
Lehigh University
Lehigh Preserve

Theses and Dissertations

1995

MIRAGE : a system for distributed image
generation on workstation clusters
Darrin Weber
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Weber, Darrin, "MIRAGE : a system for distributed image generation on workstation clusters" (1995). Theses and Dissertations. Paper
359.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228646608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/359?utm_source=preserve.lehigh.edu%2Fetd%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AUT,HOR:

Weber, Darrin L.

TITLE:

Mirage: A System for

Distributed Image

Generation on Workstation

Clusters

DATE: May 28,1995

MIRAGE: A System for Distributed Image Generation
on Workstation Clusters

by

Darrin Weber

A Thesis

Pre--sented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Department of Electrical Engineering and Computer Science

Lehigh University

Bethlehem, Pennsylvania 18015

June 1, 1995

Table of Contents

List of Tables i v
Abstract 1
1. Introduction 3

1.1. Ray-Tracing Distribution " 3
1.2. Computing Environment 5
1.3. Organization 6

2. Image Generation Overview 8
2.1. Image Generation Input 9
2.2. Image Generation Output 10
2.3. Image Generation Feedback 11

3. Distributed Image Generation Model 13
3.1. Supervisor 17

3.1.1. Supervisor-Worker Communications 18
3.1.2. Supervisor Implementation 22
3.1.3. Distributed Debugging Methods 27

3.2. Worker 27
3.2.1. Worker Implementation 29

4. Rendering Algorithm Enhancements 33
4.1. Shadow Cache 33
4.2. Adaptive Octree and Object Organization 35
4.3. Optimized Object Functions 42

5. Performance Analysis 43
4 .1. Spheres Scene 47
4.2. Teapot Scene , '" 49
4.3. Sponge Scene 51

6. High-Speed Switch 55
7. Conclusion 60
List of References 62
Vita 64
A. Sample Resource Files 65

A.1. Spheres Studio Resource File 65
A.2. Spheres Model Resource File 66
A.3. Spheres Material Resource File 68

B. Sample Color Images 70

iii

List of Figures

1. Supervisor-Worker Communications 14

2. Message Data Structure 19

3. Supervisor-Worker Message Types 20

4. Worker Process States and Control Messages 22

5. Supervisor Implementation 24

6. Worker Implementation 31

7. Adaptive Octree Build Algorithm 37

8. Tracking Ray through Octree 38

9. Intersection of Ray with Quadtree : 39

10. Octree Numeric Labels 41

11. Spheres Distributed Execution Time and Speedup 48

12. Teapot Distributed Execution Time and Speedup 50

13. Sponge Distributed Execution Time and Speedup 53

14. Execution Times for 8-node Configuration 56

15. Comparision of Network Transfer Rates 59

iv

Abstract

This thesis describes an efficient and robust

implementation of the "Supervisor-Worker" model for

distributing and coordinating the parallel tasks of image

generation[l] . Image generation by ray-tracing is well

suited for effective distributed processing due to its

intensive computations and its ability to be divided into

independent components. A system for utilizing clusters of

interconnected workstations as a distributed platform for

generating photo-realistic images and animations is

presented. Additionally, enhancements to the ray-tracing

. technique of image generation are presented. Specifically,

an "adaptive" octree method for organizing the, objects

within a scene is discussed. utilizing the presented

distributed application and enhancements to the ray-tracing

technique, a near linear performance increase is experienced

for certain characteristic images. Al though near linear

performance can be observed for certain images, analysis of

the presented model reveals several factors which limit the

speed-up which can be achieved by distributing image

generation across a cluster of workstations. Correlations

between performance and image complexity, image size, and

communication overhead of the presented model are examined.

Further, the communication overhead and its effect on

performance is evaluated in terms of the network medium used

to connect the workstations of a cluster.

1

A high-speed

switch designed specifically for clustering workstations is

compared to Ethernet to analyze the performance impact on

image generation, utilizing the presented "Supervisor

Worker" model.

2

Chapter 1. Introduction

The increasing presence of clusters of interconnected

workstations has inspired research into exploiting local

area networks as viable distributed processing environments.

Workstation clusters, common to both educational and

business environments, provide a flexible, powerful

distributed processing environment. Workstation clusters

are flexible in the cost, type, and number of workstations

that constitute a particular network configuration. The

flexibility of workstation clusters allows computing

environments to be tailored to specific processing

requirements as well as expanded for future needs. The

supervisor-worker model for distributed image generation

presented in this paper efficiently utilizes the power

available from workstation clusters. The high computational

cost of image generation makes it well sui ted' for

distributed processing[2,3,4]. The image generation

technique of ray-tracing is implemented due to its

suitability for application in distributed environments.

1.1. Ray-Tracing Distribution

Ray-tracing generates photo-realistic images by tracing

the interaction of light rays and obj ects wi thin a three

dimensional computer model. Rays are traced backward from a

viewer perspective into the model according to the physical

3

and optical laws of nature. The intersections of the traced

rays and objects in the scene determine the image produced.

Recursive rays determine shadows, reflectivity, and

transparency. Each primary ray that is fired into the scene

corresponds to one pixel in the final image. Each primary

ray can be traced independently and in parallel.

Distributed processing techniques can be applied easily by

parti tioning the ray-tracing process across a cluster of

workstations. Although each ray can be traced

independently, the overhead incurred in distributing each

ray outweighs the computation time for individual rays. The

approach taken by Mirage is the distribution of individual'

scan lines of the final image to the worker nodes of a

cluster. This distribution strategy allows coherence

between the pixels of the same scan line to be exploited.

By distributing scan lines instead of individual rays, the

distribution overhead is minimized compared to the

computation time.

This technique does set a physical maximum number of

workstations that can be used effectively for ray-tracing an

image. Clearly, no benefit can be gained by utilizing a

number of workstations exceeding the number of scan lines in

the final image. By distributing the lines of an image to a

cluster of workstations to be rendered, the expected

performance increase should be nearly linear. However,

three factors, setup time, communication overhead, and

4

collection time, will limit the performance increase

experienced by utilizing the distributed system. Setup time

involves the time required by the worker nodes to acquire

and organize all of the resources required for image

generation. Communication overhead is the direct cost as a

result of assigning lines to be rendered to the workstations

of a cluster. Messages are passed between a supervisor and

worker nodes for coordinating the distributed image

generation. Collection -?ime results from the transference

of rendered lines from the worker nodes to the Supervisor

for composition into the final image.

1.2. Computing Environment

Implementation of Mirage for image generation was done

in ANSI C. Portable system constructs and network

protocols, namely Berkeley's socket interface and TCPlIP,

were used in the implementation[S,6]. The testing

environment consisted of eight RISC workstations connected

by an Ethernet and IBM's Allnode high-speed switch[7]. The

high-speed switch is specifically designed for clustering

workstations. This environment, with two independent

network transports, provided versatility in evaluating the

effect of communication overhead on the overall performance

of the image generation system.

5

1.3. Organization

Even though the technique of ray-tracing forms the

basis for Mirage's image generation, the functional details

and imaginary world used to represent the scene to be

rendered are unique. Chapter 2 contains the functional

details on the image generation process. The process for

describing the three-dimensional world to be rendered, the

format of the output image, and the status and performance

reports are discussed. The resources required for rendering

an image are detailed, as well as the input and output for

the entire image generation process.

Many papers have discussed the theoretical distribution

of image generation but they often lack implementation

details and characteristics such as portability, efficiency,

and fault tolerance. Chapter 3 presents a highly portable,

efficient system based on the supervisor-worker paradigm for

distributing the generation of images amongst a cluster of

workstations. Implementation details, fault tolerance

strategies, and effective debugging methods for the

distributed system are presented. Addi tionally, an

efficient communication protocol, utilized between the

supervisor and worker nodes, is examined.

Chapter 4 discusses the enhancements to-the basic ray

tracing technique for maximizing the performance of image

generation. An "adaptive" octree technique for efficiently

organizing the objects in a scene is presented. An

6

efficient organization strategy reduces the number of

computations required for detecting ray-object

intersections. In addition to the, organization strategy

presented, shadow caches and optimized object functions are

detailed as enhancements to the ray-tracing technique.

Following the presentation of ray-tracing enhancements,

the performance of Mirage is analyzed. Relations between

performance and image characteristics, such as image

complexi ty, image size, and communication cost, are

evaluated. Sample images are rendered to analyze the

performance of the presented image generation system.

The evaluation of IBM's Allnode high-speed switch is

presented in Chapter 6. The performance and suitability of

the switch as it relates to Mirage and a similar class of

distributed applications is analyzed and predicted.

Chapter 7 presents some conclusions regarding the use

of the presented system among a cluster of workstations for

a similar class of computationally intensive applications.

Current research focuses on network mediums with the

bandwidth and speed that will allow an increasingly larger

number of distributed workstations to be interconnected.

With larger geographical regions being interconnected due to

technological advances in network hardware, distributed

applications similar to the presented system will provide

the power computing platform of the future.

7

Chapter 2. Image Generation Overview

The Mirage image generation system is designed to ray

trace an environment of three-dimensionai objects to produce

photo-realistic images. Light rays are traced through the

three-dimensional world and an image is computed based on

the physical and optical laws of nature. Mirage calculates
,

shadows, reflections, and transparencies of objects through

their interactions with light rays. Multiple light sources

of differing types are used to illuminate a particular

model. For realism, the three-dimensional objects that

compose a scene are assigned specific surface

characteristics that simulate their real world textures.

Constructive solid geometry is employed to model complex

objects by using basic geometric constructs. Constructive

solid geometry allows the intersection, union, and clipping

of basic geometric shapes by planes and conics. The

presented image generation system incorporates natural

camera motion along with other variables such as camera

focal length, tilt, and field of view. Animation is

implemented through obj ect transformations and the use of

"key framing". The user defines certain "key" frames along

a path and the system calculates the "tween" frames for

smooth animation.

8

2.1. Image Generation Input

The three-dimensional environment used to generate an

image is described by three text files. The three input

files describe the complete environment and parameters

utilized to ray-trace it to produce a photo-realistic image.

Resources of the image generation process includes the

studio, Model, and Material files. The studio file defines

the placement of the camera(viewer perspective point0,

global lighting, key-frames, o~ject animations and

transformations, image qual·ity and size, and global

rendering options. There exists an entry in the studio file

for every "key" scene in the animation. The Material file

contains definitions for surface characteristics that are

assigned to the obj ects wi thin a scene. Surface

characteristics such as reflectivity, transparency, and

roughne-ss are defined for particular materials. The Model

file contains the layout of the three-dimensional

environment to be ray-traced. The Model file defines the

graphic primi tives, constructive solid geometry, lighting,

grouping of objects, and the transformations of groups.

The three text files provide the resources for generating

the final photo-realistic image. Text files are used as the

input for rendering to allow direct portability of the image

resources between heterogeneous hardware platforms. The

text files also serve as a base for translating models from

CAD applications for use in the presented image generation

9

system. Appendix A contains sample source files for images

discussed in this paper.

Mirage contains a compiler for converting the source

input files into binary counterparts. The binary versions

ultimately provide the input to the image generation system.

Binary format files are used in order to speed up the

rendering process by removing the parsing overhead which can

be significant for large projects. The binary files consist

of variable length records that can be read very quickly

compared to the time consuming process of parsing a textual

file. Additionally, the input files can be compiled

separately. The capability of compiling the resource files

independently, facilitates the debugging of the production

of an image or animation. Only the resource file that is

modified needs to be recompiled, thus, decreasing the cycle

for generating test images. One important point of Mirage

is that the same resource files are used for both the

distributed and single-processor implementations. The

portabili ty of the image resources results from utilizing

the same rendering engine in both the distributed and

single-processor implementations.

2.2. Image Genetation Output

Mirage produces true-color~24 bits per pixel) images in

the industry standard Targa 2 file format [8] . The

resolution and quality of the rendered image is adjustable

10

and specified by the user. The image can be of any

resolution, only constrained by the increased time and

memory required to ray-trace larger images. The quality of

the final rendering is selected by the user in terms of the

level of anti-aliasing that is applied during the image

generation process. Anti-aliasing is the process of over

sampling and averaging of the pixels that compose an image.

The higher the level of anti-aliasing, the better the

quality of the resulting image and the greater the rendering

time. In the case of animations, output images are

sequentially numbered to facilitate single-frame recording

or interactive viewing.

2.3. Image Generation Feedback

During image rendering and at its completion,

statistics are reported by Mirage. The statistics include

timings of particular segments of the rendering process and

memory usage. The memory usage statistics indicate the

general complexity of the scene. Memory usage reflects the

number of obj ects in the scene and their spatial

organization. The setup, rendering, and collection times

are tracked as well as the contribution of each worker to

the final image. The data presented can be used to

determine the number of workstations required to generate

images in an acceptable time frame. The reported data also

helps the user to determine the best mix of rendering

11

parameters, such as anti-aliasing, to apply for the highest

quality image with the available resources.

12

Chapter 3. Distributed Image Generation Model

Mirage follows the "Supervisor-Worker" paradigm for

distributed computing. A" supervisor" process manages the

distribution of the computational task and collects the

results from the "worker" processes. Worker processes

distributed across the cluster, complete parallel

computational tasks as assigned and coordinated by the

supe.rvisor.

During the image generation, a supervisor process

manages the resources required to ray-trace a particular

image. The supervisor distributes the resources required

for image rendering, such as three-dimensional models,

materials in the scene, and animation specifications to all

of the worker nodes. Following the distribution of scene

resources, the supervisor assigns individual scan lines to

the workers to render as requested. The supervisor then

collects all of the rendered scan lines from each worker for

final assembly into a completed image.

The resources required for image generation are

distributed through several communication mechanisms.

Communications between the supervisor and worker nodes

include both control and data messages. Figure 1 presents

an overview of the communications between the supervisor and

workers. The scene information and rendering parameters,

such as image quality and size, are read from the Studio

13

file by the supervisor and transferred via data messages to

the workers. Control messages are utilized to synchronize

the distribution of other resources. Through control

messages, the supervisor transfers the network location of

the Model and Material resource files to the workers for

access via a Network File System(NFS). The Model and

Material resources do not need to be manipulated by the

supervisor as the studio file does,-therefore, the worker

nodes read them directly via NFS. NFS is inherently well

sui ted for efficient, simultaneous access by workers for

reading the Model and Material resource files. NFS employs

Rendered~ ---;
Image
File

--.....~ NFS

""""""'''1*»' Data Messages - Rendered Lines

................""",.-. Control Messages

Studio

File

Figure 1. Supervisor-Worker Communications

14

multiple processes and disk caching in order to handle

simultaneous disk I/O efficiently.

After distributing scene resources, control messages

between the supervisor and workers coordinate the assignment

of scan lines to render. The supervisor sequentially

assigns individual lines to worker nodes as requested by the

workers. Completed image scan lines are accumulated locally

on the worker node and transferred to the supervisor only

after all lines have been rendered. Completed scan lines

are transferred to the supervisor at the end of current

processing by the worker for two important reasons. First,

by transferring the completed lines at the end, they can be

transferred together as a large data stream. Transferring a

worker's set of rendered lines as a single data stream

avoids the typical startup latency of sending multiple

messages individually. Secondly, overall image generation

performance can be increased by not intermixing control and

data messages to be handled by the supervisor. Workers

would be idle, waiting for line assignments, as other

workers transferred completed lines to the supervisor.

Actual implementation supports the maintaining of only

control messages during image rendering and transferring

completed lines as a data stream, following the completion

of all lines. By collecting all rendered lines, the

supervisor can easily detect missing lines, thus, determine

that a worker has failed. Missing lines can then be

15

reassigned to all remaining workers. The detection and

reassignment of the missing lines of an incomplete image

provides a simple, yet robust, fault tolerance for Mirage.

The supervisor's coordination and distribution of the

image generation process is simplified by the fact that all

workers maintain all the resources required to generate any

portion of the final image. The partitioning of the image

generation computations simply involves the assignment of

the next sequential scan line remaining to be rendered to

the requesting worker node. Additionally, once a failure is

detected, as described above,' recovery involves the

reassignment of any lines not collected by the supervisor

after a reasonable time interval. Some distributed image

generation techniques discussed in the literature partition
,

the data and computations to particular nodes[2] [3]. These

schemes may gain a minimal increase in performance over the

presented model, but this gained acheived at the cost of

increased complexity in identifying and resolving failures.

The failure of individual workstations of a cluster in

today's environment are not uncommon. With individual users

controlling the availability of their own workstations,

reboots are not uncommon. These interruptions in today's

computing environments further stresses the advantages of

applications designed with fault tolerance strategies.

A particular advantage of Mirage is its implementation

utilizing standard, highly portable software architectures.

16

Communications between the supervisor and workers are

implemented using Berkeley's socket interface and TCP/IP for

the. network transport protocol. The modules are coded to

ANSI C standards to facilitate porting the software to

different hardware platforms. This implementation

encourages the use of this image generation system in

networks of heterogeneous workstations. Additionally,

clusters of workstations with varied computational

capabilities are well suited for the presented distributed

processing system due to its method of partitioning tasks.

Mirage dynamically assigns scan lines to workers as they are

completed. The worker nodes will receive computational

tasks dependent on the completion of previously assigned

tasks, therefore, each worker will be used to its capacity.

In a heterogeneous environment, workstations will· simply

contribute toward the generation of an image according to

their individual computational capability. Thus, Mirage's

distribution strategy performs equally well in both clusters

with homogeneous and heterogeneous workstations.

3.1. Supervisor

The supervisor is responsible for partitioning the

computations for image rendering and for assembling

completed scan lines from the workers into a final photo

realistic image. As presented by the supervisor-worker

model, the supervisor does not actually take part in any of

17

the computations, rather it controls the distribution and

collection of the computations. Further, the supervisor

takes a passive role in distributing the computations to be,

completed by assigning tasks only at the request of a

worker. In Mirage, the supervisor manages the distribution

of the resources required for image generation, distributes

individual scan lines to be rendered, and assembles results

into the final image.

The supervisor process is user-activated with the

rendering parameters and the series of scenes specified. A

user starts the distributed image generation process by

initiating the supervisor process on a network which has at

least one worker process active. Due to the low

computational requirements of the supervisor, a worker may

execute on the same node as the supervisor process. At

least one worker must be active for the supervisor to begin

the distribution of the image generation. Worker nodes may

be located anywhere, as long as the supervisor can establish

a reliable communication channel and the worker can utilize

NFS to access the required file resources.

3.1.1. Supervisor-Worker Communications

A crucial component of any distributed application is a

reliable communication mechanism. The supervisor and worker

of Mirage, communicate over a connected, reliable transport

implemented by the use of Berkeley's socket interface and

18

Even

the TCP/IP protocol. The socket interface allows a reliable

communication path to be established between two processes

on the same or different workstations on a network.

though the socket connections behave like streams, allowing

any amount of data to be passed in either direction, Mirage

communicates via a defined message structure. By

encapsulating all communications within messages, the same

communication modules can be used by both the supervisor and

worker processes. The message structure is designed to be

flexible and efficient in handling both control and data

messages over the connection. Figure 2 details the message

structure used in the supervisor-worker protocol.

struct {
void *msgPtrO;
void *msgPtr1;
int msglndexO;
int msglndex1;
int msgType;
int msgLen;
union {

char data [MAX_SIZE]
STUDIO studio;
GROUP group;

} msgData;
TCP MSG;

/* pointers for accessing data */
/* maintained as lists by super */
/* integer vals for control msgs */

/* message type * /
/* length of message in bytes */

/* message data section */
/* scene info & parameters */
/* transformation & animation */

Figure 2. Message Data structure

Data and control messages are distinguished by the field in

the message header that specifies the length of the data

following the header. A zero length data specified in the

header indicates a control message.

19

utilizing this scheme

to distinguish control messages allows efficient message

handling functions to be implemented that transfer only the

amount of data required. This message scheme allows the

establishment of an efficient protocol between the

supervisor and workers based on message types. The

supervisor establishes and maintains connections to each

worker for the duration of the image generation process.

The connection information is maintained in a table by the

supervisor that contains communication data for each

established connection. Socket identifiers, workstation

node names and addresses, and worker I s process states are

maintained in the communication table. Figure 3 contains

the message types and descriptions of the supervisor-worker

protocol.

INVALID
ECHO
CLOSE
ACTIVATE
DONE
WAIT
RESUME
REQ_DSTUDIO
SND DSTUDIO
REQ_MOX_PATH
SND MOX PATH
REQ_MAX_PATH
SND MAX PATH
REQ_FRST_GROUP
SND FRST GROUP- -
REQ NEXT GROUP
SND-NEXT-GROUP
REQ_LINE
SND LINES
SND READY

Signals that an invalid message type received
Echo message type used during testing phase
Indicates completion of entire series of images
Activation signal sent to all connected workers
Signals the completion of current image
No more scan lines to assign
Resume rendering due to a worker failure
Request Studio parameters from supervisor
Send studio parameters to worker
Request Model File network location
Send Model File network location to worker
Request Material File network location
Send Material File network location to worker
Request first transformation group from supervisor
Send first transformation group
Request next transformation group from supervisor
Send next transformation group
Request scan line to render
Signal the sending of completed lines to supervisor
Signal supervisor's acceptance of transferred lines

Figure 3. Supervisor-Worker Message Types

20

Synchronization between the supervisor and the workers

is required during certain points in the image generation

process. Worker nodes cycle through three distinct phases

during the image generation process. Figure 3 illustrates

the processing phases of the worker and the supervisor

message types used to change phases. Specific messages from

the supervisor determine the phases of the worker process.

As illustrated in Figure 4, a point of synchronization is

before the start of the rendering of an image. Each worker

await~ an activation message from the supervisor before

initiating the image generation process. This

synchronization point allows worker processes to be

continually active within the workstation cluster while

waiting for an image to process.

Synchronization is particularly useful in detecting

common failures in the presented distributed model. The

supervisor detects the failure of a worker by recogni zing

the absence of rendered scan lines once all active workers

transfer their completed lines. Worker nodes transfer all

their completed lines after a request for their next task

which results in a signal from the supervisor indicating

that all image scan lines have been assigned. Following the

transfer of rendered lines to the supervisor, the workers

must wait for the supervisor to determine if it receives all

of the assigned scan lines. If the supervisor does not

receive all scan lines within a reasonable time interval, a

21

failure is assumed and the missing lines are reassigned.

For Mirage a reasonable time interval of 10 seconds was

utilized in worker failure detection. Therefore, each

worker synchronizes at the point after which it has rendered

and transferred the lines assigned to it. At this point,

worker nodes await a signal from the supervisor indicating

the rendering of reassigned lines following a worker

failure, or the end of processing for the current image.

DONE

LINE ASSIGNED

Figure 4. Worker Process states and Control Messages

3.1.2. Supervisor Implementation

An advantage of Mirage is the simple implementation of

the supervisor. The supervisor is implemented as a single

process and not a system of spawned child processes as is

typical in supervisor implementations. Typical supervisor

or server implementations utilize spawned child processes to

22

handle messages received from clients. The supervisor in

the presented image generation system requires very little

computation to respond to worker messages due to the large

percentage of messages simply assigning sequential scan

lines for rendering. Therefore, a single process

implementation of the supervisor component is capable of

sustaining an effective worker message throughput. By

implementing the supervisor as a single process, the usual

system dependent constructs, such as semaphores and shared

memory, can be avoided.

Figure 5 details the pseudo code for the supervisor

implementation. The supervisor initializes a communication

log and a statistics log. The communication log records all

messages received and sent through the supervisor and is

used as an aid in debugging the distributed system as

described below. The statistics log captures elapsed

rendering times, worker contributions, and detailed

rendering data, such as the number of object intersections.

The statistics log helps determine the optimal rendering

parameters and the number of workers for a particular image

generation.

Following the initialization of the log files, the

supervisor reads and organizes the scenes contained in the

studio resource file. The scene data and transformations

read from the studio file are stored in an ordered list in

preparation for transmittal to workers. The supervisor

23

initialize communication log & statistics
read Studio file for scenes & transformations
open sockets
initialize active worker connections table
while (current scene < last scene)

initialize scan line table
ensure all resource files exist and are valid
send activation signal to workers
while (not all scan lines received for current image)

select on communication input
if (time-out on input) and (no workers active)

exit because no workers are active
if (time-out on input) and (all workers are waiting)

send resume message to workers
continue

log incoming message to communications log file
if (connection request)

establish reliable connection to worker
update active worker connections table

process incoming message according to type
log outgoing message to communications log file

write image to disk
send done message to all connected workers

send close message to all connected workers

Figure 5. Supervisor Implementation

initializes communications by opening sockets and preparing

to accept connections from workers at a dedicated port

number. The table used to maintain the data and statistics

on active worker connections· is initialized in conj unction

with the setup of the communications.

The main loop controls the rendering of a series of

images. A series of images are generated from a start scene

to an end scene. Prior to distributing the processing for

each ,scene, several functions are performed by the

supervisor. The supervisor initializes a table which

contains the status of every scan line in the desired image.

Values are assigned based on the status of particular scan

lines. status values are set based on the assignment of the

24

line to a worker, receipt of the completed line, and the

reassignment following a worker failure. Next, the

supervisor validates and verifies the existence of all of

the resource files required for image generation. Following

the successful verification of the necessary resource files,

the supervisor sends an ~activation~ signal to all workers.

The activation signal initiates the workers to begin the

process for generating the specified image.

The inner loop of the supervisor process represents the

main message processing loop for the current image.

Messages are processed from the workers until all completed

scan lines for the current image has been received. Worker

messages are received by multiplexing all of the active

connections contained in the communication table though the

use of the select system function[9]. If no input is

detected for a reasonable time' interval two possible

failures may have occurred. The first failure checked is

the situation where there exists no active worker nodes.

With no worker nodes active, the image cannot be completed

indicating a fatal condition that aborts the image

generation process. The second possible failure detected is

the situation where all active workers have transferred

their completed lines to the supervisor and are waiting, but

the supervisor detects missing scan lines. The second

failure situation is resolved by sending a "resume" message

to all workers and reassigning the missing lines.

25

When input is detected by the select system function, a

message is read from the specified socket. The message read

is logged in the communication log file. The input message

is then processed according to its type. Following the

processing of the worker's message, a reply message is

formulated and sent. The outgoing message is tracked in the

communication log. Connection requests are recognized by

detecting input on the supervisor's socket assigned a

specific port number. Connection requests are accepted to

establish a reliable communication path between the

requesting worker and the supervisor. The active

communication table is then updated to reflect the

establishment of a new connection to a worker.

Following the completion of the current image, as

evidenced by the collection of all rendered lines from the

workers, the image is written to disk. After the supervisor

writes the image to disk, a "done" message is sent to all

worker nodes. The supervisor and worker now prepare for

rendering the next image in the current series. When all

images of the current series have been rendered, a "close"

message is sent to all workers. The "close" message

indicates that the image generation is complete and workers

can free all resources acquired for the current series of

images.

26

3.1.3. Distributed Debugging Methods

Debugging distributed systems usually proves to be a

difficult task. Mirage incorporates several techniques to

facilitate the debugging of the supervisor process and

associated communication protocol. The invocation of the

supervisor provides a switch to enable the detailed display

of the actions performed by the supervisor during execution.

During execution this display allows the user to monitor the

results of particular functions and operations as they

execute. Secondly, the supervisor logs all incoming and

outgoing messages to a communication log file. The

communication log is examined to verify the correctness of

the messages passed between the supervisor and worker.

Additionally, an interactive utility was implemented to

verify the correct operation of the supervisor. The

interactive utility allowed the testing of the supervisor

implementation and design. Specifically, the utility

allowed the interactive testing and debugging of the

supervisor's message handling. The utility allowed

different message types to be sent to the supervisor and

displayed the response messages interactively.

3.2. Worker

The worker component of Mirage performs the image

generation computations as directed by the supervisor. The

worker ray-traces its assigned scan lines and stores them

27

locally until they are transferred as a group to the

supervisor. Worker processes may be started manually,

however, they are usually incorporated into the startup

process of workstations. This automated startup of the

worker process ensures that a designated number of worker

nodes exist in the network. Incorporating the worker into

the startup script also guarantees the execution of the

worker following a workstation failure. While this

technique allows the worker process to remain active

continually, very little resources are consumed. The worker

remains idle awaiting an activation signal from a

supervisor. The execution of the worker requires no user

intervention once started. All rendering parameters and

scene data are provided by the supervisor.

There exists no inherent limit on the number of workers

that may be active on a given cluster of workstations at

anytime. As discussed in Chapter 5, performance issues

dictate the optimal number of active workers for a

particular image. Depending on image complexity, a large

number of workers will actually degrade overall image

generation performance due to the increased communication

overhead. Due to the intensive computational resources

required during the rendering of an image, only one worker

process may be active on a single workstation.

The presented worker design includes no explicit

scheduling strategy. Mirage utilizes worker nodes to their

28

potential with no regard to current workstation load.

Scheduling strategies on the worker nodes could be employed

to limit their availability for image generation to certain

days and times as warranted by the particular computing

environment. For evaluating the system's performance,

maximum participation by the workers is desired, therefore,

no scheduling strategy is implemented. Althoughnno explicit
I

scheduling strategy is implemented by the workers, a passive

load balancing occurs as the supervisor dynamically assigns

scan lines. Workers with more computational power will

contribute a greater percentage of the overall image.

3.2.1. Worker Implementation

The implementation of the worker follows a modular

design strategy. The modular design of the worker allows

the worker to use the same basic message handling functions

utilized by the supervisor. Additionally, the design of the

worker allows many modules to be used from the single-

processor version. Specifically, the worker utilizes the

same rendering engine as the single-processor version. A

common rendering engine between a single-processor version

and the worker component in the distributed model allows

accurate performance analysis in regard to communication and

distribution overhead. The pseudo code of the worker is

presented in Figure 6. After a general initialization, the

worker establishes a User Datagram Protocol (UDP) socket. The

29

UDP socket is used to receive the activation signal

broadcasted by the supervisor at the start of a series of

images. The worker receives an activation signal in one of

two ways. If the worker is not already connected to the

supervisor from a previous image rendering, the UDP

connection will be examined for the broadcast signal.

Worker nodes that ar'e already connected to the supervisor

will await an activation signal across an already

established connection. If the worker is activated via the

broadcast to the UDP socket, the worker then establishes a

reliable connection to the supervisor for subsequent

communications. Following the receipt of an activation

signal from the supervisor, the worker acquires the scene

information and rendering parameters for the current image.

Once the general rendering information for the current image

is received from the supervisor, the transformations and

animations are requested. Next, the network location of the

Material and Model resource files are acquired. After

determining the network location of the Material and Model

resources, the worker utilizes NFS to load the scene's

materials and objects. Objects contained in the scene are

then transformed according to the animation parameters

previously received from the supervisor. The objects

composing the scene are organized into an octree to speed up

the ray-tracing algorithm as discussed in the next chapter

on the rendering algorithm enhancements.

30

initialize global variables
open UDP port for receiving activation signal from supervisor
while (1)

if already connected to a supervisor
await activation signal from supervisor on connected socket

else
await activation signal on UDP socket for broadcast
establish reliable connection to supervisor

get scene information from supervisor
get first group transform for scene from supervisor
while not last group transform

get next group transform from supervisor
get Material file network location from supervisor
open and read materials into tree structure
get Model file network location from supervisor
open and read objects
transform all objects according to group transforms
organize objects and build octree
request scan}line to render
while done.message not received

render assigned scan line
request a scan line to render
if wait message received

notify supervisor ready to send completed lines
await ready signal from supervisor
stream completed lines to supervisor

receive message from supervisor

Figure 6. Worker Implementation

The inner loop of the worker implementation controls

the rendering of the assigned scan lines. Line assignments

are requested from the supervisor. Assigned lines are

rendered in turn and 'stored in a local cache of completed

scan lines. If the worker receives a "wait" message instead

of a line assignment, the worker realizes that all lines

have been assigned by the supervisor and there are no more

to render. After receiving a "wait" signal, the worker

sends the completed lines from its local cache to the

supervisor. The completed scan lines are sent to the

supervisor as a continuous data stream.

31

By transferring the

completed lines as a data stream, the overhead of sending

the lines as individual messages is avoided. Subsequent to

sending the completed scan lines, the worker continues to

await a message from the supervisor indicating that the

current image is done. At this point, either a "done" or

"resume" message is received from the supervisor. A

"resume" message indicates that a failure has 'occurred and

lines need to be reassigned and rendered. Upon receiving a

"resume" message, the worker repeats the cycle of requesting

and rendering lines. A "done" message indicates that the

current image is finished and the worker now awaits an

activation signal in order to begin the next image.

The worker maintains the reliable connection to the

supervisor throughout the generation of a series of images.

By maintaining the connection, the worker eliminates the

latency involved in establishing a new connection for each

image rendered for the same supervisor. The connection

between the supervisor and worker is dismantled after the

rendering of the series of images is completed. The

completion of a series of images is indicated by receipt of

a "close" message from the supervisor.

32

Chapter 4. Rendering Algorithm Enhancements

The technique of ray-tracing for producing photo

realistic images is inherently computationally intensive.

Several enhancements have been developed to increase the

performance of the basic ray-tracing algorithm. A

significant amount of literature has been devoted to

increasing the performance of image rendering based on the

technique of ray-tracing[20,21,22J. The ray-tracing

algorithm utilized by the presented image generation model

incorporates many of the recent improvements. A few unique

enhancements used by the presented image generation model

are presented. Specifically, an enhancement to the octree

method of organizing objects in a scene is discussed. An

"adaptive octree"is presented that benefits from the

standard octree method, but requires less memory resources.

This chapter discusses the enhancements to the basic ray

tracing technique utilized by the presented model that gives

the most performance benefits.

4.1. Shadow Cache

Calculations for determining the shadows . in a

particular image consumes a significant portion of

computation time. Typical images devote 10-20% . of

computation time to calculating shadows. Clearly, a

decrease in required shadow computations will impact overall

33

image generation performance. Shadows are detected by

firing shadow rays from the current object intersection

point toward a light source. If the shadow ray reaches the

light source without intersecting another, opaque obj ect,

the original obj ect is not in shadow. However, if the

shadow ray intersects an opaque object on its way toward the

light source, then the object must be in shadow. If the

object intersected by the shadow ray is not completely

opaque, such as glass, a partial shadowing results due to

the attenuation that light rays would experience by passing

through the intersected object.

It is very costly to calculate the intersections of the

shadow ray as it tracks through the entire scene. A shadow

cache is employed to eliminate the firing of many shadow

rays[lO,ll]. In theory, if a point on an object is computed

to be in shadow by a particular object, adjacent points on

that object have a high probability of being shadowed by the

same object. The shadow cache stores the last opaque object

which caused a shadow. Before tracking the shadow ray

through the entire scene, the object in the shadow cache is

tested for intersection with the shadow ray. If the shadow

ray intersects the object in the cache, a shadow exists and

no further calculations are performed. If the shadow ray

does not intersect the cached object, shadow ray

calculations proceed as normal. The shadow cache is further

34

expanded to include entries for shadow rays of different

recursion depths.

In a scene with reflection and transparency rays being

spawned, shadow rays occur at different depths of recursion.

The shadow cache is examined according to the recursion

depth of the current shadow ray being computed. This depth

ordering in the shadow cache expands the likelihood that one

of the cached objects casts a shadow for the current shadow

ray. To further improve performance of the shadow cache, a

separate shadow cache is maintained for each light source.

The hit ratio, and thus performance b~nefit, of the shadow

cache is directly proportional to the number of lights and

complexity of the scene being rendered. In the sample

images rendered for performance analysis, an average hit

ratio of 10% for the shadow cache was experienced. At first

this· hi t ratio might seem low, however, it must be noted

that the majority of shadow rays cast reach the light

source, indicating no shadow exists. The shadow cache only

attempts to short circuit shadow ray tests that eventually

result in the existence of shadows.

4.2. Adaptive Octree and Object Organization

The time required to ray-trace an image can be

significantly reduced by the efficient organization of the

objects in the scene. An efficient organization allows only

the objects that could possibly intersect the traced ray to

35

be tested, rather than every obj ect in the scene. Ray

object intersection tests constitute a major portion of the

computations utilized in the ray-tracing technique.

Approximately, two-thirds of the computations performed by

the ray-tracing algorithm are devoted to determining ray

object intersections. ·The octree, a data structure commonly

used in ray-tracing algorithms, efficiently organizes the

obj ects of a scene for intersection testing. In an octree

scheme, the three-dimensional space of a scene is uniformly

sub-divided. The objects of the scene are placed into the

sub-divisions depending on their spatial location. A ray is

tracked through the octree as it passes from one sub

division to the next. Objects within the octree sub

divisions are tested for intersection as the ray moves

forward through the octree.

Several enhancements to the basic octree strategy of

object space organization are presented. First of all, the

octree organization is made "adaptive". During octree

construction, space sub-division only occurs when the

densi ty of obj ects in a particular area exceeds a maximum

threshold, rather than uniformly. Obj ect space is

recursively sub-divided qntil objects are partitioned in a

manner that yields a number of obj ects per octree sub

division that is less than a threshold value. Additionally,

the recursion of the octree sub-division is limited based on

the nature of the scene in order to conserve memory where

36

further sub-division yields little benefit. The "adaptive

octree" recognizes tha t certain sub-divisions do not

markedly decrease the density of objects in certain areas,

therefore, further sub-division is avoided. This adaptive

approach yields advantages of decreased memory usage and

more efficient object organization as compared to the

uniform sub-division implemented by most octree strategies.

The algorithm for organizing the objects of a scene with the

presented "adaptive octree" is illustrated in Figure 7.

octree.level= 0
octree.numObjects= all objects in the scene
root octree= extent of entire scene
push root octree
while stack not empty

octree= pop stack
if (octree.numObjects > max objects allowed per octree)

and (octree.level < max recursion level)
subdivide octree into 8 regular children
partition all objects from octree into children nodes
increment octree.level
for i= 1 to 8

if (child[i] .numObjects > max objects per octree)
and (child[i] .numObjects < octree.numObjects/RES)

push child[i]

Figure 7. Adaptive Octree Build Algorithm

In addition to efficient object organization, a

significant performance benefit may be realized by enhancing

the algorithm for tracing a ray through the octree for

determining its nearest intersection point. The octree is

recursively examined to determine the objects intersected by

a ray as it traces through a scene.

37

The sub-divisions of

the octree through which the ray passes are examined

starting at the root of the octree. The ray is traced from

one sub-division to the next until a leaf node is

encountered. The leaf nodes contain a list of objects which

lie within the leaf sub-division. Once a leaf node' is

encountered, all objects within the leaf node are tested for

intersection with the ray. If an intersection occurs, the

algorithm exits having found the nearest, intersected

object, otherwise the tracking continues through the octree.

It is important to note that the octree sub-divisions are

searched in the order of forward travel of the ray with the

sub-division closes to the ray origin being searched first.

A key enhancement possible with the octree method of

object organization lies in the algorithm for tracking a ray

through the sub-divisions of the octree. The algorithm

utilized by the presented image generation model reduces the

number of calculations required for tracking a ray through

if ray does not intersect octree root then exit
push octree root
while stack not empty

octree= pop stack
if (octree.child[O] is NULL)

test ray intersection with all objects in octree
if (ray intersects at least one object)

return the closest intersected object
else

determine intersection of ray with octree subdivision planes
determine trace of ray through children subdivisions
push subdivisions on stack according to trace order

Figure 8. Tracking Ray through Octree

38

an octree and uses a local stack for implementing the

recursive search. The _pseudo code for the enhanced

algorithm for tracking a ray through an octree is presented

in Figure 8. The enhanced algorithm for determining the

order in which the sub-divisions of an octree are

intersected is explained easier in two-dimensions. Figure 9

represents the intersection of a ray with the four sub

divisions of a quadtree(two-dimensional equivalent of an

octree) .

origin
x

Figure 9. Intersection of Ray with Quadtree

The sub-divisions are numbered in such a way as to

facili tate the tracking of a ray from one sub-division to

another, depending on the ray's direction. Movements

between sub-divisions in the X direction occur by exclusive

or'ing the current sub-division with 1(0001 binary).

Conversely, movement between sub-divisions in the Y

direction are achieved by exclusive-or'ing the current sub-

39

division with 2 (0010 binary). Tracking a ray through the

sub-divisions requires the relative direction of ray travel

to be determined. The intersection distance between the ray

and the sub-division planes, X and Y, are calculated. The

plane intersection distances are compared to determine the

order in which the sub-divisions are encountered. In the

figure, ix and iy are the distances from the ray origin to

the sub-division planes. Since iy is less than ix, it can

be deduced that the ray must travel in the Y direction

first, followed by the X direction. In order to track the

sub-divisions intersected by the ray, the start sub-division

is determined. In Figure 9, the start sub-division is 2.

Since it was determined that the ray travels through the

sub-divisions in the Y direction first, the start sub

division, 2, is exclusive-orld with 2, resulting in O. It

is clear from Figure 9 that the sub-division labeled 0 is in

fact the next sub-division intersected by the ray. Next,

sub-division 0 is exclusive-orld with 1, for movement in the

X direction, to get the sub-division labeled 1. Therefore,

the order in which the ray tracks through the sub-divisions

is 2, 0, 1. The sub-divisions intersected by the ray are

pushed onto the local stack in reverse order. The sub

divisions are pushed onto the stack in reverse order so that

the sub-divisions closest to the ray origin will be examined

first. The described algorithm for tracking a ray through

the sub-divisions of an octree is easily extended to three-

40

dimensions. In three dimensions, the Z sub-division plane

is utilized and the sub-divisions are labeled as represented

in Figure 10.

./ ./ ./
0

3 2
,/

./
4

7 6
/,/

z

TOP

1 0
0001 0000

3 2
0011 0010

BOTTOM

5 4
0101 0100

7 6
0111 0110

x y

Figure 10. Octree Numeric- Labels

The presented algorithm for tracking a ray through the

sub-divisions of an octree increases overall performance by

limiting the number of floating point calculations required

and using a local stack for implementing recursion.

Additionally, an enhancement was employed for eliminating

the redundant intersection tests for objects that span more

than one octree sub-division. Objects that span more than

one octree sub-division are tested for intersection multiple

times with the same ray as it tracks through the octree. A

mailbox scheme eliminates the multiple intersection tests of

the same ray and obj ect [12] . The mailbox scheme involves

tagging objects with a unique numeric identifier associated

with the ray the first time the object is tested for

intersection. Before the ray-obj ect intersection test is
41

performed, the ray identifier and object identifier are

compared. If the identifiers are equal, indicating that the

obj ect has already been tested with the current ray, the

intersection test is not performed.

4.3. Optimized Object Functions

Particular calculations on obj ects and rays are used

heavily in the technique of ray-tracing. Specifically, the

intersection and normal calculations of rays with obj ects

are used extensively. The discussed image generation system

utilizes optimized intersection and normal calculation

functions developed individually for each object type.

Overall performance is enhanced by binding pointers to the

optimized functions wi thin the ,obj ect data structure. By

maintaining pointers to the optimized functions within the

object structure, the overhead of branch and switch

constructs can be avoided in the ray-tracing implementation.

The optimized functions are accessed directly as objects are

manipulated by the ray-tracing algorithm.

42

Chapter 5. Performance Analysis

Ideally, a task that is distributed among a cluster of

workstations should yield a performance speedup equal to the

number of participating workstations. For most distributed

applications a linear speedup proves unattainable due to the

overhead incurred in distribution and collection tasks.

Several factors specific to the presented model limit the

performance gained by distributing the image generation

amongst a workstation cluster. Additionally, certain image

characteristics impose an upper bound on performance speedup

regardless of the number of workstations utilized. An upper

bound on the number of workstations that can be utilized in

the presented system exists due to the employed distribution

strategy. Since the distribution scheme involves the

assignment of individual scan lines to the workers, no

performance gain can be realized by utilizing more

workstations than the vertical resolution of the final

image. This limitation on the number of participating

workstations does not adversely affect the typical image

generation process. Typical images consist of at least 500

lines vertically, which does not impose an artificially low

bound on speedup. However, the presented distribution

strategy imposes an overall maximum speedup which can be

achieved, equal to the number of vertical scan lines of the

final image.

43

The presented image generation model incurs

distribution overhead, attributed- to the cost of

communicating with the worker nodes. The communication cost

consists of message passing for assigning scan lines,

sending render parameters, and collecting completed lines.

Processing messages for the successful distribution of the

image generation process requires additional computations by
'.

both the supervisor and worker. Therefore, the

communication cost which results indirectly from

distributing the image generation affects the performance

speedup achieved.

Another factor that affects the performance of the

distributed model is the setup time required by each worker.

setup involves the time to acquire the scene resources,

namely the objects and materials, and the time to organize

the objects into an octree. The setup time for the

generation of an image relates directly to the complexity of

the scene being rendered. The complexity of a particular

scene is defined as the number of objects contained within

the scene. Therefore, complex scenes, containing thousands

of obj ects, require longer setup times than less complex

scenes containing only a few obj ects.

number of participating workst-ations,

By increasing the

a corresponding

increase in the setup time required for each worker occurs.

The setup time required per node imposes an upper bound on

the performance speedup that can be realized.

44

Workers can

be added to the image generation system until the point at

which an additional worker increases the setup time per node

to exceed the render time per node. Incorporating

additional workers into the distributed model past the point

of saturatio~ further increases the setup time per node so

that a diminishing speedup is realized. Note, the

combination of the three factors discussed directly affects

the setup time required per node. The performance of the

network file system, image complexity, and the number of

workers affect the setup time per node.

Although the presented image generation system does not

achieve a linear speedup, its performance speedup is

proportional to the number of worker nodes when utilized

within the discussed bounds. The performance of the

presented system is examined with regards to the

distribution overhead and the setup time required per node.

Specifically, the effects of image complexity and number of

workers are analyzed in relation to their effect on overall

performance.

The distribution overhead of the system is examined

with regard to image size, thus the amount of data

distributed and collected, and number of worker nodes. The

performance of the distributed image generation system was

benchmarked against a single-processor implementation which

utilized the same basic rendering engine and identical input

resource files. The single-processor version provided a

45

basis for performance comparison with the distributed model

since it utilized the same rendering algorithm. The image

generation system was tested on a cluster of RISC-based

workstations interconnected via Ethernet. Various

configu~ations, in terms of number of workers, of the image

generation system were utilized. The tested configurations

consisted of one supervisor and 1, 2, 4, and 8 worker nodes.

For each of the configurations, performance speedup was

measured with three test scenes. The test scenes were

utilized for their wide range of complexity and varied image

size and are representative of a broad spectrum of images

for evaluating the image generation system. A scene

consisting of seven spheres of various material

characteristics was utilized for evaluating system

performance of simple scenes. Color plate 1 contains the

image generated by the spheres scene. The second scene

analyzed consists of the classic Utah Teapot model[13]. The

teapot contains 1500 phong-shaded polygons and two light

sources. The Utah teapot model was utilized because of its

medium complexity and its informal acceptance as a benchmark

for image generation. The image generated from the teapot

model is presented in color plate 2. The third scene

utilized for performance analysis consisted of a complex

model of spheres generated by a fractal, known as Menger's

Sponge[14]. The sponge model utilized in this scene

consisted of 18,000 spheres. Additionally, two polygons, to

46

\

highlight the shadows cast, and two light sources were

placed in the test scene. Color plate 3 contains the image

generated from the sponge model.

4.1. Spheres Scene

The spheres model, the _.least complex scene containing

only several objects, required the least amount of time to

render. The single-processor implementation required 43

seconds to render the image with a setup time of only 1

second. Distributing the sphere scene with the presented

image generation system yielded a decrease in rendering

times as indicated in Figure 11a. Figure 11a also

illustrates the setup time per node for each configuration

of workers. The setup time per node increased from 1 second

for the single worker configuration to 1.5 seconds for the

eight node configuration. This change in setup time as

larger worker configurations were utilized represents a 50%

increase in setup time per node. Figure 11a highlights the

fact that, as rendering times decrease and setup times

increase for larger workstation configurations, performance

gains diminish. Figure 11b contains the observed speedup of

the distributed generation of the spheres model in relation

to a linear speedup. The speedup of the distributed system

is calculated in comparison to the execution time of the

single-processor implementation. For the spheres scene a

significant divergence from a linear speedup was observed.

47

Spheres Execution Time

--- Execution Time --+- Setup Time

2 84

Workers

50

.. 40
'g 30
o
g 20

(JJ

10

o-~====''=====
1

I
L

(lla)

Spheres Speedup

"
6 .)

Co
.g 5
Gl

~ 4
(JJ

3

2

2 3 4 5 6 7 8

Workers
----------~-----,

-.- Speedup-- Linear J I

__J
(llb)

Figure 11. (a) Spheres Distributed Execution Time and
(b) Speedup

This divergence in performance speedup is attributed to the

simplistic nature of the scene and thus, its short rendering

times. Since the spheres model was not complex and

contained only a few objects, the render time compares

closely to the setup time and communication overhead.

48

Therefore, a lower performance gain was observeq, resulting

from the fact that the setup time and communication overhead

form a greater --percentage of the overall execution time.

The speedup of 4.26 measured for the spheres scene was the

lowest of the three test scenes for configurations of eight

workstations. The spheres scene data implies that less

complex images benefit from smaller configurations of

workstations but, a lower overall speedup in performance is

observed.

4.2. Teapot Scene

The teapot model was rendered in 598 seconds with the

single-processor implementation. Figure 12a illustrates the

rendering and setup times for the teapot model utilizing the

distributed image generation system with configurations of

1, 2, 4, and 8 workstations. As observed from Figure 12a, a

significant decrease in rendering times occurred as larger

configurations of workers were employed. In contrast to the

spheres scene, the setup time did not exhibit a substantial

increase as more workers were utilized. The setup time

increased from 1.6 seconds for the single worker

configuration to 1.9 seconds for the eight node

configuration. Additionally, the setup time constituted

only 0.26% of the render time for the single worker'

configuration and 2% for the eight node configuration.

Figure 12a indicates the more substantial performance

49

benefit from distributing a scene of medium complexity, as

exhibited by the teapot model. The greater performance

benefit of the teapot model compared to the spheres model,

is indicated by the slower convergence of the render time to

the setup time as the number of workers increased.

I---~-~

I
!

Teapot Execution Time l
800 I

~ 600~11..
a 400 ~.
~ j ---.----en 200 I ~-_.•__

o~ -:
1 248

Workers

L [-=_"=--=-=.-=-=_E=x-=e-=cu=t=io=n=T=im=e=----+--===s=e=tu=p=T=im=e==LJ

(12a)

Teapot Speedup

8

7 <,

6 <>
Co
:::l 5 <>"C
Gl
Gl

4Co ..
en /

/

3 .iI

/

2

1
1 2 3 4 5 6 7 8

Workers
- - I

--.- Speedup ---<--- Linear
___ • J

(12b)
Figure 12. (a) Teapot Distributed Execution Times and

(b) Speedup

50

Figure 12b illustrates the speedup observed by

distributing the image generation of the teapot model. The

speedup observed for the teapot model approached the ideal,

linear performance. The "near" linear performance can be

attributed to the teapot model's relatively large render

time compared to the small setup time per node. The steep

slope of the observed speedup indicates that further

increases in performance are attainable over the measured

6.1 for the eight node configuration. The teapot model

exhibi ted the best performance speedup of the three test

scenes evaluated with the distributed image generation

model. The "near" linear speedup observed for the teapot

model relates the balance between setup time, communication

overhead, and image complexity.

4.3. Sponge Scene

The sponge scene represents the most complex scene

tested with the distributed image generation system. with

more than 18,000 objects, the sponge model took the longest

time to render with the single-procesSor implementation,

requiring 760 seconds. The setup time for the sponge model

was also the greatest at 8.5 seconds per node. Figure 13a

contains the rendering times for the sponge model when

distributed. The decrease in rendering times for the sponge

model were very similar to the teapot model. However, the

51

setup time for the sponge model increased from 8.5 seconds

for the single worker configuration to 15 seconds for the

eight node configuration. This increase in setup time is in

stark comparison to the teapot model's uniform setup time

required per node. This dramatic increase can be attributed

to the fact that the sponge scene contained in excess of ten

times as many obj ects. Therefore, the network file system

was unable to cache all of the information for the sponge

model during the simultaneous access by the workers.

Additionally, the setup time component accounted for 1.1% of

the render time for the single worker configuration and 11%

for the eight node configuration. This ratio of setup time

to render time represents a ten-fold increase as compared to

the teapot model. The increase in setup time indicates a

faster convergence of render time and setup time, therefore,

indicating a lower overall speedup as displayed in Figure

13b.

Figure 13b demonstrates the substantial speedup

observed by distributing the sponge model. The speedup

observed for the eight node configuration was 5.8. As

Figure 13b indicates, the sponge scene stands to benefit

from increasing the number of workers in excess of the eight

node configuration. The speedup of the sponge model implies

that the setup time plays a larger role in overall

performance for scenes of increasing complexity.

52

Sponge Execution Timer--
aoo

"------ ,
en 600 ,

"'C
c:
0 400u

'"C/l
200

a
1 2

Workers

4 a

r --.- Execution Time ------ Setup Time]
L ,-I-----------

(13a)

Sponge Speedup

a ¢

7 "
6 "C.

::l 5 .."'C

'"8. 4 ..
C/l

3

2

2 3 4 5 6 7 a
Workers

E

----- Speedup ---*-- Linear i

(13b)
Figure 13. (a) Sponge Distributed Execution Times and

(b) Speedup

For the three test scenes a substantial speedup in

performance was observed, indicating the efficiency of the

presented image generation system. A speedup approaching

linear was observed for the two more complex scenes. Low

53

communication overhead and minimal impact on the setup time

per node was experienced for the tested configurations,

contributing to the substantial performance increases.

Communication overhead was minimal when compared to the

computation time for even the simplest images.

Additionally, the communication overhead is minimized by the

fact that no complex task partitioning was employed for

distributing the image generation. Although the setup time

per node increased as larger configurations of workers were

tested, the increase was not proportional to the number of

workers added and not significant when compared to render

times. This minimal impact on setup time per node is

attributed to the stable performance of NFS in the test

environment even under increasing levels of simultaneous

access.

Although not linear, the p~formance of the distributed

model achieved a substantial speedup due to its low

distribution overhead. The observed speedup was

proportional to the number of workers utilized while

operating within the stated bounds. The overall performance

of the presented system demonstrates its sui tabili ty for

distributed image generation amongst interconnected

workstations.

54

Chapter 6. High-Speed Switch

The effect of the network hardware used to interconnect

the workstations was evaluated for the presented image

generation system. The test environment contained two

independent network architectures for clustering the

workstations. Ethernet connected the workstations in

typical local area network fashion, which provided the

communication platform for the previous chapter on

performance analysis. In addition to Ethernet, a high-speed

switch provided a communication mechanism between the

cluster of workstations. Each workstation interfaced with

the switch through a copper wire cable. The twisted pair

cable contained one unidirectional channel for receiving

messages and a second unidirectional channel for sending

messages from the workstation to the switch. This dual

channel construction allows for messages to be sent and

received from the switch simultaneously. The hardware

architecture of the switch provided a high bandwidth and low

latency, resulting in an efficient network mechanism for

clustering workstations.

The switch provided support for the socket interface

utilized by the distributed image generation system. The

same workstation was assigned two different addresses in

order to distinguish the network hardware used for
.

communicating with it, either Ethernet or th~ high-speed

55

switch. Therefore, the address used to access a particular

workstation determined the network hardware that was

utilized to communicate with that workstation. This

arrangement allowed the socket interface, implemented in the

image generation system, to be utilized without modification

except for the addressing of the workstations. An option

was provided during the invocation of the image generation

process that directed all communications between the

supervisor and worker nodes to utilize the switch. The

performance benefit afforded by the switch was analyzed by

rendering the test models presented in the previous chapter.

The test models were rendered utilizing the switch for

communications within the eight node configuration. Figure

14 displays the overall execution times for the three models

utilizing both Ethernet and the switch. Figure 14 indicates

the negligible impact on performance experienced when

utilizing the switch versus Ethernet.

Execution Times Network Comparision

140,-------------------

120 +-------------

VI 100 +--------

~ 80 +--------
o
~ 60 +---------

l/J 40 t--------

20 +---------

o ~--L.----.l.-<_

• Ethernet

D Switch

Spheres Teapot Sponge

Figure 14. Execution Tim~s for 8-node Configuration

56

There existed no significant difference in execution

times when the switch was used for inter-process

communication. Several factors . contribute to the

disappointing results when utilizing the switch hardware

with the distributed image generation system. Even though

the switch supports a socket interface, a proprietary, low-

level interface provides better performance. The majority

of distributed applications are designed to be portable,

thus, the use of proprietary, low-level interfaces are not

implemented, which ultimately results in a performance

disadvantage. Likewise, the feature of portability was

paramount in the design of the presented image generation

system.

Secondly, the rendering of photo-realistic images with

the ray-tracing technique is compute-bound rather than

communications bound. The communication time comprises only

a minimal percentage of overall execution during ray-

tracing, therefore, increases in communication performance

impact overall execution very little. Additionally, the

small number of workstations in the tested configuration do

not generate an excessive communication overhead during the

rendering of images. Perhaps as larger configurations of

workers were utilized, the switch would provide a greater

performance benefit due to the increased communication

overhead.

57

Thirdly, the protocol utilized by the supervisor and

worker of the presented image generation system contained a

maj ori ty of control messages. With the exception of the

transfer of completed lines, communications between the

supervisor and worker consisted of small control messages.

A performance gain should not be observed due to the high

volume of control messages, unless the startup latency for

passing a message via the switch is much smaller than

standard Ethernet.

Additional tests were conducted utilizing the switch in

order to support the assumptions about its performance.

Tests in which large data streams were transferred between

workstations simultaneously were performed. Data stream

tests were examined in order to calculate the performance of

the switch during high-volume data transfers in contrast to

series of control message transfers. Figure 15 illustrates

the data rates measured when transferring large blocks of

data between the workstations of a cluster. Figur.e 15

compares the transfer rates for Ethernet and the switch as

the number of simultaneous transfers increases. The large

data stream test, as indicated in Figure 15, implies the

sui tability of the switch over Ethernet for high-volume,

simultaneous data transfers between nodes. The switch

experienced significantly less degradation in performance as

the number of simultaneous transfers were increased. The

switch performed well in the transfer and routing of large

58

data streams simultaneously across the network cluster. The

performance of the switch under these conditions suggest its

applicability for communication intensive applications. The

switch provides greater performance benefits for high-volume

Network Transfer Rates

432

1000000·

800000

600000

400000

20000~ 1 _

1

'0
C
o
"CII
en--(/)
CII...
>

aJ

Simultaneous Transfers

-- Switch --.>--- Ethernet

Figure 15. Comparision of Network Transfer Rates

data communications applications, such as digital video and

video conferencing, rather than compute-bound tasks. As

indicated by performance analysis, applications similar to

~ the presented image generation system are not markedly

affected by the underlying network architecture used for

communications.

59

Chapter 7. Conclusion

The increase in interconnected workstations provides an

environment that fosters the development of distributed

applications. The image generation system presented in this

thesis demonstrates the significant speedup of

computationally intensive programs that can be attained by

utilizing a cluster ot interconnected workstations as a

distributed processing platform. Its model can easily be

generalized for similar, computationally intensive tasks.

The speedup observed by the presented model indicates the

performance gain possible for similar distributed

applications utilizing a "Supervisor-Worker" architecture .
..

Advantages of the presented distributed system are its

scalabili ty, portability, and ease of implementation for

heterogeneous computer environments. Additionally, the

presented image generation system required no modifications

to individual workstations or the network for implementing

the distributed processing platform. Distributed

applications, like the one presented, can be easily

integrated into today's networks of workstations for

immediate performance gains without incurring additional

costs.

Algori thms and models for distributed computing will

play an increasingly important role as distributed

processing provides the cost-effective, power computing of

60

the future. As network hardware technology advances, an

increasing number of distributed workstations will be

interconnected. Vast distributed platforms will be viable

as workstations, separated by large geographic distances,

are connected with technologically advanced network

hardware. Large distributed processing environments,

consisting of hundreds or thousands of workstations, will

rely on efficient distributed applications for harnessing

the computing power available in the future.

61

List of References

[1] J. N. Magee and S. C. Cheung, "Parallel Algorithm
Design for Workstation Clusters", Software - Practice
and Experience, Vol. 21(3), 1991, pp. 235-250.

[2] R. Cook, T. Porter, and L. Carpenter, "Distributed Ray
Tracing", Computer Graphics, Val. 18, no 3., 1984, pp.
137-145.

[3] D. W. Jensen and D. A. Reed, "Ray Tracing on
Distributed Memory Parallel Systems", Performance
Evaluation Review, Vol. 18, Iss. 1, 1990, pp. 251-252.

[4] o. Vorberger, R. Feldmann, and P. Mysliwetz, "A Local
Area Network Used as a Parallel Architecture",
Technical Report 31/1986, Univ. of Paderborn, Germany.

[5] G. Bourbigot and F. Vandewiele, TCP/IP Tutorial and
Technical Overview, IBM Technical Document GG24-3376,
IBM Corporation, 1989.

[6] D. Comer, Internetworking with TCP/IP, Second Edition,
Volume I, Prentice-Hall, Inc., 1991.

[7] IBM Allnode Switch for Clusting RISC System/6000 and
PS/2, IBM Product Offering Document, IBM Corporation,
1994.

[8] A. Mangen, "RAY: A Ray-Tracing Program in C++", Dr.
Dobb's Journal, #216 July 94, pp. 42-43.

[9] W. R. Stevens, UNIX Network Programming, Prentice-Hall,
Inc., 1990.

[10] C. D. Watkins, S. B. Coy, and M. Finlay, Photorealism
and Ray Tracing in C, M&T Publishing, Inc., 1992.

[11] A. Woo, P. Poulin, and A. Founier, "A Survey of Shadow
Algorithms", IEEE Computer Graphics and Applications,
Vol. 19(6), pp. 13-22.

[12] B. Arnaldi and T. Priol, "A New Space Subdivision
Method for Ray-Tracing CSG Modelled Scenes", Visual
Computer, Vol. 3(2), pp. 98-108.

62

[13] M. E. Newell, R. G. Newell, and T. L. Sancha, "A New
Approach to the Shaded Picture Problem", Proc. ACM
National Conf., pp. 443-50.

[14] B. Mandlebrot, The Fractal Geometry of Nature, Freeman,
Inc., 1982.

[15] A. Watt, 3D Computer Graphics, Second Edition, Addison
Wesley, 1993.

[16] B. Kernighan and D. Ritchie, The C Programming
Language, Second Edition, Prentice-Hall, Inc., 1988.

[17] K. Sung, "A DDA Octree Traversal Algorithm for Ray
Tracing", Proceedings of Eurographics '91, pp. 73-85.

[18] T. Kay and J. Kajiya, "Ray Tracing Complex Scenes",
Computer Graphics (SIGGRAPH '86 Proceedings), Vol.
20 (4), 1986, pp. 269- 278 .

[19] J. D. Foley, A. vanDam, S. K. Feiner, and J. F. Hughes,
Computer Graphics Principles and Practices, Addison
Wesley, 1990.

[20] A. S. Glassner, "Space subdivision for fast ray
tracing", IEEE Computer Graphics and Applications, Vol.
4 (10), 1984, pp. 15- 22 .

[21] A. Fujimoto, T. Tanaka, and K. Iwata, "ARTS:
Accelerated ray tracing system", IEEE Computer Graphics
and Applications, Vol. 6(4), 1986, pp. 16-26.

[22] M. R. Kaplan, "Space Tracing, a constant time ray
tracer", SIGGRAPH 85 Course Notes, San Francisco CA,
1985

63

Vita

Darrin Weber was born in Beacon, New York, on April 9,

1969 to Donald Lee Weber and Donna Lee Peters. He earned

his Bachelor of Science degree in Computer Science from

Bucknell University, Lewisburg, Pennsylvania, in June of

1991. Darrin is currently employed as an Information

Technology Specialist for Air Products and Chemicals, Inc.

in Trexlertown, Pennsylvania.

64

Appendix A. Sample Resource Files

A.I. Spheres Studio Resource File

/* ---------------------------- */
/* BALLS. STU * /
/* */
/* Studio File for BALLS.MOD */
/* Test Model for Timing Tests */
/* */
/* Author: Darrin L. Weber */
/* Date: Oct. 1994 */
/* ---------------------------- */

#include "balls. col"

1

o -1000 0
0.0 0.0 0.0
0.0 0.0 1.0
black
512
512
64
1.333
5
4
boxtop.tga
boxfront.tga
boxback.tga
boxbot.tga
boxleft. tga
boxright.tga

/

}
group copper_sphere {

rotate
axis
deg
origin

65

-1 0 1
o
000

101
o
000

point
500 -1000 500
1.0 1.0 1.0
1000
linear
natural
front_light

point
-500 1000 500
1.0 1.0 1.0
1000
linear
natural
back_light

100
-250 0 250
red plastic
red:=sphere

A.2. Spheres Model Resource File

/* ---------------------------- */
/* BALLS.MOD */
/* */
/* Model File for BALLS.MOD */
/* Test Model for Timing Tests */
/* */
/* Author: Darrin L. Weber */
/* Date: Sept. 1994 */
/* ---------------------------- */

/* Front Point Light Source */
light {

type
source
color
radius
intensity
shadows
group

/* Back Point Light Source */
light {

type
source
color
radius
intensity
shadows
group

/* Surrounding colored spheres that pulsate */
sphere {

radius
center
material
group

sphere {
radius
center
material
group

sphere {
radius
center
material
group

sphere

100
250 0 250
blue plastic
blue:=sphere

100
250 0 -250
green plastic
green:=sphere

66

radius
center
material
group

100
-250 0 -250
yellow plastic
yellow::::sphere

150
000
glass

/* Center glass sphere */
sphere {

radius
center
material

106
50
-106 0
chrome
chrome_sphere

/* Left orbiting silver sphere */
sphere {

radius
center
material
group

50
106 0 106
copper
copper_sphere

/* Right orbiting copper sphere */
sphere {

radius
center
material
group

67

A.3. Spheres Material Resource File

/* ---------------------------- */
/* BALLS . MAT * /
/* */
/* Material File for BALLS.MOD */
/* Test Model for Timing Tests */
/* */
/* Author: Darrin L. Weber */
/* Date: Sept. 1994 * /
/* ---------------------------- */

#include "balls.col"

green_plastic

glass

ambient
diffuse
diff color

. specular
spec color
reflect
transparent
ior
finish

ambient
diffuse
diff color
specular
spec color
reflect
transparent
ior
finish

ambient
diffuse
diff color
specular
spec_color
reflect
transparent
ior
finish

ambient
diffuse
diff color
specular
spec_color
reflect

0.15
0.85
light_green
0.80
white
0.15
0.0
1.0
100

0.15
0.85
light_red
0.60
white
0.15
0.0
1.0
50

0.15
0.85
light_blue
0.40
white
0.15
0.0
1.0
10

0.00
0.05
gray
0.05
white
0.10

68

transparent 0.90
ior 1.4
finish 10

yellow_plastic {
ambient
diffuse
diff color
specular
spec color
reflect
transparent
ior
finish

chrome {
ambient
diffuse
diff color
specular
spec_color
reflect
transparent
ior
finish

copper
ambient
diffuse
diff color
specular
spec_color
reflect
transparent
ior
finish

0.15
0.65
light_yellow
0.70
white
0.15
0.0
Lo
4

0.025
0.10
chrome col
0.63
chrome spec
0.76 -
0.0
1.0
100

0.025
0.53
copper col
0.40 -
copper_spec
0.15
0.0
1.0
50

69

Appendix B. Sample Color Images

70

Plate 1. Spheres Scene

71

Plate 1. Spheres Scene

71

Plate 2. Utah Teapot Scene

72

Plate 2. Utah Teapot Scene

72

Plate 3. Menger's Fractal Sponge Scene

73

Plate 3. Menger's Fractal Sponge Scene

73

END

OF

TITLE

	Lehigh University
	Lehigh Preserve
	1995

	MIRAGE : a system for distributed image generation on workstation clusters
	Darrin Weber
	Recommended Citation

	00430
	00431
	00433
	00434
	00435
	00436
	00437
	00438
	00439
	00440
	00441
	00442
	00443
	00444
	00445
	00446
	00447
	00448
	00449
	00450
	00451
	00452
	00453
	00454
	00455
	00456
	00457
	00458
	00459
	00460
	00461
	00462
	00463
	00464
	00465
	00466
	00467
	00468
	00469
	00470
	00471
	00472
	00473
	00474
	00475
	00476
	00477
	00478
	00479
	00480
	00481
	00482
	00483
	00484
	00485
	00486
	00487
	00488
	00489
	00490
	00491
	00492
	00493
	00494
	00495
	00496
	00497
	00498
	00499
	00500
	00501
	00502
	00503
	00504
	00505
	00506
	00507
	00508
	00509
	00510
	00511

