies adjacent chares are scheduled to

the same processor while interleaved scheduling distributes chares in a round-robin

fashion. Distribution of chares in strides (say for example, every sixteenth chare

scheduled to the same processor) and other similar strategies can also be achieved

through clever use of these directives. Additional directives also exist to change the

predefined quantum of chares that the scheduling strategy expects. This will ensure

a much better distribution than by the default distributions, since the scheduler

now knows precisely how many chares will be spawned and can schedule accord-

ingly. The following snippet of Charm code shows how such directives can be used

to effectively schedule tasks using the LdbHint calls.

module MultiDistribution

chare main {

entry DataInit:

{}

entry Charelnit:

{

int i;

DummyMsg *SndMsg;

{

LdbHint(INTERLEAVED,512);

for(i=0;i<512;++)
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{

SndMsg=(DummyMsg *)CkAllocMsg(DummyMsg);

CreateChare(Compute, Phasel @Compute,SndMsg);

}

LdbHint(CONTIGUOUS,512);

for(i=0;i<512;++)

{

1

SndMsg=(DurarayMsg *)CkAllocMsg(DummyMsg);

CreateChare(Compute, PhaseII@Compute,SndMsg);

chare Compute {

entry PhaseI:(DummyMsg *msg)

{_}
entry PhaseII:(DummyMsg *msg)

{}
3-

}

4.3. DYNAMIC LOAD SHARING

The dynamic load sharing component of the load distribution strategy is a

distributive, adaptive, receiver driven strategy customized for efficient performance

on the Ethernet. Since the dynamic component is co-operative and non-preemptive,

work is transferred only on mutual agreement. This innovative method ensures
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transfer of work is performed only when needed and reduces chances of unnecessary

migrations of work. The strategy has two main components.

1. The Status Exchange Component

2. The Work Transfer Component

4.3.1. Status Exchange

The key to efficient dynamic load sharing is to ask for work intelligently.

Work must be requested from processors which are more likely to have excess work.

It therefore becomes imperative that the dynamic load sharing scheme have a status

exchange component which periodically informs its neighbors regarding its current

status. The status information exchanged by each workstation is its Forecasted

Finish Time.

Definition 5 The Forecasted Finish Time (FFT) of a workstation is the time esti-

mated by it to finish of the remaining tasks at its current rate of execution.

The value of FFT will vary, depending on the amount of work left and the

current rate of execution. The amount of work left in the queue is periodically

monitored and the execution rate re-calibrated at predefined intervals of time. This

implies that the FFT constantly changes, reflecting any variations in the current

workload. The execution rate is measured in milliseconds per chare. The total time

elapsed and not user time is used for calculations and so the rate measured also

takes into account the effect of other processes running on the workstation. By

using the total time elapsed, the actual rate at which the node is processing work

can be measured and not just the rate at which it is executing the program.
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In an Ethernet scenario where every workstation can communicate with ev-

ery other workstation it is easy to flood the network with status information. In

a cluster having n workstations a total of nx (n-1) messages can be exchanged for

each status update. As the value of n increases, this progressively becomes a very

unattractive way of conveying status information. To prevent this, the user is given
the flexibility to specify a neighbor file which contains a valid arbitrary network

interconnection, instead of the default fully interconnected model. This prevents

an inordinate number of status messages from flooding the network. Dense graphs

can also be used to reduce overhead by minimizing the number of status messages.

The neighbor connections determine which machines to exchange status information

with and ask/receive work from. Typically, neighbor nodes exchange status mes-

sages and request work only among themselves in case one node idles before some

of its neighbors. Status information is also piggy-backed on every normal message

sent between processors. This ensures that status information is given a free ride
with conventional user messages.

The algorithm developed further ensures that that not too many status mes-

sages are sent by eliminating frequent updates and non-useful status messages. Typ-
ically, status messages are needed only when a node has run out of its initially as-

signed work. This usually happens at the very end of computation. The reason for
this is that if the initial scheduling phase does its job well, nodes will not idle for
lack of work until all nodes are very near the end of their initially allocated work.

Thus, the probability of a neighboring node idling is inversely proportional to its

FFT. This implies that few messages are needed when nodes have lots of available

work and more frequent messages when nodes have less work or are close to finish-

ing off their initially assigned work. Therefore, each workstation will have a more
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accurate representation of its neighbors' Forecasted Finish Time when it probably

needs it the most. This is accomplished by sending no status messages when nodes

are receiving their scheduled portion of work by keeping track of the work queue.

While this queue length is increasing, all status updation messages are suspended.

After receiving all its work, every node calculates the rate at which it is processing

chares as described previously. Based on this rate it predicts its FFT. When the

queue length starts to show a decreasing trend, the current FFT is sent to all its

neighbors. Whenever this Forecasted Finish Time is halved due to processing of

chares, the next group of status messages are sent to its neighbors (Fig 4.1) where

it is stored in a database. This method of status message updations results in fewer

messages in the beginning and more frequent messages at the end of computation.
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4.3.2. Work Transfer

When the Forecasted Finish Time of a node falls below a certain threshold

value, the node sends out a request for more work from one of its neighbors. This

threshold value will greatly depend on the type of underlying network used. The

decision to choose a particular node is based on a decision algorithm that decides

which of its neighbors to ask for work. This receiver initiated strategy is superior

to other sender initiated strategies because the receiver can best determine when it

is about to idle. The main goal here is to reduce idle time on each workstation to a

minimum. Any scheme which reduces idle time on a workstation to the minimum

possible will indirectly yield a balanced workload.

Location Strategy

When the FFT of a workstation falls below a certain threshold, the location

strategy is invoked. The location strategy looks up an internal database it main-

tains for all its neighbors to determine whom to ask for work. The neighbor with the

maximum FFT is selected as the target. Confirmation checks are then performed to

determine whether this value is greater than a prescribed minimum. If the maximum

FFT of the neighbor is less than this minimum, no requests for work are sent. This

is to ensure that the inconsistencies between status information and actual work left

does not make a workstation search for work from unworthy workstations. When

the maximum FFT of all its neighbors is lower than the prescribed minimum, the

decision strategy forces the Charm environment to enter a shutdown mode called

Quiescence. However, if new work gets created or arrives from a neighbhor, the

location and status exchange components reawaken and start functioning again.
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Work Migration Strategy

Once a node has decided on a neighbor to ask for work, it tries to estimate

how much work it should ask for, so that it can do useful work for the next pre-

defined interval of time without asking for more work in between. This is done by

finding out the number of chares it can process at its current rate of execution in

this time interval. Ideally, this quantum of time is the maximum time difference

tolerable between the execution times of two neighbor nodes. This quantum of time

should neither be too long or too short. If this quantum is too large then too much

work will be migrated and will also encourage the ping-pong effect. If this quantum

is too small, it will encourage a large number of frequent requests. For the medium

grainsize problems that Charm is developed for, a quantum of size 5000 milliseconds

was found quite suitable for an Ethernet environment. If the computation time of

each chare, based on its current processing rate, is greater than this time, only one

chare is requested for. Thus, whenever a workstation is about to idle and on sat-

isfying other previously mentioned conditions, a request for at least one chare will

always be sent.

Once the number of chares is determined, a request is sent to the correct

workstation. The workstation on receiving the request message, determines how

many chares it can process in the same predefined interval of time at its current

processing rate. If it can process all its available work in the same period of time,

it will reject the request for work. Otherwise, it reserves those chares for itself. Of

the remaining chares available, it finds out the number of free chares. A chare is

considered to be a free chare if the user does not specify that that chare has to
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be executed on a specific machine. Also, once a chare has begun execution and is

temporarily suspended it loses its free chare status. If it can spare the number of
free chares requested for, the node then proceeds to transfer these chares to the
workstation that originated the request. However, if fewer chares than asked for

can only be spared, only those are sent. Thus the amount of work received by a

workstation will always be less than or equal to the amount of work asked for. This

ensures that work is transferred only with the joint cooperation of both the sender

and receiver. The updated FFT is also piggy-backed on the chares transferred so
that the request workstation can be quickly made aware of its new status. Each

chare keeps a count of the number of machines it has migrated through. This count
is referred to as the number of hops the chare has so far taken. If a chare has hopped

too much it is grounded. Once a chare is grounded it is removed from the free chare

list forcing it to be executed at the current machine. This history of hops prevents

work from infinitely moving back and forth between processors.

Retry Strategy

If a node is refused work from a workstation, it updates its database and its
record of the FFT of that workstation as zero. This is done to prevent the worksta-
tion from asking the same workstation for more work until there is a considerable

change in the transmitted FFT of that machine. The decision algorithm is again
invoked to detect the next suitable processor to ask for work. If a suitable candidate

is found, the work transfer strategy is initiated again. A workstation will retry for

work only a fixed number of times, after which it assumes all nodes are idle and
the job completed. The environment then proceeds with the initiation of the Quies-

cence state. However, if a workstation receives work in one of the retry attempts, it
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erases all its history of retry attempts and starts afresh. This means that successive

successful attempts are not considered retry attempts. If however, a workstation

cannot detect a suitable candidate workstation that satisfies all the criterions of the

decision strategy during a retry attempt, it halts the retry mechanism and goes into

the shutdown mode.
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5.1. TEST SUITE
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A suite of application programs was developed to test the efficiency of the

load distribution strategies. All the application programs were programmed in the

Charm programming language. These programs were run using several variations of

the load distribution strategy to evaluate their relative merits and deficiencies. This

set of programs are fairly computationally intensive and mainly involve graphical

and numeric results.

Matrix Multiply

Raytracing

All Pairs Shortest Path

2-D Morphing

5.1.1. Matrix Multiply

This matrix multiplication algorithm uses two variable sized matrices which

are multiplied in parallel and the results sent to one processor which stores it in the

result matrix. A general matrix multiplication is of the form C = A x B where C
represents the resultant matrix. In this particular algorithm, the entire B matrix
is transposed and replicated on all participating processors. Matrix B is stored in

its transposed form to improve cache hits during the actual multiplication. Each
row of matrix A is split into several parts and distributed to processors. The size
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of each part determines the grain-size of each task (Fig 5.1) . If each row is split

into p subparts, the number of multiplications per task will be (n/p)2, where n is

the number of columns of A. If each row of A is split up into parts, only a partial

result will be obtained and all these partial results have to be summed up finally

to obtain the final C matrix. Since B is replicated and the relevant data of A is

attached to each task, the task can be migrated to any participating processor by

the load sharing strategy and the actual calculation performed on it.

5.1.2. Raytracing

Raytracing is a popular method for generating very realistic 3-D images (Fig

5.2). Unfortunately this process involves using a large number of computationally

intensive operations. Ray tracing proceeds by determining the visibility of surfaces

by tracing imaginary rays of light from the viewer's eye to the objects in the screen

[7]. A center of projection and a window on an arbitrary view plane are selected.
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This window can be considered as a rectangular grid, each of whose elements cor-
respond to a pixel at a desired resolution. These pixels are set to the average of
the current intensity values of all the rays as they pass through the pixel after re-
flections and refractions on objects in the scene to be raytraced. The rays from the
eye are traced as they are reflected and transmitted by objects. The reflected and
transmitted rays continue to be traced until a maximum tracing depth is reached or
the rays no longer hit any object. Since each point on the screen can be computed
in parallel with other points, raytracing is ideal to be parallelized.

The primary basis for raytracing is the fact that when a ray hits our eyes we
see its intensity, which simply stated is its color [16]. This color is what is left of
the original intensity of the ray after it came from the light source. Whenever the
light ray hits an object, parts of its wavelength are partly or totally consumed. Only
the remaining wavelengths manage to escape, scattered in different directions. One
of these escapees of this second scattering, manages to reach the viewers eyes and
produce the sensation of sight. Thus each ray has a history that formed its intensity.
However, given a light source, it is difficult to determine whether a specific ray will
finally reach the viewer's eye. So the reverse of the actual process is performed to
minimize unnecessary computations. Rays are therefore pretended to originate from
the viewer's eye and the entire raytrace is done in reverse. Simple schemes consider
only reflected light while for better results the refractiveness and transparency of
objects have to be considered.

Several public domain packages exist which provide excellent raytraced re-
sults. POV Ray (Persistence Of Vision Raytracer), Craig Kolb's Rayshade and
RTrace are some examples. Rayshade, which is from Princeton, was used for the
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Figure 5.3. Sample images generated by the parallel raytracer
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parallel implementation (Fig 5.3) . The parallel algorithm works by splitting the

task into scanlines, each of which is computed by a chare. Since the computation

involved varies from image to image, portion of the image, size of desired image and

the maximum tracing depth, the time taken for each scanline will vary a lot. The
scene to be raytraced is stored in a file which is parsed by all processors. To speed

up the reading of the files, they are copied into individual /tmp directories so that

all processors can perform their file reads in parallel. On completion of this, they

start raytracing individual scanlines of the image.

The load balancing strategy automatically takes care of the distribution and

migration of work. Once the scanline is computed, the resulting portion of the image

is sent to the host, where it is displayed. The current algorithm is a two phase

strategy with an initial coarse image being first developed, followed by a finer image

in the next pass. The two pass strategy ensures that the user will receive relatively

quick feedback on the image to be raytraced. The results obtained indicate that
parallelization can yield good benefits and are included in this report.

5.1.3. All Pairs Shortest Path

The all pairs shortest path is based on the Dijkstra's single source shortest

path algorithm and running it in parallel for every vertex. The completely connected

weight matrix is replicated on all the processors and individual chares work on

finding the single source shortest paths for the vertices assigned to it. Since the

complexity of Dijkstra's single source algorithm is 0 (n2) , the complexity of the all

pairs shortest path is 0(n3). Dijkstra's single source algorithm works by trying

to find for a nonnegative weighted graph, the shortest path from a vertex v to all
other vertices in the graph G = (V, E, w). Each vertex has a cost associated with

it (initialized to infinity) which is reduced on finding a cheaper path to the source
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vertex v. For each iteration, the node with the cheapest cost is removed from the
free list as it will be the cheapest way to reach v. Thus after each iteration, one node

will be removed from the free list and the node from which the new reduced cost

was found is marked as its predecessor. This process is continued until all nodes are

removed from the free list.

5.1.4. 2-D Morphing

Morphing, a term derived from the Greek word morphe which means form

or shape is a graphical process of altering one image to another through a series of

intermediate images so that the viewer gets the impression that the first image has

metamorphised into the second one. The term originated in the late 80's at George

Lucas's Industrial Light and Magic (ILM). ILM developed a program called Morph

which was made to to handle transformation scenes in the movie Willow. The mor-

phing process varies depending on the technique used. Morphing algorithms can

be classified as 2-D or 3-D. 2-D morphing gives the visual effect of a 3-D change of

shape by warping a 2-D image from an initial shape to a final stage. Digital image

warping algorithms are used to stretch and deform an initial image to the shape of
the target. At the same time, textures for each image are gradually blended from

the initial texture to the final one. To achieve greater control, the source and target

images are broken up into small regions that map into each other. In 3-D Morphing,

a 3-D geometric model of the object is transformed from one shape into another. At

each stage of the metamorphosis, the 3-D model is rendered and texture mapped to

produce a 2-D screen representation. 3-D morphing is considered to be difficult and

and various problems occur when trying to morph 3-D objects that are structurally
difficult like the case of morphing a torus onto a rectangle.



44

2-D Morphing, on the other hand, is simpler and is accomplished mainly

through digital image warping and applying texture mapping [10]. Texture map-

ping by itself can be used to handle simple morphs. The basic technique in texture
mapping is a two step process of mapping a 2-D texture plane on a 3-D surface
and then projecting the surface on a 2-D screen display. Texture mapping serves to

create an appearance of complexity by applying elaborate image detail to relatively
simple surfaces. This mapping can be used to perturb surface normals and thus

allow the simulation of bumps and wrinkles without the effort of modeling intricate

3-D geometries. Digital image warping leaves out intermediate steps of mapping to

3D object space and instead directly maps from one 2-D image (input image) to
another 2-D image (output image).

Digital image warping algorithms use a variety of geometric transformations

including affine, projective, bilinear and polynomial transformations. The equations

for 2-D transforms use a 3x3 matrix multiplication algorithm based on homogeneous

coordinates. Whenever image transformations are completed, "holes" and "over-

laps" can occur. This results because the images are discrete and not continuous.

Consequently pixels in one space do not always have to have an exact correspon-

dence in another space. Deriving the alternate value in another space is done using

interpolation and sampling. A host of interpolation algorithms exist including cubic,

bilinear and cubic spline convolutions. The easiest approach is the nearest neighbor

algorithm which is used in several algorithms [19].

To specify a morph, the animator specifies a correspondence between input

and images. This is often performed using points, triangles or meshes. A public do-

main application called morphine, written by Adam Hall at Sun Microsystems, was
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parallelized. Morphine uses triangular meshes, specified by the animator, to provide

some degree of correspondence between the images. Given the input image, final

image, the corresponding meshes on both and the degree of warping needed, any

intermediate image of that triangle can be created. Creating these warped images

while steadily increasing the degree of warping from 0 to 1 results in a morphing
sequence (Fig 5.4).

The parallel implementation works by allotting several meshes of the image

to participating processors and letting them work on parallel. On completion, they

send their portion of the image to a display processor which collects and forms the

resultant image and displays it on a window. To provide more parallelism, several

future images are also computed simultaneously and stored as successive future im-

ages until all previous images are completed. However due to memory limitations
and size of the image, this number of future images cannot be usually more than
30. To ensure that the images are shown in the right sequence, chares representing

future work are not spawned until previous images have been displayed. This is
accomplished by maintaining a list of pre-allocated images. Once an image is com-

plete, it is displayed and the tasks for the next frame are spawned. Thus, there will

always be enough space to store all frames being currently computed.
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Figure 5.4. A sample morphing sequence



47

6. EVALUATION AND MEASUREMENT TECHNIQUES

6.1. PERFORMANCE EVALUATION

A good load sharing strategy should be adaptive and give good performance

under varying conditions. It is very difficult to monitor the performance of different

workstations simultaneously through messages and infer from them the performance

degradations or improvements. A performance monitoring tool was written to dis-
play useful information reflecting the current and previous states of participating

workstations. The graphs generated indicates whether a workstation was idling or
doing computation and in addition, provides other information regarding its actual,
current processing power. The success of a load distribution scheme is measured by

considering the variance among the finish times of the participating workstations.
The finish times mentioned throughout this report is the actual wall-clock time and
not user time. This is because user times will vary widely among processors de-

pending on load and processing capacity of machines and does not tell us anything
about the effectiveness of the load sharing strategy. The wall-clock time mentioned
in this report was measured using the gett imeof day () call. Generally, the greater

the variance, the poorer the effectiveness of the strategy. Hence if the variance
among finish times is very small in comparison to the total execution time, it can be
inferred that the load distribution strategy was quite effective. To evaluate the per-

formance of the load distribution strategy, it was run under normal load conditions

on participating workstations. Then it was run under simulated medium and heavy

load conditions and the ratio of the variance in finish times to the mean finish time
is found out to determine the effectiveness of the strategy. Load was simulated on



48

participating workstations by running dummy CPU intensive processes. Chapter 7
deals with two components of the load distribution strategy, the dynamic scheduling

phase and the load sharing phase. To determine the effectiveness of each of these

components to the overall performance of the load distribution strategy, the com-

ponents were disabled and selectively enabled. The time taken for each of the jobs

under conditions of normal load was noted. This gives the reader a clear idea about

the contributions of the two phases to overall performance increases.

6.2. PERFORMANCE MONITORING

Performance Monitoring was in-built as a feature of CHARM to enable the

user to see how well the user was using the participating processors and how well the

load balancing scheme was exploiting the available work. This performance monitor

is not trace-driven and dynamically reflects the current status and previous history
of events that have occurred on the processors (Fig 6.1). The display is scalable

and extensible. Primarily, the window shows the time spent on computation, ini-

tialization of data, idling and the number of tasks processed.

The performance monitoring window is created and maintained on a CHARM

host only when Charm is run in a performance monitoring mode. In this mode, the

workstations which take part in the parallel computations periodically send status

messages to the host explaining what they are working on now and how many tasks

have been processed currently. These periodic reports are analyzed at the host and

converted to appropriate graphical information which is then displayed to indicate

the progress made. Since wall-clock time is used to calculate all times, the display is

not exactly accurate as the workstation could be working on other user tasks while it

is indicated to be doing useful computation or idling on the performance monitoring
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window. However, it is very easy to spot general trends and these trends remain

fairly consistent irrespective of the type of clock used to measure time.

When Charm is run with the performance evaluation mode turned on, the

status and history of each processor is maintained by a record of the total time
spent, total time spent idling, and the number of tasks completed. The display

is cumulative and a quick look at the bar charts obtained indicates when proces-

sors were idling and how much they were idling. The ratio of total time spent to

chares processed gives an idea of the actual processing capacity of the participating

workstations. The performance window can be extremely useful to detect load im-

balances quickly and execute corrective action, either by rewriting the application

program or by improving initial scheduling.

6.3. LOAD TRANSFER MONITORING

It is often difficult for the application programmer to figure out why the load

balancing algorithm worked the way it did or did not perform according to the user's

expectations. To help understand better how the load balancing works, an anima-

tion window has been developed which can be brought up while the user is running

the application program (Fig 6.2). This window shows the available processors and

the peer connections between them. Requests for work are represented by empty

wheelbarrows, work transfer by loaded wheelbarrows, and work request rejects by

red empty wheelbarrows. Fig 6.2 shows two instances of one of the animations,

the first one shows a snapshot of the animation while all workstations have enough

work and the second one shows an instance towards the end of the computations.
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Figure 6.2. Load transfer monitoring
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During the actual animation, the wheelbarrows scuttle back and forth from

their processors, requesting and transferring work. The Forecasted Finish Time

(FFT) associated with each workstation is updated constantly to show how much of

the estimated work is left on each processor. The peer connections between work-

stations flash when a request for work, work transfer, or work denial occurs, alerting

the user's attention. When a processor requests for work, an empty wheelbarrow

travels towards the workstation from which work is requested from. If the worksta-

tion decides to transfer work, the wheelbarrow comes back full of work. However, if

the workstation denies the request for more work, the wheelbarrow is returned back

empty and its color is changed to red to indicate that the processor was rejecting

an offer of transferring work and not itself requesting for more work.

Initially the FFT bars will be quite high indicating that all workstations have

enough work. As the animation proceeds, the stock of available work diminishes and

the workstation begin asking their neighbors for work. When work gets transferred,

the FFT bars are updated accordingly to show the new distribution of the total

work. Towards the end of the computations, the dynamic load distribution strategy

gets activated, indicated by a flurry of work transfer and work request activity. Fi-

nally, each node quits trying when the retry attempts have been exceeded or when

no potential neighbor with work can be found.
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7. APPLICATION PROGRAM RESULTS

7.1. EVALUATION METRICS

Test results were obtained by running three different variations of the load

distribution strategy under conditions of normal load, mild or no load, and when

some of the workstations had moderate to heavy loads. Mild or no load conditions

were simulated by running the applications at night when user activity was less than

normal and moderate to heavy load conditions by giving some of the workstations

extra work to process. The variance of the finish times was then examined to find

out how effectively the load sharing strategies performed.

The performance of different load distribution strategies can be evaluated

by the total time taken for the parallel job and the total time idled for lack of
work. Since the workstations were never available for dedicated use, the total time

taken often varies depending on the current workload on individual workstations.

Therefore the variance of the finish times, along with the total parallel time taken,

provides us with a better measure of the performance of the load distribution strate-

gies. However, even the variance by itself does not give us enough information when

dealing with multiple programs of differing execution times. To test the efficiency of

a load sharing strategy, the standard deviation was expressed as percentage of the

mean of the individual computation times. For a good load distribution strategy,

this number should be fairly constant and never be large. A large value would indi-

cate that the load distribution strategy did a poor job of scheduling and transfer of

data.
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When comparing results, it must be kept in mind that the results were ob-

tained in a multi-user environment and hence variations in the parallel times taken

are possible due to increased or decreased user activity. It must also be under-
stood that this report places more emphasis on how well the load has been bal-
anced or shared among participating workstations and not so much on the per-
formance increases obtained, although better load distribution indirectly ensures

higher speedups.

Four sample programs were taken (Refer Chapter 5) and used as the test-
bed to evaluate the load sharing strategy. Since some of the applications are fairly

complex and differ in functionality from their sequential versions, all timings and

hence performance increases have been calculated based on timings obtained when

the parallel program was run in a uni-processor mode. Care was taken to see that

this would not bring any additional performance degradations except those caused

by the Charm run-time system.

To fully test the different components of the load distribution strategy and

their contribution to the overall results, different parts of the load distribution strat-
egy were turned off and individual components selectively turned on. Then the suite
of test programs was run with just these components turned on and the performance

results found out. The load distribution strategy is basically composed of two main

parts, the dynamic scheduling part and the task transfer part. In the experiment

conducted, three versions of the load sharing strategy were tested.

Run-time Scheduling Strategy: Work is distributed based on processing

capacities. The load distribution strategy has the work transfer component,

status component, location and retry component, all switched of
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Dynamic Work Transfer Strategy: The load distribution strategy with

with initial task distribution performed equally irrespective of machine loads

and processing capacities. Dynamic transfer of work is however enabled and

performed when individual workstation are about to run out of work.

Combined Strategy: The load distribution strategy where both scheduling

and work transfer components are enabled and functioning. In this strategy,

tasks are initially distributed based on processing capacities and work transfers

are later performed if necessary when individual workstations idle for lack of

work.

The performance monitoring tool was turned on while the three strategies

were run and the results (Figures 7.1, 7.2 and 7.3) indicate the performance char-

acteristics obtained while running the raytracing application using the Run-time

Scheduling Strategy, Dynamic Work Transfer Strategy and Combined Strategy re-

spectively. The image raytraced while obtaining the graphs was a 800 x 800 pixel

image of a buckminsterfullerene molecule. When the Run-time Scheduling Strategy

was used, (Figure 7.1) the variance was maximum. This is because no dynamic

migration of work is performed. The Dynamic Work Transfer Strategy (Figure 7.2)

has a much lower variance among the finish times but the total time taken is more,

compared to the Combined Strategy (Figure 7.3). This is because of the additional

overhead involved in the migration of tasks. The Combined Strategy delivers good

performances because the initial scheduling ensures that the work transfer strategy

does not have to work very hard to balance the workload. This is indicated by the

low variance among the finish times of individual workstations and a minimum of

idle time.
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7.2. TEST RESULTS

The four sample programs were run with these strategies and the results ob-

tained are shown in Tables 7.1 and 7.2. Each value obtained is the average of ten

program executions under suitable load conditions. These results provide us with
useful hints as to the effectiveness of the different components to the overall load

sharing strategy. Initially, the different components of the load distribution strategy

were individually enabled under normal conditions. Later, the effectiveness of the

combined strategy was demonstrated by running it under varying conditions of load

and by measuring the responsiveness of the strategy in coping with load imbalances.

7.2.1. Performance Under Normal Computational Loads

The run-time scheduling strategy, fared the worst because of its compara-

tively un-adaptive nature. This strategy has no way of coping with load fluctuations

after the program has begun execution. This becomes specially apparent when the

application runs for a long time, like the raytracing application, and thereby being

more susceptible to load imbalances. The Run-time Scheduling strategy performs

best when the amount of data associated with the task is high with respect to the
amount of computation . If the work transfer strategy has to migrate large amounts

of work to counter heavy load imbalances, the costs associated with work migration

and the high message latencies on the Ethernet rapidly deplete any performance ad-

vantages gained by the migration. The scheduling strategy also delivers good perfor-

mances for algorithms when there are a limited number of moderately computation

intensive tasks to be distributed followed by communications or a synchronization.

This is specially true for graphical algorithms were the problem size cannot be scaled
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up to increase the number of tasks per communication or synchronization because

the dynamic strategy is not nimble enough in an Ethernet environment to migrate
work, in response to small workload fluctuations. The 2 D Morphing application is

an example. Here, only a small number of consecutive images can be completed in

parallel (about 30 consecutive future images) at a time. Successive images can be

processed only on completion of earlier images due to memory limitations.

The dynamic work transfer strategy performs highly effectively when there

are a large number of free tasks with low amounts of data associated with them.

This is why it performs so well for the All Pairs Shortest Path and Raytracing
applications (Table 7.1). However its efficiency deteriorates when the amount of
data associated with the task increases and when the amount of computation per

communication is small. In spite of inefficiencies for such special applications, the

over-all performance for the strategy is quite high. Even for the worst case, the ratio

of standard deviation to mean computation time is still less than 6%. Thus the dy-

namic work transfer strategy is highly recommended if the user wants fairly decent

performance increases and does not want to take the trouble of running scaled down

problems on each individual workstation and determining the processing capacity
of the workstation for that application.

The combined strategy performs best because it is able to utilize the good
features of both the scheduling and the dynamic work transfer strategies. The over-
all standard deviation to mean computation time ratio is very low. The maximum

recorded ratio was less than 2.5% for the four applications, with the average a mea-

ger and extremely healthy 1.5%. This indicates that the combined load sharing

strategy is very adaptive to most of the application programs and delivers good
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Strategy Application Programs Total * Mean * Std Dev * % Std Dev

Run-time

Scheduling

All Pairs (1500 vertices) 265.7 219.4 30.97 14.12

Matrix Mply (1200 x1200) 154.0 135.7 16.81 12.39

Raytrace (800x800 pixels) 1412.8 982.46 201.9 20.55

2 D Morphing (250 steps) 279.6 267.8 4.97 1.86

Dynamic

Work

Transfer

All Pairs (1500 vertices) 236.5 234.1 1.85 0.79

Matrix Mply (1200 x1200) 138.4 133.3 3.03 2.27

Raytrace (800 x800 pixels) 1248.5 1232.2 10.7 0.87

2 D Morphing (250 steps) 326.4 297.0 17.65 5.94

Combined

All Pairs (1500 vertices) 214.9 212.7 1.83 0.86

Matrix Mply (1200 x1200) 133.3 131.0 1.87 1.43

Raytrace (800 x800 pixels) 1009.9 981.0 20.69 2.1

2 D Morphing (250 steps) 282.8 272.3 4.4 1.61

Table 7.1. Efficiency of load sharing strategies under normal loads

all-round performance. Hence, the combined strategy can be used to deliver very
good results when a task needs to be run repetitively a large number of times. This

would justify running it sequentially on the available workstations and determining

their relative processing capacities.

*All values of time are in seconds
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Low Loads High Loads

Programs Mean* Std Dev* % Std Dev Mean* Std Dev* % Std Dev

All Pairs (1024) 72.24 0.57 0.78 94.22 1.56 1.65

Matrix (1200 x1200) 129.71 2.00 1.5 238.42 16.51 6.92

Raytrace (800 x 800) 901.39 8.16 0.91 1378.16 17.10 1.24

Morphing (200 steps) 227.06 9.04 3.98 393.25 7.43 1.89

Table 7.2. Performance changes under varying conditions of load

7.2.2. Performance Under Varying Computational Loads

The previous section has demonstrated the effectiveness of the load sharing

strategy under conditions of normal load. To demonstrate the adaptivenes of the

load distribution strategy, the combined strategy was run on machines, under con-

ditions of both high over-all load and low over-all loads. Load was simulated by

running several (about 2-4) dummy for loops on several of the faster machines. For

example, the first, second and fourth workstations were subjected to heavy load.

The load distribution strategy performed fairly well despite the slow response of

the some of the machines to status updation and work transfer messages. The av-

erage standard deviation to mean computation time ratio increased only to 2.92%

from 1.11%. The ratio actually decreased for the 2 D Morphing application as the

heavy load on some machines actually reduced the processing capacity disparities

among the faster and slower workstations, thereby allowing the processors to finish

together, despite the increase in overall total execution time.
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7.3. HETEROGENEOUS SPEEDUPS

Although the primary emphasis of this article is on efficient load distribution,

a good distribution is meaningless without any performance increases. Conventional

notions of speedups are not well suited for heterogeneous environment. This is be-

cause the processing capacities for different machines vary, according to the number

of jobs currently running and their respective processing capabilities. Hence, it is

not immediately apparent which sequential time should be taken to compare with
the parallel time to obtain the speedups. Taking the slowest machine of the network

will result in exaggerated speedups while taking the fastest machine for compar-

ison will yield very conservative speedups. Hence a better method of calculating
speedups is needed on a heterogeneous network so that the meaning of speedups is

still conserved. The method used in this report is to consider all differing partici-

pating workstations and and rate them relative to the fastest processor. This means
that the application program is run on all the machines and the uni-processor time

obtained is used to rate the machines. Once these relative rates are obtained, the
total computing power present in the network can be represented as being equivalent

to having say x of the fastest processors (Table 7.3). If there are n heterogeneous

processors, then x < 71.

In a typical homogeneous environment, an ideal speedup curve will be lin-

ear. In a heterogeneous environment this curve will be sub-linear provided it was

calculated with respect to the fastest workstation. Individual points on the curve

are calculated by usual methods, except that the sequential time on the fastest pro-

*All values of time are in seconds
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Uni-processor Timings *

Programs SUN 2 SUN 10 HP 715 IBM 530 IBM 250

All Pairs 880.1 492.3 710.5 765.5 303.1

Matrix Mply 2349.5 1484.0 1315.0 961.2 576.6

Raytracing 15400.3 8351.6 7686.6 8582.5 4271.9

2D Morphing 2171.5 1074.6 1894.7 1022.2 570.9

Relative Processing Capacities

Programs SUN 2 SUN 10 HP 715 IBM 530 IBM 250

All Pairs 0.34 0.62 0.43 0.40 1.00

Matrix Mply 0.25 0.39 0.44 0.60 1.00

Raytracing 0.28 0.51 0.56 0.43 1.00

2D Morphing 0.26 0.53 0.31 0.56 1.00

Table 7.3. Relative ratings of workstations for application programs
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Parallelizability Of Application Programs
Performance timings on a heterogenous mixture of eight workstations

Performance Increases

cAr
ONv°

Application Programs

Speedups

Actual

Ideal

Parallel times taken on a mixture of 2 Sun 10s, 1 IBM 530, 2 HP715s, 2 IBM 250s and 1 Sun 2

Figure 7.4. Ideal and actual speedups for the test suite
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Performance Increases for Raytracing
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Speedup
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Machines used include 4 Sun 10s, 2 IBM 530s, 5 HP715s, 3 IBM 250s and 2 Sun2s

Figure 7.5. Variation of speedups with increasing number of workstations
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Parallel

Time *

Ideal

Speedups

Actual

Speedups

Percentage

Utilization

Total

Workstations

1838.9 2.57 2.32 0.90 4

906.8 4.92 4.71 0.96 8

601.2 7.49 7.11 0.95 12

476.7 9.40 8.96 0.95 16

Table 7.4. Utilization of available computing power for raytracing

cessor is divided by the total parallel time to obtain the speedup. The ideal or

maximum possible heterogeneous speedup is determined by plotting x on the graph.

Figures 7.4 and 7.5 illustrate these concepts better. The results indicate that the
application programs deliver extremely good performance increases on being run in

parallel, especially since the workstations were never available for dedicated use.

Since the actual shapes may vary for the ideal and actual speedup curves

depending on the sequential time used for comparison, the percentage of total avail-

able computing power actually used, can be used as a good measure of how well the

distribution strategy was able to distribute work along with the speedup curves. To

measure this, the ratio of the actual to ideal speedups is taken. Sample values taken

for the raytracing application (Table 7.4) indicate that the utilization is quite sat-

isfactory even while the number of workstations was varied from 4 to 16 (Fig 7.5).

For the raytracing application, the average utilization was 94.05%.
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Workstations

SUN 2 SUN 10 IBM 530 HP 715 IBM 250 Total

0 1 1 1 1 4

1 2 1 2 2 8

1 3 2 3 3 12

2 4 2 5 3 16

Table 7.5. Heterogeneous workstation cluster used for raytracing

*All values of time are in seconds
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8.1. CONCLUSIONS

69

Current trends indicate that parallel computing on workstation clusters is

a very viable area for future research and work. In such an environment, espe-

cially when computers from various vendors are present, run-time environments

like Charm can provide an easy interface for efficiently utilizing all the available

resources. Since most of such environments are not available for dedicated use,

some form of scheduling or load balancing is imperative for performance gains. This

problem is general enough and too tedious to be the sole responsibility of the appli-

cations programmer. System modules which automatically schedule and distribute

load, help in encapsulating and isolating these issues so that the programmer is not

hampered by issues not directly related to the problem.

8.1.1. Recommendations

The results obtained from this work indicate that excellent benefits can be

obtained by using the load distribution strategies for various classes of problems.

The dynamic work transfer strategy, where work is equally scheduled in the begin-

ning, is sufficient to deliver fairly good performance increases compared to absolutely

no load sharing at all. This strategy can be used when the parallel application is

used only infrequently. However, if better performance increases are needed and the

application is run quite frequently, it might make sense to use the combined strategy

instead. This strategy delivered consistently good performances for almost all the
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test applications. When using the combined strategy, several levels of performance

increases can be obtained depending on the amount of time the application pro-

grammer is prepared to spend improving performance. One can use SPECJNT92

ratings, SPEC_FP92 ratings, or a mixture of both of them to gradually increase the

savings. Finally, scaled down versions of the problem can be run in a uni-processor

mode to best estimate the actual processing capacity of each workstation type.

8.1.2. Shortfalls

The scheduling and load distribution modules do a very good job of ensuring

that all the participating workstations finish the available work at about the same

time. However it should not be treated as a panacea for all problems that hetero-

geneous computing brings. Additions and modifications are still possible to make

the strategy more efficient. One severe shortfall of the strategy lies in its notion of

how data will be distributed. Since the strategy is two pronged, with an initial cen-

tral distribution followed by a distributed approach to work migration, application

programs have to be written to conform to this paradigm to obtain good speedups.

Although this is considerably less work to do than writing specific load sharing

modules for each parallel Charm application program, it sometimes does not work

so well for problems which do not conform to such a paradigm and undermines the

basic arguments proposed in this thesis for program independent load sharing and

distribution. Perhaps the solution to this problem is to have several of such load

sharing modules each of which is built with a specific class of programs in mind.

Typically, the scheduling portion of this algorithm is useful for graphical applica-

tions where the problem sizes can be easily predetermined at start of computation.

Scheduling hints, though contrary to the spirit of application program transparent
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load distribution, can ease some of the problems by providing directives to the load

distribution strategy regarding the nature of the parallel program.

8.2. FUTURE WORK

Although heterogeneous computing raises a number of unique and challenging

load sharing issues, several areas of intelligent scheduling and dynamic load sharing

remain unexplored. Currently, the Charm run-time system works on SunOS, HPUX
and AIX operating systems. Work is going on to port it over to IRIX, OSF /i
and other operating systems for greater heterogeneity. There is also a need for a
operating system independent protocol for data transmission. Formats such as XDR
can be used to achieve this.

8.2.1. Programming Hints for Intelligent Transfer

Unfortunately, experience has shown that performance can always be im-
proved with the help of programmer issued hints and directives. Although such
principles are counter to the spirit of programmer independent scheduling and load
sharing, better performance results can be obtained through very simple program-
mer directives. Hence, it is felt that the programmer should always be given the
option to improve performance if he is unhappy with current performance levels.
Thus a two tier scheme of improving performance can be used. During the first
level, Charm is allowed to have its way regarding task scheduling and migration. If
the programmer feels there is scope for improvement, additional directives are placed
in the program. The scheduling hints mentioned in Chapter 4 are good examples
of such directives. A stumbling block that still exists is the variable nature of work
in each chare. Currently, the predictions are calculated by finding out the number
of tasks processed in the last t seconds. More sophisticated strategies which take



72

into account the differing grainsize of various tasks can be utilized if the system is

given some directives regarding the nature of work associated with free chares in the

work queue. Simple directives regarding the computational complexity associated
with a chare can give the the system a better idea whether the costs of migration

outweighs the time saved by doing it in another processor. Thus each chare can be
considered individually on its merit to be migrated or executed locally. Learning
algorithms can also be used which remember the time taken by a chare doing similar

work earlier, and use that information in future transfers of identical chares.

8.2.2. Multiple Networks

The existing Charm environment works only on the Ethernet. Interesting
possibilities emerge when some of the workstations are connected by Ethernet, oth-

ers by ATM, FDDI or other specialized high speed network. Then, work migrations
are cost effective only when the underlying network connection is considered by the
work transfer policy. Task migrations are decided based not only on the nature
of work to be transferred but also the time taken to transfer it in the underlying
network. If more than one network connection is possible between two workstation,
the Charm system should automatically use the fastest alternative available. The
decision of which network to use should be program transparent. This implies that
the programmer should never need to know how workstations communicate with

each other except that they'll use the fastest means possible.
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8.2.3. Metacomputers

The differences between a high speed dedicated workstation network and a

parallel computer are rapidly dissolving. With faster networks like ATM, vector

processors, parallel computers and workstation clusters can be viewed as computing

entities or metacomputers. Several of these metacomputers can be connected to

each other and dynamically exchange tasks and status information. This entails a

multilevel view where individual computers in a metacomputer exchange informa-

tion and data among themselves. Metacomputers, similarly exchange information

and work when all individual machines comprising it have run out of work or are

about to run out in the near future.

Some work in this regard has already been completed using the 16 processor

Meiko Supercomputer and a eight node heterogeneous workstation cluster. Initial

results have been encouraging. The individual nodes in the parallel machine com-

municate with each other using a fast communication network and with the other

workstations using Ethernet. The Charm environment automatically decides which

communication protocol to use depending on the underlying network connection.
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