
博 士 論 文
Low power processor architecture and
multicore approach for embedded systems
組込み用途向け低消費電力プロセッサ・ア

ーキテクチャとマルチコア研究

金沢大学自然科学研究科

電子情報科学専攻

学籍番号（1323112001）

氏 名 大谷 寿賀子

主任指導教員名 新居 浩二

提出年月 ‘15/10/28

1

Contents
Contents ... 1

List of Figures .. 6

List of Tables ... 9

Acknowledgements .. 11

Chapter 1 .. 13

Introduction .. 13

Chapter 2 .. 17

Applications and System Trends ... 17

2.1 Four Key Technologies that support IoT .. 17

2.2 Research Goals ... 19

Chapter 3 .. 21

Low-Power MCU Processor Architecture ... 21

3.1 Microcontroller Basic Strcture .. 21

3.2 Basic Design Approach for Energy Saving .. 22

3.3 Introduction to Low-Power Architecture .. 24

3.4 Core features to boost performance .. 27

 RX Architecture Overview.. 27

 RXv2 Pipeline Design ... 27

 Pipeline integrated FPU .. 28

 DSP with wide accumulators .. 29

2

3.5 Energy saving architecture .. 31

 Embedded memory system architecture ... 31

 Improving instruction fetch effectiveness ... 31

 AFU: Advanced Fetch Unit... 32

 Processor performance and power consumption ... 34

 Core features to make code compact ... 37

3.6 RX instruction set architecture ... 37

 Overview of Instruction set ... 37

 Optimized op codes leads to superior code density .. 38

 Data Transfer instruction ... 40

 1byte conditional branch instruction ... 44

 Compare instruction .. 45

 3-operand instruction .. 47

 Registers .. 48

 Code size evaluation ... 51

3.7 Related Works... 52

3.8 Summary ... 54

3.9 List of RX instruction Set ... 56

 Arithmetic and logical instructions ... 56

 Floating-point operation instructions .. 57

 Data Transfer instructions ... 58

 Branch Instructions ... 59

 Bit manipulation instructions .. 60

3

 String manipulation instructions ... 60

 System control instructions ... 61

 DSP function instructions.. 62

Chapter 4 .. 63

PEACH: A Multicore Communication SoC with PCI Express I/F ... 63

4.1 Introduction ... 63

4.2 PEACH Architecture .. 65

 PEACH overview .. 65

 Chip Architecture .. 67

 PCI Express interface with up-configuration function .. 69

 PCI Express up-configuration function ... 71

 Intelligent Interrupt Controller .. 73

4.3 Network Managing ... 74

 Data Flow Control ... 74

 PEARL network route construction .. 78

 Network system power management .. 78

4.4 Evaluation System .. 78

 PEARL system board .. 78

 Switching time of PCI Express up-configuration function ... 81

4.5 Related Works... 81

4.6 Summary ... 82

Chapter 5 .. 83

4

A Heterogeneous Multicore SoC for Secure Multimedia Applications ... 83

5.1 Introduction ... 83

5.2 Secure Media System .. 84

 Concept of the secure media system ... 84

 SoC Overview ... 87

 Physical Integration of the SoC and the SiP ... 89

 Protection by Software .. 90

5.3 Multicore Hypervisor .. 91

 Micro Clustering Model .. 91

 Functions of the multicore hypervisor .. 92

 Startup sequence .. 93

 Inter-OS Communication .. 94

 Interrupt handling .. 94

 Hypervisor Operating System ... 95

5.4 System Software ... 96

 Software Architecture ... 96

 Secure media block software... 97

 Task mapping .. 98

5.5 System Evaluation .. 100

 Evaluation system ... 100

 Evaluation results .. 101

5.6 Related Works... 103

5.7 Summary ... 104

5

Chapter 6 .. 105

Conclusions .. 105

6.1 Future work ... 105

References .. 107

Publications .. 112

6

List of Figures
Figure 1.1 Thesis outline .. 14

Figure 2.1 Four key technologies that support IoT ... 18

Figure 3.1 MCU (Microcontroller) Basic Structure ... 21

Figure 3.2 Intermittent operations for reduction in power consumption 22

Figure 3.3 Power break down of a microcontroller .. 23

Figure 3.4 RXv2 CPU block diagram. .. 25

Figure 3.5 Overview of RXv2 CPU core .. 25

Figure 3.6 RX core road map .. 26

Figure 3.7 Benchmark Comparison .. 26

Figure 3.8 RXv2 pipeline structure ... 28

Figure 3.9 The Coprocessor-type FPU and the pipeline integrated-type FPU (proposed) 28

Figure 3.10 RX DSP functionality .. 30

Figure 3.11 MCU: High-Capacity Internal Flash ... 32

Figure 3.12 Fetch Unit for Microcontroller with Advanced Fetch Unit 33

Figure 3.13 Embedded Flash processing performance ... 33

Figure 3.14 Benchmark Results of DSP Algorithm programs such as FFT, IIR filter and Matrix

under zero-wait flash memory access. ... 35

Figure 3.15 Performance Comparison of RXv2 with RXv1 and a RISC processor 36

Figure 3.16 RX instruction set architecture .. 38

Figure 3.17 Analysis of Instruction Frequency ... 39

Figure 3.18 Byte assignment of RX Instruction format .. 39

Figure 3.19 Analysis of general-purpose register configuration ... 49

7

Figure 3.20 Register Set of the CPU ... 50

Figure 3.21 Code size analysis of the RX and a RISC-based MCU: Static Code Size (a) and

Dynamic Code (b). ... 51

Figure 3.22 The test chip of the microcontroller with the RXv2 processor 54

Figure 4.1 The communication link, PEARL. .. 64

Figure 4.2 Neighbor communication on PEARL. .. 66

Figure 4.3 PEACH block diagram. ... 67

Figure 4.4 PEACH micrograph. ... 68

Figure 4.5 PCI Express up-configuration function by software control. (a) Maximum data

transfer rate (b) Low power consumption. ... 71

Figure 4.6 Power Consumption of PCI Express PHY (W) at each requested transfer volume. . 72

Figure 4.7 Block Diagram of Intelligent ICU ... 74

Figure 4.8 Efficient packet processing and fault handling in PEACH. 75

Figure 4.9 Two data transmission flows: Processor mode using interrupt services 76

Figure 4.10 The intelligent ICU’s fast automatic data-transfer function improves transfer latency.

 77

Figure 4.11 Prototype of PEARL network system. .. 80

Figure 5.1 Implemented secure media system board .. 84

Figure 5.2 Concept of the secure media system. .. 86

Figure 5.3 Block diagram of the SoC ... 86

Figure 5.4 Micrograph of SoC and SiP. .. 89

Figure 5.5 Protection by software ... 90

Figure 5.6 Multicore hypervisor and micro clustering model. ... 92

8

Figure 5.7. Startup sequence. ... 93

Figure 5.8. Interrupt operation. .. 95

Figure 5.9. Software layer configuration ... 97

Figure 5.10. Task structure in the secure media block .. 98

Figure 5.11. Task mapping in the secure media block .. 99

Figure 5.12. Data-flow of decoding MP4 container file. ... 99

Figure 5.13. Implemented evaluation system .. 100

Figure 5.14. Block diagram of the evaluation system ... 101

Figure 5.15. Comparison of workload of CPU#1. ... 102

Figure 5.16. Workload balance. .. 103

9

List of Tables
Table 3.1 Design Highlights of a Low Power CPU .. 23

Table 4.1 PEACH Chip Features .. 70

Table 4.2 Comparison of Power Efficiency .. 70

Table 4.3 Power Consumption of PCI Express PHY (Normalized) ... 72

Table 4.4 PCI Express up-configuration function-switching time. ... 81

Table 5.1 Functional features of the SoC .. 88

Table 5.2 Physical features of SoC and sip ... 88

Table 5.3 Combinations of Supported OSs ... 96

Table 5.4 Workload of CPU#1 in Secure Media Block .. 102

10

11

Acknowledgements
Research in microprocessor architecture requires a team effort. During my research, I was fortunate

to work with great people who influenced the direction and the quality of my work.

First, I would like to thank Koji Nii, my thesis advisor, for his overall guidance and support.

I am especially grateful to Yoshio Matsuda, my thesis advisor, and Toru Shimizu, my former thesis

advisor now at Keio University, for providing me with the opportunity to study as a doctoral student

and for their encouragement.

I am especially grateful to Hiroyuki Kondo, a chief processor architect at Renesas Electronics

Corporation, for mentoring me. He helped me develop a passion for research and encouraged me to

pursue developing microprocessor architecture. Our numerous discussions had a strong influence on my

research.

I also want to thank following people: Kunle Olukotun at Stanford University. His guidance

motivated me to cultivate multicore processor architecture. Kazutami Arimoto, at Okayama Prefecture

University, Taisuke Boku at Tsukuba University, Toshihiro Hanawa at Tsukuba University and

Christoforos Kozyrakis at Stanford University. They gave me valuable advice for my researches and

papers. Kazuya Ishida, Isao Kotera and Naoshi Ishikawa, my colleagues at Renesas Electronics

Corporation with whom I have been working together for more than ten years. Without their persistence

and selflessness, our progress would not have been possible.

No acknowledgments page would be complete without thanking Ellen Higuchi for wrestling with my

technical papers and giving plausible English expressions.

Finally, I want to thank my parents, Shigeki and Sueko Otani, my brother Hiroyuki Otani, for their

love and unwavering support.

The PEACH project was supported by a JST/CREST program entitled “Computation Platform for

Power-aware and Reliable Embedded Parallel Processing Systems”.

12

The TRON-SMP project was partially funded by the New Energy and Industrial Technology

Development Organization (NEDO), via Grant #0628002.

13

Introduction
“IoT” or “Internet of things” formerly known as “ubiquitous computing” has been absolutely

essential to our society and its infrastructures. Devices are linked to networks from anywhere in the

world and will be mutually controlled while information is being exchanged. A microcontroller is one

of the important elements of IoT. The microcontroller designers are strongly urged to achieve both high

performance computation and low power consumption, which is a hybrid technology with powerfulness

of computing and friendliness to the environment. Furthermore, while network services are gaining

popularity, dependability and security of network are more important. A key solution to meet these

demands is a compact and low power processor core and multicore technology.

This thesis focuses on the development of efficient microcontroller architecture for IoT. The basis for

the argument is the key of a low power processor architecture is how effective handle on chip

memories. Furthermore, collaboration of software and hardware on multicore architecture can provide

dependable and secure networks.

Thesis Contributions

The main contributions of this dissertation are:

• An RX processor core which is suitable for IoT. The RX processor Instruction set architecture
(ISA) and its microarchitecture can achieve lower power consumption and boost performance.

• An eight-core communication SoC with PCI Express interface. The multicore SoC can realize
a high-performance, power-aware, highly dependable network.

• A secure multimedia system that uses heterogeneous multicore SoC and software
virtualization.

14

Figure 1.1 Thesis outline

The outline of the remainder of this thesis is as follows (Figure 1.1).

Chapter 2 provides the background and motivation for this work. It discusses the characteristics and

requirements of IoT by presenting four key IoT technologies.

Chapter 3 introduces RX processor core with a low-power processor architecture. The RX processor

instruction set architecture (ISA) and its microarchitecture can achieve lower power consumption and

boost performance. RXv2 reaches 4.5 Coremark per MHz and the RXv2 processor delivers

approximately more than 2.2 – 5.7x the power efficiency of the previous work. The RXv2 processor

delivers 1.9 – 3.7x the cycle performance of previous work in digital signal applications. This chapter is

from [S. Otani and H. Kondo, “RX v2: Renesas’s New-Generation MCU Processor,” IEICE

Transactions, Vol. E98-C, No. 7, pp. 544-549, Jul. 2015, (copyright ©2015 IEICE).]

Chapter 4 presents an eight-core communication SoC with PCI Express interface. PEACH with four

PCI Express ports realizes high-performance communication of 4 x 20Gbps and power efficiency of

0.04W/Gbps. The power efficiency of InfiniBand 4X (Commodity network devices) is 0.083W/Gbps.

Thus, PEACH provides 51.5% better power efficiency than InfiniBand 4X. We also evaluate the

PEARL network system and demonstrate its fault-tolerant ability. This chapter is from [S. Otani, H.

Kondo, I. Nonomura, T. Hanawa, S. Miura and T. Boku, “Peach: A Multicore Communication System

[Chapter2] Background and Motivation

2.2 Four key technologies that supports IoT

3: Network Technology

1: Technology to control sensors,
motors and other devices

2: Low Power technology

4: Security technology

2.1 Applications and System Trends

[Chapter 4] A Multicore Communication SoC
with PCI Express I/F

[Chapter 5] A Heterogeneous Multicore SoC
for Secure Multimedia Applications

[Chapter 3] A Low Power MCU Processor Architecture

[Chapter 6] Conclusions and Future work

• Atomic operation of payment and viewing
• Multicore SoC and SiP for faster communication and decryption
• Hardware / software virtualization for strong security

• Energy saving architecture
• Instruction set
• Processor microarchitecture
• Instruction memory fetch mechanism

• High-performance internode communication by using PCI Express
• Network managing by multicore

for high-dependable and power-aware system

15

on Chip with PCI Express,” IEEE Micro, vol. 31, no. 6, pp. 39-50, Nov.-Dec. 2011, copyright ©2011

IEEE).]

Chapter 5 demonstrates a secure multimedia system by using a heterogeneous multicore SoC with SiP

and software virtualization. The multicore hypervisor virtualizes hardware resources and prohibits

operating systems and applications from accessing hardware resources directly. This chapter is from [H.

Kondo, O. Yamamoto, S. Otani, N. Sugai, and T. Shimizu, “Software architecture of a secure

multimedia system using a multicore SoC and software virtualization,” in IEEE Int. Conf. Consumer

Electronics, Dig. Tech. Papers, pp. 1-2, Jan. 2009, (copyright ©2009 IEEE)]

Finally, Chapter 6 concludes the thesis and suggests directions for future work.

17

Applications and System Trends
The IoT, or Internet of Things, has become popular. Giving intelligence to devices and connecting

them together creates new value.

With the diffusion of IoT, devices operate independently and work autonomously. If IoT is

employed, devices can be linked via networks, working autonomously to provide a pleasant

environment for people working in the office, in the city, at home and in the factory.

IoT is experiencing rapid evolution. In 2020, the year of the Tokyo Olympics, 50 billion devices will

be connected to a network. A trillion sensors will be connected to a network [bryzek14]. An era is about

to begin in which everything is linked to huge networks.

There are four key technologies that support IoT, 1) network technology to link one device to

another, 2) technology to control sensors, motors and other devices, 3) low power consumption

technology to raise energy efficiency and 4) security technology (Figure 2.1).

The shift of centralized control and operating systems will accelerate toward distributed systems, and

network servers are no exception. Highly dependable network technology is vital to connect downsized

servers in various locations.

18

Figure 2.1 Four key technologies that support IoT

The technology to control sensors and security technology to ensure the solid protection of

information are particularly important. For example, recent advances in infrastructure technology

include construction monitoring, which has been installed in bridges, tunnels, and roads. The number of

installations of network cameras to monitor the environment will be five times larger than in 2006.

These monitors can be controlled over the network. But if the systems are hacked, severe incidents and

panic ensue. Security technologies can protect society against these risks. IoT is offering comfort and

convenience, but with security concerns.

With an increase in the number of devices on networks, power consumption becomes a major issue.

Sensing modules must always be active to collect information and be long-lived in infrastructures.

Centralized control for energy saving via networks is evolving. One of effective way to reduce

energy saving is to adopt inverter technologies. The inverter adoption ratio is not high in developing

countries. Even in air conditioners which use the largest amount of power, only 50% utilize inverter

technology in the world. A 10% increase in world inverter adoption would reduce the number of

thermal power plants by 430. There are two reasons that inverter technology has not spread: to avoid

SensorsSensors
Wirel
ess

Wired
Sensors

Microcontroller

A/D
Converter

Data
Analysis

Arithmetic
Control

Wirel
ess
RF

Sensing Module with Microcontrollers

1.Technology to control sensors,
motors and other devices

4. Low Power technology

2. Network technology

3. Security technology

Cloud Computing

19

difficulty of system design and to meet lower cost requirement by using sensor-less motors. MCU can

solve these problem

In IoT applications, it is vital to consider how to link applications and microcontrollers and how to

communicate for people with electronics devices.

Given the applications and systems requirements, we consider four key technologies for an efficient

microcontroller architecture for IoT systems:

• Network technology

• Security technology

• Technology to control sensors, motors and other devices

• Low-power technology

The above features of the architecture and microarchitecture techniques are presented in the

following chapters.

21

Low-Power MCU Processor
Architecture

MCUs (microcontrollers), which control electric devices, consist of CPUs, memories and peripheral

interfaces. Figure 3.1 shows the basic structure of MCUs. The CPU reads instructions, decodes and

executes arithmetic operations and read/write data. Memories store program code and data. Peripheral

interfaces connect the CPU and I/O devices. There are two types of memories. Flash memory is a ROM

(Read Only Memory) which mainly stores instructions and retains data even if power is turned off.

SRAM is a RAM (Random Access Memory) which stores data. This working memory loses data if

power is turned off. The feature that most distinguishes MCU from MPU (microprocessor units) is

integration of the memory system. This feature contributes to low power consumption by eliminating

wiring between external memories and a chip.

Figure 3.1 MCU (Microcontroller) Basic Structure

Output
Devices
Motors,
LEDs
etc

Input
devices
Sensors,
Switches

etc

Microcontroller

Processing

Input Output

CPU
reads,

decodes and
executes

instructions

Memories
store

instructions
and data

Peripherals
connect

devices to CPU

Flash
(ROM)

SRAM
(RAM)

22

The basic strategy of reducing power consumption is to lower the operating current and shorten the

operating time. Figure 3.2 shows the difference in power consumption of a low-power microcontroller

with another microcontroller. The blue bar represents an energy-saving microcontroller with lower

operating current and higher performance. The low-power microcontroller completed the same task in

much less time, which also enables it to stay in low-power sleep mode longer. This intermittent

operations strategy of low-power microcontrollers enables batteries to last a long time.

Figure 3.2 Intermittent operations for reduction in power consumption

Design highlights of a low-power processor architecture are shown in Table 3.1. Three rows are CPU

design highlights; instruction set architecture, processor microarchitecture and memory access

mechanism. The check marks indicate the particular design meets the particular requirement.

Current

Operation Sleep Operation Sleep
Time

higher performance

Lower operating current

Lower sleep current

CPU Requirements

23

All three items are vital to achieve high performance. Instruction set architecture and memory access

mechanisms contribute to low operating current.

Table 3.1 Design Highlights of a Low Power CPU

MCUs (microcontroller units) with on-chip memory systems substantially reduce energy

consumption compared to MPUs (microprocessor units) with off-chip memory systems because of the

wiring capacity between external memories and the chip. However, the low-power requirement of the

embedded applications is more and more strict. The power breakdown of a microcontroller is shown in

Figure 3.3. A substantial portion of chip power comes from internal Flash memory. Therefore, reducing

Flash memory directly affects the reduction of power consumption of the whole microcontroller.

Considering microcontroller structure, the greater part of the Flash accesses comes from instruction

fetches.

Figure 3.3 Power break down of a microcontroller

Requirement High
Performance

Low
Operating
Current

D
es

ig
n

H
ig

hl
ig

ht
s

Instruction Set ✔ ✔

Micro-Architecture
(Hardware Structure)

✔

Memory Access
Mechanism

✔ ✔

FLASH
44%

SRAM
8%

CLOCK
13%

Others
(CPU, BUS)

35%

24

Application fields of microcontrollers have spread to building automation, medical devices, motor

control, e-metering, and home appliances. The demand for such highly intelligent systems has

increased. To meet the demand, the scale and complexity of software has begun to rise. The rapid

growth of memory capacity and the advance of microcontroller functions have led to the higher

frequency and higher processing performance of embedded processors. Furthermore, many embedded

systems still have high cost, power consumption, and space constraints. In order to meet users’ demands

for these requirements, new RX processor core (RXv2) architecture has been developed. [otani13].

It is vital for MCUs to handle floating point computation requirements to meet the recent demand for

industrial applications. However, the cost of adding an FPU unit to existing MCUs would have been

extremely high. The RX includes a compact single precision FPU as a part of the MCU’s basic

configuration [linley10], [mips13].

The FPU/DSP functions of the new RXv2 have been enhanced. The RXv2 processor block diagram

is shown Figure 3.4. The core has integer, divide, multiply-accumulate and floating point units with

sixteen 32bit general purpose registers. Key differences from the previous processor, RXv1, are an

improved dual-issue pipeline structure, DSP extensions and a pipelined FPU. The overview of RXv2

specification shows in Figure 3.5.

The RXv2 processor core also incorporates AFU to reduce pipeline branch penalties and Flash

memory accesses. The improved power efficiency of the RXv2 architecture with our benchmark

evaluation will be discussed in Section 3.5.

Program code is, of course, often the largest consumer of memory in control-intensive applications,

affecting both system cost and size. Also, instruction fetches are responsible for a significant portion of

power and memory bandwidth. Therefore, both static and dynamic code size are key factors in

embedded systems. RX family instruction set architecture uses variable-length instructions to minimize

the static and dynamic code size.

These features have the benefit of boosting performance and making code compact. Figure 3.6 shows

RXv2 CPU core roadmap. RX has two generations, RXv1 and RXv2. Figure 3.7 shows performance

comparison to other embedded processors. RX reaches 4.5 Coremark/MHz on an integer benchmark for

embedded systems.

25

Figure 3.4 RXv2 CPU block diagram.

Figure 3.5 Overview of RXv2 CPU core

RXv2 CPU
4.5 Coremark/MHz

Dual Issue Core
5-stage pipeline

On-chip
Debug

Memory
Protection Unit

Integer

Advanced
Fetch
Unit

Register Set
General
Purpose
Registers
16x32-bit

Accumulators
2x72-bit

Control
Registers
10x32-bit

Divide

Memory
Management

Unit

Improved at RXv2

Digital Signal Processing

Floating Point
MAC

Item Specification

Architecture 32bit CISC

General purpose registers 32bit x 16ch

Instructions 109 instructions
Superset of RXv1 (19 new instructions)

Pipeline 5 stage, Dual Issue

DSP function 1-cycle MAC instruction (32bit x 32bit +72bit)
Two Accumulators

FPU (Single Precision) IEEE754 compliant data type and exceptions
Pipeline processing

Target operating Freq. Up to 240MHz

Memory Protection Unit Supported

Performance (Coremark) 4.5 Coremark/MHz

26

Figure 3.6 RX core road map

Figure 3.7 Benchmark Comparison

RXv1

Performance

Compact

PEACH
(Multiprocessor)

RXv2 Multicore

Higher Frequency
Higher Performance

4.5 Coremark/MHz

3.0
Coremark/MHz

27

 RX Architecture Overview

In the past, modern MCUs have added DSP capabilities to create Digital Signal Controllers. Each of

these MCUs has limited DSP performance and limited applications. Floating-point math has become

essential in various applications such as motor control, factory automation and industrial office

automation. However these applications require floating-point math to realize real-time operations.

Adding a DSP/FPU is a logical step to offload compute-intensive work from MCUs. The RX CPU core

has been a pioneer in the convergence of MCU and DSP/FPU in the 100MHz midrange market. Both an

integrated floating-point unit (FPU) and digital signal processing (DSP) hardware enable the RX to

have superior math capabilities.

 RXv2 Pipeline Design

The first generation of RX CPU (RXv1) makes use of a single-issue, five-stage pipeline structure.

RXv2 also has the same five-stage pipeline, but a dual-issue core can increase the throughput of IPC

(instructions per cycle) [mips13], [burgess94], [sugure04]. Merely expanding the instruction set

architecture (ISA) is not enough to boost the performance of digital signal applications. High data

supply capability is crucial. Figure 3.8 shows RXv2 pipeline structure. The RXv2 executes FPU/DSP

instructions and memory accesses simultaneously for high data supply. RXv2 supports a dual-issue

integer, float and load/store pipeline. Additionally, the RXv2 can execute various pairs of instructions

simultaneously, so instructions per cycle (IPC) are dramatically improved from the RX.

28

Figure 3.8 RXv2 pipeline structure

Figure 3.9 The Coprocessor-type FPU and the pipeline integrated-type FPU (proposed)

 Pipeline integrated FPU

The most distinguishing feature of RX processors is a pipeline integrated FPU. Most MCUs have a

coprocessor-type FPU, which adds inefficient FPU-dedicated registers to load and store results of

operations. The pipeline integrated-type FPU used in RX processors can access general purpose

Instruction
Fetch

Float
Write Back

Memory Access

IF D E WB

Load/Store

MAC

ALU, Jump

Float
M

Divide

ALU, Jump

String F

Decode
[Dual Issue]

General
Purpose
Registers

FPU

Coprocessor-type FPU

Load/Store

FPU

General
Purpose
Registers

Dedicated
FPU
Registers

Pipeline Integrated FPU
Reduce
Data Transfer
Overhead

29

registers, which reduces data transfer overhead between the FPU registers and general purpose registers

(Figure 3.9). This design can also reduce the area of the CPU core by sharing general purpose registers.

The RXv2 FPU has new instructions (SQRT, Float/Integer conversion). Furthermore, the RXv2 FPU

instructions employ a three-operand format of FPU instructions to further reduce intermediate variable

and waste of register assign.

The new FPU unit adopts pipeline processing to boost throughput and shortens the latency of FPU

executions (FADD/FSUB 4cycles -> 2cycles, FMUL 3cycles -> 2cycles). The RXv2 processor

performs most operations in one to three cycles and in single-cycle throughput. Adding the three-

operand format and speeding up multiply-accumulate operations boost fast Fourier transform (FFT) and

Infinite impulse response (IIR) filter performance.

FPU instructions are widely used in various applications and algorithms to achieve a high degree of

numeric stability and dynamic range. We expect this upward trend of FPU use in embedded systems

and even move into lower-range architectures.

 DSP with wide accumulators

One strength of RX DSP architecture is the use of wide accumulators which allows DSP function

operations to store their results in a much larger space separated from general purpose registers (Figure

3.10). The MACLO MACHI instructions multiply the 16 bits of a register by the 16 bits of another

register, and add the result to the value in the accumulator. At the end of the series of multiply-

accumulate operations, the RACW (Round the accumulator word) instruction rounds and saturates the

value of the accumulator into 16bit. The packed 16bit data format of the DSP function operation

reduces the number of data memory accesses, which improves digital signal processing performance

and decreases power consumption derived from memory accesses.

RXv2 increases the number of accumulators from one to two. The accumulators have been widened

from 48 bits to 72 bits. Using two accumulators boosts the performance of fixed-point DSP algorithms.

For example, FIR has parallelism in that each computation result of two series of operations (coefficient

* data) is stored in each accumulator, which reduces the number of data transfers from memory. The

RXv2 DSP function instructions can handle 32bit and 16bit fixed point multiply and multiply-

accumulate operations in a single cycle.

30

Figure 3.10 RX DSP functionality

In direct contrast to the pipeline-integrated FPU approach, the RX DSP function adopts dedicated

accumulators, not general purpose registers to hold calculation results. In DSP algorithms, at the end of

the series of data load and multiply accumulate operations, results are referenced. This DSP architecture

is assembler-friendly and DSP library programmers can easily tune their programs because of the

dedicated accumulators. Register resource shortage is a severe problem for typical MCUs because they

have only sixteen general registers. Dedicate accumulators used in RX also solve this problem.

For example, when we execute 32bx32b->64b, four 32-bit registers (two source registers, two

destination registers) must be used. To free general registers for other computation, the RXv2 has an

EMULA, EMACA, EMSBA (32bx32b->ACC, ACC±32bx32b=ACC) instruction that stores 64-bit

results in the accumulators. These instructions uses only two general registers instead of four registers.

As we mentioned before, the dual-issue pipeline exploits parallelisms in DSP operations and memory

accesses, which can make full use of DSP computation ability by feeding enough data from memories.

Of course some applications such as VoIP will require a dedicated DSP chip. But many sensor, speech

and audio applications can be implemented by MCUs with RXv2.

RACW
Accumulator Accumulator

16bit

Saturate Round Sign extension

+MACLO X16bit

Register

16bit

Register Accumulator Accumulator

X +MACHI 16bit 16bit 72bit

72bit

72bit

72bit

General
Purpose
Registers

MAC

MAC Instructions

Free
General Purpose
Registers

General
Purpose
Registers

MAC

72bit ACC0
72bit ACC1

MAC with wide-accumulators

Shift
Round
Clip

31

 Embedded memory system architecture

As described in Section 3.2, Flash memory consumes a substantial portion of power in the

microcontroller. Program code is located in flash memory, so the key strategy for low operating current

is to reduce instruction memory accesses.

To reduce instruction memory accesses, a cache system is inevitable in today’s embedded

microcontrollers. Even though a top-priority issue is energy saving, it is absurd to sacrifice no-wait

internal Flash memory performance by using a cache system. Reducing the power consumption of

internal memories can be achieved by replacing a portion of large memories with large power

consumption with memories with smaller power consumption.

 Improving instruction fetch effectiveness

The importance of the memory hierarchy has increased with advances in the performance of

processors. An embedded microcontroller has high-capacity embedded Flash memory, which is equal to

the performance in 100% hit cache (Figure 3.11). However, when slower Flash is used, wait-states are

required because the CPU operates faster than the native speed of the Flash memory, causing the CPU

to stall, which degrades overall performance.

A typical approach is to add an instruction cache between the CPU decoder and the Flash memory.

There are two reasons to add an instruction cache. First, we need to mitigate a processor-memory speed

gap to feed the CPU enough instructions. Second, we also need to reduce flash memory accesses to

lower the power consumption. A large fraction of the total power budget of the microcontroller is the

energy consumption in the path from the FLASH memory to the CPU. Therefore, decreasing the

number of flash memory accesses is crucial in reducing power consumption. The two pillars of RXv2’s

low power consumption are to adopt AFU and variable length ISA. First, variable length ISA delivers

small dynamic code size (described in detail in Core features to make code compact), which can reduce

instruction memory bandwidth. Next, if the requested instruction is contained in AFU, this request can

be handled by simply reading AFU.

32

Figure 3.11 MCU: High-Capacity Internal Flash

 AFU: Advanced Fetch Unit

AFU was added between the CPU decoder and the Flash memory (Figure 3.12). A new branch target

cache [bray91] in AFU collaborates with instruction queue (IQ).

Several performance-cost trade-offs were considered in order to determine AFU structure. The RX

utilizes our company’s industry-leading 40nm flash technology which enables 120MHz operation with

zero-wait states (Figure 3.13). Fetch latency from the Flash memory to CPU decoder directly is one

cycle. Therefore, RXv2 can avoid instruction pre-fetch performance degradation. This small processor-

memory speed gap allows us to concentrate on mitigating the branch penalty to improve performance.

RXv2 benefits from adopting a branch target cache, which has a comparatively smaller area than that of

a typical cache systems.

CPU
Decode

External
Memory

IQ
Select

Processor

Cache

Embedded Microcontroller

CPU
Decode

IQ

Select

Embedded Flash
= 100% Hit Cache

No-wait

33

Figure 3.12 Fetch Unit for Microcontroller with Advanced Fetch Unit

Figure 3.13 Embedded Flash processing performance

D-stageIF-stage

Decoder
IQ

Select

Typical
Approach

Embedded
Flash

Inst.
Cache

RXv2
Embedded

Flash

AFU

DecoderIQ
SelectBranch

Target
Cache

No-wait

• Industry’s only 120MHz embedded Flash process

DIF E WB

DIF E WB

IF

DIF E WB

DIF E WB

IF

DIF E WB

DIF E WB

IF

RX with
120MHz Flash
No-wait Flash

120MHz

Competing MCU
with 30MHz Flash

34

AFU consists of an IQ and a small fully-associative branch target cache with LRU replace algorithm.

AFU has the following functions:

- storing branch target code (branch target cache）

- detering unused prefetching (instruction queue reuse in small loops, prefetch stop when JUMP

instruction is detected.)

-replacing a cache line under dynamic priority control (8-entry LRU, Adaptive lock etc.)

AFU and zero-wait embedded Flash can reduce power consumption and improve performance

because AFU reduces memory accesses and zero-wait Flash memory does not deliver cache miss

penalty. AFU makes instruction buffering decisions on the fly based on an analysis of program flow.

When a short loop code is detected, AFU can reuse fetched instructions in IQ and the branch target

cache. IQ is locked to protect codes in the loop. This short-loop buffering reduces both branch penalties

and eliminates flash memory accesses at a lower cost than that of a typical approach such as a loop-

cache which stores the whole loop code.

Another efficient utilization of fetched data from memory is “fast short forward branch”. The CPU

core sends the distance to the branch target. If IQ finds the target code in IQ, CPU fetches codes from

IQ without a pipeline flash and memory accesses. This technique improves if-then-else control flow in

cycle performance and power dissipation.

AFU of RXv2 improves its processing performance by 6% in Coremark [halfhill09] with zero-wait

Flash memory.

 Processor performance and power consumption

Differences in performance appear when benchmarking DSP programs that include numeric

operation function such as filter programs. Figure 3.14 illustrates that the DSP of RXv2 has contributed

mainly to performance improvements compared to RXv1 when executing FFT, IIR and Matrix under

16bit fixed point, 32bit fixed point and float conditions. The RXv2 processor delivers 1.9 – 3.7 the cycle

performance of the RXv1. As a result, the RXv2 provides 1.5 – 3.4 the cycle performance of a RISC-

35

based processor. RXv2 achieves performance as high as commonly used DSP and improves far more as

a DSP microcontroller.

Figure 3.14 Benchmark Results of DSP Algorithm programs such as FFT, IIR filter and Matrix

under zero-wait flash memory access.

Breakdown of the RXv2 performance enhancement from the RXv1 (a), Performance comparison to a

RISC-based processor (Cortex-M4) (b).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

64p complex-FFT(ci16) 64p complex-FFT(ci32) 128p real-FFT(cf32) IIR Biquad(ci16) IIR Biquad(ci32) Matrix Multiply(ci16) Matrix Multiply(i32)

FFT IIR filter Matrix

ISA RXv1 :H/W RXv1 ISA RXv1 :H/W RXv2 (AFU off) ISA RXv1 :H/W RXv2 (AFU on) ISA RXv2 :H/W RXv2 (AFU on)

Floating
Point

(a)

Processing Time in Cycles (RXv1=1: Normalized)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

64-p comple FFT(ci16)64-p comple FFT(ci32) 128-p real FFT(cf32) IIR Biquad(ci16) IIR Biquad(ci32) Matrix Multiply(ci16) Matrix Multiply(i32)

FFT IIR Matrix

RISC-A RXv2

Floating
Point

(b)

Processing Time in Cycles (RISC-A=1: Normalized)

36

Figure 3.15 Performance Comparison of RXv2 with RXv1 and a RISC processor

We evaluated the performance and power dissipation of the RXv2 device (120MHz) in a simulation

with gate-level power analysis using actual loading. RXv2 reaches 4.5 Coremark per MHz. RXv2

achieved a 50% - 150% improvement in various performance categories compared to existing products.

The result is performance that outperforms the competing RISC microcontrollers. Figure 3.15 illustrates

the performance advantage of the RXv2 device compared to the RX device. The RXv2 processor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RISC RXv1 RXv2
0.0

0.5

1.0

1.5

2.0

RISC RXv1 RXv2
0.0

0.5

1.0

1.5

2.0

2.5

RISC RXv1 RXv2

Operating Current Processing
Performance Power Efficiency

(RXv1=1:Normalized)

[mA] [Coremark] [Coremark/mA]

(a) Coremark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RXv1 RXv2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

RXv1 RXv2
0.0

1.0

2.0

3.0

4.0

5.0

6.0

RXv1 RXv2

Operating Current Processing
Performance

(RXv1=1:Normalized)

[mA] [Performance] [Performance/mA]

(b) Small loop program

Power Efficiency

Frequency RISC/SH2A (120MHz), RXv1 (100MHz), RXv2 (120MHz)

Process, Voltage Under 40nm process, 1.2 V (internal)

Modules CPU Subsystem (CPU + Internal Bus + SRAM + Flash)

37

delivers approximately more than 2.2 – 5.7x the power efficiency of the RXv1 in executing Coremark

and a small loop program (a power evaluation program). Figure 3.15(a) also illustrates that the RXv2

processor achieves 5.2x the power efficiency of a RISC processor (SH-2A), which shows that the

performance of RXv2 is sufficient to fulfill the performance requirement for current and future

embedded systems. The decrease of the number of Flash memory accesses by AFU is a dominant

determiner of reducing power consumption in benchmarks. AFU reduces the number of Flash memory

accesses by 25%.

 Core features to make code compact

Small memory size is inevitable in embedded applications because of their severe cost constraints,

especially in MCUs with on-chip memories [bunda93]. Furthermore, program compression has a

benefit for energy saving by reducing the number of bit fetched from memories. Several RISC

architecture machines offered a mix of 16bit and 32bit instructions to compensate for the disadvantage

of the code density. Despite the effort to mitigate this penalty, RISC MCUs still have basically inferior

code density because of the lesser work accomplished per instruction [mips13], [sugure04], [xarm10].

 Overview of Instruction set

RX has a compact architecture with 109 carefully-selected instructions, which is equal to the number

of instructions in a RISC-based architecture (Figure 3.16). The RX instruction set consists of eight types

of instructions: arithmetic/logic instructions, floating-point operation instructions, data transfer

instructions, branch instructions, bit manipulation instructions, string manipulation instructions, system

control instructions and DSP function instructions [renesas13].

To achieve a high performance, high code density and low power system, the RX instruction set

architecture uses a variable-length instruction format (1byte – 8byte). The RX instructions are variable

in length at the byte level with the exact instruction length dependent on the data size and addressing

mode used, which increases instruction code density and reduces the amount of data fetched from

memory per operation.

38

Figure 3.16 RX instruction set architecture

 Optimized op codes leads to superior code

density

CISC architecture inherently has the advantage in terms of the work accomplished per instruction and

that always translates to a code-density win [hennessy06]. RX architecture stretches that advantage via a

flexible instruction set architecture that can encode some instructions in as little as one byte.

At the other end of the spectrum, instructions can takes as many as eight bytes when the instruction

needs to specify a large address range or large data values that are unable to handle 32bit instructions.

We did a further analysis of real application code to discern the most frequently used instructions and

further reduce code size (Figure 3.17). We determined the most frequently used instructions are

assigned to shorter instruction codes, from one-byte to four-byte instructions. We also added addressing

modes and included a three-operand instruction format to optimize code density.

ABS MAX RORC MOV POP PUSHC SCCnd EMACA MSBLO MVTACGU

ADC MIN ROTL MOVCO PUSH PUSHM STNZ EMSBA MULHI MVTACHI

ADD MUL ROTR MOVLI POPC REVL STZ EMULA MULLH MVTACLO

AND NEG SAT MOVU POPM REVW XCHG MACHI MULLO RACL

CMP NOP SATR Branch Strings MACLH MVFACGU RACW

DIV NOT SBB BRK MVTC Bcnd SCMPU MACLO MVFACHI RDACL

DIVU OR SHAR CLRPSW RTE BRA SMOVB MSBHI MVFACLO RDACW

EMUL RMPA SHLL INT RTFI BSR SMOVF MSBLH MVFACMI FTOI

EMULU ROLC SHLR MVTIPL SETPSW JMP SMOVU FTOU

SUB TST XOR MVFC WAIT JSR SSTR FADD FMUL ITOF

RTS SUNTIL FCMP FSUB ROUND

BCLR BMcnd BNOT BSET BTST RTSD SWHILE FDIV FSQRT UTOF

Floating-point

Bit manipulation

System manipulation

DSPData TransferArithmetic/Logic

39

Figure 3.17 Analysis of Instruction Frequency

Figure 3.18 Byte assignment of RX Instruction format

 Assign short code to frequently-used instruction

Relative condition branch:BEQ,BNE
Unconditional relative branch:BRA

1byte length Instruction (Frequently-used “Conditional Branch”)

2byte-length Instructions (Frequently-used “Data Transfer and Comparison instructions”)

3byte-length Instructions (Frequently-used “Arithmetic and logical instructions”)

Data Transfer :MOV (register to register, memory to memory, Load, Store)
Comparison :CMP (register to register, register to immediate)
Addition :ADD (register + register, register + immediate)
Subroutine branch :BSR
Multiplication :MUL (register x register)

Division :DIV (register / register)
Multiply-accumulate :EMAC (register x register)
Floating-point addition :FADD (register + register)
Floating-point multiplication :FMUL (register x register)

40

Move (MOV) instructions were found to be the most frequently used instructions, accounting for

more than 30% of all operations. Conditional branch instructions were the next most frequent, followed

by Compare instructions, Subroutine Branch instructions and Add (ADD). Move instructions therefore

received the most enhancements in terms of additional addressing modes, and the ability to

automatically increment and decrement values stored in registers. The next most frequent instructions

were also shortened. Add instructions were both shortened and enhanced with a three-operand format.

Figure 3.18 illustrates RX instruction code that assigns shorter code to frequently used instructions.

The instruction set is decidedly CISC in nature and is a primary factor in the code density and

performance advantage. The following is a detailed look at some instructions to illustrate the benefits of

the architecture.

 Data Transfer instruction

MOV instruction illustrates RX variable length instruction set advantages. Unlike in the RISC case

where instructions are generally fixed in length, the CISC counterpart is variable in length and far more

flexible. The MOV instruction is the most frequently used instruction in real application code, therefore

its binary code assignment instruction is important for execution performance and code size

compression.

The RX MOV instruction can handle the following six types of data transfer from source to

destination.

41

42

43

RX Family RXv2 Instruction Set Architecture User’s Manual: Software
 (copyright ©2013 Renesas Electronics Corporation)

The RX MOV instruction supports various operand formats and addressing modes. Therefore,

programmers and compilers can reduce code size effectively by using appropriate instruction format for

the most commonly used instance of MOV.

1. Wide variety of immediate field of MOV instructions.
Immediate value can be selected directly from 8bits, 16bits, 24bits and 32bits with signed and

unsigned types. This feature provides the benefit of eliminating operations that set an immediate value

to a register.

2. Short-format MOV instructions.
There are a number of short-format MOV instructions that are used most frequently and those

instructions are 2 or 3 bytes in length. Consider a typical example of this instruction:

MOV.L Rs, dsp:5[Rd]

This instruction transfers a 32bit value from a source register (Rs) to a memory location that is

defined by the location stored in a destination register (Rd) added to a 5bit displacement value. The

effective address of the operand is the least significant 32 bits of the sum of the displacement (dsp:5)

value, after zero extension to 32 bits and multiplication by 4, and the value in the specified register.

44

The MOV instruction and the L designation for a long word requires 5 bits in the instruction code. By

applying limitation on use of general-purpose registers into half of full 16 registers (R0 – R7), both of

the register designations are compacted into 3 bits. Therefore, this MOV instruction is encoded only in

two bytes. For modern compilers or hand-coded assembly language, this limitation is minor. In

comparison, consider the same instruction with full access to 16 registers and with the range afforded by

a 16bit displacement value. That instruction would double in size to 4 bytes. When clever encoding can

reduce a powerful instruction from 4 bytes to 2 bytes, the inherent advantage of a CISC instruction set is

greatly enhanced.

 1byte conditional branch instruction

The conditional branch instruction plays a big part in code density; therefore, it is always encoded in

the minimum possible length.

RX Family RXv2 Instruction Set Architecture User’s Manual: Software
 (copyright ©2013 Renesas Electronics Corporation)

45

The conditional branch instructions can comprise 15% of the instructions in a typical program –

second in frequency only to the MOV instruction. There are conditional branches based on greater than

or less than operators, and based on positive, zero, or negative values to offer flexibility to the

programmer.

The RX instruction set encodes such instructions in as compact a length as a single byte on

Conditional Branch instructions including BEQ (branch if equal), BNE (branch if not equal) and BRA

(branch always).

Consider the following instructions:

BEQ label1

This BEQ instruction results in a branch to a memory location if the processor's Z flag is set to a

value of "1". The instruction length is determined by the difference between the memory location of the

BEQ instruction that is stored in the program counter relative to the branch location defined either by a

label.

According to program analysis in various applications, most branch distances are within the general

vicinity and branch directions are forward in order to execute if-then-else program codes. Therefore RX

instruction architecture encodes the branch forward instructions (BEQ, BNE and BRA) with address

distance of 10 byte or less in one byte.

The RX supports more branch operations including both in the forward and reverse directions from a

memory address perspective. A two-byte instantiation can control forward or reverse branches in the

range of -128 to +127 relative to the program counter. And the three-byte version stretches the range to

-32768 to +32767.

The result is better performance on application code that occupies a smaller memory footprint.

 Compare instruction

The code analysis revealed that the CMP instruction was the third most frequently used instruction.

The instruction comprised 11% of the sample code. Moreover, the design team found a way to cut the

instruction length in half relative to other CISC MCUs – yielding a 2-byte CMP instruction.

46

RX Family RXv2 Instruction Set Architecture User’s Manual: Software
 (copyright ©2013 Renesas Electronics Corporation)

The CMP instruction is variable in length depending on the type of the operands. It is a tremendous

advantage of a CISC instruction set to be able to use immediate values and operands stored in memory

with instructions such as CMP. RISC requires that both operands be stored in registers.

There are three different ways to use CMP with a 2-byte instruction length. Register to register

compares are always 2 bytes. But the RX also supports both compares using immediate values and

operands from memory with 2-byte instructions.

Consider the following instruction:

CMP #7, R2.

The instruction compares an immediate value 7 with the data stored in R2. As long as the immediate

value is 4 bits or less in size, the instruction requires only 2 bytes. But the implementation provides the

flexibility to use immediate values as wide as 32bits. The instruction lengths scales from 2 to 6 bytes to

support 4, 8, 16, 24, and 32bit immediate values.

The CMP instruction can also be implemented in 2 bytes for memory-to-register compare operations.

Consider the following instruction:

CMP [R2], R3.

This instruction comparing the operand pointed to by R2 with the one stored in R3 always requires

only 2 bytes. Again, however, the implementation offers flexibility. The instruction can be used with a

47

displacement value from the memory location stored in the register. The instruction length scales to 5

bytes to support 16bit displacements.

Almost all CISC architectures offer the flexibility illustrated here with CMP, which is a huge

advantage of CISC relative to RISC.

 3-operand instruction

The instruction implementation in the RX offers a variety of addressing modes and even a three-

operand format. ADD is the fifth most regularly occurring instruction, making up 6% of the instructions

in a typical program; therefore it was targeted for special treatment.

Consider the instructions:

ADD R1, R2, R3

and

ADD R1, R2.

The benefit of three-operand format is not to overwrite one of the source operands and program code

can reuse the value of the source register. Both ADD instructions add the values in R1 and R2. The

three-operand format stores the result in R3. The two-operand stores the result in R2 – overwriting one

of the source operands. With embedded RISC processors that only support the two-operand format,

there are times when an extra move instruction is required before or after the ADD because the program

needs to preserve the data in the destination register before the ADD takes place as well as preserving

the summed result.

The RX ADD instruction offers additional flexibility in that the first of the three operands can be an

immediate value. RISC architectures would always have to load such an immediate value prior to

executing the ADD.

The three-operand ADD is encoded in three bytes when each of the operands is a register. With an

8bit immediate value, the instruction still only requires 3 bytes. Larger immediate values can stretch the

instruction length to 4, 5, or 6 bytes.

48

Like many CISC processors, the RX can encode a two-operand ADD instruction in two bytes when

both operands are registers. But we devised 2-byte instructions both for ADDs involving an immediate

value or data from a memory location.

A two-operand ADD instruction, in which the first operand is a 4bit immediate value and the second

operand is a register, requires only two bytes. That is half the size of typical immediate-value ADD

instructions. Larger immediate values stretch the instruction length to 3, 4, 5, or 6 bytes.

A two-operand ADD instruction in which the first operand is data in a memory location that is

pointed to by a register also requires only two bytes. More complex versions can use a register storing a

memory location, and an offset from that location. Such relative-addressing modes can result in 3-, 4-,

or 5-byte instructions. For systems, the result is smaller code, less memory and therefore lower cost, and

better performance.

RX Family RXv2 Instruction Set Architecture User’s Manual: Software
 (copyright ©2013 Renesas Electronics Corporation)

 Registers

We have investigated how general-purpose register configurations and operational codes for

instructions are related. The number of registers in an instruction set architecture has a direct impact on

code size because the register number bit field requires more bits in the operation codes to encode

49

support for more registers. But more registers are almost always better from a performance perspective.

A greater number of registers eases register allocation, which means that the target program spends far

less time shuffling data between memory and registers. Even CISC architectures that can directly

operate on operands stored in memory still feature faster execution when operating on registers.

To perform an in-depth analysis on the optimal size of a register file, we ran benchmark tests using

real code that was central to target markets such as office automation and consumer, industrial, and

automotive fields. Figure 3.19 shows the analysis of the register file. The vertical axis on the left

represents the relative amount of hardware volume needed to support the register file. Red curves on the

right indicate the code size attributable to the number of registers. The green curve indicates the

register-specified bit number in operation code.

Figure 3.19 Analysis of general-purpose register configuration

50

Figure 3.20 Register Set of the CPU

RX Family RXv2 Instruction Set Architecture User’s Manual: Software
 (copyright ©2013 Renesas Electronics Corporation)

Eight registers is too small to execute code in real applications in which save/restore operations occur

quite frequently, which causes performance degradation and code size increase. The variable length

instruction set allows only four bits of register-addressing fields. For register-to-register instructions, at

least two register-specified fields are required. Five bits of operation code are specified for 32 registers.

In order to balance performance, hardware cost, and code density, the benchmarks led to the decision

to include sixteen general-purpose registers in the RX architecture. As a result, the RX CPU has sixteen

general-purpose registers, ten control registers, and two accumulators used for DSP instructions (Figure

3.20).

51

Figure 3.21 Code size analysis of the RX and a RISC-based MCU: Static Code Size (a) and

Dynamic Code (b).

 Code size evaluation

Figure 3.21 illustrates a code size analysis of the RX and a RISC-based MCU with three different

types of applications, a real-time-control application, a motor-control application and system-control

application. The implementation delivers up to 46% reduction in static code size, and up to 30%

reduction in dynamic code size relative to RISC architectures. Small static code size makes a significant

contribution in decreasing ROM size, and by extension, costs. Small dynamic code size delivers low

power consumption as described in the section “Improving instruction fetch effectiveness”.

0.0 1.0

Motor Control

System control

Real-time control

Static Code Size (relative)

 = RX
 = RISC-based MCU

46% less

22% less

31% less

0.0 1.0

Motor Control

System control

Real-time control

Dynamic Code Size (relative)

 = RX
 = RISC-based MCU

30% less

15% less

15% less

52

The RXv2 enhances DSP/FPU instructions to reduce the code size and to use the comparatively small

number of sixteen registers more efficiently. The newly added 19 instructions are shown in red in

Figure 3.16.

.

Improving instruction fetch effectiveness is a key to reducing power consumption, and many

instruction fetch ideas have been proposed for decades.

The conventional method of reducing power consumption of external memories is to integrate the

cache memory on the chip to reduce the number of switched off-chip wires, which dramatically reduces

system power consumption by 90%. Therefore reducing the cache miss rate has been the main topic of

discussion of cache designers.

On the other hand, in microcontrollers, ROM and RAM are traditionally integrated on a chip.

Elimination of external memories achieves low power consumption. However, today’s devices demand

much less power consumption because they depend on battery or solar power.

For embedded microprocessor-based systems, instruction fetching can contribute to a large

percentage of system power (around 50%).

Several approaches have been proposed to reduce memory accesses including:

1) Program compression to reduce the number of bits fetched

2) Efficient instruction cache design to filter out accesses to main memory

Program compression

There are two major program compression techniques; one is code compression and the other is size

reduction of instruction codes. Since memory accesses consume a significant amount of an embedded

system’s power, battery life can be extended by program compression.

Code compression architecture uses hardware to compress the most commonly executed instructions.

This method reduces memory accesses per instruction [benini99]. A disadvantage of this method is the

chip area and performance overhead caused by the decompression of the compressed codes.

53

Since the CPU is the main consumer of power, compression can result in significant power savings.

If memory and/or cache are made smaller, their effective capacitance decreases, further decreasing

power consumption [lekatsas00]. Because there are fewer transactions and the transactions are shorter,

compression may also reduce program execution time.

Smaller code size derived from instruction set architecture provides direct benefit to save energy,

which eliminate the need for compression hardware.

Efficient instruction cache design

Another approach to reducing memory accesses is efficient instruction cache design. Several tiny

instruction cache architectures attract designers who need low energy or low power processors.

A filter cache is a small direct-mapped cache, which is placed between the CPU and the L1 cache. It

utilizes standard tag comparison and miss logic. The filter cache is much smaller than the L1 cache; it

has a faster access time and lower power consumption per access. However, it may suffer from a high

miss rate and hence may decrease overall performance [kin97].

A loop cache is a small instruction buffer that is tightly integrated with the processor without tags. A

loop cache controller is responsible for filling the loop cache when a simple loop, defined as any short

backwards branch instruction, is detected [gross02v].

Another category of approaches is capitalizing on the common features of embedded applications by

profiling, which can enable customization of an architecture to most efficiently execute a particular

application [gross02c, cotterell02]. A very aggressive form of this type of architecture tuning involves

creating a customized instruction set, known as an application-specific instruction set. Memory design,

including a cache, is also customized for the application.

A branch target buffer is a common way to improve branch prediction performance [hennessy06]. To

reduce the branch penalty for pipelines, the branch target buffer speculatively fetches instruction codes

from memory before decoding the branch instructions. If the PC (program counter) of the fetched

instruction matches a PC in the prediction buffer, the corresponding predicted PC is used for speculative

instruction fetches. This mechanism causes extra memory accesses and increases power consumption.

Therefore, branch target cache, which reuses instruction codes from memory, is necessary for low

power consumption [Chihung99].

54

RXv2 is the new generation of RX processor architecture for microcontrollers with high-capacity

flash memory. An enhanced instruction set and pipeline structure with an advanced fetch unit (AFU)

provide an effective balance between power consumption performance and high processing

performance. Enhanced instructions such as the DSP function and floating point operation, and a five-

stage dual-issue pipeline synergistically boost the performance of digital signal applications. The RXv2

processor delivers 1.9 – 3.7x the cycle performance of the RXv1 in these applications. The decrease of

the number of Flash memory accesses by AFU is a dominant determiner in reducing power

consumption. The AFU of RXv2 benefits of reducing power consumption from adopting a branch target

cache, which has a comparatively smaller area than that of a typical cache systems. High code density

delivers low power consumption by reducing instruction memory bandwidth. The implementation of

RXv2 delivers up to 46% reduction in static code size, and up to 30% reduction in dynamic code size

relative to RISC architectures. RXv2 reaches 4.5 Coremark per MHz and operates up to 240MHz. The

RXv2 processor delivers approximately more than 2.2 – 5.7x the power efficiency of the RXv1. Figure

3.22 shows a chip photograph of the test chip of the microcontroller with 4MB of built-in Flash

memory. The chip was fabricated using a 40-nm low-power CMOS. This chip integrates one RXv2

processor that is connected to internal SRAM and Flash memories. This chip also has an internal multi-

layer bus to connect the processor to peripheral IOs, and an interrupt controller unit (ICU).

Figure 3.22 The test chip of the microcontroller with the RXv2 processor

55

The RXv2 microprocessor achieves the best possible computing performance in various applications

such as building automation, medical devices, motor control, e-metering, and home appliances which

lead to higher memory capacity, frequency and processing performance.

56

 Arithmetic and logical instructions

57

 Floating-point operation instructions

58

 Data Transfer instructions

59

 Branch Instructions

60

 Bit manipulation instructions

 String manipulation instructions

61

 System control instructions

62

 DSP function instructions

63

PEACH: A Multicore
Communication SoC with PCI
Express I/F

The eight-core communication SoC, code-named “PEACH”, with four 4x PCI Express rev.2.0 ports,

realizes a high performance, power-aware, highly dependable network. The network uses PCI Express

not only for connecting peripheral devices but also as a communication link between computing nodes.

This approach opens up new possibilities for a wide range of communications. Recent trends in using

computing clusters point to a growing demand for high-compute-density environments in various

application fields such as server appliances including distributed Web servers. Distributed Web servers

need many server nodes and low-latency and high-bandwidth network for operating a massive amount

of Web services, including distribution of high-definition movies. In these computing clusters, power

consumption and system cost have increased. Therefore, it’s vital to downsize computing cluster

without losing high dependability, including fault tolerance.

To realize high-performance, power-aware, and highly dependable network, we have proposed a

small computing cluster for embedded systems, called PEARL (PCI Express Adaptive and Reliable

Link) [hanawa10].

Commodity network devices such as Gigabit Ethernet (GbE) and InfiniBand aren’t sufficient for

small computing clusters. InfiniBand is a switched fabric communication link used in high-performance

64

computing and enterprise data centers. It achieves high reliability but power consumption is relatively

high [infiniband]. The external switching devices are needed to connect between nodes, and they restrict

flexibility of network topology and scalability. GbE is a cost and power rival of InfiniBand. However,

GbE does not match InfiniBand’s transmission performance.

To achieve both high performance and low power consumption, PEARL uses PCI Express [pcie06], a

high-speed serial I/O interface standard in PCs, not only for connecting peripheral devices but also as a

communication link between computing nodes. To implement PEARL, we’ve developed a

communication device called PEACH (PCI Express Adaptive Communication Hub), which acts as a

switching device. PCI Express transfers packets point-to-point bi-directionally with high bandwidth.

However, it connects only between a Root Complex (RC) and Endpoints (EPs).

Therefore, we can’t connect PCI Express interfaces on PCs to one another, because every node CPU

in the computing node is an RC. To solve this problem, PEARL equips each node CPU with a network

interface card with PEACH. A PCI Express cable connects the node CPUs to one another. To pair a RC

with EPs at each end of the PCI Express cable, PEACH can switch the RC port and EP ports to connect

two computing nodes peer-to-peer. Thus, PEACH can address two computing nodes as peers, breaking

the traditional PCI Express limit of only linking to a single master.

Figure 4.1 The communication link, PEARL.

Node (B)Node (A)

PCIe External Cable

PC
Ie

PC
Ie

Node
CPU
(B)

Interrupt Request

Data Transfer

Data Flow

PEACH
(B)

PEACH
(A)

Node
CPU
(A)

65

A network interface card with the network device, PEACH, can be inserted into a PCI Express slot on

a computing node’s motherboard (Figure 4.1).

 PEACH overview

PEACH, has four PCI Express Revision 2.0 ports with four lanes each and employs an eight-core

control processor [otani11f]. Using PEACH in the proposed network offers several advantages. Four

PCI Express ports can broaden the scope of network topology selection. The high bandwidth of 20

Gbps/port equals that of InfiniBand DDR 4X. The multicore control processor performs fault handling,

system monitoring, and logging for dependability. The multicore processor also controls the network

system for power awareness.

 Figure 4.2 shows a PEARL network system prototype. PEACH behaves as a communication

interface to other computing nodes as well as a communication switch. Figure 4.2 illustrates adaptive

routing under a normal network condition (a), detour routing in a fault network condition (b), and an

example of an eight-node network (c). PEACH acts as a communication link and connects nodes of the

network via its four PCI Express ports.

In Figure 4.2 (a), PEACH connects four network nodes via its four PCI Express ports. One adjacent

nodes is a node CPU, and the others are PEACH chips. When PEACH 0 receives a request from a node

CPU via the PCI Express port, PEACH 0 generates a packet header, which is then sent to the

appropriate destination port. When PEACH 1 receives a packet from a node, PEACH 1 analyzes the

packet header, and PEACH 1 forwards the packet to another node or passes it to the node CPU.

66

Figure 4.2 Neighbor communication on PEARL.

The hardware automatically processes the error-detection, flow-control, and retransmission-control

functions in the PCI Express specifications. InfiniBand supports only link-by-link cut-off, so only one

faulty lane must causes a link to go down. In contrast, when a link error that can’t be automatically

corrected occurs, PEACH reduces the number of the PCI Express port’s lanes to remove the defective

lane by reinitializing the link. This InfiniBand enhancement can provide higher network reliability.

This chip integrates an eight-core control processor, four PCI Express ports, and an intelligent

interrupt control unit (ICU).

Detour routing is applied in a fault condition to bypass faulty links and nodes, and it enables network

function recovery (Figure 4.2(b)). PEACH continuously monitors the system and dynamically performs

both adaptive routing, to meet power and performance demands, and detour routing to achieve a highly

dependable network.

(a)

(b) (c)

Node
CPU

Node #0

Node
CPU

Node #1

Node
CPU

Node #3

Node
CPU

Node #2

Link Fault

Other Node Other Node

Other Node Other Node

PEACH
#0

PEACH
#1

PEACH
#2

PEACH
#3

PEACH
#4

PEACH
#5

PEACH
#6

Node
#1

Node
#2

Node
#5

Node
#6

PEACH
#7

Node
#0

Node
#3

Node
#4

Node
#7

PEACH
#0

Node
CPU

PCIe PCIe
Node #0

Node
CPU

PCIe
Node #1

Node
CPU

PCIe PCIe
Node #3

Node
CPU

PCIe
Node #2

PEACH
#3

PEACH
#1

PEACH
#2

Other Node

Other Node Other Node

RC

EP

RC

RC

RC

EP

EP

RC

EP

EP

EP RC

RC

EP

EP

RC

Other Node

67

Although the number of nodes in PEARL is theoretically limitless, our design target is a network

with 16 nodes.

 Chip Architecture

Figure 4.3 shows PEACH’s primary functional unit. This chip includes two blocks, the control

processing block and the transfer processing block, which are connected with a bus bridge. Figure 4.4

shows the chip micrograph. The test chip was fabricated in a 45nm low-power CMOS (8 layers, triple-

Vth).

Figure 4.3 PEACH block diagram.

400MH
z

200MHz

ICU

Multi-layer local bus

High Speed System Bus (SHwy)

PCIe
#0

Core #0

Node CPU

PCIe
#3

SRAM
512KB

CPUMMU FPU

DebugI-Cache

D-Cache

Local Mem

jtag

L2 Cache
512KB

pi
pe

lin
ed

 b
us

DDR3 I/F

32 x 4

Core #7

Serial

Timer

DDR3

a

Bus-Cnt

128

128128

BIU

32

Link Cnt.
RAM

Bus IF
DMAC

PHY

Link Cnt.
RAM
Link Cnt.
RAM

Bus IF
DMAC

Bus IF
DMAC

PHY

:
:

128

Intelligent
ICU

Bus bridge

128

INT

150MHz/
300MHz/
600MHz

100MHz

300MHz

100MHz

SDRAM, ROM, RAM, IO

128

PCIe
#1

PCIe
#2

Clock,
System

Cnt

Transfer Processing Block

Control Processing Block

Control Processor

To other nodes

68

Figure 4.4 PEACH micrograph.

The transfer processing block has four PCI Express ports, each of which can transfer packets using up

to four lanes; 512Kbytes of static RAM (SRAM) allocated for temporary packet storage; and an

intelligent interrupt control unit (ICU) in close liaison with the multicore processor and the PCI Express

interface [otani11n]. A high-speed internal system bus connects all the main modules in the transfer

processing block. The intelligent ICU also supports the fast automatic data-transfer function that

offloads interrupt services from the multicore processors.

The control processing block performs data-processing and data-flow control, which consists of

adaptive network routing and packet header analysis. In the control processing block, a cache coherence

mechanism connects the eight cores to a common pipelined bus [kaneko04]. Each core is synthesizable

and includes a floating-point unit (FPU), a memory management unit (MMU), three 8Kbyte memories for

Level 1 (L1) instruction and data caches, and a local memory. The control processor is a symmetric

multiprocessor (SMP) that supports a core grouping mode that divides cores into several groups

[kondo08].

69

The pipelined bus is connected to a 512Kbyte L2 cache. This pipelined bus with a large bus width (a

128-bit read bus and a separate 32-bit write bus) reduces its bus traffic and connects directly to an

internal multilayer bus. The 256Mbyte DDR3-600 interface is accessed via both the control processing

block and the transfer processing block in parallel. This high-speed, large memory contributes to

improving the chip performance. The DDR memory is also used as a large packet buffer if the packet

size is larger than 512Kbyte SRAM.

PEACH’s multicore processor offers an effective paradigm for fast packet processing. In a multicore

system, we must carefully consider the hardware and software architecture. We can assign network

packet processing from a specific PCI Express port to dedicated cores, to bind specific tasks and

specific cores. By effectively distributing processing on a multicore processor, we can realize high

traffic rates from multiple 20-Gbps throughputs on multiple PCI Express ports.

 PCI Express interface with up-configuration

function

Table 4.1 describes the PCI Express interface’s features. Each PCI Express port has a link controller,

PHY, a local DMA controller (DMAC), and local packet buffer RAM. The latest Revision 2.0 standard

has transfer rate of up to 5.0Gbps, double that of the Revision 1.1 (2.5Gbps). Revision 2.0 supports both

2.5Gbps and 5.0Gbps transfer rates because of compatibility with Revision 1.x. Furthermore, PCI

Express specifications govern a procedural step in going from 2.5Gbps up to 5.0Gbps. The total transfer

rate to each destination is 20Gbps, and the theoretical peak bandwidth is actually 2Gbps due to 8-bit and

10-bit encoding for the embedded clock and error detection. PEACH with four PCI Express ports

realizes a high-performance communication of 4 x 20Gbps and a power efficiency of 0.04W/Gbps.

70

Table 4.1 PEACH Chip Features

InfiniBand DDR 4X has a high bandwidth of 20Gbps and a low latency of 2μs. The subnet manager

provides automatic fault recovery [infiniband]. However, overall system power consumption increases

because a controller chip and a switch each consume 3 to 5 watts per port. Multiple switches, which are

necessary for fault tolerance, would run counter to cost reduction and low power consumption. The

power efficiency of InfiniBand 4X is 0.083W/Gbps [qlogic]. Thus, PEACH provides 51.5% better

power efficiency than InfiniBand 4X (Table 4.2).

Table 4.2 Comparison of Power Efficiency

 DescriptionChip Characteristic

8core, SMP
L1-cache:8kB(I)+8kB(D), LM:8kB, MMU, FPU

Processor

Internal: 400 MHz max.
External bus: 100 MHz

Clock frequency

PCI Express standard Rev.2.0
Transfer speed: 5.0 GT/s, 2.5 GT/s per lane
4 lanes (20 Gbps) x 4 ports
Upconfiguration function
Automatic retransmission function
Selectable Root Complex / Endpoint

PCIe I/F

L2 cache: 512 kB
Internal SRAM: 32 kB, 512 kB

Memory

DDR3-600 I/F x 1, SDRAM I/F x 1DRAM I/F

32-bit Processor (400 MHz max.)Core

Packet router
Multi-layer bus (4-layer)
Pipelined bus

Bus

Transfer address, size information register x 3
Initiate data transfer function

Intelligent Interrupt
Control Unit

DescriptionChip Characteristic

8core, SMP
L1-cache:8kB(I)+8kB(D), LM:8kB, MMU, FPU

Processor

Internal: 400 MHz max.
External bus: 100 MHz

Clock frequency

PCI Express standard Rev.2.0
Transfer speed: 5.0 GT/s, 2.5 GT/s per lane
4 lanes (20 Gbps) x 4 ports
Upconfiguration function
Automatic retransmission function
Selectable Root Complex / Endpoint

PCIe I/F

L2 cache: 512 kB
Internal SRAM: 32 kB, 512 kB

Memory

DDR3-600 I/F x 1, SDRAM I/F x 1DRAM I/F

32-bit Processor (400 MHz max.)Core

Packet router
Multi-layer bus (4-layer)
Pipelined bus

Bus

Transfer address, size information register x 3
Initiate data transfer function

Intelligent Interrupt
Control Unit

4x InfiniBand PEARL

Network Device Dedicated Circuit
InfiniBand

PEACH
PCI Express

Power Efficiency
[W/Gbps]

0.083 0.040
51.5%

71

Figure 4.5 PCI Express up-configuration function by software control. (a) Maximum data transfer

rate (b) Low power consumption.

 PCI Express up-configuration function

InfiniBand offers restrictive power-aware control of link-by-link power cut-off. In contrast, PCI

Express has an effective power-aware control that can change the number of lanes and the lane speed on

the fly, across the link and nodes. We use a PCI Express up-configuration function that lets us switch

the transfer rate and the number of lanes in response to a software bandwidth change (Figure 4.5). When

the required transfer volume is higher, the PCI Express port operates at the full of 20Gbps. When the

transfer volume is lower, only one lane operates at 2.5Gbps for low power consumption.

Table 4.3 compares the comparison of the PCI Express PHY power consumption. In low power

consumption mode, using the PCI Express port of 2.5Gbps provides 76% less power consumption than

that of 20Gbps. The maximum transfer rate using the PCI Express port of 20Gbps provides 52% better

power efficiency compared to that of the low power consumption of 2.5Gbps.Figure 4.6 shows the

power consumption of PCI Express PHY at each requested transfer volume. When the required transfer

volume is lower than 2.5Gbps, using one PCI Express port of 2.5Gbps provides the lowest power

Application
HIGH volume data

PCIe

La
ne

0
Re

v.
2

La
ne

1
Re

v.
2

La
ne

2
Re

v.
2

La
ne

3
Re

v.
2

LOW volume data

La
ne

0
Re

v.
1

20Gbps 2.5Gbps

Application

PCIe

(a) (b)

72

consumption. When the required transfer volume is larger than 2.5Gbps, using PCI Express ports of 5.0

Gbps is worthwhile.

Table 4.3 Power Consumption of PCI Express PHY (Normalized)

Figure 4.6 Power Consumption of PCI Express PHY (W) at each requested transfer volume.

No. of lanes

Lane Speed 4 lanes 2 lanes 1 lane
5Gbps 1.00 0.50 0.28

2.5Gbps 0.84 0.42 0.24
20Gbps

2.5Gbps

Power Efficiency of PCIe PHY (W/Gbps)

(1.00/20) / (0.24/2.5) = 0.52

5Gbps@4 lanes 2.5Gbps@1 lane

0

0.2

0.4

0.6

0.8

1

1.2

0～2.5 2.5～5 5～10 10～20
Requested transfer volume [Gbps]

Po
w

er
 C

on
su

m
pt

io
n

(N
or

m
al

iz
ed

)

5Gbps 2.5Gbps

73

 Intelligent Interrupt Controller

Figure 4.7 shows the intelligent ICU block diagram. The intelligent ICU communicates with PCI

Express ports within the PEACH. It also communicates with adjacent PEACH chips and nodes. Both

communications use message passing via the high-speed system bus and via PCI Express. The

intelligent ICU can also send a message signaled interrupt (MSI) packet to the adjacent node via PCI

Express. To notify the intelligent ICU that PCI Express DMA transfer is complete or that there are PCI

Express errors, PCI Express Link sends interrupt requests directly to the intelligent ICU.

The intelligent ICU’s key features are an

• Interrupt relay function

• Inter-chip interrupt function

• Fast automatic data transfer function

All functions are used in inter-node communication.

The interrupt relay function relays interrupt requests from the PCI Express interface in the transfer-

processing block to the cores via the ICU in the control-processing block in PEACH. It sends these

interrupt requests as notifications that the PCI Express linkup or PCI Express DMA transfer processing

is completed.

An inter chip interrupt function sends information such as a notification of the chip-to-chip data

transfer is completed. An adjacent chip connected to PEACH via PCI Express can write a control

register in the intelligent ICU to assert an interrupt request to a core.

The fast automatic data-transfer function automatically handles transfer processing without using

cores in PEACH.

74

Figure 4.7 Block Diagram of Intelligent ICU

 Data Flow Control

IRQ (Interrupt Request) affinity on Linux lets programs specify which core services a given interrupt.

In PEACH, IRQ affinity binds an interrupt from each PCI Express port to a specific core in a one-to-one

relationship. The network packet is directed to the desired core. By using this distributed processing,

PEACH can process a packet efficiently. Furthermore, a snooping group of cores alleviates snooping

overhead, because cores can be snooped only from other cores in the same group. Eliminating

unnecessary internal snoop transaction improves the communication services’ stability.

Control Registers

ICU

High Speed System Bus (SHwy)

PCIe Link

#0 - #3

Interrupt
Requests

PCIe PHY

#0 - #3

Interrupt
Requests

Control Packet /
MSI Request

Generator

Control Logic
(routing table)

Intelligent ICU

Bus Interface

Config Accesses

PEACH/Node

multicore processor

PEACH

75

Figure 4.8 Efficient packet processing and fault handling in PEACH.

Figure 4.8 (a) illustrates the data-flow control in PEACH. The solid dotted arrows indicate data flow.

When PCI Express 3 receives data from a node CPU, the SRAM temporarily stores the data. After that,

the data is sent to another PEACH via the appropriate destination port (PCI Express 0).

The dotted arrows indicate control flow. Devices connected to PEACH via PCI Express can send

control packets to the intelligent ICU. The node CPU sends control packets and an interrupt request

packet to establish communication. The intelligent ICU relays this interrupt request to a core. In the

interrupt handler, the core analyzes the packets, performs an address transformation, and launches the

DMAC in PCI Express.

Smart interrupt handling, such as quick error response and fault-handling speedup is essential for

dependability. Therefore, good load balancing and performance tuning requires control wherever

interrupt services are performed. IRQ affinity assigns a specific core to a PCI Express port to process

interrupt service tasks requested only by that PCI Express port. The system software makes the core

(a) (b)

(c) (d)

SoC #0

ICU

Node CPU

SRAM

DDR3

PCIe
#3

ROM, IO

PCIe
#2

Peri-
pherals

L2 $

DDR3
I/F

PCIe
#1#0

Intelligent
ICU

Data

DMAC

Control

Interrupt R
equest

Control

Interrupt R
equest

#0
#2
#4
#6

#1
#3
#5
#7

Cores #0
#2
#4
#6

#1
#3
#5
#7

Cores

:

SoC SoC

#0
#2
#4
#6

#1
#3
#5
#7

Cores #0
#2
#4
#6

#1
#3
#5
#7

Cores

ICU

Node CPU

SRAM

DDR3

PCIe
#3

ROM, IO

PCIe
#2

SoC SoC

Peri-
pherals

L2 $

DDR3
I/F

PCIe
#1

PCIe
#0

Intelligent
ICU

Interrupt R
equest

SoC

:

#0
#2
#4
#6

#1
#3
#5
#7

Cores #0
#2
#4
#6

#1
#3
#5
#7

Cores

ICU

Node CPU

SRAM

DDR3

PCIe
#3

ROM, IO

PCIe
#2

SoC SoC

Peri-
pherals

L2 $

DDR3
I/F

PCIe
#1

PCIe
#0

Intelligent
ICU

Interrupt R
equests

SoC

:

SoC #0

ICU

Node CPU

SRAM

DDR3

PCIe
#3

ROM, IO

PCIe
#2

SoC SoC

Peri-
pherals

L2 $

DDR3
I/F

PCIe
#1#0

Intelligent
ICU

ControlData

DMAC

#0
#2
#4
#6

#1
#3
#5
#7

Cores #0
#2
#4
#6

#1
#3
#5
#7

Cores

Clock

Gating

Data-flow control in PEACH (a). Fault handling, wherein the intelligent ICU relays a change of PCI Express link
status to the cores (b). Smart interrupt handling: IRQ (Interrupt Request) affinity binds an IRQ from each PCI
Express port to a specific core (c). The fast automatic data-transfer function offloads interrupt services from the
cores (d).

76

idle steadily except during an interrupt services. There’s no overhead of a context switch from a

previous process, and the core can smoothly move to the interrupt processing, which speeds up the

interrupt response time (Figure 4.8(c)). Smart interrupt handling also supports the fast automatic data-

transfer function (Figure 4.8 (d)). The intelligent ICU can transfer data without using the cores’

interrupt services by automatically performing address transformation and handling the DMAC in PCI

Express. Figure 4.8 (b) shows fault handling for dependability. When communication is broken up

because of a fault on a link or an adjacent node, PCI Express sends an interrupt request to a core via the

intelligent ICU. The core starts error recovery by removing the defective lane or applying detour

routing.

Figure 4.9 shows two data transmission flows - processor mode using interrupt services (a) and

intelligent ICU mode using fast automatic data transfer (b). This chart indicates data transmission flows

from Node CPU0 to Node CPU1 via PEACH A and PEACH B. All communication packets between

nodes are sent via PCI Express.

Figure 4.9 Two data transmission flows: Processor mode using interrupt services

(a)

PEACH
(A)

Time

PEACH
(B)

core-A

core-B

I-ICU

Node
CPU
#1

Node
CPU
#0

I-ICU

core-A
I-ICU I-ICU: Intelligent ICU

: Interrupt Request
by Intelligent ICU

:Data :Control

I-ICU

I-ICU

I-ICU

(b)

PEACH
(A)

Time

PEACH
(B)

Node
CPU
#1

Node
CPU
#0

Data FlowData Flow

core-A

core-B

I-ICU

I-ICU

Tr
an

sf
er

 t
im

e
(a

)

Tr
an

sf
er

 t
im

e
(b

)

Processor mode using interrupt services (a), intelligent ICU mode using fast automatic data
transfer (b). (I-ICU: intelligent ICU.)

77

Figure 4.9 (a) shows the data transmission flow using core interrupt services. After Node CPU0 sends

a data packet and a control packet, it sends an interrupt request packet to the intelligent ICU in PEACH

A to establish a communication channel. The intelligent ICU relays the interrupt request and control

packet to a core in PEACH A. In the interrupt handler (core-A), the core analyzes the packets including

the data’s source, destination addresses, and size, and then update the packet headers and sends the

packets to the destination.

The core launches the DMAC in PCI Express and transfers data to PEACH B. PCI Express notifies

the core that data transfer is completed via the intelligent ICU. In the interrupt handler (core-B), the core

sends a control packet and an interrupt request packet to PEACH B, and an end packet to Node CPU0.

PEACH B acts in a similar manner to PEACH A and Node CPU1 finally receives data.

Although packet processing executed in the multicore processor is flexible, we can’t avoid interrupt

processing overhead. The intelligent ICU has a routing table and handles route computation

automatically, which can reduce transfer latency. Figure 4.9 (b) shows how the fast automatic data-

transfer function handles transfer processing without using the multicore processor. Node CPU0 sends

an initiate data-transfer request packet to PEACH A. The intelligent ICU in PEACH A launches the

DMAC in PCI Express and automatically transfers data to PEACH B. The intelligent ICU in PEACH B

acts similarly, and Node CPU1 finally receives the data.

The intelligent ICU’s fast automatic data-transfer function can dramatically reduce transfer

processing time by 20% under normal network operation (Figure 4.10). Because it adopts a multicore

processor and the intelligent ICU, PEACH acts as an intelligent network device.

Figure 4.10 The intelligent ICU’s fast automatic data-transfer function improves transfer latency.

Number of cycles (Normalized)

1.00.50.0

(a) Processor Mode
using interrupt services

(b) Intelligent ICU Mode
using fast automatic data
transfer (Proposal)

- 20%

Interrupt services
@PEACH

78

 PEARL network route construction

A network manager runs as a user-land program on each Linux on PEACH chip. Each PEACH chip

has a routing table in a driver. PCI Express notifies the daemon of a link-status change using Linux’s

sysfs interface.

There are two data transmission flows. Intelligent ICU mode can transfer data quickly, but it has only

a fixed routing table. Processor mode provides a flexible routing for error handling or a start-up

sequence. On start-up, a master node does a route search and makes the routing table under the

assumption of intelligent ICU mode. When a fault occurs, the multicore processor acts as a backup, or

overwrites routing tables to modify the route.

 Network system power management

Each daemon program on PEACH monitors network status and sends information to elected master

node. The master node makes a power-aware order to network, and each network manager on PEACH

changes PCI Express link configuration. On the basis of the application’s demand, the network manager

can change the network link performance. PEACH’s multicore processor monitors the network status

using a demon program, managing PCI Express physical layer (PHY) performance using the up-

configuration function and processor power-management such as clock-gating.

An important point here is that adopting a multicore processor can provide fine-grained control of

PCI Express configuration and reduce the overall system’s power consumption.

 PEARL system board

On the basis of the component descriptions we’ve discussed, we’ve developed a six-node prototype

of our PEARL network system. Figure 4.11 (c) shows a photograph of a PCI Express x4 host adapter

board that has a PEACH chip and PCI Express external cable connectors [pcie07j]. The board also has a

Compact-Flash card slot, 4Mbyte flash memory and two 128Mbyte DDR3 memories. The Compact-

79

Flash card contains a Linux ext3 file system, including Linux kernel 2.6.35, and is also used for storing

log information. Linux runs on a multicore processor in PEACH on a stand-alone basis, booting by

loading the Linux kernel image on the Compact-Flash card. This host adapter board can be inserted into

a PCI Express slot on a computing node’s motherboard (Figure 4.11 (a)). The CPU hotplug on Linux

can dynamically suspend and resume a core responding to system load, which are useful for power

awareness.

The PCI Express architecture consists of four discrete logical layers (Figure 4.11(b)). From the

bottom up, they are the physical layer, the data-link layer, the transaction layer, and the software layer.

 The software layer generates read and write requests that are transported by the transaction layer.

The transaction layer manages the transactions for communication, such as read or write to/from

memory, message passing, or configuration. The data-link layer handles link management, including

packet sequencing and data integrity, which includes error detection and error correction. The physical

layer comprises all circuitry, including a driver with impedance matching and input buffers, parallel-to-

serial and serial-to-parallel conversion, and PLLs. Each PCI Express port has a PHY, a data-link layer

controller (MAC), and a transaction layer controller as hardware modules. Figure 4.11(d) shows six-

node prototype of a PEARL network system.

80

Figure 4.11 Prototype of PEARL network system.

PCIe External
Cable Connectors

PEACH

DDR3

Flash
ROM

Compact Flash Slot

PCIe x4 Card Edge

(b)(a)

(c)

PCI Software /
Driver Model

Transaction Layer

Data Link Layer

Physical Layer

Software Layer

Packet-based
Protocol

Data Integrity

Transaction Layer

Data Link Layer

Physical Layer

Software Layer

P2

P5

PCIe:
1

PC
Ie

:
0

PCIe:
0

PCIe:
1

PC
Ie

:
2

PC
Ie

:
2

PCIe:
3

PCIe:
3

P4

PCIe:
0

PCIe:
1

PC
Ie

:
2

PCIe:
3

P1
PCIe:

1

PC
Ie

:
0

PC
Ie

:
2

PCIe:
3

P3
PCIe:

1

PC
Ie

:
0

PC
Ie

:
2

PCIe:
3

P6
PCIe:

1

PC
Ie

:
0

PC
Ie

:
2

PCIe:
3

Six-node prototype(d)

The PEARL evaluation system (a), PCI Express logical layers (b), a PCI Express x4 host adapter board (c),

Six-node prototype of a PEARL network system (d).

81

 Switching time of PCI Express up-configuration

function

Table 4.4 shows the measurement results of the PCI Express up-configuration function switching

time. Whereas the time required to increase the lane speed is 6.5 μs, the time required to decrease it is

3.8 μs, because the PCI Express PHY needs extra time to gain lane speed (Table 4.4 (a)). Whereas the

time required to shrink the number of lanes is 4.6 μs, the time required to expand it that is almost 9.1 μs

(Table 4.4 (b)). The minimum latency of DMA transfer between PEACH chips that is also measured in

this evaluation system is 1.0 μs. Thus, PEACH can perform power-aware control with fine-grained

operation.

Table 4.4 PCI Express up-configuration function-switching time.

Lack of low power and high performance network technology for dependable embedded system is

obstacle. As mentioned in this section, Infiniband is frequently used as a low latency and high

bandwidth network for high performance computing clusters, but its large power dissipation prevent

adapting for embedded systems. GbE is another candidate for low cost networks but it does not match

performance. RI2N (Redundant Interconnection with Inexpensive Network) is a fault tolerant and high

performance interconnection network based on the multi-link of GbE [okamoto07]. The power

consumption of a controller chip for GbE is much smaller than that of Infiniband. RI2N is needed to

3.85.0Gbps → 2.5Gbps

6.52.5Gbps → 5.0Gbps

Time [us]Lane Speed

3.85.0Gbps → 2.5Gbps

6.52.5Gbps → 5.0Gbps

Time [us]Lane Speed

9.1

9.1

1

9.0

4.6

2

4.61

4To From

---4

4.62

Time [us]No. of lanes

9.1

9.1

1

9.0

4.6

2

4.61

4To From

---4

4.62

Time [us]No. of lanes

(a) Switching time of the lane Speed

(b) Switching time of the number of lanes

82

enhance throughput to adapt embedded networks, which causes larger power consumption. Moreover,

GbE is essentially for long distances; therefore the communication latency using GbE is relatively large.

Therefor the conventional networks described above are not appropriate for low-power and high

performance network.

Another candidate for a PCIe-based network for dependable embedded systems is a standard

specification called ASI (Advanced Switching Interconnect) which interconnects multiple host

computers and I/Os. [asi03, dolphinics]. ASI’s target is an interconnected 68-node network and it

requires more complicated hardware than PCIe. ASI is mainly used for server I/O connections, and it is

not applicable for dependable embedded systems.

PEACH and PEARL open up new possibilities for a range of communications by extending PCI

Express packet transmission to internode communication. PEACH’s performance advantage, power

awareness and high dependability are the result of the combination of PCI Express, the intelligent ICU

and the multicore processor. We’re currently improving and expanding firmware including drivers and

user communication libraries. PEARL resulted from the research area of DEOS project [deos]. The

PEACH board is positioned as a hardware platform for DEOS project and is expected to be adopted in

many dependable high-end embedded systems, which will spur upgrades to technology innovations in

this area.

83

A Heterogeneous Multicore SoC
for Secure Multimedia
Applications

Digitalization of media has spread rapidly and music and images are also becoming more highly

defined. As a way to easily distribute these digital contents, not only the disc packaging such as CDs,

DVDs and blue-ray discs, but also network delivery services are gaining popularity. To further expand

network delivery services, we have to establish secured accounting systems.

Digital content protection standards such as DTCP-IP, Windows Media DRM (Janus) and Broadcast

Flag have been established. However, in each case, decryption software is executed on non-secure

hardware. As a result, a vulnerability arises in which an encryption key can be disclosed or code can be

easily modified to access data without authorization.

In a secured accounting system, we have to download encrypted contents from a content server, and a

decryption key from a payment server so that decoding and payment can be performed in a secure

multimedia processor. The decoded data in the processor can be played on a digital TV or a music

player. Therefore, we need to develop a system that processes the decoding and the payment atomically.

In a conventional system, the decryption and decoding operations are performed individually on

different chips. When the encrypted contents are delivered, they are decrypted and restored to their

original plain data format using the decryption key. Subsequently, the video data is decoded and images

and audio are sent to audio/video output.

84

However, we currently have a system problem that decryption key and decrypted contents are at risk

for being stolen. Because decryption software is executed on non-secure hardware, the decryption key

and decrypted contents could be disclosed without authorization.

To realize a secure system, the best solution is to integrate all components in one chip. But, this is

difficult to achieve with current silicon-process technology to at a reasonable cost.

To solve these security and cost problems, a multicore SoC with SiP (System in a Package)

technology and an evaluation system (Figure 5.1) has been developed. In this paper, we propose a novel

secure system using our SoC and software solution.

Figure 5.1 Implemented secure media system board

 Concept of the secure media system

The proposed concept (Figure 5.2) consists of the following.

85

1. Atomic operation of payment and viewing
2. Multicore SoC and SiP for faster communication and decryption
3. Hardware / software virtualization for strong security

1) Atomic operation of payment and viewing

The problem with a conventional system is that payment, decryption and image processing are

themselves large monolithic side-attack targets. Atomic operation of these processes eliminates

problems of payment omission and copyright infringement from the illegal copying of data. In addition,

the multicore SoC with SiP provides both tamper resistance and high performance because all

communication routes are wired in the chip.

2) Multicore SoC, DRAM, and Flash memory in one package (SiP) for faster communication and

decryption

Faster communication between external devices and faster decryption are indispensable when dealing

with digital contents including motion video formats like MPEG. A multifunction motion video decoder

is integrated on the heterogeneous multicore SoC to be compatible with MPEG-2/H.264/VC-1 on DTV

(digital television) and DVD (digital video disc). A symmetric-key cryptography accelerator for

decoding multimedia contents and a public key encryption IP for payment and user confirmation are

also integrated (Figure 5.3).

3) Hardware and software virtualization for strong hardware/software security

To achieve a secured system, this SoC virtualizes hardware resources and an OS (Operating System)

and applications are prohibited from accessing hardware resources directly. The most distinguishing

feature of the system is that the multimedia block and the secure block are isolated and communication

between these blocks is executed on the virtualization layer.

86

Figure 5.2 Concept of the secure media system.

Figure 5.3 Block diagram of the SoC

Encrypted
Contents

Digital TV

Decryption

SoC
SiP (System In Package)

Internet HDMIVideo
Decoding

Memory
Decrypted
Contents

Memory
Decryption

Key

CPU#2
CPU#1

CPU#0
I$

LM

D$

MMU CPU
DBG

FPU

L2$
512kB

Bus arbitor

Bus I/F Bus I/F

INT

TIM

UART

SIO

SRAM
32kB

Bus I/F

SIMD
Acc.

Decryptor

DMAC

Video
decoder

Display
controller

Video-decoder acc.

DDR2 DDR2

Bus I/F

External
I/F

Video/
audio
output

Flash

SiP
SoC

87

 SoC Overview

We have developed the SoC that adopts heterogeneous multicore architecture. Table 5.1 and Table

5.2 show the system block diagram and the functional features, respectively. The multicore SoC we

have developed integrates three types of processing units: two specific-purpose accelerators for a

decryption and a high-resolution multifunction video decoder; one general-purpose SIMD accelerator

for image filtering [noda07]; and three CPUs for data-flow control and data processing.

The three CPUs are connected to a common pipelined bus with a cache coherence mechanism

[kaneko04]. Each CPU is 32-bit RISC architecture and a synthesizable processor, which includes a

double floating point processing unit, a memory management unit, three 8kB memories for level one

instruction cache, level one data cache, and local memory, and a debug module. The CPU is a 7-stage

dual-issue pipelined processor.

The CPU block is a three way conventional SMP from a coherence perspective and supports a unique

CPU grouping mode that divides CPUs into several groups [kondo08]. CPUs can only be snooped from

other CPUs in the same group. The pipelined bus, which supports the modified, exclusive, shared or

invalid (MESI) protocol, is connected to a 512kB L2 cache. This pipelined bus with a large bus width (a

128-bit read bus and a 32-bit write bus, separately) reduces internal bus traffic and is directly connected

to the multi-layer system bus.

These three types of processors are interconnected on this chip with a high-bandwidth multi-layer

system bus. Three CPUs communicate via this multi-layer system bus through the L2-cache. An

embedded SRAM, internal I/O, special-purpose accelerators and the general purpose SIMD accelerator,

are all connected by this multi-layer system bus. This multi-layer system bus provides a sufficient

transfer rate by accessing these resources in parallel.

88

CPU 32-BIT RISC PROCESSOR(270MHZ) X 3 SMP
L1-CACHE:8KB(I)+8KB(D),LM:8KB, MMU, FPU

Memory L2-cache : 512kB
Internal SRAM : 32kB

General purpose accelerator SIMD Processor (270MHz)
 2b-PE x 640, I-SRAM : 32kB, D-SRAM : 80kB

Video-decode accelerator Decoding feature :
 MPEG-2 MP@HL, MP@ML
 H.264/AVC (MPEG-4 AVC) HP@L4.1, MP@L4.1
 VC-1 AP@L3
Resolution : 1920 pixels x 1080 lines

Decryption accelerator AES-CBC 128-bit, AES-CTR 128-bit,
AES-CMAC 256-bit

Bus Multi-layer bus (4-layer)
Pipelined bus/Fly-by bus

Table 5.1 Functional features of the SoC

TECHNOLOGY 90NM GENERIC CMOS (8 LAYERS)

Chip Size 6.35 x 6.35

Clock frequency Internel: 270MHz max
External bus: 135MHz

Power supply Core: 1.0V , I/O: 3.3V , DDR2: 1.8V (Vref=0.9)

Power consumption 2.0 W

SiP 29 x 29 mm2 729pin FCBGA
4 chips in a package
 - Multicore SoC : 8.00x8.00mm2
 - DDR2 SDRAM : 256MBx2, 8.39x8.58mm2
 - Flash Memory : 32MB, 5.74x7.64mm2

Table 5.2 Physical features of SoC and sip

89

 Physical Integration of the SoC and the SiP

Figure 5.4 Micrograph of SoC and SiP.

Figure 5.4 shows physical features of the SoC and the SiP. All logic circuits on the chip were

constructed using standard cells except for the memories, DDR-PHY, and PLL. The chip was fabricated

in a 90nm generic CMOS-process with eight layers of copper interconnects. The chip integrates 4.35

million gates and 1.1MB of memory in a 6.35mm x 6.35mm logic area. The die is packaged in a Flip-

Chip Ball Grid Array with 729 pins.

The SoC, two DDR2 SDRAMs and a Flash memory are enclosed in this package. The size of the

package is 29mm x 29mm (Table 5.2). The DDR2 SDRAMs are placed symmetrically against the SoC

so that the length between the SoC and each memory is equal. We adopted flat structure for the package

because of low power consumption and security.

DDR2-0

D
D

R
2-

1

FL
A

SH

SoC

29.0mm

29
.0

m
m

CPU#0
CPU#1

CPU#2

Video-decode acc.
SIMD
acc.

Decry-
ption

L2-Cache Data

SRAM

L2-Cache Tag
Peripherals

PLL
DDR2-PHY

DDR2-0

D
D

R
2-

1

FL
A

SH

SoC

29.0mm

29
.0

m
m

CPU#0
CPU#1

CPU#2

Video-decode acc.
SIMD
acc.

Decry-
ption

L2-Cache Data

SRAM

L2-Cache Tag
Peripherals

PLL
DDR2-PHY

90

 Protection by Software

Figure 5.5 Protection by software

In order to safely decrypt encrypted contents downloaded off the Internet, this multicore system is

divided into two blocks from a software point of view. One is the secure media block and the other is

the application block. In each block, each OS runs independently. This technology is the micro

clustering model in which multiple CPUs are divided into groups and multiple OSs run on each group

simultaneously.

The secure media block consists of a video decode accelerator and two CPUs and other modules. A

Real Time OS (RTOS) atomically executes decryption, image decoding and display processes. In the

application block, a general purpose OS such as Linux handles the file management, GUIs (graphical

user interfaces) and network operations. User applications also run on the general purpose OS.

To isolate the secure media block and the application block effectively, we set up a firewall between

the secure and the application blocks using software (Figure 5.5). The multicore hypervisor is software

which can provide the operating system with virtual hardware or limit its access to memory. The

multicore hypervisor also prevents application programs and the application OS from accessing

Decry-
ption
acc.

CPU

Video-
decode

acc.

Memory

Secure OS

Memory

Com. Data
App. OS

CPUCPU

Secure Media BlockApp.
Block

Fi
re

w
al

l

91

memory on the SiP. In this system, communication between the secure OS and the application OS is

realized by calling the OS communication API (application programming interface), which is the fully

protected pathway. Encrypted data obtained by software in the application block is passed to the secure

block using this secure OS communication API.

The cooperation of the multicore hypervisor and the micro clustering model improves tamper-

resistance. This software system, which consists of the multicore hypervisor and the micro clustering, is

described in Chapter 5.3.

 Micro Clustering Model

The “micro clustering model” is a novel technique that organizes multiple CPUs into groups with

multiple OSs running on each group simultaneously. CMPs (chip multiprocessor) have been widely

used, because they can achieve both high performance and low power consumption. SMPs, which

consists of identical processors, are established in server-class applications using multithreading in

order to increase throughput. In embedded CMP systems, not only SMP technology but also an

asymmetric multicore approach is vital to maximize performance.

To reduce inter OS communication overhead of the asymmetric multicore system, we designed

hardware software system in which OSs share hardware resources except CPUs while keeping hardware

costs low. And we call this hybrid operating system platform “micro clustering model”, in which

multiple processors are in a single chip and multiple OSs share key components. In this system, RTOSs

and general purpose OSs run independently on each processor. The multiple operating system platform

can make the appropriate allocation of roles such as a general purpose OS and a RTOS among multiple

OSs.

The multicore hypervisor is software for a multicore system that can provide the OSs with virtual

hardware and a way to communicate with each other OSs (Figure 5.6). When the system configuration

is changed, it supports standardizing interfaces on logical models in order to smooth out hardware

discrepancies.

92

Figure 5.6 Multicore hypervisor and micro clustering model.

The multicore hypervisor is based on a para-virtualization model, which is employed to improve

performance by presenting each VM (virtual machine) with an abstraction of the hardware that is

similar but not identical to the underlying physical hardware. Not fully emulating hardware results in

low performance overhead.

 Functions of the multicore hypervisor

The multicore hypervisor manages the collaboration and cooperation of the processors. OSs execute

the rest of the functions directly. The multicore hypervisor provides the following functions:

1. Startup: OS startup on multiple processors, control of a startup sequence and startup
timing

2. Communication/synchronization: inter-OS communication and synchronization on
multiple processors.

3. Interrupt handling: external interrupt distribution to multiple processors.

Interrupt
Controller

Boot Interrupt
Handling

OS-to-OS
Communication

Linux RTOS
OS InterfaceOS Interface

Processor-to-Processor
Communication

Multicore Hypervisor

Memory

Hardware

Software

CPU#0CPU Group0 CPU#1CPU Group1Interrupt
Controller

Boot Interrupt
Handling

OS-to-OS
Communication

Linux RTOS
OS InterfaceOS Interface

Processor-to-Processor
Communication

Multicore Hypervisor

Memory

Hardware

Software

CPU#0CPU Group0 CPU#1CPU Group1

93

 Startup sequence

The startup controls boot operations of the OSs on the processors. The configuration of the multicore

hypervisor organizes multiple processors into groups with multiple OSs, startup sequence and startup

timing for each processor.

Figure 5.7. Startup sequence.

Figure 5.7 illustrates the 2CPU startup sequence. First, the multicore hypervisor executes hardware

initialization for its operation (software platform initialization). Next, the multicore hypervisor jumps to

the entry point of OS#0. The multicore hypervisor does not execute the bootstrap loader. So, when

needed, the entry point must be the start address of the bootstrap loader. Then, OS#0 starts running on

CPU#0.

The startup timing control of OS#1 is realized by identifying the waiting sequence ID. CPU#0 sends

completion signal of the waiting sequence ID to CPU#1.

The processor status after a reset is handled in two ways:

A) One processor starts operating and the other processors remain at reset
The running processor activates the other processors.

B) All processors start operating simultaneously

reset

CPU #0

OS #0

Software Platform
Initialization

CPU #1

Hypervisor

OS #1

Hypervisor

OS
Initialization

Jump to
entry point

reset

Waiting
for startup

Software Platform
Initialization

Waiting for
Seq. IDNotification of

Seq. ID

OS
Initialization

94

Even if all processors start operating simultaneously, the specific predefined processor makes
on-going requests to other processors to synchronize.

 Inter-OS Communication

For inter-OS communication and synchronization, the multicore hypervisor supports two functions:

A) Pipe Communication
Pipe communication using a simplex byte stream provides 1 to 1 OS communication services. The

number of pipes is determined by the system configuration of the multicore hypervisor. These N pipes

have the pipe IDs from 0 to N-1. The data written to a pipe is sent to the OS on the other end via a pipe

buffer in the shared memory. All service-calls of the multicore hypervisor use non-blocking

communication. Therefore, event notifications to OSs are in call-back mode.

B) Semaphore Communication
Semaphores are a synchronization mechanism in OSs. The number of binary semaphores is

determined by the system configuration of the multicore hypervisor. These N binary semaphores have

semaphore IDs from 0 to N-1. Control data is placed in the shared memory and is operated by the

multicore hypervisor on each processor.

Pipe communication requires pipe control data and pipe buffers to be shared by processors. This

system has 8KB pipe buffers. Semaphores have semaphore control data as inter processor shared data.

Both pipes and semaphores use common event mechanisms of the multicore hypervisor. These event

mechanisms realize inter processor notifications using inter processor interrupts.

 Interrupt handling

In a multiple OS environment, external interrupts like IO interrupts need to be sent to the OS to

which they are assigned. Sometimes multiple IO interrupts share one interrupt request when hardware

resources are limited. To accommodate this requirement, the interrupt handling on the multicore

hypervisor supports a function that transfers interrupt request accepted by the processor to the other

processors. The inter OS communication are operated by the inter processor interrupt services in the

multicore hypervisor.

Figure 5.8 illustrates the interrupt control procedure. The interrupt control table defines which OS is

associated with each interrupt cause. This table is placed in the shared memory.

95

When an interrupt occurs, the multicore hypervisor accesses the interrupt control table and

determines if it needs to handle the interrupt or not. If so, the multicore hypervisor jumps to the

hypervisor interrupt handler. If not, the multicore hypervisor checks the OS ID that is associated with

the interrupt cause. When the OS ID indicates an OS that runs on this processor, the multicore

hypervisor calls the OS’s interrupt handler. When the OS ID indicates a OS that runs on another

processor, it notifies the other processor that is associated with the interrupt cause using the inter

processor interrupt.

The interrupt services are implemented via the hook method in order to minimize OS modifications.

The OS sets interrupt vector addresses on the processor using service calls to the multicore hypervisor.

When the hypervisor interrupt handler calls the OS’s interrupt handler, the multicore hypervisor uses

the interrupt vector address sent by the OS.

Figure 5.8. Interrupt operation.

 Hypervisor Operating System

Three types of OSs run on the multicore hypervisor: Linux (2.6.18), T-Kernel (1.01), TOPPERS/JSP

kernel (1.4.2). Any combination of these OSs is theoretically operable. The combination that is shown

in エラー! 参照元が見つかりません。 has been verified on our system.

Determine
Interrupt Cause

Check OS ID
Inter-CPU
Interrupt

Switch to
OS handler

Hypervisor
Interrupt handler

Interrupt

Check
Interrupt Table

96

T-Kernel is a real-time operating system for T-Engine project [tengine]. The TOPPERS/JSP kernel is

a real-time kernel that is in conformity with the µITRON4.0 specification [toppers].

PROCESSOR #0 PROCESSOR #1
Linux Linux
T-Kernel T-Kernel
T-Kernel Linux
TOPPERS/JSP TOPPERS/JSP
TOPPERS/JSP Linux

Table 5.3 Combinations of Supported OSs

 Software Architecture

Figure 5.9 shows the software architecture and the micro clustering architecture of the system. The

software architecture consists of four layers. From the bottom up, they are the hardware layer, the

hypervisor layer, the OS layer and the user layer, which includes the main task, the video task and the

audio task. The multicore hypervisor is on the hypervisor layer, which is a thin software layer inserted

between the hardware and the OS layer.

The secure media block and the application block are effectively isolated by a firewall. An

application program such as a player with a GUI reads the content data and sends it through the secure

interface. The secure interface which is strongly encrypted is the only pathway between the application

block and the secure media block. Undetectable malware on the application block cannot tamper with

the secure block’s status or attack resources on the secure media block. In addition, the multicore

hypervisor can allocate hardware resources like memory between virtual blocks. Therefore, it provides

the flexibility to adjust the system to the most suitable combination for an application’s demands.

97

Figure 5.9. Software layer configuration

 Secure media block software

Figure 5.10 illustrates the task structure in the secure media block. The main task of the secure media

block receives content data and the payment information from the application block which constructs

the secured VPN (Virtual Private Network) with content servers.

The main task in the secure media block consists of four major tasks: media task, demux task and

video decode task, audio decode task.

The main task invokes the media task and the media task invokes the demux task. The media task

receives 2KB of content data in one read from the Internet via a task in the application block, and

decrypts it using the decryptor. The decrypted plain data is sent to the demux task. The demux task

recognizes the file format and separates data into video data and audio data. The demux task starts the

video decode task and the audio decode task and sends them the separated data. The video decode task

sends data to the video decode accelerator. The audio decode task decodes the audio data using the

AAC decode middleware. All tasks in the secure block run on the T-kernel RTOS that handles time

scheduling of tasks.

Secure Media Block

Decryption

Audio
D

em
ux

Video

RTOS (T-Kernel)

Hypervisor

OS

Applications

Hardware

Multicore Hypervisor

Video
Decoder

Decry-
ptor

CPU
SIMD
Acc.

CPU

Applications
GUI

Network

TK/SE ,Linux

Application Block

CPU

Secure IF

98

Figure 5.10. Task structure in the secure media block

 Task mapping

In our system, one CPU is mapped to the application block and two CPUs are mapped to the secure

media block. Two RTOSs run in the secure media block. Figure 5.11 shows the task mapping on each

CPU. In the secure media block, AAC decode task runs on CPU#2. All tasks except AAC decode task

run on CPU#1. The video data and the audio data are demultiplexed on CPU#1. The video data is sent

to the video decode accelerator. The audio data is sent to AAC decode task on CPU#2 via inter OS

communication and is decoded there. Figure 5.12 illustrates the decoding data flow of an encrypted

MP4 container file, which consists of H.264 video data and AAC audio data.

Internet

Inter-task
communication
using T-kernel

Message Buffer
General OS RTOS

Media Task Demux Task Video Decode Task

Audio Decode Task

Inter-OS
communication

Demux
Task

Video decode
Task

Audio decode
Task

MovDec
Task

Buffer
Task

Buffer
Task

Shared
B

uffer
Shared
B

uffer

Display Output

Play Task
(H.264)

AACDec Task
(AAC)

Audio Output

DecryptionAP
Task

99

Figure 5.11. Task mapping in the secure media block

Figure 5.12. Data-flow of decoding MP4 container file.

CPU#0 CPU#1 CPU#2

#0 Module #1 Module #2 Module

Multicore Hypervisor

T-Kernel/SE
or Linux

T-Kernel #1

Main

Audio

Play

Media

Video

Master AAC Middleware

T-Kernel #2

AACDec Task

GUI
Player

…

Contents Data
From LAN

T-Kernel (RTOS)
On CPU #1

Display
Cont.

Linux or TK/SE
On CPU #0

Media
Task

Audio
Decode

TaskSecure
I/F

DDR2
SDRAM

Decryptor

Application Block Secure Media Block

Audio OutputVideo Output

HW
Video

Decoder

T-Kernel (RTOS)
On CPU #2

Demux
Task

Application
GUI

Network
Video

Decode
Task

100

Figure 5.13. Implemented evaluation system

 Evaluation system

Based on the component descriptions in Chapter 5.2, Chapter 5.3 and Chapter 5.4, we have

developed an evaluation system which can decode encrypted high definition video data and audio data

in real time (Figure 5.13). This secure media system is connected to content servers via the Internet. The

encrypted contents are distributed via a private Giga bit Ethernet line.

Figure 5.14 shows the block diagram of the evaluation system. The evaluation system board has the

SiP, a LAN controller, a USB controller and an LCD controller. The touch screen and the LCD panel

provide a man-machine interface. The HD video images are displayed via HDMI interface.

101

Figure 5.14. Block diagram of the evaluation system

 Evaluation results

To analyze the workload of the tasks, we evaluated the 2-CPU version that one CPU was mapped to

the application block and one CPU was mapped to the secure media block. The 2-CPU version puts

CPU#2 into suspend mode and all tasks run on CPU#1. The comparisons of the workload of CPU#1 in

the secure media block when playing a HD MP4 content data are shown in

 and Figure 5.15.

The video decode task uses the hardware accelerator to process HD contents. So the execution time

of the AAC decode task is the longest task in the configuration of 2-CPU version. In the proposed 3-

CPU version, this AAC decode task is assigned to CPU#2 for the load balancing. As a result, the

execution time of CPU#1 is reduced by 74%. This significantly reduces the overall execution time.

Figure 5.16 shows the workload ratio of CPU#1 and CPU#2 in the original version. The CPUs at

270MHz work only 68% of the total processing time. The rest of the time (32%) is idle.

These results show the following,

HDD

Board

SiP

ADC

HDMI

CPUs/DDR2 SDRAMs in SiP :270MHz
External BUS : 135MHz

LAN

USB

Transmitter

SoC

DDR2 Flash

DDR2SoC

DDR2 Flash

DDR2 SDRAM
CF

LCD
PanelLCD

Internet
Server

102

1. The multicore SoC and accelerators satisfy performance requirements to play streamed
HD video.
2. The multicore hypervisor has sufficient secure communication bandwidth between the
application block and the secure media block.

TASK NAME 2 CPU VERSION 3 CPU VERSION

Audio Trans task 0.1% 0.1%
Media task 31.5% 43.4%
Demux task 1.9% 2.6%
AACDec task 31.7% 0.7%
Play task 6.2% 12.7%
Buffer task 9.7% 14.2%
Video decode task 12.7% 18.1%
Audio decode task 1.0% 1.2%
(Idle) 5.2% 7.0%

Table 5.4 Workload of CPU#1 in Secure Media Block

Figure 5.15. Comparison of workload of CPU#1.

 Audio Trans task
 Media task
 Demux task
 AAC Dec task
 Mov Dec task
 Play task
 Buffer task
 Vsync task
 Video Decode task
 Audio Decode task
(Idle)

2-CPU Version

Original (3-CPU)
3-CPU Version

103

Figure 5.16. Workload balance.

The single-chip multiprocessor is a key solution to obtaining high performance without simply

increasing the clock frequency. Around 2000, thread-level parallelism (TLP) was introduced and some

chips with TLP designed for embedded systems [strik00, koyama01, nishi00]. However, those

multiprocessors were not available for general-purpose use, and their applications were limited. On the

other hand, some single-chip multiprocessors such as Stanford hydra [hammond00], IBM Power4

[diefendorff99], with cache coherency protocol, were presented. The processor in Stanford hydra relied

on invalidation-only coherence protocol and it did not meet the performance requirement. IBM Power4

employed a multichip module (MCM) package and it was not available for embedded systems because

of the large power dissipation. Compared to these multiprocessors, a single-chip multicore processor,

Renesas M32R, with advanced coherent cache, met both low power consumption and high performance

specification [kaneko03]. Thereafter, embedded single-chip multiprocessors were inspired by this work.

Renesas added SH architecture for its multicore processor lineup [ito08] and ARM produced MPcore

supported by NEC Electronics [hirata07].

0% 20% 40% 60% 80% 100%

Media

Video Decode

Demux

Audio Decode

Idle

Total

CPU #1

CPU #2

104

From the viewpoint of software development, SMP-support OSs like Linux was available. This

multiprocessor was capable of running single-processor applications without modifications. That is a

key feature of the single-chip multiprocessor.

A hybrid OS environment on a single-chip multiprocessor was introduced. This environment

supported both a real-time OS and a general-purpose OS. These two types of OSs operated

independently on a single-chip multiprocessor to improve performance of interrupt responses and

application processing [endo04]. A prototype of a multicore hypervisor was already implemented to

support two OSs.

Virtualization, it was originally from mainframe and server systems, has been spread to embedded

systems since around 1990. Virtualization is realized by emulating virtual hardware on physical

hardware in order to execute several different OSs. There are two types of hypervisor, type1

[vmwarevsphere, xenserver, hyperv, kvm] and type2 [xen]. Type1 hypervisor is suitable for embedded

systems because type1 is a special OS that executes directly on physical hardware and provides better

performance and a smaller code size. Thereafter, multicore hypervisor was begun to adopt to security

[kondo09]. Multicore hypervisor for security is now commercialized [mentoreh].

A secure multimedia system for high-definition multimedia applications using a multicore SoC with

SiP and software system virtualization has been developed. The evaluation board can decode encrypted

high definition video data and audio data in real time and go directly to HDTV. Therefore, no plain

content data can exit from the secure media block. This is an important feature of secure media systems.

To achieve a secure multimedia system, the multicore hypervisor virtualizes hardware resources and

prohibits operating systems and applications from accessing hardware resources directly. The security

of the system is the result of the cooperation between the hardware and software. The proposed system

provides a solution to protect contents and to safely deliver secure sensitive information when

processing billing in digital content delivery.

105

Conclusions

IoT has become inevitable for the infrastructures of our societies.

We proposed a compact, low power processor core and its multicore approach to realize four key

technologies for IoT: network technology to link one device another, technology to control sensors,

motors and other devices, and low power consumption technology to raise energy efficiency and

security technology.

In summary, the main contributions of this dissertation are;

• RX processor core which is suitable for IoT were introduced. The RX processor instruction set
architecture and its microarchitecture can achieve lower power consumption and boost
performance.

• Eight-core communication SoC with PCI Express interface were presented. The multicore SoC
can realize a high performance, power-aware, highly dependable network.

• A secure multimedia system by using heterogeneous multicore SoC and software virtualization
were presented.

Even though we have made significant outcomes of efficient microprocessors for IoT, there are lots

of works to be done in this research area. The following are some of the key research items based on the

conclusion of this thesis:

• Improved real-time performance of microcontrollers: Downsizing systems is a big trend of our
society. From embedded systems’ point of view, microcontrollers need to meet the demand of
larger systems. Even though, multicore approach is one of the solutions, quick response in large-
scale systems is a problem incapable of solution. It is necessary to explore hardware accelerations
of context switch or processing of an operating system.

106

• Efficient hardware modules for MBD (Model Based Development): MBD began to spread in
developing large-scale systems. It is interesting to explore how efficiently divide system functions
described in MBD into software and hardware. It is also interesting to explore appropriate and
efficient hardware modules used in this method.

107

References
[asi03] Advanced Switching Core Architecture Specification, PICMG, December 2003.

[bray91] B. K. Bray, M. J. Flynn, “Strategies for branch target buffers,” Stanford University

Technical Report No. CSL-TR-91-480, June 1991.

[bryzek14] J. Bryzek, “TSensors for Abundance, Internet of Everything and Exponential

Organizations,” in TSensors Summit Munich, 2014.

[bunda93] J. Bunda, D. Fussell, W. C. Athas, “16-Bit vs. 32-Bit Instructions for Pipelined

Microprocessors,” in Proc. the 20th International Symposium on Computer Architecture, pp. 237-246,

May 1993.

[burgess94] B. Burgess, M. Alexander, Ying-Wai Ho, S.P. Litch, S. Mallick, D. Ogden, Sung-Ho

Park, J.s Slaton, “The PowerPC 603 microprocessor: a high performance, low power, superscalar RISC

microprocessor”, in COMPCON Spring '94, Digest of Papers., pp.300-306, February 1994.

[chihung99] C. Chi-hung and Y. Jun-Li, “Load-balancing branch target cache and prefetch buffer,”

International Conference on Computer Design, 1999.

[cotterell02] S. Cotterell and F. Vahid, “Tuning of loop cache architectures to programs in embedded

system design,” in Proc. 15th International Symposium on System Synthesis, Oct. 2002.

[deos] “Dependable Embedded OS R&D Center and DEOS Project,” Available:

http://www.dependable-os.net/index-e.html

[dolphinics] “Dolphin high performance PCI and PCI Express products,” Available:

http://www.dolphinics.com/products/

[endo04] Y. Endo, N. Sugai, Y. Yamaguchi and H. Kondo, “A Hybrid OS Environment on Single-

Chip Multiprocessor – System Architecture -,” Information Processing Society of Japan, 2D-5,

Mar.2004.

http://www.dependable-os.net/index-e.html
http://www.dolphinics.com/products/

108

[gross02v] A. Gordon-Ross and F. Vahid, “Dynamic loop caching meets preloaded loop caching-a

hybrid approach,” in Proc., IEEE International Conference on VLSI in Computers and Processors,

2002

[gross02c] A. Gordon-Ross, S. Cotterell, and F. Vahid, “Exploiting Fixed Programs in Embedded

Systems: A Loop Cache Example,” in Computer Architecture Letters, 2002

[halfhill09] T. R. Halfhill, “EEMBC’s Dhrystone Killer,” Microprocessor Report, June 8 2009.

[hammond00] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and Olukoutun, “The

Stanford hydra CMP,” IEEE Micro, vol. 20, pp. 71–84, March 2000.

[hanawa10] T. Hanawa, T. Boku, S. Miura, M. Sato, K. Arimoto, “PEARL: Power-Aware,

Dependable, and High-Performance Communication Link Using PCI Express,” in Proc. IEEE/ACM

International Conference Green Computing and Communications, pp. 284-291. December 2010.

[hennessy06] J.L. Hennessy, D.A. Patterson, “Computer Architecture: A Quantitative Approach, 4th

edition Appendix J: Survey of Instruction Set Architectures”, Morgan Kaufmann, San Mateo, CA,

2006.

[hirata07] K. Hirata, “ARM11 MPCore: The streamlined and scalable ARM11 processor core,” in

Asia and South Pacific Design Automation Conference, Jan. 2007.

[hyperv] “Hyper-V”, Microsofot, Available: https://technet.microsoft.com/en-

us/windowsserver/dd448604.aspx

[infiniband] “The Infiniband architecture specification,” Infiniband Trade Association, Available:

http://www.infinibandta.org/specs/

[ito08] M. Ito, T. Hattori, Y. Yoshida, K. Hayase, T. Hayashi, O. Nishii, T. Yasu, A. Hasegawa, M.

Takada, H. Mizuno, K. Uchiyama, T. Odaka, J. Shirako, M. Mase, K. Kimura, H. Kasahara, “An 8640

MIPS SoC with Independent Power-Off Control of 8 CPUs and 8 RAMs by An Automatic Parallelizing

Compiler,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.90–91, Feb. 2008.

[kaneko03] S. Kaneko, K. Sawai, N. Masui, K. Ishimi, T. Itou, M. Satou, H. Kondo, N. Okumura, Y.

Takata, H. Takata, M. Sakugawa, T. Higuchi, S. Ohtani, K. Sakamoto, N. Ishikawa, M. Nakajima, S.

Iwata, K. Hayase, S. Nakano, S. Nakazawa, O. Tomisawa, and T. Shimizu, “A 600 MHz single-chip

multiprocessor with 4.8 GB/s internal shared pipelined bus and 512 kB internal memory,” in IEEE int.

Solid-State Circuits Conf. Dig. Tech. Papers, pp. 254-255, Feb. 2003.

http://www.infinibandta.org/specs/

109

[kaneko04] S. Kaneko, H. Kondo, N. Masui, K. Ishimi, T. Itou, M. Satou, N. Okumura, Y. Takata, H.

Takata, M. Sakugawa, T. Higuchi, S. Otani, K. Sakamoto, N. Ishikawa, M. Nakajima, S. Iwata, K.

Hayase, S. Nakano, S. Nakazawa, K. Yamada, T. Shimizu, “A 600MHz Single-Chip Multiprocessor

with 4.8GB/s Internal Shared Pipelined Bus and 512kB Internal Memory,” IEEE J. Solid-State Circuits,

vol. 39, no. 1, pp. 184-193, January 2004.

[kin97] J. Kin, M. Gupta and H. William, “The filter cache: an energy efficient memory structure,” in

Proc. Thirtieth Annual IEEE/ACM International Symposium on Microarchitecture, 1997.

[kondo08] H. Kondo, M. Nakajima, N. Masui, S. Otani, N. Okumura, Y. Takata, T. Nasu, H. Takata,

T. Higuchi, M. Sakugawa, H. Fujiwara, K. Ishida, K. Ishimi, S. Kaneko, T. Itoh, M. Sato, O.

Yamamoto, and K. Arimoto, “Design and Implementation of a Configurable Heterogeneous Multicore

SoC With 9 CPUs and 2 Matrix Processors,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 892-901,

April 2008.

[kondo09] H. Kondo, O. Yamamoto, S. Otani, N. Sugai, and T. Shimizu, “Software architecture of a

secure multimedia system using a multicore SoC and software virtualization,” in IEEE Int. Conf.

Consumer Electronics, Dig. Tech. Papers, pp. 1-2, Jan. 2009.

[koyama01] T. Koyama, K. Inoue, H. Hanaki, M. Yasue, and E. Iwata, “A 250-MHz single-chip

multiprocessor for audio and video signal processing,” IEEE J. Solid-State Circuits, vol. 36, pp. 1768–

1774, Nov. 2001.

[kvm] “Kernel Virtual Machine”, Available: http://www.linux-kvm.org/page/Main_Page

[lekatsas00] H. Lekatsas, J. Henkel, W. Wolf, “Code compression for low power embedded system

design,”in Proc. Design Automation Conference, pp. 294 - 299, 2000.

[linley10] The Linley Group, “ARM’s Digital Signal Controller,” Microprocessor Report, December

2010.

[mentoreh] “Mentor Embedded Hypervisor,” Mentor Graphics, Available:

https://www.mentor.com/embedded-software/hypervisor/, 2013

[mips13] MIPS32 microAptiv UC Processor Core Family Software User’s Manual, Revision 01.01,

2013.

[nishi00] N. Nishi, T. Inoue, M. Nomura, S. Matsushita, S. Torii, A. Shibayama, J. Sakai, T. Ohsawa,

Y. Nakamura, S. Shimada, Y. Ito, M. Edahiro, M. Mizuno, K. Minami, O. Matsuo, H. Inoue, T.

http://www.linux-kvm.org/page/Main_Page
https://www.mentor.com/embedded-software/hypervisor/

110

Manabe, T. Yamazaki, Y. Nakazawa, Y. Hirota, Y. Yamada, N. Onoda, H. Kobinata, M. Ikeda, K.

Kazama, A. Ono, T. Horiuchi, M. Motomura, M. Yamashina, and M. Fukuma, “A 1 GIPS 1Wsingle-

chip tightly-coupled four-way multiprocessor with architecture support for multiple control flow

execution,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 418–419, Feb. 2000.

[noda07] H. Noda, M. Nakajima, K. Dosaka, K. Nakata, M. Higashida, O. Yamamoto, K. Mizumoto,

T. Tanizaki, T. Gyohten, Y. Okuno, H. Kondo, Y. Shimazu, K. Arimoto, K. Saito, and T. Shimizu, “The

design and implementation of the massively parallel processor based on the matrix architecture,” IEEE

Journal of Solid-State Circuits, vol.42, No.1, pp. 183-192, January 2007.

[okamoto07] T. Okamoto, S. Miura, T. Boku, M. Sato, and D. Takahashi, “RI2N/UDP: High

bandwidth and fault-tolerant network for a PC-cluster based on multi-link Ethernet,” in The Workshop

on Communication Architecture for Clusters (CAC) in IPDPS, pp. 1–8, Apr. 2007.

[openfab] OpenFabrics, Alliance “OpenFabrics Enterprise Distribution (OFED),” Available:

http://www.infinibandta.org/specs/

[otnai11f] S. Otani, H. Kondo, I. Nonomura, M. Uemura, Y. Hayakawa, T. Oshita, S. Kaneko, K.

Asahina, K. Arimoto, S. Miura, T. Hanawa, T. Boku, and M. Sato, “An 80Gbps dependable

communication SoC with PCI Express I/F and 8 CPUs,” in IEEE International Solid-State Circuits

Conf. Dig. Tech. Papers, pp. 266-267, February 2011.

[otani11n] S. Otani, H. Kondo, I. Nonomura, T. Hanawa, S. Miura, T. Boku, “Peach: A Multicore

Communication System on Chip with PCI Express,” IEEE Micro, vol. 31, no. 6, pp.39-50, 2011.

[otani13] S. Otani, N. Ishikawa, H. Kondo, “RXv2 processor core for low-power microcontrollers,”

in Proc.Cool Chips XVI, April 2013.

[pcie06] “PCI Express Base Specification, Rev. 2.0,” PCI-SIG, December 2006. Available:

http://www.pcisig.com/

[pcie07j] “PCI Express External Cabling Specification, Rev. 1.0,” PCI-SIG, January 2007. Available:

http://www.pcisig.com/specifications/pciexpress/pcie_cabling1.0

[pcie07a] “PCI Express Card Electromechanical (CEM) Specification, Rev.2.0,” PCI-SIG, April

2007.

[qlogic] “QLogic TrueScale™ InfiniBand, the Real Value,” Available: http://www.qlogic.com/

[renesas13] RX Family RXv2 Instruction Set Architecture User’s Manual: Software, Rev.1.00, 2013

http://www.infinibandta.org/specs/
http://www.qlogic.com/

111

[sugure04] Y. Sugure, S. Takeuchi, Y. Abe, H. Yamada, K. Hirayanagi, A. Tomita, K. Hagiwara, T.

Kataoka, T. Yamazaki1 and T. Shimura, “A Very-Low-Latency Superscalar Microcontroller for

Automotive, Industrial, and PC-Peripheral Applications”, Cool Chips VII, April 2004.

[strik00] M. T. J. Strik, A. H. Timmer, J. L. van Meerbergen, and G. van Rootselaar, ”Heterogeneous

multiprocessor for the management of real-time video and graphics streams,” IEEE J. Solid-State

Circuits, vol. 35, pp. 1722–1731, Nov. 2000.

[tengine] “T-Engine Forum,” Available: http://www.t-engine.org/english/whatis.html

[toppers] “TOPPERS Project,” Available: http://www.toppers.jp/en/index.html

[vmwarevsphere] “VMware vSphere,” VMware, Available:

http://www.vmware.com/products/vsphere/

[xenserver] “XenServer,” Citrix, Available: http://www.citrix.com/products/xenserver/overview.html

[xarm10] ARMv7-M Architecture Reference Manual, Issue D, ARM Limited, 2010.

[xen] The xen project. Available: http://www.xen.org/.

http://www.toppers.jp/en/index.html

112

Publications
Major Papers
[1] S. Otani and H. Kondo, “RX v2: Renesas’s New-Generation MCU Processor,” IEICE Transactions,

Vol. E98-C, No. 7, pp. 544-549, Jul. 2015.

[2] S. Otani, H. Kondo, I. Nonomura, T. Hanawa, S. Miura and T. Boku, “Peach: A Multicore
Communication System on Chip with PCI Express,” IEEE Micro, vol. 31, no. 6, pp. 39-50, Nov.-
Dec. 2011.

[3] H. Kondo, S. Otani, M. Nakajima, O. Yamamoto, N. Masui, N. Okumura, M. Sakugawa, M. Kitao,

K. Ishimi, M. Sato, F. Fukuzawa, S. Imasu, N. Kinoshita, Y. Ota, K. Arimoto, and T. Shimizu,
“Heterogeneous Multicore SoC With SiP for Secure Multimedia Applications,” IEEE J. Solid-State
Circuits, vol. 44, no. 8, pp. 2251-2259, Aug. 2009.

[4] H. Kondo, M. Nakajima, N. Masui, S. Otani, N. Okumura, Y. Takata, T. Nasu, H. Takata, T.

Higuchi, M. Sakugawa, H. Fujiwara, K. Ishida, K. Ishimi, S. Kaneko, T. Itoh, M. Sato, O.
Yamamoto, and K. Arimoto, “Design and Implementation of a Configurable Heterogeneous
Multicore SoC With 9 CPUs and 2 Matrix Processors,” IEEE J. Solid-State Circuits, vol. 43, no. 4,
pp. 892-901, April 2008.

[5] S. Kaneko, H. Kondo, N. Masui, K. Ishimi, T. Itou, M. Satou, N. Okumura, Y. Takata, H. Takata,

M. Sakugawa, T. Higuchi, S. Ohtani, K. Sakamoto, N. Ishikawa, M. Nakajima, S. Iwata, K. Hayase,
S. Nakano, S. Nakazawa, K. Yamada and T. Shimizu, "A 600MHz Single-Chip Multiprocessor with
4.8GB/s Internal Shared Pipelined Bus and 512kB Internal Memory," IEEE J. Solid-State Circuits,
vol. 39, no. 1, pp. 184-193, Jan. 2004.

Major Conferences

[1] S. Otani, N. Ishikawa, H. Kondo, “RXv2 processor core for low-power microcontrollers,” in Proc.
Cool Chips XVI, April 2013.

[2] S. Otani, H. Kondo, I. Nonomura, Ikeya, A., K. Asahina, K. Arimoto, S. Miura, T. Hanawa, T.
Boku, and M. Sato, ''An 80 Gbps dependable multicore communication SoC with PCI express I/F
and intelligent interrupt controller,'' in IEEE int. Cool Chips XIV, pp. 1-3, 20-22, April 2011.

[3] S. Otani, H. Kondo, I. Nonomura, A. Ikeya, M. Uemura, Y. Hayakawa, T. Oshita, S. Kaneko, K.
Asahina, K. Arimoto, S. Miura, T. Hanawa, T. Boku, and M. Sato, “An 80Gb/s Dependable
Communication SoC with PCI Express I/F and 8 CPUs,” in IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers, pp. 266-267, Feb. 2011.

[4] H. Kondo, O. Yamamoto, S. Otani, N. Sugai, and T. Shimizu, “Software architecture of a secure
multimedia system using a multicore SoC and software virtualization,” in IEEE Int. Conf.
Consumer Electronics, Dig. Tech. Papers, pp. 1-2, Jan. 2009.

113

[5] H. Kondo, M. Nakajima, S. Otani, O. Yamamoto, N. Masui, N. Okumura, M. Sakugawa, M. Kitao,
K. Ishimi, M. Sato, F. Fukuzawa, K. Inaoka, Y. Saito, K. Arimoto and T. Shimizu, “Heterogeneous
multicore SoC for secure multimedia applications,” in Custom Integrated Circuits Conf. Dig. Tech.
Papers, pp. 675-678, Sept. 2008.

[6] S. Kaneko, K. Sawai, N. Masui, K. Ishimi, T. Itou, M. Satou, H. Kondo, N. Okumura, Y. Takata, H.

Takata, M. Sakugawa, T. Higuchi, S. Ohtani, K. Sakamoto, N. Ishikawa, M. Nakajima, S. Iwata, K.
Hayase, S. Nakano, S. Nakazawa, O. Tomisawa, and T. Shimizu, “A 600 MHz single-chip
multiprocessor with 4.8 GB/s internal shared pipelined bus and 512 kB internal memory,” in IEEE
int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 254-255, Feb. 2003.

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Chapter 1
	Introduction
	Chapter 2
	Applications and System Trends
	2.1 Four Key Technologies that support IoT
	2.2 Research Goals

	Chapter 3
	Low-Power MCU Processor Architecture
	3.1 Microcontroller Basic Strcture
	3.2 Basic Design Approach for Energy Saving
	3.3 Introduction to Low-Power Architecture
	3.4 Core features to boost performance
	3.4.1 RX Architecture Overview
	3.4.2 RXv2 Pipeline Design
	3.4.3 Pipeline integrated FPU
	3.4.4 DSP with wide accumulators

	3.5 Energy saving architecture
	3.5.1 Embedded memory system architecture
	3.5.2 Improving instruction fetch effectiveness
	3.5.3 AFU: Advanced Fetch Unit
	3.5.4 Processor performance and power consumption
	3.5.5 Core features to make code compact

	3.6 RX instruction set architecture
	3.6.1 Overview of Instruction set
	3.6.2 Optimized op codes leads to superior code density
	3.6.3 Data Transfer instruction
	3.6.4 1byte conditional branch instruction
	3.6.5 Compare instruction
	3.6.6 3-operand instruction
	3.6.7 Registers
	3.6.8 Code size evaluation

	3.7 Related Works
	3.8 Summary
	3.9 List of RX instruction Set
	3.9.1 Arithmetic and logical instructions
	3.9.2 Floating-point operation instructions
	3.9.3 Data Transfer instructions
	3.9.4 Branch Instructions
	3.9.5 Bit manipulation instructions
	3.9.6 String manipulation instructions
	3.9.7 System control instructions
	3.9.8 DSP function instructions

	Chapter 4
	PEACH: A Multicore Communication SoC with PCI Express I/F
	4.1 Introduction
	4.2 PEACH Architecture
	4.2.1 PEACH overview
	4.2.2 Chip Architecture
	4.2.3 PCI Express interface with up-configuration function
	4.2.4 PCI Express up-configuration function
	4.2.5 Intelligent Interrupt Controller

	4.3 Network Managing
	4.3.1 Data Flow Control
	4.3.2 PEARL network route construction
	4.3.3 Network system power management

	4.4 Evaluation System
	4.4.1 PEARL system board
	4.4.2 Switching time of PCI Express up-configuration function

	4.5 Related Works
	4.6 Summary

	Chapter 5
	A Heterogeneous Multicore SoC for Secure Multimedia Applications
	5.1 Introduction
	5.2 Secure Media System
	5.2.1 Concept of the secure media system
	5.2.2 SoC Overview
	5.2.3 Physical Integration of the SoC and the SiP
	5.2.4 Protection by Software

	5.3 Multicore Hypervisor
	5.3.1 Micro Clustering Model
	5.3.2 Functions of the multicore hypervisor
	5.3.3 Startup sequence
	5.3.4 Inter-OS Communication
	5.3.5 Interrupt handling
	5.3.6 Hypervisor Operating System

	5.4 System Software
	5.4.1 Software Architecture
	5.4.2 Secure media block software
	5.4.3 Task mapping

	5.5 System Evaluation
	5.5.1 Evaluation system
	5.5.2 Evaluation results

	5.6 Related Works
	5.7 Summary

	Chapter 6
	Conclusions
	6.1 Future work

	References
	Publications
	空白ページ

