99 research outputs found

    On computing the degree of convexity of polyominoes

    Get PDF
    In this paper we present an algorithm which has as input a convex polyomino P and computes its degree of convexity, de\ufb01ned as the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. The algorithm uses space O(m + n) to represent a polyomino P with n rows and m columns, and has time complexity O(min(m, rk)), where r is the number of corners of P. Moreover, the algorithm leads naturally to a decomposition of P into simpler polyominoes

    Asymptotics of Z-convex polyominoes

    Get PDF
    The degree of convexity of a convex polyomino P is the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. In this paper we show that one can compute in polynomial time the number of polyominoes of area n and degree of convexity at most 2 (the so-called Z-convex polyominoes). The integer sequence that we have computed allows us to conjecture the asymptotic number an of Z-convex polyominoes of area n, ɑn ∼ C·exp(π)√11n/4⁄n3/2

    Tomographic reconstruction of 2-convex polyominoes using dual Horn clauses

    Get PDF

    Essays on Integer Programming in Military and Power Management Applications

    Get PDF
    This dissertation presents three essays on important problems motivated by military and power management applications. The array antenna design problem deals with optimal arrangements of substructures called subarrays. The considered class of the stochastic assignment problem addresses uncertainty of assignment weights over time. The well-studied deterministic counterpart of the problem has many applications including some classes of the weapon-target assignment. The speed scaling problem is of minimizing energy consumption of parallel processors in a data warehouse environment. We study each problem to discover its underlying structure and formulate tailored mathematical models. Exact, approximate, and heuristic solution approaches employing advanced optimization techniques are proposed. They are validated through simulations and their superiority is demonstrated through extensive computational experiments. Novelty of the developed methods and their methodological contribution to the field of Operations Research is discussed through out the dissertation

    Enumeration of polyominoes using Macsyma

    Get PDF
    AbstractThis paper shows the use of a symbolic language, Macsyma, to obtain new exact or asymptotic results in combinatorics. The examples are taken among polyominoes objects. The main purpose is to show how easy it is to bring some methods into operation in order to obtain new results in enumerative combinatorics

    A new mathematical model for tiling finite regions of the plane with polyominoes

    Get PDF
    We present a new mathematical model for tiling finite subsets of Z2\mathbb{Z}^2 using an arbitrary, but finite, collection of polyominoes. Unlike previous approaches that employ backtracking and other refinements of `brute-force' techniques, our method is based on a systematic algebraic approach, leading in most cases to an underdetermined system of linear equations to solve. The resulting linear system is a binary linear programming problem, which can be solved via direct solution techniques, or using well-known optimization routines. We illustrate our model with some numerical examples computed in MATLAB. Users can download, edit, and run the codes from http://people.sc.fsu.edu/~jburkardt/m_src/polyominoes/polyominoes.html. For larger problems we solve the resulting binary linear programming problem with an optimization package such as CPLEX, GUROBI, or SCIP, before plotting solutions in MATLAB

    Image Sampling with Quasicrystals

    Get PDF
    We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary materials, please visit at http://www.Eyemaginary.com/Portfolio/Publications.htm

    Discrete structures, algorithms, and applications

    Get PDF

    Algorithmic Assembly of Nanoscale Structures

    Get PDF
    The development of nanotechnology has become one of the most significant endeavors of our time. A natural objective of this field is discovering how to engineer nanoscale structures. Limitations of current top-down techniques inspire investigation into bottom-up approaches to reach this objective. A fundamental precondition for a bottom-up approach is the ability to control the behavior of nanoscale particles. Many abstract representations have been developed to model systems of particles and to research methods for controlling their behavior. This thesis develops theories on two such approaches for building complex structures: the self-assembly of simple particles, and the use of simple robot swarms. The concepts for these two approaches are straightforward. Self-assembly is the process by which simple particles, following the rules of some behavior-governing system, naturally coalesce into a more complex form. The other method of bottom-up assembly involves controlling nanoscale particles through explicit directions and assembling them into a desired form. Regarding the self-assembly of nanoscale structures, we present two construction methods in a variant of a popular theoretical model known as the 2-Handed Tile Self-Assembly Model. The first technique achieves shape construction at only a constant scale factor, while the second result uses only a constant number of unique particle types. Regarding the use of robot swarms for construction, we first develop a novel technique for reconfiguring a swarm of globally-controlled robots into a desired shape even when the robots can only move maximally in a commanded direction. We then expand on this work by formally defining an entire hierarchy of shapes which can be built in this manner and we provide a technique for doing so
    corecore