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Abstract 

Deiest, M., Enumeration of poiyominoes using Macsyma, Theoretical Computer Science 79 ( 1991) 
209-226. 

This paper shows the use of a symbolic language, Macsyma, to obtain new exact or asymptotic 
results il; combinatorics. The examples are taken among poiyominoes objects. The main purpose 
is to show how easy it is to bring some methods into operation in order to obtain new results in 
enumerative combinatorics. 

R&me’ 

Cet article a pour but de decrire i’utiiisation d’u!l outii de caicui formei, en i’occurrence Macsyma, 
pour i’obtention de r&?tats exacts ou asymptotiques iors d’enumerations. Les objets pris en 
exempie sont ies poiyominos. Loin d’effectucr une synthese de ces sujets, ii s’agit p!utGt de donner 
ies principaies mCthodes, rapides 2 mettre en oeuvre par un combinatoriste, sur ce type de iogiciei. 

1. Introduction 

Macsyma is a symbolic manipulation language which allows current operations 
such as factorization, differentiation or solving linear or algebraic systems. It was 

developed usin g LISP from 1975 to 1983 at the Computer Science Laboratory of 

MIT. The diffusion is made by Symbolics Inc. 

Macsyma is a good tool which works well in comblGatoria1 problems in our 

current approach because we deal with the Schtitzenberger methodology. Let fi be 

a class of combinatorial objects. Suppose that they are enumerated by the integer 

LX, according to the value n of a parameter p and that the corresponding generating 
function f( t) = znaO a,t n is algebraic. The metho ology of Schiitzenberger [ 161 
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which consists of first constructing a bijection between the objects 0 and the words 
of an algebraic language, and then taking the “commutative image”, gives an 
explanation for the algebricity of the generating function. The coding with words 

requires: 
a permanent verification of the coding during the construction of the bijections, 
the possibility of grasping big mathematical expressions. 
Macsyma allows US to realize these tasks without any constraints of dimensions. 

Nevertheless, some concepts are not in this language. For example, it is very difficult 
to define new types or objects because Macsyma does not support these concepts 
unlike some recent languages, such as Maple [ 131. Thus using Macsyma, you need 
to create your own standard of programmation in order to have a high compatibility 
between your own functions. Thus, most of our functions work on a list whose 
meaning is always the same, for example a functional equation having the form 
G( F, x) = 0 has the internal representation in our programs (G, F, X) in order to 
specify the equation, the function and the variable. 

In Macsyma it is not possible to specify the domain for a variable or a function. 
It seems that in this field, Scratchpad [3], the software developed by IBM Research 
is well fitted to these problems. Moreover a lot of boolean variables must be initialized 
modifying the work of various functions. It is important to use them efficiently 
because of their big number. 

We have made this paper very simple in order to allow a beginner to compute 
with Macsyma. Most of the examples are taken from our works on polyominoes 
[4-91. The polyominoes are connected finite union of cells (unit squares) of the plane 
Z XZ (see Fig. I). 
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Fig. 1. Some polyominoes. 

In Section 2 we explain our thought process when we work in Macsyma. Then, 
we treat successively the resolution of algebraic equations (Section 3), the research 
of a particular solution (Section 4), and we end with asymptotic calculus (Section 
5). Appendix I gives an example of system which was solved using Macsyma. 
Appendix 2 gives a program for corn uting the main part of a function given by 
an implicit algebraic equation. We qive it as an example of an elaborate program, 
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but we think that, today, for such a problem, the language A& [ 121 will soon 
become a very good tool. 

Note that since this work was completed, we have made intensive use of Macsyma 
and Maple and using these techniques we have found some new results in com- 
binatorics, for example, relations between skew Ferrers diagrams and q-Bessel 
functions [7], relations between ternary trees and diagonal compacts animals [6]. 

2. Enumeration using formal calculus 

In this section, we point out the main features used in Macsyma and also the 
main problems in using it! Generally speaking, we search for a formula which can 
enumerate some class of objects 9 according to some parameters. 

Example 2.1. In [9], we have studied the parameter perimeter on the class of convex 
polyominoes, whose intersection with an infinite horizontal or vertical line is a 
connected strip of cells (see Fig. 1). Generally, we are interested in the parameters 
area and perimeter of polyominoes. 

The Schiitzenberger method is based on four steps. 
Step 1: Code the objects of 9 by the words of an algebraic language 3’. 
Step 2: Write out a non-ambiguous grammar % generating the language 3. 
Step 3: Solve the algebraic system associated to % in commutative variables and 

obtain a generating function 9 (or a functional equation) for the language 
2 

Step 4: Compute using 9 an exact formula or an asymptotic expression for the 
number of objects in P having a given value for the studied parameter. 

Example 2.2. The coding language for convex polyominoes [9] is the union of three 
algebraic languages saying Z&, JZ,, and 3 lII which code three types of convex 
polyominoes. Writing out a cdn-ambiguous grammar for every language is possible. 
The resolution of the associated algebraic systems gives the three generating functions 
saying %,, $,, and @ ,,,. Summing the expressions and expanding in Taylor series, 
we obtain a formula for the number of convex polyominoes having a perimeter 
2n +4. We give in Appendix 1, the grammar and the associated system for the 
language &. 

In this part of the work, we verify by means of Macsyma the intermediate and 
elementary results, we solve systems and sometimes, as in [7] or I$], we detect new 
properties and new formulas. Now we give step by step the Macsyma function we 
are using. 

In Step 2, writing out a grammar for an algebraic language has a complexity 
which increases with the number of equations. It needs to show for every derixlation 
rule a lemma of unique decomposition. These lemmas are very critical and it is a 
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difficultdob needing a lot of tests. Often, people test it on the smaller wcrds (according 
to the length) of the language. A very good mean for a systematic checking is to 
iterate the set of equations, in order to generate the shorter words of the language. 
The functions SMST, EXPAND, PART and COEFF of Macsyma are very useful. 
We show in the following example the computation of Dyck words until the length 
2n using this technique. 

xannple 2.3. 

Lemma. 7%e Dyck words are the words w over {x, 3}* such that w = E or w = xuSv 

where u and c are Dyck words. 

It is easy to deduce that an equation for the Dyck language is 

D=xDfD+&. 

The computation of the first words of the Dye language until the length 2n is made 
using the following function. 

iterer_dyck(n) := MO&( [s, h, d], 
/* the local variable s has the value of the right part of the Dyck equation 

;/ 
s: 1 + x.d.R.d, 

/* H is an accuF: ;k;!ator */ 
h:s, 

/* iterating loop */ 
for i:l thru n do 

h:SUBST(s,d,h), 
/* suppress the non terminal words */ 

h:EXPAND(SUBST(O,d,h)), 
/* the result is a list formed by the formal sum of Dyck words */ 
/* of length s2n and n in order to have a self contain list*/ 

Ihnl); 
Using the output of this function, it is very easy to obtain the first coefficients of 
the generating function in commutative variables according to the length of words 
by the following function. 

affiche(serie) := block([h,n,mot], 
/* serie is supposed to be a list composed by a serie and its high order 
V 

h:SUBST(x, 2, PART(serie,l)), 

n:PART(serie,2), 

I* loop for displa 

mot:l, 

al )), 

mot:mot*x’)); 



In this way, when an al ebraic language is very difficult to ha&]e, the fornlal 

calculus is an efficient means for the verification of the equations. It is with such a 
method that we obtain the eq ns given in Ap 

In Step 3 of the method01 Macsyma also 

solving for instance SOLVE, LINSOLVE, 
in the case of a large system, the dire 
possible for two reasons: 

often becomes too expensive, 
memory is too large. 

We will describe in Section 3 some simple techniques for handling la 
Now, suppose that the resolution leads to a polynomial equation in which tife 

generating function is solution. If the degree of the polynomial is less than four or 
can be factorized in elementary polynomials whose degrees are less than four, 
Macsyma gives the solutions. One can choose a good generating function usin 
expansion in Taylor series (function TAYLOR) and compare this with the first values 
obtained by the iteration process. We will develop this point in Section 4. 

Note that Macsyma does not give an exact formula from a generating function 
F(x). The function POWERSERIES is inefficient even !,I very simple cases. 

Example 2.4. For the Dyck language, the generating function according to 
of the words is 

d(x):( 1 - sqrt( 1 -4*x))/(2*x); 

The evaluation of POWERSERIES(d(x),x,O) gives 

1 d/1-4x 

2#-- 2x 

and the evaiuation of POWERSERIEs(J,x,O) is 

inf (-4)‘x’ 

2i$z&i i+1) 

J 

‘) 

and an exact formula easy to compute is the serie of Catalan numbers 

Thus, the problem of fin ing a simplest formula is always up to the user. In fact 

making some simplifications on binomial sum is a very diffic&r problem in t 

general case; it requires a very large data basis of ex 
any formal symbolic system which correctly deals w 
time. 
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It is often easy to obtain asymptotic values for the coefficient& of the expansion 
of the generating function from an implicit polynomial equation. We will discuss 
this problem in Section 6. 

Another advantage of formal calculus takes place when the generating function 
is over several variables: it is easy to make a lot of variation on them and then 
maybe to find some new recurrences. W, tiere often surprised by the results displayed 
by the program. Especially, we found: 

a distribution closed to the Narayana numbers in parallelogram study according 
to the perimeter [S], 
Catalan numbers in the study of directed column convex animals [S] and very 
recently 
q-Bessel functions in skew Ferrers diagrams, according to the number of cells [7]. 
Working with a symbolic language allows the combinatorists to confirm or not 

their conjectures. For example, Trehel has conjectured that his mutual exclusion 
algorithm (found with Nai’mi) has a complexity equal to the nth harmonic number 
for a problem having an order n. Before proving it [I], we confirmed it by symbolic 
calculus until the order 9 (linear system with 132 equations generated by a program). 
The confirmation itself gave us some ideas for the proof. 

In this sense, Macsyma and any other formal calculus language is like an experi- 
mental laboratory in the field of formulas and equations. But very quickly, the 
expansions in series from the bijection must be indexed. If not, they are forgotten 
if they are not useful at the time. The index could make comparison? easier, 
transformations by an elementary algorithm, such as Euler transforms. Something 
like a data basis similar to the Sloane book [ 171 would be of great interest. 

esolution of algebraic systems 

In this section, we show the use of Macsyma in solving an algebraic system. We 
denote by deg,(f ) the degree of a polynomial f according to the variable x. 

Letz”={&,..., &} be a finite set of elements called unknown. Let X = {x, , . . . , x,,} 

be a set of finite elements called oariables. An algebraic system of equations over 
W[X] is a set of equations of the form 

where for i in [ 1 . . k], pi is in 

(i if deg,,(p:ja 1. 
The function ALGSYS of 

K[X u E]. The equation Ei is linear for an unknown 

Macsyma is able to solve any systen of algebraic 
equations. In fact, it is inefficient when it is applied to large systems. The algorithm 
chooses the equation in a given order but many times, the user’s choice is better. 
Thus, it is better to proceed in the following way: 

sub-systems which are linear and solve them using the function 
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use the solutions in the remaining system and eliminate the unknowns two by 
two using the function RESULTANT, 

in the case where only one equation remains, compute the set of solutions using 
the function SOLVE. 

In each of these three steps, one solution is found; keep in mind that it is better to 
work with an unknown and only substitute its value at end. 

Example 3.1. In [9], we studied convex polyominoes according to the parameter 
perimeter. In Appendix 1, we relate in detail the direct approach we made before 
handling the calculus which is written in the article. The main feature in this work 
is that all the generating functions depend on the Dyck enumerating function d(x). 
The value of this function was substituted at the end of calculus. 

So, very frequently, a serie u appears all along the calculus and with successive 
power. Moreover, sometimes, one knows a relation of the type a’ = hi(a) where hi 

is a rational function in which CT appears with a degree less than i. Then, the function 
FULLRATSIMP is very useful in order to obtain the lowest degree in the final 
expression. The remaining problem is that this function works in a recursive way 
and the run time often becomes too expensive. We prefer to use some rewriting 
rules using the definition function DEFRULE and the applying one APPLYI, APPLY2 

and APPLYBl. In other languages it is also possible to create an array whose entries 
are the power of u and the value is the function hi and use the substitution functions. 

Example 3.2. The serie d(x) appears in all the calculus solving the problem of 
convex polyominoes. Using the definition of the Dyck equation, we have 

d’(x) = 
d(x)- 1 

x2 n 

The following function generates the rewriting rules for the power of d(x) until the 
order ~1, 

dyck( n) := bIock( [ i], 
/* The entry j of the array di will have the value of dAj */ 

/* rewritten in a polynomia; of degree 1 in d */ 

array(di,n), 

di[2]:(d - l)/x”2, 

/* loop of computation for the rules */ 

for i:3 thru n do 

di[i]:ratsimp(subst(di[2], ‘2,ratsimp(di[ i - 1 l*d))); 

f a functionf is an expression of some power of d, one can obtain a final expression 
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such that degcl(f) = 1 using the following function. 

simplifie_dyck( f ) := block( [i,fonc,n], 
/* expansion of the function */ 

fonc:expand(f), 
/* compute the degree of f in the variable d */ 

n:hipow(fonc,d), 

/* loop for the substitution */ 

for i:2 thru n do 

fonc:subst(di[i],d*i,fonc), 

ratsimp(fonc)); 

These two functions allow us to compute the generating functions S,, S,, and S,,, 
in the form 

When the function o is not rational but when it is an expression with simple 
radicals, the function RADCAN is useful for simplification. 

articular solution 

In all this section, we wiI1 only talk about functions in one variable. The set of 
techniques and of problems hold in the case of several variables. We suppose that 
we search for an expression of a function F(x) satisfying the functional polynomial 
equation 

G(F,x)=O, 0) 

and also for the n + 1 first coefficients j& fi , . . . , fI, of its development in x = 0, 

F(x) = c hx’. 
iz0 

Clearly, we have the equality 

F=G(F,ru)+E 

From this relation, it is easy to obtain the n + 1 first terms of the development of 
F(x) using the following function. 

iterer_equation(fonction,n) := block( [poly,serie,variable,re?*Jltat,i,j], 

/” fonction is a list whose 1 st term is the equation for example G( F,x) + F 

*/ 
poly:part(fonction,l), 

/* nd term is the name of the serie for example F */ 

le for example x */ 
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/* n is the degree of the final development */ 

/* resultat and nouv are accumulators */ 

resultat:poly, 

/* iteration loop */ 

for i:l thru n do 

(resultat:ratsimp(subst( poly,serie,resultat)), 

nouv:Q, 

. 
for j:l thru n do 

nouv:nouv + ratcoeff (resultat,x,j)*x^ j, 

resultat:nouv), 

resultat); 

Suppose that we are able to solve the equation (1) using the SOLVE function, 
then Macsyma gives as many solutions as the degree of G in F. The problem is 
what is the searched function F? We just use the function TAYLOR on every solution 
and compare the result to iterer_equation([G + F,F,x],n). When the solution is too 
complicated, the function TAYLOR does not work directly. Then one must split up 
the expressions into elementary ones. Let t (resp. t 1, t2) be the polynomials given 
by the n + 1 first terms of the development of the function h (resp. h, , h2). We apply 
the following properties in order to compute step by step. 

If h=h,+h, then t=tl+fZ. 
If h - h2 then t is constituted by the n + 1 first terms of the product tl tz. 

If h = n, 0 hz then there exists k s n such that the k first terms of t, 0 f2 are the k 

first terms of the development of h. 

Example 4.1. In [4], we have studied the class of column convex polyominoes 
according to the area and the perimeter. The degree of the functional equation was 
6. Using Macsyma, we compute the six solutions and two are easy to eliminate with 
a direct utilisation of the TAYLOR function. The four others are solutions of an 
equation of degree 4. Thus in these functions appear the same subexpressions. We 
have written a program which computes the development of these subexpressions 
and then replacing in each solution, we were able to select. 

A very difficult problen. can occur when the solutions are functions of the nth 
root of a unit. In this case, Macsyma selects a canonical solution and frequently it 
is not possible to find the good solution. Two methods can be employed. First, add 
some parameters in the bijection, thus the function is more complicated and more 
general and may be (if you are lucky!) the nth root does not step in the final solution. 
The second solution is awkward and consists of introducing at some strategic points 
the formal expression rn where r represents the nth root of unit. We never get 
something with the last one! 

. n [5], we were i~~teKeste e generating functio (x) of the 

number P,, of directed column-convex polyominoes having a site perimeter n (i.e. 
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n is the number of cells lying along the border) 

P(x) = c P,Y* 
n=o 

We give in the paper the functional equations which lead us to use Lagrange 
inversion formula. In fact, a more general equation is known of the form 

E(z, y, x, S) =o 
where S is a gentral serie enumerating the dcc-polyominoes. 
given by 

E&x,x, P)=O. 

(2) 
The function P is 

(3) 

The evaluation of SOLVE( E( 1 ,x,x,P),P) gives three solutions but expanding by 
TAYLOR does not allow to selsct R All the coefficients are in @. Let S(X, y) be the 
function defined by (2). This equation gives also three solutions but only one fit to 
the correct values for S. This function is defined by 

a(% Y) = 
(~-1)~-y((4&-4~)y~+(-8~~-20~+1)y+4~~-8~+4) 

643 
9 

b(x, ?‘) = :2x3 -6x’-6x-2)y”+(-6x3+18x-12)~’ 

+iBx-‘+9x-lS)y-2x3+6x2-6x+2/54, 

c(x, _) ) = (x - l)zy’ - 2(x-l)(x+2)y+(x-1)2, 

d(x,y)=~a(x,y)-b(x,y) 

and 

s(x, y) = 4x, Y) + 
C(X,Y) (v+2w-‘1) 

9d(x,y)- 3 l 

Finally we get P(x) = S(x, -:) and thus the expression of the generating functitin P(x). 

The main interest in founding the explicit expression of the generating rinrction 
is to obtain the formal development of P(x) but also to compute easily the singuiarity 
of the function in order to get asymptotic approximation for the coefficient,_ If the 
serie. We show in the next section one useful method which just needs t 
equation for computing this approximation. 

In this section, we explain how to use Macsyma in order to compute the asymptotic 
vahle for the n;umberJ, of objects of a given class having the value n for a parameter; 

proximation is obtained in the form 

(4) 

the functional equation 
s possible to obtain with 
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Macsyma the main part of the function F(x) in the form 

F(x)=h(x-x0)” 

with cy E Q, A E Q= and xo~ R. In order to obtain such expressions, several methods 
are available. We just show the most frequently used. Details and proofs can be 
found in [2, IO, 11, 181. 

If the function F(x) has been computed in the previous step, we can try to 
compute the singularities. Even in this case, it is not sometimes possible to compute 
them. For example in [4], the function is known but it seems very difficult to compute 
its singularities. We need to find the smallest one according to the module. Let x0 
be this singularity. Then F(x) has the decomposition 

F(x) = H(x)S(x)+ C(x) 

where x0 is not a singularity of H(x) 
admits the following decomposition: 

H(x) = C qi(x-xo)i 
i20 

thus we deduce that 

and C(x). Around x =x0, the function H(x) 

FIX) = 77oW) -t- o((x - xo)SW)* 

Using the Macsyma function SOLVE, we can often compute the singularities, split 
F(x) and then compute qo= #(x0). 

Example 5.1. In [8], the study of parallelogram polyominoes according to their site 
perimeter leads to a calculus of the asymptotic number of such polyominoes from 
the generating function 

p(x)=l-x 
‘-2x”+x”+(xZ-x-l)Jl-2x-x’-2x3+x4 

. 
2 

There is only one radical and the polynomial under the radical can be factorized 
by Macsyma. Then it is easy to deduce that 

~(x)-(l-x~)“2. 

If it is not possible to give the singularities from the function, one can use the 
functional equation for computing it using Puiseux development [lo]. For this, first 
solve the system 

G(F,;c)=O, 

aG(F, w = o 

w . 
(6) 
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In Macsyma, we make the evaluation of 

algsys([G(F,x)=O,diff(G(F,x),F,l)=O],[F,x]); 

among all the solutions (F”, X, ), let (q, 5) be tFe solution such that for all S, we 
have x, - > 5 and Es 2 cp. We define the polynomial 

x3mple 5.2. For the Dyck generating function, we have 

Q(w) := G(y +w +5). 

G(F,x)=xd’-d+l 

we deduce <p=2 and c=f. 

Let y be Ax”. In Macsyms, it leads us to define the function 

Ql (h,x,a) := Q(x,h”x”a). 

The polynomial @(A, x, (Y) can be written in the form xy=, J$(A )x’ja+4 with j in 

11 . . n], ci(h) a polynomial in @[h], (Uj, 6j) in UP. 

le 5.3. After the substitution of variables, we obtain 

h 
Ql(A, x, a) - A’x”‘+’ +T x2” +4Ax”+’ +4x. 

Using the Macsyma functions which implement the list manipulation, it is easy 
to isolate the polynomials pi and the pairs (Uj, 6j) in @(A, x, a). 

We extract from Ql( A, x, a) the following values 

P,=A2, a, = 1, b, =2, 

P, = A ‘14, a2 =o, &=2, 

P3 = 4A, a3 = 1, byl, 

Pd = 4, a, = 1, 64=0. 

Then we determine A and Q using the Newton polygon [lo]. We do not give 
explanations about this od but the tech selection of a set of 

era1 case, the value of Q is rom this it is easy to 



Enumeration of polyominoes using Macsyma 

deduce that 

221 

F(x)=h(x-x,)“. 

The two values given by the Newton polygons are j = 1 and j = 4. We 
deduce that a! = $ and A = 4i and thus 

d(X) = 4i(x -31’2 

We give in Appendix 2, a function written in Macsyma which realizes this 
algorithm. 

Appendix 11 

We give in the following a system of equations allowing the generation of the 
pigmented Dyck language defined in [9]. e denote by D the classical Dyck 
language. The name of the non-terminals are in capitals. Their name reflect their 
properties. So P (resp. I, 0, a) means an even number (resp. odd, none, non-zero 
even) of letters “a”. The letter A in the name of a non-terminal means that it only 
generates letter “a”. The letter R means that the woi-ds of the associated language 
to the non-terminal are prime Dyck words shuffled with letters “a”. The non-terminal 
PP is associated to the pigmented Dyck language. 

PP= RpO.D.R.OP+ RPO.D+ D.ROP+ RPe+x.D.XD 
PI = R_pS._D. R. 0I-f D. ROI + RPI 
IP= R_IO.D.R.OP+ RIO..+ RIP 
II = RIO.D.ROI + RII 
RPO = x.~OAO.z 
ROP = x.OpOA.2 
RIO = x. IOAO.2 
ROI = x.OIOA.2 
POAO = a. IOAO + x.pOA0.X D 
IOAO -‘z a.~OAO+x.IOAO.~.D+a.x.D.~.D 
OEOA = 0dOA.a + D.x.O_POI$.Z 
OIOA = 0POA.a + D.x.OIOA.%i- D.x.D.f.a 
REP = x.PeAA.3 
RIP = x..l&?AA.x’ 
RPI = x._PIAA.X 
RII = x. IIAA.3 
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Pp9A= EI0A.a-k RPe+ R_PO.D.RO_P+ Ri’3.D 
PIOA = eP0A.a + RPI + RPO.D.ROI 
PPAO = a.IPAO + PP 
PIAO = a. IIAO + PI 
IPAO = a.PPAO + IP 
IIAO = a.PIAO + II 
PPOA = PI0A.a + PP 
IPOA = II0A.a 9 IP 
PIOA = PP0A.a + PI 
IIOA = IP0A.a + II 
IPAA = a. PIAA.a + a.PP?lO + II0A.a + IP 
PIAA = a. IPAA.a + a. IIAO + PP0A.a + PI 
PPAA = a. IIAA.a + a. IPAO + PI0A.a + BP 

Using the morphism /A from (a, x, X}* into (x)” which tranCorms all the letters 
into the letter x, the commutative image of this system allows the computation of 
the generating function pp of the Dyck pigmented language. We denote by d the 
generating function of the Dyck language. We obtain the following system 

pp = x4 d rp’ + 2x’ d rp + X’ppaa + x’ d’ __ 
pi = x’drpri+x’dri+x’piaa 
ii .=x4 dri’+x’ iiaa 

rp = xri+x’drp 
ri=xrp+x’drhx3d’ 
ppaa =-x’ iiaa +2x ipso +x’ ppaa +x4 d rp’ 
$aa - 

_- 
- x’ piaa + x iiao -#- x ppao + x’ piaa + x4 d rp ri __ 

iiaa = x’ ppaa + 2x piao + ii 
ppaa = x’ iiaa + 2x ipao + pp 

piaa = x’ piaa + x ppao + x iiao + pi 
ppao = x ipao + x2 ppaa + x4 d rp2 + xz rp VW 
ipao = x ppao + x2 piaa + x4 d ri rp 
ipao=xipaoi-pp- 
ipao = x ppao + pi 
piao = x iiao + pi 
iiao = x piao + ii 

The computation is made in the following order: 
solving equations ( IS! and ( 16) gives piao and iiao, 
solving equations (13) and (14) gives ppao and ipao, 
solving equations (11) and (12) gives ppao and ipao, 
solving equations (8), (9), (10) gives iisza, ppaa and piaa, 
solving equations ( 

sxie d, 
at last, solving equation gives pp according to the serie d. 

0) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
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We only give the text of the function that realizes the computation of the main 
part of a function. The argument of the function is a list of the form (G( F, x), F, x); 
the result is the main part of F(x) in the form h (x -x0),. 

puiseux(fonction) := BLOCK([fonc,x,xO,lambd,alfa,long,liste], 

/ 
* 

I” 
I * 

I” 
I” 

fonction is a list of three parameters */ 
1st parameter of the function G( F,x) */ 
2nd parameter, the name of the function F */ 
3rd parameter, the name of the variable x */ 
Compute Ql and Xi */ 

x: part( fonction,3), 
fonc:puiseux-change( fonction), 
display( font), 
x0: part( fonc,2), 
fonc:part(foncJ), 

/* Compute Pj and (aj, bj) */ 
/* Find the pairs (0,bj) such t’_ at bj is minimum */ 

long:length( font), 
array ( r,long ), 
array( b,long) 

array(p,long), 
liste:isole_puiseux( [ fonc,x] ), 
display( liste), 

/* Compute alfa and lambda */ 
fonc:final_puiseux(liste), 
display( font), 

kill(a,b,p), 
part(fonc,l)*(x - xO)^part(fonc,2)); 

puiseux_change( fonction) := BLOCK( [fonc,y,x,long,solution, 
imin,min,i,so], 

/* The input of this function is the functional */ 
/* equation and its output is a list of two */ 
/* 1st element is the function Ql */ 
/* 2nd element is the main singularity */ 

fonc:part(fonction,l), 
y:part( fonction,2), 
x:part( fonction,3), 

/* Solve the system (6) */ 
solution:algsys( [ font = 
display( solution), 

(fonc,yJ) = WwlA 
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long:length(solution), 
imin: 1, 
min:part(soluticn,l,lJ), 
while min = 0 or imagpart(min)#O 

or imagpart( part( solution,imin,2,2)#0 do 
(imin:imin + 1, 
min:part( solution,imin, 1,2)), 
for i:imin+ 1 thru long do 

(so: part{ solution,i, 1,2), 
if abs( so) c abs( min) 
and so#O 
and imagpart(so) = 0 
and imagpart( part( solcltion,i,2,2)) = 0 
then 

(imin:i, 
min:so, 
display( imin,min))), 

x0: part( solution,imin, 1,2), 
y0: part( solutioc,imin,2,2), 
display( xO,yO), 

,/* Change the variable by (7) */ 
fonc:subst( x + xO,x,subst(y + yO,y,fonc)), 

/* Change the variable by (8) */ 
fonc:ratgxpand(subst(lambd”x”alfa,y,fonc)), 
[fonc,xO]); 

isole_puiseux( font) := block( [eclat,long,mono,deno,numejl, 
/* Begin the computation of the Newton polygon */ 
/* the input is a list composed with Ql and the variable x */ 

eclat:isolate( part( font, 1 ),part( fonc,2)), 
long: length( eclat ), 
imin:O, 
for j:l thru long do 

(mono: part( eclatj), 
nume:num( mono), 
deno:denom( mono), 
if atom( numei 
then (p[ j]: l/deno, 

a[jl:l, 
b[ j]:O) 

eke (p[ j]: part( nume, 1 )/deno, 
if length( nume) = 3 

art( nume,2), 
3, 
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if atom( mono) 
then (a[ j]: 1, 

bEjl:o) 
else (mono:part(mono,2), 

b[ j]:coeff(mono,alfa,l), 
a[ j]:mono-b[ j]*alfa)), 

display(a[jl,b[jl,p[jl), 
if a[ j] = 0 
then if imin = 0 

then imin:j 
else if b[ j] < b[imin] then imin:j), 

[ long,imin]); 
final-puiseux( liste) := block( [ long,min,indic,indicOj, 

minO,alfa,lambd,equa,element], 
/* Final computation of alfa and lambda from */ 
/* the output list of isole_puiseux */ 

alfa:O, 
long:part(liste,l), 
min:part(liste,2), 
for j:l thru long do 
(if a[ j] > 0 and b[ j] c b[min] 
then (indic:a[ j]/(b[min] - b[ j]), 

display( j,indic), 
if alfa = 0 or indic < alfa 
then (alfa:indic, 

fww$jl) 
else if indic = alfa 

then equa:equa + p[ j])), 

equa:equa + p[min]!, z. 

equa:solve( equa,lambd), . 

display( equa), 
long:length(equa), 
lambd:O, 
min:O, 

const:(-l)^alfa, 
for j:l thru long do 

(element: part( equaj,2), 
if imagpart( const*element) = 0 
then (minO:realpart(const*e!ement), 

if min0 > min 
then (min:minO, 

lambd:element))), 

,alW; 
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