
Received December 5, 2019, accepted February 22, 2020, date of publication February 27, 2020, date of current version March 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976662

Efficient Chain Structure for High-Utility
Sequential Pattern Mining
JERRY CHUN-WEI LIN 1, (Senior Member, IEEE), YUANFA LI2, PHILIPPE FOURNIER-VIGER 3,
YOUCEF DJENOURI 4, AND JI ZHANG5, (Senior Member, IEEE)
1Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen 5063, Norway
2School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
3School of Humanities and Social Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
4SINTEF Digital, 0373 Oslo, Norway
5Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia

Corresponding author: Jerry Chun-Wei Lin (jerrylin@ieee.org)

This work was supported in part by the Western Norway University of Applied Sciences.

ABSTRACT High-utility sequential pattern mining (HUSPM) is an emerging topic in data mining, which
considers both utility and sequence factors to derive the set of high-utility sequential patterns (HUSPs) from
the quantitative databases. Several works have been presented to reduce the computational cost by variants of
pruning strategies. In this paper, we present an efficient sequence-utility (SU)-chain structure, which can be
used to store more relevant information to improve mining performance. Based on the SU-Chain structure,
the existing pruning strategies can also be utilized here to early prune the unpromising candidates and obtain
the satisfied HUSPs. Experiments are then compared with the state-of-the-art HUSPM algorithms and the
results showed that the SU-Chain-based model can efficiently improve the efficiency performance than the
existing HUSPM algorithms in terms of runtime and number of the determined candidates.

INDEX TERMS High utility sequential pattern mining, sequence, SU-Chain structure, data mining.

I. INTRODUCTION
Pattern mining is considered to find the valuable relationships
between items/objects in the databases, and many variants
of knowledge were then investigated in different applica-
tions and domains, such as association-rule mining (ARM)
[1], [10], sequential-pattern mining (SPM) [2], [9], [22], [23],
and high-utility-itemset mining (HUIM) [6], [12], [13], [18],
among others. SPM which discovers high frequent sequence
from sequence database, is one of the important research
areas in data mining and knowledge discovery since it shows
the correlations of the ordered events, which can be applied
in many real-life applications and situations. For exam-
ple, the sequence data can be extracted from the Weblog,
DNA sequence, or trajectory datasets. Several algorithms
[9], [22], [23] have been proposed to improve the mining
efficiency regarding SPM but most of them do not, how-
ever, consider the other factors or attributes in the databases
(i.e., importance, weight or interestingness). To solve this
limitation and provide more useful and meaingful informa-
tion, the high-utility sequential pattern mining (HUSPM)
[17], [29], [32], [33] was presented to consider both utility
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and sequence factors to reveal the set of high-utility sequen-
tial patterns (HUSPs) from the databases. It takes the quanti-
ties and unit profits of the items into account to mine the set of
HUSPs as the required knowledge for decision making. In the
HUSPM, a sequence is considered as a HUSP if its sequence
utility is no less than the pre-defined minimum utility value.
However, the task of HUSPM is more complex than that of
traditional SPM since the sequence utility does not hold the
downward closure property, thus the search space to discover
the required HUSPs has become huge. Many algorithms were
presented to design the pruning strategies and new upper-
bound values to reduce the search space such as USpan [32],
HUS-Span [29], ProUM [7] and HUSP-ULL [8]. USpan was
introduced to utilize the lexicographic quantitative sequence
tree for mining the HUSPs, but the upper-bound value is over-
estimated, thus the search space to find the required infor-
mation is too huge. HUS-Span consists of two tighter upper
bounds, respectively named as prefix extension utility (PEU)
and reduced sequence utility (RSU) to establish the upper-
bound values of the promising candidates. With the designed
pruning strategies and the new upper bounds, the HUS-Span
can greatly reduce the size of the unpromising candidates
to mine the HUSPs. However, the HUS-Span still has to
generate many unpromising candidates to completely mine

40714 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0002-7680-9899
https://orcid.org/0000-0003-0135-7450


J. C.-W. Lin et al.: Efficient Chain Structure for HUSPM

the HUSPs, and the database is required to be projected at
each time by the level-wise approach. Moreover, the used
PEU in the HUS-Span is not updated at each iteration, thus
the upper bound is still overestimated; more unpromising
candidates are still required to be determined. ProUM [7]
and HUSP-ULL [8] are the state-of-the-art approaches by
introducing the projection mechanism and efficient pruning
strategies to mine the HUSPs.

The above algorithms still suffer the limitation of mem-
ory usage (i.e., the state-of-the-art HUSP-ULL), we thus
design an efficient sequence-utility (SU)-Chain structure
to keep more information for the later mining progress.
The projection approach is also utilized in the SU-Chain-
based algorithm to speed up the generation progress of the
promising candidates. Moreover, several pruning strategies
are utilized in the SU-Chain structure to identify the irrele-
vant information for the early pruning progress, thus those
items can be removed from the projected database, and the
search space can be also reduced. From the experiments,
we can also observe that the developed SU-Chain struc-
ture can produce better performance compared to the pre-
vious works regarding the runtime and number of examined
candidates.

The organization of this paper is stated below. Literature
review is discussed in Section 2. Preliminaries and problem
statement of the designed model are studied in Section 3.
The designed sequence-utility-chain-based model is devel-
oped in Section 4. Experiments are conducted and discussed
in Section 5. Finally, the conclusion and future works are
mentioned in Section 6.

II. LITERATURE REVIEW
High utility itemset mining (HUIM) [6], [12], [13], [18],
[28], [31] is to consider the utility factor of the itemsets
to reveal the high profitable itemsets from the databases.
Compared with association rule mining (ARM) [1], [10],
conventional HUIM does not hold the downward closure
property thus the search space of the promising candidates
is huge. To efficiently mine the high-utility itemsets (HUIs)
and reduce the size of the search space, Liu et al. [13] pro-
posed the transaction-weighted utility (TWU) concept, which
is used to estimate the upper bound of the itemset utility
value. Tseng et al. extended the FP-tree and proposed the
UP-growth [25] and UP-growth+ [26] algorithms to exploit
the nature of the tree for compressing the search space.
Lin et al. [14] also presented the HUP-tree, which is based
on the TWU concept and FP-tree structure [10]. The HUP-
tree uses the tree structure to keep the necessary information
of the promising candidates, and the HUP-growth mining
algorithm was presented to discover the required HUIs based
on the HUP-tree structure. Liu and Qu [15] proposed the
HUI-Miner algorithm, which converts the original database
into an utility-list structure and mines the HUIs efficiently
from the utility-list to avoid the generation progress of the
huge candidates. Zida et al. [35] designed a novel algorithm
called EFIM, which consists of two upper bounds on utility

to reduce the size of the search space. Several algorithms
[11], [20], [30] using the evolutionary computations have
been discussed to find the HUIs in a limit time. Research
directions include the improvement of high-utility itemset
mining [19], high-utility itemset mining for IoT uncertain
data [18], and mining top-k high-utility itemsets [27] are also
the interesting issues and been developed in progress.

High-utility sequential-pattern mining (HUSPM) is an
emerging field in recent decades since it considers both utility
and sequence factors to discover the utility utility sequential
patterns (HUSPs) from the sequence dataset. HUSPM can
also be considered for sequence mining of Website logs [34].
Shie et al. [24] proposed the UMSP algorithm and the
UM-span algorithm for mining high-utility mobile sequences
based on themobile-business applications. To exploit the use-
fulness of web page access sequence data, Ahmed et al. [3]
proposed two tree structures, respectively called UWAS-
tree and IUWAS-tree, to process the static and dynamic
databases. Subsequently, Ahmed et al. [4] proposed a high-
utility sequential pattern mining algorithm for processing
general sequences, namely, the layer-by-layer search UL
algorithm and the pattern-extended US algorithm. However,
there is no formal definition of high-utility sequential pat-
tern mining. Yin et al. [32] officially defined high-utility
sequential pattern mining and proposed an efficient algo-
rithm, USpan, for mining general sequence patterns with
utility values. To simplify the parameter setting, Yin et al. [33]
then proposed the TUS algorithm for discovering the top-
k high-utility sequential patterns. Lan et al. [16], [17] first
introduced the concept of fuzziness into sequence mining
and then proposed a high-utility sequential pattern mining
algorithm to simplify the mining results and reduce the search
space. Alkan and Karagoz [5] proposed a high-utility sequen-
tial pattern extraction (HuspExt) algorithm, which is used to
calculate the Cumulated Rest of Match (CRoM) to obtain a
smaller upper bound. The complexity of the search space can
thus be reduced. Wang et al. [29] subsequently proposed the
HUS-Span algorithm to reduce the unpromising candidates
by introducing two utility upper bounds called PEUs and
RSUs. However, it is still challenging to find the HUSPs from
a very big dataset. In addition, Gan et al. then presented a
projection method called ProUM [7] and the HUSP-ULL [8]
to efficiently mine the HUSPs, which are the state-of-the-art
approaches based on the utility-list structure.

III. PRELIMINARIES AND PROBLEM STATEMENT
Let I = {i1, i2, . . . , im} be the finite set of m distinct items.
A quantitative item, abbreviated as q-item, is denoted as
(ik , qk ), which is used to represent the item with its purchase
quantity. An itemset is denoted as w = [i1, i2, . . . , ih] is a
subset of I where h ≤ m. A quantitative itemset, abbreviated
as q-itemset, is denoted as v= [(i1, q1), (i2, q2), . . . , (in, qh))]
is the set of several q-items. Without loss of generality, here
we assume that the items (q-items) are sorted as alphabetic
order in itemset (q-itemset) through the items in itemset.
A sequence is denoted as t = < w1, w2, . . . , wd > is the
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TABLE 1. A quantitative sequence database.

TABLE 2. A profit table.

sorted list of one or more itemset. A quantitative sequence,
abbreviated as q-sequence is denoted as s = < v1, v2, . . . ,
vd >, which is the sorted list of one or more q-itemset.
A quantitative sequence database, abbreviated as q-sequence
database S = {s1, s2, . . . , sn} is the set of q-sequence where
each q-sequence is associated with a unique identifier called
sid. Table 1 shows a quantitative sequential database. It has
four q-sequences and six items, denoted from a to f. Table 2
shows the unit profits of the items that appear in Table 1.

Here, several definitions regarding the HUSPM are given
below.
Definition 1: Let the utility of an item ir in a q-itemset v

denote as u(ir , v), and is defined as:

u(ir , v) = q(ir , v)× pr(ir ), (1)

where q(ir , v) is the quantity in a q-itemset v and pr(ir ) is the
profit of an item ir .
Example 1: Take an example as follows. The utility of an

item a in the first q-itemset of s1 in Table 1 is calculated as:
u(a,[(c:6)(a:3)]) = q(a,[(c:6)(a:3)])× pr(a) = 3× 3 = 9
Definition 2: Let the utility of a q-itemset in a q-sequence

s denote as u(X , s), and is defined as:

u(X , s) =
∑

X∈s∧ir∈X

u(ir ,X ) (2)

Example 2: Take an example as follows. The utility of
a q-itemset [(c:6)(a:3)] in q-sequence s1 is calculated as:
u([(c:6)(a:3)], s1) = u(c,[(c:6)(a:3)]) + u(a,[(c:6)(a:3)]) =
6× 2+ 3× 3 = 21.
Definition 3: Let the utility of a q-sequence in a quantita-

tive sequential database D denote as u(s), and is defined as:

u(s) =
∑

s∈D∧X∈s

u(X , s) (3)

Example 3: Take an example as follows. The utility of the
q-sequence s1 in Table 1 is calculated as: u(s1) = u([(c :
6)(a : 3)], s1)+u([(e : 2)(c : 2)], s1)+u([(e : 6)(b : 3)], s1)+
u([(c : 2)], s1) = 21+ 6+ 18+ 4(= 49).
Definition 4: Let the utility of a quantitative sequential

database D denote as u(D), which is the sum of the utility
of each its q-sequence and defined as:

u(D) =
∑
s∈D

u(s) (4)

Example 4: Take an example as follows. The utility of the
quantitative sequential database D in Table 1 is calculated as:
u(D) = u(s1)+ u(s2)+ u(s3)+ u(4)(= 49+ 67+ 81+ 133)
(= 330).
Definition 5: Given two itemsets, wa = [ia1 , ia2 , . . . , iam ]

and wb = [ib1 , ib2 , . . . , ibn ], where iak ∈ I (1 ≤ k ≤ m)
and ibk′ ∈ I (1 ≤ k ′ ≤ n), if there exists positive integers
1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n such that ia1 = ibj1 , ia2 = ibj2 ,
. . . , iam = ibjm , then wb contains wa, which is denoted as
wa ⊆ wb.
Example 5: The itemset [a, c] contains the itemsets [a], [c]

and [a, c].
Definition 6: Given a q-itemset va = [(ia1 , qa1 )

(ia2 , qa2 ). . . (iam , qam )] and a q-itemset vb = [(ib1 , qb1 )
(ib2 , qb2 ). . . (ibn , qbn )], where iak ∈ I (1 ≤ k ≤ m) and
ibk′ ∈ I (1 ≤ k ′ ≤ n), if there exists positive integers
1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n such that ia1 = ibj1∧ qa1 = qbj1 ,
ia2 = ibj2∧ qa2 = qbj2 , . . . , iam = ibjm∧ qam = qbjm , then vb
contains va, which is denoted as va ⊆ vb.
Example 6: Take an example as follows. The q-itemset

[(c:6)(a:3)] in q-sequence s1 in Table 1 contains the q-itemset
[(c:6)], q-itemset [(a:3)] and q-itemset [(c:6)(a:3)].
Definition 7: Given two sequences ta = < wa1 , wa2 , . . . ,

wam > and tb = < wb1 , wb2 , . . . , wbn >, where wak ⊆ I
(1 ≤ k ≤ m) and wbk′ ⊆ I (1 ≤ k ′ ≤ m) are both itemsets,
if there exists positive integers 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n
such that wa1 ⊆ wbj1 , wa2 ⊆ wbj2 , . . . , wam ⊆ wbjm , then ta is
the subsequence of tb, which is denoted as ta ⊆ tb.
Example 7: Take an example as follows. A sequence

<[a,b],[a,c],[b,c]> is the subsequence of the sequence
<[a,b],[a,b,c], [a,b],[b,c]>.
Definition 8: Given two q-sequences sa =< va1 , va2 , . . . ,

vam > and sb =< vb1 , vb2 , . . . , vbn >, where vak (1 ≤ k ≤ m)
and vbk′ (1 ≤ k ′ ≤ n) are both q-itemsets, if there exists
positive integers 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n such that va1 ⊆
vbj1 , va2 ⊆ vbj2 , . . . , vam ⊆ vbjm , then sa is the q-subsequence
of sb, which is denoted as sa ⊆ sb.
Example 8: Take an example as follows. The q-sequences

<[(c:6)],[(e:2)(c:2)]> and <[(b:2)],[(e:6)(b:3)]> are two
q-subsequences of the q-sequence s1 in Table 1.
Definition 9: Given a q-sequence s = < v1, v2, . . . , vn >

and a sequence t = < w1, w2, . . . , wm >, if n = m and the
items in vi are same as the items in wi, where 1 ≤ i ≤ n, then
s is said to match t, which can be denoted as t ∼ s.
Example 9: Take an example as follows. A sequence

<[c][e,b]> matches the s1 in Table 1. Notice that the two q-
itemsets may be considered as different although they contain
the same itemset because of the quantities and the position
of a q-sequence. Therefore, it is possible that more than one
q-subsequence of a q-sequence matches the given sequence.
The sequence <[c]> has three matches in s1:<[(c:6)]>,
<[(c:2)]>, and <[(c:2)]>.
Definition 10: A q-itemset containing k items is called

k-q-itemset. A q-sequence containing k items is called
k-q-sequence.
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FIGURE 1. The lexicographic enumeration (LE)-tree of the search space.

Example 10: Take an example as follows. The q-sequence
s1 is a 7-q-sequence. The first q-itemset of q-sequence is a
2-q-itemset.
Definition 11: Let the utility of a sequence t in a

q-sequence s denote as u(t, s), and is defined as:

u(t, s) = max{u(sk )|t ∼ sk ∧ sk ⊆ s}, (5)

where ∼ denotes the matched relationship and t ∼ sk repre-
sents that sk is the match of t.
Example 11: Take an example as follows. The utility of a

sequence <[a], [b]> in the q-sequence s1 of Table 1 is cal-
culated as: u(< [a], [c] >, s1) = max{u([a : 3], [c : 2], s1),
u([a : 3], [c : 2], s1)} = max{13, 13} = 24. This example
shows that a target sequence in high-utility sequential pattern
mining may have multiple utility values in a transaction,
which is quite different from traditional high-utility itemset
mining and frequent itemset mining. Different evaluation
criteria choose different utility values, and here the maximum
value is used as the utility value of the target sequence.
Definition 12: Let the utility of a sequence t in a quantita-

tive sequence database D denote as u(t), and is defined as:

u(t) = max{u(t, s)|t ∼ sk ∧ sk ⊆ s} (6)

Example 12: Take an example as follows. The utility of
a sequence <[a],[b]> in Table 1 is calculated as: u(< [a],
[c] >) = u(< [a], [c] >, s1) + u(< [a], [c] >, s2) + u(<
[a], [c] >, s3) + u(< [a], [c] >, s4) = 13 + 18 + 13 + 34
(=78).
Definition 13: A sequence t in a quantitative sequential

database D is a high utility sequential pattern (HUSP) if it
satisfies the condition as:

HUSP← {t|u(t) ≥ δ × u(D)}, (7)

where δ is minimum utility threshold and u(D) is the total
utility of the q-sequence D.
Example 13: Take an example as follows. The utility of

the sequence <[a],[b]> in the q-sequence database D is
u(< [a], [c] >) = 78, and the utility of the q-sequence
database D is u(D) = 330. If the minimum utility threshold

is set to 0.2, then the sequence <[a],[b]> is considered as
a high-utility sequential pattern in the sequence database D
since 178 ≥ 0.2 × 330 (= 66).

Problem Statement: Given a quantitative sequence
database and a user-defined minimum utility threshold,
the task of high utility sequential pattern mining (HUSPM)
is to find the complete set of high utility sequential patterns
(HUSPs) in which the utility value of each sequence is no less
than δ × u(D) from the quantitative database.

IV. DEVELOPED SEQUENCE-UTILITY (SU)-
CHAIN-BASED MODEL
In this paper, we present a novel sequence-utility (SU)-Chain
structure to keep more information for further mining pro-
cess. A lexicographic enumeration (LE)-tree is used here to
represent the search space of the promising candidates, which
can be shown as Figure 1.

In Figure 1, the I-Concatenation and S-Concatenation
are used in the pattern-growth mechanism [29], [32] to
generate the possible and promising HUSPs. Based on the
I-Concatenation and S-Concatenation for the enumeration
tree, all the possible and promising candidates can be pro-
duced and explored. In order to ensure the integrity of the
mining results, we should concatenate items in a certain
order [7], [8]. It is noted that the definition of sequence order
is also suitable for q-sequence. According to the definition
of sequence order, we could produce all candidate sequences
completely without loss of integrity.

For the HUS-Span [29] and ProUM [7], it needs to gen-
erate the projection database of a sequence t using the
original database. A designed sequence-utility (SU)-Chain
here can be considered to produce the projection database
for the sequence. While exploring the child nodes in the
LE-tree, this projection database could be passed to the
child nodes after updating. This progress can be used to
reduce time consumption. Table 3 shows the SU-Chain of
a sequence <a> from Table 1. The SU-Chain is a set of
projection sequences and utility-lists. The element of the
utility-lists contains four fields as: concatenation position pi;
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TABLE 3. The built SU-Chain of the running example of the
sequence <a>.

Algorithm 1 SU-Chain Construction
Input: suc, SU-Chain of t; i, Concatenation Item; type,

I-Concatenation or S-Concatenation
Output: suc’, the SU-Chain of new sequence.

1 suc′ = ∅ ;
2 for each proseq, ul ∈ suc do
3 find the concatenation candidate items C ;
4 if i ∈ C then
5 build new utility list ul’ ;
6 project proseq to the new projection sequence

proseq’ suc′← suc′ ∪ (ul ′, proseq′)

7 return suc’

themaximum utility at concatenation position pi; the util-
ity of remaining sequence s/t,pi ; a pointer pointing to either
the (i+ 1)-th concatenation position or null.
Based on the SU-Chain, the projection sequence can

thus be maintained for later generation of the promis-
ing candidates for examination. Also, it is easy to find
the I-Concatenation and S-Concatenation of the sequences.
Thus, the computational cost can be greatly reduced to mine
the required HUSPs. The designed SU-Chain structure is then
presented in Algorithm 1. The main construction process is
divided into three parts as: (1) find the candidate concatena-
tion items of I-Concatenation or S-Concatenation; (2) build
the new utility-list; and (3) project the required sequences.

In order to efficiently reduce the size of the search space
for mining HUSPs, several pruning strategies [21], [32] can
thus incorporated with the designed SU-Chain structure to
improve mining performance. Several definitions, theorems
and pruning strategies are then given below.
Definition 14: SWU (t) is used to denote the sequence

weighted utilization of t in the q-sequence database SUD, and
defined as:

SWU (t) =
∑
s∈SUD

{u(s)|t ⊆ s} (8)

Theorem 1 Given a sequence t, for each sequence t′

that could be generated by t using concatenation operations,
we then can obtain that: u(t ′) ≤ SWU (t)

Proof: As the above definition, it is obvious that u(t ′) ≤
SWU (t ′) holds. Since t ⊆ t ′, SWU (t ′) =

∑
s∈D{u(s)|t

′
⊆ s}

≤
∑

s∈D{u(s)|t ⊆ s}.
Pruning strategy 1:According to Theorem 1, For a given

sequence t, if SWU (t) is less than the minimum utility value,
the utility of any sequences which could be generated by twill

Algorithm 2 Mining (t, suc)

1 if PEU (t) ≥ δ × u(D) then
2 scan projection Dproject of t to remove the irrelevant

items;
3 Find the I-Concatenations and S-Concatenations;
4 remove the unpromising items from

I-Concatenations and S-Concatenations;
5 for each item ij in I-Concatenation do
6 t ′← I − Concatenation(t, ij);
7 suc′← C ;
8 if u(t ′) ≥ δ × u(D) then
9 HUSPs← HUSPs ∪ t ′;

10 Mining(t ′, suc′) ;

11 for each item ij in S-Concatenation do
12 t ′← S − Concatenation(t, ij);
13 build suc′ of t ′;
14 if u(t ′) ≥ δ × u(D) then
15 HUSPs← HUSPs ∪ t ′

16 Mining(t ′, suc′) ;

17 return HUSPs

be less than the minimum utility value. And these sequences
could be safely pruned from the LE-treewithout affecting the
complete mining results.
Definition 15: PEU(t, s) is used to denote the prefix exten-

sion utility of t in q-sequence s, and defined as:

PEU (t, s) =
{

max{u(t, p, s)+ ru(s/t,p)},
0.

(9)

where max{u(t, p, s) + ru(s/t,p)} holds if ru(s/t,p) > 0,
otherwise, the PEU (t, s) is set as 0.
Definition 16: PEU (t) is used to denote the prefix exten-

sion utility of t in q-sequence, and defined as:

PEU (t) =
∑

s∈D∧t⊆s

PEU (t, s) (10)

Theorem 2 Given a sequence t, for each sequence t′

that could be generated by t using concatenation operation,
u(t ′) ≤ PEU (t)

Proof: From the above definition, u(t ′) ≤ PEU (t ′)
holds. PEU (t ′, s) = max{u(t ′, p′, s) + ru(s/t ′,p′ )} =
max{u(t, p, s) + u(ij) + ru(s/t ′,p′ )}. ij is the concatena-
tion item at the concatenation position p′. since p′ ≥
p, u(ij) + ru(s/t ′,p′ ) ≤ ru(s/t,p), Therefore, PEU (t ′, s)
≤ max{u(t, p, s) + ru(s/t,p)} = PEU (t, s). Therefore,
PEU (t ′) =

∑
s∈D∧t ′⊆s PEU (t ′, s) ≤

∑
s∈D∧t ′⊆s PEU (t ′, s) ≤∑

s∈D∧t⊆s PEU (t, s). Then u(t ′) ≤ PEU (t).

Pruning strategy 2:According to Theorem 2, For a given
sequence t, if PEU (t) is less than the minimum utility value,
the utility of any sequences which could be generated by twill
be less than the minimum utility value. And these sequences
could be safely pruned from the LE-treewithout affecting the
complete mining results.
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FIGURE 2. Runtime under various δ thresholds.

Furthermore, the pruning strategies used in the HUSP-
ULL [8] can also be incorporatedwith the designed SU-Chain
structure as follows.

Pruning strategy 3: Given a sequence t ′ and t , t′ is
generated by t and ij using concatenation operation. Then
ij is the concatenation candidate item of sequence t . Thus,
if
∑

s∈D∧t ′⊆s PEU (t, s) is less than theminimumutility value,
then ij called unpromising item is removed from the set of
concatenation candidate items not to generate the sequence
t ′. Therefore, if ij is the I-concatenation candidate item, then
we can remove ij from the set of I-concatenation items; if ij
is the S-concatenation candidate item, then we can remove ij
from the set of S-concatenation items.

Pruning strategy 4: Given an item ij and a sequence t.
t ′1 is generated by t and item ij using I-concatenation; and
t ′2 is generated by t and item ij using S-concatenation. if∑

s∈D∧t ′1⊆s
PEU (t, s) is less than the minimum utility value

and
∑

s∈D∧t ′2⊆s
PEU (t, s) is less than the minimum utility

value. Then we can remove the item ij called irrelevant item
from the projection database of the sequence t since this
sequence is an super sequence generated by t and item ij could
be high utility sequential pattern.

Using the Pruning strategy 4 to remove irrelevant items
from projection database of a sequence t could reduce the size
of the projection database of the sequence t and its super-
sequence because the projection databases of these sequences
do not need to contain the irrelevant items. As the same time,

TABLE 4. Characteristics of the datasets.

Removing the irrelevant items could lower the upper bound
value of PEU (t).

V. EXPERIMENTAL EVALUATION
In this section, several experiments were conducted to eval-
uate the proposed SU-Chain compared to the state-of-the-art
USpan [32], HUS-Span [29] and HUSP-ULL [8] approaches.
Six real-life datasets were used in the experiments to eval-
uate the performance in terms of runtime and number of
generated candidates. The characteristics of six datasets are
shown in Table 4. The parameters of the used datasets indi-
cate: #|D| states the total number of sequences; #|I | is the
number of distinct items;C is the average number of itemsets
per sequence; and MaxLen states the maximum number of
items per sequence.

A. RUNTIME
Experiments were conducted under the various minimum
utility threshold δ and the results are then shown in Figure 2.
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TABLE 5. Number of determined candidates and final HUSPs under various δ thresholds.

From the results, it can be observed that the designed
SU-Chain-based algorithm outperforms the state-of-the-art
USpan and HUS-Span algorithms in terms of runtime per-
formance. The state-of-the-art HUSP-ULL algorithm has
slightly better performance than that of the SU-Chain-based
algorithm, for example in Figure 2(d), when the threshold is
set as 1%, the SU-Chain-based model requires 13.1 seconds
and the state-of-the-art HUSP-ULL needs 9.6 seconds. When
the threshold is set as 1.715%, the SU-Chain-based model
needs 0.79 seconds and the HUSP-ULL requires 0.2 seconds.
When the threshold is set as 1%, the SU-Chain-based model
requires 7.5 seconds while the HUSP-ULL needs 4.9 sec-
onds. However, for the databases shown in Figures 2(a), 2(b),
and 2(c), the designed SU-Chain-based model needs less
runtime than that of the HUSP-ULL algorithm, especially the
HUSP-ULL has the memory leakage problem in Figures 2(a)
and 2(c). Generally, the designed SU-Chain-based algorithm
can obtain better performance compared to the most HUSPM
algorithms, especially it has better capacity to keep more
information for efficiency improvement.

B. NUMBER OF GENERATED CANDIDATES
In order to evaluate the effectiveness of the compared algo-
rithms, the number of generated candidates and the number
of discovered HUSPs under different minimum utility thresh-
olds are then conducted and shown in Table 5. The #HUSPs

represents the number of HUSPs and ‘‘-’’ denotes that the run-
time of the performed algorithm exceeds 10,000 seconds or it
cannot be performed in a limited main memory.

From the given results, it can be observed that the designed
SU-Chain-based algorithm generates less candidates than the
previous USpan and HUS-Span algorithms. As the less can-
didates are required to be explored, less runtime is needed.
When the minimum utility threshold increases, the num-
ber of the determined candidates decreases, and vice versa.
This is reasonable since less patterns are then generated
based on the higher minimum utility threshold. We also can
observe that the USpan and HUS-Span cannot generate the
results in the Yoochoose-buy dataset, and the HUSP-ULL
cannot obtain the results both in Yoochoose-buy andMSNBC
datasets. Although the HUSP-ULL has a very slight bet-
ter performance than the SU-Chain-based algorithm (almost
1-2 seconds different), the number of generated candidates
are nearly similar. However, the designed SU-Chain-based
algorithm can obtain good performance for handling the
Yoochoose-buy and MSNCBC datasets than that of the
state-of-the-art HUSP-ULL approach.

VI. CONCLUSION AND FUTURE WORK
In this paper, we present a Sequence-Utility (SU)-chain struc-
ture to keep the projection database and its utility-list struc-
ture. Based on the designed SU-Chain-based model and the
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utilized pruning strategies, the SU-Chain-based algorithm
successfully obtains good results than the other compared
algorithms, especially the designed SU-Chain-based algo-
rithm can reduce the leakage problem of the memory com-
pared to the state-of-the-art HUSP-ULL approach. In the
future, we will then address the dynamic situation to effi-
ciently update the discovered HUSPs for transaction insertion
based on the Hadoop or Spark platform. How to efficiently
design a better structure used in the MapReduce framework
is also an interesting topic for the further study.
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