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Chapter 1

Introduction

In the past, homes were connected to Internet through circuit switched telephone networks
with slow connection speeds. Nowadays telephony services are more and more build on top
of Internet. Third generation mobile networks are one example of this. Conventional phone
calls are transformed from circuit switched systems to packet networks. Internet telephony
has become a commodity because of services like Skype [70] and Google Talk [18].

Mobile phones with Wi-Fi (Wireless Fidelity) interface provide means to establish low-
cost or free phone calls. The development is in a turbulent phase with many different
services and networks and no unbroken or cohesive systems exist, yet.

This thesis seeks to enlighten Internet telephony challenges and requirements by intro-
ducing a solution to combine a Voice over Internet Protocol (VoIP) application with 3rd
generation speech coding mechanism and a state-of-the-art mobile Linux terminal.

Two patent applications( [33], [34]) were filed by the author during the writing of this
thesis.

1.1 Motivation

The motivation for this thesis was in the observations in the convergence from traditional
phone services and Internet multimedia to handheld computers and mobile phones. More
complex requirements are set for communication and related services.

Borders of Internet and operator networks are already fuzzy for the consumers at least.
A handheld user who can route a call through a wireless access point to a GSM phone
abroad is unaware of different networks utilized. Also 3rd generation (and beyond) mobile
networks can be considered parts of Internet due to their packet based characteristics.

1



2 CHAPTER 1. INTRODUCTION

1.2 Scope

The scope of this thesis is in the study of speech coding mechanisms in IP networks and
in integration of a specific speech coder to a digital signal processor (DSP) utilized by an
IP Telephony application. The focus is in standardized speech coding whereas proprietary
services, musical audio coding, video and real-time issues of operating systems are demar-
cated.

This is done in order to achieve proper introduction to current technologies and to provide
extensive background for the actual implementation presented in Chapter 6. This should
result in gaining leverage using DSP in VoIP applications.

1.3 Goal

The goal of the thesis is to provide an architecture where a VoIP application using complex
speech coder can be executed in real-time in a mobile terminal. The architecture needs to
be build partly on top of a General Purpose Operating System (GPOS) and partly on a DSP
to encode and decode speech.

1.4 Organization of the Thesis

This thesis is divided in chapters. The overview sections in each chapter provide a granny-
proof approach for the topic under study. A more in-depth discussion is given in subsequent
sections.

First, in Chapter 2 we go through the best standardized practises in VoIP and media
streaming on the Internet, followed by different speech coding schemes introduced in Chap-
ter 3, and utilization of DSPs in Chapter 4. The latter chapters present the chosen and de-
signed architecture (Chapter 5), the implementation of the architecture (Chapter 6) and the
results (Chapter 7). Final words are stored in Chapter 8.



Chapter 2

Media Transport in IP Networks

2.1 Overview

This chapter introduces the evolution of mobile networks and terminals to IP-based (Inter-
net Protocol) networking. The topics covered include different mobile networks and the
protocols utilized in real-time and media streaming services run in IP networks. The end-
to-end media negotiation between different terminals, media processing and voice quality
issues are also discussed.

Over the years IP Telephony, or Voice over IP (VoIP), has become an option for telephony
over circuit switched networks. Many telephone operators offer IP Telephony services [71]
or route their traffic through IP networks. VoIP calls are a growing custom among home
users. The mobile domain is also moving toward IP-based networking.

It is assumed that the reader is familiar with the network organization in general and has
an understanding of the structure of OSI (Open Systems Interconnection) Reference Model
network layers [9].

2.2 Current Telecom and Mobile Networks

To better understand the nature and requirements of media transport in mobile environment,
current mobile networks are briefly discussed. Long distance operator networks and short
distance proximity networks are introduced.

2.2.1 Second and Third Generation

The first mobile networks were built by the radio amateurs which provided base stations (or
repeaters) to enable longer distances between the communicating parties. First generation
commercial mobile networks were built in the early 1980s and supported traditional voice

3



4 CHAPTER 2. MEDIA TRANSPORT IN IP NETWORKS

services. Second generation networks were dominated by Groupe Spécial Mobile, or Global
System for Mobile Communications (GSM), the first commercial digital mobile network.
The first version of GSM supported circuit switched voice and data services (GSM Data) in
low bit rates. General Packet Radio Service (GPRS) was developed to enhance GSM with
packet switched data services. GPRS enables data connections with significantly faster
initialization times than GSM Data. The GSM and GPRS networks are together referred to
as 2.5G networks. [46], [19]

EDGE (Enhanced Data for GSM Evolution) is based on the same principles as GPRS,
but is leveraged by using a more flexible error correction scheme over-the-air. This leads to
higher average bandwidth, but variations in bandwidth are increased. The evolution from
GSM over GPRS to EDGE can be deployed in the same system infrastructure. Upgrades
to hardware and software are necessary, but the overall system architecture remains the
same. [19]

Universal Mobile Telecommunication System (UMTS) is a standardized, third genera-
tion wireless network, resulted from the GSM/GPRS evolution. It is standardized by Third
Generation Partnership Project (3GPP) [5]. UMTS offers data transfer rates up to 2 Mbps
and supports a number of multimedia and enhanced telephony services.

2.2.2 Wireless Local Area Networks

A wireless local-area network (WLAN) is a radio frequency network without the limitations
of wires or cables. It provides the features and benefits of traditional LAN technologies such
as the Ethernet. WLANs have been deployed to office and campus areas since the late 1980s
to add mobility to the networking environment.

The connection between the mobile client and the wired network is made through an
Access Point (AP). A wireless access point combines routing and bridging functions: it
bridges network traffic, usually between wired network over radio interface to computers
with wireless adapters. The AP is attached to a node connected to the wired network and
acts as a gateway for wireless data to be routed onto the wired network. Like a cellular
network the WLAN is capable of roaming between the access points; reconnecting to the
network through another access point. [48]

The WLAN network architecture was standardized after the first commercial implemen-
tations had existed for some years. The first standard (IEEE-802.11a) was developed by
IEEE working group 802.11 and was accepted by the IEEE board during 1997. Other stan-
dards include HomeRF and HomeRF 2.0, IEEE-802.11b,c,g and HiperLAN. [22], [48], [36]

The 802.11 networks use unlicensed frequency band around 2.4 GHz. This band has no
requirements for end-user licenses while the transmitted power is below 1 W and the trans-
mitter uses a special spread spectrum transmission technique. The 1 W power restriction
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serves to limit the range where two radios may interfere with each other. The spread spec-
trum requirement is intended to make the WLAN signal appear as background noise to a
narrowband receiver. [48]

2.2.3 Convergence of Telephone and IP Networks

The trend of creating more data services has prepared the way for moving voice services
from PSTN (Public Switched Telephone Network) to packet networks. A converged net-
work incorporates both telephony and data services. The wireless industry has adopted the
trend of moving toward converged networks and the services are built over the IP layer.
Some of the reasons are discussed below.

A converged network removes the need for a circuit-switched core network. Current stud-
ies show that convergence results in lower costs and expenditures for companies’ network
architectures compared to separate telecom and data networks. The costs for maintaining
two separate networks can be reduced in terms of simplification of the network and smaller
operational staff when the single network performs both data and telephony services. The
integration also eases the offering of enhanced multimedia services. A single standard based
network also allows rapid deployment of new services. Operators could gain cost savings
by using IP network components over telephony components due to competition and open
standards. [72], [17], [46], [7]

IP Multimedia Subsystem (IMS), standardized within 3GPP, is a good example of a com-
prehensive telephony architecture built over the IP network. IMS provides a service plat-
form for telephone services and real-time multimedia services that easily integrate with
each other. By bringing together call control and service provisioning into a horizontally
integrated system, IMS enables new combinations of services and service elements, like
instant messaging and user presence.

IMS services are based on the Session Initiation Protocol (SIP) (see Section 2.3.3). SIP
services are specified to be independent of the access media. This principle of access inde-
pendence means that IMS services can be accessed over current telecom packet networks,
WLAN and wired Internet.

2.3 Media Transport and Control

To gain knowledge of the requirements and the environment of real-time media applica-
tions we go through transport, signaling and media negotiation protocols currently utilized
in the IP networks. These topics also serve as clarification for the implemented architec-
ture described in Chapter 5. The more detailed studies of media streaming and respective
protocols are presented in [68], [39].
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The Internet media transport and signaling protocols are specified in Internet Engineering
Task Force (IETF) Working Groups (WGs). Instead of abandoned telecom approach to me-
dia communications, standardization is led by individuals of university research teams and
mobile companies. For example, the International Telecommunications Union Telecommu-
nications Sector (ITU-T) specified media initiation and negotiation protocol H.323 [25] was
deployed only in small scale and is replaced in practice by Session Initiation Protocol (SIP),
discussed in Section 2.3.3. The common denominator for each IETF specified protocol is
the text-based syntax of the protocol. This helps in parsing and debugging and thus enables
human readability.

2.3.1 Real-Time Transport Protocol

Real-Time Transport Protocol (RTP) [64] is the only standardized protocol for media trans-
port on the Internet. It provides a common layer for media transport that is independent of
signaling protocols and applications. RTP is a result of the standardization work done by
Audio/Video Transport (AVT) Working Group of the IETF. The first version of the protocol
was published in 1996 and the new revised version [65] was completed in the mid 2003. In-
ternational Telecommunications Union (ITU) has also adopted RTP as the media transport
protocol for H.323 recommendations. [25]

RTP offers a way to deliver digitized audio and video securely across an IP network by
incorporating different profiles and payload formats and a number of services for real-time
media. These services include loss detection and correction, timing recovery, payload and
source identification, reception quality feedback, media synchronization and membership
management [52]. Nevertheless, RTP does not take Quality of Service (QoS) issues into
account, but these are a subject for consideration in lower level layers of OSI (Open Systems
Interconnection) Reference Model [9]. RTP can be utilized over any transport layer, but
UDP provides a minimal set of extensions to IP and, thus, low overhead to the RTP packet.
UDP is the common choice for an implementation.

RTP is divided in two parts, data transfer protocol and associated control protocol. Real-
time Transport Control Protocol (RTCP) provides RTP stream information for stream man-
agement. This information contains periodic reporting of reception quality, participant iden-
tification and other information describing the RTP stream sender, notification on changes
in session membership and the information needed to synchronize media streams [52].

In RTP each stream is transported via a separate RTP session. Due to different media
coding methods and delays in packet transmission the streams will go non-synchronous.
This effect is commonly noticeable in case of non-synchronous movement of the speaker’s
lips and produced speech. The solution to the phenomenon is called lip synchronization.
RTP provides the information needed for synchronization of multiple media streams.
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The reasons for avoiding the bundling of different media streams together are the result
of the network limitations, codecs and application requirements [52]. Some participants of
a video conferencing session may prefer audio over video, while others have resources for
audio only. Participants with both audio and video capabilities may allow lower Frames
Per Second (FPS) rates for the video but set higher requirements for the audio quality. In
the transport layer this could appear as reservations with differing Quality of Service (QoS)
classes for audio and video. 1

Jitter Buffering

A play buffering is generally used for minimizing errors; a generally known feature in
portable “jog proof” CD players. The size of this jitter 2 buffer determines the delay. A
smaller buffer decreases the delay but packet loss is increased; if packets are received in
disorder the small buffer might cause the application to drop the missing packet. Thus, by
increasing the jitter buffer disadvantages of missing packets to media quality can be avoided
to some extent. The trade-off between the quality (loss of packets) and minimum delay is
found by the requirements and demands of the application. Interactive or conversational
real-time applications are more delay-sensitive and set more strict limitations to buffer size.
One-way real-time streaming allows more delay and thus larger buffers can be utilized to
enhance the transmission quality. The following Sections 2.3.2 and 2.3.3 describe the main
signaling protocols for RTP sessions. The example [81] below describes the implications
of a jitter buffer.

Source A is sending audio stream to receiver B. When the delay is fixed, for
example 100 ms for every packet, then A continuously sends packets, for ex-
ample every 20 ms, and B continuously receives packets every 20 ms. Due to
fixed delay the inter-arrival time of packets is constant at the receiving end B.
In this case no buffering is needed.

In case of variable delay things get more complicated. When A sends packets
at interval of 20 ms, due to the variable network delay, B receives them at
relative time of 0, 20, 45, 70, 80, 107, ... The variation in delay is 0, 0, 5, 10,
0, 7, respectively. If B is playing packets back every 20 ms and the first packet
was played back at the time 0, then when the third packet is supposed to be
played it has not yet arrived (at the time of 40 ms). Logically the packet will

1In a best-effort network the situation is realized by adding more error correction to the media stream. The
solutions include fragmentation of packets, increasing re-sending rate or decreasing packet size. These usually
increase the need for the bandwidth and may cause cumulative network congestion. Bundling several streams
together would even increase the required bandwidth or leave some media superfluous.

2Jitter is defined as the variation in delay.
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be skipped. Similarly the fourth packet has not arrived at the time of 60 ms and
is skipped, too. This occurrence can be solved by keeping the playback delay
at 10 ms, for example. Instead of playing the packets at 0, 20, 40, 60, 80, 100,
they are played at 10, 30, 50, 70, 90, 110.

Higher jitter can be absorbed with higher playback delay, but that introduces more overall
delay to the end user. If interactive end-to-end latency or say, conversational delay is more
than 250 ms it is perceivable and annoying [50]. On the other hand, if the packet can not be
played due to late arrival, it is effectively lost. Clearly, there is a trade-off here between the
delay and the packet loss.

RTP Payload Format

The RTP framework for the payload formats defines how particular media types are trans-
ported within RTP. Payload formats are referenced by RTP profiles3, and they may also
define certain properties of the RTP data transfer protocol. [52]

The relation between an RTP payload format and profile is primarily one of a namespace,
although the profile may also specify some general behavior for payload formats. The
namespace relates the payload type identifier in the RTP packets to the payload format
specifications allowing an application to relate the data to a particular media codec. In
some cases the mapping between payload type and payload format is static; in others the
mapping is dynamic via an out-of-band control protocol. For example, the RTP profile for
Audio and Video Conferences with Minimal Control [63] defines a set of static payload
type assignments, and a mechanism for mapping between a MIME (Multipurpose Internet
Mail Extensions) [14], [15] type identifying a payload format, and a payload type identifier
using the Session Description Protocol (SDP). SDP is discussed in Section 2.3.4. [52]

The relation between a payload format and the RTP data transfer protocol is twofold:
a payload format will specify the use of certain RTP header fields, and it may define an
additional payload header. The output produced by a media codec is translated into a se-
ries of RTP data packets – some parts mapping onto the RTP header, some into a payload
header, and most into the payload data. The complexity of this mapping process depends
on the design of the codec and on the degree of error resilience required. In some cases the
mapping is simple; in others it is more complex. [52]

At its simplest, a payload format defines only the mapping between media clock and
RTP timestamp, and mandates that each frame of codec output is placed directly into an

3In general, RTP profile defines rules for mapping codec specific information to RTP headers. At the time of
writing this thesis there is a single RTP profile: the RTP Profile for Audio and Video Conferences with Minimal
Control. [63]
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RTP packet for transport. However, this is not sufficient in many cases. Many codecs were
developed for circuit-switched systems and without reference to the needs of a packet de-
livery system. These codecs need to be adapted to this environment. Others were designed
for packet networks but require additional header information. In these cases the payload
format specification defines an additional payload header and rules for generation of that
header. [52]

There are also payload formats that specify error correction schemes. For example,
RFC 2198[51] defines an audio redundancy encoding scheme and RFC 2733 [57] defines a
generic Forward Error Correction (FEC) scheme. In these payload formats there is an addi-
tional layer of indirection, the codec output is mapped onto RTP packets and those packets
themselves are mapped to produce an error-resilient transport. To enlighten the nature and
the requirements of the implementation part of this thesis, Adaptive Multi-Rate (AMR)
speech codec and its RTP payload format are discussed in Sections 3.3 and 3.3.1. [52]

2.3.2 Real-Time Streaming Protocol

Real-Time Streaming Protocol (RTSP) is a standardized media transport control protocol
for client-server interaction. It provides a control mechanism for streaming content, e.g.
video-on-demand services. RTSP was developed by Multiparty Multimedia Session Con-
trol (MMUSIC) Working Group of the IETF and published as a proposed standard in April
1998 [66]. Development of the protocol is proceeding and a revised version will be pub-
lished in the future [67].

As in the case of RTP, the control channel of RTSP is specified to be independent of the
underlying transport layer. The most common implementations utilize both TCP and UDP.
The control mechanism is also kept independent of the media part, but RTP is the de facto
implementation for media transport.

RTSP is a HTTP-based request-response protocol, incorporating HTTP message format
with similar representation of headers and payload. RTSP provides a set of methods for
initiating, establishing, playing, recording and a VCR (Video Cassette Recorder) style of
controlling the streaming session (presentation). The RTSP methods4 are listed in Table 2.1.

The RTSP session can enclose several media streams. A typical set could include one
stream for audio and one for video. The synchronization of the media streams (lip synchro-
nization, for example) is a media transport or an application layer issue.

Figure 2.1 depicts an example of a basic RTSP session with one RTP media stream.
First, the RTSP client retrieves the session description from the RTSP server by sending a

4At the time of writing this thesis it is still unclear whether or not the RECORD method should be excluded
from the revised RTSP standard. It has been realized that only few practical use cases exist for RECORD and
this results in excluding the implementation of the method in most streaming applications.
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Table 2.1: The Real-Time Streaming Protocol (RTSP) methods. RTSP provides a set of
methods for controlling the media presentation. The left-hand side of the table shows the
method name followed by the explanation on the right.

Method Explanation
DESCRIBE Retrieves the description of a presentation or media object identified by

the request URL from a server.
GET_PARAMETER Request retrieves the value of a parameter of a presentation or stream

specified in the URI.
OPTIONS Represents a request for information about the communication options

available on the request/response chain identified by the Request-URI.
PAUSE Temporarily halts a stream without freeing server resources.
PING Prevents the identified session from being timed out.
PLAY Starts data transmission from the server to client on a stream allocated

via SETUP.
RECORD Starts data transmission from the client to server on a stream allocated

via SETUP.
REDIRECT Indicates that the session should be moved to new server location
SET_PARAMETER Requests to set the value of a parameter for a presentation or stream

specified by the URI.
SETUP Causes the server to allocate resources for a stream and create a RTSP

session.
TEARDOWN Frees resources associated with the stream. The RTSP session ceases to

exist on the server.

DESCRIBE message to the server. In SETUP phase a state for a media stream is reserved.
The first SETUP also causes the server to reserve resources for the new RTSP session
created. The PLAY message requests the server to start sending media stream enabled in
SETUP phase. TEARDOWN message ends the presentation and releases the resources
reserved at the server.

2.3.3 Session Initiation Protocol

The Session Initiation Protocol (SIP) is a standardized application layer signaling protocol
developed for setting up multimedia calls over IP networks and is mainly used on the Inter-
net. SIP was originally developed by the MMUSIC Working Group of IETF in 1997. The
protocol evolved to version 2.0 the next year and after a number of updates and bug fixes
the new RFC was published in June 2002 [59].

Many telephone operators already offer SIP services in interconnection with regular tele-
phone services [62]. SIP has been chosen by 3GPP for signaling and establishing traditional
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RTSP serverRTSP client

200 OK

DESCRIBE

200 OK

SETUP

200 OK

PLAY

200 OK

TEARDOWN

Time

RTP Transmission

Figure 2.1: Media Stream Signaling with Real-Time Streaming Protocol (RTSP). The fig-
ure depicts the establishment and streaming of an RTSP presentation. The actual media
transmission is carried out by RTP. First, the media content parameters are requested with
stateless DESCRIBE. The following requests create a state (vertical white bars) for the
RTSP session that is destroyed after TEARDOWN message.

telephony and enhanced multimedia sessions in UMTS Release 5 [1] and Release 6 [4]
networks. A comprehensive study of SIP operations in UMTS IP Multimedia Subsystem
(IMS) is also discussed in [45], [46].

The key features of SIP are its flexibility and scalability. It can be used in PC’s, lap-
tops, telephone switches, gateways, wireless devices and mobile phones. SIP incorporates
elements of two fundamental Internet protocols: HTTP (Hypertext Transfer Protocol) used
browsing the web and SMTP (Simple Mail Transfer Protocol) used for e-mail.

Whereas RTSP provides control over the delivery of streaming media, SIP was developed
for the needs of IP Telephony. Due to their common nature of media control and signaling
(and construction site at MMUSIC) they share many similarities in terms of protocol syntax,
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headers and payload. Syntax of both protocols is HTTP-based and they utilize RTP as the
de facto protocol for media transport.

SIP protocol complies to request-response model as of other HTTP-based protocols. A
SIP session is controlled with requests, and responses for these are provided by the other
end it being a server or a client. As a response to a request the receiving party sends a SIP
response which gives a response code indicating how the request was processed. Response
codes are divided into six categories depending on the general form of behavior expected.
These categories are presented below in Table 2.2.

Table 2.2: Session Initiation Protocol (SIP) Methods and Response Classes. The Table first
lists the SIP methods. Second, response classes with their numeric codes are presented.

Request
Method

Purpose

INVITE Invite the user or a service into a session.
OPTIONS Discover the capabilities of the receiver.
BYE Terminate (hangup) a call or call request
CANCEL Terminate incomplete call requests
ACK Acknowledge the final response to INVITE.
REGISTER Register the current location of a user to the user’s home network
Response
Class

Meaning Example

1XX Information about call status. Request
received, continuing to process the re-
quest.

180 RINGING

2XX Success 200 OK
3XX Redirection to another server 301 MOVED TEMPORARILY
4XX Client did something wrong 401 UNAUTHORIZED
5XX Server did something wrong 500 INTERNAL SERVER ERROR
6XX Global failure 606 NOT ACCEPTABLE

A study of combining the features of RTSP and SIP was carried out for this thesis. As
a result, a solution was introduced that enables the RTSP functionality, including media
control, on SIP with minor extensions (patent [33] pending). For example, RTSP lacks
the support for media negotiation that is a basic feature of SIP. By utilizing existing fea-
tures of SIP the streaming session could be enabled with RTSP inherited headers. VCR
style control (Fast Forward, Pause, etc.) was made possible with SIP INVITE. This solu-
tion is now introduced as an option in SIP-RTSP interworking in IETF MMUSIC Working
Group. [33], [84]

Figure 2.2 depicts a streaming session controlled with SIP. First the media for the session
is negotiated. The session will start as RTP audio only. After the server comes aware of
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appended video feed it informs the client by sending a re-INVITE. The client has also video
capabilities and the streaming session continues seamlessly with both RTP video and audio
streams.

SIP serverSIP client

200 OK

INVITE

Time

ACK

INVITE

200 OK

ACK

BYE

200 OK

RTP Transmission

RTP Transmission

RTP media audio only

Video stream available

RTP media with audio and video

Figure 2.2: Session Initiation Protocol (SIP) with Media Extensions. SIP is extended with
minor changes to support RTSP-like media streaming control. The SIP media negotiation
(adding the additional video stream during the session) that RTSP is incapable of is also
utilized.
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2.3.4 Media Negotiation

Establishment of IP Telephony calls or streaming media sessions requires participants to
be aware of details of media streams (like codecs and bandwidth), transport addresses and
other session description metadata. Session Description Protocol (SDP) [20] was developed
in IETF Multiparty Multimedia Session Control (MMUSIC) Working Group around 1998
to provide a standard representation for such information.

SDP can also be utilized in a so called offer-answer model [58]. Offer-answer refers to
media negotiation where both ends of the multimedia session announce their media coding
capabilities. This is utilized in Session Initiation Protocol (SIP) (see Section 2.3.3) where
the SDP is enclosed in INVITE request of the initiating party. The receiving end compares
local and remote capabilities and sends the section of both back to the initiator in the 200
OK response payload.

The development of the protocol is ongoing and a revised standard [21] is to be finished
in the future. The protocol is independent of how the media is transported and of transport
protocols. SDP is intended to be carried on with different transport protocols as appropriate,
including SIP, Real-Time Streaming Protocol (RTSP), electronic mail using the Multipur-
pose Internet Mail Extensions (MIME) [14], [15], and the Hypertext Transport Protocol
(HTTP) [12].

As other IETF specified protocols, SDP syntax is also text-based. An SDP session de-
scription consists of consecutive lines in format <key>=<value>. Session description is
divided in session level descriptions and optionally media-level descriptions. Session-level
descriptions apply to media level descriptions unless they are defined in the media descrip-
tion. The session level description starts with “v=” line and continues to the first media
level section, which starts with a “m=” line. There can be several media level sections.
Table 2.3 lists the SDP fields with their explanations.
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Table 2.3: The Session Description Protocol (SDP) fields. The left-hand side of the table
depicts the field keys followed by the explanation on the right.

Session description
a Session attribute. (opt)
b Bandwidth information. (opt)
c Connection information. (opt) Not required if included in all media.
e Email address. (opt)
i Session information. (opt)
k Encryption key. (opt)
o Owner/creator and session identifier.
p Phone number. (opt)
s Session name.
u URI of description. (opt)
v Protocol version.
z Time zone adjustments.

Time description
t Time the session is active.
r Repeat times. (opt)

Media description
a Session attribute. (opt)
b Bandwidth information. (opt)
c Connection information. Optional if included in the session description.
i Media title. (opt)
k Encryption key. (opt)
m Media name and transport address.

The example below shows a media configuration that is described in SDP as follows.

o=user 1189641421 2 IN IP4 10.3.2.2

s=-

c=IN IP4 10.3.2.2

t=0 0

m=audio 29680 RTP/AVP 96 8 0

a=rtpmap:96 AMR/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:0 PCMU/8000

The o= line announces the session owner (user) with a generated session id. The fol-
lowing data represent the IP protocol version and the host’s IP address. The media address
is the same as IP address of Session creator. The following m= line informs that only audio
is used with media port number being 29680. The RTP profile in use is AVP (Profile for
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Audio and Video Conferences with Minimal Control). The consecutive fields describe the
payload types of codecs available. The a lines describe the media codecs available in prior-
itized order, the preferred codec being AMR with sampling rate of 8000 Hz. The other two
codecs are PCMA (G.711a) and PCMU (G.711u).



Chapter 3

Speech Coding in Packet Networks

3.1 Overview

The basic function of speech and audio coding is to transform and compress analog audio
signal to a digital representation. The advantage of such a transformation is that the manip-
ulation and post-processing of digital audio is more effective than analog audio. Also the
transmission of digitized audio is more reliable and the quality can be maintained even with
low bandwidth operating modes.

Redundancies introduced in speech signals during the human speech production process
make it possible to encode speech at very low bit rates. Furthermore, our perceptual hear-
ing system is not equally sensitive to distortions at different frequencies and has a limited
dynamic range. Speech coding techniques take advantage of these properties for reducing
the bit rate.

The motivation for reducing the bit rates of speech signals is the demand for cost-effective
implementation algorithms, effective usage of bandwidth in both wired and wireless net-
works and to conserve disk space in storing the audio data. Such applications include voice
communications, real-time audio streaming, voice mail and archiving.

This chapter discussed the aforementioned topics and introduces a variety of codecs
(coder / decoder) used in wireless and mobile networks. The Adaptive Multi-Rate (AMR)
speech coding scheme is the official speech coding scheme for 3GPP (3rd Generation Part-
nership Project) networks. Three AMR classes exist: both AMR-NB (Narrow-Band) and
AMR-WB (Wide-Band) are designed for speech coding. The AMR-WB codec has rea-
sonable performance for music, but it is not comparable to generic audio codecs. AMR-
WB+ (Extended AMR-WB) contains both bit-exact AMR-WB and new modes which en-
able high-quality musical audio streaming. AMR-NB is later discussed in more detail,
because it was chosen for the implementation part of this thesis. The implementation work

17
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is discussed in Chapter 6.

3.2 Speech Coding

Figure 3.1 below depicts an abstraction of the end-to-end communications path. First the
incoming speech is digitized followed by the parameter estimation. The speech model
parameters are then quantized and coded with a specific encoder. Finally, the data is trans-
mitted over the communication channel. At the receiving end, the received data is decoded
and reconstructed, and eventually synthesized to speech.

Speech In

Parameter Estimation

Quantization

Coding

Bits Transmitted

Channel

Bits Received

Decoding

Reconstruction

Synthetization

Speech Out

Channel

Figure 3.1: Abstraction of End-to-End Speech Processing. Figure depicts the speech pro-
cessing path from the transmitter to receiver over a communications channel.

Requirement of a narrow bandwidth for speech signals is a bottleneck for signal qual-
ity. This obstacle has been tried to bypass by using statistical approaches, for example. A
method introduced by P. Jax and P. Vary [28] uses a codebook to extend the coded speech
for narrow-band (telephone, for example) to wide bandwidth. The perceived signal quality
is increased without transmitting new information for the receiver. The narrowband input
signal is classified into a limited number of speech samples for which the information about
the wideband spectral envelope is taken from a pre-trained codebook. By using this sin-
gle codebook the enhanced speech exhibits a significantly larger bandwidth than the input
speech without introducing objectionable artifacts.
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For the bandwidth efficient transmission of speech signals compression is necessary, for
example in mobile communications. Reconstruction with the best possible subjective qual-
ity must be maintained even if the transmission channel introduces perturbation. High qual-
ity is attained at low bit rates by exploiting signal redundancy as well as the knowledge that
certain types of coding distortion are imperceptible because they are masked by the signal.

The design of a speech coding algorithm is limited by the major requirements of high
quality decoded speech signals, low bit rate, low computational complexity, high robustness
against channel errors and low algorithmic delay.

For a given application, a trade-off between these contradicting requirements has to be
found. In speech or audio communications systems in general, the use of standardized
coding algorithms is crucial. Standardization ensures the interoperability between differ-
ent products. Speech coding research is often related to normalization activities e.g. of
CCITT/ITU-T (Comité Consultatif International Télégraphique et Téléphonique / Interna-
tional Telecommunications Union Telecommunications Sector), ETSI (European Telecom-
munications Standards Institute) or ISO-MPEG (International Organization for Standard-
ization - Moving Picture Experts Group).

In comparison to audio signals, speech signals can be characterized by a rather low ana-
logue bandwidth and by particular model assumptions that may be used during the design
of the coding algorithm. In standard communications applications a telephone bandwidth
of 0.3 - 3.4 kHz allows a digital representation at a sampling frequency of 8 kHz. Generic
audio signals, e.g. music, have a bandwidth of about 15-20 kHz and thus require a sampling
frequency of 32 - 48 kHz.

Speech coders attempt to minimize the bit rate1 for transmission or storage of the sig-
nal while maintaining required levels of speech quality2, complexity3, and communication
delay. [8]

Speech coding techniques can be broadly divided into two classes of waveform coding
and vocoding (voice coding). Waveform coding aims at reproducing the speech waveform
as faithfully as possible, but vocoders try to preserve only the spectral properties of speech
in the encoded signal without reproducing the waveform. The waveform coders are able
to produce high-quality speech at relatively high bit rates; vocoders produce intelligible

1Bit rate refers to coding efficiency which is expressed in bits per second (bps).
2Speech quality is usually evaluated on a five-point scale, known as the mean-opinion score (MOS) scale, in

speech quality testing—an average over a large number of speech data, speakers, and listeners. The five points
of quality are: bad, poor, fair, good, and excellent. Quality scores of 3.5 or higher generally imply high levels
of intelligibility, speaker recognition and naturalness.

3The complexity of a coding algorithm is the processing effort required to implement the algorithm, and
it is typically measured in terms of arithmetic capability and memory requirement, or equivalently in terms of
cost. A large complexity can result in high power consumption in the hardware.
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speech at much lower bit rates, but the level of speech quality—in terms of its naturalness
for different speakers—is also much lower. [8]

3.2.1 Perceptual Evaluation of Speech Quality

Perceptual Evaluation of Speech Quality (PESQ) is a perceptual quality measurement tool
for voice quality in telecommunications. PESQ was specifically developed by ITU to be
applicable to end-to-end voice quality testing under real network conditions like VoIP and
PSTN. In February 2001 PESQ was officially approved as new ITU-T recommendation
P.862. [49],[26]

Figure 3.2 depicts the block diagram of the structure of PESQ algorithm. The most
significant result of PESQ measurement is the Mean Opinion Score (MOS) that directly
indicates the voice quality. The PESQ MOS as defined by the ITU recommendation P.862
has the range from 1.0 (worst) up to 4.5 (best). The common ITU scale ranges from 1.0 to
5.0, but PESQ simulates a listening test and is optimized to reproduce the average result of
all listeners. Statistics however prove that the best average result one can generally expect
from a listening test is not 5.0, instead it is around 4.5. It appears the subjects are always
cautious to score a 5, meaning "excellent", even if there is no degradation at all. [49]

PESQ time alignment includes support for detecting active speech by using Voice Activ-
ity Detection (VAD). VAD is a mechanism for reducing the bit rate during silence periods,
and is widely used in several speech codecs. Knowing the individual MOS scores is espe-
cially useful for optimizing e.g. comfort noise generation during silence periods or noise
reduction systems. [49]

3.2.2 Speech and Audio Quality in Packet Networks

Audio quality is a perceptual and subjective experience and its measures are based on a qual-
itative set of parameters. In addition to factors of perceptual audio codec (coder/decoder)
quality4 the following related factors need to be considered in packet networks: packet loss,
algorithmic and network delay, buffering and multitasking (i.e. task switching schemes) of
Operating Systems (OS).

Congestion in the network elements (routers, for example) causes them to discard packets
that can not be queued to router buffers. Packet loss causes the received information to be
incomplete, but depending of the packet loss and the error correction rate, different coding
methods provide adequate means for reconstructing the defective data.

4In general, perceptual quality of a decoded audio signal depends on the type of input signal (speech or
music), bandwidth and compression rate of the signal.
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Figure 3.2: Perceptual Evaluation of Speech Quality (PESQ) Algorithm Block Dia-
gram. [49]

Algorithmic delay is caused by the design of the algorithm. If the frame5 size is constant
the delay is constant. With variable frame size the delay varies. However, even if the
algorithmic delay is varying, the audio needs to be played out with a constant rate. This
naturally limits the minimum playback delay to be the maximum algorithmic delay6.

Network delay consists of retransmission of dropped packets and the physical limitations
of the speed of electromagnetic waves.

Caused by the loss of packets, the order of the incoming packets and variation be-
tween inter-arrival times of incoming packets varies. Buffering provides means for post-
processing (coding, playing) the data in a constant rate but also causes increased delay.
Jitter buffering is discussed in Section 2.3.1.

Multitasking in the context of operating systems causes the media encoding and decoding
tasks to suspend for a period of time while the operating system is executing other processes.
It is critical for real-time media transport to have media coded in an exactly guaranteed
time. Otherwise the media quality might be dramatically reduced. The congestion in media
coding buffers causes packet loss as in the case of network elements. An in-depth study of
the low latency issues for General Purpose Operating Systems (GPOS) is presented in [82].

5A set of samples of arbitrary size. Usually an algorithm has a fixed frame size, for example 20 samples.
6Definition of the algorithmic delay also includes the so called look-ahead delay. Look-ahead is caused by

the compression algorithm that relies on known voice characteristics to correctly process sample block N . In
some algorithms the sample block N + 1 needs also to be known in order to reproduce sample block N , which
causes additional delay.
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3.2.3 Speech Codec Characteristics

The Table 3.1 below lists a subset of audio codecs (coder/decoder) and their features col-
lected in ITU-T Study Group 16 (SG 16) [27]. Codecs that are candidates for the 3rd
generation mobile networks are listed below. Table parameters are shortly described in a
list below followed by a more in-depth explanation of the complex parameters.

1. Primary Application. A short list of primary applications for the coding standard.
The following codes are used:

A Archival storage
D Digital Circuit Multiplication Equipment (DCME)
DVD DVD-video
F Facsimile
M Mobile
P Packet Circuit Multiplication Equipment (PCME)
RN Radio news
S Streaming
SVD Simultaneous voice & data
T Telephony (general)
TC Teleconferencing
TV Television
V Voice on IP
VC Video conferencing
VT Video telephony
W Wireless LAN
WWW World Wide Web
A Approved (list date of first approval date)
D Draft (list scheduled approval date)
NS Non-standardized but public (list date of first issue)

2. Nickname: The short, informal name by which the standard is most often referred to.

3. Formal name: The formal identification of the standard - for example, ITU Rec.
number, or ISO standard number (not the formal title).

4. Speech Model: Indicates if a speech model is used.

5. Audio Bandwidth: Indicates the range (min - max) of audio passband.

6. Bitrate(s): List of one or more bit rates at which codec can operate. If in format (x-y)
this indicates the min - max range.
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7. VAD/DTX/CNG: Voice Activity Detection, Discontinuous Transmission, Comfort
Noise Generation

8. Frame loss concealment: Indicates if a codec actively conceals artifacts caused by
frame loss.

9. Scalable Bitrate: The encoder has the ability to continuously vary the amount of data
sent per unit time, with a granularity of a few bytes or less.

10. Sample Rate: The frequency at which input samples are acquired.

11. Frame Length: The length of each set of independently decodable samples.

12. Algorithmic Delay: The minimum time between acquisition of a given input sample
at the encoder and reconstruction of the same output sample at the decoder. This
value assumes instantaneous processing and zero propagation delay between encoder
and decoder. Usually calculated as frame length + look-ahead buffer 7.

13. Fixed point Computational Complexity: Approximate computational complexity of
encoder + decoder. Units vary. This is only a rough approximation, as this value is
highly dependent on implementation architecture.

Speech model

Speech model refers to extracting parameters of the sampled speech signal. In vocoders
the parameters of a source filter speech model (instead of signal samples) are quantized
and transmitted. This source-filter synthesis representation closely resembles the model of
speech production.

Frame loss concealment

As discussed in Section 3.2.2, most of the packet-switched networks, like GPRS and In-
ternet, are based on the best-effort principle which does not guarantee Quality of Service
(QoS) demands. Packets can be lost in two ways: through dead-end routes or because a
router purposely drops packets in order to manage congested links. In addition, speech
packets that are delayed too long (i.e. their play out time has already passed) are as good
as lost since human conversations cannot tolerate long delays. For example, in backward-
adaptive coding schemes (like in G.723.1 and G.729), the packet loss results in loss of
synchronization between the encoder and the decoder. This causes the degradations of the

7Look-ahead refers to an algorithmic process in which some of the samples from the following frame are
used to improve the performance of the compression process.
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output speech signal to propagate into following segments of the speech signal until the
decoder is resynchronized with the encoder. Codec-specific loss concealment algorithms
are used in both encoders and decoders to prevent impeding of lost packets. [61], [60]

Algorithmic delay

Algorithmic delay is delay that is intrinsic to the algorithm of a codec and is independent
of CPU speed. The algorithmic delay of a codec is simply referred as the delay of the
codec. The algorithmic delay is generally expressed in terms of the number of samples or
milliseconds by which a codec’s output lags behind the corresponding input. In some cases
algorithmic delay is referred as the sum of the basic algorithmic delay and tasking latency
of the operating system. The first-mentioned definition is effective in this thesis.

3.3 Adaptive Multi-Rate Narrow Band Speech Codec

The Adaptive Multi-Rate Narrow Band (AMR-NB) speech codec [2] was originally de-
veloped and standardized by the ETSI for GSM systems. It was also chosen by 3GPP
as the mandatory codec for 3rd generation (3G) cellular systems. Due to its flexibility
and robustness, it is also suitable for other real-time speech communication services over
packet-switched networks such as the Internet.

AMR-NB consists of the multi-rate speech coder, a source controlled rate scheme in-
cluding a voice activity detector (VAD) and a comfort noise (CN) generation system during
silence periods. The AMR-NB frames containing CN parameters are called Silence De-
scriptor (SID) frames. It also incorporates an error concealment mechanism to minimize
the effects of transmission errors and lost packets.

The multi-rate speech coder is a single integrated speech codec with eight source rates
from 4.75 kbits/s to 12.2 kbits/s. AMR-NB features also a low rate background noise mode
for reducing the number of transmitted bits and packets during silence periods. The sam-
pling frequency used in AMR-NB is 8000 Hz and the speech encoding is performed on 20
ms speech frames. Therefore, each encoded AMR-NB speech frame represents 160 sam-
ples of the original speech. The speech coder is capable of switching its bit-rate every 20
ms speech frame upon command.

A 3GPP reference configuration where the various speech processing functions are iden-
tified is depicted in Figures 3.3 and 3.4 for encoder and decoder, respectively. The audio
parts including A/D (analog to digital) and D/A (digital to analog) conversion are included
to show the complete speech path between the audio input/output and the digital interface
of the network. The detailed description of the audio parts is out of the scope of this thesis.
Modules of both AMR-NB encoder and decoder are presented in Figures 3.3 and 3.4 are
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Figure 3.3: Overview of AMR-NB Encoder Audio Processing Functions.

described below in Table 3.2.
As shown in the Figure 3.3, the speech encoder receives its input as a 13-bit uniform Pulse

Code Modulated (PCM) signal either from the audio part of the user equipment (mobile
phone, for example), or on the network side (BSS, Base Station System) from the Public
Switched Telephone Network (PSTN) via an 8-bit A-law or µ-law to 13-bit uniform PCM
conversion. The encoded speech at the output of the speech encoder is packetized and
delivered to the network interface. In the receive direction, the inverse operations take
place. [2]
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Figure 3.4: Overview of AMR-NB Decoder Audio Processing Functions.

The input block of 160 speech samples is first transformed from 16-bit presentation to
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Table 3.2: AMR-NB Encoder and Decoder Modules. The logical AMR-NB encoder and
decoder modules are enumerated for the Figures 3.3 and 3.4.

Part Description
1 8-bit A-law or µ-law PCM (ITU-T Recommendation G.711 [24]), 8 000 samples/s
2 13-bit uniform PCM, 8 000 samples/s
3 Voice Activity Detector (VAD) flag
4 Encoded speech frame, 50 frames/s, number of bits/frame depending on the AMR-NB

codec mode
5 Silence Descriptor (SID) frame
6 TX_TYPE, 2 bits, indicates whether information bits are available and if they are speech

or SID information
7 Information bits delivered to the 3G AN
8 Information bits received from the 3G AN
9 RX_TYPE, the type of frame received quantized into three bits

13-bit form. This is done by zeroing the three least significant bits. These speech frames
are then pre-processed (low-pass filtered, for example) and passed to encoder. The size
of encoded block is 118 bytes (59 samples) and the number of non-zero bits depends on
the presently used codec mode. The decoder transforms this data to reconstructed speech
samples. The coding scheme is Multi-Rate Algebraic Code Excited Linear Prediction
(ACELP)8. The bit rates of the source codec are listed in Table 3.3. [3], [2]

3.3.1 AMR-NB RTP Payload Format

The AMR-NB Real-time Transport Protocol (RTP) payload format specifies the method for
packetization of AMR-NB encoded speech signals into RTP. This payload format supports
transmission of multiple channels, multiple frames per payload, the use of fast codec mode
adaptation, robustness against packet loss and bit errors, and interoperation with existing
AMR-NB and AMR-WB transport formats on non-IP networks. [83]

Even though this payload format specification supports the transport of both AMR-NB
and AMR-WB speech data, it is important to remember that AMR-NB and AMR-WB are
two different codecs and they are always handled as different payload types in RTP.

8ACELP is a speech encoding algorithm employed in analysis by synthesis codecs in order to predict the
filter coefficients required to synthesize speech at the receiving party. In the algorithm a limited set of pulses is
distributed as excitation to linear prediction filter. The ACELP method is widely employed in current speech
coding standards such as AMR, AMR-WB and ITU-T G-series standards G.729 and G.723.1. The main advan-
tage of ACELP is that the algebraic codebook it uses can be made very large (> 50 bits) without running into
storage (RAM/ROM) or complexity (CPU time) problems.
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Table 3.3: AMR-NB Source Codec Modes and Bit Rates. Each AMR-NB mode name is
listed on the left column. The right column represents the actual bit rates of each mode.
The abbreviations in the brackets quote the network specific standardized name for the
given mode. Particularly, the 6.7 kbps mode is adopted as PDC-EFR [14], the 7.4 kbps
mode as IS-641 codec in TDMA [13], and the 12.2 kbps mode as GSM-EFR [12].

Codec Mode Source Codec Bit Rate
AMR_12.20 12,20 kbits/s (GSM EFR)
AMR_10.20 10,20 kbits/s
AMR_7.95 7,95 kbits/s
AMR_7.40 7,40 kbits/s (IS-641)
AMR_6.70 6,70 kbits/s (PDC-EFR)
AMR_5.90 5,90 kbits/s
AMR_5.15 5,15 kbits/s
AMR_4.75 4,75 kbits/s
AMR_SID 1,80 kbits/s (see note 1)



Chapter 4

Digital Signal Processing in Mobile
Terminals

4.1 Overview

Digital Signal Processor (DSP) is a computer, optimized for the detection, processing and
generation of real-world signals such as voice, video and music. It is usually implemented
in a single chip in dimensions smaller than a stamp. The price range for a DSP varies from
one euro to hundreds of euros. Digital Signal Processors reside in every mobile phone, CD-
player or a car. These real-life implementations are generally called as embedded systems.

The difference between a DSP and a microprocessor is not obvious. Earlier the separa-
tion was based on a DSP hardware integrated algorithm called Multiply and Accumulate
(MAC) 1, used counting the inner product in numerous mathematical functions. Nowadays
many DSPs have microprocessor functionality on board and many microprocessors provide
DSP functionality[6].

Traditionally IP Telephony applications are run in a general purpose microprocessor
(GPP) with a general purpose operating system (GPOS). This chapter discusses the us-
age of Digital Signal Processors as media coding accelerators in mobile terminals. First,
DSP requirements and needs for mobile terminals are enlightened. Processor architectures
and communication between the DSP and its periphery are studied. The chapter closes in

1DSP provides dedicated hardware for Multiply and Accumulate (MAC) operation. Results of the multi-
plication of two data items (operands) are usually available within one processor clock cycle. In comparison
a typical microprocessor carries out its multiply operation by a binary long multiplication process. When it
encounters a multiply instruction, a micro-code — an internal sequence of operations — is invoked. This
micro-code performs the multiplication as a sequence of shifts and adds on successive clock cycles until the
result is complete. The resulting overhead for multiplication on a microprocessor could be approximately 80
processor clock cycles to perform a 16-bit multiplication. [6]

29
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the study of interprocessor communication.
The approach to Digital Signal Processing in this Chapter is based on software design.

DSPs are studied as an alternative platform for running IP Telephony media components.
The details of hardware design are bypassed.

4.2 Definitions for Real-Time

There are several definitions for real-time, most of them contradictory [37]. POSIX Stan-
dard 1003.1 [23] (discussed in Section 4.6.1) defines real-time for operating systems as:

Real-time in operating systems: the ability of the operating system to provide
a required level of service in a bounded response time.

The following definition [37] covers the viewpoint of real-time DSP processing and is
accepted here as a sufficiently exact definition.

In a real-time DSP process, the analyzed (input) and / or generated (output)
samples (whether they are grouped together in large segments or processed
individually) can be processed (or generated) continuously in the time it takes
to input and / or output the same set of samples independent of the processing
delay.

An audio DSP example clarifies the definition. The system is not capable of real-time
processing of a 2.00 seconds of sound when analyzing it requires 2.01 seconds. If it requires
only 1.99 seconds, it is a real-time process.

Let us consider another example related to sampling and demand for real-time. An audio
filter requires 10 µs to process one sample. The DSP can therefore filter audio signals with
bandwidth up to 100 kHz. With a microprocessor with capability of processing the sample
in 200 µs the upper limit for sampling rate would only be 5 kHz. This clearly indicates how
the computational processing speed of a microprocessor limits the signal bandwidth.

4.3 Performance Measurement

The microprocessor performance, or speed, is commonly measured in terms of number of
instructions or number of operations in a period of time. Million Instructions Per Second,
MIPS, is the most common measure. This measure is commensurate only among processors
with the same instruction set, because different instruction sets often take different numbers
of instructions to execute the same task [85].

MFLOPS, Million Floating-Point Operations Per Second, and MOPS, Million Opera-
tions Per Second, describe the number of operations a device can perform in a second.
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FLOPS, like MIPS, are not that useful as a benchmark for modern computers because other
factors in computer performance are excluded. The factors include interprocessor commu-
nication, cache coherence, and the memory hierarchy. [85]

Another measure of DSP systems is called MMACS (Million of Multiply-Accumulates
Per Second). This is the number of MAC operations, in millions, that the device can perform
in a second. For comparison of DSP devices, this gives inaccurate results because it does
not take the needs of an application into account.

To provide a comparative measure of performance across processors and instruction sets,
a System Performance Evaluation Cooperative (SPEC) benchmark was developed by a
non-profit organization called Standard Performance Evaluation Corporation [73]. SPEC
is a set of standard CPU-intensive integer and floating point benchmarks based on real
programs [47]. SPEC CPU2000 is a well recognized benchmark suite that measures the
performance of the processor, memory and compiler on the tested system.

SPEC CPU2000 is divided into two suites of benchmarks, SPECfp and SPECint. SPECfp
measures the processor’s floating-point performance and the CPU’s interaction with main
memory and cache. Audio encoding, certain spreadsheet calculations and 3D games are ex-
amples of floating-point applications. SPECint measures the system’s integer performance.
SPECint is an applicable measure in the category of word processing, file compression,
email and database performance. [74]

General purpose processors used in personal computers integrate instructions for both
integer and floating-point operations. In the embedded systems this varies. Hardware needs
to give effect to only a specific set of tasks in terms of maximizing the system performance
and minimizing the power consumption. Most of the handheld devices, or Personal Digital
Assistants (PDAs), provide only a processor with integer instructions. Floating-point opera-
tions are implemented as library functions, which lack the efficiency and speed of hardware
integration.

Usually DSPs provide also a hardware integrated set of mathematically complex algo-
rithms. In the field of media processing, these include FIR filters, Fast Fourier Transform
(FFT) and Discrete Cosine Transform (DCT).

4.4 Digital Signal Processor Architectures

This section discusses different DSP architectures and introduces communication schemes
based on interrupts and memory access methods. Finally, the eXpressDSP Algorithm Inter-
operability Standard (XDAIS) is introduced. XDAIS is developed for DSP code generation
to define framework between different parts of DSP application development.

For comparison and better understanding of DSP and microcontroller architecture differ-
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ences, an introductory listing is presented in Table 4.1. Microcontroller tasks are clearly
related to external communication and control with other devices whereas DSP require-
ments are strongly algorithm execution related. A closer look into DSP requirements is
presented in Table 4.2 where the main characteristics are listed.

Table 4.1: Microcontroller and DSP Usage Comparison. The table clearly shows the non-
overlapping requirements from microcontroller and DSP based functionalities. [16]

Embedded
Processor

System Requirement Feature Benefit

Microcontroller I/O Control I/O ports with bit-
level control

Efficient control of exter-
nal devices

Peripheral Communi-
cations

Serial ports, UART,
I2C

Hardware support for ex-
pansion; external device
networking and communi-
cations

Precision control of
motors and actuators

Sophisticated timers Low software overhead

Quickly resolve
complex software
program control flow

Conditional jumps,
bit test instructions,
interrupt priority
control

Efficiently implement con-
trol oriented algorithms

Fast response to ex-
ternal events

External interrupts
with multiple priority
levels

Program control immedi-
ately redirected on event
occurrence with minimal
overhead

Conversion of sensor
data

A/D converters Hardware support for
translation of analog
signals

Digital Signal
Processor

Software filters MAC unit, zero over-
head loops

Digital filtering in few cy-
cles

Interface to codecs High-speed serial
ports

Hardware support for
translation of analog
analog signals

High data throughput
from serial ports

Peripheral DMA Less wasted cycles fetch-
ing data from serial ports

Fast data access Harvard architectures
and variants

Fast execution of signal
processing algorithms

Traditional DSP architecture illustrates the processor architectural evolution from CISC
(Complex Instruction Set Computer) to RISC (Reduced Instruction Set Computer). The
CISC influence can be seen from the design philosophy of trying to do more with one
instruction, which leads to compact code size, and the use of memory operands to increase
the data throughput. The RISC characteristic of DSP is reflected in the fixed instruction set
and the simplified addressing mode. [69]

The combination of RISC and Single Instruction Multiple Data (SIMD) architectures
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Table 4.2: Typical Digital Signal Processing Requirements. [69]
Requirement Implementation

Arithmetic Operation
Single cycle MAC Parallel array multiplier
Conditional Execution Comparison + other op
Saturation overflow behavior and rounding Saturation and rounding hardware
Parallel barrel shifting Shifting + other op

Memory Access
Single cycle dual access in parallel with arith-
metic operation

Harvard structure and dual address generators

Special addressing mode Circular buffer / bi-reverse addressing hard-
ware

Parallel pointer adjustment Dedicated address adder
Program Control

Zero overhead looping Looping hardware
Efficient call / interrupt Hardware stack and so on

tries to produce a unified DSP-Microcontroller design. The unified system is particularly
suited for embedded devices.

Dual core processors contain two processors that are build into a single box. Usually
the other one is a GPP and dedicated to act as a host processor for operating system and
applications. The other one is a DSP and communicates with the GPP by a proprietary pro-
tocol. Dedicated real-time tasks can be placed on DSP and the other processor is reserved
for non-real-time processes.

4.4.1 Interrupts

Interrupt-driven I/O is used by almost all systems for at least some devices. The system
employs I/O interrupts to indicate to the processor that an I/O device needs attention. When
a device wants to notify the processor that it has completed some operation or needs at-
tention, it causes the processor to be interrupted. It is up to system software to handle the
interrupt and proceed with the running of the tasks.

When the I/O operation is interrupt-driven2, the operating system simply works on the
other tasks while data is being read from or written to the device. When the OS recognizes

2To deal with the different priorities of the I/O devices, most interrupt mechanisms have several levels of
priority. These priorities indicate the order in which the processor should process interrupts. Both internally
generated exceptions and I/O interrupts have priorities. Typically, I/O interrupts have lower priority than in-
ternal exceptions. There may be multiple I/O interrupt priorities, with high-speed devices associated with the
higher priorities. [47]
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an interrupt from the device, it reads its status to check for errors. If there are none the
OS can supply the next piece of data, for example, by a sequence of memory-mapped
writes. When the last byte of an I/O request has been transmitted and the I/O operation is
completed, the OS can inform the program. The processor and OS do all the work in this
process, accessing the device and memory for each data item transferred. [47]

An I/O interrupt is asynchronous with respect to the instruction execution. That is, the
interrupt is not associated with any instruction and does not prevent the instruction comple-
tion. The control unit needs only check for a pending I/O interrupt at the time it starts a new
instruction. [47]

In addition to the fact that an I/O interrupt has occurred, it is essential to convey further
information such as the identity of the device generating the interrupt. Furthermore, the
interrupts represent devices that may have different priorities and whose interrupt requests
have different urgencies associated with them. [47]

4.4.2 Direct Memory Access

A mechanism was created for off-loading the processor and having the device controller
transfer data directly to or from the memory without the intervention of the processor. This
mechanism is called Direct Memory Access (DMA). The interrupt mechanism is used by
the device to communicate with the processor, but only on completion of the I/O transfer or
when an error occurs, rather than generating interrupt per transferred byte. [47]

DMA is implemented with a specialized controller that transfers data between an I/O
device and memory independently of the processor. The processor grants the DMA con-
troller to bus master. DMA then directs the reads and writes between itself and memory.
Figure 4.1 depicts the interaction between the CPU and DMA controller.

There are two possibilities for the timing of the data transfer from the DMA controller to
memory. The controller can cause the processor to halt when it attempts to access data in
the same memory bank where the controller is writing. This is the fastest option for the I/O
device, but may cause the processor to run slowly because the processor may need to wait
until a full block of data is transferred.

In the other case the controller can access memory in memory cycles, which are not
used by the particular memory bank into which the DMA controller is writing data. This
approach is called as cycle stealing and is commonly used approach. The actual DMA
transfer consists of three steps [47]:

1. The processor configures the DMA by supplying the identity of the device, the oper-
ation to perform on the device, the memory address that is the source or destination
of the data to be transferred and the length of data (number of bytes to transfer).
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Enter

CPU sets up disk for
DMA transfer

DMA device begins
transfer independent of

CPU

CPU executes another
process

Continue

DMA device interrupts
CPU when finished

CPU executes a process

Figure 4.1: Direct Memory Access (DMA) Takes Over the Control of File I/O. Central
Processing Unit (CPU) grants DMA to proceed with data transfer while performing other
tasks. When finished, DMA interrupts CPU to inform of the completion of data transfer.

2. The DMA starts the operation on the device and arbitrates for the bus. When the data
is available (from the device or memory), the data is transferred. The DMA device
provides the memory address for the read or write. If the request requires more than
one transfer on the bus, the DMA unit generates the next memory address and initiates
the next transfer. Using this mechanism, a DMA unit is able to complete an entire
transfer, which may be thousands of bytes, without involvement of the processor.
Many DMA controllers contain a memory buffer to allow them to deal flexibly with
delays either in transfer or those incurred while waiting to become bus master.

3. Once the DMA transfer is complete, the controller interrupts the processor. Processor
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then determines by interrogating the DMA device or examining memory whether the
entire operation was completed successfully.

There may be multiple DMA devices in a computer system. For example, in a system with
a single processor-memory bus and multiple I/O buses, each I/O bus controller will often
contain a DMA processor that handles any transfers between a device on the I/O bus and
the memory. [47]

4.4.3 XDAIS

The eXpressDSP Algorithm Interoperability Standard (XDAIS) is a Texas Instruments (TI)
standard that incorporates an example of software framework which defines a standard set
of coding conventions and application programming interfaces (APIs). XDAIS includes
algorithm programming rules that enable interoperability between other code blocks.

Algorithms written in the eXpressDSP standard will work on all TI platforms and are
easily included in the users software. XDAIS uses interfaces and environment build upon
DSP/BIOS II DSP operating system. All DSP Global algorithms are eXpressDSP compliant
and have been tested and certified as such by Texas Instruments. [78], [6]

XDAIS defines a set of programming rules and conventions that need to followed for
the algorithm to be fully compliant. Most of the rules are common sense programming
practices that are widely used and can be applied to all algorithms. In addition to these base
rules, there are Instruction Set Architecture (ISA) specific rules. For example, rules that
define the usage of specific control registers for each Texas’ TMS320 processor family. [6]

4.5 Tasks

This section discusses the task switching between processes and different scheduling algo-
rithms. Processes and threads are followed by introducing context switching mechanisms.

4.5.1 Task Management and Execution

Before running of a DSP task or program it needs to be loaded to the DSP memory. The
assembled and linked program can reside in the hard disk or in some other external memory.
To load a task the operating system or similar needs to execute the following phases [47].

1. Read the header of executable to determine the size of the text and data segments.

2. Create new address space for the task. This address space includes holds space for
text, data segments and stack segment.
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3. Copy the instructions and data from the executable file into the new address space.

4. Copy arguments passed to the program onto the stack.

5. Initialize the machine registers. The stack pointer is set to point to the address of the
first free stack location.

6. Jump to start-up routine that copies the program’s arguments from the stack to regis-
ters and calls the program’s main routine.

4.5.2 Processes

Primitive units for system resources allocation are called processes. Each process is pro-
vided with its own address space and (usually) one thread of control. A process executes a
program and multiple processes can execute the same program. However, each process has
its own copy of the program within its own address space and executes it independently of
the other copies. [13]

Processes are organized hierarchically. Each process has a parent process which is ex-
plicitly arranged to create one. The processes created by a parent process are called its child
processes. A child inherits many of its attributes from the parent process. [13]

Each process has a also unique identifier, process ID number. Process ID is allocated to
each process at the time of its creation. The lifetime of a process ends when its termination is
reported to its parent process. The termination causes all of the process resources, including
its process ID, to be freed. [13]

4.5.3 Threads

According to POSIX Standard IEEE 1003.1-2003, a thread is a single flow of control within
a process. Each thread has its own thread ID, scheduling priority and policy, error number
value, thread-specific key/value bindings and the required system resources to support a
flow of control. Anything whose address may be determined by a thread, including but
not limited to static variables, storage obtained via malloc(), directly addressable storage
obtained through implementation-defined functions, and automatic variables, are accessible
to all threads in the same process. [23]

4.5.4 Task Switching

The task switching between multiple functions can occur between processes or threads. A
task priority indicates importance of the task relative to other tasks. It may be fixed or
variable, unique or shared with other tasks. A task switch occurs when one task suspends
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execution and another starts or resumes execution. Task switch is also called as context
switch, because a tasks context (generally the complete contents of the stack and the values
of the registers) is usually saved for re-uses when the task resumes. Task switching is also
called as scheduling. [53]

Preemption occurs when a task is interrupted by the kernel and another task is prepared
to be executable. An alternative to a preemptive system is a cooperative system, in which
a task must voluntarily relinquish the control of the processor before another task may start
its execution. In this case, the control of task switching is partly left to programmer who
needs to structure the task so that this occurs. If a running task fails to cooperate (for
example, repeats an infinite loop), other tasks will not execute and the system will fail to
work properly [53].

Preemptive and cooperative context switching are handled by the kernel. Kernel soft-
ware manages the context switching and the communication between processes. The ker-
nel generally ensures that the highest-priority task is the task that is running (preemptive
scheduling) or will run next (cooperative scheduling). [53]

4.6 Operating Systems for Signal Processors

An operating system gives advantage for software design when the number and complexity
of tasks increase. The OS could be utilized to provide functionality for allocating system
resources and to perform multi-tasking.

A number of DSP operating systems exists. Information for Table 4.3 was gathered to
list the DSP operating systems and their features in the market. Excluded are the operat-
ing systems for standard PC hardware. The features chosen and listed can be considered
essential in embedded systems design.

The need for DSP operating system depends on the tasks to be performed. A simple DSP
task performing only few functions usually does not leverage of the use an operating sys-
tem. The operating system would only add overhead to application memory requirements,
for example. The programmer can easily provide the means for peripheral and internal
communications by using library functions of the code generation software.

The responsibilities of the operating system arise from three characteristics [47] of I/O
systems:

1. The I/O system is shared by multiple programs using the processor.

2. I/O systems of the use interrupts (externally generated exceptions) to communicate
information about I/O operations.Because interrupts cause a transfer to kernel or su-
pervisor mode, they must be handled by the operating system.
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3. The low-level control of an I/O device is complex because it requires managing a
set of concurrent events and because the requirements for correct device control are
often very detailed.

Many companies offer pre-written operating systems for DSP processors. The operating
systems offer several functions absorbed from common operating systems. In addition and
most importantly they feature real-time functionality essential in most of the DSP applica-
tions.

Features and prices of the operating systems vary. Most companies charge only for the
purchase of their code development environment. The environment uses the operating sys-
tem libraries and integrates the application to the proprietary OS. Charging of some oper-
ating systems include also the runtime license fee that needs to payed for each commercial
application. Some companies deliver their OS sources for developers to optimize the OS
overhead for the application requirements. Operating System can be said to be Real-Time
Operating System (RTOS) when the below mentioned conditions are met. [37]

1. An RTOS (Real-Time Operating System) has to be multi-threaded and preemptive.

2. The notion of thread priority has to exist as there is for the moment no deadline driven
OS.

3. The OS has to support predictable thread synchronization mechanisms.

4. A system of priority inheritance has to exist.

5. OS Behavior should be known.

This indicates that the following figures should be clearly given by the RTOS manufacturer:

1. The interrupt latency (i.e. time from interrupt to task execution). This has to be com-
patible with application requirements and has to be predictable. The value depends
on the number of simultaneous pending interrupts.

2. For every system call, the maximum time the system call takes. It needs to be pre-
dictable and independent of the number of objects in the system.

3. The maximum time the OS and drivers mask the interrupts.

4.6.1 POSIX

Portable Operating System Interface (POSIX) standard is widely implemented in different
Operating System environments, including all UNIX platforms. POSIX is an open oper-
ating interface standard accepted world-wide. It is produced by the IEEE (Institute for
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Electrical and Electronics Engineers), Inc. POSIX standards are also adopted by ISO (the
International Organization for Standardization) and IEC (the International Electrotechnical
Commission). [75]

POSIX standard is divided in several parts. The first part was called as IEEE Std 1003.1-
1990 or “Part 1: System Application Program Interface (API) [C Language]” defines the
C language interface for UNIX-like kernel and its functionality, like process primitives, the
environment of a process and file system structure. The second part (IEEE Std 1003.2-
1992), “Part 2: Shell and Utilities” defines the shell and about 100 utilities. Later the
1003.1 was updated to include real-time extensions (1003.1b) and threads (1003.1c). This
standards (1003.1) is referred as POSIX.1. [75]

The code portability between different operating systems and hardware is assured by
implementing POSIX support. The support can be partial or comprehensive. POSIX con-
formance means that the POSIX.1 standard is supported in its totality. A system that has
the conformance certified implements the real-time and threading routines of the POSIX.1b
and POSIX.1c subsets in addition to core services. The term POSIX compliance indicates
that a system provides partial POSIX support. POSIX compliance means that the product
provides also documentation for showing which POSIX features are supported. POSIX, its
subsets and services are listed in Table 4.4 below. [32]
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Table 4.4: POSIX Services. POSIX Core Services is the feature set usually found in UNIX
operating systems; it incorporates Standard ANSI C

POSIX.1: POSIX Core Services

Process Creation and Control Timers

Signals File and Directory Operations

Floating Point Exceptions Pipes

Segmentation Violations C Library (Standard C)

Illegal Instructions I/O Port Interface and Control

Bus Errors

POSIX.1b: Real-Time Extensions

Priority Scheduling Message Passing

Real-Time Signals Shared Memory

Clocks and Timers Asynchronous and Synchronous I/O

Semaphores Memory Locking

POSIX.1c: Threads Extensions

Thread Creation, Control, and Cleanup Thread Synchronization

Thread Scheduling Signal Handling



Chapter 5

Software Architecture and
Embedded Platform

5.1 Overview

The implementation task for this thesis was to decide and solve how computationally com-
plex media codecs can be utilized in the VoIP (Voice over IP) software build on Open Mul-
timedia Applications Platform (OMAP) processor environment. This chapter starts from
requirements for the architecture and goes through the VoIP software description to Digital
Signal Processor (DSP) software architecture.

The following sections define the architectural requirements, discuss the OMAP environ-
ment and its different communication schemes between the DSP and ARM (Acorn RISC
Machine) processors. Finally, we take a look at the IP Telephony software and discuss the
architectural decisions made for the implementation.

5.2 Requirements

The requirements described below were first defined in accordance with the implementation
of Sofia-SIP [44], a Session Initiation Protocol (SIP) stack developed in Nokia Research
Center in 2000-2006.

1. Complex media codecs of an IP Telephony application need to executable in real-time
on the OMAP processor in Linux environment.

2. The implementation need to support simultaneous loading of multiple media codecs
to DSP.

3. To utilize AMR-NB codec implementation available for the OMAP TMS320C55x

43
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DSP.

4. Integrate the chosen AMR-NB implementation to IP Telephony software.

5. Transparent usage of DSP to media commanding system.

6. Interoperable with other AMR-NB implementations.

7. The implementation need to fulfill the algorithmic delay conditions.

5.3 Open Mobile Applications Platform

This section introduces a Texas Instruments processor architecture that is widely deployed
in the field of mobile terminal processors. The major mobile communications manufactur-
ers have reportedly decided to use Open Mobile Applications Platform (OMAP) as their
mobile terminal platform [42], [77], [38].

OMAP is a dual-core architecture that encloses the both DSP and RISC processors in a
single box. OMAP incorporates a TMS320C55x DSP and a TI925T ARM cores [76]. A
high-level OMAP architecture is depicted in Figure 5.1. The architecture includes on-chip
caches for both processors. This design is used to reduce average fetch times to external
memory and to also help to eliminate the power consumption of unnecessary external ac-
cesses. The external memory (SDRAM) is accessed through Traffic Controller (TC). Each
processor has separate external peripheral interfaces. This enables independent access for
DMA and peripheral communication for both processors.

The periphery includes a set of timers, interrupt control, serial ports and interfaces for
keyboard, camera and MMC/SD (Multimedia Card/Secure Digital), for example. Memory
management units (MMUs) for both cores provide virtual-physical memory translation.

OMAP integrates two external memory interfaces and a single internal memory port. The
three memory interfaces allow independent and concurrent access from either core or from
the DMA unit. [40]

The OMAP architecture also provides on-chip peripherals such as timers, general-purpose
I/O, a UART (Universal Asynchronous Receiver/Transmitter) and watchdog1 timers sup-
port common OS requirements. OMAP also provides system-on-a-chip functionality with
peripherals that include i.e. 192 kilobytes RAM, USB 2.0 (Universal Serial Bus), MMC/SD

1A watchdog timer is a hardware timer that can be used to detect software anomalies and to reset the
processor if necessary. Usually a watchdog timer is based on a counter that counts down from some initial
value to zero. The software selects the counter’s initial value and periodically restarts it. If the counter reaches
zero before the software restarts it, the software is assumed to be malfunctioning and the processor’s reset signal
is asserted.
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ARM925 MCU

C55X DSP

DMA

Traffic Controller /
Memory Interface   

UART
USB Host / Client

Serial Port
SD/MMC
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Figure 5.1: OMAP Architecture Overview. The figure depicts the OMAP core with ARM
and DSP processors and the peripheral communication channels. [10]

card interface, multi-channel buffered serial ports, real-time clock, GPIO and LCD inter-
face in addition to other features. OMAP contains a built-in interprocessor communication
mechanism which provides a transparent interface to the DSP for code development.

5.3.1 TMS320C55x DSP Core

The DSP core of the OMAP device is based on the TMS320C55x DSP generation CPU
processor core. The CPU supports an internal bus structure composed of one program bus,
three data read buses, two data write buses, and additional buses dedicated to peripheral and
DMA. These buses provide the ability to perform up to three data reads and two data writes
in a single cycle. In parallel, the DMA controller can perform up to two data transfers per
cycle independent of the CPU activity. [79]

The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit
x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is
supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control,
providing the ability to optimize parallel activity and power consumption. These resources
are managed in the address unit (AU) and data unit (DU) of the C55x CPU. [79]

The C55x DSP generation supports a variable byte width instruction set for improved
code density. The instruction unit (IU) performs 32-bit program fetches from internal or
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external memory and queues instructions for the program unit (PU). The program unit
decodes the instructions, directs tasks to AU and DU resources, and manages the fully
protected pipeline. Predictive branching capability avoids pipeline flushes on execution of
conditional instructions. The OMAP DSP core also includes a 24K-byte instruction cache
to minimize external memory accesses, improving data throughput and conserving system
power. [79]

5.3.2 DSP Internal Memories

OMAP1510 has three internal memories for DSP: DARAM (Dual Access RAM), SARAM
(Single Access RAM) and PDROM (Program and Data ROM). DARAM and SARAM
are seen in the DSP memory space and also in the MPU memory space as described in
Table 5.1. The Linux memory mapping described below is specific to DSP Gateway.

Table 5.1: DSP Internal Memories and MPU Memory Mapping in Linux.
Memory
section

DSP Byte
Address

MPU Physical
Address

Linux Virtual
Address

Size

DARAM 0x000000

-

0x00ffff

0xe0000000

-

0xe000ffff

0xe0000000

-

0xe000ffff

64 kB

SARAM 0x010000

-

0x027fff

0xe0010000

-

0xe0027fff

0xe0010000

-

0xe0027fff

96 kB

PDROM 0xff8000

-

0xffffff

0xe0ff8000

-

0xe0ffffff

Not Used 32 kB

5.3.3 External Memory Mapping for DSP

DSP can also use External memory (Synchronous Dynamic RAM, SDRAM) by mapping
through the DSP MMU. Using this feature, DSP application programmer can extend the
available memory area for code and data which is confined in 192kB by default. This
mapping procedure is handled by MPU. MPU maps the memory allocated for DSP to the
DSP area in the MPU virtual space from 0xe0000000 because of following two reasons.

1. The address exchange between DSP space and MPU virtual space becomes easy
when the memory is mapped to same offset in MPU and DSP.

2. If MPU accesses the shared memory (with DSP) through ordinal mapping (i.e. Linux
maps area straight from 0xc0000000), synchronization problems will occur in the
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MPU data cache. To avoid this case, another mapping in which the cache is disabled
should be used. [30]

5.3.4 Traffic Controller

The Traffic Controller (TC) manages all accesses by the MPU, DSP, System DMA, and
local bus to the OMAP memory resources (excluding the DSP internal memories, PDROM,
SARAM and DARAM). The TC provides access to three different memory interfaces: Ex-
ternal Memory Interface Slow (EMIFS), External Memory Interface Fast (EMIFF), and
Internal Memory Interface (IMIF). The IMIF allows access to the 192K bytes of on-chip
SRAM. [76]

The EMIFF Interface provides access to 16-bit-wide access to standard SDRAM memo-
ries and the IMIF provides access to the 192K bytes of on-chip SRAM.

The TC provides the functions of arbitrating contending accesses to the same memory
interface from different initiators (MPU, DSP, System DMA, Local Bus), synchronization
of accesses due to the initiators and the memory interfaces running at different clock rates,
and the buffering of data allowing burst access for more efficient multiplexing of transfers
from multiple initiators to the memory interfaces. [76]

The architecture of TC allows simultaneous transfers between initiators and different
memory interfaces without penalty. For instance, if the MPU is accessing the EMIFF at the
same time, the DSP is accessing the IMIF, transfers may occur simultaneously since there
is no contention for resources. There are three separate ports to the TC from the System
DMA (one for each of the memory interfaces), allowing for greater bandwidth capability
between the System DMA and the TC. [76]

5.4 Interprocessor Communication of OMAP

Communication between the ARM and DSP processors is enabled by a mailbox communi-
cation scheme. Communication is achieved when one processor writes to the appropriate
command word register which causes an interrupt to the other processor and sets the appro-
priate flag register

The interrupted processor acknowledges by reading the command word which causes the
flag register to be cleared. An additional data-word register is also available in each mailbox
register set to optionally communicate two words of data between the processors for each
interrupt instead of just communicating the command word

There are three sets of mailbox registers. The first one is for MPU to send messages and
issue an interrupt (INT5) to DSP. The other two are for DSP to send messages and issue
interrupts (IRQ10/IRQ11) to MPU. Each set of mailbox registers consists of two 16-bit
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registers and a 1-bit flag register. The interrupting processor can use one 16-bit register to
pass data word to the interrupted processor and the other 16-bit register to pass a command
word. The protocol used in DSP Gateway is defined here. [30]

ARM DSP

ARM2DSP1 mailbox
(command/data/flag)

DSP2ARM1 mailbox
(command/data/flag)

ARM2DSP2 mailbox
(command/data/flag)

INT5

IRQ10

IRQ11

Figure 5.2: OMAP Mailbox Communication Scheme. ARM communicates through
ARM2DSP1 mailbox. DSP is able to communicate through both DSP2ARM mailboxes.

5.4.1 Shared Memory Utilization

Shared memory architecture is implemented via the Traffic Controller. It can be used in
conjunction with the mailbox registers handshaking interrupts for synchronizing the MPU
and DSP accesses to shared memory.

Utilizing the shared memory is useful when the data to be passed between the MPU
and DSP is larger than the two 16-bit words of mailbox command and data registers. For
example, the MPU may need to provide the DSP with a list of pointers to perform a specific
task as opposed to a single command and single pointer.

DSP could read the list of pointers from shared memory after receiving the interrupt
caused by an MPU write to the mailbox command register.

5.4.2 MPU Interface

MPU Interface (MPUI) allows the MPU and the system DMA controller to communicate
with the DSP and its peripherals. MPU allows access to the full memory space (16M bytes)
of the DSP and the DSP public peripheral bus.

Both MPU and DMA Controller have the read and write access to the complete DSP I/O
space (128K bytes), which includes control registers of the DSP public peripherals. DSP
I/O space can be used for many functions, for example for MPU loading of program code
into DSP program memory space, for data sharing between MPU and DSP interprocessor
communication protocols via shared memory, and for MPU to use and control DSP public
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peripheral buses.

5.4.3 DSP Gateway

DSP Gateway is a piece of software that enables data transmission on the OMAP between
the MPU processor running Linux and the DSP running DSP/BIOS II operating system.

The DSP Gateway consists of two parts, a Linux device driver on the ARM-side and
a library on the DSP-side which communicate with each other through the mailbox. The
driver provides conventional Linux device driver interface so the application programmers
can use the DSP through system calls such as read(), write() and ioctl(). The
library on DSP provides interface for DSP tasks which are utilized from Linux. The list
below describes the main characteristics of the DSP Gateway functionality. [30]

• Only one of two mailboxes from DSP to ARM is used (DSP2ARM1).
• Tasks run in DSP are identified by Task ID (TID).
• Data transferred through mailboxes is multiplexed. TID is enclosed in mailbox com-

mands to distinguish task data from each other.
• Interprocessor buffers (IPBUFs) for the block data transfer between ARM and DSP

are defined. These buffers can be seen by both processors. The Global IPBUFs are
identified with IDs (BID).

• IPBUFs have ownerships. Only the processor which has the ownership of the IPBUF
can use that IPBUF. When a data transfer with an IPBUF is performed between the
processors, the ownership of the IPBUF is passed on to the recipient.

5.5 Sofia-SIP Internet Telephony Software Suite

The implementation code described in this thesis was integrated to a IP Telephony applica-
tion, Sofia-SIP2 [44], a Session Initiation Protocol (SIP) stack developed in Nokia Research
Center. Figure 5.3 depicts the software architecture in hierarchical modules. In general, the
software implements the signaling and media components needed in establishing a variety
of IP Telephony and media streaming sessions. The signaling module integrates IETF spec-
ifications for SIP 2.0, HTTP 1.1 and RTSP 1.0 protocols and numerous related RFCs and
Internet Drafts.

The Applications layer provides several applications from light weight embedded termi-
nal software to a number of heavily loadable network elements including SIP, RTSP and
HTTP related services, each of them utilizing the lower level modules.

2Signalling part of Sofia-SIP was released as Open Source in July 2005 and the media part is based on a
different system than described in this thesis.
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Figure 5.3: Sofia-SIP Internet Telephony Software Suite. The figure presents the current
Sofia-SIP architecture with hierarchical drawings of software module dependencies.

The Enabler API offers interfaces for signaling and media handling for Applications
layer. The nua implements functionality for creating signaling services for protocols such
as SIP, RTSP and HTTP. The mss refers to Media Subsystem (MSS) and provides inter-
faces for media control. A short description of each module is presented below, more in-
depth documentation of the modules is presented in Mobile Internet Technical Architecture
(MITA) book series [41].

• SURF terminal: IP Telephony
communications software with graph-
ical user interface

• nua client: a command line (text
based) IP Telephony communications
software

• nua: Signaling subsystem API for
Applications layer

• mss: Media Subsystem API for me-
dia control

• nea: Presence event enabler
• nua core: The signaling transaction

handler

• nta: SIP state machine
• ntr: RTSP state machine
• nth: HTTP state machine
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• tport: Signaling transport abstrac-
tion

• http: HTTP message parser

• sip: SIP message parser
• rtsp: RTSP message parser
• msg: Signaling message serializer

• mss core: Lower level media control
services

• sdp: Session Description Protocol
(SDP) parser

• audio: Audio control interface

• rtp/rtcp: RTP/RTCP control mod-
ule

• ad: Media device abstraction inter-
face

• ac: Media codec interface

• su: Network and memory service library with additional support utilities

5.6 DSP Software

The DSP Gateway was chosen for interprocessor communication it being the only Linux
implementation available. The developers of the DSP Gateway provided fast and extensive
support for building applications on top of the gateway.

Figure 5.4 depicts a high-level abstraction of the DSP-enabled SURF architecture. The
ARM-side is divided in User space and Kernel space. User space serves as a playground for
conventional applications. Kernel space includes drivers and kernel modules, for example.

The DSP Gateway is in the in the bottom of the figure. The interprocessor communica-
tion is done through the message exchange system called as mailbox. The data transfer is
executed through the common memory interface. DSP Gateway provides the functionality
for the communication schema and task control. Each task is communicating through the
Gateway.
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Figure 5.4: High-level Abstraction of Sofia-SIP with DSP Gateway.



Chapter 6

Implementation

6.1 Overview

The codec (coder/decoder) to be integrated for this thesis was chosen to be Adaptive Multi-
Rate (AMR) speech codec. In the first measurements it was clearly shown that the general
purpose processor (GPP, MPU) of OMAP (Open Multimedia Applications Platform) was
not efficient enough to execute this codec in realtime. The 20 millisecond algorithmic
upper boundary for encode-decode process for one speech frame was exceeded even no
other processes were executed on the test platform. The logical solution for integration was
to utilize the DSP processor of OMAP. The results are presented in Chapter 7.

The target of the implementation work was to integrate a DSP version of AMR speech
codec to a Sofia-SIP IP Telephony application running on Linux in ARM925T GPP 1 of
OMAP dual-core processor.

6.2 The Code Development Environment

The hardware used was the evaluation module of OMAP1510 DC EVM (later “OMAP
EVM”), ARM-side was configured for 120 MHz and DSP-side for 120 MHz, too. Accord-
ing to specifications, the maximum DSP clock frequency is 160 MHz but this was never
tested because the hardware was expensive and great-results-by-over-clocking was not the
approach in consideration.

To ensure a closed and secure testing environment OMAP EVM was connected to a local
test network with a Linux PC Gateway (Figure 6.1). The latter was also connected to local
intranet and software binary directory was NFS (Network File System) mounted from a

1The ARM925T processor of OMAP is referred here as General Purpose Processor (GPP) to distinguish it
from OMAP DSP core, TMS320C55.
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Linux file server. EVM was switched on and Linux package was loaded from a Windows
PC to EVM by the parallel port connected Lauterbach debugger.
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Figure 6.1: Test Network Setup for OMAP EVM.

OMAP EVM was connected to Ethernet and to a debugging hardware (Lauterbach) that
was used to load a minimal Linux distribution to EVM RAM. A special setup was build to
enable easy loading of DSP software. Figure 6.2 depicts the phases of setting up the OMAP
EVM environment.

After successfully booting OMAP EVM a loading script was fetched by WGET (FTP,
File Transfer Protocol) from PC Gateway. The shell script loaded every component of the
software under development, including the DSP software module, speech samples, DSP
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Figure 6.2: Test Environment Setup for OMAP EVM.

configuration utility dspctl and several test applications.
dspctl was used to map external memory, SDRAM, for DSP and to load the DSP

binary from Linux to DSP. When DSP codec tasks were successfully initialized the test
application or the actual IP Telephony software was launched in Linux. The application
connected from Linux to DSP codecs.
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6.2.1 Software

The DSP specific code development environment used was Code Composer Studio by Texas
Instruments running on a Windows machine. The software provided necessary libraries
and configuration tools for building DSP applications for Texas Instruments’ OMAP and
more precisely TMS320C5XX processor platforms. Instead of using Texas Instruments
DSP/BIOS Bridge an Open Source version of DSP Gateway [43] was used. DSP-side code
was linked to DSP Gateway library (TOKliBIOS), the DSP operating system library that
provided the task control schema between DSP and Linux DSP kernel module.

The application processor was running Linux kernel version 2.4.19 with ARM Linux,
OMAP and DSP Gateway patches. The Linux-side application code was compiled with
GNU C Compiler (GCC).

6.3 Integration

The integration work consisted of attaching the MPU-side codec abstraction interface to
DSP-side codec instances. The connecting blocks for both sides were implemented. The
integration on MPU-side was nevertheless trivial due to good design of existing codec APIs
and simple MPU-side use model of DSP Gateway. Figure 6.3 depicts the communica-
tion scheme between the AC module of the Sofia-SIP application and the DSP Gateway
interfaces.

The challenging part of the implementation was the utilization of DSP-side of OMAP
processor. The first versions of DSP Gateway were lacking the functionality for sending
debug messages from DSP to MPU-side. The evaluation of DSP functionality was nearly
black-box oriented. The content of a DSP-MPU data transmission buffer was examined
subjectively to fix erroneous functionality.

Segmentation fault on DSP-side caused the Linux to malfunction and the restarting and
reloading the packages to Linux’ RAM took several minutes. The troubleshooting was
dramatically accelerated after the release of DSP Gateway version 2.0. The new version
provided enhanced stability and debugging capabilities, including printing debug messages
through DSP Gateway to Linux console.

The file listing below shows four DSP tasks created by running dspctl utility for final
DSP media codec application. The first two file I/O devices are the AMR decoder and
encoder tasks, respectively. The following two devices are the G.711a codec tasks.

crw-rw-rw- 1 0 0 97, 3 Jan 1 00:00 /dev/dsptask/amr_dec

crw-rw-rw- 1 0 0 97, 2 Jan 1 00:00 /dev/dsptask/amr_enc

crw-rw-rw- 1 0 0 97, 1 Jan 1 00:00 /dev/dsptask/g711a_dec

crw-rw-rw- 1 0 0 97, 0 Jan 1 00:00 /dev/dsptask/g711a_enc
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Figure 6.3: Architectural Description of Sofia-SIP IP Telephony Suite’s Media Subsystem
Integration with DSP Gateway and DSP Media Codecs. The wide arrows represent chan-
nels where the speech data is transmitted and received. Black arrows represent the control
channels.

6.3.1 DSP Memory Utilization

As described in Sections 5.3.2 and 5.3.3, OMAP is equipped with several different physical
memory segments. The variables and codec specific tables were located carefully to lower
the delay caused by additional memory I/O operations. For example, the data transfer buffer
between Linux kernel and a DSP task was placed in Dual Access RAM (DARAM) to allow
memory transfer without interrupt of Traffic Controller (TC).
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Chapter 7

Measurements and Results

7.1 Measurements

The first trials with the Sofia-SIP IP Telephony application’s media subsystem were con-
ducted with the setup depicted in Figure 7.1. The test application was AC_TEST (Audio
Codec Test Application). An example speech file coded as 16-bit linear PCM (Pulse Code
Modulation) was read in frames of 160 samples (320 bytes) by the measurement applica-
tions.

Each frame was written to AMR (Adaptive Multi-Rate) encoder DSP task followed by a
subsequent read of 118 bytes. The encoded payload was passed to RTP (Real-Time Trans-
port Protocol) packetization module. The output refers to RTP payload format for AMR.
The RTP packet was passed to RTP depacketization module and subsequently passed to
DSP by writing to AMR decoder DSP task. The encoded AMR frame was decoded by the
DSP task and finally read by the media subsystem.

The resulting 16-bit coded 320 byte frames were subsequently written to a temporary file.
Finally, the PCM file was converted to the WAV (Waveform Audio Format) format. Sev-
eral subjective listening tests were performed with loudspeakers and a headset. Perceptual
quality of the processed (encoded and decoded) speech resembled the original recording.

The first test with the SURF terminal application was performed over the network as
depicted in Figure 7.2. Testing was done over the Ethernet with Linux laptop on the other
end. The both OMAP EVM and the laptop were executing the same version of SURF
terminal, except OMAP EVM was using the command line version of the user interface
and was armed with the additional DSP capability. The ARM codec in Linux laptop was
based on the 3GPP reference C code with the additional proprietary RTP payload format
implementation.

The setup was similar to Figure 7.1 with the additional network and software loopback
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Figure 7.1: Testing Loop for Encode-Decode Process.

provided by Media Subsystem. To enable reproducible measurement scheme a pre-recorded
speech file was used as an input for Surf on a Linux laptop. This data was transmitted in
real-time to OMAP EVM and rerouted back using built-in software loopback of Media
Subsystem.
nua_cli was modified to contain a measurement scheme that was utilized to measure

delay of different phases of AMR coding. A timestamp was stored before and after exe-
cuting encode, decode, RTP payload packetization and RTP payload depacketization. The
difference of the timestamps around a function is the delay or latency one operation creates.

7.2 Results

Figure 7.3 depicts the delay measurements of 3GPP reference implementation of AMR
codec that was previously integrated to Sofia-SIP. The codec was executed on General Pur-
pose Processor (GPP), and in OMAP this is the ARM-side. It can be clearly seen that the
average of the encoding operations lasts 16 ms and decoding operations 7 ms. Real-time
requirements can not be met if both encoder and decoder are executed simultaneously due
to 20 ms speech frames and algorithmic delay (16ms+7ms = 23ms, see Figure 7.3). This
result was also verified by setting up an RTP session (using SIP) between the both ends as
described in Figure 7.2.

The codec specific parameters for below mentioned tests were chosen to maximize the
load caused by the codec. Voice Activity Detection (VAD) was disabled to enable constant
algorithm execution, and the bit rate was set to maximum of 12.2 kbps. Figure 7.4 depicts
the results of using DSP version of AMR with DSP Gateway on OMAP. The GPP-side
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application AC_TEST provided synchronous1 encode/decode operations.
The measurements were made after the code and data sections of DSP binary were care-

fully relocated to optimal memories. Code sections of DSP code were placed in external
memory, SDRAM. Data sections (including AMR codec tables) were located in SARAM.
The DSP Gateway mailbox buffer, IPBUF was placed in DARAM to enable fast access
from both GPP and DSP tasks. This optimization is referred as “Source Code Optimiza-
tion” in the captions of the following pictures.

1Also called as blocking. Execution of the process halts until it has been woken up by the operating system.
In this case synchronous refers to waiting answer from the DSP by using read() function call.
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Figure 7.5 depicts the results of using similar setup as in Figure 7.4 with the difference
of changing the GPP-side process scheduling to SCHED_FIFO. This set the process of
AC_TEST to the beginning of kernel scheduler event loop. This is clearly seen as decrease
of coding latency variation, and the results are more deterministic in terms of coding dura-
tion. This can be explained by the process priorization: the process of AC_TEST was exe-
cuted first every time it was ready to continue after the sleep period of a blocking read()
or write() system call.

Figure 7.6 depicts the results of using DSP version of AMR when the memory sections
were not optimally chosen. The encoding delay varies in three levels with the average of 5
ms.

Figure 7.7 shows the dramatical decrease in the delay after the memory sections were
located as explained above. The encoding delay is around 3.7 ms and a decoding operation
is performed in average of 1.5 ms. The ripple of encoding and decoding close to 10 ms was
deduced to be caused by the experimental network (Ethernet) driver. The network driver
caused kernel to stall for a certain period of time. This conclusion is confirmed by the
results of Figures 7.4 and 7.5 where network was not utilized.

Figure 7.8 depicts the results of using SCHED_FIFO priorization with the configuration
similar to aforementioned. Some ripple can still be noticed around 10 ms. In this respect
the changes in priorization did not affect in codec performance.

Interestingly, the decoding operations are more exposed to ripple than encoding. This
can be explained as follows. Network driver is receiving packets around every 20 ms due
to the algorithmic delay of AMR-NB coding scheme. Due to software loopback of IP
Telephony software nua_cli in OMAP, RTP depacketization and decoding operating is
executed first and immediately followed by the encoding and RTP packetization. After this
the packet is assigned to the network driver. At this point the network driver can possibly
be transmitting the packet and receiving a new one. When this happens at the same time as
the next decoding operation is blocking – write() or read() issued to kernel and DSP
Gateway – the process of nua_cli is sleeping until the kernel wakes it.
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Chapter 8

Conclusions

This thesis focused on speech coding in mobile terminals attached to IP networks. The
background study contained media streaming and communication protocols, speech coding
schemes in mobile environment and different DSP architectures.

Requirements were set for the joint software architecture of the IP Telephony application
and the embedded mobile platform. The architecture was chosen and designed based on
the requirements, and the implementation work was successfully carried out based on the
gained knowledge. The DSP version of the AMR-NB (Adaptive Multi-Rate Narrow Band)
speech codec (coder/decoder) was integrated to Sofia-SIP Internet Telephony application
and the goal set in Introduction (Chapter 1) was clearly reached. The estimated time frame
for implementation was slightly exceeded due to demanding task of DSP-side programming
without proper documentation.

Comprehensive measurements were conducted in order to provide reliable results of the
implementation work done. Results show the difference in performance with and without
DSP and with several parameters. It is possible to achieve real-time functionality by using
the implemented architecture.

Current mobile devices have microprocessors with a limited performance to execute de-
manding real-time tasks like full-screen video and good quality audio simultaneously with
other tasks. High-level interoperability between the application processor and the signal
processor makes it possible to take full advantage of the limited resources. The architecture
implemented in this thesis serves as a good and pioneering example of how to integrate
computationally complex media algorithms into an embedded device with a dual-core pro-
cessor.
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