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Introduction 
“IoT” or “Internet of things” formerly known as “ubiquitous computing” has been absolutely 

essential to our society and its infrastructures. Devices are linked to networks from anywhere in the 

world and will be mutually controlled while information is being exchanged.  A microcontroller is one 

of the important elements of IoT. The microcontroller designers are strongly urged to achieve both high 

performance computation and low power consumption, which is a hybrid technology with powerfulness 

of computing and friendliness to the environment. Furthermore, while network services are gaining 

popularity, dependability and security of network are more important. A key solution to meet these 

demands is a compact and low power processor core and multicore technology.  

This thesis focuses on the development of efficient microcontroller architecture for IoT. The basis for 

the argument is the key of a low power processor architecture is how effective handle on chip 

memories. Furthermore, collaboration of software and hardware on multicore architecture can provide 

dependable and secure networks. 

Thesis Contributions 

The main contributions of this dissertation are: 

•  An RX processor core which is suitable for IoT. The RX processor Instruction set architecture 
(ISA) and its microarchitecture can achieve lower power consumption and boost performance.  

•  An eight-core communication SoC with PCI Express interface. The multicore SoC can realize 
a high-performance, power-aware, highly dependable network.  

•  A secure multimedia system that uses heterogeneous multicore SoC and software 
virtualization. 
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Figure 1.1 Thesis outline 

 

The outline of the remainder of this thesis is as follows (Figure 1.1). 

Chapter 2 provides the background and motivation for this work. It discusses the characteristics and 

requirements of IoT by presenting four key IoT technologies. 

Chapter 3 introduces RX processor core with a low-power processor architecture. The RX processor 

instruction set architecture (ISA) and its microarchitecture can achieve lower power consumption and 

boost performance. RXv2 reaches 4.5 Coremark per MHz and the RXv2 processor delivers 

approximately more than 2.2 – 5.7x the power efficiency of the previous work. The RXv2 processor 

delivers 1.9 – 3.7x the cycle performance of previous work in digital signal applications. This chapter is 

from [S. Otani and H. Kondo, “RX v2: Renesas’s New-Generation MCU Processor,” IEICE 

Transactions, Vol. E98-C, No. 7, pp. 544-549, Jul. 2015, (copyright ©2015 IEICE).] 

Chapter 4 presents an eight-core communication SoC with PCI Express interface. PEACH with four 

PCI Express ports realizes high-performance communication of 4 x 20Gbps and power efficiency of 

0.04W/Gbps. The power efficiency of InfiniBand 4X (Commodity network devices) is 0.083W/Gbps. 

Thus, PEACH provides 51.5% better power efficiency than InfiniBand 4X. We also evaluate the 

PEARL network system and demonstrate its fault-tolerant ability. This chapter is from [S. Otani, H. 

Kondo, I. Nonomura, T. Hanawa, S. Miura and T. Boku, “Peach: A Multicore Communication System 

[Chapter2] Background and Motivation

2.2 Four key technologies that supports IoT

3: Network Technology

1: Technology to control sensors,
motors and other devices

2: Low Power technology

4: Security technology

2.1 Applications and System Trends

[Chapter 4] A Multicore Communication SoC 
with PCI Express I/F

[Chapter 5] A Heterogeneous Multicore SoC 
for Secure Multimedia Applications

[Chapter 3] A Low Power MCU Processor Architecture

[Chapter 6] Conclusions and Future work

• Atomic operation of payment and viewing
• Multicore SoC and SiP for faster communication and decryption
• Hardware / software virtualization for strong security

• Energy saving architecture
• Instruction set
• Processor microarchitecture
• Instruction memory fetch mechanism

• High-performance internode communication by using PCI Express
• Network managing by multicore 

for high-dependable and power-aware system
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on Chip with PCI Express,” IEEE Micro, vol. 31, no. 6, pp. 39-50, Nov.-Dec. 2011, copyright ©2011 

IEEE).] 

Chapter 5 demonstrates a secure multimedia system by using a heterogeneous multicore SoC with SiP 

and software virtualization. The multicore hypervisor virtualizes hardware resources and prohibits 

operating systems and applications from accessing hardware resources directly. This chapter is from [H. 

Kondo, O. Yamamoto, S. Otani, N. Sugai, and T. Shimizu, “Software architecture of a secure 

multimedia system using a multicore SoC and software virtualization,” in IEEE Int. Conf. Consumer 

Electronics, Dig. Tech. Papers, pp. 1-2, Jan. 2009, (copyright ©2009 IEEE)] 

Finally, Chapter 6 concludes the thesis and suggests directions for future work. 





17 

 

 

 

 

Applications and System Trends 
The IoT, or Internet of Things, has become popular. Giving intelligence to devices and connecting 

them together creates new value. 

With the diffusion of IoT, devices operate independently and work autonomously. If IoT is 

employed, devices can be linked via networks, working autonomously to provide a pleasant 

environment for people working in the office, in the city, at home and in the factory.  

IoT is experiencing rapid evolution. In 2020, the year of the Tokyo Olympics, 50 billion devices will 

be connected to a network. A trillion sensors will be connected to a network [bryzek14]. An era is about 

to begin in which everything is linked to huge networks. 

 

There are four key technologies that support IoT, 1) network technology to link one device to 

another, 2) technology to control sensors, motors and other devices, 3) low power consumption 

technology to raise energy efficiency and 4) security technology (Figure 2.1).  

The shift of centralized control and operating systems will accelerate toward distributed systems, and 

network servers are no exception. Highly dependable network technology is vital to connect downsized 

servers in various locations. 
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Figure 2.1 Four key technologies that support IoT 

 

The technology to control sensors and security technology to ensure the solid protection of 

information are particularly important. For example, recent advances in infrastructure technology 

include construction monitoring, which has been installed in bridges, tunnels, and roads. The number of 

installations of network cameras to monitor the environment will be five times larger than in 2006. 

These monitors can be controlled over the network. But if the systems are hacked, severe incidents and 

panic ensue. Security technologies can protect society against these risks. IoT is offering comfort and 

convenience, but with security concerns. 

With an increase in the number of devices on networks, power consumption becomes a major issue. 

Sensing modules must always be active to collect information and be long-lived in infrastructures. 

Centralized control for energy saving via networks is evolving. One of effective way to reduce 

energy saving is to adopt inverter technologies. The inverter adoption ratio is not high in developing 

countries. Even in air conditioners which use the largest amount of power, only 50% utilize inverter 

technology in the world. A 10% increase in world inverter adoption would reduce the number of 

thermal power plants by 430. There are two reasons that inverter technology has not spread: to avoid 
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difficulty of system design and to meet lower cost requirement by using sensor-less motors. MCU can 

solve these problem 

In IoT applications, it is vital to consider how to link applications and microcontrollers and how to 

communicate for people with electronics devices. 

 

 

Given the applications and systems requirements, we consider four key technologies for an efficient 

microcontroller architecture for IoT systems:  

• Network technology 

• Security technology  

• Technology to control sensors, motors and other devices 

• Low-power technology 

The above features of the architecture and microarchitecture techniques are presented in the 

following chapters.  
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Low-Power MCU Processor 
Architecture  

 

MCUs (microcontrollers), which control electric devices, consist of CPUs, memories and peripheral 

interfaces. Figure 3.1 shows the basic structure of MCUs. The CPU reads instructions, decodes and 

executes arithmetic operations and read/write data. Memories store program code and data. Peripheral 

interfaces connect the CPU and I/O devices. There are two types of memories. Flash memory is a ROM 

(Read Only Memory) which mainly stores instructions and retains data even if power is turned off. 

SRAM is a RAM (Random Access Memory) which stores data. This working memory loses data if 

power is turned off. The feature that most distinguishes MCU from MPU (microprocessor units) is 

integration of the memory system. This feature contributes to low power consumption by eliminating 

wiring between external memories and a chip. 

 

Figure 3.1 MCU (Microcontroller) Basic Structure 
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The basic strategy of reducing power consumption is to lower the operating current and shorten the 

operating time. Figure 3.2 shows the difference in power consumption of a low-power microcontroller 

with another microcontroller. The blue bar represents an energy-saving microcontroller with lower 

operating current and higher performance. The low-power microcontroller completed the same task in 

much less time, which also enables it to stay in low-power sleep mode longer. This intermittent 

operations strategy of low-power microcontrollers enables batteries to last a long time.  

 

Figure 3.2 Intermittent operations for reduction in power consumption 

 

Design highlights of a low-power processor architecture are shown in Table 3.1. Three rows are CPU 

design highlights; instruction set architecture, processor microarchitecture and memory access 

mechanism. The check marks indicate the particular design meets the particular requirement.  

Current

Operation Sleep Operation Sleep
Time

higher performance

Lower operating current

Lower sleep current

CPU Requirements 
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All three items are vital to achieve high performance. Instruction set architecture and memory access 

mechanisms contribute to low operating current.  

   

Table 3.1 Design Highlights of a Low Power CPU 

 

MCUs (microcontroller units) with on-chip memory systems substantially reduce energy 

consumption compared to MPUs (microprocessor units) with off-chip memory systems because of the 

wiring capacity between external memories and the chip. However, the low-power requirement of the 

embedded applications is more and more strict. The power breakdown of a microcontroller is shown in 

Figure 3.3. A substantial portion of chip power comes from internal Flash memory. Therefore, reducing 

Flash memory directly affects the reduction of power consumption of the whole microcontroller. 

Considering microcontroller structure, the greater part of the Flash accesses comes from instruction 

fetches. 

 

Figure 3.3 Power break down of a microcontroller 
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Application fields of microcontrollers have spread to building automation, medical devices, motor 

control, e-metering, and home appliances. The demand for such highly intelligent systems has 

increased. To meet the demand, the scale and complexity of software has begun to rise. The rapid 

growth of memory capacity and the advance of microcontroller functions have led to the higher 

frequency and higher processing performance of embedded processors. Furthermore, many embedded 

systems still have high cost, power consumption, and space constraints. In order to meet users’ demands 

for these requirements, new RX processor core (RXv2) architecture has been developed. [otani13]. 

It is vital for MCUs to handle floating point computation requirements to meet the recent demand for 

industrial applications. However, the cost of adding an FPU unit to existing MCUs would have been 

extremely high. The RX includes a compact single precision FPU as a part of the MCU’s basic 

configuration [linley10], [mips13]. 

The FPU/DSP functions of the new RXv2 have been enhanced. The RXv2 processor block diagram 

is shown Figure 3.4. The core has integer, divide, multiply-accumulate and floating point units with 

sixteen 32bit general purpose registers. Key differences from the previous processor, RXv1, are an 

improved dual-issue pipeline structure, DSP extensions and a pipelined FPU. The overview of RXv2 

specification shows in Figure 3.5. 

The RXv2 processor core also incorporates AFU to reduce pipeline branch penalties and Flash 

memory accesses. The improved power efficiency of the RXv2 architecture with our benchmark 

evaluation will be discussed in Section 3.5.  

Program code is, of course, often the largest consumer of memory in control-intensive applications, 

affecting both system cost and size. Also, instruction fetches are responsible for a significant portion of 

power and memory bandwidth. Therefore, both static and dynamic code size are key factors in 

embedded systems. RX family instruction set architecture uses variable-length instructions to minimize 

the static and dynamic code size. 

These features have the benefit of boosting performance and making code compact. Figure 3.6 shows 

RXv2 CPU core roadmap. RX has two generations, RXv1 and RXv2. Figure 3.7 shows performance 

comparison to other embedded processors. RX reaches 4.5 Coremark/MHz on an integer benchmark for 

embedded systems. 
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Figure 3.4 RXv2 CPU block diagram. 

 

Figure 3.5 Overview of RXv2 CPU core 
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Figure 3.6 RX core road map 

 

Figure 3.7 Benchmark Comparison 
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 RX Architecture Overview 

In the past, modern MCUs have added DSP capabilities to create Digital Signal Controllers. Each of 

these MCUs has limited DSP performance and limited applications. Floating-point math has become 

essential in various applications such as motor control, factory automation and industrial office 

automation. However these applications require floating-point math to realize real-time operations. 

Adding a DSP/FPU is a logical step to offload compute-intensive work from MCUs. The RX CPU core 

has been a pioneer in the convergence of MCU and DSP/FPU in the 100MHz midrange market. Both an 

integrated floating-point unit (FPU) and digital signal processing (DSP) hardware enable the RX to 

have superior math capabilities. 

 

 RXv2 Pipeline Design 

The first generation of RX CPU (RXv1) makes use of a single-issue, five-stage pipeline structure. 

RXv2 also has the same five-stage pipeline, but a dual-issue core can increase the throughput of IPC 

(instructions per cycle) [mips13], [burgess94], [sugure04]. Merely expanding the instruction set 

architecture (ISA) is not enough to boost the performance of digital signal applications. High data 

supply capability is crucial. Figure 3.8 shows RXv2 pipeline structure. The RXv2 executes FPU/DSP 

instructions and memory accesses simultaneously for high data supply. RXv2 supports a dual-issue 

integer, float and load/store pipeline. Additionally, the RXv2 can execute various pairs of instructions 

simultaneously, so instructions per cycle (IPC) are dramatically improved from the RX.  
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Figure 3.8 RXv2 pipeline structure 

 

 

Figure 3.9 The Coprocessor-type FPU and the pipeline integrated-type FPU (proposed) 

 

 Pipeline integrated FPU 

The most distinguishing feature of RX processors is a pipeline integrated FPU. Most MCUs have a 

coprocessor-type FPU, which adds inefficient FPU-dedicated registers to load and store results of 

operations. The pipeline integrated-type FPU used in RX processors can access general purpose 
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registers, which reduces data transfer overhead between the FPU registers and general purpose registers 

(Figure 3.9). This design can also reduce the area of the CPU core by sharing general purpose registers. 

The RXv2 FPU has new instructions (SQRT, Float/Integer conversion). Furthermore, the RXv2 FPU 

instructions employ a three-operand format of FPU instructions to further reduce intermediate variable 

and waste of register assign. 

The new FPU unit adopts pipeline processing to boost throughput and shortens the latency of FPU 

executions (FADD/FSUB 4cycles -> 2cycles, FMUL 3cycles -> 2cycles). The RXv2 processor 

performs most operations in one to three cycles and in single-cycle throughput. Adding the three-

operand format and speeding up multiply-accumulate operations boost fast Fourier transform (FFT) and 

Infinite impulse response (IIR) filter performance. 

FPU instructions are widely used in various applications and algorithms to achieve a high degree of 

numeric stability and dynamic range. We expect this upward trend of FPU use in embedded systems 

and even move into lower-range architectures. 

 

 DSP with wide accumulators 

One strength of RX DSP architecture is the use of wide accumulators which allows DSP function 

operations to store their results in a much larger space separated from general purpose registers (Figure 

3.10). The MACLO MACHI instructions multiply the 16 bits of a register by the 16 bits of another 

register, and add the result to the value in the accumulator. At the end of the series of multiply-

accumulate operations, the RACW (Round the accumulator word) instruction rounds and saturates the 

value of the accumulator into 16bit. The packed 16bit data format of the DSP function operation 

reduces the number of data memory accesses, which improves digital signal processing performance 

and decreases power consumption derived from memory accesses. 

RXv2 increases the number of accumulators from one to two. The accumulators have been widened 

from 48 bits to 72 bits. Using two accumulators boosts the performance of fixed-point DSP algorithms. 

For example, FIR has parallelism in that each computation result of two series of operations (coefficient 

* data) is stored in each accumulator, which reduces the number of data transfers from memory. The 

RXv2 DSP function instructions can handle 32bit and 16bit fixed point multiply and multiply-

accumulate operations in a single cycle. 
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Figure 3.10 RX DSP functionality 

In direct contrast to the pipeline-integrated FPU approach, the RX DSP function adopts dedicated 

accumulators, not general purpose registers to hold calculation results. In DSP algorithms, at the end of 

the series of data load and multiply accumulate operations, results are referenced. This DSP architecture 

is assembler-friendly and DSP library programmers can easily tune their programs because of the 

dedicated accumulators. Register resource shortage is a severe problem for typical MCUs because they 

have only sixteen general registers.  Dedicate accumulators used in RX also solve this problem. 

For example, when we execute 32bx32b->64b, four 32-bit registers (two source registers, two 

destination registers) must be used. To free general registers for other computation, the RXv2 has an 

EMULA, EMACA, EMSBA (32bx32b->ACC, ACC±32bx32b=ACC) instruction that stores 64-bit 

results in the accumulators. These instructions uses only two general registers instead of four registers. 

As we mentioned before, the dual-issue pipeline exploits parallelisms in DSP operations and memory 

accesses, which can make full use of DSP computation ability by feeding enough data from memories. 

Of course some applications such as VoIP will require a dedicated DSP chip. But many sensor, speech 

and audio applications can be implemented by MCUs with RXv2. 
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 Embedded memory system architecture 

As described in Section 3.2, Flash memory consumes a substantial portion of power in the 

microcontroller. Program code is located in flash memory, so the key strategy for low operating current 

is to reduce instruction memory accesses. 

To reduce instruction memory accesses, a cache system is inevitable in today’s embedded 

microcontrollers. Even though a top-priority issue is energy saving, it is absurd to sacrifice no-wait 

internal Flash memory performance by using a cache system. Reducing the power consumption of 

internal memories can be achieved by replacing a portion of large memories with large power 

consumption with memories with smaller power consumption.  

 

 Improving instruction fetch effectiveness 

The importance of the memory hierarchy has increased with advances in the performance of 

processors. An embedded microcontroller has high-capacity embedded Flash memory, which is equal to 

the performance in 100% hit cache (Figure 3.11). However, when slower Flash is used, wait-states are 

required because the CPU operates faster than the native speed of the Flash memory, causing the CPU 

to stall, which degrades overall performance. 

A typical approach is to add an instruction cache between the CPU decoder and the Flash memory. 

There are two reasons to add an instruction cache. First, we need to mitigate a processor-memory speed 

gap to feed the CPU enough instructions. Second, we also need to reduce flash memory accesses to 

lower the power consumption. A large fraction of the total power budget of the microcontroller is the 

energy consumption in the path from the FLASH memory to the CPU. Therefore, decreasing the 

number of flash memory accesses is crucial in reducing power consumption. The two pillars of RXv2’s 

low power consumption are to adopt AFU and variable length ISA. First, variable length ISA delivers 

small dynamic code size (described in detail in Core features to make code compact), which can reduce 

instruction memory bandwidth. Next, if the requested instruction is contained in AFU, this request can 

be handled by simply reading AFU. 
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Figure 3.11 MCU: High-Capacity Internal Flash 

 

 AFU: Advanced Fetch Unit 

AFU was added between the CPU decoder and the Flash memory (Figure 3.12). A new branch target 

cache [bray91] in AFU collaborates with instruction queue (IQ).  

Several performance-cost trade-offs were considered in order to determine AFU structure. The RX 

utilizes our company’s industry-leading 40nm flash technology which enables 120MHz operation with 

zero-wait states (Figure 3.13). Fetch latency from the Flash memory to CPU decoder directly is one 

cycle. Therefore, RXv2 can avoid instruction pre-fetch performance degradation. This small processor-

memory speed gap allows us to concentrate on mitigating the branch penalty to improve performance. 

RXv2 benefits from adopting a branch target cache, which has a comparatively smaller area than that of 

a typical cache systems. 

CPU
Decode

External
Memory

IQ
Select

Processor

Cache

Embedded Microcontroller

CPU
Decode

IQ

Select

Embedded Flash
= 100% Hit Cache

No-wait



33 

 

 

Figure 3.12 Fetch Unit for Microcontroller with Advanced Fetch Unit 

 

 

Figure 3.13 Embedded Flash processing performance 
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AFU consists of an IQ and a small fully-associative branch target cache with LRU replace algorithm. 

AFU has the following functions: 

- storing branch target code (branch target cache） 

- detering unused prefetching (instruction queue reuse in small loops, prefetch stop when JUMP 

instruction is detected.)  

-replacing a cache line under dynamic priority control (8-entry LRU, Adaptive lock etc.) 

AFU and zero-wait embedded Flash can reduce power consumption and improve performance 

because AFU reduces memory accesses and zero-wait Flash memory does not deliver cache miss 

penalty. AFU makes instruction buffering decisions on the fly based on an analysis of program flow. 

When a short loop code is detected, AFU can reuse fetched instructions in IQ and the branch target 

cache. IQ is locked to protect codes in the loop. This short-loop buffering reduces both branch penalties 

and eliminates flash memory accesses at a lower cost than that of a typical approach such as a loop-

cache which stores the whole loop code. 

Another efficient utilization of fetched data from memory is “fast short forward branch”. The CPU 

core sends the distance to the branch target. If IQ finds the target code in IQ, CPU fetches codes from 

IQ without a pipeline flash and memory accesses. This technique improves if-then-else control flow in 

cycle performance and power dissipation.  

AFU of RXv2 improves its processing performance by 6% in Coremark [halfhill09] with zero-wait 

Flash memory. 

 

 Processor performance and power consumption 

Differences in performance appear when benchmarking DSP programs that include numeric 

operation function such as filter programs. Figure 3.14 illustrates that the DSP of RXv2 has contributed 

mainly to performance improvements compared to RXv1 when executing FFT, IIR and Matrix under 

16bit fixed point, 32bit fixed point and float conditions. The RXv2 processor delivers 1.9 – 3.7 the cycle 

performance of the RXv1. As a result, the RXv2 provides 1.5 – 3.4 the cycle performance of a RISC-
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based processor.  RXv2 achieves performance as high as commonly used DSP and improves far more as 

a DSP microcontroller. 

 

 

Figure 3.14 Benchmark Results of DSP Algorithm programs such as FFT, IIR filter and Matrix 

under zero-wait flash memory access.  

Breakdown of the RXv2 performance enhancement from the RXv1 (a), Performance comparison to a 

RISC-based processor (Cortex-M4) (b).  
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Figure 3.15 Performance Comparison of RXv2 with RXv1 and a RISC processor 

 

We evaluated the performance and power dissipation of the RXv2 device (120MHz) in a simulation 

with gate-level power analysis using actual loading. RXv2 reaches 4.5 Coremark per MHz. RXv2 

achieved a 50% - 150% improvement in various performance categories compared to existing products. 

The result is performance that outperforms the competing RISC microcontrollers. Figure 3.15 illustrates 

the performance advantage of the RXv2 device compared to the RX device. The RXv2 processor 
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delivers approximately more than 2.2 – 5.7x the power efficiency of the RXv1 in executing Coremark 

and a small loop program (a power evaluation program). Figure 3.15(a) also illustrates that the RXv2 

processor achieves 5.2x the power efficiency of a RISC processor (SH-2A), which shows that the 

performance of RXv2 is sufficient to fulfill the performance requirement for current and future 

embedded systems. The decrease of the number of Flash memory accesses by AFU is a dominant 

determiner of reducing power consumption in benchmarks. AFU reduces the number of Flash memory 

accesses by 25%. 

 

 Core features to make code compact 

Small memory size is inevitable in embedded applications because of their severe cost constraints, 

especially in MCUs with on-chip memories [bunda93]. Furthermore, program compression has a 

benefit for energy saving by reducing the number of bit fetched from memories. Several RISC 

architecture machines offered a mix of 16bit and 32bit instructions to compensate for the disadvantage 

of the code density. Despite the effort to mitigate this penalty, RISC MCUs still have basically inferior 

code density because of the lesser work accomplished per instruction [mips13], [sugure04], [xarm10].  

 

 

 Overview of Instruction set 

RX has a compact architecture with 109 carefully-selected instructions, which is equal to the number 

of instructions in a RISC-based architecture (Figure 3.16). The RX instruction set consists of eight types 

of instructions: arithmetic/logic instructions, floating-point operation instructions, data transfer 

instructions, branch instructions, bit manipulation instructions, string manipulation instructions, system 

control instructions and DSP function instructions [renesas13]. 

To achieve a high performance, high code density and low power system, the RX instruction set 

architecture uses a variable-length instruction format (1byte – 8byte). The RX instructions are variable 

in length at the byte level with the exact instruction length dependent on the data size and addressing 

mode used, which increases instruction code density and reduces the amount of data fetched from 

memory per operation. 
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Figure 3.16 RX instruction set architecture 

 

 Optimized op codes leads to superior code 

density 

CISC architecture inherently has the advantage in terms of the work accomplished per instruction and 

that always translates to a code-density win [hennessy06]. RX architecture stretches that advantage via a 

flexible instruction set architecture that can encode some instructions in as little as one byte.  

At the other end of the spectrum, instructions can takes as many as eight bytes when the instruction 

needs to specify a large address range or large data values that are unable to handle 32bit instructions. 

We did a further analysis of real application code to discern the most frequently used instructions and 

further reduce code size (Figure 3.17). We determined the most frequently used instructions are 

assigned to shorter instruction codes, from one-byte to four-byte instructions. We also added addressing 

modes and included a three-operand instruction format to optimize code density. 
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Figure 3.17 Analysis of Instruction Frequency 

 

Figure 3.18 Byte assignment of RX Instruction format 

 

 Assign short code to frequently-used instruction

Relative condition branch:BEQ,BNE
Unconditional relative branch:BRA

1byte length Instruction (Frequently-used “Conditional Branch”)

2byte-length Instructions (Frequently-used “Data Transfer and Comparison instructions”)

3byte-length Instructions (Frequently-used “Arithmetic and logical instructions”)

Data Transfer :MOV  (register to register, memory to memory, Load, Store)
Comparison :CMP  (register to register, register to immediate)
Addition :ADD  (register + register, register + immediate)
Subroutine branch :BSR
Multiplication :MUL  (register x register)

Division :DIV (register / register)
Multiply-accumulate :EMAC (register x register)
Floating-point addition :FADD (register + register)
Floating-point multiplication :FMUL (register x register)
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Move (MOV) instructions were found to be the most frequently used instructions, accounting for 

more than 30% of all operations. Conditional branch instructions were the next most frequent, followed 

by Compare instructions, Subroutine Branch instructions and Add (ADD). Move instructions therefore 

received the most enhancements in terms of additional addressing modes, and the ability to 

automatically increment and decrement values stored in registers. The next most frequent instructions 

were also shortened. Add instructions were both shortened and enhanced with a three-operand format. 

Figure 3.18 illustrates RX instruction code that assigns shorter code to frequently used instructions. 

The instruction set is decidedly CISC in nature and is a primary factor in the code density and 

performance advantage. The following is a detailed look at some instructions to illustrate the benefits of 

the architecture. 

 

 Data Transfer instruction  

MOV instruction illustrates RX variable length instruction set advantages. Unlike in the RISC case 

where instructions are generally fixed in length, the CISC counterpart is variable in length and far more 

flexible. The MOV instruction is the most frequently used instruction in real application code, therefore 

its binary code assignment instruction is important for execution performance and code size 

compression.  

The RX MOV instruction can handle the following six types of data transfer from source to 

destination. 
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RX Family RXv2 Instruction Set Architecture User’s Manual: Software 
 (copyright ©2013 Renesas Electronics Corporation) 

 
 
The RX MOV instruction supports various operand formats and addressing modes. Therefore, 

programmers and compilers can reduce code size effectively by using appropriate instruction format for 

the most commonly used instance of MOV. 

1. Wide variety of immediate field of MOV instructions. 
Immediate value can be selected directly from 8bits, 16bits, 24bits and 32bits with signed and 

unsigned types. This feature provides the benefit of eliminating operations that set an immediate value 

to a register.  

2. Short-format MOV instructions. 
There are a number of short-format MOV instructions that are used most frequently and those 

instructions are 2 or 3 bytes in length. Consider a typical example of this instruction: 

MOV.L Rs, dsp:5[Rd] 

This instruction transfers a 32bit value from a source register (Rs) to a memory location that is 

defined by the location stored in a destination register (Rd) added to a 5bit displacement value. The 

effective address of the operand is the least significant 32 bits of the sum of the displacement (dsp:5) 

value, after zero extension to 32 bits and multiplication by 4, and the value in the specified register. 
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The MOV instruction and the L designation for a long word requires 5 bits in the instruction code. By 

applying limitation on use of general-purpose registers into half of full 16 registers (R0 – R7), both of 

the register designations are compacted into 3 bits. Therefore, this MOV instruction is encoded only in 

two bytes. For modern compilers or hand-coded assembly language, this limitation is minor. In 

comparison, consider the same instruction with full access to 16 registers and with the range afforded by 

a 16bit displacement value. That instruction would double in size to 4 bytes. When clever encoding can 

reduce a powerful instruction from 4 bytes to 2 bytes, the inherent advantage of a CISC instruction set is 

greatly enhanced. 

 

 1byte conditional branch instruction 

The conditional branch instruction plays a big part in code density; therefore, it is always encoded in 

the minimum possible length.  

 

 

RX Family RXv2 Instruction Set Architecture User’s Manual: Software 
 (copyright ©2013 Renesas Electronics Corporation) 
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The conditional branch instructions can comprise 15% of the instructions in a typical program – 

second in frequency only to the MOV instruction. There are conditional branches based on greater than 

or less than operators, and based on positive, zero, or negative values to offer flexibility to the 

programmer. 

The RX instruction set encodes such instructions in as compact a length as a single byte on 

Conditional Branch instructions including BEQ (branch if equal), BNE (branch if not equal) and BRA 

(branch always). 

Consider the following instructions: 

BEQ label1 

This BEQ instruction results in a branch to a memory location if the processor's Z flag is set to a 

value of "1". The instruction length is determined by the difference between the memory location of the 

BEQ instruction that is stored in the program counter relative to the branch location defined either by a 

label. 

According to program analysis in various applications, most branch distances are within the general 

vicinity and branch directions are forward in order to execute if-then-else program codes. Therefore RX 

instruction architecture encodes the branch forward instructions (BEQ, BNE and BRA) with address 

distance of 10 byte or less in one byte. 

The RX supports more branch operations including both in the forward and reverse directions from a 

memory address perspective. A two-byte instantiation can control forward or reverse branches in the 

range of -128 to +127 relative to the program counter. And the three-byte version stretches the range to 

-32768 to +32767. 

The result is better performance on application code that occupies a smaller memory footprint. 

 

 Compare instruction 

The code analysis revealed that the CMP instruction was the third most frequently used instruction. 

The instruction comprised 11% of the sample code. Moreover, the design team found a way to cut the 

instruction length in half relative to other CISC MCUs – yielding a 2-byte CMP instruction. 
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RX Family RXv2 Instruction Set Architecture User’s Manual: Software 
 (copyright ©2013 Renesas Electronics Corporation) 

 

The CMP instruction is variable in length depending on the type of the operands. It is a tremendous 

advantage of a CISC instruction set to be able to use immediate values and operands stored in memory 

with instructions such as CMP. RISC requires that both operands be stored in registers. 

There are three different ways to use CMP with a 2-byte instruction length. Register to register 

compares are always 2 bytes. But the RX also supports both compares using immediate values and 

operands from memory with 2-byte instructions. 

Consider the following instruction: 

CMP #7, R2. 

The instruction compares an immediate value 7 with the data stored in R2. As long as the immediate 

value is 4 bits or less in size, the instruction requires only 2 bytes. But the implementation provides the 

flexibility to use immediate values as wide as 32bits. The instruction lengths scales from 2 to 6 bytes to 

support 4, 8, 16, 24, and 32bit immediate values. 

The CMP instruction can also be implemented in 2 bytes for memory-to-register compare operations. 

Consider the following instruction: 

CMP [R2], R3. 

This instruction comparing the operand pointed to by R2 with the one stored in R3 always requires 

only 2 bytes. Again, however, the implementation offers flexibility. The instruction can be used with a 
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displacement value from the memory location stored in the register. The instruction length scales to 5 

bytes to support 16bit displacements. 

Almost all CISC architectures offer the flexibility illustrated here with CMP, which is a huge 

advantage of CISC relative to RISC.  

 

 3-operand instruction 

The instruction implementation in the RX offers a variety of addressing modes and even a three-

operand format. ADD is the fifth most regularly occurring instruction, making up 6% of the instructions 

in a typical program; therefore it was targeted for special treatment. 

Consider the instructions: 

ADD R1, R2, R3 

and 

ADD R1, R2. 

The benefit of three-operand format is not to overwrite one of the source operands and program code 

can reuse the value of the source register. Both ADD instructions add the values in R1 and R2. The 

three-operand format stores the result in R3. The two-operand stores the result in R2 – overwriting one 

of the source operands. With embedded RISC processors that only support the two-operand format, 

there are times when an extra move instruction is required before or after the ADD because the program 

needs to preserve the data in the destination register before the ADD takes place as well as preserving 

the summed result. 

The RX ADD instruction offers additional flexibility in that the first of the three operands can be an 

immediate value. RISC architectures would always have to load such an immediate value prior to 

executing the ADD. 

The three-operand ADD is encoded in three bytes when each of the operands is a register. With an 

8bit immediate value, the instruction still only requires 3 bytes. Larger immediate values can stretch the 

instruction length to 4, 5, or 6 bytes. 
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Like many CISC processors, the RX can encode a two-operand ADD instruction in two bytes when 

both operands are registers. But we devised 2-byte instructions both for ADDs involving an immediate 

value or data from a memory location. 

A two-operand ADD instruction, in which the first operand is a 4bit immediate value and the second 

operand is a register, requires only two bytes. That is half the size of typical immediate-value ADD 

instructions. Larger immediate values stretch the instruction length to 3, 4, 5, or 6 bytes. 

A two-operand ADD instruction in which the first operand is data in a memory location that is 

pointed to by a register also requires only two bytes. More complex versions can use a register storing a 

memory location, and an offset from that location. Such relative-addressing modes can result in 3-, 4-, 

or 5-byte instructions. For systems, the result is smaller code, less memory and therefore lower cost, and 

better performance. 

 

RX Family RXv2 Instruction Set Architecture User’s Manual: Software 
 (copyright ©2013 Renesas Electronics Corporation) 

 

 Registers 

We have investigated how general-purpose register configurations and operational codes for 

instructions are related. The number of registers in an instruction set architecture has a direct impact on 

code size because the register number bit field requires more bits in the operation codes to encode 
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support for more registers. But more registers are almost always better from a performance perspective. 

A greater number of registers eases register allocation, which means that the target program spends far 

less time shuffling data between memory and registers. Even CISC architectures that can directly 

operate on operands stored in memory still feature faster execution when operating on registers.  

To perform an in-depth analysis on the optimal size of a register file, we ran benchmark tests using 

real code that was central to target markets such as office automation and consumer, industrial, and 

automotive fields. Figure 3.19 shows the analysis of the register file. The vertical axis on the left 

represents the relative amount of hardware volume needed to support the register file. Red curves on the 

right indicate the code size attributable to the number of registers. The green curve indicates the 

register-specified bit number in operation code. 

 

Figure 3.19 Analysis of general-purpose register configuration 
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Figure 3.20 Register Set of the CPU 

RX Family RXv2 Instruction Set Architecture User’s Manual: Software 
 (copyright ©2013 Renesas Electronics Corporation) 

 

Eight registers is too small to execute code in real applications in which save/restore operations occur 

quite frequently, which causes performance degradation and code size increase. The variable length 

instruction set allows only four bits of register-addressing fields. For register-to-register instructions, at 

least two register-specified fields are required. Five bits of operation code are specified for 32 registers. 

In order to balance performance, hardware cost, and code density, the benchmarks led to the decision 

to include sixteen general-purpose registers in the RX architecture. As a result, the RX CPU has sixteen 

general-purpose registers, ten control registers, and two accumulators used for DSP instructions (Figure 

3.20). 
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Figure 3.21 Code size analysis of the RX and a RISC-based MCU: Static Code Size (a) and 

Dynamic Code (b). 

 

 Code size evaluation 

Figure 3.21 illustrates a code size analysis of the RX and a RISC-based MCU with three different 

types of applications, a real-time-control application, a motor-control application and system-control 

application. The implementation delivers up to 46% reduction in static code size, and up to 30% 

reduction in dynamic code size relative to RISC architectures. Small static code size makes a significant 

contribution in decreasing ROM size, and by extension, costs. Small dynamic code size delivers low 

power consumption as described in the section “Improving instruction fetch effectiveness”. 
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The RXv2 enhances DSP/FPU instructions to reduce the code size and to use the comparatively small 

number of sixteen registers more efficiently. The newly added 19 instructions are shown in red in 

Figure 3.16. 

. 

 

Improving instruction fetch effectiveness is a key to reducing power consumption, and many 

instruction fetch ideas have been proposed for decades.  

The conventional method of reducing power consumption of external memories is to integrate the 

cache memory on the chip to reduce the number of switched off-chip wires, which dramatically reduces 

system power consumption by 90%. Therefore reducing the cache miss rate has been the main topic of 

discussion of cache designers. 

On the other hand, in microcontrollers, ROM and RAM are traditionally integrated on a chip. 

Elimination of external memories achieves low power consumption. However, today’s devices demand 

much less power consumption because they depend on battery or solar power. 

For embedded microprocessor-based systems, instruction fetching can contribute to a large 

percentage of system power (around 50%). 

Several approaches have been proposed to reduce memory accesses including: 

1) Program compression to reduce the number of bits fetched 

2) Efficient instruction cache design to filter out accesses to main memory 

Program compression 

There are two major program compression techniques; one is code compression and the other is size 

reduction of instruction codes. Since memory accesses consume a significant amount of an embedded 

system’s power, battery life can be extended by program compression.  

Code compression architecture uses hardware to compress the most commonly executed instructions. 

This method reduces memory accesses per instruction [benini99]. A disadvantage of this method is the 

chip area and performance overhead caused by the decompression of the compressed codes.  
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Since the CPU is the main consumer of power, compression can result in significant power savings. 

If memory and/or cache are made smaller, their effective capacitance decreases, further decreasing 

power consumption [lekatsas00]. Because there are fewer transactions and the transactions are shorter, 

compression may also reduce program execution time. 

Smaller code size derived from instruction set architecture provides direct benefit to save energy, 

which eliminate the need for compression hardware. 

Efficient instruction cache design 

Another approach to reducing memory accesses is efficient instruction cache design. Several tiny 

instruction cache architectures attract designers who need low energy or low power processors. 

A filter cache is a small direct-mapped cache, which is placed between the CPU and the L1 cache. It 

utilizes standard tag comparison and miss logic. The filter cache is much smaller than the L1 cache; it 

has a faster access time and lower power consumption per access. However, it may suffer from a high 

miss rate and hence may decrease overall performance [kin97].  

A loop cache is a small instruction buffer that is tightly integrated with the processor without tags. A 

loop cache controller is responsible for filling the loop cache when a simple loop, defined as any short 

backwards branch instruction, is detected [gross02v]. 

Another category of approaches is capitalizing on the common features of embedded applications by 

profiling, which can enable customization of an architecture to most efficiently execute a particular 

application [gross02c, cotterell02]. A very aggressive form of this type of architecture tuning involves 

creating a customized instruction set, known as an application-specific instruction set. Memory design, 

including a cache, is also customized for the application. 

A branch target buffer is a common way to improve branch prediction performance [hennessy06]. To 

reduce the branch penalty for pipelines, the branch target buffer speculatively fetches instruction codes 

from memory before decoding the branch instructions. If the PC (program counter) of the fetched 

instruction matches a PC in the prediction buffer, the corresponding predicted PC is used for speculative 

instruction fetches. This mechanism causes extra memory accesses and increases power consumption. 

Therefore, branch target cache, which reuses instruction codes from memory, is necessary for low 

power consumption [Chihung99]. 
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RXv2 is the new generation of RX processor architecture for microcontrollers with high-capacity 

flash memory. An enhanced instruction set and pipeline structure with an advanced fetch unit (AFU) 

provide an effective balance between power consumption performance and high processing 

performance. Enhanced instructions such as the DSP function and floating point operation, and a five-

stage dual-issue pipeline synergistically boost the performance of digital signal applications. The RXv2 

processor delivers 1.9 – 3.7x the cycle performance of the RXv1 in these applications. The decrease of 

the number of Flash memory accesses by AFU is a dominant determiner in reducing power 

consumption. The AFU of RXv2 benefits of reducing power consumption from adopting a branch target 

cache, which has a comparatively smaller area than that of a typical cache systems. High code density 

delivers low power consumption by reducing instruction memory bandwidth. The implementation of 

RXv2 delivers up to 46% reduction in static code size, and up to 30% reduction in dynamic code size 

relative to RISC architectures. RXv2 reaches 4.5 Coremark per MHz and operates up to 240MHz. The 

RXv2 processor delivers approximately more than 2.2 – 5.7x the power efficiency of the RXv1. Figure 

3.22 shows a chip photograph of the test chip of the microcontroller with 4MB of built-in Flash 

memory. The chip was fabricated using a 40-nm low-power CMOS. This chip integrates one RXv2 

processor that is connected to internal SRAM and Flash memories. This chip also has an internal multi-

layer bus to connect the processor to peripheral IOs, and an interrupt controller unit (ICU). 

 

Figure 3.22 The test chip of the microcontroller with the RXv2 processor  



55 

 

 

The RXv2 microprocessor achieves the best possible computing performance in various applications 

such as building automation, medical devices, motor control, e-metering, and home appliances which 

lead to higher memory capacity, frequency and processing performance. 
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 Arithmetic and logical instructions 
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 Floating-point operation instructions 
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 Data Transfer instructions 
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 Branch Instructions 
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 Bit manipulation instructions 

 
 

 String manipulation instructions 

 



61 

 

 System control instructions 
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 DSP function instructions 
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PEACH: A Multicore 
Communication SoC with PCI 
Express I/F 

 

 

The eight-core communication SoC, code-named “PEACH”, with four 4x PCI Express rev.2.0 ports, 

realizes a high performance, power-aware, highly dependable network. The network uses PCI Express 

not only for connecting peripheral devices but also as a communication link between computing nodes.  

This approach opens up new possibilities for a wide range of communications. Recent trends in using 

computing clusters point to a growing demand for high-compute-density environments in various 

application fields such as server appliances including distributed Web servers.  Distributed Web servers 

need many server nodes and low-latency and high-bandwidth network for operating a massive amount 

of Web services, including distribution of high-definition movies. In these computing clusters, power 

consumption and system cost have increased. Therefore, it’s vital to downsize computing cluster 

without losing high dependability, including fault tolerance.   

To realize high-performance, power-aware, and highly dependable network, we have proposed a 

small computing cluster for embedded systems, called PEARL (PCI Express Adaptive and Reliable 

Link) [hanawa10].  

Commodity network devices such as Gigabit Ethernet (GbE) and InfiniBand aren’t sufficient for 

small computing clusters. InfiniBand is a switched fabric communication link used in high-performance 
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computing and enterprise data centers. It achieves high reliability but power consumption is relatively 

high [infiniband]. The external switching devices are needed to connect between nodes, and they restrict 

flexibility of network topology and scalability. GbE is a cost and power rival of InfiniBand. However, 

GbE does not match InfiniBand’s transmission performance. 

To achieve both high performance and low power consumption, PEARL uses PCI Express [pcie06], a 

high-speed serial I/O interface standard in PCs, not only for connecting peripheral devices but also as a 

communication link between computing nodes. To implement PEARL, we’ve developed a 

communication device called PEACH (PCI Express Adaptive Communication Hub), which acts as a 

switching device. PCI Express transfers packets point-to-point bi-directionally with high bandwidth. 

However, it connects only between a Root Complex (RC) and Endpoints (EPs).  

Therefore, we can’t connect PCI Express interfaces on PCs to one another, because every node CPU 

in the computing node is an RC. To solve this problem, PEARL equips each node CPU with a network 

interface card with PEACH. A PCI Express cable connects the node CPUs to one another. To pair a RC 

with EPs at each end of the PCI Express cable, PEACH can switch the RC port and EP ports to connect 

two computing nodes peer-to-peer. Thus, PEACH can address two computing nodes as peers, breaking 

the traditional PCI Express limit of only linking to a single master.  

 

Figure 4.1 The communication link, PEARL.  
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A network interface card with the network device, PEACH, can be inserted into a PCI Express slot on 

a computing node’s motherboard (Figure 4.1). 

 

 

 PEACH overview 

PEACH, has four PCI Express Revision 2.0 ports with four lanes each and employs an eight-core 

control processor [otani11f]. Using PEACH in the proposed network offers several advantages. Four 

PCI Express ports can broaden the scope of network topology selection. The high bandwidth of 20 

Gbps/port equals that of InfiniBand DDR 4X. The multicore control processor performs fault handling, 

system monitoring, and logging for dependability. The multicore processor also controls the network 

system for power awareness. 

 Figure 4.2 shows a PEARL network system prototype. PEACH behaves as a communication 

interface to other computing nodes as well as a communication switch. Figure 4.2 illustrates adaptive 

routing under a normal network condition (a), detour routing in a fault network condition (b), and an 

example of an eight-node network (c). PEACH acts as a communication link and connects nodes of the 

network via its four PCI Express ports. 

In Figure 4.2 (a), PEACH connects four network nodes via its four PCI Express ports. One adjacent 

nodes is a node CPU, and the others are PEACH chips. When PEACH 0 receives a request from a node 

CPU via the PCI Express port, PEACH 0 generates a packet header, which is then sent to the 

appropriate destination port. When PEACH 1 receives a packet from a node, PEACH 1 analyzes the 

packet header, and PEACH 1 forwards the packet to another node or passes it to the node CPU. 
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Figure 4.2 Neighbor communication on PEARL. 

The hardware automatically processes the error-detection, flow-control, and retransmission-control 

functions in the PCI Express specifications. InfiniBand supports only link-by-link cut-off, so only one 

faulty lane must causes a link to go down. In contrast, when a link error that can’t be automatically 

corrected occurs, PEACH reduces the number of the PCI Express port’s lanes to remove the defective 

lane by reinitializing the link. This InfiniBand enhancement can provide higher network reliability. 

This chip integrates an eight-core control processor, four PCI Express ports, and an intelligent 

interrupt control unit (ICU). 

Detour routing is applied in a fault condition to bypass faulty links and nodes, and it enables network 

function recovery (Figure 4.2(b)). PEACH continuously monitors the system and dynamically performs 

both adaptive routing, to meet power and performance demands, and detour routing to achieve a highly 

dependable network. 
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Although the number of nodes in PEARL is theoretically limitless, our design target is a network 

with 16 nodes. 

 

 Chip Architecture 

Figure 4.3 shows PEACH’s primary functional unit. This chip includes two blocks, the control 

processing block and the transfer processing block, which are connected with a bus bridge. Figure 4.4 

shows the chip micrograph. The test chip was fabricated in a 45nm low-power CMOS (8 layers, triple-

Vth).  

 

Figure 4.3 PEACH block diagram.  
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Figure 4.4 PEACH micrograph.  

 

The transfer processing block has four PCI Express ports, each of which can transfer packets using up 

to four lanes; 512Kbytes of static RAM (SRAM) allocated for temporary packet storage; and an 

intelligent interrupt control unit (ICU) in close liaison with the multicore processor and the PCI Express 

interface [otani11n]. A high-speed internal system bus connects all the main modules in the transfer 

processing block. The intelligent ICU also supports the fast automatic data-transfer function that 

offloads interrupt services from the multicore processors. 

The control processing block performs data-processing and data-flow control, which consists of 

adaptive network routing and packet header analysis. In the control processing block, a cache coherence 

mechanism connects the eight cores to a common pipelined bus [kaneko04]. Each core is synthesizable 

and includes a floating-point unit (FPU), a memory management unit (MMU), three 8Kbyte memories for 

Level 1 (L1) instruction and data caches, and a local memory. The control processor is a symmetric 

multiprocessor (SMP) that supports a core grouping mode that divides cores into several groups 

[kondo08].   
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The pipelined bus is connected to a 512Kbyte L2 cache. This pipelined bus with a large bus width (a 

128-bit read bus and a separate 32-bit write bus) reduces its bus traffic and connects directly to an 

internal multilayer bus. The 256Mbyte DDR3-600 interface is accessed via both the control processing 

block and the transfer processing block in parallel. This high-speed, large memory contributes to 

improving the chip performance. The DDR memory is also used as a large packet buffer if the packet 

size is larger than 512Kbyte SRAM. 

PEACH’s multicore processor offers an effective paradigm for fast packet processing. In a multicore 

system, we must carefully consider the hardware and software architecture. We can assign network 

packet processing from a specific PCI Express port to dedicated cores, to bind specific tasks and 

specific cores. By effectively distributing processing on a multicore processor, we can realize high 

traffic rates from multiple 20-Gbps throughputs on multiple PCI Express ports. 

 

 PCI Express interface with up-configuration 

function 

Table 4.1 describes the PCI Express interface’s features. Each PCI Express port has a link controller, 

PHY, a local DMA controller (DMAC), and local packet buffer RAM. The latest Revision 2.0 standard 

has transfer rate of up to 5.0Gbps, double that of the Revision 1.1 (2.5Gbps). Revision 2.0 supports both 

2.5Gbps and 5.0Gbps transfer rates because of compatibility with Revision 1.x. Furthermore, PCI 

Express specifications govern a procedural step in going from 2.5Gbps up to 5.0Gbps. The total transfer 

rate to each destination is 20Gbps, and the theoretical peak bandwidth is actually 2Gbps due to 8-bit and 

10-bit encoding for the embedded clock and error detection. PEACH with four PCI Express ports 

realizes a high-performance communication of 4 x 20Gbps and a power efficiency of 0.04W/Gbps.  
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Table 4.1 PEACH Chip Features 

 
InfiniBand DDR 4X has a high bandwidth of 20Gbps and a low latency of 2μs. The subnet manager 

provides automatic fault recovery [infiniband]. However, overall system power consumption increases 

because a controller chip and a switch each consume 3 to 5 watts per port. Multiple switches, which are 

necessary for fault tolerance, would run counter to cost reduction and low power consumption. The 

power efficiency of InfiniBand 4X is 0.083W/Gbps [qlogic]. Thus, PEACH provides 51.5% better 

power efficiency than InfiniBand 4X (Table 4.2). 

 
Table 4.2 Comparison of Power Efficiency 

 DescriptionChip Characteristic

8core, SMP
L1-cache:8kB(I)+8kB(D), LM:8kB, MMU, FPU

Processor

Internal: 400 MHz max.
External bus: 100 MHz

Clock frequency

PCI Express standard Rev.2.0
Transfer speed: 5.0 GT/s, 2.5 GT/s per lane
4 lanes (20 Gbps) x 4 ports
Upconfiguration function
Automatic retransmission function
Selectable Root Complex / Endpoint

PCIe I/F

L2 cache: 512 kB
Internal SRAM: 32 kB, 512 kB

Memory

DDR3-600 I/F x 1, SDRAM I/F x 1DRAM I/F

32-bit Processor (400 MHz max.)Core

Packet router
Multi-layer bus (4-layer)
Pipelined bus

Bus

Transfer address, size information register  x 3
Initiate data transfer function

Intelligent Interrupt 
Control Unit

DescriptionChip Characteristic

8core, SMP
L1-cache:8kB(I)+8kB(D), LM:8kB, MMU, FPU

Processor

Internal: 400 MHz max.
External bus: 100 MHz

Clock frequency

PCI Express standard Rev.2.0
Transfer speed: 5.0 GT/s, 2.5 GT/s per lane
4 lanes (20 Gbps) x 4 ports
Upconfiguration function
Automatic retransmission function
Selectable Root Complex / Endpoint

PCIe I/F

L2 cache: 512 kB
Internal SRAM: 32 kB, 512 kB

Memory

DDR3-600 I/F x 1, SDRAM I/F x 1DRAM I/F

32-bit Processor (400 MHz max.)Core

Packet router
Multi-layer bus (4-layer)
Pipelined bus

Bus

Transfer address, size information register  x 3
Initiate data transfer function

Intelligent Interrupt 
Control Unit

4x InfiniBand PEARL

Network Device Dedicated Circuit
InfiniBand

PEACH
PCI Express

Power Efficiency 
[W/Gbps]

0.083 0.040
51.5%
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Figure 4.5 PCI Express up-configuration function by software control. (a) Maximum data transfer 

rate (b) Low power consumption. 

 

 PCI Express up-configuration function 

InfiniBand offers restrictive power-aware control of link-by-link power cut-off. In contrast, PCI 

Express has an effective power-aware control that can change the number of lanes and the lane speed on 

the fly, across the link and nodes. We use a PCI Express up-configuration function that lets us switch 

the transfer rate and the number of lanes in response to a software bandwidth change (Figure 4.5). When 

the required transfer volume is higher, the PCI Express port operates at the full of 20Gbps. When the 

transfer volume is lower, only one lane operates at 2.5Gbps for low power consumption.  

Table 4.3 compares the comparison of the PCI Express PHY power consumption. In low power 

consumption mode, using the PCI Express port of 2.5Gbps provides 76% less power consumption than 

that of 20Gbps. The maximum transfer rate using the PCI Express port of 20Gbps provides 52% better 

power efficiency compared to that of the low power consumption of 2.5Gbps.Figure 4.6 shows the 

power consumption of PCI Express PHY at each requested transfer volume. When the required transfer 

volume is lower than 2.5Gbps, using one PCI Express port of 2.5Gbps provides the lowest power 
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consumption. When the required transfer volume is larger than 2.5Gbps, using PCI Express ports of 5.0 

Gbps is worthwhile.   

 

 
Table 4.3 Power Consumption of PCI Express PHY (Normalized) 

 

 

Figure 4.6 Power Consumption of PCI Express PHY (W) at each requested transfer volume. 
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 Intelligent Interrupt Controller 

Figure 4.7 shows the intelligent ICU block diagram. The intelligent ICU communicates with PCI 

Express ports within the PEACH. It also communicates with adjacent PEACH chips and nodes. Both 

communications use message passing via the high-speed system bus and via PCI Express. The 

intelligent ICU can also send a message signaled interrupt (MSI) packet to the adjacent node via PCI 

Express. To notify the intelligent ICU that PCI Express DMA transfer is complete or that there are PCI 

Express errors, PCI Express Link sends interrupt requests directly to the intelligent ICU.  

The intelligent ICU’s key features are an  

• Interrupt relay function 

• Inter-chip interrupt function 

• Fast automatic data transfer function 

All functions are used in inter-node communication. 

The interrupt relay function relays interrupt requests from the PCI Express interface in the transfer-

processing block to the cores via the ICU in the control-processing block in PEACH. It sends these 

interrupt requests as notifications that the PCI Express linkup or PCI Express DMA transfer processing 

is completed.  

An inter chip interrupt function sends information such as a notification of the chip-to-chip data 

transfer is completed. An adjacent chip connected to PEACH via PCI Express can write a control 

register in the intelligent ICU to assert an interrupt request to a core.  

The fast automatic data-transfer function automatically handles transfer processing without using 

cores in PEACH. 
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Figure 4.7 Block Diagram of Intelligent ICU 

 

 

 Data Flow Control 

IRQ (Interrupt Request) affinity on Linux lets programs specify which core services a given interrupt.  

In PEACH, IRQ affinity binds an interrupt from each PCI Express port to a specific core in a one-to-one 

relationship. The network packet is directed to the desired core. By using this distributed processing, 

PEACH can process a packet efficiently. Furthermore, a snooping group of cores alleviates snooping 

overhead, because cores can be snooped only from other cores in the same group. Eliminating 

unnecessary internal snoop transaction improves the communication services’ stability. 
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Figure 4.8 Efficient packet processing and fault handling in PEACH.  

 

Figure 4.8 (a) illustrates the data-flow control in PEACH. The solid dotted arrows indicate data flow. 

When PCI Express 3 receives data from a node CPU, the SRAM temporarily stores the data. After that, 

the data is sent to another PEACH via the appropriate destination port (PCI Express 0). 

The dotted arrows indicate control flow. Devices connected to PEACH via PCI Express can send 

control packets to the intelligent ICU. The node CPU sends control packets and an interrupt request 

packet to establish communication. The intelligent ICU relays this interrupt request to a core. In the 

interrupt handler, the core analyzes the packets, performs an address transformation, and launches the 

DMAC in PCI Express. 

Smart interrupt handling, such as quick error response and fault-handling speedup is essential for 

dependability. Therefore, good load balancing and performance tuning requires control wherever 

interrupt services are performed.  IRQ affinity assigns a specific core to a PCI Express port to process 

interrupt service tasks requested only by that PCI Express port.  The system software makes the core 
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idle steadily except during an interrupt services. There’s no overhead of a context switch from a 

previous process, and the core can smoothly move to the interrupt processing, which speeds up the 

interrupt response time (Figure 4.8(c)). Smart interrupt handling also supports the fast automatic data-

transfer function (Figure 4.8 (d)). The intelligent ICU can transfer data without using the cores’ 

interrupt services by automatically performing address transformation and handling the DMAC in PCI 

Express. Figure 4.8 (b) shows fault handling for dependability. When communication is broken up 

because of a fault on a link or an adjacent node, PCI Express sends an interrupt request to a core via the 

intelligent ICU. The core starts error recovery by removing the defective lane or applying detour 

routing. 

Figure 4.9 shows two data transmission flows - processor mode using interrupt services (a) and 

intelligent ICU mode using fast automatic data transfer (b). This chart indicates data transmission flows 

from Node CPU0 to Node CPU1 via PEACH A and PEACH B. All communication packets between 

nodes are sent via PCI Express. 

 

 

Figure 4.9 Two data transmission flows: Processor mode using interrupt services  
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Figure 4.9 (a) shows the data transmission flow using core interrupt services. After Node CPU0 sends 

a data packet and a control packet, it sends an interrupt request packet to the intelligent ICU in PEACH 

A to establish a communication channel. The intelligent ICU relays the interrupt request and control 

packet to a core in PEACH A. In the interrupt handler (core-A), the core analyzes the packets including 

the data’s source, destination addresses, and size, and then update the packet headers and sends the 

packets to the destination. 

The core launches the DMAC in PCI Express and transfers data to PEACH B. PCI Express notifies 

the core that data transfer is completed via the intelligent ICU. In the interrupt handler (core-B), the core 

sends a control packet and an interrupt request packet to PEACH B, and an end packet to Node CPU0. 

PEACH B acts in a similar manner to PEACH A and Node CPU1 finally receives data. 

Although packet processing executed in the multicore processor is flexible, we can’t avoid interrupt 

processing overhead. The intelligent ICU has a routing table and handles route computation 

automatically, which can reduce transfer latency. Figure 4.9 (b) shows how the fast automatic data-

transfer function handles transfer processing without using the multicore processor. Node CPU0 sends 

an initiate data-transfer request packet to PEACH A. The intelligent ICU in PEACH A launches the 

DMAC in PCI Express and automatically transfers data to PEACH B. The intelligent ICU in PEACH B 

acts similarly, and Node CPU1 finally receives the data. 

The intelligent ICU’s fast automatic data-transfer function can dramatically reduce transfer 

processing time by 20% under normal network operation (Figure 4.10). Because it adopts a multicore 

processor and the intelligent ICU, PEACH acts as an intelligent network device. 

 

Figure 4.10 The intelligent ICU’s fast automatic data-transfer function improves transfer latency.  

Number of cycles (Normalized)

1.00.50.0

(a) Processor Mode
using interrupt services

(b) Intelligent ICU Mode 
using fast automatic data 
transfer  (Proposal)

- 20% 

Interrupt services
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 PEARL network route construction 

A network manager runs as a user-land program on each Linux on PEACH chip. Each PEACH chip 

has a routing table in a driver. PCI Express notifies the daemon of a link-status change using Linux’s 

sysfs interface.  

There are two data transmission flows. Intelligent ICU mode can transfer data quickly, but it has only 

a fixed routing table. Processor mode provides a flexible routing for error handling or a start-up 

sequence. On start-up, a master node does a route search and makes the routing table under the 

assumption of intelligent ICU mode. When a fault occurs, the multicore processor acts as a backup, or 

overwrites routing tables to modify the route. 

 Network system power management 

Each daemon program on PEACH monitors network status and sends information to elected master 

node. The master node makes a power-aware order to network, and each network manager on PEACH 

changes PCI Express link configuration. On the basis of the application’s demand, the network manager 

can change the network link performance. PEACH’s multicore processor monitors the network status 

using a demon program, managing PCI Express physical layer (PHY) performance using the up-

configuration function and processor power-management such as clock-gating.  

An important point here is that adopting a multicore processor can provide fine-grained control of 

PCI Express configuration and reduce the overall system’s power consumption. 

 

 

 PEARL system board 

On the basis of the component descriptions we’ve discussed, we’ve developed a six-node prototype 

of our PEARL network system. Figure 4.11 (c) shows a photograph of a PCI Express x4 host adapter 

board that has a PEACH chip and PCI Express external cable connectors [pcie07j]. The board also has a 

Compact-Flash card slot, 4Mbyte flash memory and two 128Mbyte DDR3 memories. The Compact-
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Flash card contains a Linux ext3 file system, including Linux kernel 2.6.35, and is also used for storing 

log information. Linux runs on a multicore processor in PEACH on a stand-alone basis, booting by 

loading the Linux kernel image on the Compact-Flash card. This host adapter board can be inserted into 

a PCI Express slot on a computing node’s motherboard (Figure 4.11 (a)). The CPU hotplug on Linux 

can dynamically suspend and resume a core responding to system load, which are useful for power 

awareness. 

The PCI Express architecture consists of four discrete logical layers (Figure 4.11(b)). From the 

bottom up, they are the physical layer, the data-link layer, the transaction layer, and the software layer.  

 The software layer generates read and write requests that are transported by the transaction layer. 

The transaction layer manages the transactions for communication, such as read or write to/from 

memory, message passing, or configuration. The data-link layer handles link management, including 

packet sequencing and data integrity, which includes error detection and error correction. The physical 

layer comprises all circuitry, including a driver with impedance matching and input buffers, parallel-to-

serial and serial-to-parallel conversion, and PLLs. Each PCI Express port has a PHY, a data-link layer 

controller (MAC), and a transaction layer controller as hardware modules. Figure 4.11(d) shows six-

node prototype of a PEARL network system. 
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Figure 4.11 Prototype of PEARL network system. 
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 Switching time of PCI Express up-configuration 

function 

Table 4.4 shows the measurement results of the PCI Express up-configuration function switching 

time. Whereas the time required to increase the lane speed is 6.5 μs, the time required to decrease it is 

3.8 μs, because the PCI Express PHY needs extra time to gain lane speed (Table 4.4 (a)). Whereas the 

time required to shrink the number of lanes is 4.6 μs, the time required to expand it that is almost 9.1 μs 

(Table 4.4 (b)). The minimum latency of DMA transfer between PEACH chips that is also measured in 

this evaluation system is 1.0 μs. Thus, PEACH can perform power-aware control with fine-grained 

operation. 

 
Table 4.4 PCI Express up-configuration function-switching time. 

 

 

Lack of low power and high performance network technology for dependable embedded system is 

obstacle. As mentioned in this section, Infiniband is frequently used as a low latency and high 

bandwidth network for high performance computing clusters, but its large power dissipation prevent 

adapting for embedded systems. GbE is another candidate for low cost networks but it does not match 

performance. RI2N (Redundant Interconnection with Inexpensive Network) is a fault tolerant and high 

performance interconnection network based on the multi-link of GbE [okamoto07]. The power 

consumption of a controller chip for GbE is much smaller than that of Infiniband. RI2N is needed to 
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enhance throughput to adapt embedded networks, which causes larger power consumption. Moreover, 

GbE is essentially for long distances; therefore the communication latency using GbE is relatively large. 

Therefor the conventional networks described above are not appropriate for low-power and high 

performance network. 

Another candidate for a PCIe-based network for dependable embedded systems is a standard 

specification called ASI (Advanced Switching Interconnect) which interconnects multiple host 

computers and I/Os. [asi03, dolphinics]. ASI’s target is an interconnected 68-node network and it 

requires more complicated hardware than PCIe. ASI is mainly used for server I/O connections, and it is 

not applicable for dependable embedded systems. 

 

 

PEACH and PEARL open up new possibilities for a range of communications by extending PCI 

Express packet transmission to internode communication. PEACH’s performance advantage, power 

awareness and high dependability are the result of the combination of PCI Express, the intelligent ICU 

and the multicore processor. We’re currently improving and expanding firmware including drivers and 

user communication libraries. PEARL resulted from the research area of DEOS project [deos]. The 

PEACH board is positioned as a hardware platform for DEOS project and is expected to be adopted in 

many dependable high-end embedded systems, which will spur upgrades to technology innovations in 

this area. 
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A Heterogeneous Multicore SoC 
for Secure Multimedia 
Applications 

 

 

Digitalization of media has spread rapidly and music and images are also becoming more highly 

defined. As a way to easily distribute these digital contents, not only the disc packaging such as CDs, 

DVDs and blue-ray discs, but also network delivery services are gaining popularity. To further expand 

network delivery services, we have to establish secured accounting systems. 

Digital content protection standards such as DTCP-IP, Windows Media DRM (Janus) and Broadcast 

Flag have been established. However, in each case, decryption software is executed on non-secure 

hardware. As a result, a vulnerability arises in which an encryption key can be disclosed or code can be 

easily modified to access data without authorization. 

In a secured accounting system, we have to download encrypted contents from a content server, and a 

decryption key from a payment server so that decoding and payment can be performed in a secure 

multimedia processor. The decoded data in the processor can be played on a digital TV or a music 

player. Therefore, we need to develop a system that processes the decoding and the payment atomically. 

In a conventional system, the decryption and decoding operations are performed individually on 

different chips. When the encrypted contents are delivered, they are decrypted and restored to their 

original plain data format using the decryption key. Subsequently, the video data is decoded and images 

and audio are sent to audio/video output. 
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However, we currently have a system problem that decryption key and decrypted contents are at risk 

for being stolen. Because decryption software is executed on non-secure hardware, the decryption key 

and decrypted contents could be disclosed without authorization. 

To realize a secure system, the best solution is to integrate all components in one chip. But, this is 

difficult to achieve with current silicon-process technology to at a reasonable cost. 

To solve these security and cost problems, a multicore SoC with SiP (System in a Package) 

technology and an evaluation system (Figure 5.1) has been developed. In this paper, we propose a novel 

secure system using our SoC and software solution. 

 

Figure 5.1 Implemented secure media system board 

 

 

 

 Concept of the secure media system 

The proposed concept (Figure 5.2) consists of the following. 



85 

 

1. Atomic operation of payment and viewing 
2. Multicore SoC and SiP for faster communication and decryption 
3. Hardware / software virtualization for strong security 

 
1) Atomic operation of payment and viewing 

The problem with a conventional system is that payment, decryption and image processing are 

themselves large monolithic side-attack targets. Atomic operation of these processes eliminates 

problems of payment omission and copyright infringement from the illegal copying of data. In addition, 

the multicore SoC with SiP provides both tamper resistance and high performance because all 

communication routes are wired in the chip. 

2) Multicore SoC, DRAM, and Flash memory in one package (SiP) for faster communication and 

decryption 

Faster communication between external devices and faster decryption are indispensable when dealing 

with digital contents including motion video formats like MPEG. A multifunction motion video decoder 

is integrated on the heterogeneous multicore SoC to be compatible with MPEG-2/H.264/VC-1 on DTV 

(digital television) and DVD (digital video disc). A symmetric-key cryptography accelerator for 

decoding multimedia contents and a public key encryption IP for payment and user confirmation are 

also integrated (Figure 5.3). 

3) Hardware and software virtualization for strong hardware/software security 

To achieve a secured system, this SoC virtualizes hardware resources and an OS (Operating System) 

and applications are prohibited from accessing hardware resources directly. The most distinguishing 

feature of the system is that the multimedia block and the secure block are isolated and communication 

between these blocks is executed on the virtualization layer. 
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Figure 5.2 Concept of the secure media system. 

 

Figure 5.3 Block diagram of the SoC 
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 SoC Overview 

We have developed the SoC that adopts heterogeneous multicore architecture. Table 5.1 and Table 

5.2 show the system block diagram and the functional features, respectively. The multicore SoC we 

have developed integrates three types of processing units: two specific-purpose accelerators for a 

decryption and a high-resolution multifunction video decoder; one general-purpose SIMD accelerator 

for image filtering [noda07]; and three CPUs for data-flow control and data processing.  

The three CPUs are connected to a common pipelined bus with a cache coherence mechanism 

[kaneko04]. Each CPU is 32-bit RISC architecture and a synthesizable processor, which includes a 

double floating point processing unit, a memory management unit, three 8kB memories for level one 

instruction cache, level one data cache, and local memory, and a debug module. The CPU is a 7-stage 

dual-issue pipelined processor.  

The CPU block is a three way conventional SMP from a coherence perspective and supports a unique 

CPU grouping mode that divides CPUs into several groups [kondo08]. CPUs can only be snooped from 

other CPUs in the same group. The pipelined bus, which supports the modified, exclusive, shared or 

invalid (MESI) protocol, is connected to a 512kB L2 cache. This pipelined bus with a large bus width (a 

128-bit read bus and a 32-bit write bus, separately) reduces internal bus traffic and is directly connected 

to the multi-layer system bus. 

These three types of processors are interconnected on this chip with a high-bandwidth multi-layer 

system bus. Three CPUs communicate via this multi-layer system bus through the L2-cache. An 

embedded SRAM, internal I/O, special-purpose accelerators and the general purpose SIMD accelerator, 

are all connected by this multi-layer system bus. This multi-layer system bus provides a sufficient 

transfer rate by accessing these resources in parallel. 
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CPU 32-BIT RISC PROCESSOR(270MHZ) X 3 SMP 
L1-CACHE:8KB(I)+8KB(D),LM:8KB, MMU, FPU 

Memory L2-cache : 512kB 
Internal SRAM : 32kB 

General purpose accelerator SIMD Processor (270MHz) 
  2b-PE x 640, I-SRAM : 32kB, D-SRAM : 80kB 

Video-decode accelerator Decoding feature : 
  MPEG-2 MP@HL, MP@ML 
  H.264/AVC (MPEG-4 AVC) HP@L4.1, MP@L4.1 
  VC-1 AP@L3 
Resolution : 1920 pixels x 1080 lines 

Decryption accelerator AES-CBC 128-bit, AES-CTR 128-bit, 
AES-CMAC 256-bit 

Bus Multi-layer bus (4-layer) 
Pipelined bus/Fly-by bus 

Table 5.1 Functional features of the SoC  

TECHNOLOGY 90NM GENERIC CMOS (8 LAYERS) 

Chip Size 6.35 x 6.35 

Clock frequency Internel: 270MHz max 
External bus: 135MHz 

Power supply Core: 1.0V , I/O: 3.3V , DDR2: 1.8V (Vref=0.9) 

Power consumption 2.0 W 

SiP 29 x 29 mm2 729pin FCBGA 
4 chips in a package 
 - Multicore SoC : 8.00x8.00mm2 
 - DDR2 SDRAM : 256MBx2, 8.39x8.58mm2 
 - Flash Memory : 32MB, 5.74x7.64mm2 

Table 5.2 Physical features of SoC and sip 
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 Physical Integration of the SoC and the SiP 

 

Figure 5.4 Micrograph of SoC and SiP. 

Figure 5.4 shows physical features of the SoC and the SiP. All logic circuits on the chip were 

constructed using standard cells except for the memories, DDR-PHY, and PLL. The chip was fabricated 

in a 90nm generic CMOS-process with eight layers of copper interconnects. The chip integrates 4.35 

million gates and 1.1MB of memory in a 6.35mm x 6.35mm logic area. The die is packaged in a Flip-

Chip Ball Grid Array with 729 pins. 

The SoC, two DDR2 SDRAMs and a Flash memory are enclosed in this package. The size of the 

package is 29mm x 29mm (Table 5.2). The DDR2 SDRAMs are placed symmetrically against the SoC 

so that the length between the SoC and each memory is equal. We adopted flat structure for the package 

because of low power consumption and security. 
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 Protection by Software 

 

Figure 5.5 Protection by software 
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Real Time OS (RTOS) atomically executes decryption, image decoding and display processes. In the 
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memory on the SiP. In this system, communication between the secure OS and the application OS is 

realized by calling the OS communication API (application programming interface), which is the fully 

protected pathway. Encrypted data obtained by software in the application block is passed to the secure 

block using this secure OS communication API.  

The cooperation of the multicore hypervisor and the micro clustering model improves tamper-

resistance. This software system, which consists of the multicore hypervisor and the micro clustering, is 

described in Chapter 5.3. 

 

 

 Micro Clustering Model 

The “micro clustering model” is a novel technique that organizes multiple CPUs into groups with 

multiple OSs running on each group simultaneously. CMPs (chip multiprocessor) have been widely 

used, because they can achieve both high performance and low power consumption. SMPs, which 

consists of identical processors, are established in server-class applications using multithreading in 

order to increase throughput. In embedded CMP systems, not only SMP technology but also an 

asymmetric multicore approach is vital to maximize performance. 

To reduce inter OS communication overhead of the asymmetric multicore system, we designed 

hardware software system in which OSs share hardware resources except CPUs while keeping hardware 

costs low. And we call this hybrid operating system platform “micro clustering model”, in which 

multiple processors are in a single chip and multiple OSs share key components. In this system, RTOSs 

and general purpose OSs run independently on each processor. The multiple operating system platform 

can make the appropriate allocation of roles such as a general purpose OS and a RTOS among multiple 

OSs. 

The multicore hypervisor is software for a multicore system that can provide the OSs with virtual 

hardware and a way to communicate with each other OSs (Figure 5.6). When the system configuration 

is changed, it supports standardizing interfaces on logical models in order to smooth out hardware 

discrepancies. 
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Figure 5.6 Multicore hypervisor and micro clustering model. 

 

The multicore hypervisor is based on a para-virtualization model, which is employed to improve 

performance by presenting each VM (virtual machine) with an abstraction of the hardware that is 

similar but not identical to the underlying physical hardware. Not fully emulating hardware results in 

low performance overhead. 
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The multicore hypervisor manages the collaboration and cooperation of the processors. OSs execute 

the rest of the functions directly. The multicore hypervisor provides the following functions: 

1. Startup: OS startup on multiple processors, control of a startup sequence and startup 
timing  

2. Communication/synchronization: inter-OS communication and synchronization on 
multiple processors. 

3. Interrupt handling: external interrupt distribution to multiple processors. 
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 Startup sequence 

The startup controls boot operations of the OSs on the processors. The configuration of the multicore 

hypervisor organizes multiple processors into groups with multiple OSs, startup sequence and startup 

timing for each processor.  

 

Figure 5.7. Startup sequence. 

 

Figure 5.7 illustrates the 2CPU startup sequence. First, the multicore hypervisor executes hardware 
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Even if all processors start operating simultaneously, the specific predefined processor makes 
on-going requests to other processors to synchronize.  

 

 Inter-OS Communication 

For inter-OS communication and synchronization, the multicore hypervisor supports two functions: 

A) Pipe Communication 
Pipe communication using a simplex byte stream provides 1 to 1 OS communication services. The 

number of pipes is determined by the system configuration of the multicore hypervisor. These N pipes 

have the pipe IDs from 0 to N-1. The data written to a pipe is sent to the OS on the other end via a pipe 

buffer in the shared memory. All service-calls of the multicore hypervisor use non-blocking 

communication. Therefore, event notifications to OSs are in call-back mode. 

B) Semaphore Communication 
Semaphores are a synchronization mechanism in OSs. The number of binary semaphores is 

determined by the system configuration of the multicore hypervisor. These N binary semaphores have 

semaphore IDs from 0 to N-1. Control data is placed in the shared memory and is operated by the 

multicore hypervisor on each processor. 

Pipe communication requires pipe control data and pipe buffers to be shared by processors. This 

system has 8KB pipe buffers. Semaphores have semaphore control data as inter processor shared data. 

Both pipes and semaphores use common event mechanisms of the multicore hypervisor. These event 

mechanisms realize inter processor notifications using inter processor interrupts. 

 Interrupt handling 

In a multiple OS environment, external interrupts like IO interrupts need to be sent to the OS to 

which they are assigned. Sometimes multiple IO interrupts share one interrupt request when hardware 

resources are limited. To accommodate this requirement, the interrupt handling on the multicore 

hypervisor supports a function that transfers interrupt request accepted by the processor to the other 

processors. The inter OS communication are operated by the inter processor interrupt services in the 

multicore hypervisor. 

Figure 5.8 illustrates the interrupt control procedure. The interrupt control table defines which OS is 

associated with each interrupt cause. This table is placed in the shared memory. 
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When an interrupt occurs, the multicore hypervisor accesses the interrupt control table and 

determines if it needs to handle the interrupt or not. If so, the multicore hypervisor jumps to the 

hypervisor interrupt handler. If not, the multicore hypervisor checks the OS ID that is associated with 

the interrupt cause. When the OS ID indicates an OS that runs on this processor, the multicore 

hypervisor calls the OS’s interrupt handler. When the OS ID indicates a OS that runs on another 

processor, it notifies the other processor that is associated with the interrupt cause using the inter 

processor interrupt. 

The interrupt services are implemented via the hook method in order to minimize OS modifications. 

The OS sets interrupt vector addresses on the processor using service calls to the multicore hypervisor. 

When the hypervisor interrupt handler calls the OS’s interrupt handler, the multicore hypervisor uses 

the interrupt vector address sent by the OS.  

 

Figure 5.8. Interrupt operation. 

 

 Hypervisor Operating System  

Three types of OSs run on the multicore hypervisor: Linux (2.6.18), T-Kernel (1.01), TOPPERS/JSP 

kernel (1.4.2). Any combination of these OSs is theoretically operable. The combination that is shown 

in エラー! 参照元が見つかりません。 has been verified on our system. 

Determine 
Interrupt Cause

Check OS ID
Inter-CPU
Interrupt

Switch to 
OS handler

Hypervisor
Interrupt handler

Interrupt

Check 
Interrupt Table 



96 

 

T-Kernel is a real-time operating system for T-Engine project [tengine]. The TOPPERS/JSP kernel is 

a real-time kernel that is in conformity with the µITRON4.0 specification [toppers]. 

PROCESSOR #0 PROCESSOR #1 
Linux Linux 
T-Kernel T-Kernel 
T-Kernel Linux 
TOPPERS/JSP TOPPERS/JSP 
TOPPERS/JSP Linux 

Table 5.3 Combinations of Supported OSs 

 

 

 Software Architecture 

Figure 5.9 shows the software architecture and the micro clustering architecture of the system. The 

software architecture consists of four layers. From the bottom up, they are the hardware layer, the 

hypervisor layer, the OS layer and the user layer, which includes the main task, the video task and the 

audio task. The multicore hypervisor is on the hypervisor layer, which is a thin software layer inserted 

between the hardware and the OS layer.  

The secure media block and the application block are effectively isolated by a firewall. An 

application program such as a player with a GUI reads the content data and sends it through the secure 

interface. The secure interface which is strongly encrypted is the only pathway between the application 

block and the secure media block. Undetectable malware on the application block cannot tamper with 

the secure block’s status or attack resources on the secure media block. In addition, the multicore 

hypervisor can allocate hardware resources like memory between virtual blocks. Therefore, it provides 

the flexibility to adjust the system to the most suitable combination for an application’s demands.  
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Figure 5.9. Software layer configuration 

 

 

 Secure media block software 

Figure 5.10 illustrates the task structure in the secure media block. The main task of the secure media 

block receives content data and the payment information from the application block which constructs 

the secured VPN (Virtual Private Network) with content servers. 

The main task in the secure media block consists of four major tasks: media task, demux task and 

video decode task, audio decode task. 

The main task invokes the media task and the media task invokes the demux task. The media task 

receives 2KB of content data in one read from the Internet via a task in the application block, and 

decrypts it using the decryptor. The decrypted plain data is sent to the demux task. The demux task 

recognizes the file format and separates data into video data and audio data. The demux task starts the 

video decode task and the audio decode task and sends them the separated data. The video decode task 

sends data to the video decode accelerator. The audio decode task decodes the audio data using the 

AAC decode middleware. All tasks in the secure block run on the T-kernel RTOS that handles time 

scheduling of tasks. 
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Figure 5.10. Task structure in the secure media block 

 

 

 Task mapping 

In our system, one CPU is mapped to the application block and two CPUs are mapped to the secure 

media block. Two RTOSs run in the secure media block. Figure 5.11 shows the task mapping on each 

CPU. In the secure media block, AAC decode task runs on CPU#2. All tasks except AAC decode task 

run on CPU#1. The video data and the audio data are demultiplexed on CPU#1. The video data is sent 

to the video decode accelerator. The audio data is sent to AAC decode task on CPU#2 via inter OS 

communication and is decoded there. Figure 5.12 illustrates the decoding data flow of an encrypted 

MP4 container file, which consists of H.264 video data and AAC audio data. 
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Figure 5.11. Task mapping in the secure media block 

 

Figure 5.12. Data-flow of decoding MP4 container file. 
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Figure 5.13. Implemented evaluation system 

 

 

 Evaluation system 

Based on the component descriptions in Chapter 5.2, Chapter 5.3 and Chapter 5.4, we have 

developed an evaluation system which can decode encrypted high definition video data and audio data 

in real time (Figure 5.13). This secure media system is connected to content servers via the Internet. The 

encrypted contents are distributed via a private Giga bit Ethernet line. 

Figure 5.14 shows the block diagram of the evaluation system. The evaluation system board has the 

SiP, a LAN controller, a USB controller and an LCD controller. The touch screen and the LCD panel 

provide a man-machine interface. The HD video images are displayed via HDMI interface. 
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Figure 5.14. Block diagram of the evaluation system 

 

 Evaluation results 

To analyze the workload of the tasks, we evaluated the 2-CPU version that one CPU was mapped to 

the application block and one CPU was mapped to the secure media block. The 2-CPU version puts 

CPU#2 into suspend mode and all tasks run on CPU#1. The comparisons of the workload of CPU#1 in 

the secure media block when playing a HD MP4 content data are shown in  

 and Figure 5.15.  

The video decode task uses the hardware accelerator to process HD contents. So the execution time 

of the AAC decode task is the longest task in the configuration of 2-CPU version. In the proposed 3-

CPU version, this AAC decode task is assigned to CPU#2 for the load balancing. As a result, the 

execution time of CPU#1 is reduced by 74%. This significantly reduces the overall execution time. 

Figure 5.16 shows the workload ratio of CPU#1 and CPU#2 in the original version. The CPUs at 

270MHz work only 68% of the total processing time. The rest of the time (32%) is idle. 

These results show the following, 
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1. The multicore SoC and accelerators satisfy performance requirements to play streamed 
HD video. 
2. The multicore hypervisor has sufficient secure communication bandwidth between the 
application block and the secure media block. 

 

TASK NAME 2 CPU VERSION 3 CPU VERSION 

Audio Trans task 0.1% 0.1% 
Media task 31.5% 43.4% 
Demux task 1.9% 2.6% 
AACDec task 31.7% 0.7% 
Play task 6.2% 12.7% 
Buffer task 9.7% 14.2% 
Video decode task 12.7% 18.1% 
Audio decode task 1.0% 1.2% 
(Idle) 5.2% 7.0% 

 

Table 5.4 Workload of CPU#1 in Secure Media Block 

 

 

Figure 5.15. Comparison of workload of CPU#1. 
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Figure 5.16. Workload balance. 

 

 

The single-chip multiprocessor is a key solution to obtaining high performance without simply 

increasing the clock frequency. Around 2000, thread-level parallelism (TLP) was introduced and some 

chips with TLP designed for embedded systems [strik00, koyama01, nishi00]. However, those 

multiprocessors were not available for general-purpose use, and their applications were limited. On the 

other hand, some single-chip multiprocessors such as Stanford hydra [hammond00], IBM Power4 

[diefendorff99], with cache coherency protocol, were presented. The processor in Stanford hydra relied 

on invalidation-only coherence protocol and it did not meet the performance requirement. IBM Power4 

employed a multichip module (MCM) package and it was not available for embedded systems because 

of the large power dissipation. Compared to these multiprocessors, a single-chip multicore processor, 

Renesas M32R, with advanced coherent cache, met both low power consumption and high performance 

specification [kaneko03]. Thereafter, embedded single-chip multiprocessors were inspired by this work. 

Renesas added SH architecture for its multicore processor lineup [ito08] and ARM produced MPcore 

supported by NEC Electronics [hirata07].  
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From the viewpoint of software development, SMP-support OSs like Linux was available. This 

multiprocessor was capable of running single-processor applications without modifications. That is a 

key feature of the single-chip multiprocessor. 

A hybrid OS environment on a single-chip multiprocessor was introduced. This environment 

supported both a real-time OS and a general-purpose OS. These two types of OSs operated 

independently on a single-chip multiprocessor to improve performance of interrupt responses and 

application processing [endo04]. A prototype of a multicore hypervisor was already implemented to 

support two OSs.  

Virtualization, it was originally from mainframe and server systems, has been spread to embedded 

systems since around 1990. Virtualization is realized by emulating virtual hardware on physical 

hardware in order to execute several different OSs. There are two types of hypervisor, type1 

[vmwarevsphere, xenserver, hyperv, kvm] and type2 [xen]. Type1 hypervisor is suitable for embedded 

systems because type1 is a special OS that executes directly on physical hardware and provides better 

performance and a smaller code size. Thereafter, multicore hypervisor was begun to adopt to security 

[kondo09]. Multicore hypervisor for security is now commercialized [mentoreh]. 

 

 

A secure multimedia system for high-definition multimedia applications using a multicore SoC with 

SiP and software system virtualization has been developed. The evaluation board can decode encrypted 

high definition video data and audio data in real time and go directly to HDTV. Therefore, no plain 

content data can exit from the secure media block. This is an important feature of secure media systems. 

To achieve a secure multimedia system, the multicore hypervisor virtualizes hardware resources and 

prohibits operating systems and applications from accessing hardware resources directly. The security 

of the system is the result of the cooperation between the hardware and software. The proposed system 

provides a solution to protect contents and to safely deliver secure sensitive information when 

processing billing in digital content delivery.  
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Conclusions 
 

IoT has become inevitable for the infrastructures of our societies.  

We proposed a compact, low power processor core and its multicore approach to realize four key 

technologies for IoT: network technology to link one device another, technology to control sensors, 

motors and other devices, and low power consumption technology to raise energy efficiency and 

security technology. 

In summary, the main contributions of this dissertation are; 

•  RX processor core which is suitable for IoT were introduced. The RX processor instruction set 
architecture and its microarchitecture can achieve lower power consumption and boost 
performance.  

•  Eight-core communication SoC with PCI Express interface were presented. The multicore SoC 
can realize a high performance, power-aware, highly dependable network.  

•  A secure multimedia system by using heterogeneous multicore SoC and software virtualization 
were presented. 

 

 

Even though we have made significant outcomes of efficient microprocessors for IoT, there are lots 

of works to be done in this research area. The following are some of the key research items based on the 

conclusion of this thesis: 

•  Improved real-time performance of microcontrollers: Downsizing systems is a big trend of our 
society. From embedded systems’ point of view, microcontrollers need to meet the demand of 
larger systems. Even though, multicore approach is one of the solutions, quick response in large-
scale systems is a problem incapable of solution. It is necessary to explore hardware accelerations 
of context switch or processing of an operating system.  
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•  Efficient hardware modules for MBD (Model Based Development): MBD began to spread in 
developing large-scale systems. It is interesting to explore how efficiently divide system functions 
described in MBD into software and hardware. It is also interesting to explore appropriate and 
efficient hardware modules used in this method. 
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