475 research outputs found

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper

    Efficient chain structure for high-utility sequential pattern mining

    Get PDF
    High-utility sequential pattern mining (HUSPM) is an emerging topic in data mining, which considers both utility and sequence factors to derive the set of high-utility sequential patterns (HUSPs) from the quantitative databases. Several works have been presented to reduce the computational cost by variants of pruning strategies. In this paper, we present an efficient sequence-utility (SU)-chain structure, which can be used to store more relevant information to improve mining performance. Based on the SU-Chain structure, the existing pruning strategies can also be utilized here to early prune the unpromising candidates and obtain the satisfied HUSPs. Experiments are then compared with the state-of-the-art HUSPM algorithms and the results showed that the SU-Chain-based model can efficiently improve the efficiency performance than the existing HUSPM algorithms in terms of runtime and number of the determined candidates

    New Approaches to Frequent and Incremental Frequent Pattern Mining

    Full text link
    Data Mining (DM) is a process for extracting interesting patterns from large volumes of data. It is one of the crucial steps in Knowledge Discovery in Databases (KDD). It involves various data mining methods that mainly fall into predictive and descriptive models. Descriptive models look for patterns, rules, relationships and associations within data. One of the descriptive methods is association rule analysis, which represents co-occurrence of items or events. Association rules are commonly used in market basket analysis. An association rule is in the form of X → Y and it shows that X and Y co-occur with a given level of support and confidence. Association rule mining is a common technique used in discovering interesting frequent patterns in large datasets acquired in various application domains. Having petabytes of data finding its way into data storages in perhaps every day, made many researchers look for efficient methods for analyzing these large datasets. Many algorithms have been proposed for searching for frequent patterns. The search space combinatorically explodes as the size of the source data increases. Simply using more powerful computers, or even super-computers to handle ever-increasing size of large data sets is not sufficient. Hence, incremental algorithms have been developed and used to improve the efficiency of frequent pattern mining. One of the challenges of frequent itemset mining is long running times of the algorithms. Two major costs of long running times of frequent itemset mining are due to the number of database scans and the number of candidates generated (the latter one requires memory, and the more the number of candidates there are the more memory space is needed. When the candidates do not fit in memory then page swapping will occur which will increase the running time of the algorithms). In this dissertation we propose a new implementation of Apriori algorithm, NCLAT (Near Candidate-less Apriori with Tidlists), which scans the database only once and creates candidates only for level one (1-itemsets) which is equivalent to the total number of unique items in the database. In addition, we also show the results of choice of data structures used whether they are probabilistic or not, whether the datasets are horizontal or vertical, how counting is done, whether the algorithms are computed single or parallel way. We implement, explore and devise incremental algorithm UWEP with single as well as parallel computation. We have also cleaned a minor bug in UWEP and created a more efficient version UWEP2, which reduces the number of candidates created and the number of database scans. We have run all of our tests against three datasets with different features for different minimum support levels. We show both frequent and incremental frequent itemset mining implementation test results and comparison to each other. While there has been a lot of work done on frequent itemset mining on structured data, very little work has been done on the unstructured data. So, we have created a new hybrid pattern search algorithm, Double-Hash, which performed better for all of our test scenarios than the known pattern search algorithms. Double-Hash can potentially be used in frequent itemset mining on unstructured data in the future. We will be presenting our work and test results on this as well

    A study on incremental mining of frequent patterns

    Get PDF
    Data generated from both the offline and online sources are incremental in nature. Changes in the underlying database occur due to the incremental data. Mining frequent patterns are costly in changing databases, since it requires scanning the database from the start. Thus, mining of growing databases has been a great concern. To mine the growing databases, a new Data Mining technique called Incremental Mining has emerged. The Incremental Mining uses previous mining result to get the desired knowledge by reducing mining costs in terms of time and space. This state of the art paper focuses on Incremental Mining approaches and identifies suitable approaches which are the need of real world problem.Keywords: Data Mining, Frequent Pattern, Incremental Mining, Frequent Pattern Minung, High Utility Mining, Constraint Mining

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version
    corecore