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A review of associative classification mining

FAD I THABTAH

Department of Computing and Engineering, University of Huddersfield, HD1 3DH, UK;

e-mail: f.thabtah@hud.ac.uk

Abstract

Associative classification mining is a promising approach in data mining that utilizes the

association rule discovery techniques to construct classification systems, also known as

associative classifiers. In the last few years, a number of associative classification algorithms

have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms

employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule

evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associa-

tive classification techniques with regards to the above criteria. Finally, future directions in asso-

ciative classification, such as incremental learning and mining low-quality data sets, are also

highlighted in this paper.

1 Introduction

Associative classification (AC) is a branch of a larger area of scientific study known as data

mining. Fayyad et al. (1998) define data mining as one of the main phases in knowledge discovery

from databases (KDD), which extracts useful patterns from data. AC integrates two known data

mining tasks, association rule discovery and classification, to build a model (classifier) for the pur-

pose of prediction. Classification and association rule discovery are similar tasks in data mining,

with the exception that the main aim of classification is the prediction of class labels, while asso-

ciation rule discovery describes correlations between items in a transactional database. There are

other differences discussed further in Section 2.2. In the last few years, association rule discovery

methods have been successfully used to build accurate classifiers, which have resulted in a branch

of AC mining (Ali et al., 1997; Liu et al., 1998). Several studies (Li et al., 2001; Yin & Han, 2003;

Thabtah et al., 2004) have provided evidence that AC algorithms are able to extract classifiers

competitive with those produced by decision trees (Quinlan, 1993, 1998), rule induction (Quinlan

& Cameron-Jones, 1993; Cohen, 1995) and probabilistic (Duda & Hart, 1973) approaches.

Rule induction approaches, such as IREP (Furnkranz & Widmer, 1994) and RIPPER (Cohen,

1995), derive local sets of rules in a greedy manner. The derived rules are local because when a rule

is discovered, all training data objects associated with it are discarded and the process continues

until the rule found has an unacceptable error rate. This means rules are discovered from parti-

tions of the training data set and not from the whole training data set once. The search process

for the rules is greedy as most rule induction algorithms normally look for the rule that maximizes

a statistical measure. For example, the IREP rule induction algorithm constructs the rules based

on first-order inductive learner (FOIL)-gain measure (Quinlan & Cameron-Jones, 1993). This

means that the attribute value in the training data set with the best FOIL-gain is chosen first as

a member of the current rule left-hand side (antecedent) and the process is repeated until a stop-

ping condition is met. In contrast to rule induction approaches, which greedily and locally derive

rules, AC explores the complete training data set and aims to construct a global classifier.
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To build a classifier using an AC algorithm, the complete set of class association rules (CARs)

is first discovered from the training data set and a subset is selected to form the classifier. The

selection of such a subset can be accomplished in many ways, for example in the classification

by association rule (CBA; Liu et al., 1998) and classification based on multiple rules (CMAR;

Li et al., 2001) algorithms, the selection of the classifier is made using the database coverage

heuristic (Liu et al., 1998), which evaluates the complete set of CARs on the training data set

and considers rules that cover a certain number of training data objects. However, the live-

and-let-live (L3; Baralis & Torino, 2002) algorithm uses a lazy pruning approach to build the

classifier. Once the classifier is constructed, its predictive power is then evaluated on test data

objects to forecast their class labels.

Several AC techniques have been proposed in recent years, including Dong et al. (1999),

Li et al. (2001), Baralis & Torino (2002), Yin & Han (2003) and Thabtah et al. (2004, 2005). These

techniques use several different approaches to discover frequent itemsets (these are attribute

values that pass a user-defined threshold known as minimum support), extract rules, rank rules,

store rules, prune redundant or ‘harmful’ rules (rules that lead to incorrect classification) and

classify new test objects. The goal of this paper is to survey and compare the state-of-the-art

AC techniques with reference to the above criteria.

The rest of the paper is organized as follows. The AC problem and an example to demonstrate

its main steps are given in Section 2. Different methods used to discover potential rules and

pruning methods are surveyed in Sections 3 and 4, respectively. Common rule sorting techniques

and procedures that predict test data objects are discussed in Sections 5 and 6, respectively.

Sections 7 and 8 are devoted to common evaluation measures for associative classifiers and future

directions in AC mining. Finally, conclusions are given in Section 9.

2 Associative classification

2.1 Associative classification problem

AC is a special case of association rule discovery in which only the class attribute is considered in

the rule’s right-hand side (consequent); for example, in a rule such as X ! Y, Y must be a class

attribute. One of the main advantages of using a classification based on association rules over

classic classification approaches is that the output of an AC algorithm is represented in simple

if–then rules, which makes it easy for the end-user to understand and interpret it. Moreover,

unlike decision tree algorithms, one can update or tune a rule in AC without affecting the

complete rules set, whereas the same task requires reshaping the whole tree in the decision tree

approach. Let us define the AC problem, where a training data set T has m distinct attributes

A1, A2, . . ., Am and C is a list of classes. The number of rows in T is denoted |T|. Attributes can

be categorical (meaning they take a value from a finite set of possible values) or continuous (where

they are real or integer). In the case of categorical attributes, all possible values are mapped to

a set of positive integers. For continuous attributes, a discretization method is used.

Definition 1 A row or a training object in T can be described as a combination of attribute

names Ai and values aij, plus a class denoted by cj.

Definition 2 An item can be described as an attribute name Ai and a value ai, denoted h(Ai, ai)i.
Definition 3 An itemset can be described as a set of disjoint attribute values contained in

a training object, denoted h(Ai1, ai1), . . ., (Aik, aik)i.
Definition 4 A ruleitem r is of the form hitemset, ci, where c 2 C is the class.

Definition 5 The actual occurrence (actoccr) of a ruleitem r in T is the number of rows in T that

match the itemset of r.

Definition 6 The support count (suppcount) of ruleitem r is the number of rows in T that match

the itemsets of r, and belong to the class c of r.

Definition 7 The occurrence of an itemset i (occitm) in T is the number of rows in T that

match i.
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Definition 8 An itemset i passes the minsupp threshold if (occitm(i)/|T|)�minsupp.

Definition 9 A ruleitem r passes the minsupp threshold if (suppcount(r)/|T|)�minsupp.

Definition 10 A ruleitem r passes the minconf threshold if (suppcount(r)/actoccr(r))�minconf.

Definition 11 Any itemset i that passes the minsupp threshold is said to be a frequent itemset.

Definition 12 Any ruleitem r that passes the minsupp threshold is said to be a frequent ruleitem.

Definition 13 A CAR is represented in the form: (Ai1, ai1) ^. . .^ (Aik, aik) ! c, where the left-

hand side (antecedent) of the rule is an itemset and the consequent is a class.

A classifier is a mapping form H : A ! Y, where A is a set of itemsets and Y is the set of classes.

The main task of AC is to construct a set of rules (model) that is able to predict the classes of pre-

viously unseen data, known as the test data set, as accurately as possible. In other words, the goal

is to find a classifier h e H that maximizes the probability that h(a) ¼ y for each test object.

2.2 Solution scheme and example

An AC task is different from association rule discovery. The most obvious difference between

association rule discovery and AC is that the latter considers only the class attribute in the rules

consequent. However, the former allows multiple attribute values in the rules consequent. Table 1

shows the main important differences between AC and association rule discovery, where overfit-

ting prevention is essential in AC, but not in association rule discovery as AC involves using a

subset of the discovered set of rules for predicting the classes of new data objects. Overfitting often

occurs when the discovered rules perform well on the training data set and badly on the test data

set. This can be due to several reasons such as a small amount of training data objects or noise.

The problem of constructing a classifier using AC can be divided into four main steps,

as follows.

* Step 1: The discovery of all frequent ruleitems.
* Step 2: The production of all CARs that have confidences above the minconf threshold from

frequent ruleitems extracted in Step 1.
* Step 3: The selection of one subset of CARs to form the classifier from those generated at Step 2.
* Step 4: Measuring the quality of the derived classifier on test data objects.

Figure 1 shows the general steps used in the AC approach, in which the first step is computa-

tionally expensive because it is similar to the discovery of frequent itemsets in association rule dis-

covery, which is a challenging problem (Agrawal & Srikant, 1994; Savasere et al., 1995; Zaki et al.,

1997; Han et al., 2000; Lim et al., 2000). Methods that find the complete set of frequent ruleitems,

generally separate ruleitems that are potentially frequent and then work out their frequencies in

the training data set (Step 1). Once all frequent ruleitems are identified, for each ruleitem that

passes the minconf threshold, a single rule is generated of the form, X ! C, where C is the largest

frequency class associated with itemset X in the training data set (Step 2).

The problem of generating the classification rules is straightforward, once all frequent ruleitems

are identified, as no support counting or scanning of the training data set is required. In Step 3,

a selection of an effective ordered subset of rules is accomplished using various methods discussed

in this paper, and in the final step the quality of the selected subset is measured on an independent

test data set.

Let us explain the discovery of frequent ruleitems and the construction of the classifier in AC

using an example. Consider the training data set shown in Table 2, which represents three

attributes, A1 (a1, b1, c1), A2(a2, b2, c2), and A3(a3, b3, c3), and two classes (y1, y2). Assuming

minsupp ¼ 20% and minconf ¼ 80%, the frequent one, two and three ruleitems for Table 1 are

shown in Table 3, along with the relevant supports and confidences. In cases where a ruleitem is

associated with multiple classes, only the class with the largest frequency is considered by most

current AC methods. Frequent ruleitems in bold in Table 3 represent those that pass the

confidence and support thresholds, which are converted into rules. Finally, the classifier is

constructed using an ordered subset of these rules.
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3 Discovery techniques for frequent ruleitems

The step of finding frequent ruleitems in AC is a hard step that necessitates large amounts of

computation (Liu et al., 1998, 2000; Li et al., 2001). Several different approaches to discover fre-

quent ruleitems from a data set have been adopted from association rule discovery. For example,

some AC methods (Liu et al., 1998; Meretakis & Wüthrich, 1999; Zaïane & Antonie, 2002)

employ the Apriori candidate generation method (Agrawal & Srikant, 1994). Other AC methods

(Li et al., 2001; Baralis & Torino, 2002; Baralis et al., 2004) adopt the FP-growth approach (Han

et al., 2000) and algorithms such as CPAR (Yin & Han; 2003) use a greedy strategy presented in

FOIL (Quinlan & Cameron-Jones, 1993). Finally, AC algorithms (Thabtah et al., 2004, 2005)

extend tid-lists intersections methods of vertical association rule data layout (Zaki et al., 1997;

Zaki & Gouda, 2003) to solve classification benchmark problems. This section focuses on these

different approaches to discover ruleitems.

3.1 Candidate generation

In the Apriori association rule discovery algorithm (Agrawal & Srikant, 1994), the discovery of

frequent itemsets is accomplished in levels, where in each level Apriori uses itemsets found to be

frequent in the previous level to produce new candidate itemsets. Apriori utilizes the ‘down-

ward-closure’ property with the aim of speeding up the search process by reducing the number

of candidate itemsets at any level. The ‘downward-closure’ property ensures that all subsets of

a frequent itemset must be frequent as well. If an itemset is infrequent at any level, it will be

removed because any addition of items to it will not make it frequent. Apriori uses this property

to prune candidate itemsets that have infrequent subsets before counting their support at any

Table 1 The main differences between AC and association rule discovery

Association rule discovery Associative classification

No class attribute involved (unsupervised

learning)

A class must be given (supervised learning)

The aim is to discover associations between items

in a transactional database

The aim is to construct a classifier that can

forecast the classes of test data objects

There could be more than one attribute in the

consequent of a rule

There is only attribute (class attribute) in the

consequent of a rule

Overfitting is usually not an issue Overfitting is an important issue

Figure 1 Associative classification steps
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level. This should reduce the time to produce and compute the support for all items combinations

in the transactional database.

The CBA algorithm was one of the first AC algorithms that employed an Apriori candidate

generation step to find the rules. After its introduction, many other algorithms adopted its

approach, see, for example, Meretakis and Wüthrich (1999), Liu et al. (2001), Zaïane & Antonie

(2002), Antonie & Zaïane (2004) and Xu et al. (2004). The bottleneck of Apriori candidate genera-

tion is the task of finding frequent itemsets from all possible candidate itemsets at each level. AC

techniques that use the Apriori candidate generation step to discover frequent ruleitems, generally

achieve good performance when the size of the candidate ruleitems is small. In circumstances

involving highly correlated classification data sets with many attributes, and a very low support

threshold, the potential number of candidate ruleitems at each level can be enormous and these

algorithms may consume considerable CPU time and storage.

For instance, the CBA algorithm requires a complete pass over the training data set to find

candidate ruleitems at any level and therefore, to find candidate ruleitems at any level, a merge

of all possible combinations of frequent ruleitems found in the previous level and a complete

scan of the training data set to update frequencies of candidate ruleitems at the current level

are performed. This process, of repeatedly scanning the database, is costly with regards to proces-

sing time.

Furthermore, AC algorithms often experience exponential growth in the number of rules. This

is because of the association rule discovery approaches used, which explore all possible associa-

tions between attribute values in a database. This particular problem is clearly seen when compar-

ing the size of rule induction classifiers with those produced by AC methods. This is made

apparent by various researches (Liu et al., 2000; Li et al., 2001), which point out that the increased

number of rules may cause serious problems such as overfitting the training data set and mislead-

ing classification (occurring when multiple rules in the classifier cover a single test object and have

different class labels), as well as high CPU and memory requirement.

Table 2 Training data set

rowids A1 A2 A3 class

1 a1 a2 b3 y1
2 a1 a2 c3 y2
3 a1 b2 b3 y1
4 a1 b2 b3 y2
5 b1 b2 a3 y2
6 b1 a2 b3 y1
7 a1 b2 b3 y1
8 a2 a2 b3 y1
9 c1 c2 c3 y2

10 a1 a2 b3 y1

Table 3 Potential classifier for Table 2

Frequent ruleitems

Antecedent Consequent/class Supp Conf

ha2, b3i y1 4/10 4/4

ha1, a2b3i y1 3/10 3/3

hb3i y1 6/10 6/7

ha1, b3i y1 5/10 5/6

ha2i y1 4/10 4/5

ha1, a2i y1 3/10 3/4

ha1i y1 5/10 5/7
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3.2 Frequent pattern tree

To improve the efficiency of the Apriori candidate generation step, at least three AC methods,

CMAR, L3 and L3G (Baralis et al., 2004), use approaches based on the frequent pattern (FP)-

growth method (Han et al., 2000) to discover rules. The FP-growth method builds a highly dense

FP-tree for the training data set, where each training object is represented by at most one path in

the tree. As a result, the length of each path is equal to the number of the frequent items in the

transaction representing that path. This type of representation is very useful for the following

reasons. (1) All of the frequent itemsets in each transaction of the original database are given

by the FP-tree, and because there is much sharing between frequent items, the FP-tree is smaller

in size than the original database. (2) The FP-tree construction requires only two database scans,

where in the first scan, frequent itemsets along with their support in each transaction are

produced, and in the second scan, the FP-tree is constructed.

Once the FP-tree is built, a pattern growth method is used to find the rules by using patterns of

length one in the FP-tree. For each frequent pattern, all other possible frequent patterns

co-occurring with it in the FP-tree (using the pattern links) are generated and stored in a condi-

tional FP-tree. The mining process is performed by concatenating the pattern with those produced

from the conditional FP-tree. The mining process used by the FP-growth algorithm is not Apriori-

like in that there is no candidate rule generation. One primary weakness of the FP-growth method

is that there is no guarantee that the FP-tree will always fit in the main memory, especially in cases

where the mined database is dimensionally large.

The CMAR, L3 and L3G algorithms store rules in a prefix tree data structure known as a

CR-tree. The CR-tree is used to store rules in descending order according to the frequency of

attribute values appearing in the antecedent. Once a rule is generated, it will be inserted into

the CR-tree as a path from the root node, and its support, confidence and class are stored at

the last node in the path. When a candidate rule that has common features with an already

existing rule in the tree is inserted, the path of the existing rule in the tree is extended to reflect

the addition of the new rule.

Algorithms that use the CR-tree consider the common attribute values contained in the rules,

which use less storage if compared with CBA. In addition, rules can be retrieved efficiently as

CR-tree indices rules. Experimental tests reported in Li et al. (2001) on different data sets from

the University of California (UCI) data collection (Merz & Murphy, 1996) show that the classi-

fiers generated by CMAR are more accurate than those of C4.5 (Quinlan, 1993) and the CBA

on 50% of the benchmark problems considered. Furthermore, the results revealed that 50–60%

space can be saved in the main memory using the CR-tree when compared with the CBA.

3.3 Greedy approach

For each class in the training data set, the FOIL algorithm (Quinlan & Cameron-Jones, 1993)

builds rules heuristically from training literals, also known as items, using the FOIL-gain method.

The FOIL-gain method measures the information gained from adding a condition to the current

rule. For class c, assume that |P0| positive data objects and |N0| negative data objects in the training

data set are associated with it. Positive data objects for c are those training objects that contain c,

whereas c negative data objects are those training objects where class c never occurs. FOIL starts

constructing a rule for each class (c) by adding a literal (l) into its antecedent. After adding l, there

will be |P| positive and |N| negative training data objects that match the current rule, l ! c:

FOIL� gainðlÞ ¼ jPj log
jPj

jPj þ jNj � log
jP0j

jP0j þ jN 0j
� �

: ð3:1Þ

The FOIL algorithm seeks the literal that yields the largest FOIL-gain for a particular class in the

training data set. Once that literal is identified, all training objects associated with it are discarded

and the process is repeated until positive data objects for the current class are covered. At that

point, another class is selected and the same process is repeated for it, and so forth.
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For multi-class classification problems, FOIL divides the training data set according to class

labels. It may be argued that FOIL generates local classifiers rather than global ones, as rules

are greedily extracted from different local parts of the training data set instead of the whole set

(Yin & Han, 2003). Predictive quality is potentially limited too, as selecting only a single literal

may not always be the best choice because several literals could have close FOIL-gain values.

An AC technique called CPAR has been proposed, which improves upon the FOIL strategy for

generating rules. CPAR differs from FOIL in that it does not remove all data objects associated

with the literal once it is determined; instead, weights of data objects associated with the literal are

reduced by a multiplying factor and the process is repeated until all positive data objects for the

current class are covered. This weighted version of FOIL extracts more rules, as a training object

is allowed to be covered by more than just a single rule, similar to association rule discovery

approaches.

The search process for the best rule condition is a time-consuming process for CPAR, because

the FOIL-gain for every possible literal needs to be calculated in order to determine the best literal

gain. As a result, CPAR uses a PNArray (Gehrke et al., 1998) data structure to store the necessary

information for the process of calculating each literal FOIL-gain. PNArray stores the numbers of

positive and negative data objects that match the current rule’s condition before adding the literal

and then after appending the literal to the rule. Finally, CPAR derives not only the best FOIL-

gain literal, but also similar ones close to it, solving the problem of multiple literals with similar

FOIL-gain measurements. Empirical studies conducted using three popular classification algo-

rithms (C4.5, RIPPER, CBA) in Yin & Han (2003) against data sets from UCI data collection

have shown that CPAR achieves on average þ2.24%, þ1.83% and þ0.48% higher classification

accuracies than RIPPER, C4.5 and CBA, respectively.

3.4 Confidence rules

The support threshold is the key to success in both association rule discovery and AC approaches

to data mining. However, for certain application data, some rules with large confidence are ignored

simply because they do not have enough support. Classic AC algorithms use one support threshold

to control the number of rules derived andmay be unable to capture high confidence rules that have a

low support. In order to explore a large search space and to capture as many high confidence rules as

possible, such algorithms commonly tend to set a very low support threshold, which may give rise to

problems such as overfitting, generation of statistically low support rules and a large number of

candidate rules with high CPU time and storage requirements.

In response to this issue, an approach that suspends the support threshold and uses only the

confidence threshold to discover rules has been proposed in Wang et al. (2000, 2001). This

confidence-based approach aims to extract all rules in a data set that pass the minconf threshold.

Without the support threshold, the candidate generation step is no longer applicable and the

‘downward-closure’ property (Agrawal et al., 1993) that has been heavily employed by support-

based techniques is also invalid. This is because the downward-closure property depends on the

support threshold to prune infrequent candidate itemsets and to avoid unnecessary support

computation, and because the support threshold is suspended, thus the downward-closure prop-

erty cannot be used. It is necessary to introduce an analogous property to downward-closure, in

order to keep the mining process efficient and scalable.

As a result, a new property called ‘existential upward-closure’ has been introduced in the AC

approach based on a decision tree called the association-based decision tree algorithm (ADT;

Wang et al., 2000). The best way to explain the existential upward-closure property is by using

an example. Consider the following three rules:

R1, income is high then credit-card ¼ yes;

R2, income is high and age> 55 then credit ¼ yes;

R3, income is high and age� 55 then credit ¼ yes.
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Assume that R1 has a 70% confidence. A rule h(X,x),(Ai, ai)i ! c is an Ai-specialization of (X,x)

! c if ai is a value of Ai. Because R2 and R3 are specializations of R1 and are mutually exclusive,

then if one condition implies negative confidence, the other condition must imply positive

confidence. Thus, at least one rule of R2 and R3 has as much confidence as R1. In other words,

if an attribute Ai is not in a rule Ri: x ! c and Ri is confident, so is some Ai-specialization of Ri.

The ADT performs a level-wise search to find candidate confident rules where at each level the

database is completely scanned. Starting from K-rules where K represents the number of non-class

attributes in the database, the existential upward-closure property is used as follows. A candidate

(K� 1) rule, Ri, is produced if for every attribute Ai not in Ri, some Ai-specialization of Ri is con-

fident. This rule generation phase is implemented using expressions in relational algebra. No more

information is given on how these expressions have been implemented.

The ADT uses pessimistic error pruning (Quinlan, 1987), which constructs a decision-tree-like

structure, known as an ADT-tree, using the generated CARs and places general rules at the higher

levels and specific rules at the lower levels of the tree. In the prediction step, the ADT selects the

highest ranked rule that matches a test object; a procedure that ensures each object has only one

covering rule. The bottleneck occurs during the extraction of the huge numbers of possible

candidate confidence rules, especially for high-dimensional training data sets. Several experiments

conducted in Wang et al. (2000) against 21 data sets from the UCI data collection indicate that

confidence-based AC algorithms such as the ADT scale well in terms of classification

accuracy when compared with the C4.5 and CBA algorithms. In particular, the ADT accom-

plished þ2.8 and þ1.7 higher accuracy rates than C4.5 and the CBA, respectively, on the data

sets considered.

3.5 Multi-support approach

In some classification data, class labels are unevenly distributed, causing the generation of many

rules for the dominant classes and few and sometimes no rules for the minority classes. Using one

global support threshold may be ineffective for data sets with uneven class frequencies because

when the user sets the minsupp threshold above some class label frequencies, there will be no rules

retrieved for such classes, and some high confidence rules may be discarded.

To treat such a shortcoming, extensions to some of the existing AC approaches, such as the

CBA and CMAR, have been developed. These extensions have resulted in a new approach that

considers the class distribution frequencies in a data set, and assigns a different support threshold

to each class. For instance, the CBA (2) multiple support algorithm (Liu et al., 2000) modifies the

original CBA algorithm to employ multiple class supports by assigning a different support thresh-

old to each class in the training data set based on the classes frequencies. This assignment is done

by distributing the global support threshold to each class corresponding to its number of occur-

rences in the training data set, and thus considers the generation of rules for class labels with

low frequencies in the training data set.

Another iterative multi-support approach, which analyses the result of the previous rule extrac-

tion cycle and updates the support threshold for each class, has been proposed in Baralis & Torino

(2002). This iterative approach initially assigns a support threshold to each available class as in

Liu et al. (2000). Then by analysing the number of rules generated at specific rule generation

cycles, supports for class labels with a low number of rules are lowered by a multiplying factor

during the next cycle. Consequently, this ensures that sufficient numbers of rules are produced

for each class.

These multiple support AC techniques use either Apriori or FP-growth methods to find

frequent ruleitems and are quite similar to an earlier developed association rule discovery algo-

rithm called MSapriori (Liu et al., 1999). In fact, MSapriori was one of the first association

rule algorithms that introduced the idea of using multiple supports to solve the problem of

discarding rare items in databases. An empirical study (Liu et al., 2000) using 34 classification

benchmarks from the UCI data collection revealed that, on average, the error rate of CBA (2)
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is lower than that of the CBA and C4.5. In particular, the CBA (2) won–loss–tied records against

the CBA and C4.5 are 19–13–2 and 20–12–2, respectively.

3.6 Multipass atomic rules using dynamic support and adaptive confidence

A recently proposed approach called classification based on atomic association rules (CAAR;

Xu et al., 2004) mines only atomic CARs from image block data sets. An atomic rule takes the

form of I ! C, where the antecedent contains a single item. CAAR has been designed for image

block classification data sets, although its authors claim that it could be adopted to other classi-

fication data sets, which were not supported in the experimental tests. CAAR builds the classifier

in multiple passes, where in the first pass, it scans the data set to count the potential atomic rules

(ruleitems of length 1), which are then hashed into a table. The algorithm generates all atomic

rules that pass the initial support and confidence thresholds given by the end-user.

A pruning step similar to database coverage heuristic (see Section 4.3) is used after the genera-

tion of all rules in the first scan in order to keep only atomic rules that cover at least one training

data object. All training objects that were covered by the discovered atomic rules in the first pass

are removed and the uncovered training objects are put to a new cycle. At that point, the support

threshold becomes minsuppi ¼ minsupp · (D1/D0), where D0 and D1 correspond to the numbers of

training objects not covered by the produced rules at iterations 0 and 1, respectively. Furthermore,

CAAR employs a self-adaptive confidence, minconf ¼ COEF · MaxConf, where COEF is a

user-defined threshold (the authors have used COEF ¼ 0.92 in the experiments) and MaxConf

is the maximum confidence of all potential atomic rules in each pass. The algorithm continuously

discovers potential atomic rules and prunes them in each iteration until the original training data

set D0 becomes empty. At that point, all atomic rules are combined to form the classifier.

A comparison test of CAAR, CBA and C4.5 on a specific image block data set showed that

CAAR is able to classify test data objects using cross-validation more accurately than the CBA

and C4.5 algorithms.

3.7 The intersections of training objects locations

In general, there are two common representations of a target database in association rule discov-

ery; these are the horizontal (Agrawal & Srikant, 1994) and vertical (Zaki et al., 1997) layouts. In

the horizontal layout, the database consists of a group of transactions, where each transaction has

an identifier followed by a list of items contained in that transaction. Table 4 illustrates a horizon-

tal layout representation for a transactional database. In searching for frequent itemsets in the

horizontal layout, the database is scanned multiple times, once during each iteration, to perform

support counting and pattern matching for candidate itemsets at each level. Furthermore, compu-

tational overheads occur during support counting of candidate itemsets. According to Zaki et al.

(1997), for each transaction with length l, during an iteration n, one needs to produce and evaluate

whether all l
n

� �
n-subsets of the transaction are contained in the current candidate list. In the

vertical layout however, the database consists of a group of items where each item is followed

by its tid-list (Savasere et al., 1995) as shown in Table 5, which is a vertical representation of Table 4.

A tid-list of an item is the transaction numbers (tids) in the database that contain that item.

Supports of frequent itemsets are computed in the vertical layout by simple intersections of the

tids. For instance, the supports of candidate itemsets of size k can be easily obtained by intersect-

ing the tid-lists of any two (k� 1) subsets. The tid-lists that hold all the information related to

items in the database are a relatively simple and easy to maintain data structure, and thus there

is no need to scan the database during each iteration to obtain the supports of new candidate

itemsets, saving I/O time (Zaki et al., 1997; Zaki & Gouda, 2003).

To the best of the author’s knowledge, the majority of current AC algorithms adopt the hori-

zontal data format and the first AC algorithm to utilize the vertical data layout to perform simple

intersections among frequent itemsets tid-lists is MCAR (Thabtah et al., 2005). MCAR improves
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the efficiency of the rule discovery phase by employing a method that extends the tid-list intersec-

tion methods of Savasere et al. (1995) and Zaki et al. (1997) to handle classification benchmark

problems. Using the tid-list for an itemset in association rule discovery is a good approach as

the cardinality of the itemset tid-list divided by the total number of the transactions gives the

support for that itemset. However, the tid-list intersection methods presented in association rule

discovery need to be modified in order to treat classification problems, where classes associated

with each itemset (rule antecedent) are considered when computing the support.

The frequent itemsets discovery method employed byMCAR scans the training data set to count

the occurrences of one-itemset, fromwhich it determines those that hold enough support. During the

scan, frequent one-itemsets are determined, and their occurrences in the training data set (tids) are

stored inside an array in a vertical format. Also, classes and their frequencies are stored in an array.

Any one-itemset that fails to pass the support threshold is discarded. The result of a simple inter-

section between the tid-lists of two itemsets gives a set, which holds the tids where both itemsets occur

together in the training data set. This set along with the class array, which holds the class label

frequencies andwas created during the first scan, can be used to compute the support and confidence

of the new hitemset, classi (ruleitem) resulting from the intersection.

To show how a frequent ruleitem is determined, consider for example itemsets h(A1, x1)i and
h(A2, y1)i in Table 6; the following two sets represent the tids in which they occur, {1, 2, 3, 4,

8} and {1, 3, 5, 6, 10}. We can determine the support of the itemset h(A1, x1), (A2, y1)i by inter-

secting the tids sets for itemsets h(A1, x1)i and h(A2, y1)i. The cardinality of the resulting set {1, 3}

represents the support for itemset h(A1, x1), (A2, y1)i, i.e. 2/10. If it passes the minsupp threshold,

then we proceed by checking whether there is some class c in the class array such that h(A1, x1),

(A2, y1), ci passes the minsupp threshold; otherwise we prune it.

4 Pruning techniques

AC algorithms normally derive a large set of rules (Topor & Shen, 2001; Li et al., 2001) because

(1) classification data sets are typically highly correlated and (2) association rule discovery meth-

ods are used for rule discovery. As a result, there have been many attempts to reduce the size of

classifiers produced by AC approaches, mainly focused on preventing rules that are either redun-

dant or misleading from taking any role in the prediction process of test data objects. The removal

of such rules can make the classification process more effective and accurate.

Table 4 Horizontal representation of database

Tid Items

1 bread milk juice

2 bread juice milk

3 milk beer bread juice

4 milk eggs bread

5 beer basket bread juice

Table 5 Vertical tid-list representation of database

Basket Beer Bread Eggs Juice Milk

5 3 1 4 1 1

5 2 2 2

3 3 3

4 5 4

5
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Several pruning methods have been used effectively to reduce the size of associative classifiers,

some of which have been adopted from decision trees, such as pessimistic estimation, others from

statistics such as chi-square (x2) testing (Snedecor & Cochran, 1989). These pruning techniques

are utilized during the construction of the classifier; for instance, a very early pruning step, which

eliminates ruleitems that do not pass the support threshold, may occur in the process of finding

frequent ruleitems. Another pruning approach such as x2 testing may take place when generating

the rules, and late pruning methods, such as database coverage, may be carried out while building

the classifier. Throughout this section, pruning techniques used in AC are discussed.

4.1 x2 testing

x2 testing is a well-known discrete data hypothesis testing method from statistics, which evaluates

the correlation between two variables and determines whether they are independent or correlated

(Snedecor & Cochran, 1989). The test for independence, when applied to a population of subjects,

determines whether they are positively correlated or not, i.e.

x2 ¼
Xk
i¼1

ðfi � eiÞ2
ei

ð4:1Þ

where ei represents the expected frequencies and fi represents the observed frequencies. When the

expected frequencies and the observed frequencies are notably different, the hypothesis that they

are correlated is rejected.

This method has been used in AC to prune negatively correlated rules. For example, a test can

be carried out on every discovered rule, such as R : x ! c, to find out whether the condition x is

positively correlated with the class c. If the result of the test is larger than a particular constant,

there is a strong indication that x and c of R are positively correlated, and therefore R will be

stored as a candidate rule in the classifier. If the test result indicates negative correlation, R will

not take any part in the later prediction step and is discarded. The CMAR algorithm adopts

the x2 testing in its rules discovery step. When a rule is found, CMAR tests whether its body is

positively correlated with the class. If a positive correlation is found, CMAR keeps the rule, other-

wise the rule is discarded.

4.2 Redundant rule pruning

In AC, all attribute value combinations are considered in turn as a rule’s condition. Therefore,

rules in the resulting classifiers may share training items in their conditions, and for this reason

there could be several specific rules containing many general rules. Rule redundancy in the classi-

fier is unnecessary and in fact could be a serious problem, especially if the number of discovered

rules is extremely large.

Table 6 Training data 1

Rowid A1 A2 Class

1 x1 y1 c1
2 x1 y2 c2
3 x1 y1 c2
4 x1 y2 c1
5 x2 y1 c2
6 x2 y1 c1
7 x2 y3 c2
8 x1 y3 c1
9 x2 y4 c1
10 x3 y1 c1
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A pruning method that discards specific rules with fewer confidence values than general rules,

called redundant rule pruning, has been proposed in CMAR. The redundant rule pruning method

works as follows. Once the rule generation process is finished and rules are sorted, an evaluation

step is performed to prune all rules such as I0 ! c from the set of generated rules, where there is

some general rule I ! c of a higher rank and I � I0. This pruning method may reduce the size of

the resulting classifiers and minimizes rule redundancy.

Algorithms, such as those in Li et al. (2001), Antonie et al. (2003) and Antonie & Zaïane
(2004), have used redundant rule pruning. They perform such pruning immediately after a rule

is inserted into the compact data structure, the CR-tree. When a rule is added to the CR-tree, a

query is issued to check if the inserted rule can be pruned or some other already existing rules

in the tree can be removed.

4.3 Database coverage

The database coverage method, which is illustrated in Figure 2, is a pruning technique, used in AC

(Liu et al., 1998), and usually invoked after rules have been created and sorted. This method tests

the generated rules against the training data set, and only rules that cover at least one training

object not considered by a higher ranked rule are kept for later classification. For each ordered

rule starting from the top ranked one (r1), a pass over the training data set to find all objects

that match the r1 body is performed. Once r1 training objects are located, then they will be

removed and r1 will be inserted into the classifier. The process is repeated for the remaining

ordered rules until all training objects are covered or all ordered rules have been considered. If

an ordered rule is unable to cover at least a single training object, then it will be discarded. The

database coverage method was created by the CBA and then latterly used by other algorithms,

including those in Liu et al. (2001), Li et al. (2001) and Thabtah et al. (2005).

4.4 Pessimistic error estimation

In general, there are two pruning strategies in decision trees, pre-pruning and post-pruning

(Witten & Frank, 2000). The latter, also called backward pruning, is more popular and has

been used by many decision tree algorithms such C4.5 and See5 (Quinlan, 1998). In performing

backward pruning, the tree is first completely constructed, then at each node a decision is made

whether to replace a node and its descendents with a single leaf or to leave the node unchanged.

The decision whether to replace a node or not is made by calculating the estimated error using the

pessimistic error estimation measure (Quinlan, 1987) of a particular node and comparing it with

its potential replacement leaf. The method of replacing a sub-tree with a leaf node is called sub-

tree replacement. The error is estimated using a pessimistic error estimation measure based on

the training objects.

Figure 2 Database coverage method
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The probability of error at a node v is

qðvÞ ¼ Nv �Nv;c þ 0:5

Nv

ð4:2Þ

where Nv is the number of training data objects at node v and Nv,c is the number of training data

objects associated with the majority class at node v. The error rate at a sub-tree T is

qðTÞ ¼
P

l2leafsðTÞ Nl �Nl;c þ 0:5P
l2leafsðTÞ Nl

: ð4:3Þ

The sub-tree T is pruned if q(v)� q(T).

In addition to using the pessimistic error rate in decision tree algorithms, it can be also used in

AC by comparing the estimated error of a new rule, ri, resulting from the deletion of one item in

the condition of the original rule, rj. If the expected error of ri is lower than that of rj, then rj will

be replaced by ri. AC algorithms, including those in Liu et al. (1998) and Wang et al. (2000), have

used pessimistic error estimation to effectively cut down the number of extracted rules.

4.5 Lazy pruning

Some AC techniques (Baralis & Torino, 2002; Baralis et al., 2004) raise the argument that pruning

classification rules should be limited to only ‘negative’ rules (those that lead to incorrect classifi-

cation). In addition, it is claimed that database coverage pruning often discards some useful

knowledge, as the ideal support threshold is not known in advance. Because of this, these

algorithms have used a late database coverage-like approach, called lazy pruning, which discards

rules that incorrectly classify training objects and keeps all others.

Lazy pruning occurs after rules have been created and stored, where each training object is

taken in turn and the first rule in the set of ranked rules applicable to the object is assigned to

it. The training object is then removed and the correctness of class labels assigned to the object

is checked. Once all training objects have been considered, only rules that wrongly classified train-

ing objects are discarded and their covered objects are put into a new cycle. The process is

repeated until all training objects are correctly classified. The results are two levels of rules: the

first level contains rules that classified at least one single training object correctly and the second

level contains rules that were never used in the training phase. The main difference between lazy

pruning and database coverage pruning is that the second level rules that are held in the memory

by lazy pruning are completely removed by the database coverage method during the rule pruning

step. Furthermore, once a rule is applied to the training objects, all objects covered by the rule are

removed (negative and positive) by the database coverage method.

Experimental tests reported in Baralis et al. (2004) using 26 different data sets from the UCI

data collection have shown that methods that employ lazy pruning, such as L3 and L3G, may

improve classification accuracy on average by 1.63% over other techniques that use database

coverage pruning. However, lazy pruning may lead to very large classifiers, which makes it diffi-

cult for a human to understand or interpret. In addition, the experimental tests indicate that lazy

pruning algorithms consume more memory than other AC techniques and, more importantly,

they may fail if the support threshold is set to a very low value as a result of the very large number

of potential rules.

4.6 Conflicting rules

For highly dense classification data sets and other data where there could be multiple class labels

associated with each training object, it is possible to produce rules with the same body that predict

different classes. For example, given two rules such as x ! c1 and x ! c2, Antonie & Zaine (2003)

proposed a pruning method that considers these two rules as conflicting. Their method removes

conflicting rules and disallows them from taking any role in classifying test data objects. However,
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a recent proposed algorithm called MMAC (Thabtah et al., 2004) showed using experiments that

such rules represent useful knowledge as they pass support and confidence requirements. Thus,

domain experts can profit from them. MMAC developed a recursive learning phase that combines

so-called conflicting rules into one multi-label rule. For the above example, MMAC combines the

two rules into the following multi-label rule, x ! c1 _ c2 and assigns an appropriate weight to

each class label in the rule consequent according to its frequency with the rule antecedent (itemset)

in the training data set.

4.7 Impact of pruning on classifiers

In association rule discovery and AC mining, a transaction or a training object can be used to

generate many rules; therefore, there are tremendous numbers of potential rules. Without adding

constraints on the rule discovery and generation phases or imposing appropriate pruning, the very

large numbers of rules, usually of the order of thousands or even tens of thousands, make humans

unable to understand or maintain the outcome. Pruning noisy and redundant rules becomes an

important task.

AC algorithms that use pruning methods such as database coverage and redundant rule prefer

general rules over specific ones; thus, they produce smaller classifiers than other techniques that

adopt lazy pruning. Experiments were conducted on the ‘german’ and ‘wine’ data sets downloaded

fromWeka (2000) to compare the lazy pruning algorithm, L3, and the database coverage approach

of the CBAwith reference to the number of rules and accuracy. The L3 results on both data sets have

been derived using a minsupp of 1% and a minconf 0.0% and as a result the experiments of the CBA

were run using the same support and confidence thresholds for fair comparison.

The numbers of rules produced by L3 on the ‘german’ and ‘wine’ data sets are 175 365 and

40 775, respectively, with prediction accuracies of 72.50% and 95.00%, respectively. By com-

parison, the CBA derives only 325 and 12 rules from the same data sets, with prediction accuracies

of 73.58% and 98.33%, respectively. These results provide direct, if limited, evidence that techni-

ques that use database coverage pruning tend to choose general rules and simpler classifiers,

which sometimes are more accurate on test datasets when compared with lazy pruning methods

such as L3. Further results can be found in a recent paper, which studies the effect of pruning

on different AC algorithms (Thabtah, 2006).

Overall, techniques that derive smaller classifiers are generally preferred by human experts

because of their ease of manual maintenance and interpretability. For instance, if general practi-

tioners used their patient data to build a rule-based diagnosis system, they would prefer the result-

ing number of rules to be small and simple. As such, they may even slightly decrease accuracy in

exchange for a more concise set of rules, which human experts can understand. Smaller classifiers

do however suffer from some drawbacks, including their sensitivity to low-quality data (data sets

that contain redundant information and missing values) and their inability to cover the whole

training data set (Hu & Li, 2005).

However, approaches that produce very large numbers of rules, such as L3, usually give slightly

improved predictive power, but spend a long time in training and during the prediction of test

objects, as they must pass over a very large number of rules when classifying the test data set.

In the L3 algorithm, rules which cover no training data objects are known as spare or secondary

rules. Holding a very large number of spare rules to cover a limited number of test objects missed

by the primary rules is inefficient. There should be a trade-off between the size of the classifiers

and the predictive accuracy, especially where slightly lower accuracy can be tolerated in exchange

for a more concise set of rules.

5 Approaches to rule ranking

Rule sorting before building the classifier plays an important role in the classification process

because the majority of AC algorithms, such as those in Wang et al. (2000), Liu et al. (1998),
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Baralis & Torino (2002), Li et al. (2001), Baralis et al. (2004) and Thabtah et al. (2004, 2005) uti-

lize rule ranking procedures as the basis for selecting the classifier during pruning. In particular,

the CBA and CMAR algorithms, for example, use database coverage pruning to build their

classifiers, where this pruning tests rules according to the rule ranking procedure. Therefore, the

highest-order rules are generally evaluated first and are then inserted into the classifier and later

used for predicting test data objects.

The precedence of the rules is normally determined according to several parameters, including

confidence, support and rule antecedent length. This section highlights the different constraints

considered by current algorithms to discriminate between rules in the rule ordering process and

also discusses the impact they have on the quality of the resulting classifiers.

5.1 Support, confidence and cardinality method

One of the common rule sorting techniques, which favours rules with large support and confi-

dence values, was introduced in the CBA, and is shown in Figure 3. The ranking technique

employed by the CBA considers principally confidence and support to order rules, and when

two rules have identical support and confidence, the choice is based on that generated earlier.

This means that the CBA selects rules with lower antecedent cardinality first as it employs the

Apriori step-wise algorithm. The Apriori algorithm generates rules starting from those that

have length 1, then 2, and so on.

The CBA sorting method fails to break many ties for highly correlated classification data sets,

where the expected number of the produced rules is relatively large. For example, for the ‘vote’

data set downloaded from Weka (2000) and using minsupp of 2% and minconf of 40%, there are

8208 potential rules with identical confidence, of which 6975 have the same support. Also, from

the 6975 potential rules with identical confidence and support, there are 5204 that have the

same length and only 1164 potential rules which have different lengths. These numbers of poten-

tial rules have been produced without using any pruning. The remaining 4040 rules are ranked

randomly if we use the CBA rule sorting method, where many rule ranking decisions may be

sub-optimal, reducing the quality of the resulting classifier. Additional tie breaking conditions

have the potential to improve classification accuracy over the (support, confidence, cardinality)

method.

The majority of AC algorithms developed after the introduction of the CBA, including those in

Wang et al. (2000), Li et al. (2001) and Antonie & Zaïane (2004) have used the (support, confid-

ence, cardinality) rule ranking method. These algorithms tend to prefer general rules (those with

very small numbers of attribute values in their antecedent) as they occur more frequently in the

training data set. However, such rules may suffer from large error rates. Generally speaking,

specific rules (rules with high cardinality) are supersets of some general rules and cover smaller

numbers of training objects. Thus, their chance of misclassification on the training data set is

usually smaller than that of general rules.

5.2 L3 rule ranking method

A rule ranking method, which favours specific rules, especially those that have large confidence,

over general rules, was developed within the L3 algorithm. The main reason for giving specific

Give two rules, ra and rb, ra precedes rb ra rb if

1. The confidence of ra is greater than that of rb

2. The confidence values of ra and rb are the same, but the support of ra is

greater than that of rb

3. Confidence and support values of ra and rb are the same, but ra was

generated earlier than rb

( )

Figure 3 CBA rule ranking method
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rules higher ranking than general rules is to reduce the chance of misclassification and to try

specific rules first in the prediction step; then if they fail to cover a test object, rules with a smaller

number of attributes are considered.

5.3 Support, confidence, cardinality and class distribution method

In general, rule ranking in AC is based on support, confidence and cardinality of the rule’s ante-

cedent (see Section 5.1). When several rules have identical confidence, support and cardinality,

AC techniques choose one of the rules randomly, which possibly in some cases may degrade accu-

racy. This random selection occurs frequently in mining classification data sets where certain attri-

bute values occur frequently. Thabtah (2006) argued that ranking of rules should not be limited to

support and confidence parameters because the possibility of two or more rules with similar con-

fidence and support is relatively high. There should be other parameters to consider in favouring

one rule over another in order to limit rule random selection. Thus, Thabtah (2006) proposed a

rule ranking procedure shown in Figure 4 that takes into account the class distribution frequency

of each rule after considering confidence, support and rule antecedent length.

This rule ranking procedure adds upon previous rule ranking approaches by looking at the

class distribution frequencies in the training data set, and prefers rules that are associated with

dominant classes (class labels that occur more frequently in the training data set). For example,

if two rules, r1 and r2, have the same support, confidence and cardinality, but r2 is associated

with a class that occurred more frequently in the training data set than that of r1, this procedure

favours r2 over r1 in the rule ranking process. In cases where two or more rules also have identical

class frequencies, then it selects one randomly. The rule random selection shown in Figure 4

considers the rule’s items row ordering in the training data set and prefers rules that have a higher

order. Empirical evaluations using 12 classification data sets from the Weka data collection

(Weka, 2000) have revealed that adding more constraints to discriminate between rules slightly

improves the accuracy of the resulting classifiers. Particularly, the rule ranking method of

Thabtah (2006) improved the accuracy for the 12 classification data sets on average þ0.62%

and þ0.40% over the (support, confidence) and (support, confidence, lower cardinality) rule

ranking approaches, respectively. Moreover, the results show that the class distribution parameter

has been used often for breaking ties among rules.

5.4 Impact of global ranking of rules on classifiers

Every rule-based AC technique performs global sorting on the rules before using them in the pre-

dication step. This sorting can be considered a first step toward pruning noisy and redundant rules

and explains the reason why these algorithms sort rules before pruning. Sorting aims to give good

quality classification rules the chance to be selected first in the process of building the classifier.

Many algorithms (Liu et al., 1998; Wang et al., 2000; Li et al., 2001; Thabtah et al., 2004,

Give two rules, ra and rb, precedes rb

1. The confidence of ra is greater than that of rb

2. The confidence values of ra and rb are the same, but the support of ra is

greater than that of rb

3. Confidence and support values of ra and rb are the same, but ra has fewer

conditions in its left hand side than of rb

4. Confidence, support and cardinality of ra and rb are the same, but ra is

associated with a more representative class than that of rb

5. All above criteria are identical for ra and rb, but ra was generated from

items that have higher order in the training data than that of rb.

ra rb if:( )

Figure 4 Rule ranking method presented in Thabtah (2006)
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2005) use the rule sorting procedure to select high confidence rules to build their classifiers. This

makes rule sorting an important step, which influences the predictive quality of the classifier. As

shown previously in this section, the measures used to discriminate between rules are confidence,

support, rule antecedent cardinality and class distribution frequency. However, the question still

remains, which rule ranking method is the most effective?

It is the firm belief of the author that if more effective conditions can be imposed to break ties

during the ranking process, a better quality classifier will result. This is because the majority of

AC algorithms use pruning methods such as database coverage, which consider the rule sorting

procedure as the basis for selecting rules in the classifier.

6 Classification methods of test objects

Predicting the class labels of test objects is the primary aim for classification in data mining.

In general, predicting the class labels of test objects in AC can be categorized into two main

groups: one that makes the prediction based on the highest precedence single rule applicable to

the test object and one that makes the prediction based on multiple rules. In this section, the

different prediction methods used are discussed.

6.1 Maximum likelihood based prediction

When using the maximum likelihood prediction and given a classifier with a set of rules R and a

test object t, only the highest precedence rule in R that matches the test object is considered. In

cases where there is no applicable rule in R to cover t, then t is covered by the default class label

(the dominant class label in the training data set).

There are several AC algorithms that utilize the maximum likelihood matching rule for predic-

tion (e.g. Liu et al., 1998; Wang et al., 2000; Baralis & Torino, 2002; Baralis et al., 2004; Thabtah

et al., 2005). Using the largest confidence and support rule for classification is considered an

effective and simple prediction method because first, only a single rule is used for classification,

and second, the highest ranked rules play the major parts in classifying test objects. Moreover,

confidence can be considered as a probability measure indicating the likelihood that a test data

object belongs to the right class. However, this approach has been criticized, as it is possible

that there could be more than one rule applicable to a test object with similar confidence. In

addition, the highest confidence rule may be ineffective, especially for data sets that have unba-

lanced distribution of class labels (Li et al., 2001; Liu et al., 2003). Thus, grouping a small subset

of rules to make a decision is claimed to be more appropriate than using just one (Li et al., 2001;

Zaïane & Antonie, 2002). As shown in the next section, there are different ways to make a

prediction from a group of rules.

A recently developed algorithm, L3G, modifies the maximum likelihood prediction approach.

In order to limit the use of the default rule in prediction, which frequently causes misclassifica-

tions, two levels of rules have been introduced. In classifying a test object, the first level is checked

and, if there is no rule applicable to the test object, instead of taking on the default class as the

CBA and ADT algorithms do, the second level is checked. This process reduces the utilization

of the default rule, but proves costly in processing time.

6.2 Multiple rules based prediction

In the classification process of a test object, there can bemultiple applicable rules for a test object and

these rulesmay have very close confidences, making the decision to assign only a single rule question-

able. In this section, the techniques in AC that employ multiple rules prediction are reviewed.

6.2.1 Score based prediction methods

The CMAR algorithm exploits a prediction method that selects a subset of high confidence rules

applicable to a test object and analyses the correlation among them, to make the prediction
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decision. The correlation is measured using a weighted x2 analysis (Li, 2001), which examines the

strength of a rule based on its support and class frequency in the training data set.

Given a classifier R and a test object t, CMAR picks up the subset of rules, Rk, in R that

matches t. If all rules in Rk predict the same class, then that class will be assigned to t. In the

case that rules in Rk have different class labels, CMAR then splits them into groups according

to the class labels and compares the strength of each group. The support and correlation between

the rules in a particular group determines the strength of that group and the class belonging to the

group with the largest strength is assigned to t. The correlation is estimated for each group using

weighted (x2) analysis in order to evaluate how positive rules are in each group. Only rules with x2

values above a significant level threshold are stored for later use. For a rule Rk : P ! c, let Supp

(c) denote the number of training objects associated with class label c and let Supp(P) denote the

number of training objects associated with itemset P. Also assume that |D| denotes the total

number of rows in the training data set. The weighted x2 denoted Max x2 of Rk is defined as

Max x2 ¼ minfSuppðPÞ; SuppðcÞg � SuppðpÞSuppðcÞ
jDj

� �2

jDju ð6:1Þ

where

u ¼ 1

SuppðPÞSuppðcÞ þ
1

SuppðPÞðjDj � SuppðcÞÞ þ
1

ðjDj � SuppðPÞÞSuppðcÞ
þ 1

ðjDj � SuppðPÞÞðjDj � ðSuppðcÞÞÞ :
ð6:2Þ

The weighted x2 for each group of classes can be computed using

X x2x2

Maxx2
: ð6:3Þ

A prediction method closely related to this approach has been developed in Zaïane & Antonie

(2002), where the class of the subset of rules in Rk with the dominant class label is assigned to the

test object t.

6.2.2 Laplace based prediction method

Laplace accuracy (Clark & Boswell, 1991) is mainly used in classification to estimate the expected

error of a rule. This expected accuracy for a given rule, r, is given by

LaplaceðrÞ ¼ ðpcðrÞ þ 1Þ
ðptotðrÞ þmÞ ð6:4Þ

where m is the number of class labels in the domain, ptot(r) is the number of objects matching the r

antecedent and pc(r) is the number of objects covered by r that belong to class c.

Unlike the score-based prediction procedures, the comparison between groups is performed

using the Laplace expected error, where the expected accuracy for each rule is calculated before

classifying a test object. The Laplace expected error has been successfully used by the CPAR

algorithm, where the expected accuracy for each rule is calculated before the classification of

test objects. To classify a test object t using classifier R, CPAR selects all rules in R whose ante-

cedent satisfies t and from these the best rule for each class is determined. Then, CPAR compares

the average expected accuracy of the best rules for class labels and selects the class of the rule with

the highest expected accuracy to cover t. This ensures that the best expected accuracy rules for

each class participate in the prediction.

6.2.3 Discussion

The main advantage of using multiple rules for prediction is that there is more than one rule con-

tributing to the final decision, which greatly limits the chance of favouring a single rule to predict
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all test objects satisfying its condition. However, algorithms that are based around the use of

multiple rules for classifying test objects, such as CMAR and CPAR, do not consider the indepen-

dence of the rules (Clark & Boswell, 1991; Hu & Li, 2005), as training objects are allowed to be

covered by several rules with different class labels. This may cause rule dependency and conflicts.

In other words, when a training object t is used to generate many rules during the rule discovery,

then it is possible that in the prediction step, more than one rule with different class labels could

be applicable to a test data object similar to t. In addition, there is rule dependency because once a

rule has classified a training data object during the rule evaluation phase and that object is

deleted, all other rules that have used this object during the learning phase are affected. Multiple

label prediction algorithms have not addressed this issue.

The rule dependency can be explained as follows. Assume that two potential rules r1 : (A, a) ^
(B, b) ! c1 and r2 :(B, b) ! c1 _ c2 can be generated from a training data set and r1 precedes r2,

i.e. r1 has a higher rank than r2. Furthermore, assume that r1 is associated with class c1 three

times, whereas r2 is associated with class labels c1 and c2 five and three times, respectively.

Also, assume that within the five times c1 is associated with r2, it has (A,a) ^ (B,b) as antecedent

three times. Most of the current AC techniques, such as CBA and CMAR, generate only one class

per rule; therefore r1 will be generated regularly and all training instances associated with it will be

discarded using the database coverage heuristic. In addition, only label c1 will be considered by r2
as it has more frequency than c2 when associated with r2 in the training data set. Yet because r1
precedes r2 and they share (A,a,) ^ (B,b) as an antecedent, the three training objects that are

related to r2 are already classified by r1 and removed (this has been done by the database coverage

heuristic). Consequently, after inserting r1 into the classifier, class c1 of rule r2 would no longer be

the fittest class; a new class at that point becomes the fittest class, i.e. c2, as it has the largest

representation among r2 class labels in the training data. To the best of the author’s knowledge,

none of the available associative algorithms that utilize database coverage heuristic or lazy

pruning considers rule dependency problems.

7 Evaluation methods

Measuring the quality of the classifiers on a test data set is an essential task in classification as

this shows how effective the results are. If the results produced from the training data set

accurately predict the class labels of test data objects, we simply accept them, whereas if there

are several misclassifications, then we reject them. So the important question is, how can we

measure the effectiveness of classification results in data mining?

There are many evaluation methods proposed in classification such as error-rate (Witten &

Frank, 2000), recall-precision (Van Rijsbergan, 1979) and others. In addition and recently, new

evaluation methods have been proposed in AC such as any-label and label-weight

(Thabtah et al., 2004). In this section, these evaluation methods are discussed and compared.

7.1 General evaluation measures in classification

AC techniques use an error-rate method (Witten & Frank, 2000) to evaluate the effectiveness of

their classifiers. Using this method, the classifier simply predicts the class of a test data object;

if it is correct, this will be counted as a success, otherwise it will be counted as an error. The

number of error cases divided by the total number of cases in a test data set gives the overall error

on this data. The error-rate of a classifier on a test data set measures its predictive accuracy.

Another evaluation method in classification applications such as text categorization is preci-

sion, which has been developed with another method called recall in the information retrieval

(IR) field by Van Rijsbergan (1979). Precision and recall work as follows. One starts with a collec-

tion of objects/documents and has a query. Some of the objects pertain to the query and others do

not. When objects are retrieved based on the query, one may make two types of mistake: false-

positives and false-negatives. Precision measures the proportion of correct answers from all those
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that were retrieved. Recall measures the proportion of correct answers retrieved from the set of all

correct answers.

In general and with respect to a given query, documents can be divided into four different sets

as shown in Table 7. According to Table 7,

precision ¼ jX j
jX [ Y j ð7:1Þ

and

recall ¼ jX j
jX [ Zj : ð7:2Þ

For example, consider if someone has five blue and seven red tickets in a set and he submitted a

query to retrieve the blue tickets. If he retrieves six tickets where four are blue and two are red,

this means that they obtained four out of five blue (one false-negative) and two red (two false-

positives). Based on these results, precision ¼ 4/6 (four blue out of six retrieved tickets), and recall

¼ 4/5 (four blue out of five in the initial set).

For classification problems in data mining, we can look at a precision class by class or globally.

For each class we can divide the number of correct classifications by the number of objects clas-

sified in that class to obtain precision. Globally, precision is the number of correct classifications

divided by the total number of objects in the test set. Recall is better seen class by class; for a given

class, one can divide the correct classifications by the number of objects that should have been

classified in that class to obtain recall.

For multi-class and multi-label problems, methods such as precision and recall need to be com-

bined in order to measure the performance of all classes. Therefore, a hybrid method, called F1

(Van Rijsbergan, 1979), which measures the average effect of both precision and recall together,

has been used in IR and text categorization. Given precision (P) and recall (R) estimates for a

given class in a problem

F1ðP;RÞ ¼ 2 ·P ·R
ðPþ RÞ : ð7:3Þ

F1 is computed for each class independently and then the mean or the average of the results is

computed on the test data set as a whole using one of two different methods called micro-

averaging and macro-averaging (Yang et al., 2002) in order to reflect the quality of the classifier.

Macro-averaging represents the average of precision or recall for all classes and micro-averaging

accumulates the decisions for all classes (sum of all true-positives, false-positives and false-

negatives), then precision and recall are calculated using the global values.

For binary classification where there are two classes in the training data set, a common method

called a confusion matrix, which takes into account the cost of wrong prediction, was proposed by

Provost et al. (1997). A confusion matrix is similar to precision and recall methods where it con-

tains information about actual and predicted classifications made by the classifier. The perfor-

mance of the resultant classifier is commonly evaluated using the data in the matrix.

Table 8 represents a confusion matrix, which contains information about the actual and pre-

dicted classifications made by a classifier. In Table 8, W corresponds to so-called true-positive

and represents the number of cases in which an object is positive. Z represents the number of

incorrect predictions that an object is negative, X represents the number of correct predictions

Table 7 Possible sets of documents based on a query in IR

Iteration Relevant Irrelevant

Documents retrieved X Y

Documents not retrieved Z W
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that an object is negative and finally Y represents the number of incorrect predictions that an

object is positive. Based on Table 8, the following equations represent accuracy, true-positive,

true-negative, false-positive and false-negative.

The accuracy is the proportion of cases in the test data set that were correct.

Accuracy ¼ ðX þWÞ=ðX þ Y þ Z þWÞ: ð7:4Þ
The true-positive rate (TP) is the proportion of positive cases that were correctly classified:

TP ¼ W=ðZ þWÞ: ð7:5Þ
The false-positive rate (FP) is the proportion of negatives cases that were incorrectly classified

as positive:

FP ¼ Y=ðX þ Y Þ: ð7:6Þ
The true-negative rate (TN) is defined as the proportion of negatives cases that were classified

correctly:

TN ¼ X=ðX þ Y Þ: ð7:7Þ
The false-negative rate (FN) is the proportion of positives cases that were incorrectly classified

as negative:

FN ¼ Z=ðZ þWÞ: ð7:8Þ
Overall, AC algorithms, (e.g. Liu et al., 1998; Baralis & Torino, 2000; Li et al., 2001; Yin &

Han, 2003; Antonie & Zaïane, 2004) use an error-rate method to obtain the effectiveness of their

classifiers. Using an error-rate method to validate the predictive strength of a classifier is not the

optimum choice for multi-label classifiers, as only one class per rule contributes to the overall

effectiveness of the classifier. However, more than one class with very close frequencies can occur

with a rule, making the contribution of a single class and ignoring the rest, questionable. In the

next section, recently proposed evaluation methods specifically designed for binary, multi-class

and multi-label AC problems are shown.

7.2 Associative classification evaluation measures

The multi-label rules approach has been investigated mostly in specific multi-label classification

problems such as gene classification in bioinformatics (Clare & King, 2001) and scene classification

(Boutell et al., 2003), and therefore there has been very little work conducted on developing

evaluation measures for multi-label classifiers. There are no standard evaluation techniques applic-

able to the multi-label rules approach. Moreover, the right method is often problematic and

depends heavily on the features of the conducted problem (Schapire & Singer, 2000; Boutell

et al., 2003). In this section, two evaluation measures called any-label and label-weight

(Thabtah et al., 2004) are reviewed, which are suitable for the majority of single and multi-label

associative classifiers. Let D denote a test data set with m rows d1, d2, . . . , dm, and let C denote

the set of classes. Row d has class c(d) in the test data set. A (possibly multi-label) classifier is a

multi-function h: D ! 2C, where for d e D,h(d) ¼ hh1(d), h2(d), . . . , hk(d)(d)i. The frequencies of

h1(d), h2(d), . . . , hk(d)(d) in the training data set are denoted f1(d), f2(d), . . . , fk(d)(d), respectively.

Table 8 Confusion matrix

Predicted

Negative Positive

Actual Negative X Y

Positive Z W
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7.2.1 Any-label

This lightly optimistic evaluation method measures how many times any of the predicted class

labels assigned by a multi-label rule to a test data object matches the actual class in all cases of

that object in the test data set. If any of the predicted class labels of a test data object d matches

the true class y, then the classification is correct. The any-label is

jfd 2 D : 9i with hiðdÞ ¼ cðdÞgj=m: ð7:9Þ
7.2.2 Label-weight

This method enables each class for a multi-label rule to play a role in classifying a test object

based on its ranking. An object may belong to several class labels, each associated with it by

the number of occurrences in the training data set. Each class can be assigned a weight according

to how many times that class has been associated with the object. The label-weight is

X
d2D

X
fi:hiðdÞ¼cðdÞg

f iðdÞ=
XkðdÞ
j¼1

f jðdÞ
 !

: ð7:10Þ

For example, if an itemset (A, a) is associated with class labels c1, c2 and c3, seven, five and

three times, respectively, in the training data set, and that itemset becomes a rule (A,a) ! c1 _
c2 _ c3, then each class associated with such a rule is assigned a weight, i.e. 7/15, 5/15 and 3/15,

respectively, for class labels c1, c2 and c3, based on their frequencies in the training data set.

This technique assigns the predicted class weight to the test object if the predicted class matches

the true test object class. For example, if class c2 of the rule (A,a) ! c1 _ c2 _ c3 matches a test

object in the test data set that has c2 as its actual class, then that test object is considered a correct

classification, and the value of 5/15 will be assigned to it. For multiple label classification data sets

where there are more than one class associated with a test data object, the label-weight method

considers the summation of test object label-weights in the prediction step. For the above example

and assuming that the test object is associated with class labels c1 and c2, the label-weight assigns

(7/15þ 5/15) to the test data object.

7.3 Discussion

The error-rate method considers only one class for each rule in computing the correct predictions

and thus it can be criticized for favouring only one class. Alternatively, the label-weight assigns a

value for each possible class in a rule according to its frequency in the training data set, and there-

fore the top-ranked class in a rule achieves the highest weight. For example, for a CAR, r : (x ^ y)

! c1 _ c2 _ c3 and for each test object that contains items x and y, the error-rate method consid-

ers only class c1 as a correct classification in the prediction stage. All other applicable test data

objects having either c2 or c3 are considered a misclassification. However, class labels c2 and c3
can contribute to the final decision because they pass support and confidence requirements.

The label-weight method gives a value for each test data object that contains itemset (x, y) in its

body and has either class c1, c2 or c3 based on the class label frequencies in the training data set.

The summation of class label-weights for a rule is equal to one. This method does not favour any

class, no matter what its ranking in a rule; instead, it reflects the true distribution frequency for

each class when associated with a particular itemset.

8 Future directions

8.1 Incremental learning

Existing AC algorithms mine the training data set as a whole in order to produce the outcome.

When data operations (adding, deleting and editing) occur on the training data set, current

algorithms have to scan the complete training data set one more time in order to reflect the

changes made. Furthermore, as data are collected in most application domains on a daily, weekly
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or monthly basis, training data sets can grow rapidly. As a result of this, the cost of the repetitive

scan each time a training data set is modified in order to update the set of rules is costly with

regards to I/O and CPU times. Incremental AC algorithms, which can keep the last mining results

and only consider data records that have been updated, are a more efficient approach, which can

lead to a huge saving in computational time.

To explain the incremental mining problem more precisely within the AC context, assume a

training data set T exists. The following operations may occur on T:

(1) T can be incremented by Tþ records;

(2) T� records can be removed from T;
(3) Tþ records can be added to T and T� records can be removed from T.

The result of any of the operations described above on T is an updated training data set T0. It
should be noted that the third operation (update) is more difficult than insert/delete operations as

it combines both. The question now is how the outcome (rules) of the original data set T can be

updated to reflect changes made to T without having to perform extensive computations. This

problem can be divided into sub-problems according to the possible ruleitems contained in T after

performing data operations such as insert, update or edit. For example, ruleitems in T can be

divided into the following groups after inserting new records (Tþ):

(a) ruleitems that are frequent in T and Tþ;
(b) ruleitems that are frequent in T and not frequent in Tþ;
(c) ruleitems that are frequent in Tþ and not frequent in T;

(d) ruleitems that are not frequent in either Tþ or T.

The ruleitems in groups (a) and (b) can be identified in a straightforward manner. For example,

if ruleitem Y is frequent in T, then its support count in the updated training data set (T0),
Y 0

count ¼ Ycount þ Yþ
count, where Ycount is known and Yþ

count can be obtained after scanning Tþ.
The challenging problem is to find frequent ruleitems that are not frequent in T but frequent in

Tþ as these ruleitems are not determined after scanning T or Tþ�. Once all above frequent

ruleitems are determined, the generation of the incremental rules is easy because no database

scan is involved.

There has been some research work on incremental association rule discovery algorithms

(i.e. Tsai et al., 1999; Zhou & Ezeife, 2001; Valtchev et al., 2002). These can be considered as a

starting point for incremental AC mining. For example, an incremental association rule discovery

algorithm called maintenance association rule with Apriori property (MAAP; Zhou & Ezeife,

2001) has been proposed. This algorithm generates incremental rules from an updated database

using an Apriori candidate generation step (Agrawal & Srikant, 1994). MAAP computes high-

level frequent n-itemsets and then starts producing all lower-level n� 1, n� 2, . . . , 1 frequent item-

sets. This approach decreases the processing overheads for generating some of the low-level fre-

quent itemsets that have no chance of being frequent in the updated database. Thus, the key

feature of MAAP is the downward-closure property presented in Apriori.

Another incremental association rule discovery algorithm, which extends the fast-update (FUP)

algorithm (Cheung et al., 1996) to handle editing and deleting operations on transactional

databases, was proposed by Tsai et al. (1999). The FUP incremental algorithm deals only with

the dynamic insertion of records into the database and uses the Apriori approach (Agrawal &

Srikant, 1994) for discovering frequent itemsets. The algorithm proposed by Tsai et al. (1999)

improves upon the FUP algorithm with reference to processing time by storing not only frequent

itemsets discovered from the original database but also itemsets that are not frequent but may

become frequent after updating the original database. These potential frequent itemsets may

reduce the search time for candidate itemsets in the updated database.

Incremental AC mining is a challenging problem in data mining, which has not been carefully

studied. Furthermore, the key success to solving this problem is to determine the frequent
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ruleitems that overlap between the original training data set and the records, which have been

updated regardless of whether the operation is insert, delete or edit.

8.2 Missing data

Roughly speaking, a classifier in data mining is constructed from labelled data records, and later

is used to forecast classes of previously unseen data as accurately as possible. Training and test

data sets may contain noise, including missing or incorrect values inside records. It is necessary

to think carefully about the importance of missing or incorrect values in training or test data

sets. As a result, only human experts in the application domains used to generate the data sets

can make an implicit assumption about the significance of missing or invalid values.

In data mining and machine learning communities, several classification algorithms have been

proposed, where most of these produce classifiers with an acceptable error rate. However, most of

these algorithms assume that all records in the test data collection are complete and no missing

data are present. When test data sets suffer from missing attribute values or incomplete records,

classification algorithms often produce poor classifiers with reference to prediction accuracy.

This is because these algorithms tend to tailor the training data set too much.

In real-world applications, it is common that a training data set or test data set contains

attributes with missing values. For instance, the ‘labor’ and ‘hepatid’ data sets published in the

UCI data repository contain many missing records. Thus, it is imperative to build classifiers that

are able to predict accurately the classes for test data sets with missing attribute values. These clas-

sifiers are normally called robust classifiers. Unlike traditional classifiers, which assume that the test

data set is complete, robust classifiers deal with existing and non-existing values in the test data set.

There have been some solutions to avoid noise in the training data sets. The naïve Bayes

algorithm, for example, ignores missing values during the computation of probabilities, and

thus missing values have no effect on the prediction because they have been omitted. However,

omitting missing values may not be the ideal solution as these unknown values may provide a

good deal of information. Other classification techniques such as CBA assume that the absence

of missing values may be of some importance, and therefore they treat them as other existing

known values in the training data set. However, if this is not the case, then the missing values

should be treated in a special way rather than just considering them as other possible values

that the attribute might take (Witten & Frank, 2000). Decision tree algorithms such as C4.5

and C5 deal with missing values using probabilities, which are calculated from the frequencies

of the different values for an attribute at a particular node in the decision tree (Quinlan, 1993

provides further details).

The problem of dealing with unknown values inside test data sets has not yet been explored

well in traditional classification or AC approaches. One possible simple solution for this problem

is to select the common value of the attribute that contains missing values from the training

data set. The common value could be selected from the attribute objects that occur with the

same class to which the missing value belongs. Then, each missing value for that attribute and

its corresponding class in the test data set is substituted with the common value. The common

value represents the value that has the highest frequency with the attribute in the training data

set. We could also use common values from the test data set in the same way as described above

to substitute attributes with missing values. Another possible solution for missing values in the

test data set is to utilize weights or probabilities similar to the C4.5 algorithm.

8.3 The exponential growth of rules

Association rule discovery considers all associations between items in a transactional database,

and thus the expected numbers of association rules are of the order of thousands or even tens

of thousands. The AC approach employs association rule discovery to discover CARs, and

therefore the numbers of rules produced are normally large, especially when a very low support

threshold is used. The key element, which controls the number of rules produced in both
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association rule discovery and AC, is the support threshold. If the support is set to a large value,

normally the number of extracted rules is very limited, and many rules with high confidence will

be missed. This may lead to discarding important knowledge that could be useful in the

classification step. To overcome this problem, it is necessary to set the support threshold to a

very small value. However, this usually involves the generation of massive numbers of rules, where

many are useless as they hold low support and confidence values. This large number of rules may

cause severe problems, such as overfitting.

There have been attempts to control the number of rules extracted by AC algorithms. One

promising direction is to use multiple support thresholds during the mining process. Using this

approach, high-frequency classes are given larger support thresholds than low-frequency classes.

The user sets one support threshold, which is distributed to the available classes in the training

data set according to their frequencies. Using this approach, low-frequency classes are given

smaller support than high-frequency classes, and therefore they will be balanced among classes

with reference to the number of generated rules.

The multiple support AC approach ensures the production of rules for low coverage classes.

Yet, the numbers of produced rules are still large, which makes it difficult for human experts to

profit from the outcome. Pruning heuristics presented in machine learning and statistics are

another potential tool that can be utilized to cut down further the number of extracted rules.

Some of the current AC algorithms utilize various early and late pruning methods to decrease

the number of produced rules (see Section 4). Mainly, they use support and confidence as early

pruning to discard infrequent ruleitems from taking any part in the classifier. Furthermore,

pruning heuristics such as database coverage and pessimistic error estimation are used to discard

rules that do not cover a sufficient number of training objects or rules that have unacceptable

error rate on an independent test data set.

One possible future direction to produce moderate-sized classifiers with an acceptable error rate is

to ensure that every data object in the training data set is used only once during the rule generation

phase. This approach is similar to rule induction and covering approaches in classification. In fact,

rule induction and covering algorithms frequently produce small-sized classifiers when compared

with popular classification approaches such as decision trees and AC (Freitas, 2000; Hu & Li,

2005). This is because they employ heuristic strategies to discover the rules and utilize extensive

pruning such as global optimization (Cohen, 1995). Consequently, if an AC algorithm marks the

training data objects covered by each discovered rule to ensure that these objects are no longer avail-

able for other potential rules, there is a high possibility that a smaller-sized classifier will result.

It is the firm belief of the author that at least two directions can be used as starting points

to produce moderate-sized classifiers with good predictive accuracy. The first direction is the

utilization of multiple support thresholds with post-pruning methods such as database coverage

and/or pessimistic error estimation. The second direction is to produce classifiers based on

association rule discovery techniques, where each training object is used only once during the

training phase.

9 Conclusions

In this paper, we have surveyed different AC approaches, as shown in Table 9, and discussed the

approaches used to find rules, rank rules, prune rules, predict test objects and evaluate the effec-

tiveness of their classifiers. Research work on AC to date has been devoted to general classifica-

tion problems where the aim is to build a classifier that contains single label rules. Many AC

algorithms have been successfully used to build accurate classifiers, such as CBA, MCAR,

CMAR and CPAR, where only the most obvious class correlated to a rule is created and other

classes are simply discarded. Sometimes the ignored class labels have frequencies in the training

data set above certain user thresholds, making their presence in the classifier important. In

addition, these ignored class labels may represent useful knowledge discarded by current AC

algorithms, which domain experts may benefit from.
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For classification data sets that are correlated, there is a need for additional constraints beside

support, confidence and cardinality in the rule ranking process, in order to break ties between

similar rules and to minimize random selection. Also, pruning can be used to cut down the num-

ber of rules produced and to avoid overfitting. Furthermore, most existing AC techniques use the

horizontal layout presented in Apriori to represent the training data set. This approach suffers

from drawbacks, including multiple database scans and the use of complex data structures in

order to hold all potential rules during each level, requiring large CPU times and memory size.

However, the vertical data format may require only a single database scan, although the number

of tid-list intersections may become large, consuming considerable CPU time. Efficient rule dis-

covery methods that avoid going through the database multiple times and do not perform a large

number of computations can avoid some of these problems.

Single and multiple label prediction procedures have been surveyed and it has been found that

algorithms which use more than one rule to predict class labels for a test data set do not consider

the independence of the rules, where they allow a training data object to be covered by several

rules. However, algorithms that utilize one rule in the prediction step may produce good classi-

fiers, but assume that the highest precedence rule is able to predict the majority of test data objects

satisfying its body. Finally, there is a need for new associative algorithms that deal with low-

quality training and test data sets, i.e. data sets which contain missing values and noise, as well

as data sets that are updated frequently.
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