
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2012

Parallel For Loops on Heterogeneous Resources Parallel For Loops on Heterogeneous Resources

Frederick Edward Weber
University of Tennessee - Knoxville, fweber1@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Computer and Systems Architecture Commons, Numerical Analysis and Scientific

Computing Commons, and the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Weber, Frederick Edward, "Parallel For Loops on Heterogeneous Resources. " PhD diss., University of
Tennessee, 2012.
https://trace.tennessee.edu/utk_graddiss/1570

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1570&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Frederick Edward Weber entitled "Parallel For

Loops on Heterogeneous Resources." I have examined the final electronic copy of this

dissertation for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy, with a major in Computer Engineering.

Gregory D. Peterson, Major Professor

We have read this dissertation and recommend its acceptance:

Robert J. Harrison, Micah Beck, Robert Hettich

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Parallel For Loops on Heterogeneous

Resources

A Dissertation

Presented for the

The Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Frederick Edward Weber

December 2012

c© by Frederick Edward Weber, 2012

All Rights Reserved.

ii

I dedicate this dissertation to my family and the faculty and staff who have supported me

on every step of this journey.

iii

Acknowledgements

I would like to thank Greg Peterson for being a fantastic advisor, my comittee members,

and SCALE-IT for funding much of my graduate career.

iv

Ça plane pour moi.

v

Abstract

In recent years, Graphics Processing Units (GPUs) have piqued the interest of researchers in

scientific computing. Their immense floating point throughput and massive parallelism make

them ideal for not just graphical applications, but many general algorithms as well. Load

balancing applications and taking advantage of all computational resources in a machine is

a difficult challenge, especially when the resources are heterogeneous. This dissertation

presents the clUtil library, which vastly simplifies developing OpenCL applications for

heterogeneous systems. The core focus of this dissertation lies in clUtil’s ParallelFor

construct and our novel PINA scheduler which can efficiently load balance work onto multiple

GPUs and CPUs simultaneously.

vi

Contents

1 Introduction 1

1.1 A Brief History of Heterogeneous Computing 1

1.2 Problem Statement/Background . 5

1.3 Proposed Problem: A Parallel For Loop on Heterogeneous Resources 6

2 Literature survey 9

3 clUtil 17

3.1 Memory management . 19

3.2 Launching kernels . 19

3.3 ParallelFor . 20

3.4 Profiling . 21

4 PINA Scheduler 23

4.1 Assumptions . 23

4.2 PINA: an Efficient Scheduler for Heterogeneous Workloads 27

4.2.1 Choosing Which Iterations . 27

4.2.2 Choosing the Number of Iterations 32

vii

4.2.3 Putting It All Together . 38

4.3 Applications . 39

5 Matrix Multiplication 40

5.1 Previous Work . 41

5.2 MAGMA on Tahiti . 43

5.3 Multi-GPU GEMM . 45

5.4 Scheduler performance . 48

6 Specmaster: A fast peptide search algorithm using OpenCL 53

6.1 Specmaster Algorithm . 54

6.1.1 Generating peptides . 56

6.1.2 Scan Preprocessing . 58

6.1.3 Packing . 59

6.1.4 Finding Candidates . 61

6.1.5 Scoring . 62

6.1.6 Data dependent performance . 64

6.2 Portable performance . 67

6.2.1 Exploiting the Preprocessor . 67

6.3 Differences with Myrimatch . 69

6.4 Single device performance . 72

6.4.1 Experimental Setup . 72

6.4.2 Results . 73

6.5 Parallel Results . 75

viii

7 Raytracing 81

7.1 Background . 81

7.1.1 Procedure . 81

7.1.2 Computational complexity and parallelism 85

7.2 Relevant Work . 85

7.3 Implementation . 86

7.4 Performance results . 88

8 Conclusions 95

8.1 Contributions . 97

Bibliography 99

A clUtil ParallelFor implementation 111

B Source Code for PINA GetWork Function 113

Vita 115

ix

List of Tables

2.1 Task scheduling taxonomy . 16

6.1 Possible fragmentation patters for the “PEPTIDE” amino acid sequence . . 62

6.2 Possible proton distributions between B and Y ions for +3 charged precursor

ion “PEPTIDE” . 63

6.3 Machines tested . 72

x

List of Figures

3.1 Vector addition example using clUtil’s ParallelFor(). vectorLength is assumed

to be sufficiently short so as not to overflow buffers on the devices. 18

4.1 Iteration execution time on a Core i7 930 and Radeon 5870 24

4.2 Speedups of Radeon 5870 over Core i7 . 25

4.3 Fractional execution rate on D04 Cristobal dataset number 5 26

4.4 Linear (top) and tree (bottom) sample iteration 31

4.5 Fragmentation can occur when the scheduler makes unconstrained scheduling

decisions . 32

4.6 The scheduler may choose chunks adjacent to an after a sample (top), but

not before a sample (middle), or anywhere else (bottom). This helps prevent

fragmentation and simplifies implementation. 33

4.7 Gustafson’s law with tserial = 100, tparallel = 400, P = 32 versus approximation 35

4.8 (Left) Approximation made with long tail values > 0.95 (Right) Regression

performed without tail . 37

5.1 MAGMA Tuning parameters . 44

5.2 Magma SGEMM and DGEMM versus AMDBLAS 1.7.257 SGEMM and

DGEMM . 46

xi

5.3 Algorithm for computing a given block of C 47

5.4 GEMM running on 3 Radeon 7970s and 32 Interlagos cores using static self

scheduling, the EGS Scheduler, and the PINA scheduler 50

5.5 GEMM running on 3 Radeon 7970s using static self scheduling, the EGS

Scheduler, and the PINA scheduler . 51

6.1 Specmaster’s algorithm . 55

6.2 Peptide generation example using tryptic digestion with up to 2 missed cleavages 57

6.3 Local work size agnostic code fragment to compute total ion current 60

6.4 Execution time vs. batch number on Core i7 920 CPU and Radeon 5870 GPU

on 3 different datasets . 65

6.5 Speedup of Radeon 5870 over Core i7 920 on 3 different datasets 66

6.6 Example header created by Specmaster dictating kernel compilation 68

6.7 Using OpenCL’s C preprocessor to change which memory Specmaster uses as

a function of the device . 70

6.8 Specmaster end-to-end relative performance versus Myrimatch running on a

32 core E5-2680 . 73

6.9 Relative throughput in parallelized peptide identifications section of specmaster 74

6.10 Specmaster peptide processing fraction of peak throughput using 3 Radeon

7970s and 32 Interlagos 6272 cores . 76

6.11 Specmaster peptide processing fraction of peak throughput using 3 Radeon

7970s . 77

6.12 Autotuned performance model calculated from empirical data for the Interla-

gos 6272 . 78

6.13 Autotuned performance model calculated from empirical data for Radeon 7970 79

xii

7.1 Raytraced group of spheres . 82

7.2 A ray (R) emitted through a pixel hitting the object. The diffuse lighting is

a material property coefficient multiplied by the cosine of the surface normal

(N) and the direction to the light (L) . 83

7.3 Using clUtil’s parallel for loop to extract coarse grained parallelism 87

7.4 Top: unmodified raytracing kernel present in original source code Bottom:

kernel modified to support working on pieces of the scene. Changes include

the addition of a rowOffset parameter and a branch to ensure that the ray

should actually be computed. 88

7.5 Left: raw speedup using 1, 2, 4, 8 ,16, and 32 cores. Right: alternate

representation . 89

7.6 Scheduler efficiency using 3 Radeon 7970s 90

7.7 Scheduler efficiency using 3 Radeon 7970s and 32 cores 91

7.8 Scheduler efficiency using 3 Radeon 7970s and 16 cores 93

7.9 Scheduler throughputs in millions of primary rays per second 94

xiii

Chapter 1

Introduction

1.1 A Brief History of Heterogeneous Computing

The ideas and motivations behind heterogeneous computing predate history, harking back

to the birth of civilization itself. Specialization of labor allows individuals to perform tasks

and duties best suited for them while leaving tasks they perform poorly to others. Several

millennia later, this theme is again emerging in processor design and computer architecture.

Heterogeneous computing, using multiple types of computing elements to solve problems,

has existed for at least two decades now [1][2]. However, the idea of using multiple devices

in tandem to accelerate applications wasn’t even entirely novel then; coprocessors such as

the Intel 8087 floating point unit, sound cards, and I/O cards existed before then.

The motivation for using multiple devices stems from the fact that each device can be

application specific, allowing the collection of accelerators to each speed up a piece of the

application. This allows for synergistic speedups in execution times, providing a cost effective

and power efficient way to solve problems. Unfortunately, heterogeneous computing has

several challenges including mapping the problem to the architectures involved, scheduling,

and synchronization among others [3].

1

With the attack of the killer micros in the 1990s, supercomputing became dominated with

cheap commodity processors [4]. Homogeneous computers such as the Intel Paragon [5], a

large toroidal mesh of Intel i860 processors, came to dominate scientific computing. Other

workstation processors including the DEC Alpha and SPARC also became common in large

supercomputers [6][7]. In a separate vein, reconfigurable computing grew in interest in the

90s with the advent of the CHS2x4, the first reprogrammable hardware accelerator [8].

While not a commercial success, the CHS2x4 opened the gateway for a new era of

heterogeneous computing. Companies such as SRC, DRC, Nallatech, and Cray began

offering systems with FPGAs either in-socket or as an expansion card [9]. Reconfigurable

hardware in tandem with a CPU allows developers to accelerate applications with custom

circuits, potentially providing immense speedups over a CPU alone. Some [10] hailed

reconfigurable computing as the end of the Von Neumann architecture, but this prophesy has

yet to pass: instruction based computers still dominate in many areas of computer science.

Developing hardware is a time consuming process that requires specialized specialized

skillsets. Furthermore, clock rates and transistor efficiency are much lower on current FPGAs

than custom ASICs [11]. These reasons allowed processors to remain the dominant force in

scientific computing.

Processors have changed dramatically since the 90s. Earlier processor improvements

focused mostly on Instruction Level Parallelism (ILP) and higher clock-rates. This had the

effect of automatically improving legacy code’s speed, since upgrading to a new processor

yielded increased instruction throughput. This allowed software designers to reap the benefits

of new architectures with no code changes, and usually even without recompilation. However,

the silicon costs for additional instruction parallelism yielded diminishing returns [12] and

the power wall [13] combined with an ever widening latency gap between memory and

arithmetic operations [14] staggered increases in clock rates. Pollack’s rule argues that

processor performance increases are roughly proportional to the square root of the die size

[15].

2

To continue reaping the benefits of Moore’s law to provide higher performance, chip

manufacturers turned to thread level parallelism [16]. This first manifested with thread

Simultaneous MultiThreading (SMT) approaches that appeared in the IBM POWER5 [17],

Ultra SPARC T2 [18], Hyperthreading [19] in the Pentium 4. Thread multiplexing allows

multiple software threads to simultaneously share resources on a core. This technique is

highly effective at hiding memory latency since one thread can be performing arithmetic

operations while another is loading. This technique still exists on today’s Intel processors

and on GPUs, and is less expensive in terms of transistors than creating additional cores, but

can quickly bottleneck with resource contention. As such, chip manufacturers have moved

to duplicating processors on die to create multi-core chips.

Multi-core processors offer Symmetric Multi-Processing (SMP) performance on a single

chip. Because of its benefits, multi-core technology is becoming pervasive, existing in markets

ranging from high-end chips such as IBM’s z196 mainframe processors [20] to Intel’s Atom

[21] processor designed for low power applications such as netbooks and cellphones. Multi-

core processors overcome power density limitations by operating at lower frequencies while

providing thread level parallelism. Most multi-core processors today have jack-of-all trades

homogeneous cores, with a few notable exceptions.

While most processors in wide use today are homogeneous, the Cell processor is an

important (now historical) exception. Featuring a single Power Processing Element (PPE)

based on the PowerPC and eight Synergistic Processing Elements (SPEs) connected through

the Element Interconnect Bus (EIB), the Cell processor provides very high single-precision

throughput, weighing in at 230.4 GFlops [22]. Each SPE operates on 128 different vectorized

registers and can quickly load and store in a deterministic number of cycles to its 256kB local

store. Unfortunately, programming the Cell and tuning it presented numerous challenges:

two compiler toolchains (one for the SPEs and one for the PPEs), managing data transfers,

and efficiently branching in a vector-only ISA to name a few. While the Cell achieved

moderate success, appearing in Sony’s Playstation 3, IBM recently cancelled its development

[23]. However, this only marked the start of the current heterogeneous computing era.

3

Academics and researches now use Graphics Processing Units (GPUs) pervasively in

computational science as they are programmable enough to do far more than render graphics.

Video accelerators have existed since at least 1982, when Intel introduced the iSBX 275 [24].

Sporting 32kB of memory (used to store the framebuffer), the iSBX could display up to

8 colors. The CPU issued simple commands to manipulate the pixels stored at specified

memory addresses. In the mid-90s, several vendors such as ATI and 3dfx introduced a

plethora of 3D accelerators targeting games and CAD applications. These GPUs were crude

by today’s standard, as developers could merely send geometry and textures to the device

and let it render the scene. However, Nvidia’s GeForce 3 [25] introduced programmable

shading and the Radeon 9700 [26] was the first DirectX 9.0 compliant (compliance mandates

programmable shaders with specified capabilities) accelerator. For the first time, researchers

could use GPUs for things other than graphics.

Since the advent of programmable shaders, General Purpose GPU (GPGPU) computing

has exploded. Early general-purpose computations using GPUs included fairly simple linear

algebra operations that effectively amounted to tricking the device into doing math. For

example, a 2003 paper describes using DirectX 9.0 and pixel shaders to compute matrix

multiplication by sampling textures [27]. Early programmable GPUs had limited use in

scientific applications due to their non-IEEE compliant floating point arithmetic and the fact

that OpenGL and DirectX graphics calls drove the computation. However, their performance

was compelling enough to encourage future research.

Enhanced GPU features along with new programming models increased interest in using

video cards as computational accelerators. Brook [28] and CUDA [29] were among the

first general purpose programming environments for GPUs. CUDA quickly fell into favor

in the scientific community; developers began using CUDA in a wide range of applications

ranging from linear algebra [30][31], chemistry [32], biology [33], and fluid simulations [34].

ATI introduced Close to Metal [35] and subsequently released their proprietary Brook+

and CAL programming languages. These programming environments saw some use [32][33].

4

With the birth of OpenCL [36], the era of proprietary GPGPU programming environments

may be in its twilight.

The OpenCL platform is poised to become the leading cross-platform development

environment for high performance computing within a single machine. Spearheaded by

a number of vendors including Apple, AMD, NVIDIA, Intel, and IBM, OpenCL seeks to

provide a single programming environment targeting multi-core processors, GPUs, and other

accelerators such as FPGAs [37][38]. Already, researchers and developers are using OpenCL

to develop cross-platform applications that take advantage of accelerators and multi-core

processors [39][40].

OpenCL is even more interesting in that its device model allows for heterogeneous com-

putation. It exposes different vendor implementations as platforms, allowing applications to

simultaneously use devices from multiple vendors. For example, OpenCL can simultaneously

use an Intel processor, an Nvidia GPU, and an ATI GPU in the same machine even though

each company provides their own OpenCL library. Furthermore, a given implementation

may support multiple device types; AMD’s OpenCL offering supports AMD GPUs, x86

CPUs, and their Accelerated Processing Unit (APU) line. With the correct combination

of vendor drivers, OpenCL can expose every computational resource available in a user’s

computer.

1.2 Problem Statement/Background

Effectively using heterogeneous computing resources is a challenge, even with a common

language and environment such as OpenCL. Some applications [41][42] use resources to

compute only tasks that map well to that resource. This works well when one computational

resource is far quicker at computing some task than others. Programmers usually decide

which tasks to map to which resources and how to move data. This often leads to static

task distribution, where the developer assigns tasks to a specific device type at compile

time. In [43], the authors dynamically scheduled tasks on multiple accelerators, but still

5

restricted task scheduling based on their type affinity to the underlying resource. When the

performance discrepancy between resources for a given task isn’t orders of magnitude and

that task dominates the runtime, dynamic heterogeneous scheduling makes sense.

Applications that feature a runtime dominated by a single task-type with a moderate

amount of device-performance agnosticism may benefit from using every resource in a system.

To give a compelling example, suppose an application takes 1000 time units to execute where

99% occurs in a multitude of tasks of a single type. This type of profile often occurs in

embarrassingly parallel problems. Further suppose that device 1 can compute 4 tasks per

time unit and device 2 can calculate 1 task per time unit. Further suppose that the machine

has one of each device. Using only device 1, the job requires 257.5 time units according to

Amdahl’s law [44]. Using only device 2, the job takes 1000 time units. Using both devices

with optimal load balancing, the job takes 208 time units, a 1.24x speedup over just using

device 1; the aggregated throughput of both devices is nearly 5 tasks per time unit.

1.3 Proposed Problem: A Parallel For Loop on Het-

erogeneous Resources

The core of the efforts in this dissertation is how to efficiently schedule tasks with data-

dependent performance on heterogeneous resources. Specifically, one can state this problem

as “how many and which iterations of a parallel-for loop should a scheduler give to each device

in making forward progress in the program?” Answering this question requires addressing a

number of challenges related to the problem statement.

Firstly, devices each have their own performance characteristics. The underlying

architecture in each device exposes different cache configurations, high-speed memory,

compute cores, clock rates, and other features that affect kernel execution rates. For example,

adding vectors on a GPU is likely faster than on a CPU because it has higher aggregate

6

memory bandwidth. However, highly sequential kernels will execute more quickly on a CPU

because of their higher clock rates and more aggressive instruction level parallelism.

Software kernels can also exploit hardware features in a particular device. For example,

a kernel may use images and swizzling to exploit hardware acceleration on a GPU, while

another kernel may load and store exclusively to global memory since a CPU caches these

operations. In practice, developers can make tuned kernels for each device in their system.

Tuning kernels to specific architectures allows one to squeeze the most performance out of

them, but in the process can exacerbate architectural discrepancies as kernels’ performance

reflects the underlying hardware.

Task granularity plays an important role in scheduling iterations on a collection of

devices, homogeneous or heterogeneous. From a scheduling and load balancing perspective,

scheduling each iteration independently should yield more optimal load balancing because

no device ever pulls more iterations than it needs and starvation never occurs. However,

this creates enormous scheduling overhead when the task granularity is anything but large.

Accelerators further compound this issue since they themselves expose finer grain parallelism

that may need multiple iterations to fully exploit. In an execution model such as OpenCL or

CUDA where the developer defines an execution workspace, users can encode the scheduled

iterations into the work items/grid to execute in parallel. If each task takes the same amount

of time, this approach still has a fairly trivial solution: assign iterations in proportion to

their performance capability. For example, if device 1 can always compute 5 tasks per time

unit and device 2 can always compute 2 tasks per time unit, giving 5/7 of the tasks to device

1 and 2/7 of the tasks to device 2 yields an optimal schedule. However, when tasks have less

predictable runtimes, this solution quickly breaks down.

Many applications have data dependent performance; some iterations in a loop in these

applications take longer than others because of additional processing needed on their inputs.

In this case, static scheduling can falter, especially on heterogeneous architectures. If a

slower device pulls iterations that happen to require more time because of the associated

data, faster devices may starve. To overcome this problem, we propose that the scheduler

7

try to model execution time for iterations to make better informed decisions and execute the

appropriate number of iterations.

To address the problems associated with scheduling loop iterations onto heterogeneous

resources, we introduce the PINA (PINA Is Not Acronymic) loop model. PINA is a self-

scheduling algorithm that uses online performance data combined with offline autotuning to

distribute work. The offline autotuning serves to provide each device with an appropriate

number of tasks while the online modeling allows each device to more efficiently choose

blocks of iterations.

8

Chapter 2

Literature survey

Scheduling tasks onto resources is a well studied problem with a rich collection of prior art.

In 1988, Casavant and Kuhl laid out a taxonomy describing various scheduling algorithms

[45]. An important distinction in their taxonomy is between static and dynamic scheduling.

In heterogeneous computing, researchers have attempted both.

Many modern compilers can parallelize for loops to run more efficiently in a homogeneous

environment. Unfortunately, the performance gap between compiled code and hand-tuned

code increases with newer architectures [46]; users can rely increasingly less on compilers to

generate performant code. Polyhedral models [46] are becoming a popular abstraction for

taking advantage of ILP, SIMD, caches, and multithreading to execute loops more quickly.

These models allow compilers to explore a variety of transformations and make algorithmic

tradeoffs between often competing architectural traits. GCC can compile with the Graphite

loop optimization library [47], allowing the compiler to to automatically parallelize loops for

SIMD and multi-core processors while performing cache tiling.

In addition to compilers, a multitude of libraries exist that allow developers to parallelize

applications. Unlike compilers that attempt to automatically generate parallel code, these

libraries require user intervention to parallelize code. OpenMP [48] and Intel Threading

Building Blocks (TBB) [49] both allow users to parallelize code, targeting homogeneous

9

SMP machines. Both OpenMP and TBB contain constructs for trivially exploiting loop

parallelism as well as more sophisticated schemes. Message Passing Interface (MPI) [50]

allows users to run code on distributed systems, including modern supercomputers. Using

MPI is generally more difficult than TBB and OpenMP because developers must explicitly

contend with data movement across a network.

Cierniak et al. explored a plethora of static loop scheduling techniques, including

modified versions of those used with homogeneous systems [51]. They start with a modified

version of static scheduling for homogeneous machines and expand their assumptions for the

heterogeneous case.

Cierniak et al. take a three-pronged approach to heterogeneity: the loop iterations,

processors, and network interconnects can all be homogeneous or heterogeneous. They

denote homogeneous loops to mean that each iteration takes the same amount of time while

heterogeneous means that each loop iteration has an affine function describing the amount

of time it takes. The authors assume that this function is of the form ti = ai + b in the

paper. Furthermore, while the authors don’t explicitly state it, they also assume that the

compiler or the programmer knows this affine function at compile time. This assumption is

critical to efficient scheduling on homogeneous and heterogeneous devices [51].

Static scheduling is perhaps the most obvious way to distribute tasks to multiple

processors. In this method, either the programmer or compiler assigns iterations to different

processors at compile time in a blocked or cyclic fashion; if a loop has 10 iterations and a

machine has 5 devices, each device executes 2 iterations. On homogeneous architectures,

this method is the crudest and easiest to implement. Because each device determines at

compile-time exactly which iterations to execute, scheduling overhead is minimal. However,

oblivious static scheduling has the poorest load-balancing behavior for dynamic or mixed

workloads; if each iteration doesn’t take the same amount of time, some devices may finish

earlier than others and undergo work starvation.

In principle, if the programmer knows the relative execution rates of each device and

execution time is homogeneous across iterations, then dividing iterations according to

10

each device’s performance contribution to the whole should yield a load-balanced schedule.

Equation 2.1 shows how many iterations N device i should execute given D devices with

execution rate R. Note the subtle assumption that devices’ execution rates are iteration

invariant. For example, suppose a loop has 100 iterations, device 1 can execute 1 iteration

per time unit and device 2 can execute 4. Using equation 1, device 1 should execute 20

iterations and device 2 should execute 80. This will fully use the combined executional

power of 5 iterations per time unit; both device 1 and device 2 will finish after 20 time units.

When iteration execution time is heterogeneous, Cierniak et al. provide a way to transform

the iterations into a homogeneous loop.

Ni =
Ri∑D
j=1Rj

N (2.1)

When loop iterations are heterogeneous as defined by Cierniak et al., one can combine

loop iterations and form a new homogeneous loop [51]. Since the authors assume the time

taken for iteration i is of the form ti = ai+b, combining iteration i and (N− i+1) yields the

same amount of time for all i as shown in equation 2.2. A transformed loop variable j that

executes both the i and (N−i+1) iteration provides a homogeneous loop. A compiler can use

this transformed loop with either a homogeneous or heterogeneous computer as previously

described. The authors also take into account homogeneous and heterogeneous networks

with and without contention. For many applications where communication is minimal, a

model can merely lump network costs in with computation costs.

ti + tn−i+1 = ai+ b+ a(n− i+ 1) + b = a(n+ 1) + 2b (2.2)

Cierniak et al then run a number of applications including matrix multiplication, an

economics application, and a synthetic heterogeneous loop using the techniques described in

their paper [51]. Their results show improvement in every case, including near-ideal speedup

for matrix multiply.

11

There are two main issues that prevent Cierniak et al’s work from working effectively

in the context of Specmaster. Firstly, as previously shown, the affine function that maps

iterations to time varies across different datasets in Specmaster. Worse still, Specmaster

cannot ascertain the affine function a priori for a given dataset. The second assumption

that fails in Specmaster is that devices have constant relative speedups. Figure 6.5 shows

that to the contrary, a GPU and CPU running Specmaster vary in relative performance as

a function of both data and iteration.

Cheng et al applied dynamic self-scheduling to a parallel for loop in a grid computing

environment [52]. They explored three different iteration chunking techniques: trapezoidal

self-scheduling [53] (TSS), factoring self scheduling (FSS) [54], and guided self scheduling [55]

(GSS). Their conclusions show that self-scheduling alone performs poorly in a distributed

matrix multiply.

To compensate for this, the authors [52] hybridize static and self-scheduling. The variable

α partitions the workspace into static and dynamic regions. Their algorithm statically

schedules the first α% of a loop’s iterations as per equation 2.1 and dynamically schedules

the remaining iterations using a number of different methods. In this case, the authors use

the processors’ clock frequencies as the performance metric. Cheng et al found that α = 80%

yields good performance for GSS, FSS, and TSS. Furthermore, they found FSS to be most

invariant to the α parameter; execution times varied less than 5% as a function of α while

simultaneously achieving the highest performance of the three chunking algorithms.

Unfortunately, the authors chose a well-behaved application to demonstrate the effective-

ness of their findings. Dense matrix multiplication and other dense linear algebra routines

have well-known performance characteristics that work well with static scheduling, even in a

heterogeneous environment [41]. In fact, the authors found that increasing α to 80% yielded

the best performance regardless of chunking method used. The authors could have shown the

α=100% case in their work as a baseline for comparison. In applications with data-dependent

performance, different alpha values could be optimal for different data sets. Furthermore,

12

statically scheduling workloads is difficult when the devices’ relative performances are not a

constant function of the data set and iteration (figure 6.5).

A number of other related papers use similar techniques to target heterogeneous clusters

[56][57][58]. In [56], the authors apply the same α hybrid scheduling technique to compute

matrix multiplication on an “extremely” heterogeneous cluster. They found that once again,

setting α equal to 80 yielded significant performance gains over static scheduling (α=100).

Furthermore, their GSS/80 (Guided Self Scheduling with α=80) algorithm outperformed

pure GSS (α=0) by 30%.

In [58], Shih et al. introduce Hybrid Parallel Loop Scheduling (HPLS). This is nearly

identical to the work in [56] with a few slight changes. Rather than use the CPU clock speed

to measure each device’s performance, the authors use each devices relative execution rates

for a particular problem (matrix multiplication in their example). Also, the master node

also performs work rather than just distributing it. This work found modest performance

improvements over [56] and [52].

In [57], the authors additionally allow a multi-core master node to do work on non-

scheduling cores. They introduce Layered Self Scheduling (LSS) to take advantage of

shared memory on multi-core systems. This reduces communication overhead on shared

memory systems. Finally, the authors modify the LSS algorithm to weigh chunks according

to their performance. They call this approach Enhanced Layered Self Scheduling (ELSS).

Their algorithm maintains an array of the relative performances of a problem running on

each machine (matrix multiplication in their example) and uses the ranking information to

determine which chunk a process should receive. For example, the third fastest CPU receives

the third largest chunk available. This leaves larger chunks for faster machines. Wu et al.

found that ELSS yielded an average 1.35x speedup over LSS in matrix multiply using both

GSS and FSS chunking algorithms. Unfortunately, they don’t compare their work to the α

scheduling method.

Jiménez et al [59] propose using predictive runtime code scheduling. This technique falls

more in line with the work presented in this dissertation. The authors have a two-fold

13

approach to scheduling tasks: 1) PE (processing element) selection and 2) task selection.

The first piece uses a heuristic to determine where a task should run. The second piece

determines which task a PE should run when it becomes idle.

For the first task, the authors contend that traditional methods such as running a task on

the first available resource is a poor idea in a heterogeneous environment. If task A takes 20

time units on device 1 and 1 time unit on device 2, the scheduler can wait up to 19 time units

for device 2 to become available, run it on device 2 and still break even. To form a basis for

their work, they propose four algorithms: first free (FF), FF round robin, history-gpu, and

estimate-hist [59].

The two first free algorithms are very similar and only differ in how they choose a device

when none are free. The vanilla algorithm uses a function g to decide where to schedule such

a task whereas the round robin version iterates through a weighted round-robin of devices.

For example, with weights 4 and 1, the scheduler would assign four tasks to device 1 for

every task on device 2.

The history-based schemes use performance estimation to schedule tasks. Both algorithms

keep a performance history for each device and use this information to decide where to

schedule a task. If a task’s performance ratio of device A to device B is greater than some

value θ, then the scheduler forbids that task from running on device B; it can only run on

device A. Thus, both algorithms create a collection of allowed devices for a given task type.

The schemes differ in how they choose which of the allowed devices a task uses.

History-gpu chooses the first available resource in the allowable set. If no such resource

is free, the algorithm schedules a task to run on the GPU.

Estimate-hist attempts to schedule tasks onto an allowable device with the least amount

of time in its queue. The authors don’t go into detail of how this works, but presumably

maintain a running average of times for each device/task pair. A more sophisticated method

could keep a number of data points for different problem sizes and interpolate to predict the

execution time.

14

The authors found that using a performance prediction model to schedule tasks improved

speedup over FF algorithms when concurrently running 4 or 6 benchmarks. Furthermore, in

some cases, FF provided slowdown while the history-based methods still provided speedup.

Jiménez et al show that estimating runtimes to schedule tasks is a viable method for executing

tasks on heterogeneous resources [59].

Another common scheduling technique is work stealing [60][61]. This approach allows

threads to take work from other threads when they become idle, preventing starvation and

creating load balancing. Unfortunately, this approach doesn’t work well in the context of

OpenCL or CUDA, as kernels are atomic; one device can’t steal work from another device’s

OpenCL or CUDA work queue. A given can load balance its threads onto the multiprocessors

in a given device using work stealing [62], but balancing multiple kernels on multiple devices

remains difficult to impossible depending on the exact devices used and their capabilities.

Maestro[63] attempts to autotune OpenCL kernels for different heterogeneous devices

and split work up automatically. This includes finding the optimal work-group size for

each device, attempting to automatically overlap computations and data transfers, and load

balancing. In the last component, they authors attempt to do this by characterizing each

device using OpenCL API calls and benchmarks. They repeatedly measure kernel execution

times running on different devices and compute a weighted average to statically distribute

work.

Most previous work that focuses on heterogeneous scheduling make several assumptions

that don’t hold true in the general case. Firstly, devices don’t necessarily have consistent

relative performance even for the same operation; problem size and data can introduce

variability into relative execution rates. Secondly, the scheduler may not know a priori

what the execution time for a given task will be. In simple applications such as matrix

multiplication, the scheduler can usually infer task completion time from its problem size,

but with data dependent performance this may be impossible or too expensive to model

from the data itself.

15

Table 2.1: Task scheduling taxonomy
Previous work Task partitioning Task scheduling Relative performance knowledge
Cierniak et al[51] static static heuristic
Self-scheduling[53] static dynamic heuristic
Work stealing[61] dynamic dynamic heuristic
Shih et al[58] static hybrid heuristic
Wu et al[57] static dynamic offline empirical
Jiménez et al[59] static dynamic online empirical
Maestro[63] autotuned static autotuned static both offline and online empirical
PINA dynamic dynamic online empirical

Table 2.1 shows a classification of various scheduling algorithms including the proposed

work. In terms of approach, the proposed work most closely aligns with Jiménez et al. Both

works use online models to determine where to run tasks. However, in that work users submit

discrete tasks and the scheduler merely assigned where they ran whereas the proposed work

breaks a loop’s iteration space into subtasks and schedules those. Furthermore, this work

ties “problem size” into the equation with a simple model. In terms of goals, this work

most closely relates to Shih et al and Wu et al. All three attempt to dynamically schedule

loop iterations onto heterogeneous devices. However, the work in this dissertation makes

different assumptions about the underlying workloads; in [57] and [58], the authors assume

data-agnostic applications and that relative device performances can be obtained offline.

16

Chapter 3

clUtil∗

clUtil uses C++11 features including classes, RValue references, variadic templates, and

lambdas to provide highly readable and terse OpenCL frontend code. Figure 3.1 gives an

example that uses all OpenCL devices (GPU, CPU, and otherwise) in a machine to add two

vectors.

clUtil provides significant productivity improvements through the way it abstracts

OpenCL. clUtil initializes all devices on all platforms into a single flat array, creates a context

and two command queues (to allows users to overlap computation and data transfers). It

then compiles a list of files passed by the programmer for each device and creates a kernel

lookup table using an STL map. This allows users to reference kernels by name rather than

managing cl kernel handles. Users query and set the device to issue subsequent commands

using Device::{Set, Get}CurrentDeviceNum()

∗This chapter contains excerpts from “A Trip to Tahiti: Approaching a 5 TFlop SGEMM using 3
AMD GPUs,” presented at SAAHPC 2012. I am the principle author of this text and the underlying work
it represents. The other author, my advisor, serves as the principle investigator for the broader project
encompassing this work.

17

//aDev , bDev , and cDev are p r e a l l o c a t e d arrays o f po i n t e r s to
// c l U t i l : : Buf f er t ype s wi th one o f each b u f f e r per dev i c e

Para l l e lFo r (0 , 1 , vectorLength − 1 , [&] (s i z e t s ta r t , s i z e t end)
{

unsigned int count = end − s t a r t + 1 ;

s i z e t curDev = Device : : GetCurrentDeviceNum () ;

aDevice [curDev]−>put(&a [s t a r t I dx] , count ∗ s izeof (f loat)) ;
bDevice [curDev]−>put(&b [s t a r t I dx] , count ∗ s izeof (f loat)) ;

c lUt i lEnqueueKerne l (”vectorAdd” ,
c lU t i lG r i d (count , 64) ,
∗aDevice [curDev] ,
∗bDevice [curDev] ,
∗ cDevice [curDev] ,
count) ;

cDevice [curDev]−>get (&c [s t a r t I dx] , count ∗ s izeof (f loat)) ;
} , S ta t i cSchedu l e ()) ;

Figure 3.1: Vector addition example using clUtil’s ParallelFor(). vectorLength is assumed
to be sufficiently short so as not to overflow buffers on the devices.

18

3.1 Memory management

clUtil effectively replaces all cl mem handles with Buffer and Image objects. These objects

both inherit from the abstract Memory class, which actually contains the underlying cl mem

reference. Image objects have three constructors for creating 1D, 2D, or 3D images. Since

OpenCL 1.1 doesn’t actually support 1D images, clUtil emulates them by mapping the 1D

indices onto a 2D index set. clUtil provides functions for reading and writing to 1D images

that automatically transform the coordinates on the user’s behalf. This makes them simple

replacements for large buffers on devices that don’t support cached global memory in kernels

that need fairly random access. Buffer objects have a single constructor that takes the size

in bytes as its parameter. Buffer and Image objects allocate on the current clUtil device.

Users copy data to devices using the put() method and copy data from the device using

get(). Memory objects track dependencies using their cl event handle to the last call

to get(), set(), or clUtilEnqueueKernel(). This allows all data transfer methods to issue

asynchronously, allowing the main thread to continue enqueuing tasks for devices.

Memory objects implicitly use OpenCL’s underlying reference counting for memory

management. Its copy constructor calls clRetain() on the underlying cl mem handle and its

destructor calls clRelease(). Using this method, memory objects automatically deallocate

when no references exist, reducing programmer burden in avoiding memory leaks.

3.2 Launching kernels

clUtil uses a variadic function to enqueue kernels on the current device. The first argument

is the name of the kernel and the second is the grid defining the number of global work items

and the number of work items per group. The clUtilGrid function is variadic, taking pairs of

global and local work items in an arbitrary number of dimensions. It returns a variadic Grid

class containing dimension information accessible through virtual functions. The returned

class gets passed to clUtilEnqueueKernel() by RValue reference, obviating object handles

19

and creating a clean syntax for defining the execution grid. The remaining parameters map

to the underlying kernel parameters and should match in type.

When processing the remaining parameters, the clUtilEnqueueKernel() function calls

clSetKernelArg() directly on the argument with the argument index equaling the position

in clUtilEnqueueKernel() minus two. One exception to this rule arises when the user

passes Image objects, Buffer objects, or a pointer to a Memory object. In these cases,

clUtilEnqueueKernel() appends the last event associated with the Memory object to a list

of dependences and then passes the underlying cl mem handle to clSetKernelArg() rather

than the object itself. After setting all kernel arguments, clUtil passes the dependency list

to clEnqueueNDRange() and updates all passed memory objects with the resultant cl event.

3.3 ParallelFor

One of the design goals of clUtil is to easily allow composition of applications that can exploit

multiple heterogeneous devices. To achieve this, we provide the ParallelFor loop. Users pass

this function an index range, a lambda, and an optional scheduling algorithm and the loop

executes the lamda using devices as they become available. To increase flexibility, we separate

the event loop from the model that doles out work. This allows the user to specify one of

(currently) three models depending on the workload and device configuration.

The static scheduling algorithm divides the index range into a number of equal sized

chunks, allowing devices to take work as they become idle. This model works reasonably

well in a homogeneous environment where workloads don’t change much as a function of the

loop index, such as the one presented in this paper (using only the 3 Radeon 7970s).

The EGSS (Enhanced Guided Self Scheduler) is an adaptation of the work found in [57].

It iteratively divides work into chunks as per the GSS algorithm and assigns the the kth

largest chunk to the kth fastest device group. EGSS uses a heuristic based on the number

20

of processors found in the device to determine the device performance ranking (16 ∗CU for

GPUs and 1 ∗ CU for CPUs, where CU is the number of compute units on the device).

Finally, the PINA Scheduler is the raison d’être for this dissertation (Chapter 4). It

combines offline autotuning with online performance sampling to schedule work on available

devices.

When calling ParallelFor(), the main thread enters an event loop that terminates when

all iterations complete (source code given in Appendix A). All devices are initialized as idle.

Upon detecting an idle device, the loop queries the scheduling algorithm if said device has

work available. If so, the event loop gets the index chunk from the model, starts a timer,

changes the current device, calls the user lambda, and finally enqueues a series of markers

to get cl event so the event loop can determine when the devices completes all tasks in its

queues. After issuing new tasks to idle devices, the event loop polls for completed marker

events.

Upon seeing a completed set of loop iterations, the event loop stops the timer associated

with that device and notifies the model which device completed its iterations and how long

it took (which the model is free to ignore). The event loop then marks the device as idle and

decrements the number of iterations remaining. Using this event loop rather than threads

leads to a dramatically simplified implementation, but creates the requirement that the user

lambda cannot block in any way, lest the loop serializes. All get() and put() methods as well

as clUtilEnqueueKernel() execute asynchronously with this caveat in mind. When the main

thread returns from ParallelFor, it guarantees that all iterations have completed.

3.4 Profiling

One final feature of clUtil is the ability to enable event profiling. When enabled, profiling

allows users to start and stop profiling using function calls and visually view all data transfers

and kernels as a function of time in an output Scalable Vector Graphics (SVG) file. This

21

feature merely piggybacks off clUtil’s dependency tracking mechanism. When calling get(),

put(), or clUtilEnqueueKernel(), clUtil retains the underlying tracking events. When the

user calls DumpProfilingData(), clUtil generates an SVG file from the retained events’ start

and end times as well as their event type.

22

Chapter 4

PINA Scheduler

4.1 Assumptions

The primary work in this dissertation focuses on scheduling parallel loop iterations on

heterogeneous devices. This requires several assumptions deduced from data gathered from

Specmaster.

This work relaxes several assumptions over previous work including:

1. Each loop iteration is independent of all others.

2. The time each iteration takes is a function fd of the device on which it executes (d),

the iterator value, and underlying data.

3. The runtime needn’t know fd a priori.

4. Interpolation yields a reasonable approximation to fd.

5. fi = fj if device i and j are the same type of device. For example, two Radeon 5870s

should have the same execution rates over the iteration space.

6. Devices’ relative performances p vary as a function of the iterator value and underlying

data.

23

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

chunk number (100 iterations per chunk)

tim
e

(s
)

Timings for RPAL dataset #4

mean:1.397880 variance:0.015793

mean:0.323056 variance:0.003019

Core i7 930
Radeon 5870

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

chunk number (100 iterations per chunk)

tim
e

(s
)

Iteration times for Cristobal dataset #5

mean:6.288093 variance:0.699625

mean:0.860094 variance:0.011501

Core i7 930
Radeon 5870

Figure 4.1: Iteration execution time on a Core i7 930 and Radeon 5870

7. Caching has little effect on performance with respect to the order of iteration execution.

8. Devices have higher throughput with larger iteration chunks (a contiguous group of

iterations) rather than smaller. The function relating performance to chunk is of the

form 1− exp(αds) where αd < 0, s is the chunk size, and d is the device. Furthermore,

this function is roughly constant regardless of the underlying data, since it represents

the program’s ability to amortize loop iteration costs.

Figure 4.1 shows that two different data sets yield different execution profiles in the same

program on the same device. This fact gives rise to the first two assumptions. fd differs in

both graphs in shape, implying we may not know what the function will look like before we

run the loop. Furthermore, the shapes if the graph functions are certainly not of a consistent

form, meaning fd could be nearly any function of index and data.

Previous work makes fairly optimistic assumptions about fd or tries to ignore it. [51]

assumed that f = ax + b, as it allowed them to statically combine large iterations with

small ones to create a homogeneous loop. By then assuming the speedup of device di

over device dj is a constant function of the loop index, they could then statically schedule

iterations optimally as per their assumptions. Conversely, the self-scheduling techniques in

24

0 20 40 60 80 100 120
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

mean:4.427345 variance:0.466101

chunk number (iterations per chunk)

sp
ee

du
p

of
 R

ad
eo

n
58

70
 o

ve
r

C
or

e
i7

 9
30

speedups for RPAL dataset #4

0 20 40 60 80 100 120
5

6

7

8

9

10

11

12

mean:7.382748 variance:1.238080

chunk number (100 iterations per chunk)

sp
ee

du
p

of
 R

ad
eo

n
58

70
 o

ve
r

C
or

e
i7

 9
30

Speedup for Cristobal dataset #5

Figure 4.2: Speedups of Radeon 5870 over Core i7

[52][56][58][59] attempt to dodge the issue by allowing dynamic scheduling to load balance the

iterations. However, each chunking technique has some pathological f that will completely

break their load balancing attempts. For example, if a non-trivial chunk requires more time

than the sum of the remaining iterations, load balancing will fail. Breaking this chunk into

smaller pieces would alleviate this issue.

The works discussed in the literature review assume fd is known if it isn’t ignored. [51]

implicitly assume that the compiler knows fd by assuming fd is a linear function. Conversely,

this work acknowledges the fact that this function may not be known at compile time, or

even pre-loop runtime.

Figure 4.2 shows that devices’ relative performance is not necessarily constant. This

complicates an optimal static schedule defined in equation 2.1; devices execute some

iterations relatively more quickly than others. Intuitively, a scheduler should give iterations

where fd1/fd2 is high to d1 and iterations where this is low to d2 assuming it can still load

balance. In machines with more devices, this problem becomes more complicated.

Another factor impacting runtime is scheduler and runtime overhead. Theoretically,

a scheduler could issue single iterations at a time to devices. This method is known as

Pure Self Scheduling (PSS) [57] and offers extremely good load-balancing. Unfortunately,

25

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

chunk size

fr
ac

tio
na

l e
xe

cu
tio

n
ra

te
 (

1.
0

w
he

n
ch

un
k

si
ze

 =
 5

12
)

Execution efficiency of Core i7 930 and Radeon 5870

Radeon 5870
Core i7 930

Figure 4.3: Fractional execution rate on D04 Cristobal dataset number 5

worker devices must invoke scheduling overheads each time they do a single loop iteration.

Furthermore, in a GPU kernel where a range of loop indices maps to the execution grid, the

device may be highly underutilized.

Figure 4.3 shows Specmaster’s execution rate on D04 Cristobal dataset number 5. In this

experiment, we pulled different sized chunks and passed each chunk to an OpenCL kernel

for processing, timing the cumulative runtime of all iterations; smaller chunks yields more

kernel calls while larger chunks yield fewer. The GPU’s performance is highly sensitive to the

number of iterations it executes simultaneously, an artifact of its data-parallel design. This

indicates that a well-designed scheduler should generally provide large chunks of iterations

to a device while, possibly making trade-offs with load-balancing to do so.

26

Equation 4.1 explains why larger chunks give higher execution efficiency on devices. Since

t is a function that increases with chunk size, it begins to dominate the equation as the chunk

size increases. When the chunk size is small, execution overheads (including kernel launch,

driver and kernel calls) dominate the runtime as they aren’t a function of chunk size. This

effect is compounded on parallel architectures, since small chunk sizes may result in an

underutilized device.

t = toverhead + t(chunk size) (4.1)

The challenge in creating an efficient heterogeneous scheduler is then to address the

previously mentioned issues.

4.2 PINA: an Efficient Scheduler for Heterogeneous

Workloads

PINA is a parallel for loop scheduler designed for heterogeneous workloads running on

heterogeneous devices. It combines online performance metrics and offline autotuning to

answer a parallel for loop’s essential question: “Which and how many iterations should this

loop distribute to a given idle device?” More succinctly as two questions, “which iterations?”

and “how many?” PINA addresses the former question by sampling the search space and

approximating fd. It answers “how many” through offline autotuning to find chunk sizes

that amortize kernel and transfer overheads.

4.2.1 Choosing Which Iterations

The novel aspect of this work is to approximate fd online for each device d online and use this

information to schedule iterations. The scheduler can approximate fd by running iterations

at regular intervals and measuring their execution times (e.g. sampling fd). Equation 4.2

27

shows the lowest sampling rate needed to accurately reconstruct a signal (e.g. the Nyquist

rate [64]) to avoid aliasing. B is the signal’s bandwidth, the highest frequency with non-zero

power. However, since the application doesn’t know fd a priori, we can’t make any claims

to under or oversampling. While this may disallow perfect reconstruction of fd, in practice,

the scheduler should only need a reasonable approximation to make more sophisticated

scheduling decisions.

fNY QUIST = 2B (4.2)

The scheduler approximates fd for each device type. If more than one device of a given

type exist, then they can divide the sampling process. Since the sampling process takes

longer on slower devices, any proposed algorithm must either insert a barrier to wait for the

sampling process to complete or make scheduling decisions with an incomplete model. While

the former is easier to implement and can prevent the scheduler from making ill-informed

decisions, the latter maintains seamless execution.

The number of samples each device takes is another algorithmic trade-off. More samples

yields a more accurate model the scheduler can use to make decisions. However, more

time spent sampling means less time actually using the model. As the number of samples

increases, samples can break up iteration chunks which would prevent the scheduler from

packing large workloads to devices. Furthermore, spending too much time sampling may

cause slower devices to never make informed decisions on which iterations to execute. Finally,

the scheduler can further refine the model with runtimes of actual scheduled iterations after

the sampling phase, possibly obviating the benefit of a large number of samples.

With the approximations for each fd, the scheduler can proceed issuing iterations to

devices. This entails assigning execution iterations chunks C1, C2, etc. to devices. Each

device d consists of a union of these iterations chunks (equation 4.3) with additional

constraints. No two of D total devices execute the same iteration (equation 4.4) and

all devices together execute all iterations (R) in the loop (equation 4.5). Both of these

28

constraints apply during the sampling phase as well; chunks executed while sampling fd

reside in Rd.

Rd = Ci ∪ Cj ∪ ... (4.3)

D∩
i=1

Ri = ∅ (4.4)

D∪
i=1

Ri = R (4.5)

The overall goal of the scheduler is to assign workloads to devices in such a way that

minimizes execution time. Mathematically, this entails constructing a piecewise function

goptimal by choosing each Rd that minimizes g (equations 4.6 and 4.7). Unfortunately, this

problem is a more generalized form of the multi-processor task scheduling problem and is

NP-complete [65]. To demonstrate that this is a generalization, let f1 = f2 = ... = fD, which

is the symmetric multiprocessor case. As such, a practical scheduler can only approximate

goptimal with a heuristic.

g(i) =

f1(i), i ∈ R1

f2(i), i ∈ R2

...

fD(i), i ∈ RD

(4.6)

goptimal = min(
∑
R

g(i)) (4.7)

Static scheduling with runtime approximations for each fd presents a number of challenges.

Firstly, statically assigning tasks requires fairly complete information about task runtimes.

This implies that the loop should barrier synchronize all devices after modeling to ensure the

29

model is up to date and complete, a costly operation. Secondly, any practical assignment

algorithm must use a heuristic to avoid solving an NP-complete problem. To avoid these

challenges, we plan to use a dynamic scheduling approach.

Effective dynamic scheduling presents fewer challenges than assigning tasks statically.

If some devices finish early, the scheduler can begin assigning them tasks with partial

information about the model. For example, if the GPUs have finished their 10 samples of

fGPU while the CPUs have only completed 2 samples of fCPU , the scheduler can interpolate

from only those two samples to produce a very crude model that becomes more refined as

the CPUs complete more samples. Alternatively, the GPU can issue tasks only in regions for

which all devices have sampling information. This immediately raises the question of how

an algorithm should sample fd.

Figure 4.4 shows two possible methods for acquiring samples of fd. Linear sampling

progressively provides an accurate approximation of a portion of fd while tree sampling

provides a rough estimate of all of fd and then refines the approximation with more samples.

The former yields dramatically simpler implementation and lower overhead. The latter could

yield better results in workloads with little variance, but provides inaccurate information

when fd changes significantly between sampling regions.

Once a given device has sampled iteration space and becomes idle, the scheduler must

answer two questions in assigning it iterations: which and how many. Both questions have

a number of practical concerns that can serve as competing ends. Optimally answering the

“which” question at some point in time may fragment the iteration space leading to small

chunks that hurt execution times later. Conversely, choosing too many iterations may better

amortize scheduling overhead at the expense of load balancing.

Fragmentation is a possible concern when answering the “which” question (figure 4.5).

The iteration space gets broken into disjoint pieces as a result of the sampling process. Using

more samples may provide a more accurate model at the cost of increased fragmentation.

Fragmentation is undesirable for two reasons: the scheduler requires a larger and possibly

30

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

Figure 4.4: Linear (top) and tree (bottom) sample iteration

31

C1 C2 C3 C4 C5 C6

Figure 4.5: Fragmentation can occur when the scheduler makes unconstrained scheduling
decisions

more complex data structure to scoreboard which iterations remain and smaller chunks

prevent devices from amortizing scheduler overhead (figure 4.3).

While some fragmentation is unavoidable due to sampling, adding constraints as to

which iterations a device can select at a given time can reduce fragmentation during the

normal execution phase. More specifically, by requiring that all proposed chunks be adjacent

and following either a sample or previously executed chunk, the scheduler guarantees that

no more fragmentation occurs than exists after the sampling phase; the number of holes

never increases (figure 4.6). Disallowing a chunk to execute adjacently preceding a sample

dramatically improves implementation ease by simplifying the required scoreboarding and

sampling.

4.2.2 Choosing the Number of Iterations

The “how many” question has overhead amortization and load balancing as competing ends.

Giving a device too few iterations introduces significant scheduling overhead. On the other

hand, issuing too many iterations to one device can cause others to starve. Many self-

scheduling techniques address this issue by providing large chunks that execute with minimal

overhead as well as smaller chunks to load balance. We propose using another method to

solve this issue.

Gustafson’s law[66] (equation 4.8) explains why devices perform better with larger chunk

sizes and serves as the basis for an amortization model. Increasing the chunk size amounts to

increasing tparallel while holding P and tserial constant. Thus, the second term representing

32

S1 S2Allowed chunk

S1 S2Illegal chunk

S1 S2Illegal chunk

Figure 4.6: The scheduler may choose chunks adjacent to an after a sample (top), but not
before a sample (middle), or anywhere else (bottom). This helps prevent fragmentation and
simplifies implementation.

33

the parallel workload begins to dominate the total time. Unfortunately, parameterizing

this equation is difficult to do empirically in this context. The serial time is a function

of both kernel launch overhead and iteration time since iterations are the measured unit of

parallelism. Furthermore, the what constitutes a “processor” according to Gustafson’s law is

becoming increasingly vague in modern architectures featuring thread multiplexing schemes

where multiple threads share hardware to hide pipeline and memory latencies.

a =
tserial

tserial + tparallel

S(tparallel) = a+ P (1− a)

(4.8)

Due to the difficulties in parameterizing Gustafson’s law in this context, we propose an

approximate model. Normalizing Gustafson’s law (equation 4.9) to yield relative speedup

simplifies the model by bounding the relative performance between 0 and 1. When P � 1,

S(0) ≈ 0 and S(∞) = 1. Furthermore, equation 4.9 is smooth on the interval [1,∞) and

quickly approaches its asymptote of 1 and is monotonic.

S(tparallel) =
a

P
+ 1− a (4.9)

Equation 4.10 gives an approximation to Gustafson’s law that accepts a single parameter.

This serves as a reasonable approximation because S(0) = 0, S(∞) = 1, it’s monotonic, and

quickly approaches its asymptote. Furthermore, varying the sole α parameter changes the

convergence rate. Figure 4.7 compares Gustafson’s law with this approximation.

S(tparallel) = 1− exp(αtparallel) (4.10)

34

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chunk size

R
el

at
iv

e
sp

ee
d

Gustafsons law versus approximation

Gustafsons law
1−exp(alpha*x)

Figure 4.7: Gustafson’s law with tserial = 100, tparallel = 400, P = 32 versus approximation

35

Assuming that parallel execution time and number of iterations are interchangeable, the

model can directly predict the expected execution rate for a given chunk size (equation

4.12). Solving for some fraction 0 < β < 1 yields the chunk size required to attain high

performance. For a given for loop, this equation need only be solved once and the iteration

and time information can be reused. In fact, this can be performed once in an autotuning

step.

1− exp(αdchunkamortized) = β (4.11)

chunkamortized =
log(1− β)

αd

(4.12)

To actually find α from empirical data, we employ a simple linear regression (equation

4.13). This approximation has a number of caveats. Firstly, when normalizing actual

performance data, the max(S(x)) = 1. This results in taking the natural log of 0 at the point

where performance is highest, resulting in −∞. To avoid actually hitting the asymptote in

the normalized performance, we introduce a small ε term. This results in nominal deviation

from the actual y′. The second caveat is that long tails in empirical data decrease the

accuracy of the approximation. One way to overcome this is to remove data close to the

asymptote (i.e. greater than 0.95). Figure 4.8 shows the effects of using and removing a long

tail.

36

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chunk size

R
el

at
iv

e
sp

ee
d

Gustafsons law versus approximation

Gustafsons law
1−exp(alpha*x)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Chunk size

R
el

at
iv

e
sp

ee
d

Gustafsons law versus approximation

1−exp(alpha*x)
Gustafsons law

Figure 4.8: (Left) Approximation made with long tail values > 0.95 (Right) Regression
performed without tail

x = ||chunk||

S(x) = 1− exp(αdx)

αdx = log(1− S(x))

y′ := log((1 + ε)− S(x)) ≈ log(1− S(x))

y′ ≈ αdx

αd ≈ (xy′/x2)

(4.13)

This work employs an autotuning technique to discover the ideal chunk sizes for each

device type. Each time the PINA scheduler executes for a loop, it attempts to load

autotuning data from disc containing execution rates sampled at powers of two for each

device. If it fails to find any data for a given device type, then the loop hasn’t been autotuned

for that device type and starts autotuning with a chunk size of 1. If the PINA scheduler finds

incomplete data, the scheduler fixes the chunk size to the next power of two and runs the

loop using only the devices in the selected device group. In either case, the PINA scheduler

records the sample data in a file associated with that device type and loop id. Sampling

37

data is considered complete when the last sampled chunk size yields less than some fractional

performance improvement over the previous chunk size. When the sampling data completes,

the scheduler discards the final sample and renames the data file to indicate completion.

The PINA scheduler continues this autotuning process for each device type in the system.

Once the PINA scheduler has data relating chunk size to relative performance, it uses this

information to discover good chunk sizes for each device. It normalizes the absolute execution

rates of the loops loaded from file to the maximum execution rate (by construction, the last

sample). It then performs a simple linear regression to find αd for each device (equations

4.13), and solves for chunkamortized (equation 4.12).

4.2.3 Putting It All Together

Appendix B lists the function that assigns work to a given device. The function first checks

if the specified device group has completed all of its samples. If not, it assigns work in the

next non-full sampling region. If the device group has all its required samples, the PINA

scheduler identifies the region where the device group has the highest performance relative

to other device groups. It does this by computing the two norm speedup of the specified

device group over every other device group interpolated at the first iteration in the candidate

hole. Once the PINA scheduler selects a target iteration location, it then assigns either the

desired work for that device group or the remaining work in the selected hole, whichever is

lesser. The PINA scheduler then updates its list of available work and returns the assigned

work.

38

4.3 Applications

To evaluate the performance of the PINA loop scheduler, we examine its performance

compared to two other loop scheduling techniques: self scheduling with a fixed chunk size

and an enhanced guided self-scheduling algorithm based off [57]. The latter loop scheduler

implicitly places the second layer of scheduling within the OpenCL kernel instances. We

evaluate the performance of each scheduler in three applications that represent three different

workloads: matrix multiplication, peptide identification, and raytracing.

Matrix multiplication (chapter 5) represents the least difficult workload to efficiently

schedule. There should exist virtually no performance variance with respect to loop iteration.

This is because each iteration always performs the same amount of work and the execution

rate in principle doesn’t depend on the contents of the input matrices (barring some

exceptions related to floating point arithmetic such as denormalized numbers). In principle,

the two loop schedulers designed for heterogeneous

The second application, peptide identification (chapter 6), features a moderate amount

of data-dependent performance. The performance of each iteration depends on how well its

corresponding scan correlates to peptides found in the user given database. Scans that have

precursor mass to charge ratios corresponding to fewer peptides take less time to process

than those that correspond to more peptides. This caveat also yields device-dependent

performance; processors execute more quickly on some iterations than others relative to

GPUs.

The final application is a Raytracer (chapter 7). Raytracing is an ab initio method for

rendering 3D graphics that features embarrassing parallelism. This application serves two

purposes: firstly to demonstrate the ease in integrating clUtil’s parallel for loop into an

existing OpenCL application and secondly to examine heterogeneous execution in a strong

scaling application.

39

Chapter 5

Matrix Multiplication∗

Linear algebra and high-performance computing have a long and rich shared history. Since

BLAS (Basic Linear Algebra Subprograms) debuted in the late 1970s[67], FORTRAN users

have had a standardized package for performing linear algebra. BLAS originally cast all

higher level operations in terms of lower level operations; a matrix multiplication was a

series of matrix-vector products. However, as memory hierarchies changed due to the advent

of caching, the level at which developers optimized routines increased.

Currently, one of the more important routines in BLAS is matrix multiplication. In

principle, it’s also one of the simplest consisting of 3 nested loops, an accumulate, and a store.

Modern implementations however are rarely so elegant. Matrix multiplication is important

because SGEMM (Single-precision GEneral Matrix Multiplication) and DGEMM (Double-

precision GEneral Matrix Multiplication) serve as the building blocks for many higher level

routines such as LAPACK’s Cholesky and LU factorizations. If for no other reason, GEMM

is still an important routine because it’s integral to modern HPLinpack[68] benchmarks used

to rank the world’s fastest supercomputers[69] and topping it is a prestigious and expensive

endeavor.

∗This chapter contains excerpts from “A Trip to Tahiti: Approaching a 5 TFlop SGEMM using 3 AMD
GPUs,” submitted to SAAHPC 2012. I am the principle author of this text and the underlying work
it represents. The other author, my advisor, serves as the principle investigator for the broader project
encompassing this work.

40

GPUs have become increasingly programmable in the past decade. As a result,

they now appear in some of the fastest computers in the world[70][71]. They offer an

unrivaled combination of cost effectiveness, power efficiency, and programmability for many

applications.

5.1 Previous Work

A number of applications have proven to be readily amenable to acceleration using GPGPUs.

One of the earliest and notable examples is linear algebra. In [27], Moravánszky demonstrates

matrix addition, assignment, and multiplication using Direct 3D. Given the state of general

purpose programming models (i.e. nonexistent) for GPUs at the time, this work was

necessarily crude and unwieldy by today’s standards. Moravánszky essentially deceives the

GPU into believing it’s manipulating textures, addition being cast as image blending and

multiplication being a series of vertex shaders. While the matrix multiply found in this paper

was marginally slower than ATLAS[72] tuned for a Pentium 4 and wasn’t IEEE compliant,

work such as this set the stage for later advancements. Early work such as this demonstrated

that GPUs held large potential for accelerating a variety of applications other than graphics.

In [30], Volkov and Demmel presented a performant matrix multiply running on a GTX

280 using CUDA. The authors found the GTX 280 to yield nearly a 5x improvement over

a quad Core2 processor. They also found that despite an 8-fold theoretical performance

gap between single and double precision, the GTX280 was nearly 2x faster than the

same processor in DGEMM. The authors demystify the blocking mechanism and how they

mapped the algorithm onto hardware. Unfortunately, when Nvidia introduced their Fermi

architecture (e.g. GTX480 and Tesla c2050 cards), Volkov and Demmel’s blocking routines

no longer provided exceptional performance.

Quintana-Ort́ı et al used multiple GPUs to perform matrix multiplication and a Cholesky

factorization[43]. They achieved 550 GFlops in single precision using 4 Tesla S870s by

41

adapting their FLAME runtime to work with multiple accelerators. This work represents

some of the earlier attempts to use multiple GPUs to accelerate linear algebra problems.

MAGMA (Matrix Algebra on GPU and Multicore Architectures), among other things,

improved on Volkov and Demmel’s GPU kernels on Fermi hardware[73]. The novel feature

in these kernels is an additional tiling onto registers in addition to shared memory. The

SGEMM and DGEMM kernels found in MAGMA are to this day among the fastest on

Nvidia hardware.

In [39], we implemented preliminary work on fast matrix multiplication using AMD’s

Radeon 5870. When running OpenCL-translated MAGMA GEMM kernels on the Radeon

5870, we found that while SGEMM performance virtually equaled the Tesla c2050 in absolute

terms (at 600 GFlops) it lagged in terms of the card’s peak performance. This led us to

translate an IL (Intermediate Language, AMD’s backend pseudo-assembly language) kernel

into OpenCL.

The new OpenCL kernel, originally developed by Nakasato[74] in IL, featured radically

different blocking mechanics than the kernels designed for Nvidia hardware. Each GPU

work item tiled an 8x8 block of C into registers and streamed data through images. With

these performance improvements, we found the Radeon 5870 could achieve 1.4 TFlops. The

DGEMM version of our OpenCL kernel achieved 300 GFlops/s, virtually matching the c2050

in both absolute and achieved performance.

In having to write a variety of kernels, we arrived at three main conclusions. Firstly,

CUDA and OpenCL usually feature nearly identical performance. Other work[75] agrees.

Since they both feature nearly identical kernel languages, this is unsurprising. Secondly,

OpenCL is less performant than low-level backend pseudo-assembly (IL). In our experiments,

Nakasato’s IL kernels outpaced our OpenCL kernels by 50%. Lastly, while OpenCL delivers

portability in terms of correctness, it doesn’t necessarily provide performance portability.

This fundamentally arises from the facts that architectures are different and compilers aren’t

perfect. To overcome this last point, we propose a kernel generator with tuning parameters

that can map to either Nvidia or AMD GPUs.

42

5.2 MAGMA on Tahiti

We started our work by examining the performance of our Nakasato-style OpenCL SGEMM

and DGEMM kernels running on the Radeon 7970. Nakasato reports his IL implementation

achieving 2.3 TFlops in SGEMM and 680 GFlops in DGEMM[76]. We found our OpenCL

version of Nakasato’s kernel achieved marginally better performance than on the Radeon

5870. The kernels originally designed for the Tesla c2050 however yielded a different story.

To examine the MAGMA kernel’s blocking parameters in depth, we created a kernel

generator Python script. This script accepts 4 parameters: TBR, TBC, TRR, and TCR.

The first two parameters control the number of work items per row and column of each

work group. The second two parameters determine the number of work items each work

item computes in the row and column dimensions. Figure 5.1 shows the original kernel

generation parameters we proposed in [39]. Our Python script assumes TR, TC, and VL are

1 and KB equals TBR. These additional values in principal allowed our kernel generator to

create both the Nakasato and MAGMA style blockings (and hybridizations of the two) but

remain as future work.

We used this kernel generator to explore the performance of different blocking techniques.

We found that both DGEMM and SGEMM achieve their best performance when TBR and

TBC are 16. This yields a 16x16 work group (256 work items), which can single handedly

use an entire compute unit on Tahiti. We found that TRR and TCR equaling 6 yield the

highest performance in both SGEMM and DGEMM. Under the 12.2 drivers, we found that

setting these values to 4 gave best performance in DGEMM. Oddly enough, TBR=TCR=16

and TRR=TCR=6 are the optimal tuning parameters for the GTX 480 SGEMM as well.

This suggests that performance is highly portable between the GTX 480 and Radeon 7970.

We benchmark both MAGMA’s SGEMM and DGEMM kernels and compare against

AMD’s BLAS library. Our benchmark seeks to time only the matrix multiplication itself;

data transfers, backend kernel compilation, and lazy allocations aren’t included. To avoid

lazy allocation overheads found in AMD’s OpenCL library, our benchmark allocates matrices

43

V
L

...

.
.
.

TC

T
R

TBC

T
B
R

...

.
.
.

TCR

T
R
R

C

B

.
.
.

...

...
K
B

A

KB

M

K

K

N

Figure 5.1: MAGMA Tuning parameters

44

A, B, and C on the host, transfers them to the GPU, enqueues a GEMM kernel, calls

clFinish(), enqueues another GEMM on the same matrices, then calls another clFinish().

This ensures all lazy allocations occur on the first call to GEMM, allowing our timings of

the second call to be accurate.

Figure 5.2 shows the performance of the MAGMA SGEMM and DGEMM kernels running

on a single Radeon 7970. We acquired these results using the Catalyst 12.4 drivers. Under

the 12.2 drivers, our kernels achieved peaks of 2 TFlops in single and 750 GFlops in double.

However, the old drivers yielded scalability issues in our multi-GPU implementation related

to data transfers. The newer 12.4 drivers eliminated these issues. As such, we present

results using the more recent drivers for perspective in our multi-GPU work. We compare

our results to AMDBLAS 1.7.257. MAGMA’s SGEMM kernels yield nearly 300 GFlops over

those found in AMD’s BLAS library. MAGMA offers some improvement in DGEMM as well

(90 GFlops).

5.3 Multi-GPU GEMM

My multi-GPU GEMM implementation leverages clUtil’s ParallelFor() loop to parallelize

over blocks of C. One problem with the vanilla GEMM algorithm is that it assumes column

major storage, which makes transferring blocks of data to a device problematic. In principle,

one could transfer a series of columns to copy blocks to and from devices. However, this

would result in immense overheads as the driver must pin the column, copy a few kilobytes

over the PCIe bus, and unpin the column. To overcome this limitation, we use Block Major

Storage (BMS) for each matrix.

Under the BMS scheme, blocks of the matrix exist contiguously in memory. This allows

our algorithm to copy an entire block with a single data transfer. In our implementation,

blocks are ordinaled using columns as the leading dimension. Each block is itself a column-

major matrix.

45

Figure 5.2: Magma SGEMM and DGEMM versus AMDBLAS 1.7.257 SGEMM and
DGEMM

46

C A

B= x

C1=0

C0=0

A->D

A->D

B->D

B->D

C1

+=

A*B

C0

+=

A*B

A->D

A->D

B->D

B->D

C1

+=

A*B

C0

+=

A*B

C0

+=

C1

...

...

C0

->H

Front of queue

Queue 1

Queue 2

Figure 5.3: Algorithm for computing a given block of C

We preallocate and zero buffers for storing blocks of A, B, and C on each device. This

allows us to eliminate lazy allocation overheads (which are very high on GPUs). We allocate

two buffers for each on each device. This allows us to double buffer and use two command

queues, which in principle should allow data transfers and computations to overlap.

Figure 5.3 gives the actual algorithm for computing a given block of C. First, the algorithm

zeros the output C buffers. A serial for loop iterates over blocks in the k dimension of A and

B. On each iteration, the algorithm enqueues transfers of the current block of A and B, and

a GEMM with beta = 1.0. The algorithm then swaps buffers, switches the current command

queue, and moves on to the next iteration. Once all blocks are enqueued, the algorithm then

enqueues an accumulation of the two buffers and a copy of the final result back to the host.

This ping-pong between the two queues allows one queue to be executing while the other

queue is transferring A and B.

47

5.4 Scheduler performance

Matrix multiplication is an important application that allows testing for certain charac-

teristics of scheduling algorithms. The algorithm itself is fairly simple to implement, in

principle runs well even with static scheduling, is (usually) data agnostic with respect

to performance, and often serves as the first litmus test for the viability of parallel

computing methodologies[77]. Indeed, [52], [56], [57], [59] and [58] all explore their scheduling

performance using matrix multiplication. In this respect, the work in this dissertation is no

different; it compares the performance of heterogeneous scheduling in matrix multiplication.

One area where the work in this dissertation does differ is in the performance discrepancies

between resources. The test machine used for GEMM experimentation features 3 Radeon

7970 GPUs and 32 Interlagos cores. The OpenCL GEMM kernel features performance given

in 5.2 when run on a single Radeon 7970. Using a single GPU, the kernel peaks at 1.7 TFlops

and 650 GFlops in single and double precision respectively. Thus, the combined throughput

of all 3 GPUs exceeds 5TFlops in single precision and nearly 2 TFlops in double. This same

kernel running on all 32 CPU cores treated as a single OpenCL device, however, yields a mere

30 GFlops in both single and double precision. This implies 166 and 66-fold performance

discrepancies between the processors and GPUs. Using equation 2.1, one quickly sees a major

scheduling challenge: in order to achieve perfect load balancing, a scheduler must give exactly

1 task to the CPU for every 166 tasks given to the GPU (66 in DGEMM). When combined

with the large block size (5760) used in the presented multi-device GEMM algorithm, this

implies that the CPU may provide extremely marginal benefit for problem sizes that no

longer fit in the machine’s generous 64GB of memory. Equation 2.1 predicts a 956,160 x

956,160 matrix is the smallest that could theoretically achieve perfect load balancing.

Another problem with using the CPUs in tandem is GPUs is that the processor schedules

work on the processors while simultaneously running compute kernels. If a compute kernel

delays scheduling of a GPU kernel or reduces memory bandwidth needed for data transfers,

overall application performance can suffer.

48

A side effect of the algorithm we use (chosen to reduce data transfer overheads) is that

with large block sizes, there exist few iterations to parallelize with, hurting opportunities to

load balance. Unfortunately, the algorithm executes more efficiently with larger block sizes,

as this reduces the amount of data transfers needed. In one extreme case, with a block size

equaling the entire matrix, there exists no parallelism in our algorithm’s ParallelFor loop,

but the number of elements transferred equals O(N2). In the other extreme case, when the

block size equals 1 element, there exist O(N2) parallel iterations, but the algorithm needs

O(3) data transfers. Empirical testing shows that larger block sizes yield better performance

scalability using 3 Radeon 7970s. An algorithmic improvement that should reduce block

sizes while maintaining scalability is to use a cache as done in [43]. This remains as an

exercise for the reader.

Timings in this section include all data transfers to and from the devices as well as loop

overhead. We varied the matrix size while holding the block size constant at 5760. The

machine tested has 32 Interlagos 6272 cores (2 sockets with 16 cores each), 3 Radeon 7970s

(3GB), and 64 GB of PC1333 DDR3 RAM. The test machine’s motherboard features 3 PCIe

2.1x16 slots. PCIe 3.0, which the Radeon 7970 supports, may yield even higher performance.

Figure 5.4 shows the performance of SGEMM and DGEMM running using all resources

in the system. We ran this experiment using the algorithm in figure 5.3 using a static self

scheduler with a constant chunk size of 1, the Enhanced Guided Self (EGS) scheduler (a

reimplementation of [57]), and the PINA scheduler. Both the PINA and static scheduler

execute with nearly identical performance (i.e. within each other’s variance). This results

from the fact that both schedulers assign work in exactly the same manner for different

reasons. The static scheduler breaks each iteration into a chunk size of 1 by design. PINA

used autotuning and found that a chunk size of 1 yields high performance on both the CPU

and GPU. When CPU at N=5760 there exists only one task and it’s given to a GPU. At

N=11520, both schedulers assign one of the four tasks to each of the four devices. This

amounts to the worst case load imbalance wherein all three GPUs execute their one job and

wait on the OpenCL CPU device. As N increases, so does the number of tasks given to the

49

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

N

T
F

lo
ps

SGEMM on 3 Radeon 7970s and 32 Interlagos 6272 Cores

EGS
PINA
Static

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N

T
F

lo
ps

DGEMM on 3 Radeon 7970s and 32 Interlagos 6272 Cores

EGS
Static
PINA

Figure 5.4: GEMM running on 3 Radeon 7970s and 32 Interlagos cores using static self
scheduling, the EGS Scheduler, and the PINA scheduler

GPUs. Since the CPU is still busy, the GPUs take additional tasks. If this plot continued

ad infinitum, a periodic sawtooth pattern would emerge with dips denoting problem sizes

where the CPUs received an additional task.

The EGS scheduler tells a different performance story. With 1 task (N=5760), it effectively

executes the entire GEMM on the GPU, as seen in the PINA and static schedulers. With

four tasks (N=11520), however, performance increases markedly. This arises from how EGS

computes chunk sizes, taking the remaining work and dividing by the number of device types.

With four tasks and two device types (i.e. the Radeon 7970s and the Interlagos 6727s), the

first chunk has 2 iterations and the next two contain a single iteration. This amounts to one

GPU receiving two tasks and the remaining GPUs receiving 1 task each; the CPU receives

nothing. When the number of tasks equals 9 and 16, the chunking algorithm gives only

1 task to the CPU and the rest to the GPUs. This results in similar performance to the

other scheduling algorithms. However, as the number of tasks continues to increase, the

chunking algorithm gives non-trivial amounts of work to the CPU, introducing performance

degradation.

50

0.5 1 1.5 2 2.5 3 3.5

x 10
4

1

1.5

2

2.5

3

3.5

4

4.5

N

T
F

lo
ps

SGEMM on 3 Radeon 7970s

Static
PINA
EGS

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N

T
F

lo
ps

DGEMM on 3 Radeon 7970s

PINA
Static
EGS

Figure 5.5: GEMM running on 3 Radeon 7970s using static self scheduling, the EGS
Scheduler, and the PINA scheduler

Figure 5.5 shows the performance of the 3 schedulers running on only the 3 Radeon 7970s.

Setting the CLUTIL DEVICE EMBARGO=3 environment disabled the CPU as an OpenCL

device visible to clUtil. Under this homogeneous environment, each of the three schedulers

yields markedly higher performance than the heterogeneous environment. Furthermore, since

there exists only 1 device type, EGS actually reverts to the original guided self scheduling

algorithm. For many problem sizes, all three algorithms feature nearly identical performance.

However, in some cases, EGS performs notably worse than both static scheduling and EGS.

This results from the non-unit chunk sizes allowed in EGS, which introduces load imbalance.

The other two schedulers effectively perform pure self scheduling, which in principle allows

for near optimal load balancing. This is because their chunk size is always 1.

The results in figure 5.5 also provide evidence that the actual scheduling overheads of all

three algorithms is nearly identical. This arises from the fact that all three algorithms achieve

nearly the same performance for most problem sizes. Aside from the EGS introduced load

imbalance, the static and PINA schedulers achieve 83% of the theoretical throughput in both

SGEMM and DGEMM. For larger problem sizes, EGS should do the same. Unfortunately,

testing larger problems resulted in page faults and driver lockups.

51

The results presented in this section indicate that merely having a compute device

doesn’t mean that using it an algorithm is a wise venture. All three scheduling algorithms

experienced catastrophic slowdowns when including the CPU as a compute device. A more

performant kernel for the CPU could bring the performance between devices within an order

of magnitude of one another. While static scheduling and EGS’s pure runtime behaviors

lack the information required to intelligently exclude devices from computation, PINA’s

autotuning provides performance information that could easily allow it to disable devices as

a function of asymmetry and number of iterations. [59] disables devices based on asymmetry

with their predictive algorithms.

52

Chapter 6

Specmaster: A fast peptide search

algorithm using OpenCL∗

In shotgun proteomics, there exist two primary methods for identifying proteolytic peptides

in mass spectrometry data: de novo and database searches. The former is useful for

identifying novel proteins in samples, and is beyond the scope of this paper. Database

searches require prior knowledge of what proteins could exist in the sample obtained through

some other method, such as sequencing genome sequencing. A number of competing tools,

such as X!Tandem[78], Sequest[79], Myrimatch[80], and Mascot[81] all perform database

searches using a .fasta database on mass spectrometry data converted into one of a variety

of formats (.dta, .mzXML, etc).

Initially, database search engines operated on single-core processors and weren’t suitable

for large complex searches due to search times. However, many modern database search

algorithms use multi-threading to take advantage of multi-core processors, including Sequest,

Myrimatch, and X!Tandem. Alongside other improvements in processor design and increased

memory, current database search programs are markedly faster than their previous versions

∗This section features excerpts from “For Three Easy Payments: Scoring Peptides With Portable
Performance Using Specmaster,” a conference paper I submitted to SAAHPC. I am responsible for its
contents and the underlying research. The co-authors served as PI and advisory roles.

53

because they exploit multi-core CPUs. However, as most applications needed reprogramming

to reap the benefits of multi-core processors, another redesign wave approaches (arguably,

has already arrived) with the growing ubiquity of heterogeneous computing.

Few database search engines can use other accelerators such as GPUs. The most notable

GPU-accelerated database search algorithm is FastPaSS[82], but this requires specialized

peptide databases. This makes FastPaSS unsuitable in pipelines that use more traditional

.fasta databases. Another project, gMacro[83], seeks to accelerate Sequest using Nvidia

GPUs. Both projects use CUDA[29], limiting portability, and both compare relative

performance against a single core. In this paper, we present Specmaster, an OpenCL

database search algorithm.

Specmaster overcomes some of the limitations of previous work. Being based on

Myrimatch, Specmaster uses standard .fasta databases and .mzXML spectra files while

providing portability to multi-core processors, both Nvidia and AMD GPUs, and future

devices that will support OpenCL such as Altera FPGAs[38]. We compare Specmaster

running on an Nvidia GTX 480, an AMD Radeon 7970, two AMD Interlagos processors,

and two Intel Sandy Bridge CPUs against Myrimatch running with 32 threads on the AMD

and Intel processors.

6.1 Specmaster Algorithm

Specmaster implements the Multi-Variate Hypergeometric (MVH) scoring algorithm found

in the original Myrimatch paper[80]. Given a set of peptides generated from a .fasta protein

database, Specmaster scores MS2 or higher scans using an MVH distribution. MS2 and

higher scans contain fragmented peptides as opposed to MS scans, which contain intact

peptides. This fragmentation process creates a signature usable for identifying peptides; MS

scans don’t contain this information and thus aren’t scored. Figure 6.1 gives a high-level

description of Specmaster’s algorithm using pseudo-C. In essence, the program executes in

4 steps until it scores all peptides found in all proteins.

54

prote insRemaining = numProteins ;
pep t ideBu f f e r [kBu f f e rS i z e] ;
s c o r e s [numScans] [5] ;

while (prote insRemaining > 0)
{

prote insRemaining −=
f i l l B u f f e r (pept ideBu f f e r) ;

for (each scan in spectrum)
{

prep roce s s (scan) ;
f indCandidates (scan , pept ideBu f f e r) ;

for (each pept ide in cand idate s)
{

curScore = sco r e (pept ide) ;
i n s e r t S c o r e (curScore ,

s c o r e s [scan]) ;
}

}
}

for (each scan in spectrum)
{

wr i t eSco r e s (s c o r e s [scan]) ;
}

Figure 6.1: Specmaster’s algorithm

55

6.1.1 Generating peptides

Because memory on accelerators is usually limited, they often can’t hold all peptides

derived from an entire fasta file at any given time. To overcome this (and to conserve

host memory), Specmaster processes peptides in groups that do fit in memory (currently

a compile-time constant of 1GB). It loops through the list of proteins creating peptides

according to experimental rules, appending them to a peptide buffer. If the additional

peptides derived from the current protein would overflow the peptide buffer, Specmaster

discards the peptides and remembers to start at this protein for the next batch. This step

embodies the fillBuffer() call in figure 6.1. The rules for generating peptides vary depending

on experimental procedures.

Upon reading a protein from the user-defined fasta file, Specmaster creates peptides using

a variety of rules. Specmaster currently supports tryptic digestion, which creates cleavages

after lysine (K) or arginine (R) not followed by a proline (P). In an ideal world, trypsin would

always break peptides at every cleavage site. However, in practice, missed cleavages are

quite common. As such, specmaster generates peptides assuming 0,1,...k missed cleavages,

where k is a user defined parameter. By default, Specmaster assumes k=UINT MAX. If the

generated peptide is greater than 63 amino acids, Specmaster discards it because extremely

long peptides rarely (if ever) appear in MS data, and this artificial limit allows Specmaster

to efficiently store peptides. Specmaster packs amino acids into 64 bytes: the first containing

the length of the peptide and the remaining 63 containing the amino acid sequence. Figure

6.2 gives an example of how Specmaster creates peptides from proteins.

Specmaster checks if a generated peptide already exists in the buffer by searching for

the sequence in an C++ STL multimap (e.g. a red-black tree). If the sequence is unique,

Specmaster appends it to the peptide buffer. If found, it adds a reference to the protein

for the sequence into the multimap and doesn’t add the sequence to the peptide buffer.

This multimap often becomes very large (several to 10s of GB). Optimizing the time spent

56

Protein:
MK LYNLK DHNER QVSFK A
Peptides:
MK
LYNLK
DHNER
QVSFK
A
MK LYNLK
LYNLK DHNER
DHNER QVSFK
QVSFK A
MK LYNLK DHNER
LYNLK DHNER QVSFK
DHNER QVSFK A

Figure 6.2: Peptide generation example using tryptic digestion with up to 2 missed cleavages

performing redundant computation versus time and space spent avoiding it remains as future

work.

Specmaster computes a peptide’s neutral mass when appending it to the peptide buffer.

A peptide’s neutral mass is simply the sum of its amino acids.

In addition to generating peptides from the proteins themselves, Specmaster generates

peptides from a distractor set used to identify false positives. The distractor set consists of

the reverse of every protein in the user given fasta file. Using the distractor set, other tools

in the proteomics pipeline can compute the score threshold that yields positive identification

with a given false discovery rate.

When the peptide buffer fills, Specmaster sorts the peptides based on their mass. This

vastly simplifies candidate generation after scan preprocessing.

57

6.1.2 Scan Preprocessing

With a batch of digested peptides, Specmaster transfers the batch of peptides, their masses,

a batch of scan headers, and their data to the selected OpenCL device. Since the peptide

buffer is easily the largest data structure on the device and is by default 1GB, Specmaster

packs peptides into a virtual 1D image with 32-bit unsigned RGBA channels. Each peptide

consists of 4 pixels in the image (4 bytes/channel * 4 channels/pixel * 4 pixels = 64 bytes).

clUtil† provides macros for mapping 1D image coordinates onto a 2D image, since OpenCL 1.1

doesn’t allow 1D images. Using images instead of buffers overcomes allocation limitations on

some AMD GPUs (namely, the Radeon 5000 series). In the future, we plan to use a parallel

for loop to score multiple scan batches concurrently using all OpenCL devices in a machine.

Specmaster then preprocesses scans on the selected OpenCL device.

Not all scans in mass spectrometer datasets are of sufficient quality to identify peptides.

Level 1 scans contain a variety of intact peptide molecular masses alongside possible

impurities. Since these scans don’t contain fragmented peptides, Specmaster skips level

1 scans. Level 2 (and possibly higher, experiment dependent) scans do contain peptide

fragments (or fragments of fragments in higher level scans). For level 2 scans and higher,

Specmaster computes the Total Ion Current (TIC i.e. the sum of all peak intensities for a

given scan). It then sorts the peaks by intensity and removes all peaks after a fractional

threshold of the cumulative TIC. By default, this threshold is 98% of the TIC, but this is user

configurable. If the scan still contains more than some user definable number of peaks (301

by default), Specmaster keeps only the most intense peaks up to this number. Specmaster

also removes peaks down to a multiple of 2c − 1. If the scan has fewer than 2c − 1 peaks,

Specmaster marks the scan as bad and doesn’t search it. In this case, c refers to the number

of intensity classes, a user defined parameter used in scoring.

After removing peaks, Specmaster replaces the peak intensity with a class number.

Myrimatch’s (and thus Specmaster’s) scoring algorithm requires associating peaks with one

†clUtil is a library we designed to dramatically improve programmer productivity in OpenCL

58

of c intensity classes. Class k is twice as large as class k − 1 and the sum membership of all

classes equals the number of filtered peaks. Thus, in a scan with 49 filtered peaks remaining,

the 7 most intense are class 1, the next 14 are class 2, and the bottom 28 are class 3

when c = 3. Specmaster overwrites the peak’s intensity with its class number. Specmaster

additionally computes other metrics needed in scoring.

After removing small peaks, Specmaster computes other metrics needed for scoring and

resorts the data by mass to charge to simplify the scoring algorithm.

Specmaster preprocesses scans in parallel by assigning different work groups to different

scans while collaboratively using a device specific number of work items per group to

perform the preprocessing tasks required for a given scan. This amounts to launching the

preprocessing kernel with numScans x k work items with 1 x k work items per work group.

k = 64 on graphics accelerators and k = 1 for CPUs. We designed the kernel to run correctly

regardless of k.

Figure 6.3 gives an example of a k-agnostic loop that computes the total ion current of

a scan. In this case, we define agnostic to mean that the kernel neither knows nor cares

at compile time how many work items exist in a work group. In this example, Specmaster

defines kItemsPerWorkGroup in a header file according to the number of items per work

group it determines optimal for the given device. In addition to working regardless of the

number of work items per group, this kernel performs coalescing and avoids bank conflicts

on GPUs.

6.1.3 Packing

Specmaster supports reading spectra using one of three methods. It can pack spectra into

images, load them from global memory, or read them from shared memory. Specmaster

uses preprocessor directives combined with branches in host code to correctly implement

the desired method. Each of these methods provides different performance characteristics

on different devices. Specmaster can change the method used on a device-by-device basis,

59

l o c a l u int TIC = 0 ;
l o c a l u int tmp [kItemsPerWorkGroup] ;

for (unsigned int i = g e t l o c a l i d (1) ;
i < numPeaks ;
i += g e t l o c a l s i z e (1))

{
tmp [g e t l o c a l i d (1)] +=

i n t e n s i t y [i] ;
}

ba r r i e r (CLK LOCALMEM FENCE) ;

i f (g e t l o c a l i d (0) == 0)
{

for (unsigned int i = 0 ;
i < g e t l o c a l s i z e (1) ;
i++)

{
TIC += tmp [i] ;

}
}

ba r r i e r (CLK LOCALMEM FENCE) ;

Figure 6.3: Local work size agnostic code fragment to compute total ion current

60

providing portable performance on a wide range of accelerators and processors. When loading

from images, Specmaster packs the spectrum data into two kMaxPeakCount x numScans

RGBA images. Only the red channel contains spectrum data and the remaining channels

are unused. This ensures high portability, since RGBA is a required format in OpenCL

implementations that support images. Using the other two methods, OpenCL packs the

mass to charge ratio (m/Z) and peak classes into two numScans x kMaxPeakCount array.

After packing the spectrum, Specmaster scores the scans.

6.1.4 Finding Candidates

Specmaster finds and scores candidates both in the same kernel. If the mzXML provides

precursor charge state information, Specmaster assumes the provided charge. If not, it

assumes charge states 1, 2, ... z, where z is a user configurable parameter for the maximum

assumed charge state. For each charge state, Specmaster first finds candidate peptides that

need scoring and then scores them.

To find candidates, Specmaster computes the neutral mass for the precursor m/Z with

the currently assumed charge state (equation 6.1). Since the peptides are sorted by mass,

the candidate selection function performs two modified binary searches: one finds the index

of the least massive peptide within the user defined precursor tolerance of the neutral mass

while the other search finds the index of the most massive peptide in the tolerance. By

default, the precursor tolerance is ±1.5 Da/Z, but users can change this to any value. Only

work item 0 in the work group performs this search due to the difficulty (and marginal

utility) of implementing an efficient parallel binary search on up to 16 million masses.

mneutral =

(
mprecursor

Zprecursor

−mproton

)
Zassumed (6.1)

61

Table 6.1: Possible fragmentation patters for the “PEPTIDE” amino acid sequence
B-ions Y-ions

PEPTIDE
P EPTIDE

PE PTIDE
PEP TIDE

PEPT IDE
PEPTI DE

PEPTID E
PEPTIDE

6.1.5 Scoring

With start and end indices found for candidate peptides, Specmaster now scores all

candidates in this index range. Each work item in a group scores a different candidate

for the same scan. This allows significant reuse of peak data through either texture caches,

local memory, or general purpose data caches, depending on the device configuration; work

items continually query the same set of peaks until all candidates for all assumed charge

states are exhausted. The loop over candidates executes in parallel in a manner agnostic to

work-group size. This allows the same kernel to function correctly regardless of local work

size.

To score a candidate peptide, the kernel searches for B and Y ions for every amino acid

in every charge state 1, ... z, where z is the assumed precursor charge state. Tables 6.1 and

6.2 list the possible fragmentation patterns and charge distributions for an example peptide.

Since the mass spectrometer pulls in many ions and fragments them simultaneously, a scan

could theoretically contain peaks for each possible B and Y ion for each charge state. In

practice, scans almost always have missing peaks for a variety of experimental reasons (e.g.

signal integrity, insufficient precursor ions, non-uniform fracturing probabilities, and non-

uniform proton distributions). As such, scoring algorithms should handle missing peaks.

To search for a peak associated with a given charge state and amino acid sequence,

Specmaster performs a modified binary search that minimizes error between the calculated

62

Table 6.2: Possible proton distributions between B and Y ions for +3 charged precursor ion
“PEPTIDE”

B-ions Y-ions
PEP+3 TIDE+0
PEP+2 TIDE+1
PEP+1 TIDE+2
PEP+0 TIDE+3

m/Z for that peak and the actual peaks in the scan data. If the error is within

±kPeakTolerance, the algorithm found a peak for that fragment. The default value for

kPeakTolerance is 0.5Da, but is user configurable and optionally specified in parts per million.

Specmaster keeps track of how many peaks it finds in each intensity class.

Equation 6.2 describes how to compute the probability of the peptide appearing by chance

using a multivariate hypergeometric distribution. Equation 6.3 yields the actual score that

Specmaster reports. When computing the MVH, mi denotes the total number of peaks in

that intensity class and ti denotes the number of peaks found in the spectrum. The i = 0

case is the “void” class; contains the number of places a peak could exist within the peak

tolerance range but doesn’t and t0 represents the number of peaks in the scan range not

found. T and M are the total number of places peaks could exist and be outside of each

other’s tolerance in the scan range and M represents the total number of peaks searched in

the scan range.

p =

∏c
i=0

(
ti
mi

)(
T
M

) (6.2)

s = − ln(p) (6.3)

Directly computing m choose k is problematic for even modest values of m and k. To

overcome this, we compute the natural log of m choose k. We precompute natural logarithms

of the first 8192 factorials in 32-bit floating point.

63

Each work item maintains a top k list of results, k defaulting to 5 and being configurable.

When a work item computes a peptide score, it inserts it into its local top k array and marks

the index of the corresponding peptide. When the kernel scores all peptides individually the

work item with local id 0 coalesces the top k lists of all work items and then the kernel exits.

Finally, Specmaster transfers the scores and peptide indices back to the host and coalesces

the new peptides and their scores with a master top-k list of all peptide batches.

Like the preprocessing and pack kernels, the candidate / scoring kernel is work size

agnostic. Furthermore, this kernel uses the reqd work group size() attribute in OpenCL

to allow the compiler to optimize away local memory barriers in some cases. Specmaster

launches this kernel with a numScans x k global work size with a 1 x k local work size. Again,

k can vary depending on the OpenCL device Specmaster uses for scoring. The first dimension

of the work grid parallelizes over scans, while the second dimension parallelizes over candidate

peptides, allowing the kernel to run efficiently on GPUs’ SIMD multiprocessors.

6.1.6 Data dependent performance

The time taken to process a scan is a function of the number of candidates Specmaster has

to evaluate. If a scan’s precursor mass to charge ratio (M/Z) isn’t indicative of a peptide

(e.g. the scan is junk) or the M/Z doesn’t correspond to many candidates, then Specmaster

should process that scan quickly. However, if the scan’s M/Z happens to correspond with a

large number of peptides derived from the database, then Specmaster has to score a large

number of peptides and processing that scan takes a longer amount of time. Since Specmaster

processes multiple scans concurrently in a single kernel call, the total time to process a batch

of scans is also a function of the number of processors in the device processing them and

how the OpenCL runtime schedules scans on them.

Figure 6.4 shows the time taken on three different datasets. Each dataset is 12 different

files totaling over 100,000 scans and has a corresponding protein database. As these graphs

indicate, each dataset has a unique “shape” to its execution time as a function of the

64

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

mean:1.223460 variance:0.042719

mean:0.296983 variance:0.004350

chunk number (100 iterations per chunk

tim
e

(s
)

Iteration execution time for RPAL dataset

Core i7 930
Radeon 5870

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

chunk number (100 iterations per chunk)

tim
e

(s
)

Rifle iteration times

mean:5.989484 variance:1.809392

mean:0.864396 variance:0.049640

Core i7 930
Radeon 5870

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

chunk number (100 iterations per chunk)

tim
e

(s
)

Ecoli iteration times

mean:mean:0.957819 variance:0.021673

mean:0.299954 variance:0.003254

Core i7 930
Radeon 5870

Figure 6.4: Execution time vs. batch number on Core i7 920 CPU and Radeon 5870 GPU
on 3 different datasets

iteration. Furthermore, Figure 6.5 (derived by dividing the top curve by the bottom of

each respective plot) shows that the speedup of using a GPU changes as a function of both

iteration and dataset. Both of these issues yield considerable difficulty in load balancing

with static compile-time techniques.

65

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

mean:4.181981 variance:0.568150

RPAL dataset speedup

sp
ee

du
p

of
 R

ad
eo

n
58

70
 o

ve
r

C
or

e
i7

 9
30

chunk number (100 iterations per chunk)
0 200 400 600 800 1000 1200 1400

0

2

4

6

8

10

12

14

16

18

mean:7.069809 variance:2.479700

chunk number (100 iterations per chunk)

sp
ee

du
p

of
 R

ad
eo

n
58

70
 o

ve
r

C
or

e
i7

 9
30

Rifle dataset speedup

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7

8

mean:3.204458 variance:0.321256

chunk number (100 iterations per chunk)

sp
ee

du
p

of
 R

ad
eo

n
58

70
 o

ve
r

C
or

e
i7

 9
30

Ecoli dataset speedup

Figure 6.5: Speedup of Radeon 5870 over Core i7 920 on 3 different datasets

66

6.2 Portable performance

To achieve portable performance, we use two main programming tricks. Firstly, we design

all kernels to provide two levels of parallelism and run in a work group size agnostic manner.

Secondly, we abuse OpenCL’s preprocessor to select kernel features on a device-by-device

basis.

Our previous example in figure 6.3 gives an example of developing a workgroup-agnostic

kernel. The kernel runs correctly with 1, 2, 64, or (theoretically) 10,000 work items in

dimension 1. In practice, resource allocation will provide some upper limit on the size of

work dimensions, but this limit should hopefully far exceed that needed for high performance.

We use knowledge of how OpenCL implementations map kernels on specific devices to choose

the appropriate work size.

We found that AMD’s x86/x64 OpenCL implementation schedules different work items in

a group to the same POSIX thread. Different work groups, however, can execute on different

threads. Since the costs associated with switching work item contexts is non-trivial, running

kernels with only 1 work item per group yields highest performance in this implementation.

Intel’s OpenCL x86/x64 implementation can potentially schedule multiple work items into

different SIMD lanes. Using more work items in this case remains for future study.

With both AMD and Nvidia’s GPU OpenCL drivers, we find that 64 work items per

group provides good performance. On AMD’s high-end GPUs, 64 work items equals one

wavefront and on Nvidia’s GPUs, 64 work items is a multiple of the warp size. This may

change in future architectures, but Specmaster’s flexibility allows us to trivially change the

work size for these devices.

6.2.1 Exploiting the Preprocessor

We use OpenCL’s runtime compilation and abuse its preprocessor to dynamically change

Specmaster’s behavior at runtime. Specmaster achieves this by writing a header file included

67

#define kTICCutoffFactor 0 .980000 f
#define kMaxPeakCount 301u
#define kPrecursorTolerance 1500u
#define kFragmentMZTolerance 0.500000 f
#i f CLUTIL DEVICE ID == 0
#define IMAGE SPECTRUM
#define kNumThreadsPerBlock 64u
#endif
#i f CLUTIL DEVICE ID == 1
#define GLOBALMEMORYSPECTRUM
#define kNumThreadsPerBlock 1u
#endif

Figure 6.6: Example header created by Specmaster dictating kernel compilation

by kernels at runtime just before compilation containing a list of constants and preprocessor

directives. Figure 6.6 gives a truncated example of such a header. Using this method,

variables in an off-line compiled program become constants in an online compiled program;

since many user defined parameters such as the TIC cutoff and max peak count never change

once the program runs, runtime compilation can exploit this by defining them as constants

in a header created at runtime.

By replacing variables with ”constants,” kernels can have fewer parameters resulting in

cleaner code. Furthermore, this also provide opportunity for the compiler to better optimize

the kernel. For example, when a loop trip count becomes known at compile time, developers

can precede it with #pragma unroll kTripCount to fully unroll it at runtime in some OpenCL

implementations. Another optimization compilers can now do is constant collapsing; most

compilers can replace the expression a+21*3 with a+63.

One prominent example of this is using either shared, global memory, or images for storing

spectra. Figure 6.7 shows how Specmaster can select which memory to use. Different

memories have varying bandwidth and latency characteristics on different devices. For

example, CPUs don’t have hardware image sampling hardware, imposing additional software

overhead for loading from them on the CPU. Furthermore, local buffers map to main

68

memory like any other buffer, so there is no benefit to using them over global memory. As

such, on the CPU, Specmaster defines GLOBAL MEMORY SPECTRUM.

GPUs, on the other hand, have special hardware for loading from images and these stream

through a cache hierarchy on virtually every GPU in existence. As such, they are often a

viable mechanism for exploiting data reuse. Local memory may provide varying bandwidth

depending on memory access patterns, device, and the application. Global memory may

stream through a cache hierarchy; if not, using global memory is an inefficient mechanism

to reuse data.

On the GTX 480, there is virtually no performance difference between using global and

local memory. We found the Nvidia OpenCL runtime can’t allocate a 1GB image, making

them less desirable for storage. On the Radeon 7970, global memory yields marginally better

performance than images and significantly better performance than local memory. This

behavior likely results from Specmaster’s wildly divergent memory access patterns when

doing binary searches on the spectrum using multiple threads; bank conflicts abound. The

Radeon 7970 features a full cache hierarchy for global memory. On the Radeon 5870, one

must use images to allocate large buffers. Using preprocessor tricks, Specmaster can support

all of these devices, even in the same machine.

One final way we use preprocessor exploitation is to remove branches. For example,

Spemaster can measure peak tolerances in absolute Daltons or parts per million. Since

Specmaster never changes its method mid-run, it can use preprocessor macros to do one or

the other.

6.3 Differences with Myrimatch

Specmaster trades some flexibility for performance when compared to Myrimatch. For

example, Specmaster requires that each intensity classes must contain twice as many peaks

as the previous, whereas Myrimatch allows users to configure this.

69

bool f i nd (
#i f de f ined (GLOBALMEMORYSPECTRUM)

g l o b a l u int ∗ mz,
g l o b a l u int ∗ peaks ,

#e l i f de f ined (LOCALMEMORYSPECTRUM)
l o c a l u int ∗ mz,
l o c a l u int ∗ peaks ,

#else
r ead on ly image2d t mz,
r ead on ly image2d t peaks ,

#endif
uint numPeaks ,
u int searchMZ ,
u int ∗ peak In t en s i ty)

{
int minIndex = 0 ;
int maxIndex = numPeaks − 1 ;
unsigned int minErr = UINTMAX;
unsigned int minErrorIdx = 0 ;

do
{

unsigned int midPoint =
(minIndex + maxIndex) / 2 ;

#i f de f ined (LOCALMEMORYSPECTRUM) | | \
de f ined (GLOBALMEMORYSPECTRUM)
unsigned int curMZ = mz [midPoint] ;

#else
i n t 2 coord = { midPoint ,

g e t g l o b a l i d (1) } ;
u int4 curP ixe l =

read imageui (mz, s0 , coord) ;
unsigned int curMZ = curP ixe l . x ;

#endif
// . . .

}while (minIndex <= maxIndex &&
minErr != 0) ;

// . . .
}

Figure 6.7: Using OpenCL’s C preprocessor to change which memory Specmaster uses as a
function of the device

70

Specmaster converts all input m/Z peaks to milliDaltons and performs most arithmetic

using 32-bit unsigned integers. In principal, we could convert all mass values to 1e-

5 Da, giving extra precision while maintaining a dynamic range up to 42,949.67295 Da.

Using integers yields more precision than 32-bit floating point without the extra bandwidth

(and hardware) requirements of double precision. Myrimatch uses double precision for all

peak calculations. This can result in different roundoff characteristics between the two

implementations.

Specmaster drops peaks in filtering to a multiple of the sum of class sizes. This exactly

distributes peaks into classes, allowing easy on-the-fly calculation of class sizes.

In addition to actual implementation variances, Myrimatch can perform additional peak

filtering and centroiding, charge state modeling, and supports a variety of other features

not presently found in Specmaster, such as dynamic post-translational modifications[80], a

feature we hope to implement in the future to leverage Specmaster’s high throughput.

The culmination of these discrepancies results in different scores between Myrimatch and

Specmaster. For low scoring peptides, this may result in different answers. However, high-

scoring peptides themselves are the same in both programs.

Because Specmaster has different methods for coalescing scores depending on the number

of work items per block, entries with the same score may permute between runs on different

devices. Because of this, when we add device parallelism to Specmaster, results may actually

vary from run to run. However, Specmaster still does guarantee that each score in the top 5

list is greater than or equal to the next and ensures a total ordering of all candidates outside

of ties.

71

6.4 Single device performance

6.4.1 Experimental Setup

We use a variety of machines and setups to benchmark Specmaster using 4 different OpenCL

devices. Table 6.3 lists the tested machines. We time Myrimatch running on both Intel

Sandy Bridge processors and AMD Interlagos processors with 32 threads. The latter forms

our comparison baseline. We then time Specmaster running on both processors, the Radeon

7970, and the GTX 480. All results presented time the entirety of program execution.

Table 6.3: Machines tested
Machine 1 Machine 2

Processor 2x AMD Interlagos 6272 2x Intel Sandy Bridge E5-2680
Number of cores / threads 32/32 16/32
Base frequency 2.1GHz 2.7GHz
Memory 64GB 64GB
Accelerators 3x AMD Radeon 7970 None

Machine3
Processor 2x Intel Nehalem X5570
Number of cores / threads 8/16
Base frequency 2.93GHz
Memory 24GB
Accelerators 1x Nvidia GTX 480

We test Specmaster on three datasets: rpal, rifle, and amd. Each dataset roughly contains

the same number of scans, but have different number of proteins. The rpal dataset contains

the isolate microbe R. Palustris and yields 1.3 million peptides to search. The rifle dataset

contains a ground-water microbial community obtained in Rifle, CO; this dataset yields 6.8

million peptides. Finally, the amd dataset represents our largest search, generating 9 million

peptides, contains a low complexity microbial community from an acid mine in California.

We perform fully tryptic digestion on all datasets with unlimited missed cleavages.

We use the AMD APP SDK version 2.6 for both CPUs and the Radeon 7970. With the

AMD GPU, we use the 12.4 Catalyst drivers. We tried testing the Intel OpenCL library as

72

Figure 6.8: Specmaster end-to-end relative performance versus Myrimatch running on a 32
core E5-2680

well, but encountered segmentation faults related to libnuma. For the GTX 480, we used

the CUDA SDK with OpenCL 1.1 and driver version 285.05.32.

6.4.2 Results

Figure 6.8 shows the relative execution rates of the same search run in both Myrimatch and

Specmaster on a variety of hardware. In all cases, we compare Specmaster to Myrimatch

using 32 CPU threads (i.e. Myrimatch is not a naive single-threaded implementation). When

using the Radeon 7970 and GTX 480, we use a single GPU exclusively when identifying

peptides.

Figure 6.9 shows the relative performance the peptide search portion of Specmaster

running on each device. The other main component of Specmaster, the peptide generation,

73

Figure 6.9: Relative throughput in parallelized peptide identifications section of specmaster

74

runs sequentially on the host processor. Both the Interlagos and Sandy Bridge processors

run neck and neck with each other, with the former being marginally faster. On the GPU

side, the Radeon 7970 ranges from being neck and neck to 1.8x faster than the GTX 480.

This is unsurprising given that the GTX 480 is now two generations old. In our largest

dataset, the Radeon 7970 yielded over a 5x improvement over either CPU.

In figure 6.8, we compare Specmaster’s performance to Myrimatch. We find that GPU

acceleration yields nearly an order of magnitude in performance improvement using the

Radeon 7970 in our largest dataset, compared to Myrimatch running on Sandy Bridge.

Superficially, figures 6.9 and 6.8 may seem contradictory; the Sandy bridge processors are

faster in the latter but slower in the former, and the GTX 480 appears faster than the Radeon

7970 in the latter while slower in the former. This result is testament to the bane of strong

scaling.

Specmaster experiences the ramifications of Amdahl’s law[44]; the peptide search itself

now accounts for under half of the total application in the standard searches we performed.

Nearly all of the remaining application time resides in peptide generation, which Specmaster

performs sequentially on the CPU. For standard peptide searches without modifications

(which are currently unsupported), further non-trivial attempts to accelerate Specmaster

should focus on peptide generation, which we perform sequentially on the CPU (an exercise

left to the reader). However, replacing a sequential loop with a parallel loop is a fairly trivial

exercise. Furthermore, if Specmaster supports PTM search capabilities in a way that doesn’t

generate additional peptides, this will dramatically increase computational intensity per

peptide. This will analogously reduce the fractional runtime that’s sequential in Specmaster

(i.e. exploit Gustafson’s law[66]).

6.5 Parallel Results

Specmaster can additionally process scans in parallel using clUtil’s ParallelFor function.

Figure 6.10 shows the performance obtained under the static scheduler, the EGS scheduler,

75

Rpal Rifle AMD
0

10

20

30

40

50

60

70

80

90

Dataset

%
 o

f P
ea

k

% of Peak Throughput Using 3 Radeon 7970s and 32 Interlagos 6272 Cores

PINA
Static
EGS

Figure 6.10: Specmaster peptide processing fraction of peak throughput using 3 Radeon
7970s and 32 Interlagos 6272 cores

and the PINA scheduler using 3 Radeon 7970s and the 32 Interlagos cores. The static

scheduler in this application divides the iteration space into 30 chunks roughly equal in size.

The PINA scheduler offers significant performance gains over EGS and modest gains over the

static scheduler. Oddly enough, the EGS scheduler suffers from severe performance issues

despite being designed with hybrid execution in mind.

Figure 6.11 lists the fraction of peak throughput obtained using 3 Radeon 7970s.

Performance rankings and gains are similar to those in the hybrid experiment. Combining

the results from these two experiments yields some interesting observations. Firstly, the

performance issues with the EGS scheduler are systematic; it provides significantly less

76

Rpal Rifle AMD
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset

%
 o

f P
ea

k

% of Peak Throughput Using 3 Radeon 7970s

PINA
Static
EGS

Figure 6.11: Specmaster peptide processing fraction of peak throughput using 3 Radeon
7970s

performance in every experiment. Secondly, the performance gap between the PINA and

static schedulers widens under the heterogeneous experiments. This occurs because the

PINA scheduler uses its autotuning model to assign appropriate amounts of work to both

the CPU and GPU. The static scheduler on the other hand always assigns equal sized chunks

to each device, either giving too much work to the CPU or too little to the GPU in the

process. Finally, despite the PINA scheduler operating relatively better in a heterogeneous

environment, it still handily outperforms the static and EGS schedulers in the homogeneous

environment. This provides evidence that autotuning is an effective method for discovering

appropriate chunk sizes for loops.

77

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chunk Size

R
el

at
iv

e
P

er
fo

rm
an

ce

Chunk Size vs. Relative Performance Interlagos 6272

Measured
Modeled

alpha = −0.0164232

Figure 6.12: Autotuned performance model calculated from empirical data for the Interlagos
6272

Using the autotuning model works well in both the heterogeneous and homogeneous

environments. Figures 6.12 and 6.13 show both the measured relative execution rates and

the execution rates according to the PINA scheduler’s derived model for the Interlagos 6272

and Radeon 7970. Specmaster uses a linear regression to compute α from the acquired data.

Solving equation 6.4 with some fixed β (0.95 in these results) yields the chunk size for each

device. In this case, the CPU has a desired chunk size of 182 and the GPU has a desired

chunk size of 737.

78

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chunk Size

R
el

at
iv

e
P

er
fo

rm
an

ce

Chunk Size vs. Relative Performance Radeon 7970

Measured
Modeled

alpha = −.00406277

Figure 6.13: Autotuned performance model calculated from empirical data for Radeon 7970

79

chunkamortized =
log(1− β)

αd

(6.4)

Using our clUtil library, we are able to provide multi-device execution with code that is

significantly terser than vanilla OpenCL. clUtil manages hides of OpenCL’s boilerplate code

and reduces objects we instantiate to only include buffers residing on devices. Furthermore,

using our ParallelFor loop, we achieved multi-device execution by replacing a single for loop.

Specmaster serves as interesting datapoint due to its non-triviality.

While Specmaster’s initial design took several months using vanilla OpenCL, we quickly

obtained further performance gains and giant leaps in code quality using clUtil. We spent

most of our development time on debugging the device kernels, which require a combination

of black-box debugging and tedious emulation on the CPU. In its original form, Specmaster

had very verbose host code for launching kernels, copying data between device and host,

and buffer allocation. clUtil vastly streamlined this segment of the application and reduced

code size and complexity while improving readability. This came at virtually unmeasurably

small performance costs while allowing us to managably increase Specmaster’s complexity

through new features.

Specmaster’s abilities to automatically tune kernels to different devices and distribute

work to multiple devices would require an immense amount of additional vanilla OpenCL

code and would likely make Specmaster unmaintainable for a single developer. However,

using clUtil, we were able to not only obtain scalable performance in an aggressive

heterogeneous system, we were able to optimize performance to better use each resource.

80

Chapter 7

Raytracing

7.1 Background

Raytracing is a technique that renders 3D graphics from first principles. As a result,

many features that require complex approximations in traditional 3D renderers come freely

with raytracing including: reflections, refraction, diffusion, specular lighting, shadows, and

global illumination. Furthermore, Raytracing implementations can scale logarithmically as

a function of the scene complexity when using bounding volume hierarchies or KD-trees[84].

This makes it suitable for applications that require large scenes and/or high accuracy. Figure

7.1 shows an example of a raytraced set of spheres above a plane.

7.1.1 Procedure

Turning any 3 dimensional scene into a 2D picture using any method amounts to determining

the color of each pixel. True to its name, raytracing does this by casting rays from a point

in space through a screen representing the picture, using one (or more with anti-aliasing)

rays per pixel. In the simplest implementation possible, the algorithm identifies the first

81

Figure 7.1: Raytraced group of spheres

object the ray intersects and assigns the objects color to the picture value. This yields flat

projections of 3D objects that have no shading, depth, or lighting.

A still primitive, yet significant improvement over flat shading is diffusion shading. This

technique uses Lambert’s cosine law to compute the perceived color resulting from light

bouncing off a surface (figure 7.2). Each object has a material property denoting the diffusion

coefficient. Equation 7.1 shows how to compute the diffuse lighting contribution, cd, where

cm is the color of the object R intersects, αm is the diffusion constant for the intersecting

object, N is the normalized vector normal to the object at the intersection point, Li is a

normalized vector in the direction of the ith light, and ci is the ith light’s color[85].

cd = cmαm

∑
i

~N · ~Lici (7.1)

82

Object

Light

Screen

N

R

L

X

Figure 7.2: A ray (R) emitted through a pixel hitting the object. The diffuse lighting is
a material property coefficient multiplied by the cosine of the surface normal (N) and the
direction to the light (L)

83

Reflections add further realism and are a main selling point for raytracing. To implement

reflections, simply spawn another ray at the point of intersection in the reflected direction.

The reflected direction is given by equation 7.2 and behaves exactly like a primary

ray, computing diffuse, specular, shadows, and even more reflections for the object it

intersects[85]. In principle, rays can reflect ad infinitum, requiring infinite recursion.

Arbitrarily stopping this process after a few reflections still yields a close approximation

without an infinite runtime and stack size.

R′ = 2(~R · ~N) ~N − ~R (7.2)

Refractions bend light as it passes through a translucent object. A simple example of this

phenomena is the distorted view seen through a glass of water. Refractions are somewhat

more complicated as the refraction ray’s angle is a function of the refraction indices of the

materials inside and outside of the intersecting object. These indices affect the way light

bends. Equation 7.3 shows how to compute a refraction vector R′′ [85]. In this equation,

ηL is the index of refraction of the material light is leaving and ηT is the index of refraction

light is entering, both of which are material constants.

R′′ =

(
ηL
ηT

~N · ~L−

√
1− η2L

η2T

[
1−

(
~N · ~L

)2])
~N − ηL

ηT
~L (7.3)

Shadows and specular lighting provide the two final elements of the raytracer we used.

When iterating over light sources to determine a ray’s color, first check to see if other objects

are in the way. If so, multiply by a value smaller than 1 to darken the color (the raytracer

I’m using merely multiplies by zero). This removes an obscured light source’s contribution

to the ray’s color. Finally, specular lighting provides shiny highlights for direct lighting.

84

7.1.2 Computational complexity and parallelism

Efficient raytracers can achieve O(R log(N)) complexity, where R is the number of

rays and N is the number of objects in a scene. Without complex bounding volume

hierarchies or KD-trees, the runtime complexity is O(RN). While unacceptable for

real raytracing applications, this simple approach works sufficiently for demonstrating

Raytracing’s performance scalability. Since each pixel is independent, their corresponding

rays can compute in parallel. Indeed, this is how we extract both coarse and fine grain

parallelism. Our raytracer implements the O(RN) algorithm, as the O(R log(N)) algorithms

feature tradeoffs and are active areas of research in themselves.

7.2 Relevant Work

The inclusion of Raytracing as a parallel for accelerated algorithm contributes little to the

graphics field. Much of the related work is significantly more sophisticated, some of which

already feature hybridized GPU-CPU implementations. Rather, we include raytracing to

demonstrate the ease of integrating the parallel for loop into a pre-existing application as

well as providing another data point for comparing the schedulers’ performances.

There exist a number of notable ray tracing engines that exploit GPU acceleration. One

of the earlier attempts uses DirectX and OpenGL [86] and finds little speedup over using the

CPU as a result of the GPU’s then primitive functionality. In [87], the authors implement a

real-time raytracer that can render a scene with 12.7 million triangles at 1024x1024 resolution

at 3FPS using CUDA. [88] provides a brief survey of Ray tracing on the GPU and provides

a comparison of several of the acceleration hierarchies. There also exist OpenCL ray tracers

such as SmallLuxGPU[89] which can load balance rendering on the GPU and CPU.

85

7.3 Implementation

In my work, we take an existing open source simple OpenCL renderer and modify it. Rather

than rendering to an OpenGL context, this work renders to a bitmap file. Furthermore

it leverages clUtil’s ParallelFor() function to divide rendering onto multiple devices. This

includes multi-GPU and hybrid CPU/GPU permutations. The existing raytracer∗ is a BSD

licensed project for rendering simple scenes on OpenCL devices. We made a few modifications

to both its front-end code and kernel to support multi-device execution.

The raytracing algorithm supports reflections, refractions, specular and diffuse lighting,

and shadow rays. A hard-coded function assembles the scene (composed of spheres, planes,

and lights) in each thread. The algorithm then traces a single ray per work item. Reflection

and refraction are typically implemented using recursion, which is forbidden in OpenCL. To

surmount this limitation, the kernel uses small arrays as manually managed stacks. This

allows the emulation of recursion without needing to save function return addresses on an

implicit stack.

The algorithm extracts both coarse and fine grain parallelism over separate rays emitted

through the screen. The algorithm doesn’t perform anti-aliasing, which means that for a w x

h image, there exist wh independent rays. At the fine grain level, the algorithm parallelizes

over both pixels within a scan line and separate scan lines. The course grain parallelism

processes different batches of scanlines concurrently. clUtil’s parallel for loop implements

the coarse-grain parallelism (figure 7.3) while separate work items and work groups in a

kernel implement the fine-grain parallelism.

Two changes to the kernel enabled it to process batches of rays as opposed to the entire

scene (figure 7.4). Firstly, an additional rowOffset parameter allows the kernel to start at

an arbitrary scanline instead of the first. Secondly, an if statement prevents the kernel from

rendering outside of its designated work area. This is necessary because the local work group

∗https://code.google.com/p/basic-opencl-raytracer/

86

Para l l e lFo r (0 , 1 , he ight − 1 , [&] (s i z e t s ta r t , s i z e t end)
{

s i z e t curDevice = Device : : GetCurrentDeviceNum () ;
unsigned int count = end − s t a r t + 1 ;
unsigned int o f f s e t = (unsigned int) s t a r t ;

s i z e t l o c a l S i z e ;
s i z e t curQueue = 0 ;

i f (Device : : GetDevices () [curDevice] . g e tDev i ce In fo () . Type ==
CL DEVICE TYPE CPU)

{
l o c a l S i z e = 4 ;

}
else
{

l o c a l S i z e = 16 ;
}

for (s i z e t curRow = 0 ; curRow < count ; curRow += 256)
{

Device : : GetCurrentDevice () . setCommandQueue (curQueue) ;

unsigned int innerRowCount = count − curRow > 256 ?
256 : count − curRow ;

unsigned int i nn e rO f f s e t = o f f s e t + curRow ;

c lUt i lEnqueueKerne l (” r ay t r a c e r ” ,
c lU t i lGr i d (width , l o c a l S i z e , count , l o c a l S i z e) ,
∗ dev i c eBu f f e r s [2 ∗ curDevice + curQueue] ,
width ,
height ,
innerRowCount ,
i nn e rO f f s e t) ;

#i f 1
dev i c eBu f f e r s [2 ∗ curDevice + curQueue]−>

get (&image [4 ∗ i nn e rO f f s e t ∗ width] ,
4 ∗ s izeof (f loat) ∗ innerRowCount ∗ width) ;

#endif

curQueue = curQueue == 0 ? 1 : 0 ;
}

}) ;

Figure 7.3: Using clUtil’s parallel for loop to extract coarse grained parallelism

87

k e r n e l void r ay t r a c e r (g l o b a l u int ∗output , u int width , u int he ight)
{

i n t2 pos = (in t2) (g e t g l o b a l i d (0) , g e t g l o b a l i d (1)) ;
f l o a t 2 sc r een = (f l o a t 2) (

pos . x / (f loat) width ∗ 8 . f − 4 ,
pos . y / (f loat) he ight ∗ 6 . f − 3

) ;

struct Ray r ;

r . o r i g i n = (f l o a t 4) (0 , 0 , −5, 0) ;
r . d i r = normal ize ((f l o a t 4) (s c r een . x , s c r een . y , 0 , 0) − r . o r i g i n) ;

// Bui l d t h e scene . . .

output [pos . x + pos . y ∗ width] = rgbtou int (r e c u r s i v e t r a c e (&s , &r)) ;
}

k e r n e l void r ay t r a c e r (g l o b a l f l o a t 4 ∗output , u int width , u int height , u int count , u int rowOffset)
{

i n t2 pos = (in t2) (g e t g l o b a l i d (0) , g e t g l o b a l i d (1)) ;
f l o a t 2 sc r een = (f l o a t 2) (

pos . x / (f loat) width ∗ 8 . f − 4 ,
(rowOffset + pos . y) / (f loat) he ight ∗ 6 . f − 3

) ;
i f (pos . x < width && pos . y < count)
{

struct Ray r ;

r . o r i g i n = (f l o a t 4) (0 , 0 , −5, 0) ;
r . d i r = normal ize ((f l o a t 4) (s c r een . x , s c r een . y , 0 , 0) − r . o r i g i n) ;

// Bui l d t h e scene . . .

output [pos . x + pos . y ∗ width] = r e c u r s i v e t r a c e (&s , &r) ;
}

}

Figure 7.4: Top: unmodified raytracing kernel present in original source code Bottom: kernel
modified to support working on pieces of the scene. Changes include the addition of a
rowOffset parameter and a branch to ensure that the ray should actually be computed.

size can be an arbitrary amount, which in turn can create more work items than exist rays

in a loop chunk.

The simplicity of the two modifications to the raytracing engine highlight the integration

ease of clUtil’s ParallelFor loop. The loop itself is under 50 lines of code and the kernel

required minor changes to 5 lines of code. These small changes move the functionality from

executing on a single device to using all devices available in the system.

7.4 Performance results

In principle, raytracing exhibits very good strong-scaling. There exist rays that can be

divided among devices. Figure 7.5 shows the performance scalability using 1 to 32 cores.

Interestingly enough, the performance drops most quickly moving from 1 to 2 cores. One

88

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Number of Cores

T
im

e
fa

st
er

 th
an

 1
 c

or
e

CPU Scalability

Ideal
Realized

2 4 8 16 32
0

0.5

1

1.5

2

2.5

Number of Cores

T
im

es
 fa

st
er

 th
an

 n
/2

 c
or

es

CPU Scalability (alternate visualization)

Ideal
Realized

Figure 7.5: Left: raw speedup using 1, 2, 4, 8 ,16, and 32 cores. Right: alternate
representation

possible reason for this is that Bulldozer processors can dynamically increase the clock

frequency for higher performance in sequential programs. As the clock rate decreases as

more cores become active, the ideal speedup is no longer a linear function of the number

of cores being used. Since the performance degradation drops off as the number of cores

continues to increase, raytracing does actually scale well to 32 cores.

All performance experiments render a simple scene of 7 spheres, a plane, and 2 lights at

2160p (3840 x 2160) HD resolution (figure 7.1). Since PCIe data transfers are uninteresting

in understanding performance scalability, the data transfer back to host is omitted. The loop

is designed to double pump execution such that transfers and computation can overlap, but

even still the transfer represents a large burden for such a simple scene. More representative

scenes with hundreds of thousands to millions of objects would provide ample computation

to amortize the data transfer of the rendered pixels. Furthermore, when using only the

GPUs, one could use Crossfire or SLI to share the rendering workload between GPUs and

have the screen bitmap appear on a single device.

When using all 3 GPUs in the system, performance scales very close to the theoretical

throughput using all three schedulers (figure 7.6). All three schedulers are above 85% of

89

Static EGSScheduler PINA
0

10

20

30

40

50

60

70

80

90

100
E

ffi
ci

en
cy

 (
%

)

Mean effiency using 3 Radeon 7970s

Figure 7.6: Scheduler efficiency using 3 Radeon 7970s

three times the throughput of a single Radeon 7970. Interestingly enough, the EGSScheduler

performs most admirably, achieving 95% of the theoretical throughput. Outperforming the

static scheduler in the homogeneous case would imply there exists workload imbalance in the

iteration space. Indeed, black areas of the scene require very little execution time as there

are no reflections, refractions, or even primary collisions to compute. The shiny spheres

however create many derivative rays that require additional computation.

When using all 3 GPUs and all 32 cores, overall performance drops significantly over using

only the GPUs. All schedulers suffer from poor efficiency (figure 7.7). EGS again performs

the “best,” though still significantly slower than using only the GPUs. In this situation,

the PINA scheduler fails to even achieve 50% efficiency. Furthermore, the performance

discrepancy between the schedulers is very large. This situation may seem puzzling given

90

Static EGSScheduler PINA
0

10

20

30

40

50

60

70

80
E

ffi
ci

en
cy

 (
%

)

Mean effiency using 3 Radeon 7970s and 32 cores

Figure 7.7: Scheduler efficiency using 3 Radeon 7970s and 32 cores

that problem scales well on both the CPU and GPU. However, resource contention is likely

a huge problem when using all of the resources.

Experimentation reveals how many threads AMD’s APP SDK spawns per device. Each

device has management 2 threads (e.g. to execute data transfers) and the CPU device uses

2 compute threads per core. Running with 3 GPUs and all 32 cores requires 73 threads

(counting the main thread). This can cause preemption problems; if the main thread gets

preempted when a device is free, that device must wait until the OS reschedules the main

thread to get work. Similarly, if a helper thread gets preempted while trying to launch

a kernel, the device must again wait until the OS schedules the helper thread. Finally,

even if all helper threads and the main thread are running, the CPU worker threads must

necessarily not all be running (due to limited resources). This causes CPU kernels to execute

91

more slowly as they must wait for the OS to reschedule preempted workers to make forward

progress. All three of these reasons translate to reduced performance.

Indeed, when running with all 3 GPUs and 16 cores, the heterogeneous performance

is markedly improved (figure 7.8). When resource contention reduces, hybrid execution

performance improves dramatically. The static scheduler poorly handles load imbalances

caused by assigning equal work to each device type. The EGSScheduler performs well, but

by design can give to little work to devices at the end as seen in Specmaster. The PINA

scheduler achieves over 90% of the theoretical throughput attainable using 16 cores and 3

GPUs. Increasing the number of cores used to 17 showed an enormous performance drop.

Should AMD reduce the number of threads needed to efficiently use a device, using more

cores in a heterogeneous application may be more feasible.

Since our efficiency metric can hide actual performance after processing, we provide the

real throughputs of the three schedulers in figure 7.9. Primary rays count only those emitted

from the screen, of which there is one for every pixel in the 2160p image. This figure is easier

to count than the total number of rays cast per second, which is data dependent. These

numbers are for this simple scene only and should not be used to compare the performance

of our suboptimal raytracer to others.

92

Static EGSScheduler PINA
0

10

20

30

40

50

60

70

80

90

100

E
ffi

ci
en

cy
 (

%
)

Mean effiency using 3 Radeon 7970s and 16 cores

Figure 7.8: Scheduler efficiency using 3 Radeon 7970s and 16 cores

93

Static EGS PINA
0

50

100

150

200

250

Scheduler

M
ill

io
ns

 o
f p

rim
ar

y
ra

ys
/s

Raytracing throughput using 3 Schedulers

3 Radeon 7970s
3 Radeon 7970s + 16 Interlagos 6272 cores

Figure 7.9: Scheduler throughputs in millions of primary rays per second

94

Chapter 8

Conclusions

This dissertation explored parallel loop structures running with multiple heterogeneous

OpenCL devices using three different schedulers. clUtil’s ParallelFor loop provides a familiar

and simple interface for easily using multiple accelerators in tandem. Its flexibility allows

one to select one of three loop schedulers including the novel PINA loop scheduler. This

scheduler leverages autotuning and a predictive model to provide better acceleration over

the other two tested arbiters in two out of three tested applications and nearly identical

performance in GEMM.

The key feature of the PINA scheduler, autotuning, uses a novel approximation to

Gustafson’s law. This approximation vastly simplifies empirically modeling sequential work

amortization and readily predicts the relative speedup a device should yield given a parallel

workload. This approximation represents the most important theoretical contribution,

while clUtil, the schedulers, and the parallel for loop implementation represent technology

contributions in the largely untapped (and increasingly important) field of heterogeneous

computing using accelerators.

There exist a number of logical improvements to the PINA scheduler that remain as future

work. Firstly, the scheduler can use its predictive model to automatically disable devices

that yield little performance benefit. This approach is similar to the work in [59]. Secondly,

95

the PINA scheduler can trade execution efficiency for better load balancing. For example, if

one chunk executes at 95% efficiency or 66% efficiency as two chunks, the runtime can split

the chunk to attain better load balancing. This may entail using its iteration runtime model

to predict the likelihood of multiple devices becoming free in some time quanta. Finally, the

amortization model can improve its accuracy by removing more of its tail as discussed in

chapter 4.

A number of architectural and application issues can limit PINA’s performance. Ideally,

slower devices require less work to amortize kernel launches. This allows for better load

balancing as overall progress doesn’t wait on slower devices (a scenario seen in the GEMM

application). Disabling devices or running with reduced efficiency are two approaches that

can help improve load balancing and overall efficiency at the expense of a single device’s

efficiency. Exploring the exact details of this remains as future work.

Heavy resource contention is another issue that needs to be addressed in the future. As

shown in the raytracing application, while the application scaled well on the CPU alone, using

both the CPUs and GPUs resulted in poor performance. This results from the dual role of

the CPU serving as both a kernel execution device and a resource scheduler. Addressing this

issue will likely require more rigorous examination of resource contention and may even be

application dependent.

A logical extension of this work is heterogeneous distributed systems. Imagine a

supercomputer where each node contains different numbers and types of devices. Because

the parallel for loop methods presented in this paper don’t assume shared memory (i.e. a

GPU can’t necessarily or efficiently access the CPU’s main memory), extending this work

to an distributed system is fairly straightforward in principle. One may note that iteration

chunks are recursively divisible; a hierarchy of schedulers can treat progressively larger pools

of machines as devices. The scheduler then breaks its iterations into smaller pieces applying

one of the scheduling algorithms to dole work out to its subset of machines. Eventually,

an individual node receives a chunk of work, at which point the multi-device parallel for

methods discussed in this dissertation perform the actual work. To work in the general case,

96

each node should have a copy of all data, as it doesn’t know a priori which iterations it will

compute (barring complex communication and data locality tracking).

This method also should be amenable to fault tolerance with some work on the user’s

behalf. A first pass approach to this would be to have each node should compute a hash of

its outputs and computing each iteration block twice. If the hashes are the same, then an

error most likely did not occur. If the hashes do not agree, rerun the iterations a third time

and vote.

Other interesting extensions include minimizing energy instead of time. In principle, one

could measure energy instead of time and compute iterations on the device that yields the

smallest energy expenditures. Furthermore, PINA could measure energy amortization rather

than time.

Because of parallel for’s versatility and simplicity, it remains relevant even in the

heterogeneous era for a variety of applications. However, it is by no means the only parallel

paradigm. Another interesting area of research includes DAG scheduling with data locality

awareness. clUtil already tracks data dependencies, making DAG scheduling a logical next

step.

8.1 Contributions

The work presented in this dissertation provides a powerful library for writing software

on heterogeneous systems. clUtil provides simple constructs that immensely improve

programmer productivity by abstracting away boilerplate code, removing handles, improving

syntax, and replacing verbose error checking code with exceptions. We trivially parallelized

three applications to run on multiple GPUs (and even the CPU in hybrid execution) with

existing kernels while achieving good scalability.

In matrix multiplication, we took an the existing GEMM kernel and used this as the basis

for a larger matrix multiply. With clUtil’s ParallelFor loop and it’s simplified programming

97

model, we were able to create once of the fastest single-machine GEMM algorithms to date

in roughly 150 lines of driver code. This algorithm overlaps computation and communication

and efficiently uses an arbitrary number of GPUs.

In our second application, we took our existing vanilla OpenCL peptide search engine

and improved maintainability while further optimizing performance using clUtil. Our library

enabled us to dramatically reduce the number of object handles and memory leaks associated

with improperly calling OpenCL functions to free objects. Furthermore, clUtil significantly

reduces the number of calls and parameters required to achieve the same functionality as a

vanilla OpenCL implementation. Using clUtil’s ParallelFor loop, we attained a near-linear

speedup with 3 GPUs by changing roughly 5 lines of code. We used the savings in complexity

to create device-specific optimizations, making Specmaster a fairly sophisticated application

that truly exploits the promise of OpenCL.

In our final application, we rewrote the existing OpenCL driver code using clUtil. Our

version was significantly terser, easier to follow, and more functional, as it executes on an

arbitrary number of OpenCL devices.

We hope that clUtil will increase interest in heterogeneous computing by lowering the

barriers of entry. CUDA has dominated the GPU research arena since its inception. While

OpenCL can in principle support many devices and offers portability, most researchers today

continue to use CUDA in part due to OpenCL’s complexity. Since clUtil removes this

limitation and actually improves on CUDA, we hope to see more applications written end-

to-end to use arbitrary numbers of devices and device types as Specmaster does. The work

presented in this dissertation serves as a practical how-to guide for writing portable and

performant code that can target a multitude of devices.

98

Bibliography

99

[1] M. D. Ercegovac, “Heterogeneity in supercomputer architectures,” Parallel Computing,

vol. 7, no. 3, pp. 367 – 372, 1988. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/0167819188900555 1

[2] H. Nicholas, G. Giras, V. Hartonas-Garmhausen, M. Kopko, C. Maher, and

A. Ropelewski, “Distributing the Comparison of DNA and Protein Sequences

Across Heterogeneous Supercomputers,” in Supercomputing, 1991. Supercomputing ’91.

Proceedings of the 1991 ACM/IEEE Conference on, Nov 1991, pp. 139 –146. 1

[3] A. Khokhar, V. Prasanna, M. Shaaban, and C.-L. Wang, “Heterogeneous

supercomputing: Problems and issues,” in Heterogeneous Processing, 1992. Proceedings.

Workshop on, Mar 1992, pp. 3 –12. 1

[4] J. Markoff, “The Attack of the ’Killer Micros’,” New York Times, May 1991. 2

[5] T. H. Dunigan, “Beta Testing the Intel Paragon MP,” ORNL, Tech. Rep., Jun 1995. 2

[6] Top 500 Supercomputer Sites, “T3D MC1024-8,” http://www.top500.org/system/1404,

1994. 2

[7] Top 500 Supercomputing Sites, “CM-5/896,” http://www.top500.org/system/1747,

1994. 2

[8] Algotrinix Ltd, “The CHS 2x4: The World’s First Custom Computer,” 1990. 2

[9] A. J. v. d. Steen, “FPGA-based Accelerators,” http://www.phys.uu.nl/∼steen/web08/

fpga-accel.html, 2008. 2

[10] R. Hartenstein, “The Kress-Kung Machine Page,” http://anti-machine.org/, 2001. 2

[11] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 2,

pp. 203 –215, feb. 2007. 2

[12] D. W. Wall, “Limits of Instruction-level Parallelism,” 1991, pp. 176–188. 2

100

http://www.sciencedirect.com/science/article/pii/0167819188900555
http://www.sciencedirect.com/science/article/pii/0167819188900555
http://www.top500.org/system/1404
http://www.top500.org/system/1747
http://www.phys.uu.nl/~steen/web08/fpga-accel.html
http://www.phys.uu.nl/~steen/web08/fpga-accel.html
http://anti-machine.org/

[13] P. P. Gelsinger, “Power play,” Commun. ACM, 2002. 2

[14] S. A. McKee, “Reflections on the Memory Wall,” in Proceedings of the 1st conference

on Computing frontiers, ser. CF ’04. New York, NY, USA: ACM, 2004, pp. 162–.

[Online]. Available: http://doi.acm.org/10.1145/977091.977115 2

[15] F. J. Pollack, “New Microarchitecture Challenges in the Coming Generations of

CMOS Process Technologies (keynote address)(abstract only),” in Proceedings of the

32nd Annual ACM/IEEE International Symposium on Microarchitecture, ser. MICRO

32. Washington, DC, USA: IEEE Computer Society, 1999. [Online]. Available:

http://dl.acm.org/citation.cfm?id=320080.320082 2

[16] B. Schauer, “Multicore Processors - A Necessity,” http://www.csa.com/

discoveryguides/multicore/review.pdf, 2008. 3

[17] M. Funk, “Simultaneous Multi-Threading on eServer iSeries POWER5,” http://www.

ibm.com/systems/resources/systems i advantages perfmgmt pdf SMT.pdf, 2004. 3

[18] Sun Microsystems, “UltraSPARC T2 Processor System On a Chip,” http://wikis.sun.

com/download/attachments/31400118/N2 Announce Breakout final.pdf, 2007. 3

[19] Intel, “Intel Hyper-Threading Technology,” http://www.intel.com/technology/

platform-technology/hyper-threading/. 3

[20] IBM, “IBM zEnterprise 196 (z196) Overview,” http://www-03.ibm.com/systems/z/

hardware/zenterprise/z196.html. 3

[21] Intel, “Intel Atom Processors,” http://www.intel.com/content/www/us/en/processors/

atom/atom-processor-embedded-technology.html. 3

[22] IBM, “Cell Broadband Engine Architecture and its First Implementation: A

Performance View,” http://www.ibm.com/developerworks/power/library/pa-cellperf/.

3

101

http://doi.acm.org/10.1145/977091.977115
http://dl.acm.org/citation.cfm?id=320080.320082
http://www.csa.com/discoveryguides/multicore/review.pdf
http://www.csa.com/discoveryguides/multicore/review.pdf
http://www.ibm.com/systems/resources/systems_i_advantages_perfmgmt_pdf_SMT.pdf
http://www.ibm.com/systems/resources/systems_i_advantages_perfmgmt_pdf_SMT.pdf
http://wikis.sun.com/download/attachments/31400118/N2_Announce_Breakout_final.pdf
http://wikis.sun.com/download/attachments/31400118/N2_Announce_Breakout_final.pdf
http://www.intel.com/technology/platform-technology/hyper-threading/
http://www.intel.com/technology/platform-technology/hyper-threading/
http://www-03.ibm.com/systems/z/hardware/zenterprise/z196.html
http://www-03.ibm.com/systems/z/hardware/zenterprise/z196.html
http://www.intel.com/content/www/us/en/processors/atom/atom-processor-embedded-technology.html
http://www.intel.com/content/www/us/en/processors/atom/atom-processor-embedded-technology.html
http://www.ibm.com/developerworks/power/library/pa-cellperf/

[23] Playstation University, “IBM Cancels Cell Processor Development,” http://www.psuni.

com/ibm-cancels-cell-processor-development-1295/, 2009. 3

[24] Intel, “iSBX 275 Video Graphics Controller Multimodule Board Reference Manual,”

1982. 4

[25] NVIDIA, “GeForce3,” http://www.nvidia.com/page/geforce3.html. 4

[26] A. L. Shimpi, “ATI’s Radeon 9700 (R300) - Crowning the New King,” http://www.

anandtech.com/show/947, 2002. 4

[27] Ádám Moravánszky and N. Ag, “Dense Matrix Algebra on the GPU,” in In Direct3D

ShaderX2, Engel W. F., (Ed.). Wordware Publishing. NovodeX AG, 2003, p. 2. 4, 41

[28] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan,

“Brook for GPUs: Stream Computing on Graphics Hardware,” ACM TRANSACTIONS

ON GRAPHICS, vol. 23, pp. 777–786, 2004. 4

[29] NVIDIA, “CUDA,” http://www.nvidia.com/object/cuda home new.html. 4, 54

[30] V. Volkov and J. Demmel, “Benchmarking GPUs to Tune Dense Linear Algebra,”

in High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008.

International Conference for, Nov 2008, pp. 1 –11. 4, 41

[31] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,

P. Luszczek, and S. Tomov, “Numerical Linear Algebra on Emerging Architectures:

The PLASMA and MAGMA Projects,” vol. 180. 4

[32] R. Weber, A. Gothandaraman, R. J. Hinde, and G. D. Peterson, “Comparing Hardware

Accelerators in Scientific Applications: A Case Study,” IEEE Transactions on Parallel

and Distributed Systems, vol. 22, pp. 58–68, 2011. 4

[33] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L. Beberg,

D. L. Ensign, C. M. Bruns, and V. S. Pande, “Accelerating Molecular Dynamic

102

http://www.psuni.com/ibm-cancels-cell-processor-development-1295/
http://www.psuni.com/ibm-cancels-cell-processor-development-1295/
http://www.nvidia.com/page/geforce3.html
http://www.anandtech.com/show/947
http://www.anandtech.com/show/947
http://www.nvidia.com/object/cuda_home_new.html

Simulation on Graphics Processing Units,” J. Comput. Chem., vol. 30, no. 6, pp.

864–872, Apr. 2009. [Online]. Available: http://dx.doi.org/10.1002/jcc.21209 4

[34] N. Goodnight, “CUDA/OpenGL Fluid Simulation,” 2007. 4

[35] AMD, “AMD ’Close to Metal’ Technology Unleashes the Power of Stream Computing,”

http://www.amd.com/us/press-releases/Pages/Press Release 114147.aspx, 2006. 4

[36] Khronos, “OpenCL - The Open Standard for Parallel Programming of Heterogeneous

Systems,” http://www.khronos.org/opencl/. 5

[37] M. Owaida, N. Bellas, K. Daloukas, and C. Antonopoulos, “Synthesis of Platform

Architectures from OpenCL Programs,” in Field-Programmable Custom Computing

Machines (FCCM), 2011 IEEE 19th Annual International Symposium on, May 2011,

pp. 186 –193. 5

[38] D. Singh, “Higher Level Programming Abstractions for FPGAs Using OpenCL,” http:

//www.eecg.toronto.edu/∼jayar/fpga11/Singh Altera OpenCL FPGA11.pdf. 5, 54

[39] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra,

“From cuda to opencl: Towards a performance-portable solution for multi-platform

gpu programming,” Parallel Computing, no. 0, pp. –, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167819111001335 5, 42, 43

[40] “OpenCL Bitcoin Miner,” https://github.com/tcatm/oclminer. 5

[41] H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra, “A Scalable High Performant

Cholesky Factorization for Multicore with GPU Accelerators LAPACK Working Note

223.” 5, 12

[42] NAMD, “Running NAMD:CUDA GPU Acceleration,” http://www.ks.uiuc.edu/

Research/namd/2.8/ug/node83.html. 5

103

http://dx.doi.org/10.1002/jcc.21209
http://www.amd.com/us/press-releases/Pages/Press_Release_114147.aspx
http://www.khronos.org/opencl/
http://www.eecg.toronto.edu/~jayar/fpga11/Singh_Altera_OpenCL_FPGA11.pdf
http://www.eecg.toronto.edu/~jayar/fpga11/Singh_Altera_OpenCL_FPGA11.pdf
http://www.sciencedirect.com/science/article/pii/S0167819111001335
https://github.com/tcatm/oclminer
http://www.ks.uiuc.edu/Research/namd/2.8/ug/node83.html
http://www.ks.uiuc.edu/Research/namd/2.8/ug/node83.html

[43] G. Quintana-Ort́ı, F. D. Igual, E. S. Quintana-Ort́ı, and R. A. van de Geijn,

“Solving Dense Linear Systems on Platforms with Multiple Hardware Accelerators,”

in Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, ser. PPoPP ’09. New York, NY, USA: ACM, 2009, pp.

121–130. [Online]. Available: http://doi.acm.org/10.1145/1504176.1504196 5, 41, 49

[44] G. M. Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference, ser. AFIPS ’67 (Spring). New York, NY, USA: ACM, 1967, pp. 483–485.

[Online]. Available: http://doi.acm.org/10.1145/1465482.1465560 6, 75

[45] T. Casavant and J. Kuhl, “A Taxonomy of Scheduling in General-Purpose Distributed

Computing Systems,” Software Engineering, IEEE Transactions on, vol. 14, no. 2, pp.

141 –154, Feb 1988. 9

[46] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan,

and N. Vasilache, “Loop Transformations: Convexity, Pruning and Optimization ,” in

38th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages

(POPL’11). Austin, TX: ACM Press, Jan. 2011, pp. 549–562. 9

[47] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li, T. Grosser, H. Jagasia, R. Ladelsky,

S. Pop, J. Sjödin, and R. Upadrasta, “GRAPHITE Two Years After: First

Lessons Learned From Real-World Polyhedral Compilation,” in GCC Research

Opportunities Workshop (GROW’10), Pisa, Italy, Jan. 2010. [Online]. Available:

http://hal.inria.fr/inria-00551516/en/ 9

[48] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared Memory

Parallel Programming (Scientific and Engineering Computation). The MIT Press,

2007. 9

[49] Intel, “Intel Threading Building Blocks for Open Source,” http://

threadingbuildingblocks.org, 2011. 9

104

http://doi.acm.org/10.1145/1504176.1504196
http://doi.acm.org/10.1145/1465482.1465560
http://hal.inria.fr/inria-00551516/en/
http://threadingbuildingblocks.org
http://threadingbuildingblocks.org

[50] A. N. Laboratories, “Message Passing Interface,” http://www.mcs.anl.gov/research/

projects/mpi/. 10

[51] M. Cierniak, W. Li, and M. J. Zaki, “Loop Scheduling for Heterogeneity,” in

Proceedings of the 4th IEEE International Symposium on High Performance Distributed

Computing, ser. HPDC ’95. Washington, DC, USA: IEEE Computer Society, 1995.

[Online]. Available: http://dl.acm.org/citation.cfm?id=822081.823033 10, 11, 16, 24,

25

[52] W. chung Shih, C. tung Yang, and S. shyong Tseng, “A Parallel Loop Self-Scheduling on

Grid Computing Environments,” in Proceedings of the 2004 International Symposium

on Parallel Architectures, Algorithms and IEEE Networks, 2004, pp. 409–414. 12, 13,

25, 48

[53] T. Tzen and L. Ni, “Trapezoid Self-Scheduling: a Practical Scheduling Scheme for

Parallel Compilers,” Parallel and Distributed Systems, IEEE Transactions on, vol. 4,

no. 1, pp. 87 –98, Jan 1993. 12, 16

[54] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a Method for Scheduling

Parallel Loops,” Commun. ACM, vol. 35, pp. 90–101, August 1992. [Online]. Available:

http://doi.acm.org/10.1145/135226.135232 12

[55] C. D. Polychronopoulos and D. J. Kuck, “Guided self-scheduling: A practical scheduling

scheme for parallel supercomputers,” IEEE Trans. Comput., vol. 36, pp. 1425–1439,

December 1987. [Online]. Available: http://dx.doi.org/10.1109/TC.1987.5009495 12

[56] C. tung Yang and S. chyi Chang, “A Parallel Loop Self-Scheduling on Extremely

Heterogeneous PC Clusters,” in Proc. of Intl Conf. on Computational Science.

Springer-Verlag, 2003, pp. 1079–1088. 13, 25, 48

[57] C.-C. Wu, L.-T. Huang, L.-F. Lai, and M.-L. Chen, “Enhanced Parallel Loop Self-

Scheduling for Heterogeneous Multi-core Cluster Systems,” Parallel Architectures,

105

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://dl.acm.org/citation.cfm?id=822081.823033
http://doi.acm.org/10.1145/135226.135232
http://dx.doi.org/10.1109/TC.1987.5009495

Algorithms, and Networks, International Symposium on, vol. 0, pp. 568–573, 2009. 13,

16, 20, 25, 39, 48, 49

[58] W.-C. Shih, C.-T. Yang, P.-I. Chen, and S.-S. Tseng, “A Hybrid Parallel Loop

Scheduling Scheme on Heterogeneous PC Clusters,” Parallel and Distributed Computing

Applications and Technologies, International Conference on, vol. 0, pp. 56–58, 2005. 13,

16, 25, 48

[59] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro, “Predictive

Runtime Code Scheduling for Heterogeneous Architectures,” in Proceedings of the 4th

International Conference on High Performance Embedded Architectures and Compilers,

ser. HiPEAC ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 19–33. [Online].

Available: http://dx.doi.org/10.1007/978-3-540-92990-1 4 13, 14, 15, 16, 25, 48, 52, 95

[60] F. W. Burton and M. R. Sleep, “Executing functional programs on a virtual tree

of processors,” in Proceedings of the 1981 conference on Functional programming

languages and computer architecture, ser. FPCA ’81. New York, NY, USA: ACM,

1981, pp. 187–194. [Online]. Available: http://doi.acm.org/10.1145/800223.806778 15

[61] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Computations by Work

Stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, 1999. 15, 16

[62] W.-M. Hwu, Ed., GPU Computing Gems Jade Edition. Morgan Kaufmann, 2012. 15

[63] K. Spafford, J. Meredith, and J. Vetter, “Maestro: data orchestration and tuning for

opencl devices,” in Proceedings of the 16th international Euro-Par conference on Parallel

processing: Part II, ser. Euro-Par’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.

275–286. [Online]. Available: http://dl.acm.org/citation.cfm?id=1885276.1885305 15,

16

[64] M. Roberts, Signals and Systems: Analysis Using Transform Methods and MATLAB,

ser. McGraw-Hill Higher Education. McGraw-Hill, 2004. [Online]. Available:

http://books.google.com/books?id=c2oN GozNPoC 28

106

http://dx.doi.org/10.1007/978-3-540-92990-1_4
http://doi.acm.org/10.1145/800223.806778
http://dl.acm.org/citation.cfm?id=1885276.1885305
http://books.google.com/books?id=c2oN_GozNPoC

[65] R. L. Graham and R. L. Grahamt, “Bounds on Multiprocessing Timing Anomalies,”

SIAM Journal on Applied Mathematics, vol. 17, pp. 416–429, 1969. 29

[66] J. L. Gustafson, “Reevaluating amdahl’s law,” Communications of the ACM, vol. 31,

pp. 532–533, 1988. 32, 75

[67] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic Linear Algebra

Subprograms for Fortran Usage,” ACM Trans. Math. Softw., vol. 5, no. 3, pp. 308–323,

Sep. 1979. [Online]. Available: http://dx.doi.org/10.1145/355841.355847 40

[68] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “Hpl - a portable implementation

of the high-performance linpack benchmark for distributed-memory computers,” http:

//www.netlib.org/benchmark/hpl/, 2008. 40

[69] Top500, “Top 500 supercomputing sites,” http://top500.org, 2012. 40

[70] ——, “Tinahe-1a,” http://i.top500.org/system/176929, 2012. 41

[71] ——, “Nebulae,” http://i.top500.org/system/176819, 2012. 41

[72] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra software,” in

CONFERENCE ON HIGH PERFORMANCE NETWORKING AND COMPUTING.

IEEE Computer Society, 1998, pp. 1–27. 41

[73] R. Nath, S. Tomov, and J. Dongarra, “An Improved Magma Gemm For

Fermi Graphics Processing Units,” International Journal of High Performance

Computing Applications, vol. 24, no. 4, pp. 511–515, Nov. 2010. [Online]. Available:

http://dx.doi.org/10.1177/1094342010385729 42

[74] N. Nakasato, “A fast GEMM implementation on the cypress GPU,” Sigmetrics

Performance Evaluation Review, vol. 38, pp. 50–55, 2011. 42

[75] J. Fang, A. Varbanescu, and H. Sips, “A comprehensive performance comparison of

cuda and opencl,” in Parallel Processing (ICPP), 2011 International Conference on,

sept. 2011, pp. 216 –225. 42

107

http://dx.doi.org/10.1145/355841.355847
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
http://top500.org
http://i.top500.org/system/176929
http://i.top500.org/system/176819
http://dx.doi.org/10.1177/1094342010385729

[76] N. Nakasato, “DGEMM Tahiti Update,” http://galaxy.u-aizu.ac.jp/trac/note/blog/

DGEMM Tahiti Update, 2012. 43

[77] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape

of parallel computing research: A view from berkeley,” EECS Department, University

of California, Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Available:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html 48

[78] R. Craig and R. C. Beavis, “TANDEM: matching proteins with tandem mass spectra.”

Bioinformatics (Oxford, England), vol. 20, no. 9, pp. 1466–1467, Jun. 2004. [Online].

Available: http://dx.doi.org/10.1093/bioinformatics/bth092 53

[79] J. K. Eng, A. L. McCormack, and J. R. Yates, “An approach to correlate tandem mass

spectral data of peptides with amino acid sequences in a protein database,” Journal of

the American Society for Mass Spectrometry, vol. 5, no. 11, pp. 976–989, Nov. 1994.

[Online]. Available: http://dx.doi.org/10.1016/1044-0305(94)80016-2 53

[80] D. L. Tabb, C. G. Fernando, and M. C. Chambers, “MyriMatch:A Highly

Accurate Tandem Mass Spectral Peptide Identification by Multivariate Hypergeometric

Analysis,” Journal of Proteome Research, vol. 6, no. 2, pp. 654–661, 2007, pMID:

17269722. [Online]. Available: http://pubs.acs.org/doi/abs/10.1021/pr0604054 53, 54,

71

[81] M. Brosch, L. Yu, T. Hubbard, and J. Choudhary, “Accurate and sensitive

peptide identification with mascot percolator.” Journal of Proteome Research, vol. 8,

no. 6, pp. 3176–3181, 2009. [Online]. Available: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=2734080&tool=pmcentrez&rendertype=abstract 53

[82] L. A. Baumgardner, A. K. Shanmugam, H. Lam, J. K. Eng, and D. B. Martin,

“Fast Parallel Tandem Mass Spectral Library Searching Using GPU Hardware

108

http://galaxy.u-aizu.ac.jp/trac/note/blog/DGEMM_Tahiti_Update
http://galaxy.u-aizu.ac.jp/trac/note/blog/DGEMM_Tahiti_Update
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://dx.doi.org/10.1093/bioinformatics/bth092
http://dx.doi.org/10.1016/1044-0305(94)80016-2
http://pubs.acs.org/doi/abs/10.1021/pr0604054
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2734080&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2734080&tool=pmcentrez&rendertype=abstract

Acceleration,” Journal of Proteome Research, vol. 0, no. 0, 0000. [Online]. Available:

http://dx.doi.org/10.1021/pr200074h 54

[83] B. Faherty, J. Milloy, and S. A. Gerber, “gMacro: GPU-CPU Computing for

High Throughput Peptide Spectral Matching,” Poster at American Society of Mass

Spectrometry Annual Conference 2011. 54

[84] J. Arvo and D. Kirk, “A survey of ray tracing acceleration techniques,” in An

introduction to ray tracing. London, UK, UK: Academic Press Ltd., 1989, pp.

201–262. [Online]. Available: http://portal.acm.org/citation.cfm?id=94794 81

[85] J. Flynt, Math for 3D Game Programming and Computer Graphics, 3rd ed.

Independence - Course Technology, CENGAGE Learning Distributor, 2011. 82, 84

[86] M. Christen, “Ray tracing on gpu,” Ph.D. dissertation, University of Applied Sciences

Basel, 2005. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.98.1905&rep=rep1&type=pdf 85

[87] J. Günther, S. Popov, H.-P. Seidel, and P. Slusallek, “Realtime ray tracing on GPU with

BVH-based packet traversal,” in Proceedings of the IEEE/Eurographics Symposium on

Interactive Ray Tracing 2007, Sep. 2007, pp. 113–118. 85

[88] M. Zlatuška, “Ray tracing on a gpu with cuda comparative study of three

algorithms,” Electrical Engineering, pp. 2–8, 2010. [Online]. Available: http:

//www.cgg.cvut.cz/members/havran/ARTICLES/ZlatuskaHavran2010wscg.pdf 85

[89] LuxRender, “Luxrender and opencl,” http://www.luxrender.net/wiki/index.php?title=

Luxrender and OpenCL. 85

109

http://dx.doi.org/10.1021/pr200074h
http://portal.acm.org/citation.cfm?id=94794
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.1905&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.1905&rep=rep1&type=pdf
http://www.cgg.cvut.cz/members/havran/ARTICLES/ZlatuskaHavran2010wscg.pdf
http://www.cgg.cvut.cz/members/havran/ARTICLES/ZlatuskaHavran2010wscg.pdf
http://www.luxrender.net/wiki/index.php?title=Luxrender_and_OpenCL
http://www.luxrender.net/wiki/index.php?title=Luxrender_and_OpenCL

Appendix

110

Appendix A

clUtil ParallelFor implementation

void c l U t i l : : Pa ra l l e lFo r (const s i z e t s ta r t ,
const s i z e t s t r i d e ,
const s i z e t end ,
funct ion<void (s i z e t , s i z e t)> loopBody ,
ISchedu le r&& model)

{
s i z e t oldDeviceNum = Device : : GetCurrentDeviceNum () ;
s i z e t i t e ra t i onsRemain ing = end − s t a r t + 1 ;

IndexRange range ;
range . Star t = s t a r t ;
range . End = end ;

model . setRange (range) ;

// I n i t i a l i z e d e v i c e s t a t u s e s
vector<DeviceStatus> dev i c eS ta tu s e s (Device : : GetDevices () . s i z e ()) ;

for (s i z e t curDeviceID = 0 ;
curDeviceID < dev i c eS ta tu s e s . s i z e () ;
curDeviceID++)

{
dev i c eS ta tu s e s [curDeviceID] . DeviceID = curDeviceID ;

}

// P a r a l l e l f o r s c h e d u l i n g l oop
while (i t e ra t i onsRemain ing > 0)
{

for (s i z e t curDeviceID = 0 ;
curDeviceID < Device : : GetDevices () . s i z e () ;
curDeviceID++)

{
DeviceStatus& curDeviceStatus = dev i c eS ta tu s e s [curDeviceID] ;
s i z e t deviceGroup = DeviceGroupInfo : : Get () [curDeviceID] ;

// I f t h i s d e v i c e i s n ’ t busy , g e t some work from the model and run i t
i f (curDeviceStatus . IsBusy == fa l se &&

model . workRemains (deviceGroup) == true)
{

IndexRange work ;

work = model . getWork (deviceGroup) ;

Device : : SetCurrentDevice (curDeviceID) ;
Device& curDevice = Device : : GetCurrentDevice () ;

curDeviceStatus . Range = work ;
curDeviceStatus . Time1 = getTime () ;
curDeviceStatus . IsBusy = true ;

loopBody (work . Start , work . End) ;

//We i n d i c a t e t h i s d e v i c e i s f i n i s h e d by enqueue ing markers i n t o

111

// eve ry queues , then enqueue ing a wai tForEvents which depends on the
//markers . Then enqueue one more marker so we can cap tu r e i t s e v en t
s i z e t prevCommandQueue = curDevice . getCommandQueueID () ;

unique ptr<c l e v en t []>
markerList (new c l e v en t [curDevice . getNumCommandQueues ()]) ;

for (s i z e t curQueueID = 0 ;
curQueueID < curDevice . getNumCommandQueues () ;
curQueueID++)

{
curDevice . setCommandQueue (curQueueID) ;

clEnqueueMarker (curDevice . getCommandQueue () ,
&markerList [curQueueID]) ;

}

curDevice . setCommandQueue (prevCommandQueue) ;

clEnqueueWaitForEvents (curDevice . getCommandQueue () ,
curDevice . getNumCommandQueues () ,
markerList . get ()) ;

clEnqueueMarker (curDevice . getCommandQueue () ,
&curDeviceStatus . WaitEvent) ;

// Re l ease t h e ho r s e s from the g a t e s
curDevice . f l u s h () ;

}

i f (curDeviceStatus . WaitEvent != NULL) // I f d e v i c e has a v a l i d e v en t . . .
{

// Po l l t h e e v en t f o r comp l e t i on
c l i n t eventStatus ;

c l i n t e r r = clGetEventInfo (curDeviceStatus . WaitEvent ,
CL EVENT COMMAND EXECUTION STATUS,
s izeof (eventStatus) ,
&eventStatus ,
NULL) ;

i f (e r r != CL SUCCESS)
{

throw c lUt i lExcep t i on (” Pa ra l l e lFo r i n t e r n a l e r r o r : could not get ”
” event i n f o ” WHERE ”\n”) ;

}

// I f done , mark t h i s d e v i c e as a v a i l a b l e , n o t i f y t h e model , and
// r e s e t t h i s d e v i c e f o r more work
i f (eventStatus == CL COMPLETE)
{

curDeviceStatus . Time2 = getTime () ;
model . updateModel (curDeviceStatus) ;

curDeviceStatus . IsBusy = fa l se ;

c lRe leaseEvent (curDeviceStatus . WaitEvent) ;
curDeviceStatus . WaitEvent = NULL;

i t e ra t i onsRemain ing −= curDeviceStatus . Range . End −
curDeviceStatus . Range . Star t +
1 ;

// cout << ” I t e r a t i o n s remaining ” << i t e r a t i on sRema in i n g << end l ;
}

}
}

}

Device : : SetCurrentDevice (oldDeviceNum) ;
}

112

Appendix B

Source Code for PINA GetWork
Function

IndexRange PINAScheduler : : getWork (const s i z e t deviceGroup)
{

IndexRange work ;

s i z e t& currentSampleRef = mCurrentSample [deviceGroup] ;
s i z e t chunkSize = mChunkSize [deviceGroup] ;

// I f we haven ’ t sampled e v e r y t h i n g w i th t h e cu r r en t dev i c e , p u l l work from
//The nex t samp l ing r e g i on
while (currentSampleRef < mNumSamples)
{

// I f t h i s work r e g i on has no more work , move on
i f (mTasksRemaining [currentSampleRef] . End <

mTasksRemaining [currentSampleRef] . S tar t)
{

currentSampleRef++;
continue ;

}
else
{

s i z e t i t e ra t i onsRemain ing = mTasksRemaining [currentSampleRef] . End −
mTasksRemaining [currentSampleRef] . S tar t + 1 ;

work . Star t = mTasksRemaining [currentSampleRef] . S tar t ;
work . End = chunkSize < i t e ra t i onsRemain ing ?

work . Star t + chunkSize − 1 :
mTasksRemaining [currentSampleRef] . End ;

mTasksRemaining [currentSampleRef] . S tar t = work . End + 1 ;

currentSampleRef++;

mIterat ionsRemaining −= work . End − work . Star t + 1 ;

return work ;
}

}

//Find the r e g i on o f work where t h i s d e v i c e ’ s norm speedup i s g r e a t e s t
s i z e t bestSample = 0 ;
double bestSpeedup = −1.0;

for (s i z e t curSample = 0 ; curSample < mNumSamples ; curSample++)
{

// Ignore t h i s sample i f t h e r e ’ s no work l e f t
i f (mTasksRemaining [curSample] . S tar t > mTasksRemaining [curSample] . End)
{

continue ;
}

const Sample& thisSample = mModel [deviceGroup] [curSample] ;
double normSpeedup = 0 . 0 ;

for (s i z e t curGroupID = 0 ;

113

curGroupID < DeviceGroupInfo : : Get () . numGroups () ;
curGroupID++)

{
//Don ’ t l o o k a t speedup over o u r s e l f
i f (curGroupID == deviceGroup) { continue ; }

double thatTime ;

i f (curSample < mNumSamples − 1)
{

thatTime = i n t e r p o l a t e (mModel [curGroupID] [curSample] ,
mModel [curGroupID] [curSample + 1] ,
thisSample . Index) ;

}
else // Last sample r e g i on use s t h e mean as t h e r i g h t sample
{

Sample meanSample ;
double meanTime = mMeanIterationTime [curGroupID] . TotalTime /

mMeanIterationTime [curGroupID] . I te rat ionsCompleted ;

meanSample . Index = mTasksRemaining [curSample] . End ;
meanSample . Time = meanTime ;

thatTime = i n t e r p o l a t e (mModel [curGroupID] [curSample] ,
meanSample ,
thisSample . Index) ;

}

double speedup = thatTime / thisSample . Time ;

normSpeedup += speedup ∗ speedup ;
}

normSpeedup = sqr t (normSpeedup) ;

i f (normSpeedup > bestSpeedup)
{

bestSpeedup = normSpeedup ;
bestSample = curSample ;

}
}

//Get work from the b e s t sample
work . Star t = mTasksRemaining [bestSample] . S tar t ;
work . End = work . Star t + chunkSize <= mTasksRemaining [bestSample] . End ?

work . Star t + chunkSize :
mTasksRemaining [bestSample] . End ;

mTasksRemaining [bestSample] . S tar t = work . End + 1 ;

mIterat ionsRemaining −= work . End − work . Star t + 1 ;

return work ;
}

114

Vita

Rick Weber has always had a fascination with computers, writing a Missile Command clone
for the TI-86 calculator during band class in high school. He received his BS, MS, and
PhD in Computer Engineering at the University of Tennessee, focusing on high performance
computing. His research area specifically focuses on using GPUs in scientific applications
and heterogeneous computing. After graduating, Rick started working for Microsoft in their
Advanced Information Processing division.

115

	Parallel For Loops on Heterogeneous Resources
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	1 Introduction
	1.1 A Brief History of Heterogeneous Computing
	1.2 Problem Statement/Background
	1.3 Proposed Problem: A Parallel For Loop on Heterogeneous Resources

	2 Literature survey
	3 clUtilThis chapter contains excerpts from ``A Trip to Tahiti: Approaching a 5 TFlop SGEMM using 3 AMD GPUs,'' presented at SAAHPC 2012. I am the principle author of this text and the underlying work it represents. The other author, my advisor, serves as the principle investigator for the broader project encompassing this work.
	3.1 Memory management
	3.2 Launching kernels
	3.3 ParallelFor
	3.4 Profiling

	4 PINA Scheduler
	4.1 Assumptions
	4.2 PINA: an Efficient Scheduler for Heterogeneous Workloads
	4.2.1 Choosing Which Iterations
	4.2.2 Choosing the Number of Iterations
	4.2.3 Putting It All Together

	4.3 Applications

	5 Matrix MultiplicationThis chapter contains excerpts from ``A Trip to Tahiti: Approaching a 5 TFlop SGEMM using 3 AMD GPUs,'' submitted to SAAHPC 2012. I am the principle author of this text and the underlying work it represents. The other author, my advisor, serves as the principle investigator for the broader project encompassing this work.
	5.1 Previous Work
	5.2 MAGMA on Tahiti
	5.3 Multi-GPU GEMM
	5.4 Scheduler performance

	6 Specmaster: A fast peptide search algorithm using OpenCLThis section features excerpts from ``For Three Easy Payments: Scoring Peptides With Portable Performance Using Specmaster,'' a conference paper I submitted to SAAHPC. I am responsible for its contents and the underlying research. The co-authors served as PI and advisory roles.
	6.1 Specmaster Algorithm
	6.1.1 Generating peptides
	6.1.2 Scan Preprocessing
	6.1.3 Packing
	6.1.4 Finding Candidates
	6.1.5 Scoring
	6.1.6 Data dependent performance

	6.2 Portable performance
	6.2.1 Exploiting the Preprocessor

	6.3 Differences with Myrimatch
	6.4 Single device performance
	6.4.1 Experimental Setup
	6.4.2 Results

	6.5 Parallel Results

	7 Raytracing
	7.1 Background
	7.1.1 Procedure
	7.1.2 Computational complexity and parallelism

	7.2 Relevant Work
	7.3 Implementation
	7.4 Performance results

	8 Conclusions
	8.1 Contributions

	Bibliography
	A clUtil ParallelFor implementation
	B Source Code for PINA GetWork Function
	Vita

