76 research outputs found

    Real time embedded software system on a heterogeneous Digital Signal Processor and RISC processor architecture

    Get PDF
    International audienceThis paper discusses a generic telematics systems based on the OMAPTM (open multimedia application platform)heterogeneous ARMTM/DSP multiprocessor system. These 2 processors are integrated as SOC (system on chip)with a peripheral mix dedicated to the automotive requirements as a one chip solution. These processors are ableto run parallel various real time applications optimized either for the DSP or the ARM-RISC processor or sharedbetween both processors

    Pyramic array: An FPGA based platform for many-channel audio acquisition

    Get PDF
    Array processing of audio data has many interesting applications: acoustic beamforming, source separation, indoor localization, room geometry estimation, etc. Recent advances in MEMS has produced tiny microphones, analog or even with digital converter integrated. This opens the door to create arrays with a massive number of microphones. We dub such an array many-channel by analogy to many-core processors.Microphone arrays techniques present compelling applications for robotic implementations. Those techniques can allow robots to listen to their environment and infer clues from it. Such features might enable capabilities such as natural interaction with humans, interpreting spoken commands or the localization of victims during search and rescue tasks. However, under noisy conditions robotic implementations of microphone arrays might degrade their precision when localizing sound sources. For practical applications, human hearing still leaves behind microphone arrays. Daniel Kisch is an example of how humans are able to efficiently perform echo-localization to recognize their environment, even in noisy and reverberant environments. For ubiquitous computing, another limitation of acoustic localization algorithms is within their capabilities of performing real-time Digital Signal Processing (DSP) operations. To tackle those problems, tradeoffs between size, weight, cost and power consumption compromise the design of acoustic sensors for practical applications. This work presents the design and operation of a large microphone array for DSP applications in realistic environments. To address those problems this project introduces the Pyramic sound capture system designed at LAP in EPFL. Pyramic is a custom hardware which possesses 48 microphones dis- tributed in the edges of a tetrahedron. The microphone arrays interact with a Terasic DE1-SoC board from Altera Cyclone V family devices, which combines a Hard Processor System (HPS) and a Field Programmable Gate Array (FPGA) in the same die. The HPS part integrates a dual- core ARM-based Cortex-A9 processor, which combined with the power of FPGA design suitable for processing multichannel microphone signals. This thesis explains the implementation of the Pyramic array. Moreover, FPGA-based hardware accelerators have been designed to imple- ment a Master SPI communication with the array and a parallel 48 channels FIR filters cascade of the audio data for delay-and-sum beamforming applications. Additionally, the configura- tion of the HPS part allows the Pyramic array to be controlled through a Linux based OS. The main purpose of the project is to develop a flexible platform in which real-time echo-location algorithms can be implemented. The effectiveness of the Pyramic array design is illustrated by testing the recorded data with offline direction of arrival algorithms developed at LCAV in EPFL

    Realization of Embedded Multimedia System Based On Dual-Core Processor OMAP5910

    Get PDF
    This paper focuses on the realization of a complete embedded system using the dual-core processor OMAP5910. Detailed description of how to compose the hardware system is presented with a description of the software system on our platform. Tasks communication between the two cores is realized using the DSP driver. The system bootloader and the DSP bootloader are described in detail. The implementation of the MPEG-4 video decoder has been realized on the presented system. Higher speed can be achieved and less power is needed for MPEG-4 video processing on the dual-core platform. This dual-core system can be applied to 3G wireless communication, robot control and vision systems

    Utilizing DSP for IP telephony applications in mobile terminals

    Get PDF
    Tässä diplomityössä etsitään ja määritellään optimaalinen ohjelmistoarkkitehtuuri reaaliaikaisen puheenkoodauksen mahdollistamiseksi mobiilin laitteen Internet-puheluohjelmistossa. Arkkitehtuurille asetettiin vaatimus, jonka mukaan puhelu ja siihen liittyvä puheen reaaliaikaisuus ei saa rajoittaa tai liikaa kuormittaa laitteen muuta toiminnallisuutta. Työssä käytetty mobiili laite tarjoaa mahdollisuuden hyödyntää kahta prosessoria. Toinen prosessoreista on tarkoitettu yleisille käyttöjärjestelmille sekä ohjelmistoille ja toinen signaalinkäsittelyoperaatioille. Suunniteltu arkkitehtuuri yhdistää näiden kahden prosessorin toiminnallisuuden ja mahdollistaa reaaliaikaisen puheenkoodauksen (sekä toisto että äänitys) mobiliisissa laitteessa. Arkkitehtuuri toteutettiin ja sen suorituskykyä arvioitiin erilaisilla mittauksilla ja parametreilla. Havaittiin, että toteutus suoriutuu erinomaisesti sille asetetuista vaatimuksista. Todettiin myös, että käytettäessä ainoastaan laitteen yhtä prosessoria reaaliaikavaatimus ei täyty. Tämä johtuu puhekoodekin matemaattisesta kompleksisuudesta ja laitteen rajoitetuista ominaisuuksista. Työn aikana jätettiin kaksi patenttihakemusta.In this thesis, an optimal software architecture is studied and defined for enabling a real-time speech coding scheme in an Internet telephony application of a mobile terminal. According to a requirement set for the architecture, a phone call and the related real-time speech coding shall not limit or overload other functionality of the terminal. The mobile terminal utilized in this thesis provides a potential to take advantage of the efficiency of a dual core processor. One of the processors is designed for general purpose operating systems, and the other one for signal processing operations. The designed software architecture combines the functionality of these processors and enables real-time speech coding (both playback and capture) in the device. The architecture was implemented and its performance was evaluated with different measurements and parameters. It was observed that the implementation outperforms the requirements set. It was also confirmed that the performance of the general purpose processor is inadequate for real-time operations with the chosen speech coder/decoder. Two patent applications were filed by the author during the writing of this thesis

    Asymmetric Multiprocessing on the ARM Cortex-A9

    Get PDF
    Asymetrický multiprocessing (AMP) je způsob rozdělování zátěže počítačového systému na heterogenní hardwarové a softwarové prostředí. Tato práce popisuje principy AMP se zaměřením na ARM Cortex--A9 procesor a Altera Cyclone V hardwarovou platformu. Postup tvorby AMP systému založeného na OpenAMP frameworku ukazujícího komunikaci mezi procesorovými jádry, dokumentace a prognóza budoucího vývoje jsou výstupy této práce.Asymmetric multiprocessing (AMP) is a way of distributing computer system load toheterogeneous hardware and software environment. This thesis describes the principles of the AMP focusing on the ARM Cortex--A9 processor and Altera Cyclone V hardware platform. Development of a OpenAMP framework based AMP system showing communication among the processor cores, documentation and future work suggestion are the products of this thesis.

    Design and Implementation of an Embedded Vision System for Industrial Robots

    Get PDF
    Enhanced vision system attached to any industrial robot undoubtedly increases its accuracy and precision. Today, vision in industrial robots is facilitated almost exclusively via external or fixed cameras which may cause rather inconvenience due to obstacles in the line of sight. In this master thesis project, an Embedded Vision System is designed and developed to stream live video of a robot's focus point while being attached to its arm/actuator. Within the scope of this work, a working prototype has been achieved which is capable of producing live video stream on 640 X 480 resolution with a frame rate slightly above 9 FPS, having 256 colors for each pixel, displayable on a regular LCD display monitor. The system has been realized in a Spartan 6 platform and an Aptina image sensor has been used to acquire pixel information. I2C interfacing has been used to program the image sensor, data transfers have been facilitated by DMA cores, an off-chip DDR2 memory has been used for frame buffer and HDMI has been used as video out. Feasibility of adding Ethernet transmission capability has also been investigated

    Low power processor architecture and multicore approach for embedded systems

    Get PDF
    13301甲第4319号博士(工学)金沢大学博士論文本文Full 以下に掲載:1.IEICE Transactions Vol. E98-C(7) pp.544-549 2015. IEICE. 共著者: S. Otani, H. Kondo. /2.Reuse 許可エビデンス送
    corecore