
Pyramic array
An FPGA based platform for many-channel audio

acquisition

Juan Azcarreta Ortiz

Presented the 24 August 2016
at Laboratory of Processors
Architecture (LAP) and Laboratory of
Audiovisual Communications (LCAV)
École Polytechnique Fédérale de Lausanne

to obtain the Master’s degree in Electronics

Engineering by

Juan Azcarreta Ortiz

suppervised by:

Prof René Beuchat, supervisor LAP
Robin Scheibler, supervisor LCAV
Prof Ramon Bragos, supervisor UPC
Lausanne, EPFL, 2016





"Microphones are to audio,

what colors are to painting."

— Stanley R. Alten

To my family. . .





Acknowledgements

First of all, I want to thank my supervisors, René Beuchat, expert professor at LAP and Robin

Scheibler, PHD student at LCAV. Thanks for all your patiente and support, merci René for all

the patiente and your help during the design, testing and building of the project. Thanks Robin

for your great support and availability. I appreciate the interesting conversations sharing ideas

we had during the project, arigatou. Special mention to my college, Sahand, who reviewed

my project and helped a lot during design considerations. Without you this project would

have not been the same, I am sure you will have a great success developing embeddeded

systems. Thanks to Eric Bezzam and Balási Szabolcs, which collaborated in the project adding

advanced knowledge and great times to it. Thanks to all of you.

I would like to thank UPC for giving me the chance to spend one year abroad at EPFL.

Specially thanks to my supervisor, Ramón Bragos. Thanks to them, I was able to achieve my

goal of performing my Master Thesis at EPFL.

I am greateful to my friends and colleagues I met during my Master and Bachelors at EPFL,

UPC, University of Navarra and Cal Poly. Thanks to all the international friends I made during

this period. I hope to see you again soon.

Last but not least, I want to thank my family, specially to my parents. They have always

supported me, especially in the difficult times, thanks for your unconditional love and support.

i





Abstract

Microphone arrays techniques present compelling applications for robotic applications. Those

techniques can allow robots to listen to their environment and infer clues from it. Such

features might enable capabilities such as natural interaction with humans, interpreting

spoken commands or the localization of victims during search and rescue tasks.

However, under noisy conditions robotic implementations of microphone arrays might

degrade their precision when localizing sound sources. For practical applications, human

hearing still leaves behind microphone arrays. Daniel Kisch is an example of how humans are

able to efficiently perform echo-localization to recognize their environment, even in noisy

and reverberant environments. For ubiquitous computing, another limitation of acoustic

localization algorithms is within their capabilities of performing real-time Digital Signal

Processing (DSP) operations. To tackle those problems, tradeoffs between size, weight, cost

and power consumption compromise the design of acoustic sensors for practical applications.

This works presents the design and operation of a large microphone array for DSP applications

in realistic environments.

To address those problems this project introduces the Pyramic sound capture system

designed at LAP in EPFL. Pyramic is a custom hardware which possesses 48 microphones dis-

tributed in the edges of a tetrahedron. The microphone arrays interact with a Terasic DE1-SoC

board from Altera Cyclone V family devices, which combines a Hard Processor System (HPS)

and a Field Programmable Gate Array (FPGA) in the same die. The HPS part integrates a dual-

core ARM-based Cortex-A9 processor, which combined with the power of FPGA design suitable

for processing multichannel microphone signals. This thesis explains the implementation of

the Pyramic array. Moreover, FPGA-based hardware accelerators have been designed to imple-

ment a Master SPI communication with the array and a parallel 48 channels FIR filters cascade

of the audio data for delay-and-sum beamforming applications. Additionally, the configura-

tion of the HPS part allows the Pyramic array to be controlled through a Linux based OS. The

main purpose of the project is to develop a flexible platform in which real-time echo-location

algorithms can be implemented. The effectiveness of the Pyramic array design is illustrated by

testing the recorded data with offline direction of arrival algorithms developed at LCAV in EPFL.

Key words: FPGA, HPS, microphone arrays, Altera Cyclone V, DE1-SoC, real-time DSP,

beamforming, FIR filters.

iii





Contents
Abstract (English/Français/Deutsch) iii

List of figures ix

List of tables xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Microphone arrays sound capturing systems 5

2.1 Acoustic Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Speech Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Microphone arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Types of microphone arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Sound Capture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Far-field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Spatial Aliasing and Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Pyramic Microphone array 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Digital Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Pyramic Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Pyramic array layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.3 INMP504 microphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.4 Signal conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.5 AD7606 Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . 17

3.3.6 Timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



Contents

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 FPGA Technologies: Terasic DE1-SoC Board 23

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 FPGA Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 FPGA Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Intelectual Property (IP) Cores design . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 FPGA Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Terasic DE1-SoC Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Cyclone V Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Pyramic array overall design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 FPGA interconnections: Avalon Interface . . . . . . . . . . . . . . . . . . . . . . . 28

4.5.1 Avalon Memory-Mapped Interfaces . . . . . . . . . . . . . . . . . . . . . . 30

4.5.2 Avalon Streaming Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5.3 Avalon Conduit Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 FPGA Design 35

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 SPI Communication Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 SPI review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 SPI communication design . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.3 SPI System block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 FPGA implementation of Delay-and-Sum beamformer . . . . . . . . . . . . . . . 46

5.3.1 Digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.2 FIR theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.3 Filter-and-Sum Beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.4 FIR filters design in FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.5 System Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 HPS design and implementation 55

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Cyclone V Hard Processor System [18] . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 HPS features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.2 HPS-FPGA Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.3 HPS Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 SDRAM Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 HPS Booting and FPGA Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Pyramic Hybrid System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5.1 HPS and FPGA Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



Contents

6.6.1 Hardware design files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6.2 Software design files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Results and algorithms implementation 67

7.1 Experiment conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Microphone Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3 SRP algorithm results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 Conclusions and further directions for research 73

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A Appendix: Schematics 75

A.1 INMP504 conditioning circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Schematic for the ADC connection diagram . . . . . . . . . . . . . . . . . . . . . 75

A.3 Microphones power supply and daisy-chain connection . . . . . . . . . . . . . . 76

A.4 Pyramic array PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.5 PCB for Power Supply and GPIO connectors . . . . . . . . . . . . . . . . . . . . . 76

B Appendix: Development Tools 81

B.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.3 Attached multimedia files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C Appendix: FIR Filters coefficients 83

D Appendix: Pyramic Microphones positions 85

Bibliography 88

Curriculum Vitae 89

vii





List of Figures
2.1 Noise Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Noise Rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 SPL Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Linear microphone array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Circular microphone array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Spatial Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 DSP Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Pyramic array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 3D PCB array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Mics placements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 INMP5404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 ADC conversion timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 ADC serial timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 CycloneV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 DE1 blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Pyramic system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Burst writing cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Streaming Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 SPI communication basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Circular Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 SPI System block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 SPI Controller block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 SPI Controller Logic Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 DMA time diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.8 DMA state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9 SPI Slave module timing simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.10 SPI Streaming Modelsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.11 FIR Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



List of Figures

5.12 Delay-and-sum beamformer block diagram . . . . . . . . . . . . . . . . . . . . . 49

5.13 FIR IP architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.14 FIR Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.15 Beamformer Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.16 Audio Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 HPS Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 HPS memory space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Boot process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Boot sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6 HPS application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1 Speaker set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Pyramic set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 16 microphones waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Frequency sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.5 Speech waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.6 Test Azimuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.7 Test DoA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.1 Mic Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2 ADC Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.4 Pyramic array PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.5 PINS input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.6 GPIO pins and NTA0515mc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.7 15V Power Supply PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



List of Tables
3.1 Oversample bit decoding [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Avalon MM signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Microphones transfer multiplexer selection. . . . . . . . . . . . . . . . . . . . . . 43

5.2 SPI Slave Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Hardware resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 HPS peripheral region address map . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi





1 Introduction

1.1 Motivation

Nowadays, listening and localizing sound sources is crucial in applications where the direction

to the desired sound source is unknown. Apart of the number of available microphones to

capture the audio signals, the precision of localization can be affected by the ambient noise

and reverberation conditions.

This work presents the design, test, and operation of the Pyramic array, a large microphone

array for real-time acoustic DSP applications. The proposed design is based on a new genera-

tion of digital microelectromechanical (MEMS) microphones. An Altera field-programmable

gate array (FPGA) interfaces up to 48 such microphones to obtain samples representing the

sound pressure and processes them using a cascade of FIR filters. Moreover, the data is

stored and sent through the network to local storage, which can be used to perform offline

beamforming algorithms.

Thanks to recent MEMS microphones in conjunction with reconfigurable logic, Pyramic

array is a modular system which tackles ubiquitous computing for multi-channel audio

applications. The system optimizes the trade-off between weight, size, power consumption

and cost constraints of robotic systems for real-time audio applications.

1.2 Objective

The aim of the project is to build a novel 48 microphones modular array architecture called the

Pyramic array. The system acquires multi-channel audio samples through a parallel SPI master

to a host Altera Cyclone V device, which combines a Field Programmable Gate Array (FPGA)

and an ARM-9 Hardcore Processor (HPS). The data is processed in real time by hardware

accelerators FIR filters which implement a delay-and-sum beamformer. The ARM-9 processor

runs on a Ubuntu Core 14.04.4 operating system. The board has internet access thanks to an

Ethernet port connection. Moreover, direction of arrival algorithms are tested offline in order

1



Chapter 1. Introduction

to evaluate the reliability of the acquired audio data.

1.3 Contributions

In order to achieve our goals, we implemented the following solutions:

• A modular system with 6 linear arrays of 8 microphones each, which composes a total of

48 microphones distributed in the edges of a tetrahedron. Each array samples 8 audio

channels in parallel through an ADC at 48 kHz and 16 bits resolution.

• A parallel SPI communication between the microphones arrays and an FPGA platform

from Altera’s Cyclone V family.

• An interface between the FPGA and a 925 MHz ARM-9 processor located in the Hard

Processor System (HPS) of the Altera DE1-SoC board. The system runs on a Linux based

operating system.

• A parallel bank of hardware accelerators FIR filters which allows real time processing of

the microphones data for real-time beamforming applications.

• An Ethernet communication between the DE1-SoC host device and the Pyramic array,

which allows internet sharing and control of the system through a WebServer.

• A test of the acquired data by applying offline processing algorithms using the direction

of arrival algorithms developed at LCAV.

1.4 Structure of the thesis

The first main part of the thesis is composed by Chapters 2 and 3. Chapter 2 presents the main

challenges of processing audio with microphone arrays. For those purposes, different array

configurations are introcuded.

Chapter 3 explains the hardware used to build the Pyramic microphones array, which is a

custom hardware of 48 microphone array placed on the sides of a tetrahedron.

The second part of the project is focused on embedded systems design for real-time appli-

cations and it is formed by Chapters 4, 5 and 6. Chapter 4 introduces FPGA technologies and

explains Altera’s Cyclone V family DE1-SoC system, which has been chosen as a processing

unit for this project. Chapter 5 details the SPI communication and FIR filters Programmable

Interfaces(PI) designed in the FPGA part of the DE1-SoC.

Chapter 6 describes the HPS part of the DE1-SoC device and how it communicates with

the FPGA side to receive the data from the Pyramic array. Moreover, we will explain how the

recorded data is stored and how the user can interface with the microphone array through

2



1.4. Structure of the thesis

a WebServer, ssh and scp communication. Chapter 6 displays the results of different tests

performed with the Pyramic system. Finally, offline beamforming algorithms developed at

LCAV have been tested to analyze the reliability of the recorded data.

To conclude, the last part of the thesis summarizes the realized work and anticipates the

future directions in which the project can be continued.

3





2 Microphone arrays sound capturing
systems

In this chapter we will review the basis of sound capture and processing systems, emphasizing

into microphone arrays applications. First, we will describe some areas in which speech

enhancement algorithms might be critical. For those purposes, it is crucial to understand the

behavior of noise. Then, the main approaches and geometries behind microphone arrays

implementations will be explained [21].

2.1 Acoustic Noise

Captured sound is a mixture of wanted and unwanted signals. The speech we want to capture

is the wanted signal, while unwanted signals include other speech signals, reverberation, and

what in general we call noise. Noise sources usually degrade the desired signal, and might be

correlated or uncorrelated to it. Consequently, prior to designing algorithms to combat the

"enemy", we need to understand its properties and nature, the nature of noise.

2.1.1 Noise Sources

Wherever we go we are surrounded by noise. Listening to the environment is an exercise

of realizing the way in which background noise affects our daily lives. For instance, cars

passing by, PC fans noise, engine noise and people talking in nearby tables are some examples

of common noise sources. Fortunately, the human brain is able to compensate this noise

and even infer clues about the environment from it. However, this occurs below a certain

noise level threshold, which depends on the environmental conditions and above which the

perceived noise becomes annoying. An objective metric to benchmark audio intelligibility is

the Signal-to-Noise-Ratio (SNR), which is defined as the ratio of the desired signal and noise

energies and is usually measured in the logarithmic scale of Decibel (Db) [16].

In order to understand this double-edged nature of noise, it is important to recover its

spectral and temporal characteristics and understand how it can affect the desired signal.

Noise can be stationary, i.e., remains unchanged over time, such as the fan noise coming

5



Chapter 2. Microphone arrays sound capturing systems

Figure 2.1 – Top panel shows noise from a car, and the bottom panel shows its long-term
average spectrum. [16, p. 3].

from PCs, or nonstationary, such as restaurant noise, i.e., multiple people speaking in the

background. Figure 2.1 and 2.2 display time waveform examples of a car engine and restaurant

noise respectively, along with its corresponding long-term average spectra. The difference

between stationary (car engine noise) and non-stationary (restaurant noise) is clearer in the

frequency domain than in the time domain representation. While for the car noise most of

the energy is concentrated in the low frequencies, restaurant noise is more broadband as it

occupies a wider frequency range.

Sound Pressure Level (SPL) is presented as a common metric to measure the relative sound

pressure in reference to 20 µPa, which corresponds to the barely audible pressure level for

an average listener. Thanks to SPL, a compreshensive analysis and measurement of speech

and noise levels in real-world evironments can be done. In the same manner as the SNR, it is

expressed in decibels(dB):

ASPL = 20log10

(
P

Pr e f

)
. (2.1)

6



2.1. Acoustic Noise

Figure 2.2 – Top pannel shows noise from a restaurant, and the bottom panel shows its long-
term average spectrum. [16, p. 4].

2.1.2 Speech Signal

In this section, we will describe the wanted part of the mixture of sounds captured from the

microphone, i.e., a signal. In the context of this project by signal, we will mean human speech.

Despite the fact that in the signal processing domain human speech is a complex signal, it can

be characterized in the following segments [21]:

• Voiced segments are characterized by their fundamental frequency, called "pitch" and its

harmonics. For instance, for male voices, the pitch frequencies vary from 50 to 250 Hz,

while for female voices it ranges between 120 to 500 Hz.

• Unvoiced segments might take place simultaneously with voiced segment. However,

those segments are noise-like, usually characterized by the shape of their spectral

envelope.

• Silence segments are used to separate words and phonemes and are an integral part of

human speech.

7



Chapter 2. Microphone arrays sound capturing systems

2.2 Microphone arrays

Microphone arrays take advantage of multipath propagation, in which multipath components

are added coherently in order to increase the effective signal-to-noise (SNR) ratio. This con-

cept is inspired in antenna arrays for directional radio transmission and receiving applications,

which have been developed since World War I. Initially, sensor arrays were extensively devel-

oped as a tool for radar-based tracking of objects [19]. Therefore, the initial steps were based

on established working algorithms from antenna arrays. However, with those first attempts,

non-negligible differences between antenna and microphone arrays became visible.

Comparing with electromagnetic waves, sound is an extremely wideband signal, ranging

from 20 Hz to 20 kHz. In addition, construction constraints limit the size of the microphone

array - for instance, the length of the upper bezel of the laptop screen where we want to

integrate the microphone array. Moreover, the performance of microphone arrays can be

limited by microphone’s self-noise described in Section 2.1.1. The microphone parameters

manufacturing variations are higher than the ones of a passive antenna. Computing power is

another limiting factor for microphones array, which constrains the amount of microphones

that can be placed on the array, especially for real-time applications.

In despite of all the challenges, microphone arrays have been extensively developed for

applications such as room shape recognition [14] and direction of arrival (DoA) [15] detection.

Moreover, microphone array architectures can be a suitable solution for speech enhancement

and noise suppression applications. Till the moment, the largest planar array developed is

the LOUD array at MIT [10] composed of 1024 microphone transducers. However, we believe

placing fewer numbers of microphones in a 3D arrangement can be more efficient localizing

sound sources. [12] starts combining microphone arrays with FPGA architectures, showing

promising results for real-time application.

2.2.1 Types of microphone arrays

Linear microphone Arrays

In this configuration microphones are positioned in one line, therefore the work area of these

arrays is a half plane. It cannot be distinguished sound waves arriving under the same body

angle to the microphone array axis, which forms what is known as the "cone of uncertainty".

This occurs due to the fact that under these circumstances the sound wave reaches the

microphones in the same order and with the same delay. The work area is usually in the range

of ±45º from the line perpendicular to the microphone array axis. These arrays can change the

listening direction to capture the voices of several people, or to track the movements of one of

them. The number of microphones varies from one to eight, but it is typically two or four.

8



2.2. Microphone arrays

Figure 2.3 – LOUD 1020-microphone array developed at MIT [10]

Figure 2.4 – Linear microphone array [21, p. 171]

Circular microphone arrays

The microphones are positioned in a circle and they work mainly in one plane. They can

change listening direction slightly above the plane of the circle. For those reasons, they are

typically placed in the center of conference room tables.

Planar microphone arrays

Those microphones are positioned in one plane. The desired sound sources are usually

towards the direction perpendicular to the microphone array plane. Those arrays can be

mounted on the wall or on the ceiling of a conference room and can capture sound sources in

a half sphere. [10] enters in this category of microphone arrays.

9



Chapter 2. Microphone arrays sound capturing systems

Figure 2.5 – Circular microphone array[21, p. 173]

Volumetric (3D) Microphone Arrays

The Pyramic microphone array developed through this project is based on this type of mi-

crophone distribution. Three-dimensional microphone arrays can capture sound sources

from any direction in a 3D space; they do not have areas of confusion. The minimum number

of microphones is four, not lying in one plan, and under the condition of placing them just

hanging in the air.

2.3 Sound Capture model

2.3.1 Coordinate system

The Pyramic array designed through this project is a three-dimensional microphone array,

thus we will define a 3-D coordinate system. The position of each point c can be represented

by three coordinates in cartesian, c=(x,y,z), or polar, c = ( ρ , φ , θ ) coordinates.

Figure 2.6 – 3D Coordinate System [21, p. 175]

10



2.3. Sound Capture model

2.3.2 Far-field Model

The vector p = (pm ,m = 0,1, ..., M −1) denotes the positions of the M microphones in the

array, where pm = (xm , ym , zm) [21]. For a sound source at location c under non-reverberant

conditions, the captured signal from each microphone is

Xm( f , pm) = Dm( f ,c)S( f )+N ( f ), (2.2)

where the term on the right-hand side represents the phase rotation and the decay due to the

distance to the microphone ∥ c −pm ∥ and ν is the speed of sound. Through this project we

will assume that the sources are in the far field, i.e., far enough away that the sound arrives

approximately as a plane wave front. This assumption is reasonable for distances 5-times the

size of the microphone array, where

1

‖c −pi‖
≈ 1

‖c −pi‖
∀i , j (2.3)

Then the sound source can be described with direction φ and distance ρ from the center of the

coordinate system. In two dimensions the captured sound can be expressed with the following

expression:

Dm( f ,c) = 1

ρ
e− j 2π f ‖pm‖cos((pm)−φ)

ν
Am( f )Um( f ,c), (2.4)

where Um(f) represents the microphone directional response, Am(f) the frequency response of

the system preamplifier/ADC system and c is the speed of sound equal to 343 m/s.

2.3.3 Spatial Aliasing and Ambiguity

If we have equal signal delay in two microphones within the same microphone array for at

least two different directions spatial aliasing may occur. Imagine we placed symmetrically

two microphones with a distance between them d = ‖p‖ as in Figure 2.7. For this geometry,

looking to 2.3 (ignoring the terms Um(f) and Am(f)) it can be seen the signals coming from φ1

will reach the microphones with the same delay, leading to:

π
d

λ
si n(φ1)π= d

λ
si n(φ2)±2πn, φ1 6=φ2 (2.5)

As -1 ≤ sin(φ)≤ 1 we can have more than one solution when d >λ/2. This means that, to

prevent spatial aliasing and direction ambiguity, we have to distance the microphones closer

than half a wavelength of the highest frequency in the work band. Consequently, for a distance

d between microphones, the maximum frequency we can sample without spatial aliasing can

calculated from the following expression:

fmax = 1

τmax
= ν

d
, (2.6)

11



Chapter 2. Microphone arrays sound capturing systems

Otherwise, there will also be other directions equal to φ1 and π−φ1 where the delayed micro-

phone signals are coherent, i.e, there will be beams at non-desired directions.

Figure 2.7 – Spatial aliasing for two-element microphone array [21, p. 179]

2.4 Summary

In this chapter, we distinguished between the wanted and unwanted parts of a signal. We

introduced important properties of noise signals and how they can degrade speech signals

by reverberation or cross-talking. To address this problem, microphone arrays have been

introduced, which can perform algorithms to detect the direction of arrival of the wanted

signals.

12



3 Pyramic Microphone array

3.1 Introduction

This chapter presents the core of the project: The Pyramic microphone array, which is a

custom hardware for real-time audio processing developed at the Laboratory of Processors

Architecture (LAP) in EPFL. This array is formed by 48 microphone channels and is connected

to an FPGA device which performs real-time Digital Signal Processing (DSP) algorithms.

At the beginning of the chapter we will present a general overview of a DSP system chain.

After that, the Pyramic array will be introduced, presenting its main components and their

functionalities in detail.

3.2 Digital Signal Processing

Digital Signal Processing (DSP) is a mature technology used to transform or manipulate analog

or digital signals [17]. Nowadays, fundamental operations such as sampling, filtering or Fourier

Transform can be easily implemented as DSP algorithms. Discrete-time processing techniques

have shifted the importance of traditional analog signal processing systems in many applica-

tions, ranging from data communication systems to biomedical signal processing and robotics.

DSP techniques yield to more flexible, low-power and low-cost designs. Moreover, DSP is less

sensitive to noise when comparing with equivalent analog signal processing algorithms.

Figure 3.1 boils down a general application used to implement an analog system by means

of a digital signal processing (DSP) system. The recorded analog signal can be any imaginable

physical measurement like a temperature value or a variation in air pressure (i.e. an acoustic

signal). A sensor records the desired analog signal x(t), which is fed through an analog anti-

aliasing filter whose stopband usually starts at half the frequency (in order to fill the Nyquist

criteria) of the sampling frequency fs . The sampling frequency is given by the Analog-to-Digital

Converter (ADC), which usually implements a sample-and-hold circuit followed by a quantizer

and encoder modules. The ADC transforms the signal from the analog (x(t)) to the digital

13



Chapter 3. Pyramic Microphone array

domain(x[k]) by a process called sampling or discretization. The magic of sampling allows

us to represent signals in the digital domain, i.e., a numerical value of the signal based on a

binary representation. Finally, a discrete signal x[k] is sent to a host DSP system where digital

signal processing techniques are applied. A Digital-to-Analog-Converter (DAC) at the output

of the DSP block allows recovering the processed data into the analog domain again. This

architecture served as inspiration to design the DSP platform developed through this project,

the Pyramic array.

Figure 3.1 – A general DSP application [17, p. 2]

3.3 Pyramic Array

3.3.1 Overview

The Pyramic array is a custom hardware developed at the Laboratory of Processors Architecture

(LAP) in EPFL. The overall architecture is an embedded system specifically designed for multi-

channel acquisition and real-time processing of audio signals. The Pyramic array is composed

of 48 MEMS microphones distributed on the edges of a tetrahedron. It is a modular system

based on six linear arrays with eight microphone channels each. Figure 3.2 shows a perspective

of the Pyramic array. The inverted pyramid geometry served as an inspiration to address the

system as the ’Pyramic array’. This geometry allows detecting sound sources in both azimuth

and zenith angles, leading to a 3D representation of the surrounding sound field.

The six microphone arrays are connected in pairs by daisy-chain configuration. Each array

has an ADC which samples and transfers the data through a parallel Master SPI interface

programmed in an FPGA device. FPGAs are reprogrammable chips which allow parallelization

of algorithms, presenting very interesting for real-time applications. The chosen device is

Altera’s DE1-SoC board (Chapter 4). This board contains a single chip featuring both an

FPGA and a Hard Processor System (HPS), which contains an ARM Cortex-A9 processor. The

processor system runs on a Linux OS.

The recorded data is stored locally in an off-chip DDR3 memory and can be sent through the

network to a host computer, which can access the board by Ethernet and UART connections.

The HPS part loads the FPGA design when the system is powered on. The HPS reads all the

image files and devices trees from a fat32 partition in a microSD plugged in the DE1-SoC

board. The microphones data is stored as .wav files in the microSD memory as well.

Summarizing, Pyramic is a flexible and powerful device. On the one side, it is flexible due to

14



3.3. Pyramic Array

its modularity, which allows the designer to test algorithms upon different conditions such

as different microphone number or geometries. On the other side, it is powerful because the

FPGA allows performing computationally expensive algorithms with minimum latency, which

presents very interesting when dealing with the huge amount of information provided by an

array of 48 microphones.

Figure 3.2 – Pyramic microphone array developed at LAP, EPFL

3.3.2 Pyramic array layout

The Pyramic array of Figure 3.2 is composed of six PCBs connected in pairs by daisy-chain

connection. Figure 3.3 displays one PCB array, which main components are listed below:

• Eight INMP540 MEMS microphone transducers [13].

• Eight OPA170 operational amplifiers [25].

• One TPS780 power converter LDO from 5V to 3,3V [24].

• One AD7606 converter to sample the eight microphone signals [4].

• One NC7SZ32 OR gate for the daisy-chain connection of the BUSY signals [11].

Appendix A summarizes the main subsystems and schematic of each PCB array. Besides that,

it includes an explanation of the power system and some design configuration regarding the

15



Chapter 3. Pyramic Microphone array

Figure 3.3 – 3-D representation of a single array PCB, bearing eight microphone channels.

components of the array. The microphones distribution in each board is displayed in Figure

3.4. The distance between microphones has been calculated in order to attain the highest

frequency resolution and avoid spatial aliasing (Section 2.3.3). On the one hand, the shortest

distance between two microphones is 8 mm, according with Equation 2.6 the fmax recorded

without spatial ambiguity is equal to 42,5 KHz. On the other hand, the maximum distance

is 200 mm, corresponding to a fmax of 1,7 KHz. Therefore, with this logarithmic microphone

distribution the system is able to span a wide frequency range while maintaining a reasonable

size for the microphone array design.

Figure 3.4 – Eight mics placement in one Pyramic PCB array, where distances are in mm

3.3.3 INMP504 microphone

The transducer chosen for sensing the acoustic analog inputs is the INMP540 microphone. A

transducer transforms one form of energy to another. In our implementation, we are trans-

forming mechanical energy (a longitudinal wave which modifies air pressure) into electrical

16



3.3. Pyramic Array

energy (a voltage value).

Those microphones belong to a new category of low-power, miniature MEMS microphones,

which reduced size allows integrating them massively in a small area, suitable for many chan-

nel audio processing applications. Its omnidirectional behavior ensures uniform frequency

response in all directions. Figure 3.5 displays the frequency response of the INMP504 trans-

ducer, which possesses characteristics of a high-pass filter with a cut-off frequency around

100 Hz. Note that the microphone bears a non-homogeneous frequency response between 2

kHz and 11 kHz. This high-frequency peak can be compensated in further post-processing.

For an extensive information about the INMP5404 characteristics refer to its Datasheet [13].

Figure 3.5 – INMP5404 frequency response [13]

3.3.4 Signal conditioning

The anti-aliasing filter mentioned in Section 3.2 is in charge of preparing the acquired electrical

signal for the ADC at the next stage. It is composed of the following elements: a coupling

capacitor to remove DC offset from the input, a non-inverting operational amplifier (OPA170)

circuit to adapt the signal to the resolution of the ADC and a ferrite bead to reduce Power

Supply Rejection Ratio (PSRR) from the microphone supply of 3,3 V. The circuit schematic and

the calculations of its main parameters can be found in Appendix A.1.

3.3.5 AD7606 Analog to Digital Converter

Usually DSP algorithms are limited to handle a finite amount of data, otherwise, a computing

system able to perform an infinite number of calculations would be necessary. Unfortunately,

nowadays even most advanced computers need numerical representation of continuous

values in order to perform meaningful operations. To address those problems, an Analog-to-

17



Chapter 3. Pyramic Microphone array

Table 3.1 – Oversample bit decoding [4].

OS[2..0]
SNR 10 V Range

(dB)
3 dB BW 10 V Range

(kHz)
Maximum Throughput

CONVST Frequency (kHz)
000 90 22 200
001 91.292 22 100
010 93.6 18.5 50
011 95 11.9 25
100 96 6 12.5
101 96.7 3 6.25
110 97 1.5 3.125
111 Invalid

Digital Converter (ADC) is presented as a device capable of converting an analog representa-

tion of a signal into a discrete value. It samples an analog input, holds its value for a specific

amount of time (called the sampling period Ts) and generates a digital representation of the

data. This value can be sent to a digital system such as a processor, a memory device or an

FPGA.

ADCs are core components in any digital application. For our implementation AD7606

device from Analog Devices was chosen. AD7606 is a 16-bit, Successive Approximation ADC

component which can receive up to eight multiplexed channel inputs and allows either parallel

or serial mode output reading. This allows to convert up to eight microphone signals from

each array in parallel. Moreover, an intermediate digital filter allows to vary fs from 3,125

kHz to 200 kHz. Figure 3.6 presents the block diagram of the system and presents the pin

connections of the ADC. For instance, depending on the values of OS[0..2] pins the maximum

sampling frequency and SNR can be controlled as represented in Table 3.1. In our design

OS[2..0] = 010 was chosen, which corresponds to a maximum throughput of 20 µs (fs = 50

kHz) and SNR of 93,6 dB. For a broader description of the characteristics of the AD7606 refer

to the Datasheet provided by Analog Devices [4]. Furthermore, Appendix A.2 summarizes the

connections diagram designed for the AD7606 in the Pyramic system. For this application, the

ADC was configured with the following characteristics:

• 8 analog parallel input channels.

• Serial reading through Dout A .

• 16 bits resolution.

• 48 kHz sampling frequency (fs).

• ±10 V bipolar output (LSB = 305µm).

• Signal to Noise Ratio (SNR) of 93,6 dB.

18



3.3. Pyramic Array

Figure 3.6 – AD7606 Block Diagram by Analog Devices [4].

Signed-Magnitude (SM)

The output data from the ADC is 16-bits mono signed-magnitude audio data representation.

Signed-Magnitude (SM) represents an integer as a N-bit signal where the sign and the magni-

tude are represented separately. The first bit xN-1 (i.e., the MSB) represents the sign and the

remaining N-1 bits the magnitude. The representation becomes:

X =


N−2∑
n=0

xn2n xN−1 ≥ 0

−
N−2∑
n=0

xn2n xN−1 < 0

The range of SM numbers is [-(2N−1-1),2N−1-1]. The advantages of this representation

is a simplified prevention of overflows, but the disadvantage is that addition must be split

depending on which operand is larger.

3.3.6 Timing requirements

Once the audio data is sampled and quantized it is necessary to stablish a reliable and fast

communication protocol between the ADC and a processing system. In our application, the

19



Chapter 3. Pyramic Microphone array

ADC should indicate to the receiver that every 20,8 ms a new sample of 16-bits will be sent.

For those purposes, the ADC provides control signals and timing requirements which allow

the different systems to acknowledge digital data transmission from the ADC.

Figure 3.7 boils down the general timing requirements during a conversion cycle of the ADC.

First, the system is initialized by sending a RESET high pulse. Then, a low pulse of CONVST

must be applied to start the conversion. Note that since the data can be read from two output

lines, Dout A and DoutB , two conversion lines are available, CONVSTA and CONVSTB . In our

design, we are just reading data from one line, Dout A , so we can apply the same signal to

CONVSTA and CONVSTB . After a CONVST low pulse has been sent, the ADC will assert the

BUSY signal, which falling edge will mark the end of the conversion process. The time BUSY

remains high is called the conversion time (tconv ), while the cycle time (tc ycle = Ts) is the time

between rising edges of two consecutive CONVST low pulses. When a conversion is finished,

the sampled data is available in the ADC output and can be can read through the Dout lines in

parallel or serial mode when CSn is low. Serial implementation was chosen in our design. As it

can be seen in Figure 3.7, it is possible to read the previous samples during a new conversion

(i.e., while BUSY is high), which is useful to adjust the fs and reduce throughput if necessary.

To sum up, after BUSY signal is deasserted and while CSn is low the acquisition platform can

read the data through Dout A in serial mode.

Figure 3.7 – AD7606 conversion time diagram [4]

While CSn is low, the ADC sends a new bit of information every falling edge of SCLK. Figure

3.8 displays the process, where the transmission starts from the MSB (the sign) of the first ADC

input channel V1. Note that our design uses just Dout A , which will transmit the eight channels

from V1 to V8. From this information, the minimum low pulse width of CSn can be calculated

as follows:

tr ead = channel s ∗ r esoluti on

fsclk
= 8∗16

fsclk
, (3.2)

where fsclk is SCLK frequency, channel s the number of analog input channels for one ADC

and r esoluti on the number of bits of an audio sample. Fsclk determines the reading speed

and is provided by the transmission system. However, timing requirements regarding the

20



3.4. Summary

AD7606 Datasheet [4] must be fulfilled. For instance, [4] requests tr eset high pulse width from

Figure 3.7 to last more than 50 ns in order to be a valid signal. Regarding fsclk , [4] displays a

maximum serial reading frequency of 15 MHz when Vdr i ve = 3,3V. According with Equation

3.2, if fsclkM AX = 15 MHz the minimum tr ead necessary for reading one conversion will be

equal to 9µs. This value represents the minimum width of a CSn low pulse.

Figure 3.8 – AD7606 conversion tiime diagram [4]

3.4 Summary

In this chapter, we presented an overview of the Pyramic array, its different components

and the design considerations behind this new technology. The first steps of the DSP chain

presented in Figure 3.1 have been introduced. Particularly, we explained the characteristics of

the microphone transducers and the ADC converters implemented in the array. Nexct chapter

will present the FPGA based processing system chosen for this platform.

21





4 FPGA Technologies: Terasic DE1-SoC
Board

4.1 Introduction

FPGAs design still a rapidly evolving field, each year main developers such as Altera and

Xilinx are building faster and more powerful chips containing reconfigurable hardware. Those

achievements motivate the use of FPGA for Digital Signal Processing (DSP) applications and

to substitute traditional processors in DSP systems as the one presented in Figure 3.1. As a

consequence, in order to understand why FPGAs are preferred over more traditional solutions,

this chapter will introduce FPGAs technologies and will present the device upon this project

was built on: the DE1-SoC Board.

4.2 FPGA Technology

4.2.1 FPGA Benchmark

Field Programmable Gate Arrays (FPGAs) are a member of a class of devices called field-

programmable logic (FPL). FPLS are defined as programmable devices containing repeated

fields of arrays of small logic blocks and elements. FPGAs, similarly to ASIC (Application Spe-

cific Integrated Circuit), allow application specific design. However, building a programmable

gate array solution allows full control over the design implementation without the lag and

need for any physical IC fabrication facility. Several advantages offered by FPGAs over ASIC

technologies are [17]:

• Die size and weight reduction.

• Parallelization leads to higher throughput.

• Better security against unauthorized copies.

• Reduced device and inventory cost.

• Reduced board test costs.

On the other hand, in the field of DSP programmable digital signal processors (PDSPs)

23



Chapter 4. FPGA Technologies: Terasic DE1-SoC Board

have enjoyed tremendous success during the last decades. Their architecture is based on

a reduced instruction set computer (RISC) paradigm that allows performing fast multiply-

and-accumulate (MAC) operations, which are the basic block of signal processing algorithms.

By using a multistate pipeline architecture, PDSPs can achieve MAC rates limited only by

the speed of the array multiplier. However, compared with FPGAs, which allow hardware

parallelization, FPGAs can perform more efficient for high-bandwidth signal processing appli-

cations such as multimedia information like audio [17].

Summarizing, FPGAs can still be comparable to ASICs in terms of performance while

they do not require additional semiconductor manufacturing steps. The fact FPGAs allow

reprogrammable hardware designs offers a lot of flexibility to the implementation. On the

other hand, the main drawback regarding FPGAs design is that power consumption usually is

higher than for traditional systems, especially at higher frequencies. In the end, it is expected

FPGAs will dominate most front-end (sensor) applications like FIR filters or FFTs, while PDSP

will dominate applications that require complex algorithms. This will lead to complex mixed

implementations where the designer needs to bear specific knowledge about software and

hardware design in order to build powerful real-time embedded systems.

4.2.2 Intelectual Property (IP) Cores design

Although FPGAs are known for their capability to support rapid prototyping, the rapidly

increasing complexity of FPGAs are forcing a methodology shift towards the use of intellectual

property (IP) macrocells or mega-core cells. Those cells provide the designer with specific

functions, such as FIFOs, UARTs, oscillators, SPI or FIR filters. Therefore, the designer only

needs to specify certain attributes of the system in order to match the design requirements

and the synthesizer will generate a hardware description code or schematic for the resulting

solution. Therefore, the design cycle is reduced while providing a good utilization of the device

resources. The main type of IP cores can be divided into three categories:

1. Soft Core: It is a behavioral description of a component that needs to be synthesized

with FPGA vendor tools such as Quartus Prime Programmer. Modifications in the

hardware description language (HDL) file provided in VHDL or Verilog can be made.

Altera Cyclone V family devices implement a Nios II softcore processor, which is a

processor implemented with Logic Elements (i.e., Look Up Tables and D-type Flip Flops)

in an FPGA.

2. Parameterized Core: It is a structural description of a component. While the parameters

of the design can be changed before synthesis, the HDL is usually not available. Altera

provides most of the cores in this format, which allows certain flexibility but are not

compatible with other FPGA vendors. For instance, the FIR filters designed in Section

5.3.4 are based on those type of IP blocks.

3. Hard Core: A fixed netlist core is a physical description of the IP system. When real-time

constraints are required, the cores are optimized for a specific device family (such as

24



4.3. Terasic DE1-SoC Board

Cyclone V). Those cores have fixed parameters but allow integration and simulation in

larger projects. Altera’s Cyclone V provides a hardcore processor (HPS) along with an

FPGA in the same die, merging simultaneous software and hardware design, which will

be discussed in Chapter 6.

In the end, when building an FPGA design it is necessary to choose between design flexibility

(soft core) or fast results and reliability of data (hardcore). While soft cores are more flexible

and parameterized, the debug time can be longer. While hard cores are verified in silicon, can

reduce development, test, and debug time but no VHDL code is available to look at. Finally,

parameterized cores are a compromise between flexibility and reliability of the generated

code.

4.2.3 FPGA Design

When building an FPGA system based project, first the designer needs to organize the ob-

jectives of the project as we did in Chapter 1. Later on, it is necessary to understand the

timing requirements of the system as we introduced in Section 3.3.6. After that, the design

is completed by drawing block diagrams as the ones that will be introduced in Section 5.2.3.

Once the design is completed we can start building and simulating the sytem.

For programming FPGAs two main HDL languages are available: VHDL and Verilog. Nowa-

days, there exist new tools which perform automatic translation from C to HDL. However,

through this project, VHDL has been used in Altera-supplied software. However, Quartus Pro-

grammer generates some IP cores and files in Verilog format. Quartus Programmer software is

a fully integrated system with VHDL and Verilog editor, synthesizer, simulator, and bitstream

generator. For simulation, Modelsim has been used, which also supports Verilog and VHDL

test files. On the other hand, Saleae Logic Analyzer for time testing and timing verification has

been employed. For more details about the required software refer to Appendix B.

4.3 Terasic DE1-SoC Board

Terasic DE1-SoC board [22](Figure 4.1), from the Altera Cyclone V family, has been imple-

mented as the processing system for the Pyramic array project. An overview of the system is

made in the following sections.

4.3.1 Specifications

The main features of the DE1-SoC board implemented for the design of the PyraMic system

are listed below. For a complete overview of all the available modules refer to [23].

FPGA Device

• Cyclone V SoC 5CSEMA5F31C6 Device

25



Chapter 4. FPGA Technologies: Terasic DE1-SoC Board

• Dual-core ARM CORTEX-A9 (HPS)

• 85K Programmable Logic Elements

• 4’450 Kbits embedded memory

• 2 Hard Memory Controllers

Memory Device

• 1 GB (2x256Mx16) DDR SDRAM on HPS.

• MICRO SD Card Socket on HPS.

Communication

• 10 100 1000 Ethernet.

• USB to UART (micro USB type B connector).

Connectors

• One 40-pin Expansion Header (GPIO0) to acquire the data from the AD7606 device.

Audio

• 16/24/32-bit, line-out CODEC.

Figure 4.1 – Terasic DE1-SoC Board [22].

26



4.3. Terasic DE1-SoC Board

Switches, Buttons and Indicators

• 4 User Keys (FPGAx4).

• 10 User switches (FPGA x10).

• 11 User LEDs (FPGA x10;HPS x1).

• 2 HPS Reset Buttons.

• 2 Six 7-segment displays.

Power

• 12V DC input.

4.3.2 Cyclone V Overview

The Cyclone V device consists of a hard processor system (HPS) and an FPGA portion in a

single-die system on chip (SoC). The HPS contains a microprocessor unit (MPU) subsystem

with dual ARM Cortex-A9 MPCore processors, flash memory controllers, SDRAM L3 inter-

connect, on-chip memories, support peripherals, interface peripherals, debug capabilities,

and phase-locked loops (PLLs). The dual-processor HPS supports symmetric (SMP) and

asymmetric (AMP) multiprocessing.

The FPGA portion of the device contains the FPGA fabric, a control block (CB), phase-

locked loops (PLLs), and depending on the device variant, high-speed serial interface (HSSI)

transceivers, hard PCI Express (PCle) controllers, and hard memory controllers (Figure 4.2).

Figure 4.2 – Altera SoC Device Block Diagram [22]

The FPGA portion of the device starts when the it is released from reset state (e.g., power

up). The HPS contains exclusively hard logic. The Cyclone V SoC can be used in 3 different

27



Chapter 4. FPGA Technologies: Terasic DE1-SoC Board

configurations:

• FPGA-only

• HPS-only

• FPGA and HPS

On the other side, the FPGA has to be configured either through

• the HPS

• JTAG configuration through an externally supported device such as Quartus Primer

programmer.

The MPU subsystem can boot from

• flash devices connected to the HPS pins

• from memory available on the FPGA portion of the device after the FPGA is configured

by an external source

4.4 Pyramic array overall design

Pyramic array interacts with DE1-SoC board using both the FPGA and HPS part. An overall

view of the system architecture is displayed in Figure 4.3. Note that the system clock is 50 MHz

and the reset is active low. Additionally, the FPGA part features a Nios II softcore processor

[6] which is not used for this project. Chapter 5 focuses exclusively on the design of custom

components and IP cores implemented in the FPGA part, while Chapter 6 explains in more

detail the HPS unit, how it is configured for the project and how it interacts with the FPGA

part.

Before explaining the custom components designed for the FPGA part of the microphones

array, it is necessary to understand how to interconnect different components in the FPGA

part of Altera devices. For those purposes, the following section will introduce the Avalon bus

interface.

4.5 FPGA interconnections: Avalon Interface

The Avalon bus provided by Altera is an internal interface which allows connecting com-

ponents inside the FPGA design [2]. Besides that, the Avalon Interface performs arbitration

between different slaves and masters units, i.e., it determines which component can access the

data and address buses each cycle. The Avalon interface standardizes interfaces for high-speed

data streaming, reading and writing registers and memory, and controlling off-chip devices

and custom components. These standard interfaces are designed into the components avail-

able in Qsys program, available within the Quartus programming tools. The main interfaces

are briefly described below:

28



4.5. FPGA interconnections: Avalon Interface

Figure 4.3 – Pyramic array embedded system overview.

29



Chapter 4. FPGA Technologies: Terasic DE1-SoC Board

• Avalon Streaming Interface (Avalon-ST): An interfaces which supports unidirectional

flow of data between source and sink units.

• Avalon Memory Mapped Interface (Avalon-MM): An address-based read/write inter-

face typical of master-slave connections.

• Avalon Conduit Interface: An interface type that acoomodates individual signals or

groups of signals that do not fit into any of the other Avalon types. They can be connected

inside a Qsys system or they can be connect to other modules in the design or to FPGA

pins.

• Avalon Clock Interface: An interface which drives or receives clock. For our system a

clock of 50 MHz has been used.

• Avalon Reset Interface: An interface that provides reset connectiviy. For our system a

active low reset signal has been used.

4.5.1 Avalon Memory-Mapped Interfaces

Avalon Memory-Mapped (Avalon-MM) interfaces can be used to implement read and write

interfaces for master and slave components. For instance, a Direct Memory Acces (DMA)

component can access memory by implementing Memory-Mapped transfers. The main

signals of the interface are described in Table 4.1. The widths of the signals are the ones chosen

for the Pyramic implementation.

Design example: Burst write transfer

A burst executes multiple transfers as a unit, rather than treating every word independently.

Burst may increase throughput for slave ports that achieve greater efficiency when handling

multiple words at a time, such as DDR3 memories. The net effect of bursting is to lock the

arbitration for the duration of the burst, defined by the Burstcount output signal.

When a burstcount of <n> is presented at the beginning of the burst, the slave must ac-

cept<n> successive units of writedata to complete the burst. Arbitration between the master-

slave pair is locked until the burst is completed. The main advantage of this lock is that it

guarantees that no other master can execute transactions on the slave until the write burst is

completed.

Figure 4.4 shows a write burst transfer where burstcount = 4, i.e., the bus is locked for 4

cycles to send four consecutive writedata signals. The numbers in the timing diagram, mark

the following transitions:

1. The master asserts address, burstcount, write and drives the first unit of writedata,

indicating the first writing transfer cycle.

30



4.5. FPGA interconnections: Avalon Interface

Table 4.1 – Avalon MM signals

Signal role Width (bits) Direction Description

address 32 Master to Slave
Indicates the memory address
where the data is write/read to/from.

byteenable 4 Master to Slave

Each bit corresponds to a
byte in writedata and readdata.
For a 32-bit slave (4-bits):
- If 1111 writes full 32 bits
- If 0011 writes lower 2 bytes
- If 1100 writes upper 2 bytes

read 1 Master to Slave
Asserted to indicate a read
transfer.

readdata 32 Slave to Master
The readdata driven from the
slave to the master in response
to a read transfer.

write 1 Master to Slave
Asserted to indicate a write
transfer.

writedata 32 Master to Slave
The writedata driven from the
master to the slave in response
to a write transfer.

waitrequest 1 Slave to Master

Asserted by the slave when it
is unable to responde to a read
or write request. Forces the
master to wait until the
interconnect is ready to proceed
with the tranfer. A master must
take not assumption about the
assertion of waitrequest. Even
at the start of the transfer, the
master initiates the transfer needs
to wait unitl waitrequest is
deasserted.

burstcount 4 Master to Slave

Used by bursting masters to
indicate the number of transfers
in each burst. For instance, a 4-bit
burstcount signal can support a
maximum burst count of 8.

31



Chapter 4. FPGA Technologies: Terasic DE1-SoC Board

2. The slave immediately asserts textitwaitrequest, indicating it is not ready to proceed

with the transfer. The Master has to wait before starting the transfer.

3. When waitrequest is low the slave captures addr1, burstcount, and the first unit of

writedata. On subsequent cycles of the transfer, address and burstcount are ignored.

4. The slave captures the second unit of data at the rising edge of clk.

5. The burst is paused while write deasserted.

6. The slave captures the third unit of data at the rising edge of clk.

7. The slave asserts waitrequest. Consequently, all outputs are held constant through

another clock cycle.

8. The slave captures the last unit of data on this rising edge of clk. The slave write burst

ends.

The beginbursttransfer signal is asserted for the first clock cycle of a burst and is deasserted

on the next clock cycle. However, this signal has not been implemented in our FPGA design.

Figure 4.4 – Slave write burst of length 4 [2].

4.5.2 Avalon Streaming Interfaces

Avalon Streaming (Avalon-ST) interface drives unidirectional data with high bandwidth and

low latency. For DSP applications, this interface allows to directly stream data between differ-

ent modules in an FPGA design with a lot of flexibility. The interface supports from a single

stream of data without knowledge of channels or packet boundaries till more complex protocol

capable of burst and packet transfer with packets interleaved across multiple channels. Figure

4.5.2 represents each signal direction, while the function of each signal is described below:

• startofpacket: Marks the active cycle containing the start of the packet. It is only inter-

preted when valid is asserted.

• endofpacket: Marks the active cycle containing the end of the packet. It is only inter-

preted when valid is asserted.

32



4.5. FPGA interconnections: Avalon Interface

• ready: On interfaces supporting backpressure, the sink asserts ready to mark the cycles

where transfers may take place, i.e, if ready is asserted on cycle <n>, next cycle is

considered a ready cycle. 1.

• valid: This signal qualifies data on any cycle where data is being transferred from the

source to the sink. On each valid cycle the data

• data: Carries the bulk of the information being transferred from the source to the sink.

The data consists of one or more symbols being transferred on every clock cycle. The

dataBitsPerSymbol parameter defines how the data signal is divided into symbols.

• channels: It is driven by the source to indicate the channel to which the data belongs.

In each active cycle, all of the data transferred belongs to the same channel, while the

source may change to a different channel on successive active cycles. Additionally, the

maxChannel parameter indicates the maximum channel number. If the number of

channels an interface supports changes dynamically, maxChannel is the maximum

number the interface can support.

Figure 4.5 shows a 32-bit example where dataBitsPerSymbol=8. Data transfers occurs on

cycles 1,2,4,5, and 6, when both ready and valid are asserted. Since during cycle 1, startofpacket

is asserted the first 4 bytes of packet are transferred. During cycle 6, endofpacket is asserted

and valid is high as well, which indicates that this cycle is the end of the packet data transfer.

empty has a value of 3, which indicates that at the end of the packet 3 of 4 symbols are empty,

however this signal is not implemented in our design, neither error signal.

4.5.3 Avalon Conduit Interfaces

Avalon Conduit interfaces group an arbitrary collection of signals, which direction can be seen

as input, output or bidirectional by the FPGA device. Conduits can be used to interconnect

different modules inside a Qsys system or to drive off-chip device signals, such as memory

controllers or data and control signals for devices such as the Pyramic array. An important

1Inded, in a more general case if ready is asserted on cycle <n>, <n + readyLatency> should be considered as
ready cycle. However, in our Pyramic implementation readyLatency = 0 by default

33



Chapter 4. FPGA Technologies: Terasic DE1-SoC Board

Figure 4.5 – 32 bits single channel Avalon Streaming Interface with packet transfer.

constraint of Conduit signals is that when connecting them the roles and widths must match

and the directions must be opposite.

4.6 Summary

This chapter introduced FPGA technologies and compared its performance with ASIC and

PDSP implementations. The IP core design philosophy is presented, while some FPGA design

methodologies are described. Next, Terasic DE1-SoC from Altera Cyclone V family is presented,

along with its main modules and a complete overview of the Pyramic array architecture imple-

mented in the DE1-SoC board. Finally, the most important Avalon interfaces are explained in

order to understand better the FPGA designs which will be explained in the following chapter.

34



5 FPGA Design

5.1 Introduction

In order to communicate with the Pyramic array, a parallel Master SPI interface has been

designed in the FPGA part of the DE1-SoC board. The interface conveys the output samples

from the AD7606 to an FPGA platform. A custom programmable interface (PI) in VHDL is

designed for those purposes. Additionally, real-time FIR filters designed for delay-and-sum

beamformer algorithms are presented as well. The output of the beamformer is converted

send to an audio line out DAC located in the DE1-SoC board.

Through this chapter we will present a top-bottom approach, i.e., from an overall architec-

ture of the system to a detailed explanation of each block design and performance.

5.2 SPI Communication Design

5.2.1 SPI review

A Serial Peripheral Interface (SPI) is a synchronous communication standard developed by

Motorola, mainly used for short distances communications such as in embedded systems. It is

a full-duplex interface, in which a Master unit starts a transmission/reception of information

to/from a selected slaves. The main signals which compose a basic SPI interface are listed

below, while Figure 5.1 represents a generic block diagram of an SPI system.

• SCLK Serial clock provided by the Master unit. Usually the data in transmitted/received

in the falling edge of SCLK to/from the selected Slave.

• MOSI, Master out Slave in, data sent by the Master unit to the selected slave.

• MISO, Master in Slave out, data sent to the Master unit by the selected slave.

• SS, Selected Slave, indicates which slave have access to the Master. There is one by slave

and usually, it is active low.

35



Chapter 5. FPGA Design

Figure 5.1 – Generic SPI communication block diagram.

5.2.2 SPI communication design

The Pyramic array communicates with the DE1-SoC device from Altera following an SPI

communication protocol. The ADC sends the sampled data to the FPGA device, which receives

the data and sends it to memory and to other FPGA modules for further processing. Those are

the main design considerations of the developed SPI_System module:

• The communication should be single-master multi-slave, where the FPGA is the Master

and the ADC modules connected in daisy-chain by pairs are the Slaves.

• The data transmission should be unidirectional from Slave to Master, i.e., only the MISO

signal is transmitted.

• The microphones data should be available as Avalon Streaming Interface and Avalon

MM.

• The memory distribution will be as in Figure 5.2. The data will be written in 32-bits

memory addresses, each of them containing two microphone signals of 16-bits each.

• The system should allow a burst transfer to memory with a burstcount of 4, meaning

that each burst transfer will convey eight channels from the Pyramic array.

• CSn corresponds to Slave-Select signal, SCLK to the SCLK from the AD7606, while MISO

will correspond to the serial output Dout A .

• All the ADC slave modules should send the information at the same time. Therefore,

several MISO lines will be implemented to perform serial transfers in parallel.

• The data transmission should be circular when a Start signal is high as indicated in

Figure 5.3. Moreover, two flag signals, Buffer1 and Buffer2, will mark the beginning, half

36



5.2. SPI Communication Design

and end of each circular period.

Figure 5.2 – Pyramic samples memory distribution

Figure 5.3 – Circular buffering of samples with Buffer1 and Buffer2 flags

5.2.3 SPI System block diagram

SPI_System is the FPGA HDL module developed through this project which interfaces a parallel

SPI master communication. The module receives conduit signals from the Pyramic ADCs and

sends the audio data through a DMA unit to memory. Moreover, the data is sent to a streaming

interface. All the process is controlled by a slave module. Figure 5.4 displays the full block

diagram of the SPI_System, the main components are described below:

37



Chapter 5. FPGA Design

• SPI_Controller: The SPI controller module is in charge of interacting directly with the

AD7606 unit through conduit signals. It implements the SPI communication in order

to receive the microphones data from the ADC in parallel from all the microphone

arrays. Moreover, the data is stored in registers which can be read in real-time by a

Direct Memory Access (DMA) unit and it is controlled by a SPI_Slave slave module.

• SPI_DMA: This module is a Direct Memory Access (DMA), which is able to write di-

rectly in the different memories of the DE1-SoC board. It receives the data from the

SPI_Controller module and sends it to an Avalon MM SDRAM Controller located in the

HPS part. It is controlled by the SPI_Slave module.

• SPI_Slave: This Programmable Interface (PI) can be accessed by the main program

to control the SPI communication. It is possible to change its register values to send

instructions or receive information from the system. Its main functionalities are to set

the length of the acquisition, the base address and start and stop the acquisition.

• SPI_Streaming: It receives the data from the DMA unit as Avalon ST interface. This way,

the audio data can be sent to other modules for further processing in the FPGA. In our

implementation the data is driven to an FIR filters bank.

Figure 5.4 – SPI System Block Diagram.

38



5.2. SPI Communication Design

SPI Controller module

The SPI Controller module communicates directly the FPGA with the ADCs of the Pyramic

array. Figure 5.5 details the inner architecture of the system. The signals SCLK, RESET and

CSn are sent to the three ADCs according with the timing requirements of Figure 3.7 and [4].

SCLK frequency is 12,5 MHz, which is generated by dividing the system clock clk of 50 MHz by

four. A D type Flip-Flop synchronizes the BUSY OR input signal with the system clock in order

avoid metastability.

The FPGA is the Master, which receives data from six slaves (the ADCs) in parallel, connected

by pairs with daisy-chain connection and each of them sending a different MISO signal. Figure

5.6 displays the waveform outputs recorded with the Saleae Logic Analyzer. Although just

MISO_00 signal is displayed for simplicity purposes, note that MISO_01,MISO_10, MISO_11,

MISO_20 and MISO_21 are recorded in parallel and present the same behavior as MISO_00.

There are as many MISO signals as the number of arrays we are using, by default we use

six arrays, each of which bears eight microphone channels. When CSn is low, every SCLK

falling edge a bit is sampled for each microphone, starting from the MSB. An internal counter

counts 16 falling edges of SCLK. Then, another counter increments the channel number and

the Serial to Parallel register stores the sample from the current channel of the six arrays.

The next sample of 16 bits from the next channel is recorded in the same way till the eight

microphone channels of each board are stored.

Once in the register, the data can be read in parallel and stored in an array of 48 FIFOs called

FIFO_MIC module. FIFO (First In First Out) modules are very recurrent in data buffering for

streaming applications and interfaces design. In this project Altera SCFIFO (Single Clock FIFO)

IP Core [9] has been used. The main signals of the FIFO are as follows:

• clock: Connected to the system frequency of 50 MHz. It sets the writing and reading

speed.

• data: 16-bits input data in the writing side.

• q: 16-bits output data in the reading side.

• rdreq: When asserted a new output value each clock cycle is read.

• wrreq: When asserted a new output value each clock cycle is written.

• usedw: Number of words (samples of 16-bits) written in the FIFO. Maximum capacity is

of three words per FIFO.

When the Parallel to Serial register samples all the 48 microphone channels it sends a

wrreq signal to the 48 FIFOs module and it loads a sample in each FIFO. When there are two or

more words written in every FIFO (i.e., usedw ≥ 2 ∀ FIFO), Data Available will send a positive

pulse. Then, the DMA unit will send a wrreq signal through DataRd signal. The samples will be

stored in an output register and sent through a multiplexer to the DMA unit in pairs through

Data[31..0] signal. The array_vector[2..0] and sel[2..0] signals control the array and channel

number to be transmitted.

39



Chapter 5. FPGA Design

Figure 5.5 – Block diagram of the SPI Controller module

Regarding the timing of the system, SCLK bears a frequency of 12,5 MHz. Therefore,

according to Equation 3.2, the time needed to complete an acquisition of one sample will be

equal to 10µs, which matches with the results in Figure 5.6. If fs is equal to 48 kHz (21 µs), since

it is possible to read during conversion (i.e., while BUSY is high) we can perform real-time

processing of the audio samples during the 11 µs available between samples. Once the data

has been acquired, some clock cycles will be spent sending the data to memory through a

DMA unit.

SPI DMA module

A Direct Memory Access (DMA) module is a Master unit that can transfer data directly to

memory controllers. It is a programmable interface that must be programmed by the processor

before it is operational. When the access bus is busy, the DMA performs arbitration and waits

until the bus is available to send the next sample. Moreover, the DMA can perform burst

40



5.2. SPI Communication Design

Figure 5.6 – SPI communication waveforms from Saleae Logic Analyzer.

transfers as the one explained in Section 4.5.1, reducing the transfer latency.

The 32-bits Length and Address signals are given by the slave module and indicate the length

of the acquisition and the base address where the data will be written in the physical memory.

Note that length it is not the number of samples per channel, although it represents the total

number of samples of all the channels of the array. The 16-bits microphone signals are stored

in pairs in the 32-bits address space as indicated in Figure 5.2.

Figure 5.7 – SPI DMA module timing simulation in Modelsim.

The DMA unit will have access to the SDRAM memory controllers to write the audio data

into a 1 GB DDR3 memory included in the DE1-SoC device. In our design, only 500 MB are

available to store the audio data. Therefore, if we record the 48 microphone channels at fs =

48 kHz using all the available physical memory the maximum acquisition is equal to:

tacq = 500MB

r esoluti on ∗ channel s ∗ fs
= 500MB

16bi t s ∗48channel s ∗48kH z
= 108.5s (5.1)

In order to overcome this limit, the DMA can write the data in a circular buffer. A circular

buffer starts writing new data in the base address when the buffer overflows. Address indicates

the base address where to start writing the data each period, while Length indicates the period

duration (i.e., the size of the buffer). To exit from circular buffer mode the Start needs to be is

low. In that case, the system transfers the data till the current period finishes. Additionally,

41



Chapter 5. FPGA Design

the DMA makes available Buffer1 and Buffer2 signals to the SPI slave to announce when the

system reaches the middle and the end of each acquisition period. The timing diagram of

those signals is presented in Figure 5.3.

DMA State machine

Figure 5.8 displays the main states of the DMA unit developed inside the SPI_System block.

The state machine is synchronous to the rising edge of clk. The main functions of each state

are described bellow:

• s_idle: It resets all the signals of the module to their default values. It waits till the Start

signal is asserted by the Slave module.

• s_waitdata: It waits for the FIFOs of the SPI_Controller module to accumulate enough

data to write in the memory. This happens when Data_Available is high. At that moment

the DMA unit sends a read request to the FIFOs of the SPI_Controller module through

DataRd signal.

• s_waitdata2: It is an intermediate state which deasserts DataRd signal. The system goes

through s_waitdata3 and s_waitdata4 to wait three cycles for the SPI_Controller FIFOs

sending all the parallel data to the output registers.

• s_loaddata: It loads the configuration of the Avalon MM Master interface as in number

2 in Figure 4.4. The parameters loaded for a write transfer are:

– AM_Write = ’1’

– AM_WriteAddress = Address

– AM_BurstCount = "100"

– AM_ByteEnable = "1111"

When AM_WriteRequest = ’0’ the system switches to the next state and the data transfer

begins.

• s_writedata: It is the state where the samples are writen to memory. Each transfer

takes places only when AM_WriteRequest = ’0’, i.e., when the bus is not busy. This state

asserts the sel and array_vector signals to select the data from the output multiplexer of

the SPI_Controller module. The microphone signals are selected as indicated in Table

5.1. For each value of array_vector a burst transfer is performed of four cycles, for sel

from 1 to 4. The value of array_vector is incremented and if the new value is lower the

total number of arrays (usually 6) the system returns to s_waitdata2 to begin a new

burst transfer. Otherwise the system goes to s_waitdata to wait for the ADC to send

more samples. The length and address registers are changed after each transfer. If

the circular buffer mode is not enabled (i.e., Start = ’0’), when length signal is null it

indicates the end of the acquisition and the state machine returns to s_idle state. This

state asserts the Streaming_Valid and Streaming_Data signals depending on the value

of the Streaming_Ready value.

42



5.2. SPI Communication Design

Table 5.1 – Microphones transfer multiplexer selection.

array_vector sel Selected Mic

1
Microphone 0
Microphone 1

2
Microphone 2
Microphone 3

3
Microphone 4
Microphone 5

0
(MISO_00)

4
Microphone 6
Microphone 7

1
Microphone 8
Microphone 9

2
Microphone 10
Microphone 11

3
Microphone 12
Microphone 13

1
(MISO_01)

4
Microphone 14
Microphone 15

2
(MISO_11)

1
...
4

Microphone 16
...
Microphone 23

3
(MISO_12)

1
...
4

Microphone 24
...
Microphone 31

4
(MISO_21)

1
...
4

Microphone 32
...
Microphone 39

5
(MISO_22)

1
...
4

Microphone 40
...
Microphone 47

43



Chapter 5. FPGA Design

Figure 5.8 – SPI DMA unit state machine.

SPI Slave module

The SPI_Slave registers values control the SPI_System parameters. The registers can be accesed

by bidirectional Avalon MM Slave interface. Table 5.2 summarizes the designed register table.

For instace, if we want the acquisition to start writing in the memory address 0x0000FFFF

we ought to assert AS_ Write signal, load the desired value in AS_WriteData and select the

correct AS_Addr value according with Table 5.2 (’000’ in this example). The SPI slave can be

accessed by a processor to set the base address, the acquisition period length, to start/stop

the acquisition and to monitor the state of the acquisition through Buffer1 and Buffer2. Figure

5.9 is a Modelsim simulation with multiple readings and writings in different address offset

positions. In practice, the processor needs to increment the address offset by four instead of

by one. This is due to the fact that the standard data packet size is 8 bits, and the bus width is

32 bits.

SPI Streaming module

The SPI_Streaming module sinks the audio samples from the SPI_DMA module and sends

the streaming data to the parallel FIR filters bank through an Avalon Streaming interface.

Figure 5.10 represents the timing diagram of the system. The system internal architecture is

composed of one FIFO which receives the data from the DMA unit and sends the streaming

data to the FIR filters. The FIFO_Streaming is a DCFIFO (Dual Clock FIFO) [9] which input

44



5.2. SPI Communication Design

Figure 5.9 – SPI Slave module timing simulation in Modelsim

Table 5.2 – SPI Slave Table

Address Name Direction Function
000 sig_BaseAddress Write/Read Initial base address for writing in memory
001 sig_length Write/Read Acquisition period length

010 sig_Start Write/Read
When ’1’ the acquisition starts.
When ’0’ the acquisition stops at the end of
the acquisition period

011 Buffer1 Read
Active high flag indicating the
first half of the acquisition period

100 Buffer2 Read
Active high flag indicating the
second half of the acquisition period

and output data sizes are different, therefore it can use different clocks for reading and writing.

The signals are connected as following:

• data: The input signal connected to Streaming_Data from the DMA unit. It is a 32-bit

signal.

• rdclk: The clock which determines the reading speed, it is connected to the system clock

of 50 MHz.

• rdreq: Read request signal, it is asserted each time the DMA unit sends a sample from all

the microphone channels.

• wrclk: The clock which determines the writing speed, it is connected to the system clock

of 50 MHz.

• wrreq: Write request signal, connected to the Streaming_Valid signal coming from the

DMA.

• q: The output signal of 21 bits width. The first 16 bits of this signal represent the data

input for the FIR filters, while the remaining 5 bits are the channel number of the sample

(from 0 to 47). This particular configuration is built to match the FIR filter input protocol

[3], which requires to send the channel and data information in the same signal.

• wrfull: It indicates if the FIFO is full on the writing side. It is connected to the Streaming_Ready

45



Chapter 5. FPGA Design

Figure 5.10 – SPI Streaming timing simulation in Modelsim

signal to indicate to the DMA unit that if the FIFO is full the system is not ready to receive

new information.

• wrusedw: It counts the number of samples written in the FIFO. When more than 24

words have been written in the FIFO (i.e., 1 word = 32 bits = 2 samples) the FIFO can

start streaming data packages from the DMA unit to the FIR filters.

Really, the system has two sources, one for the right channel and another one for the left

channel. Both channels signals are identical at the output of the SPIStreaming module. This

allows performing stereo processing of the microphone audio signals.

Next section details how the output data from the SPI_Streaming system interacts with the

FIR filters bank in order to perform real-time delay-and-sum beamforming.

5.3 FPGA implementation of Delay-and-Sum beamformer

In this section, an FIR filter design process for delay-and-add beamforming applications will

be briefly reviewed, followed by an explanation of the filters implementation in an FPGA based

platform.

5.3.1 Digital filters

Digital filters are typically used to modify or alter the attributes of a signal in the time or

frequency domain. The most common digital filter is the linear time-invariant (LTI) filter. An

LTI interacts with its input signal through a process called linear convolution, denoted by y =

h*x, where h is the filter’s impulse response, x is the input signal, and y is the convolved output.

46



5.3. FPGA implementation of Delay-and-Sum beamformer

Figure 5.11 – Direct form FIR filter [17, p. 166].

The linear convolution process is formally defined by:

y[n] = x[n]∗ y[n] =∑
k

x[k]h[n −k] =∑
k

h[k]x[n −k]. (5.2)

LTI digital filters are generally classified as being finite impulse response (i.e., FIR), or infinite

impulse response (i.e., IIR). As the name implies, FIR filter consists of a finite number of sample

values, reducing the above convolution sum to a finite sum per output sample instant. An IIR

filter, however, requires that an infinite sum be performed [17].

Digital filters are rapidly replacing analog filters, which were implemented using RLC

components and operational amplifiers. Analog filters were mathematically modeled using

ordinary differential equations of Laplace transforms. They were analyzed in the time or s

(also known as Laplace) domain. Analog prototypes are now only used in IIR design, while

FIRs are typically designed using direct computer tools and algorithms.

5.3.2 FIR theory

An FIR with constant coefficients is an LTI (Linear Time Invariant) digital filter. LTI systems

are linear, which implies that the relationship between the input and the output is linear. The

second property, time invariant, means that whether a given input is applied to the system

now or t seconds from now, the output will be identical except for a t seconds shift. Therefore,

an FIR filter of order or length L can be defined by a transfer function h[n], which output is

given by a finite version of the convolution sum between an input time-series x[n] and h[n]

(5.2):

y[n] = x[n]∗h[n] =
L−1∑
k=0

f [k]x[n −k], (5.3)

47



Chapter 5. FPGA Design

where f[k] are the filter’s L coefficients. They also correspond to the FIR’s impulse response.

For LTI systems it is sometimes more convenient to express 5.2 in the z-domain with

Y (z) = F (z)X (z), (5.4)

where F(z) is the FIR’s transfer function defined in the z-domain by

F (z) =
L−1∑
k=0

f [k]z−k , (5.5)

In practice, the Lth-order LTI FIR filter can be graphically intepreted in Figure 5.11. It can be

seen to consist of a collection of a "tapped delay line", adders and multipliers. One of the

operands presented to each multiplier is an FIR coefficient, often referred to as a "tap weight".

The roots of F(z) define the zeros of the filter.

5.3.3 Filter-and-Sum Beamformer

Consider an array of M microphones and a far-field sound source at direction φ. Each of the

microphones captures the same signal slightly delayed owing to the different times the sound

needs to reach the corresponding microphone. The sound is captured from a far-field source

according to Equation 2.3. The most intuitive approach to estimate the source signal is to

delay each of the microphone signals in a way that the sound from the source signal are in

phase, and to sum them. Then, we will take the source signal (the same in all channels after

the delay) to have an amplitue M times bigger than in each of the channels. This is usually

compensated by dividiing the sum by the number of channels [21].

Y ( f ) = 1

M

M−1∑
m=0

e j 2π f ‖pm‖cos((pm)−φ0)

ν
Xm( f ), (5.6)

where φ0 is the listening direction. Under the assumption of omnidirectional microphones

(Um( f ) ≡ 1) and perfect conditioning circuit and ADC system (Am( f ) ≡ 1) for the band of

interest, combining equations 2.2, 2.4 and 5.6 we obtain

Y ( f ) = S0( f )+ 1

M

M−1∑
m=0

e j 2π f ‖pm‖cos((pm)−φ0)

ν
Nm( f ). (5.7)

If we assume the captured noise is not correlated accross the microphones and is modeled as

a zero-mean Gaussian process Nm( f ) = N (0,λ( f )), then the output signal becomes

Y ( f ) = S0( f )∗N (0,
λ( f )

M
). (5.8)

Since the multiplicand after S(f) value will be smaller or equal to 1, in most cases the magnitude

of a sound source coming from a direction different from the listening direction will be

supressed to a certain degree.

48



5.3. FPGA implementation of Delay-and-Sum beamformer

Figure 5.12 – Parallel delay-and-sum beamformer block diagram.

Therefore, Equation 5.7 can be easily generalized in matrix form to

Y ( f ) =W ( f )X ( f ). (5.9)

The spectrum of each input audio frame X is an MxK complex matrix, where M is the number

of microphones and K is the frame size, i.e., the number of frequency bins. X(f) is a Mx1

complex vector. The frame indices are omitted for simplicity. The equations above are known

as a "filter-and-sum beamformer" because the weights matrix W(m) acts as a filter for each

channel. That is, first we filter each of the 48 channels separately and then we sum them.

The filter-and-sum beamformer has more degrees of freedom and allows to perform flexible

microphone arrays processing [21].

5.3.4 FIR filters design in FPGA

In Section 5.3.3 a general delay-and-sum beamformer using FIR filters was presented. This

technique has been designed for the Pyramic array system, for which a real-time 48 parallel

FIR filter cascade has been designed in an FPGA platform. The generated beam is output

through the Audio Codec of the DE1-SoC. We will explain the design in the following section.

Overall Design

Figure 5.12 summarizes the overall architecture of the implemented custom delay-and-sum

beamformer FIR filters bank. The FIR filters have been built using IP cores offered by Altera,

which can generate FIR filters [3]. The data recorded through the SPI communication serves as

input to the 48 filters bank. The filters bank filters the data, which is added in the next stage, a

Beamformer_Adder custom component. The resulting audio beam is sent to the Audio Codec,

which sends the data to the audio out line of the DE1-SoC board.

49



Chapter 5. FPGA Design

Figure 5.13 – Basic FIR Filter with Weighted Tapped Delay Line [3].

IP Core FIR Filter design

The Altera FIR II IP core provides a fully-integrated finite impulse response (FIR) filter function

optimized for use with Altera FPGA devices. The FIR II IP core has an interactive parameter

editor that allows creating easily custom FIR filters. For instance, the filter type can be defined

as single rate, decimation, interpolation, and fractional rate. The core is easy to integrate using

Avalon Streaming (Avalon-ST) interfaces. Moreover, it supports run-time coefficient reloading

capability and multiple coefficient banks. Figure 5.13 shows the internal architecture of the

filter, where the number of tapped delay lines represent the filter order L and the coefficient

multipliers allow multiple coefficient banks multiplexing.

The main parameters applied in our implementation are as follows:

• Filter Specifications:

– Fractional Rate

– Interpolation factor: 2

– Decimation Factor: 3

– Maximum number of channels: 48

– Input clock: 50 MHz

– Clock Slack: 0

– Input sample rate: 48 kHz

– No coefficient reload

– No back pressure support

• Coefficient Settings:

– Symmetry: Non Symmetry

– L-th Band Filter: All taps

– Coefficients Scaling: Auto

50



5.3. FPGA implementation of Delay-and-Sum beamformer

Figure 5.14 – FIR filter frequency response from Altera FIR IP Core [3]

– Coefficients Data Type: Signed Fractional Binary

– Coefficients Width: 15 bits

– Coefficients Fractional Width: 15 bits

• Input/Output Options:

– Input Type: Signed binary

– Input Width: 16 bits

– Output Type: Signed binary

– Truncate 7 LSB to remove from the output

– Output Width: 32 bits

• Implementation Options: Default parameters.

• No reconfigurable carrier mode.

The filter coefficients can be loaded from a .txt file. We tested the filter banks with the

coefficients array of Appendix D, which frequency response is shown in Figure 5.14. The cutoff

frequency is 8 kHz, suitable for speech processing applications. Note that since the filter

performs Fractional Rate the fs is different at the input and output of the module:

fsout = fsi n ∗ Inter pol ati on

Deci mati on
= 48kH z ∗2

3
= 32kH z (5.10)

5.3.5 System Timing

One of the reasons why the Altera FIR IP core was chosen is that it allows Time-Division

Multiplexing (TDM) to optimize hardware utilization. The TDM factor is the ratio of the clock

51



Chapter 5. FPGA Design

rate to the sample rate. For example, implementing a filter with a TDM factor of 2 can halve

the required hardware.

To achieve TDM, the IP core requires a serializer and deserializer before and after the reused

hardware to control the timing. The ratio of system clock frequency to sample rate determines

the amount of resource saving except for a small amount of additional logic for the serializer

and deserializer.

T DM = fclk

fs
= 50M H z

48kH z
= 1041 (5.11)

With this TDM is possible to have 48 FIR filters in parallel just by using one physical FIR filter,

which reduces a lot the hardware resources of the system. The input data is streamed just

using one wire to the FIR II IP core. Since there are 1041 clock cycles between samples, the IP

core can process all the 48 channels by using just one FIR filter.

The data is sent to the Beamformer_Adder module as Streaming ST interface. Note that the

bits per packet (dataBitsperSymbol) in the FIR IP core is equal to the data width, while usually

in most of the IP cores the bits per packet is equal to 8. For instance, the dataBitsPerSymbol

of Figure 4.5 is equal to 8, thus we need four wires to send a 32 bits data. If we would like to

connect those wires to the input of the FIR core, since we are using a single wire we should

change the dataBitsPerSymbol parameter to 32 bits and send all the data through the same wire.

If channel signal is available it should be concatenated to the data signal and its length should

be added to the dataBitsPerSymbol parameter. This way all the information (the channel

number and the data) can be sent through the same wire.

Beamformer Adder

The Beamformer_Adder module receives filtered data from the FIR filters bank, adds it and

sends the output to an Audio line out in the DE1-SoC board.

It receives the filtered FIR_data from the FIR filter and the FIR_channel number in two

different wires. The FIR filter asserts FIR_Valid to indicate the data is ready to be sent. When

FIR_sop is high the first channel is sent, while when FIR_eop is high indicates the last channel

is transmitted. During this time, the module saves the 48 channels data in the FIR_Output

register. When the last channel is sent (i.e., FIR_eop = ’1’), the module adds all the filtered

channel values and divides this addition by M, which is the number of microphones. The

FIR_Valid indicates when the register is available to receive more data. The process is described

in Figure 5.15.

Audio Codec

The output an the Beamformer_Adder module can be listened through the Audio Codec DAC

output line. The DE1-SoC device possesses a Wolfson-WM8731 audio CODEC which can

52



5.3. FPGA implementation of Delay-and-Sum beamformer

Figure 5.15 – Beamformer adding the output of the FIR filters module

be controlled thanks to the Audio and Video Config and audio_controller IP cores [1]. The

connection diagram between those modules and the design is displayed in Figure 5.12. The

Audio and Video Config module controls the Wolfson codec through an I2C interface. At the

same time, the Audio and Video Config module is controlled as an Avalon MM slave by a

processor Master unit (the HPS in our system). The audio_controller sends the data to the

output, input or microphone input lines through the WM8731 audio codec, as displayed in

Figure 5.16. The parameters chosen for this project are the followings:

• Left justified data

• Line out

• 32 bits data width

• 32 kHz output frequency

• Streaming interface

The input to the audio_controller is a simple Avalon ST interface where the data is sent

when the audio codec is ready to accept data (i.e., Streaming_Ready high as well). To indicate

the reliability of the transmitted data Streaming_Data, the Streaming_Valid signal is asserted

every cycle a new sample is sent.

A PLL module has been added to the design in order to generate AUD_XC K signal, which

value is 12,288 MHz to match the specifications of defined in [26]. Moreover, [26] provides a

more detailed information about the different signals to interface the audio ADCs and DACs

53



Chapter 5. FPGA Design

Table 5.3 – Hardware resources

Logic Utilization (in ALMs) 2,195/32,070 ( 7 % )
Total registers 3831
Total pins 201 / 457 (44%)
Total block memory bits 511,700 / 4,065,280 (13%)
Total PLLs 1/6 (17%)
Total DLLs 1/4 (25%)

with the FPGA.

Figure 5.16 – Connections between the FPGA and audio CODEC [23].

5.4 Conclusions

Through this Chapter we described the SPI module and the FIR filters bank developed for

delay-and-add beamforming applications. In the end, the SPI communication has been tested

and verified its correct performance, while the FIR filters have some problems to perform

real-time processing yet. Even if the described design is correct and the audio signal from

the beamformer can be listened at the Audio Codec line out, there is some saturation in the

value of the data. We believe the problem is with the coefficients values and widths, which

parameters can be change in order to address this problem. Moreover, it would be interesting

to use the coefficient reloading option of the FIR IP core to be able to change the look-up

direction in real-time.

However, the VHDL designs work properly while the hardware resources spent on process-

ing such big amount of data are not very big. Table 5.3 summarizes the FPGA resources for the

Pyramic array FPGA project after compiling the SPI communication interface along with the

48 FIR filters bank with 143 coefficients per filter.

Regarding timing, the time it takes to write through the SPI communication in memory a

sample from all the microphone channels is equal to 0,64 µs. With a sampling frequency of 48

kHz there is a free time of 21.09 µs where the FPGA can perform further processing.

54



6 HPS design and implementation

6.1 Introduction

Even if a programmable DSP system offers many advantages, usually it is convenient to

communicate the FPGA with a processing unit embedded as a Hard Processor System (HPS).

As explained in Section 4.2.2, HPS are not synthesized on FPGA fabric, rather they are real

processors. The Cyclone V family allows mixed designs where a single chip contains both an

HPS and an FPGA device. The HPS consists of an ARM-A9 MPCore, which is a general-purpose

application processor. The HPS-FPGA combination delivers the flexibility of programmable

logic with the power and cost savings of hard IP cores, while the board size is reduced since we

reduce the cost of adding a discretely embedded processor. In addition, this type of embedded

systems allows differentiating the end product between the hardware and software design.

Therefore, the system development supports virtually any interface standard.

Through this chapter, we will introduce the main characteristics of the Cyclone V HPS.

Based on this architecture, we will explain the implementation followed for the Pyramic array

design, which involves the communication between the FPGA and the HPS unit, data storage

in a DDR3 memory and the installation of a Linux OS in order to control the system through a

WebServer. This allows storing the data in an SD card plugged into the DE-1 and to send it

through the network to a local computer.

6.2 Cyclone V Hard Processor System [18]

The DE1-SoC HPS contains a microprocessor unit (MPU) subsystem with dual ARM Cortex-A9

MPCore processors, flash memory controllers, SDRAM L3 interconnect, on-chip memories,

support peripherals, interface peripherals, debug capabilities, and phase-locked loops (PLLs).

The dual-processor HPS supports symmetric (SMP) and asymmetric (AMP) multiprocessing

(Figure 4.1).

The HPS and FPGA portions of the device are distinctly different, while the HPS can boot

55



Chapter 6. HPS design and implementation

from

• the FPGA fabric,

• an external flash or

• JTAG

the FPGA must be configured either through

• the HPS, or

• an externally supported device such as the Quartus Prime programmer.

The HPS and FPGA parts of the device each have their own pins. However, pins are not

freely shared between the HPS and FPGA fabric. The FPGA I/O pins are configured by an

FPGA configuration image through the HPS or any external source supported by the device.

Moreover, the HPS and FPGA portions have distinct power supplies and power on indepen-

dently. Meaning that the HPS can be powered without turning on the FPGA portion of the

device. Nonetheless, to switch on the FPGA portion the HPS must be already powered on at

the same time as the FPGA.

Figure 6.1 – HPS block diagram [7].

56



6.2. Cyclone V Hard Processor System [18]

6.2.1 HPS features

Figure 6.1 shows the architecture of the HPS system, which consists of a dual-core 925 MHz

ARM Cortex-A9 MPCore processor, a rich set of peripherals, and a share multiport SDRAM

memory controller [7]. The following modules were implemented in the design of the Pyramic

array:

• Masters:

– MPU subsystem featuring dual ARM Cortex-A9 MPCore processors.

– One Ethernet media access controller (EMAC1):

* EMAC1 pin: HPS I/O Set 0 pin

* EMAC1 mode: RGMII

– ARM CoreSight debug components

– One SD/MMC controller:

* SDIO pin: HPS I/O Set 0

* SDIO mode: 4-bit Data

• Slaves:

– 64 KB on-chip RAM

– 64 kB on-chip boot ROM

– UART0 Controller:

* UART0 pin: HPS I/O Set 0

* UART0 mode: No flow control

– Reset manager

– Clock manager

– Scan manager

– System manager

– FPGA manager

The Ethernet MAC, USB OTG, NAND flash controller, and SD/MMC controller modules

have an integrated DMA controller. An integrated DMA controller module provides up to

eight channels of high-bandwidth data transfers. Note that peripherals that communicate

off-chip are multiplexed with other peripherals at the HPS pin level, which allows choosing

which peripherals to interface with other devices on the PCB.

The MPU subsystem has an interrupt controller, one-general-purpose timer and one watch-

dog timer per processor and one memory management unit (MMU) per processor. Besides

that, the HPS masters the L3 interconnect and the SDRAM controller subsystem.

6.2.2 HPS-FPGA Bridges

The FPGA can exchange information with the HPS part thanks to the HPS–FPGA bridges,

which support the Advanced Microcontroller Bus Architecture (AMBA®) Advanced eXtensible

Interface (AXI™) specifications, consist of the following bridges:

57



Chapter 6. HPS design and implementation

• FPGA-to-HPS AXI bridge-a high-performance bus supporting 32, 64, and 128-bit data

widths that allow the FPGA fabric to issue transactions to slaves in the HPS.

• HPS-to-FPGA AXI bridge-a high-performance bus supporting 32, 64, and 128-bit data

widths that allow the HPS to issue transactions to slaves in the FPGA fabric.

• Lightweight HPS-to-FPGA AXI bridge- a lower latency 32 bit width bus that allows the

HPS to issue transactions to slaves in the FPGA fabric. This bridge is primarily used for

control and status register (CSR) accesses to peripherals in the FPGA fabric.

The HPS–FPGA AXI bridges allow masters in the FPGA fabric to communicate with slaves

in the HPS logic, and vice versa.

6.2.3 HPS Address Map

HPS Address spaces

The HPS address map specifies the address of slaves, such as memory and peripherals, as

viewed by the HPS masters. The HPS is divided into 3 nonoverlapping address spaces of 4 GB

size each: one for the MPU subystem, another for the L3 interconnect and for the SDRAM

controller subsystem [5].

The window regions provide access to other address spaces. The thin black arrows in Figure

6.2 indicate which address space is accessed by a window region (arrows point to accessed

address space). For example, accesses to the ACP window in the L3 address space map to a 1

GB region of the MPU address space.

The SDRAM window in the MPU address space can grow and shrink at the top and bottom

(short, blue vertical arrows) at the expense of the FPGA slaves and boot regions. The blue

bidirectional arrow indicates that the ACP window can be mapped to any 1 GB region in the

MPU address space, on gigabyte-aligned boundaries.

HPS Peripheral Region Address Map

Each peripheral slave interface has a dedicated address range in the peripheral region. Table

6.1 lists the base address and address range size for some slaves interfaces in the HPS part.

The SPI_System and audio_and_video_config modules implemented in Chapter 5 are seen as

slave modules connected to the lightweight bus from the HPS side. Note that if a peripheral is

connected to a bus, its address is obtained by adding its offset in the bus to the bus’ address,

which in this case should be the lightweight FPGA slaves bus base address. For a complete

table showing all the HPS peripheral region address map refer to [5].

58



6.3. SDRAM Controller

Figure 6.2 – HPS address spaces relationship [5].

6.3 SDRAM Controller

The SDRAM controller subsystem supports DDR2, DDR3, or LPDDR2 devices up to 4 Gb in

density operating at up to 400 MHz (800 Mbps data rate).

The HPS SDRAM controller subsystem contains a multiport SDRAM controller and DDR

PHY that are shared between the FPGA fabric (through the FPGA-to-HPS SDRAM interface),

the level 2 (L2) cache, and the level 3 (L3) system interconnect. The FPGA-to-HPS SDRAM

interface supports AMBA AXI and Avalon® Memory-Mapped (Avalon-MM) interface standards

and provides up to six individual ports for access by masters implemented in the FPGA fabric.

HPS and FPGA fabric masters have access to the SDRAM controller subsystem. The DE1-

SoC SDRAM controller is connected to 1 GB DDR3 memory. In our design the SPI Master unit

can access the SDRAM controller through an Avalon MM communication protocol.

6.4 HPS Booting and FPGA Configuration

It is important to understand how the HPS boots and how the FPGA can be configured through

the HPS [8]. Figure 6.3 illustrates the typical bootflow of an HPS ARM processor system.

59



Chapter 6. HPS design and implementation

Table 6.1 – HPS peripheral region address map

Slave identifier Slave title Base address Memory span

SPI SPI_System_0
Lightweight_Base +
0x0000_0000

32 bits

Audio Module audio_and_video_config_0
Lightweight_Base +
0x0000_0001F

16 bits

SDMMC SD MMC0 0XFF70_4000 4kB
EMAC1 EMAC1 0xFF70_2000 8 kB

Lightweight FPGA slaves
FPGA slaves accessed with
lightweight HPS-to-FPGA bridge

0xFFD0_5000 2 MB

First the boot process starts when the processor is released from reset, e.g., on power up.

At this point, CPU1 is helding reset and CPU0 jumps to the reset exception address (usually

0x0) where it starts executing code out of the Boot ROM mapped to this address. The Boot

ROM bears the first code that runs the device, which is hard coded by Altera. Boot ROMs main

purpose is to set up the device so it can fetch the next stage of boot code into the On-Chip

RAM and pass control over to it. Then, the preloader performs additional HPS initialization

for the HPS to look like a conventional ARM processor. The preloader brings up the SDRAM

controller, basic I/O pins and loads the next boot stage from Flash to SDRAM. Moreover, it

fetches the next piece of code that corresponds to the user Boot Loader, which is an u-boot

script in our case. As the user Boot Loader runs, the appropriate Operating System will run in

the ARM processor, which in our configuration it consists on an Ubuntu Core 14.04.4. Finally,

the OS application is launched. The FPGA is configured through the HPS at the Boot Loader

stage.

Figure 6.3 – HPS Boot flow [8] .

Note in Figure 6.3 that what it comes after the preloader depends on the application the

user wants to run. The reset, boot ROM, and preloader stages are always present in the HPS

boot flow. However, the HPS can execute two types of applications:

• Bare-metal applications (without operations system)

• Applications on top of an Operating System (linux)

60



6.4. HPS Booting and FPGA Configuration

The processor can boot from the following sources:

• NAND flash memory through the NAND flash controller

• SD/MMC flash memory through the SD/MMC flash controller

• SPI and QSPI flash memory through the QSPI flash controller

• FPGA fabric on-chip memory

The choice of the boot source is done by modifying the BOOTSEL and CLKSEL before

the device is powered up. Therefore, the Cyclone V family normally uses a PHYSICAL DIP

SWITCH to configure the BOOTSEL and CLKSEL. However, it is important to note that the

DE1-SoC can only boot from SD/MMC flash memory, since the BOOTSEL and CLKSEL values

are hard-wired on the board. Even if the HPS contains all the necessary controllers, the board

does not have a physical DIP switch to modify the BOOTSEL and CLKSEL values. The location

of the DIP switch is present underneath the board.

Figure 6.4 shows the scheme under which the HPS first boots from one of its non-FPGA

fabric boot sources, then software running on the HPS configures the FPGA fabric through the

FPGA manager. The software on the HPS obtains the FPGA configuration image from any of

its flash memory devices or communication interfaces. In our application, it is loaded from

the SD/MMC memory controller, which reads an image saved in an SD card. The software

provided by users and the boot ROM are not involved in configuring the FPGA fabric.

Figure 6.4 – HPS Boots and Performs FPGA Configuration

Preloader

Everything in the user software box can be customized. The preloader is the most important

of the boot stages, it is actually in charge of the following actions:

61



Chapter 6. HPS design and implementation

• Initialize the SDRAM device

• Configure the HPS I/O through the scan manager

• Configure the pin multiplexing through the system manager

• Configure the HPS clocks through the clock manager

• Initialize the flash controller (NAND, SD/MMC, QSPI) that contains the next stage boot

software

• Load the next boot software into the SDRAM controller and pass control to it

The preloader does not release CPU1 from reset as the subsequent stages of the boot process

are responsible for it.

6.5 Pyramic Hybrid System

Exclusively using the FPGA part of Cyclone V is easy, the design process followed in Chapter 5

is identical in any other Altera FPGA. Design an HDL module in Quartus Prime editor, simulate

it and then program the FPGA through JTAG configuration. However, Pyramic implements a

more powerful design by combining the FPGA portion with the HPS processor available in

Cyclone V devices, creating a hybrid system. In our design, the Pyramic array is an embedded

hybrid system which HPS part is configured as follows:

• The HPS is able to use the Ethernet port on the board. Moreover, it is possible to share

internet with the DE1-SoC board. The device has a static IP address. Apache http

webserver has been downloaded to write php applications.

• The HPS is able to use the microSD card port on the board to which the system will be

able to write anything. The inserted microSD size is 32 GB and it has two partitions: a2

(24 GB) and fat32 (512 MB).

• The HPS will program automatically the FPGA part reading a binary .rbf file saved in a

fat32 partition in the microSD card.

• The HPS is able to use the UART controller. The board can be controlled through

minicom connection.

• The Lightweight FPGA-to-HPS bridge with Avalon MM interfaces is used, allowing the

HPS to control slaves modules from the FPGA such as the SPI_System and audio_and_video_

config modules.

• The HPS system will run on a Linux based OS.

• The FPGA-to-HPS SDRAM controller interfaces the FPGA with a 1GB DDR3 memory.

The transaction is an Avalon-MM Bidirectional interface of 32-bits.

• 500 MB of the DDR3 memory are allocated for the OS Kernel. The rest 500 MB are used

to store audio samples from the Pyramic array.

62



6.6. Project Structure

6.5.1 HPS and FPGA Design

Bare-metal Application

Bare-metal software enjoys the advantage of having no OS overhead. The code can access

directly HPS peripherals by using their physical memory-mapped, as no virtual memory

system is being used.

Application Over an Operation System (Linux)

One of the main advantages of running code on a Linux OS is that the kernel releases CPU1

from reset upon boot, thus all processors are available. Moreover, the kernel initializes almost

all HPS peripherals available, which is possible since the linux kernel has access to a big

amount of device drivers. Furthermore, a multithread code is much easier to write. Finally,

the Linux kernel can run more programming languages other than C, such as Python, which is

available for ARM processors.

However, when running an embedded system on top of an operating system the program-

mer needs to cope with virtual memory system placed by the OS. Hence, the program cannot

access directly teh HPS peripherals through their physical memory-mapped addresses. In-

stead, one first needs to map the physical addresses of interest into the running program’s

virtual address space. Only then it will be possible to access a peripheral’s registers. Ideally,

the programmer should write a device driver for each specific component that is designed to

have a clean interface between user code, and device accesses.

Summarizing, bare-metal and Linux applications can do the same things. In general,

programming on top of Linux provides higher level syntax compared to bare-metal code, as

its advantages outweigh its drawbacks we implemented linux OS for Pyramic array. Following

Chapter 13 of [18], we installed an Ubuntu Core 14.04.4 OS in the DE1-SoC which boots the

HPS ARM system and interfaces the Pyramic array.

6.6 Project Structure

The development process of a hybrid system containing an FPGA and HPS design involves

more files than an FPGA-only design. We followed the folder structure shown in Figure 6.6.2 to

organize the Pyramic array project.

6.6.1 Hardware design files

"hw" contains all hardware-related files developed through the FPGA design of Chapter 5. Its

structure is:

• "modelsim" contains all the simulation and testbench files implemented in Modelsim.

63



Chapter 6. HPS design and implementation

For instance, those files were used to generate Figure 5.9.

• "quartus" stores The "Pyramic_array" project developed in Quartus Prime project. Be-

sides that, it contains all the compilation files. Moreover, the Pins assignments .xsl file

for the DE1-SoC connections is stored in this folder.

• "hdl" contains the custom VHDL components developed through this project. The

DE1_SoC_top_level entity with all the system interconnections is stored in this folder as

well.

6.6.2 Software design files

All the software-related files written for initializing and programming the HPS processor are

saved in "sw". In our design, we are just using the HPS processor. However, if Nios2 based

applications were developed the "nios" folder can be used to store the programming files. The

main subfolders of the "hps" directory are described below:

• "preloader" stores the preloader which boots the HPS as explained in Section 6.4.

• "u-boot" stores the U-boot preloader capable of loading the Linux kernel into the

system.

• "linux" It stores the latest Linux sources. The "rootfs" contains all the configuration of

the Linux kernel running on the system. The username and password can be configured

in this file.

• "application" contains the software project developed in Eclipse DS-5 platform to pro-

gram the ARM processor. To control the Pyramic array system, the "Mic_Array_HPS"

project has been created. Figure 6.6 shows the flow chart of the developed application.

The red squares are mandatory steps in any software application for this design. The

main steps are described below:

1. Load the ’duration’ and ’audio_folder’ arguments to the main function. Otherwise,

default values are used.

2. Open physical memory devices from the 1GB DDR3 memory.

3. Physical to virtual memory mapping for the OS Kernel.

4. SPI System control. Data can be written and read from software to the SPI_System

module to control its slave registers.

5. Read data from DDR3 memory to a buffer.

6. Save the microphones data in .wav format after the full acquisition is completed.

7. scp microphones data.

8. Virtual to physical memory mapping for the OS Kernel.

9. Close physical memory devices.

The "sdcard" directory contains all the final targets needed to create a valid SD card from

which the DE1-SoC can boot. The SD Card is composed of a fat32 and a2 of 512 MB and 24 GB

respectively. The fat32 contains all the necessary FPGA and system images to configure the

HPS system when powering on the board. The a2 contains the Linux root directory folders.

64



6.6. Project Structure

project
name

sw hw

quartus hdlmodelsimnios

application

hps

preloader u-bootapplication linux

source rootfs

sdcard

fat32a2

Figure 6.5 – Pyramic project structure

Figure 6.6 – Mic_Array_HPS application flow chart

65



Chapter 6. HPS design and implementation

6.7 Conclusions

Through this Chapter we explained the main features of the HPS part of the Cyclone V family

devices. Combining HPS and FPGA system allows designing more reliable embedded system

architectures. The Pyramic array is controlled by the HPS hardcore module.

The HPS allows fast communication between the FPGA and HPS sides, as well as a fast data

transaction through SDRAM controllers. Moreover, the HPS can be programmed as a normal

microcontroller and it can obtain internet thanks to sharing the connection with the host

computer. Next Chapter will explain some results obtained from implementing the Pyramic

array.

66



7 Results and algorithms implementa-
tion

7.1 Experiment conditions

The Pyramic array was tested in the Laboratory of Audiovisual Communications (LCAV) at

EPFL, in the INR019 Audio room. The test consisted of several recordings where audio files are

played from different speakers distributed as in Figure 7.1. The Pyramic array was positioned

in the position (0,0). The microphones are:

• MISO_00: from Microphone 0 to Microphone 7. Connected to J4 in Figure A.7.

• MISO_01: from Microphone 8 to Microphone 15. Connected to J4 in Figure A.7.

• MISO_10: from Microphone 16 to Microphone 23. Connected to J3 in Figure A.7.

• MISO_11: from Microphone 24 to Microphone 31. Connected to J3 in Figure A.7.

• MISO_20: from Microphone 32 to Microphone 39. Connected to J2 in Figure A.7.

• MISO_21: from Microphone 40 to Microphone 47. Connected to J2 in Figure A.7.

First, a frequency sweep generated by a Python script was played from the speakers. The

excitation was an exponential sweep of 6 seconds with a 0,1 seconds margin from 100 Hz to

7000 kHz. The rest of the recordings were speech signals of 5 seconds duration each. Moreover,

noise was recorded at the end. Appendix B explains where the audio recordings can be found

in the DVD attached to this project.

The room conditions were 25.4 C and 57.4% humidity. The direction of arrival algorithms

were implemented in Python 2.7.12. The positions of the microphones is presented in Ap-

pendix D.

7.2 Microphone Signals

Figure 7.3 displays the microphone outputs from the speech signal coming out from the

fourth speaker. Only the signals from the 16 first microphones are displayed, i.e, the first

two microphone arrays. The data is successfully recorded by each microphone and we can

appreciate the delay and attenuation between microphones due to the different positions of

67



Chapter 7. Results and algorithms implementation

Figure 7.1 – Speakers set up and order

Figure 7.2 – Pyramic set up

the microphone transducers within the array.

Moreover, Figure 7.4 shows the spectrogram of a frequency sweep coming from Speaker 2

to Microphone 0. The microphone shows a homogeneous frequency response along all the

frequency range.

7.3 SRP algorithm results

Finally, offlin direction of arrival algorithms developed at LCAV by Eric Bezzam and Robin

Scheibler have been tested using the Pyramic data. A beamforming algorithm based on the

Steered-Response-Power (SRP) method explained in Section 6.2 of [21] was chosen. For the

results presented in this report, the algorithm was tested with a single speech signal coming

68



7.3. SRP algorithm results

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−300
−200
−100

0
100
200
300

M
a
g
n
it

u
d
e

Mic 0

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−300
−200
−100

0
100
200
300

M
a
g
n
it

u
d
e

Mic 1

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−300
−200
−100

0
100
200
300

M
a
g
n
it

u
d
e

Mic 2

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−150
−100

−50
0

50
100
150
200
250
300

M
a
g
n
it

u
d
e

Mic 3

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−200
−100

0
100
200
300
400

M
a
g
n
it

u
d
e

Mic 4

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−200
−150
−100

−50
0

50
100

M
a
g
n
it

u
d
e

Mic 5

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−250
−200
−150
−100

−50
0

50
100
150
200

M
a
g
n
it

u
d
e

Mic 6

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−300
−200
−100

0
100
200
300

M
a
g
n
it

u
d
e

Mic 7

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−300
−200
−100

0
100
200
300

M
a
g
n
it

u
d
e

Mic 8

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−300
−200
−100

0
100
200
300

M
a
g
n
it

u
d
e

Mic 9

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−250
−200
−150
−100

−50
0

50
100
150
200

M
a
g
n
it

u
d
e

Mic 10

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−300
−200
−100

0
100
200
300

M
a
g
n
it

u
d
e

Mic 11

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−250
−200
−150
−100

−50
0

50
100
150

M
a
g
n
it

u
d
e

Mic 12

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−300
−200
−100

0
100
200
300

M
a
g
n
it

u
d
e

Mic 13

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−250
−200
−150
−100

−50
0

50
100
150

M
a
g
n
it

u
d
e

Mic 14

7.95 7.96 7.97 7.98 7.99 8.00
time (s)

−300
−200
−100

0
100
200
300

M
a
g
n
it

u
d
e

Mic 15

Figure 7.3 – Time waveforms of 50 ms for the first 16 microphones of the Pyramic array

0 1 2 3 4 5 6 7
Time [sec]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fr
e
q
u
e
n
cy

 [
H
z]

Spectrogram

2

4

6

8

10

12

14

Figure 7.4 – Frequency sweep captured by Microphone 0.

69



Chapter 7. Results and algorithms implementation

from Speaker 2. Figure 7.5 shows the spectrogram and the time waveform of the speech signal.

Moreover, the time waveform allows to identify when the algorithms should proceed, i.e.,

when there are voiced segments in the record. For this test, a 2-D SRP direction of arrival

implementation has been made. The xy plane is marked by the Pyramic array. The parameters

of the algorithms are set as:

• Frequency range: 100 Hz to 7kHz

• Hop size: 1024

• FFT length: 1024

• Number of Snapshots: 25

• Starting time: 1,2 sec

• Far-field model

Finally, the results are displayed in Figures 7.6 and 7.7 in which a magnitude plot and

polar coordinates of the direction of arrival response are displayed respectively. We can

appreciate how the Pyramic array is able to detect the look-up direction φ which in this case

corresponds to 0◦ (since Speaker 2 is located a that angle from the Pyramic array look-up

direction). The length of the processed signal was 530 ms, while the processing time for SRP

for 48 microphones and the parameters mentioned above is 2,798 seconds.

70



7.3. SRP algorithm results

(a) Time waveform of speech signal captured by Microphone 0.

0 1 2 3 4 5
Time [sec]

0

1000

2000

3000

4000

5000

6000

7000

Fr
e
q
u
e
n
cy

 [
H
z]

Spectrogram

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

(b) Spectogram of speech signal captured by Microphone 0.

Figure 7.5 – In the top panel, the time representation of a speech signal. In the bottom panel, a
spectogram representation of the same signal.

71



Chapter 7. Results and algorithms implementation

−150 −100 −50 0 50 100 150
Azimuth [degrees]

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

M
a
g
n
it

u
d
e

Steering Response Power Spectrum

Figure 7.6 – Magnitude plot of SRP algorithms results for single source location.

0°

45°

90°

135°

180°

225°

270°

315°

0.2

0.4

0.6

0.8

1.0

Steering Response Power Spectrum (azimuth)

Figure 7.7 – Polar plot result of SRP implementation. The sound source is detected at φ = 0◦.

72



8 Conclusions and further directions
for research

8.1 Conclusions

Using a revolutionary technology, the Pyramic microphone array, for capturing multi-channel

audio signals, is able to acquire massive amount of acoustic information while implements

real-time DSP hardware accelerators. The main goals of the project have been achieved and a

functional and reliable system has been implemented.

In order to achieve our goal, we built the Pyramic array, a custom hardware component

connected to a DE1-SoC board from Altera Cyclone V family. DE1-SoC device combines a

Field Programmable Gate Array (FPGA) and a Hard Processor System (HPS), which allows

building reliable embedded systems.

Pyramic delivers a flexible platform for implementing practical real-time DSP algorithms

such as beamforming, speech-enhancement, and room shape recognition. The user can

change the number of microphones used by the device and test the Pyramic array under

different geometries more suitable for the desired application.

Moreover, the design is compatible with other Alteras Cyclone V devices that support HPS

and FPGA development. However, depending on the chosen platform, some peripherals might

not be available, such as the Audio Codec in the DE0-nano device.

Thanks to the fact that the project directory structure separates the hw and sw folders,

the designer can develop independent hardware or software applications. For instance, in

the current state of the design, the DE1-SoC acquires the data from the Pyramic array and

saves it in a DDR3 memory, which can be accessed by software applications. This means

that the designer can start further advanced software applications in Eclipse DS5 for the

Pyramic array without overlapping the design with the hardware system. On the other hand,

for programming the FPGA part of the device the designer should have knowledge of hardware

programming.

73



Chapter 8. Conclusions and further directions for research

8.2 Further research

As a continuation of this work, the student should build custom components and hardware

accelerators in order to perform real-time processing, which is the core purpose of the Pyramic

array. In the software side, the designer can develop advanced software applications where, for

instance, Python and C codes interact between them and control the FPGA part of the device.

Moreover, it should be necessary to characterize the microphones response and to analyze

the SNR of each microphone to understand better the Pyramic array behavior. For example,

one of the main problems encountered when designing the FIR filters was that for high

frequencies the filter output overflows. According to 3.5, the microphones might have a

non-uniform frequency response, which can affect the way the microphones data should be

processed. Understanding better the microphones response will help the student to calibrate

the design of the FIR filters. Alternative reason why the FIR filters might not work correctly is

due to the coefficients width settings, which might generate overflow of the output data after

MAC operations.

Additionally, the Altera FIR II IP Core allows coefficient reloading while the system is

running. This can be very practical for real-time applications where the user wants to change

the look-up direction of the system.

Another feature that can be improved from the system consists of developing a more com-

plex WebServer interface for the Pyramic array. At the moment, the WebServer simply controls

the input parameters of the software application and it is able to start the SPI acquisition.

In the end, the magic of the Pyramic array is that the possible development directions are

so broad that the designer bears a lot of freedom to implement its own ideas. Combining

software and hardware design gives complete control over the system behavior. The potential

of this project for real time implementations is huge. Therefore, we encourage further research

on this project to be driven with creativity and enthusiasm.

74



A Appendix: Schematics

The following circuits and schematics were designed by René Beuchat and Francisco Rojo at

LAP, EPFL, during Spring 2015.

A.1 INMP504 conditioning circuit

Figure A.1 contains the schematic of the conditioning circuit for the INMP504 conditioning

circuit for ’Microphone 0’ channel. The parameters of the circuit were calculated as follows

A = 1+ R2

R1
= 1+ 4.9k

100
= 50

BW = GBW

A
= 1.2M H z

50
= 24kH z

fhi g h = 1

2π∗C3 ∗R f 1
= 1

2π∗1µF ∗10K
= 15.9H z,

where flow corresponds to the decouping capacitor cut off frequency, A represents the system

gain and BW is the system bandwidth. Moreover, decoupling capacitors C22 and C23 were

chosen according to the documentation of the OPA170 amplifier [25].

A.2 Schematic for the ADC connection diagram

Figure A.2 shows the connection diagram of the AD7606 converter designed according to [4].

75



Appendix A. Appendix: Schematics

Figure A.1 – Schematic of the preamflifier circuit for one microphone channel

A.3 Microphones power supply and daisy-chain connection

Figure A.3.a displays the circuit diagram of the TPS78033 power converter from 5V to 3,3V,

which serves as power supply for the microphones. On the left panel, Figure A.3.b represents

the connectors schematic within a single microphone array.This connection layout allows

daisy chain wiring. The connectors placed in J1 and J2 pins are AMP 1-215079-4 female

connectors.

A.4 Pyramic array PCB

Figure A.4 shows a top view from the PCB of a single microphone array board. Components

such as microphones and Op Amps were mounted on the boards using SMT (surface mount

technology) placement systems at HEPIA, in Geneva. The joint between PCBs is a plastic piece

with pyramidal shape designed and 3-D printed at LAP.

A.5 PCB for Power Supply and GPIO connectors

The PCB displayed at Figure A.7 powers the Pyramic array and connects it to the GPIO pins

of the DE1-SoC device. The connectors placed in J2, J3 and J4 pins are AMP 1-215079-4

female connectors, which are compatible with AMP 8-215083 male connectors. The labels

of the connectors pins are depicted in Figure A.5. Left panel of Figure A.6 represents the

correspondence between the pin labels on the Pyramic array and the GPIO_0 port of the FPGA.

The right panel shows the wiring of the NTA0515mc boost power converter from Murata Power

Solution. It converts the 5 V from the DE1-SoC to ±15V for the Op Amps of the Pyramic array.

The filter was designed according to the datasheet presented in [20]. The load value of 4,37k

was chosen so the current through the boost converter remains lower than 33 mA.

76



A.5. PCB for Power Supply and GPIO connectors

Figure A.2 – Connections diagram of the AD7606

77



Appendix A. Appendix: Schematics

(a) TPS78033 power converter
from 5V to 3.3V.

(b) Daisy chain connection diagram between Pyramic PCBs

Figure A.3

Figure A.4 – Pyramic single array PCB board design

78



A.5. PCB for Power Supply and GPIO connectors

Figure A.5 – Pyramic array input pins labels and connectors

Figure A.6 – In the left panel the GPIO pins labels. In the right pannel the schematic of the
Murata Power Converter [20] connections

79



Appendix A. Appendix: Schematics

Figure A.7 – Pyramic array base power supply

80



B Appendix: Development Tools

For hardware development, you can configure the HPS and connect your soft logic in the

FPGA fabric to the HPS interfaces using the Qsys system integration tool in the Quartus Prime

software. For software development, the ARM-based SoC devices inherit the rich software

development ecosystem available for the ARM Cortex-A9 MPCore processor. The software

development process for Altera SoCs follows the same steps as those for other SoC devices

from other manufacturers.

B.1 Hardware

The project was developed upon Terasic DE1-SoC board, nevertheless it is compatible with

other Cyclone V SoC device which gathers the characteristics described in Section 4.3.1.

B.2 Software

The following programs were installed and the operating system used to develop the design

was UBUNTU 16.04.1:

• Quartus Prime 16.0 Lite Edition

• ModelSim-Altera Starter Edition 10.4d

• SoC Embedded Design Suite (SoC EDS): Eclipse for DS-5 v5.23.1

B.3 Attached multimedia files

The attached DVD is composed of the following sections:

• Audio: It contains the audio recordings for the results of Chapter 7.

• Project: It contains all the design files compressed as described in Section 6.6.

• Logic Analyzer: Salae logic simulation of the SPI System.

81



Appendix B. Appendix: Development Tools

• Schematics: It contains pdf files of the system schematics.

82



C Appendix: FIR Filters coefficients

143 coefficients for one FIR filter. In the same file, copy the coefficients as many times

as the number of banks you want to implement (usually 48). A comma represents a

separation between coefficients, while a space is a separation between filter banks.

1 # banks: 48
2 # coeffs: 143
3 -1.92836858E-10, 2.7661817E-9, 1.56636394E-9, -6.68390369E-9, -7.40206242E

-9, 1.99785879E-8, 2.64397032E-8, -5.82629366E-8, -7.94253102E-8,
1.56116056E-7, 2.11062408E-7, -3.84096067E-7, -5.10505862E-7, 8.76751151E
-7, 1.14446625E-6, -1.87627082E-6, -2.40792169E-6, 3.79720804E-6,
4.79813881E-6, -7.31812953E-6, -9.11797671E-6, 1.35058995E-5, 1.66140745E
-5, -2.39773828E-5, -2.91543402E-5, 4.11015628E-5, 4.94471105E-5,
-6.82424538E-5, -8.13015536E-5, 1.10040013E-4, 1.29925719E-4, -1.72723075E
-4, -2.02255751E-4, 2.64446021E-4, 3.07308265E-4, -3.95640742E-4,
-4.56549135E-4, 5.79379167E-4, 6.64278091E-4, -8.31751644E-4, -9.48042281E
-4, 0.00117228603 , 0.00132911754 , -0.00162446675 , -0.00183314038 ,
0.00221647127 , 0.00249104855 , -0.00298233982 , -0.00334061758 ,
0.00396396701 , 0.00442911344 , -0.00521462334 , -0.00581802684 ,
0.00680534563 , 0.0075917674 , -0.00883688062 , -0.0098742217 , 0.0114629847 ,
0.0128620038 , -0.0149388678 , -0.0168965785 , 0.0197316777 , 0.022639064 ,
-0.0268084979 , -0.031568432 , 0.0385531058 , 0.0478084522 , -0.0628254567 ,
-0.088722802 , 0.149493423 , 0.44977945 , 0.44977945 , 0.149493423 ,
-0.088722802 , -0.0628254567 , 0.0478084522 , 0.0385531058 , -0.031568432 ,
-0.0268084979 , 0.022639064 , 0.0197316777 , -0.0168965785 , -0.0149388678 ,
0.0128620038 , 0.0114629847 , -0.0098742217 , -0.00883688062 , 0.0075917674 ,
0.00680534563 , -0.00581802684 , -0.00521462334 , 0.00442911344 ,
0.00396396701 , -0.00334061758 , -0.00298233982 , 0.00249104855 ,
0.00221647127 , -0.00183314038 , -0.00162446675 , 0.00132911754 ,
0.00117228603 , -9.48042281E-4, -8.31751644E-4, 6.64278091E-4, 5.79379167E
-4, -4.56549135E-4, -3.95640742E-4, 3.07308265E-4, 2.64446021E-4,
-2.02255751E-4, -1.72723075E-4, 1.29925719E-4, 1.10040013E-4, -8.13015536E
-5, -6.82424538E-5, 4.94471105E-5, 4.11015628E-5, -2.91543402E-5,
-2.39773828E-5, 1.66140745E-5, 1.35058995E-5, -9.11797671E-6, -7.31812953E
-6, 4.79813881E-6, 3.79720804E-6, -2.40792169E-6, -1.87627082E-6,
1.14446625E-6, 8.76751151E-7, -5.10505862E-7, -3.84096067E-7, 2.11062408E
-7, 1.56116056E-7, -7.94253102E-8, -5.82629366E-8, 2.64397032E-8,
1.99785879E-8, -7.40206242E-9, -6.68390369E-9, 1.56636394E-9, 2.7661817E
-9, -1.92836858E-10, -9.9644808E-10

83





D Appendix: Pyramic Microphones posi-
tions

1 # Microphones positions (in cm) for Pyramic array for compilation in Python.
2 import numpy as np
3

4 pos0 = [3.51, 0, 1.13]
5 pos1 = [5.83, 0, 4.39]
6 pos2 = [8.15, 0, 7.65]
7 pos3 = [9.08, 0, 8.95]
8 pos4 = [9.55, 0, 9.6]
9 pos5 = [10.48 , 0, 10.9]

10 pos6 = [12.8, 0, 13.5]
11 pos7 = [15.12 , 0, 17.42]
12

13 pos8 = [13.7, -2.5, 21.3]
14 pos9 = [10.23 , -4.5, 21.3]
15 pos10 = [6.77, -6.5, 21.3]
16 pos11 = [5.38, -7.3, 21.3]
17 pos12 = [4.69, -7.7, 21.3]
18 pos13 = [3.3, -8.5, 21.3]
19 pos14 = [-0.15, -10.5, 21.3]
20 pos15 = [-3.6, -12.5, 21.3]
21

22 pos16 = [-1.75, 3.04, 1.13]
23 pos17 = [-2.91, 5.05, 4.39]
24 pos18 = [-4.07, 7.06, 7.65]
25 pos19 = [-4.54, 7.87, 8.95]
26 pos20 = [-4.77, 8.27, 9.6]
27 pos21 = [-5.24, 9.07, 10.9]
28 pos22 = [-6.4, 11.08, 14.16]
29 pos23 = [-7.56, 13.1, 17.42]
30

31 pos24 = [-3.6, 12.5, 21.3]
32 pos25 = [-0.5, 10.5, 21.3]
33 pos26 = [3.3, 8.5, 21.3]
34 pos27 = [4.69, 7.7, 21.3]
35 pos28 = [5.38, 7.3, 21.3]
36 pos29 = [6.77, 6.5, 21.3]
37 pos30 = [10.23 , 4.5, 21.3]
38 pos31 = [13.7, 2.5, 21.3]
39

40 pos32 = [-1.75, -3.04, 1.13]
41 pos33 = [-2.91, -5.05, 4.39]
42 pos34 = [-4.07, -7.06, 7.65]
43 pos35 = [-4.54, -7.87, 8.95]
44 pos36 = [-4.77, -8.27, 9.6]

85



Appendix D. Appendix: Pyramic Microphones positions

45 pos37 = [-5.24, -9.07, 10.9]
46 pos38 = [-6.4, -11.08, 14.16]
47 pos39 = [-7.56, -13.1, 17.42]
48

49 pos40 = [-9, -10, 21.3]
50 pos41 = [-9, -6, 21.3]
51 pos42 = [-9, -2, 21.3]
52 pos43 = [-9, -0.04, 21.3]
53 pos44 = [-9, 0.04, 21.3]
54 pos45 = [-9, 2, 21.3]
55 pos46 = [-9, 6, 21.3]
56 pos47 = [-9, 10, 21.3]
57

58 # Create Rotation matrix
59 alpha = 120.0* np.pi/180; # Alpha: Angle to rotate
60 R = np.array ([[np.cos(alpha),-np.sin(alpha) ,0],[np.sin(alpha),np.cos(alpha)

,0],[0,0,1]]);
61

62 # construct mic array
63 L = np.array([pos0, pos1, pos2, pos3, pos4, pos5, pos6, pos7, pos8, pos9,

pos10, pos11, pos12, pos13, pos14, pos15
64 ,pos16, pos17, pos18, pos19, pos20, pos21, pos22, pos23, pos24, pos25,

pos26, pos27, pos28, pos29, pos30, pos31
65 ,pos32, pos33, pos34, pos35, pos36, pos37, pos38, pos39, pos40, pos41,

pos42, pos43, pos44, pos45, pos46, pos47], dtype=float)/100
66

67 # Multiply and rotate by alpha (=120 )
68 L = np.dot(L,R)

86



Bibliography
[1] Altera, 101 Innovation Drive San Jose, CA, 95134. Audio core for Altera DE-Series

Boards, 10 2015.

[2] Altera. Avalon Interface Specifications, 2015.

[3] Altera, 101 Innovation Drive San Jose, CA, 95134. FIR II IP Core User Guide, 10 2015.

[4] Analog Devices. 8-/6-/4-Channel DAS with 16-Bit, Bipolar Input, Simultaneous

Sampling ADC, 2012.

[5] Altera Corporation. " Cyclone V Device Handbook, Volume 3: Hard Processor System

Technical Referene Manual," 31 July 2014, 2014.

[6] Altera Corporation. "Nios II Gen2 Processor Reference Guide", 2015.

[7] Altera Corporation. "Cyclone V Device Overview", 2016.

[8] Altera Corporation. "HPS SoC Boot Guide - Cyclone V SoC Development Kit", 2016.

[9] Altera Corporation. "SCFIFO and DCFIFO IP Cores User Guide", May 2016.

[10] Eugene Weinstein, Kenneth Steele, Anant Agarwal, and James Glass. Loud: A

1020-node modular microphone array and beamformer for intelligent computing

spaces. MIT Computer Science and Artificial Intelligence Laboratory, 2004.

[11] Fairchild Semiconductor. NC7SZ32 TinyLogic® UHS Two-Input OR Gate, 2009.

[12] Florian Parrodin, Janosch Nikolic, Joel Busset and Roland Siegwart. Design and cali-

bration of large microphone arrays for robotic applications. IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 4596 – 4601, 2012.

[13] InvenSense. Ultra-Low Noise Microphone with Bottom Port and Analog Output,

2014.

[14] Ivan Dokmanic, Reza Parhizkar, Andreas Walther, Yue M. Lu, and Martin Vetterli.

Raking the cocktail party. PNAS, 110(30), 2013.

[15] Ivan Dokmanic, Robin Scheibler, Martin Vetterli. Raking the cocktail party. IEEE

journal of selected topics in signal processing, 9(5), 2015.

[16] Philipos C. Loizou. Speech Enhancement. 3 edition, 2007.

[17] Uwe Meyer-Baese. Digital Signal Processing with Field Programmable Gate Arrays.

3 edition, 2007.

[18] René Beuchat Sahand Kashani-Akhavan. SoC-FPGA Design Guide.

[19] M.I. Skolnik. Introduction to Radar Systems. McGraw-Hill, New York, 1980.

[20] Murata Power Solutions. "NTA Series Isolated 1W Dual Output SM DC/DC Convert-

ers".

[21] Ivan Tashev. Sound Capture and Processing. 1 edition, 2009.

87



Bibliography

[22] Terasic Technologies. "Terasic- DE Main Boards - Cyclone - DE1-SoC Board," [On-

line].Available:.

[23] Altera University Program Terasic Technologies. DE1-SoC User Manual, 2014.

[24] Texas Instrument. TPS780xx 150-mA Low-Dropout Regulator, Ultralow-Power, IQ

500 nA With Pin-Selectable, Dual-Level Output Voltage, 2007.

[25] Texas Instruments. OPAx170 36-V, Single-Supply, SOT553, Low-Power Operational

Amplifiers Value Line Series, 2011.

[26] WM8731. "Portable Internet Audio CODEC with Headphone Driver and Pro-

grammable Sample Rates".

88



http://www.linkedin.com/in/juanazcarreta 
 

JUAN AZCARRETA ORTIZ 

Lausanne, Switzerland  From: Vitoria-Gasteiz, Spain  Born: 12/11/1992 
jazcarretao@gmail.com   (+34) 669 86 88 46   Status: Single 

WORK EXPERIENCE 
09/2016-08/2017 (exp.) NTT Communications SL: Signal Processing Group.             Kyoto, Japan 
02/2016-07/2016 (exp.) EPFL LCAV and LPA laboratories: An FPGA based platform for      Lausanne, Switzerland 
                                                    many-channel audio acquisition and algorithms implementation. 
02/2015-06/2015 Broadcom Networks Spain: Formation in Analog                             Barcelona, Spain                     

Microelectronics with the aim of increasing knowledge in the 
 design of high performance analog IC.  

02/2014-07/2014 Basque Center on Cognition, Brain and Language, BCBL:              San Sebastian, Spain 
Model physiological related BOLD signal variations in fMRI experiments.  

01/2014-06/2014 Power harvesting from human body at University of Navarra.     San Sebastian, Spain 
07/2013 Metalúrgicas Alavesas: PLC programming and control.                    Vitoria, Spain 
2012  CEIT: Undergraduate researcher in the Automations and                 San Sebastian, Spain 

Electronics department. 

EDUCATION 
09/2015-07/2016 (exp.) MS of Science in Electrical Engineering (UPC.EUROPA program)  Lausanne, Switzerland    
                                                    École Polytechnique Fédérale de Lausanne (EPFL)   
09/2014-06/2015              Master’s Degree in Electronics Engineering (MEE)                          Barcelona, Spain 
                                                    at Universitat Politécnica de Catalunya (UPC).                 
09/2010-07/2014             BSc in Industrial Electronics Engineering                                            San Sebastian, Spain  
                                    at University of Navarra, Ranking: 1st out of 14.                            

Fall 2013 Electric Engineering at Cal Poly, Exchange Program.              California, USA 
Summer Course 2013 Multimedia Signal and Information Processing:                                Aalborg, Denmark 
                                                    Aalborg University. Machine learning for speech recognition. 

ACADEMIC BACKGROUND 
02/2016-05/2016  Introduction to the IoT and Embedded Systems (UCI, Irvine)          MOOC, Coursera 
03/2014-04/2014  Statistical Analysis of fMRI data (Johns Hopkins University)             MOOC, Coursera 
09/2013-12/2013  Audio Engineering Club: Fuzz guitar pedal                                            California, USA  
07/2013   Anthem construction and design with CST Studio                 San Sebastian, Spain 
01/2013-04/2013  Management and Leadership Skills                   San Sebastian, Spain                
02/2013   Introduction to Digital Sound Design (Emory University)                MOOC, Coursera 
05/2012    Product Design and Development                                                          San Sebastian, Spain          

AWARDS 

2016 Vulcanus in Japan Programme Scolarship: 1-year EU students exchange in Japan. EU-

Japan Centre for Industrial Cooperation 
2015  AGAUR Scolarship 2015: for mobility programs for outstanding students in Catalonia. 
2014  KutxaBank Award for Academic Excellence: awarded to the most outstanding         
                                                    graduates in Gipuzkoa. 

LANGUAGES 
Spanish  Mother Tongue            English   TOEFL 98   German A1 
Basque   Mother Tongue            French B1                  

PROGRAMMING LANGUAGES
C/C++, Java, Matlab, Python, VHDL 

VOLUNTEERING WORK
2010-2014  ASPACE: Spanish Association of cerebral palsy sufferers.                San Sebastian, Spain 
06/2013   FSL INDIA: Work Camp in construction and education fields.             Dharamsala, India 

ADDITIONAL EXPERIENCE 
13/03/2016-18/03/2016 MunEPFL: Russian Federation Delegate at Harvard WorldMun, UNHRC          Rome, Italy 
06/11/2015-08/11/2015 MunEPFL: Germany delegate at ManMun, SPECPOL                Manchester, UK 
2014   Founder of AUDIO TECHNOLOGIES TECNUN (ATT).                San Sebastian, Spain 

Ebow Project: Electronic design and construction of an electronic bow. 
2013   Class Representative of Electronics Engineering.                                 San Sebastian, Spain 

Hobbies: Basketball – Music (guitar, accordion, bass) - Reading- Diving- Ski- Kendo- Make it Happen. 

89


	Abstract (English/Français/Deutsch)
	List of figures
	List of tables
	Introduction
	Motivation
	Objective
	Contributions
	Structure of the thesis

	Microphone arrays sound capturing systems
	Acoustic Noise
	Noise Sources
	Speech Signal

	Microphone arrays
	Types of microphone arrays

	Sound Capture model
	Coordinate system
	Far-field Model
	Spatial Aliasing and Ambiguity

	Summary

	Pyramic Microphone array
	Introduction
	Digital Signal Processing
	Pyramic Array
	Overview
	Pyramic array layout
	INMP504 microphone
	Signal conditioning
	AD7606 Analog to Digital Converter
	Timing requirements

	Summary

	FPGA Technologies: Terasic DE1-SoC Board
	Introduction
	FPGA Technology
	FPGA Benchmark
	Intelectual Property (IP) Cores design
	FPGA Design

	Terasic DE1-SoC Board
	Specifications
	Cyclone V Overview

	Pyramic array overall design
	FPGA interconnections: Avalon Interface
	Avalon Memory-Mapped Interfaces
	Avalon Streaming Interfaces
	Avalon Conduit Interfaces

	Summary

	FPGA Design
	Introduction
	SPI Communication Design
	SPI review
	SPI communication design
	SPI System block diagram

	FPGA implementation of Delay-and-Sum beamformer
	Digital filters
	FIR theory
	Filter-and-Sum Beamformer
	FIR filters design in FPGA
	System Timing

	Conclusions

	HPS design and implementation
	Introduction
	Cyclone V Hard Processor System SoCTutorial
	HPS features
	HPS-FPGA Bridges
	HPS Address Map

	SDRAM Controller
	HPS Booting and FPGA Configuration
	Pyramic Hybrid System
	HPS and FPGA Design

	Project Structure
	Hardware design files
	Software design files

	Conclusions

	Results and algorithms implementation
	Experiment conditions
	Microphone Signals
	SRP algorithm results

	Conclusions and further directions for research
	Conclusions
	Further research

	Appendix: Schematics
	INMP504 conditioning circuit
	Schematic for the ADC connection diagram
	Microphones power supply and daisy-chain connection
	Pyramic array PCB
	PCB for Power Supply and GPIO connectors

	Appendix: Development Tools
	Hardware
	Software
	Attached multimedia files

	Appendix: FIR Filters coefficients
	Appendix: Pyramic Microphones positions
	Bibliography
	Curriculum Vitae

