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ABSTRACT

Luchsinger, Austin, Algorithmic Assembly of Nanoscale Structures. Master of Science (MS),

May, 2020, 129 pp., 9 tables, 55 figures, 27 references.

The development of nanotechnology has become one of the most significant endeavors

of our time. A natural objective of this field is discovering how to engineer nanoscale structures.

Limitations of current top-down techniques inspire investigation into bottom-up approaches to

reach this objective. A fundamental precondition for a bottom-up approach is the ability to

control the behavior of nanoscale particles. Many abstract representations have been developed

to model systems of particles and to research methods for controlling their behavior. This thesis

develops theories on two such approaches for building complex structures: the self-assembly of

simple particles, and the use of simple robot swarms. The concepts for these two approaches are

straightforward. Self-assembly is the process by which simple particles, following the rules of

some behavior-governing system, naturally coalesce into a more complex form. The other method

of bottom-up assembly involves controlling nanoscale particles through explicit directions and

assembling them into a desired form. Regarding the self-assembly of nanoscale structures, we

present two construction methods in a variant of a popular theoretical model known as the 2-Handed

Tile Self-Assembly Model. The first technique achieves shape construction at only a constant scale

factor, while the second result uses only a constant number of unique particle types. Regarding the

use of robot swarms for construction, we first develop a novel technique for reconfiguring a swarm

of globally-controlled robots into a desired shape even when the robots can only move maximally

in a commanded direction. We then expand on this work by formally defining an entire hierarchy of

shapes which can be built in this manner and we provide a technique for doing so.
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CHAPTER I

INTRODUCTION

Personal voice vs. the use of “we”: The reader should be aware that several sections of

this document use “we” (except when the author’s personal voice is expected) to emphasize that

most of the work herein was done in collaboration with others.

1.1 Engineering Nanoscale Structures Through Self-Assembling Particles

Chapters II and III provide results in the area of algorithmic self-assembly. In theoretical

self-assembly models, systems of particles naturally come together by following the rules of a

given model. A primary area of study within the field of self-assembly is how to design systems

which efficiently self-assemble into general shapes. The efficiency of a tile self-assembly system

can be measured by various metrics, the most natural of which is the number of distinct types

of system monomers. The earliest model in which this was studied– the abstract tile assembly

model (aTAM) –is defined by a collection of tile types which may attach to a seed assembly via

glues on their edges, and a temperature parameter which dictates what glue strengths are sufficient

for attachment. The work of Soloveichik and Winfree [26] showed that any shape, if scaled up

sufficiently, may be self-assembled within the aTAM using an optimal number of tile types – based

on the Kolmogorov or descriptional complexity of shape. This seminal result presented a concrete

connection between the descriptional complexity of a shape and the efficiency of self-assembling

the shape, and represents an elegant example of the potential connections between algorithmic

processes and the self-assembly of matter. The only drawback with this result is the extremely large

scale factor required by construction: the scale factor to build a shape S is at least linear in |S|, and

is typically far greater in their construction.
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This motivated several efforts to reduce the scale factor by taking advantage of more

powerful self-assembly models. A result by Demaine, Patitz, Schweller, and Summers [15] was able

to improve upon the scale factor (while maintaining optimal tile types) by considering general shape

assembly within the staged RNAse self-assembly model which allowed tiles to be separated into

different bins and mixed over distinct stages. Furthermore, an option to “delete” tiles of a certain

type is allowed in their model. This, however, still didn’t achieve the best possible scale factor of

O(1). This wouldn’t be seen until the work of Schiefer and Winfree [23], where they introduced

chemical reaction network tile assembly model (CRN-TAM) in which chemical reaction networks

and abstract tile assembly systems combine and interact by allowing CRN species to activate and

deactivate tiles, while tile attachments may introduce CRN species. Although the result provides a

great scale factor, the CRN-TAM constitutes a substantial jump in model complexity and power.

Several results followed ([14], [18], [27]) which were all able to achieve a O(1) scale factor using

the powerful staged approach introduced by [13] and used in [15]. While each of these approaches

offers important algorithmic insights, the system complexity of these systems (which includes the

staging algorithms) greatly exceeds the descriptional complexity of the goal shape in a typical case.

The Contributions of This Work. In Chapter II we present the design for a self-assembly

system which can self-assemble an arbitrary shape at only a constant-scale factor while still using an

optimal number of tile types. For this result we use a variation of the the two handed tile assembly

model (2HAM), which allows for negative or repulsive forces (also seen in [16, 19, 20, 21, 25]).

Studies of these repulsive forces are motivated by experimental implementation of self-assembly

systems which exhibit this behavior [22]. At a high level, our construction takes as input the

description of a shape, and uses a Turing machine construction from [25] to extract directional

instructions to build a path through a scaled version of the shape. The self-assembly process then

causes bits of information to “walk” along the Turing machine tape and deposit new “pixels“ at the

end of the path being constructed. The shape is filled in once the path is completed, thus resulting

in the construction of a constant scaled shape.

In Chapter III we show how we can transfer the complexity of a tile system from its tile types
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to its temperature. We give one tile set with a constant number of distinct tile types which satisfies

the following: given any finite connected shape S ⊂ Z2, there exists an assignment of strengths

between glues (a glue function) and a temperature τ such that the system uniquely assembles S. The

system encodes the shape in its temperature parameter τ and its glue function. Then, by utilizing

the inclusion of one negative-strength glue type, the system assembles a width-τ assembly. This

width-τ assembly is utilized as a seed for a tile set designed by [26] which “runs” the program

encoded by the seed to assemble the shape. This work is the first to show that any shape can be

built with a constant number of distinct tile types (where the glues are a function of τ) at any scale

without a staged model1, i.e., it is the first to achieve this in a fully “hands-off” model which requires

no experimenter intervention during the assembly process.

1.2 Engineering Nanoscale Structures Through Manually-Controlled Particles

Chapters IV and V use controllable particles (i.e. robots) towards the construction of

nanoscale shapes. When considering the use of robots at the nanoscale, power and bandwidth

limitations often make individual robot control infeasible. Thus, abstract models of motion planning

started considering global signals that control all robots uniformly. Perhaps the simplest (first

proposed in [9]) consists of movable particles (an abstract representation of robots) that exist

on a 2D grid environment with “open” and “blocked” spaces. These particles are controlled by

global signals which uniformly move all particles in a particular direction when given a movement

command (unless movement is prevented by a blocked space). In [9], the movement commands

cause particles to move one unit distance in the given direction. Motivated by further limitations,

another version of motion planning with global signals was considered in [5]. The authors analyze

the complexity of steering particles through an environment when movement commands require

them to move maximally in a direction. This spurred further investigation into computation and

complexity of relocating particles [7] (more recently [2, 3, 4, 6]).

After gaining a better understanding of the power of this model, efforts were steered toward

1In the staged self-assembly model, the results of [12] give a construction which can effectively use O(1) tile types
to assemble the shape by increasing the number of bins and stages used.
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the problem of engineering particular environments to reconfigure particles into desired shapes

[17]. While [9] discusses the reconfiguration of robots into particular forms, [17] has an emphasis

on “building shapes” with these particles. Following, [8], formally analyze and improve on the

results from [17] by creating fixed-shape “micro-factories” (or shape builders) which are capable

of constructing a shape from a particular class of shapes (later named “drop-shapes”) by attaching

particles to each other using maximal-movement commands. In [24], they investigated the natural

next-step to improve the efficiency with which engineered environments could build their particular

shapes.

The Contributions of This Work. Chapter IV introduces the concept of universal con-

structors –environments where particle a configuration can transform into another from a given

universe of configurations– and presents two universal constructors under maximal movements. The

first is capable of building any shape (up to a given size), but allows for a relaxed notion of shape

construction where “extra” particles are allowed to exist in the environment (weak construction).

The second considers a version of shape construction in which all particles in the environment must

be considered in the final configuration (strong construction), and provide a universal constructor

which can strongly build any “drop shape” (up to a certain size). The second set of results for

this work investigates the previously mentioned complexity of controlling these particle swarms.

The occupancy problem asks if a given location on a board can be occupied by a polyomino. The

relocation problem asks if a specific tile is able to be relocated to a given location. The recon-

figuration problem asks whether a given board configuration may be reconfigured into a second

given configuration. We show these problems to be PSPACE-complete, even when polyominoes are

restricted to be 1×1 and a single 2×2 piece that never stick to each other.

Chapter V continues the work from [4] where we formalize the notion of hierarchical

construction (first started in [24]) by presenting a hierarchy of shape classes. We also present

a O(n4 logn)-time algorithm for determining if a given hole-free shape is in this hierarchy. To

accompany this result, we present the design for a configuration that is strongly universal for any

shape within the hierarchy. This result constitutes the most general set of buildable shapes under
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maximal-movement in the literature, with previous work consisting of just the first level of our

hierarchy. The second main result of this chapter is where we resolve an open problem from [5]

by showing that the occupancy problem, contrary to expectation, is PSPACE-complete even when

restricting all polyominoes to be 1×1 tiles.

1.3 Additional Research

In addition to the investigations presented in this thesis, I have also been involved in other

lines of work such as generalized active self-assembly models [11], information-secure computation

in self-assembly [10], relocating robots with limited directions [3], and game complexity [1].
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CHAPTER II

SELF-ASSEMBLY OF SHAPES AT CONSTANT SCALE USING REPULSIVE FORCES

Collaborators: Robert Schweller and Tim Wylie. My contribution: I created the con-

ceptual steps for the construction process as well as the tileset details (including the inequality

equations). The text was written by all. This chapter was published as: Austin Luchsinger, Robert

Schweller, and Tim Wylie, “Self-Assembly of Shapes at Constant Scale using Repulsive Forces,”

Natural Computing, 18(1), 93-105, 2019.

2.1 Abstract

The algorithmic self-assembly of shapes has been considered in several models of self-

assembly. For the problem of shape construction, we consider an extended version of the Two-

Handed Tile Assembly Model (2HAM), which contains positive (attractive) and negative (repulsive)

interactions. As a result, portions of an assembly can become unstable and detach. In this model,

we utilize fuel-efficient computation to perform Turing machine simulations for the construction of

the shape. In this paper, we show how an arbitrary shape can be constructed using an asymptotically

optimal number of distinct tile types (based on the shape’s Kolmogorov complexity). We achieve

this at O(1) scale factor in this straightforward model, whereas all previous results with sublinear

scale factors utilize powerful self-assembly models containing features such as staging, tile deletion,

chemical reaction networks, and tile activation/deactivation. Furthermore, the computation and

construction in our result only creates constant-size garbage assemblies as a byproduct of assembling

the shape.

9



2.2 Introduction

A fundamental question within the field of self-assembly, and perhaps the most fundamental,

is how to efficiently self-assemble general shapes with the smallest possible set of system monomers.

This question has been considered in multiple models of self-assembly. Soloveichek and Win-

free [15] first showed that any shape S, if scaled up sufficiently, is self-assembled within the abstract

tile assembly model (aTAM) using O( K(S)
logK(S)) tile types, where K(S) denotes the Kolmogorov

or descriptional complexity of shape S with respect to some universal Turing machine, which

matches the lower bound for this problem. This seminal result presented a concrete connection

between the descriptional complexity of a shape and the efficiency of self-assembling the shape,

and represents an elegant example of the potential connections between algorithmic processes and

the self-assembly of matter. The only drawback with this result is the extremely large scale factor

required by construction: the scale factor to build a shape S is at least linear in |S|, and is typically

far greater in their construction. To lay claim as a true universal shape building scheme for potential

experimental application, a much smaller scale factor is needed. Unfortunately, example shapes

exist (long thin rectangles for example) which prove that the aTAM cannot build all shapes at o(|S|)

scale in the minimum possible O( K(S)
logK(S)) tile complexity. This motivates the quest for small scale

factors in more powerful self-assembly models.

The next result by Demaine, Patitz, Schweller, and Summers [5] considers general shape

assembly within the staged RNAse self-assembly model. In this model, system tiles are separated

into separate bins and mixed over distinct stages of the algorithm in a way that models realistic

laboratory operations. In addition, each tile type in this model is of type DNA or RNA, and the

staging permits the addition of an RNAse enzyme at any step in the staging, thereby dissolving all

tiles of type RNA, leaving DNA tiles untouched. By adding the powerful operations of separate

bins, sequential stages, and tile deletion, [5] achieves general shape construction within optimal

O( K(s)
logK(S)) tile complexity using only a constant number of bins and stages, and only a logarithmic

scale factor. This leap in scale factor reduction constituted a great improvement, but required a very

powerful model with both staging and tile dissolving. In addition, the holy grail of O(1) scale factor
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remained elusive.

The next entry into the quest for Kolmogorov optimal shape assembly at small scale comes

from a recent work by Schiefer and Winfree [13]. Schiefer and Winfree introduce the chemical

reaction network tile assembly model (CRN-TAM) in which chemical reaction networks and abstract

tile assembly systems combine and interact by allowing CRN species to activate and deactivate

tiles, while tile attachments may introduce CRN species. This powerful interaction allowed the

construction of Kolmogorov optimal systems for the assembly of general shapes at O(1) scale.

Although the result provides a great scale factor, the CRN-TAM constitutes a substantial jump in

model complexity and power.

In this paper we study the optimal shape building problem within one of the simplest, and

most well studied models of self-assembly: the two handed tile assembly model (2HAM), where

system monomers are 4-sided tiles with glue types on each edge. Assembly in the 2HAM proceeds

whenever two previously assembled conglomerations of tiles, or assemblies, collide along matching

glue types whose strength sums to some temperature threshold. Our only addition to the model is

the allowance of negative strength (i.e., repulsive) glues, an admittedly powerful addition based on

recent work [6, 8, 9, 10, 14], but an addition motivated by biology [12] that maintains the passive

nature of the model as system monomers are static, state-less pieces that simply attract or repulse

based solely on surface chemistry (Figure 2.1). While the negative glue 2HAM has been used for

works such as fuel-efficient computation [14] and recently universal shape replication [1], it is also

one of the simplest models where the general shape assembly problem has been considered. Our

result is on par with the best possible result: we show that any connected shape S is self-assembled

at O(1)-scale in the negative glue 2HAM within O( K(S)
logK(S)) tile types, which is met by a matching

lower bound.

Our Approach. We achieve our result by combining the fuel efficient Turing machine

construction published in SODA 2013, [14], with a number of novel negative glue based gadgets.

At a high level, the fuel efficient Turing machine system extracts a description of a path that walks

the pixels of the constant-scaled shape from a compressed initial binary string. From there, the
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steps of the path are translated into walker gadgets which conceptually walk along the surface of

the growing path and eventually deposit an additional pixel in the specified direction, with the aid

of path extension gadgets. When all pixels have been placed, the path through the shape is filled,

resulting in a scaled version of the original shape.

Additional Related Work. Additional work has considered assembly of O(1)-scaled shapes

by breaking the assembly process up into a number of distinct stages. In particular, [3] introduce

the staged self-assembly model in which intermediate tile assemblies grow in separate bins and are

mixed and split over a sequence of distinct stages. This approach is applied to achieve O(1)-scaled

shapes with O(1) tiles types, but a large number of bins and stages which encode the target shape.

In [4] this approach is pushed further to achieve tradeoffs in terms of bin complexity and stage

complexity, while maintaining construction of a final assembly with no unbonded edges. In [7]

similar constant-scale results are obtained in the step-wise self-assembly model in which tile sets are

added in sequence to a growing seed assembly. Finally, in [16] O(1)-scaled shapes are assembled

with O(1) tile types by simply adjusting the temperature of a given system over multiple assembly

stages. While each of above staged approaches offers important algorithmic insights, the large

number of stages required by each makes the approaches infeasible for large shapes. Furthermore,

the system complexity of these systems (which includes the staging algorithms) greatly exceeds the

descriptional complexity of the goal shape in a typical case.

Paper layout. Our construction consists of a number of detailed gadgets for specific

tasks. Presentation is thus organized incrementally to walk through a version of each gadget (with

symmetry there may be multiple). Section 2.3 gives the preliminary definitions and background. In

Section 2.4 we provide a high-level overview of the entire process as a guide for the rest of the paper.

We then show the details of our construction with the gadgets and methods we use for constructing

a straight line of the path (Section 2.5) and turning corners in the path (Section 2.6). Additional

gadget variations are detailed in Section 2.7. Section 2.8 provides the analysis of our construction,

with the lower bound on tile complexity for shape assembly presented in Section 2.9, and details for

pushing our construction to achieve a matching upper bound in Section 2.10. Then we conclude in
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Section 2.11.

2.3 Definitions and Model

(a) (b) (c)

Figure 2.1: This figure introduces notation for our constructions, as well as a simple example of
negative glues. On each tile, the glue label is presented. Red (shaded) labels represent negative glues,
and the relevant glue strengths for the tiles can be found in the captions. For caption brevity, for a
glue type X we denote str(X) simply as X (e.g., X +Y = str(X)+str(Y )). In this temperature τ = 1
example, X = 2, Y = 1, Z = 2 and N =−1. (a) The three tile assembly on the left attaches with the
single tile with strength Z +N = 2−1 = τ resulting in the 2×2 assembly shown in (b). However,
this 2× 2 assembly is unstable along the cut shown by the dotted line, since Y +N = 1− 1 < τ .
Then the assembly is breakable into the assemblies shown in (c).

In this section we first define the two-handed tile self-assembly model with both negative

and positive strength glue types. We also formulate the problem of designing a tile assembly system

that constructs a constant-scaled shape given the optimal description of that shape.

Tiles and Assemblies. A tile is an axis-aligned unit square centered at a point in Z2, where

each edge is labeled by a glue selected from a glue set Π. A strength function str : Π→ N denotes

the strength of each glue. Two tiles equal up to translation have the same type. A positioned shape

is any subset of Z2. A positioned assembly is a set of tiles at unique coordinates in Z2, and the

positioned shape of a positioned assembly A is the set of those coordinates.

For a given positioned assembly ϒ, define the bond graph Gϒ to be the weighted grid graph

in which each element of ϒ is a vertex and the weight of an edge between tiles is the strength of the

matching coincident glues or 0.1 A positioned assembly C is said to be τ-stable for positive integer

τ provided the bond graph GC has min-cut at least τ , and C is said to be connected if every pair of

vertices in GC has a connecting path using only positive strength edges.

For a positioned assembly A and integer vector ~v = (v1,v2), let A~v denote the positioned

1Note that only matching glues of the same type contribute a non-zero weight, whereas non-equal glues always
contribute zero weight to the bond graph. Relaxing this restriction has been considered as well [2].
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assembly obtained by translating each tile in A by vector~v. An assembly is a translation-free version

of a positioned assembly, formally defined to be a set of all translations A~v of a positioned assembly

A. An assembly is τ-stable if and only if its positioned elements are τ-stable. An assembly is

connected if its positioned elements are connected. A shape is the set of all integer translations for

some subset of Z2, and the shape of an assembly A is defined to be the set of the positioned shapes

of all positioned assemblies in A. The size of either an assembly or shape X , denoted as |X |, refers

to the number of elements of any positioned element of X .

Breakable Assemblies. An assembly is τ-breakable if it can be cut into two pieces along a

cut whose strength sums to less than τ . Formally, an assembly C is breakable into assemblies A and

B if A and B are connected, and the bond graph GC′ for some assembly C′ ∈C has a cut (A′,B′) for

A′ ∈ A and B′ ∈ B of strength less than τ . We call A and B pieces of the breakable assembly C.

Combinable Assemblies. Two assemblies are τ-combinable provided they may attach along

a border whose strength sums to at least τ . Formally, two assemblies A and B are τ-combinable into

an assembly C provided GC′ for any C′ ∈C has a cut (A′,B′) of strength at least τ for some A′ ∈ A

and B′ ∈ B. We call C a combination of A and B.

Note that A and B may be combinable into an assembly that is not stable (and thus breakable).

This is a key property that is leveraged throughout our constructions. See Figure 2.1 for an example.

For a system Γ = (T,τ), we say A→Γ
1 B for assemblies A and B if either A is τ-breakable into

pieces that include B, or A is τ-combinable with some producible assembly to yield B, or if A = B.

Intuitively this means that A may grow into assembly B through one or fewer combination or break

reactions. We define the relation→Γ to be the transitive closure of→Γ
1 , ie., A→Γ B means that A

may grow into B through a sequence of combination or break reactions.

Producibility and Unique Assembly. A two-handed tile assembly system (2HAM system)

is an ordered pair (T,τ) where T is a set of single tile assemblies, called the tile set, and τ ∈ N

is the temperature. Assembly proceeds by repeated combination of assembly pairs, or breakage

of unstable assemblies, to form new assemblies starting from the initial tile set. The producible

assemblies are those constructed in this way. Formally:
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Definition 1 (2HAM Producibility). For a given 2HAM system Γ = (T,τ), the set of producible

assemblies of Γ, denoted PRODΓ, is defined recursively:

• (Base) T ⊆ PRODΓ

• (Combinations) For any A,B ∈ PRODΓ such that A and B are τ-combinable into C, then

C ∈ PRODΓ.

• (Breaks) For any assembly C ∈ PRODΓ that is τ-breakable into A and B, then A,B ∈ PRODΓ.

Definition 2 (Terminal Assemblies). A terminal assembly of a 2HAM system is a producible

assembly that cannot break and cannot combine with any other producible assembly. Formally,

an assembly A ∈ PRODΓ of a 2HAM system Γ = (T,τ) is terminal provided A is τ-stable (will not

break) and not τ-combinable with any producible assembly of Γ (will not combine).

Definition 3 (Unique Assembly - with bounded garbage). A 2HAM system Γ = (T,τ) uniquely

produces an assembly A with garbage bound c ∈ {0}
⋃
Z+ provided that A is terminal, and for all

B ∈ PRODΓ such that |B|> c , B→Γ A.

Definition 4 (Unique Shape Assembly - bounded garbage). A 2HAM system Γ = (T,τ) uniquely

assembles a finite shape S with garbage bound c ∈ {0}
⋃
Z+ if for every A ∈ PRODΓ such that

|A|> c, there exists a terminal A′ ∈ PRODΓ of shape S such that A→Γ A′.

Definition 5 (Kolmogorov Complexity). The Kolmogorov complexity (or descriptional complexity)

of a shape S with respect to some fixed universal Turing machine U is the smallest bit string such

that U outputs a list of exactly the positions in some translation of shape S when provided the bit

string as input. We denote this value as K(S).

2.4 Concept/Construction Overview

This section presents a high-level overview of the shape construction process. First, we

will present the conceptual overview, which explains the fundamental ideas behind our shape

self-assembly process. Then, we will show a high-level look at how our construction implements

this process.
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(a) Non-scaled shape X
with spanning tree.

(b) Shape X at scale 2
with spanning tree.

(c) Shape X at scale 6
with spanning tree.

Figure 2.2: The Turing machine calculates a spanning tree of the tiles in the shape (a), scales the
shape in order to allow a path around the spanning tree (b), and further scales the shape for the
gadgets (c).

(a) Early Path Construction (b) Intermediate Path Con-
struction

(c) Final Path Construction

(d) Begin Fill (e) Continue Fill (f) End Fill

Figure 2.3: (a)-(c) The process is repeated until all information has been read/removed from the
tape. (d)-(f) The final step is Path Filling the shape.

2.4.1 Conceptual Overview

Starting with the Kolmogorov-optimal description of a shape (as a base b string, b > 2), we

simulate a Turing machine which converts any base b string into its equivalent base 2 representation

(Sec. 2.10) We then simulate another Turing machine that takes the binary description of a shape,

finds a spanning tree for that shape, and outputs a path around that spanning tree as a set of
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instructions (forward, left, right) starting from a beginning node on the perimeter.

A simple depth-first search will find the spanning tree for any shape. Scaling the shape to

scale 2 creates a perimeter path that outlines the spanning tree, and assembles the shape. Scaling

again, this time by a multiple of 3, now allows space for the perimeter path with an equal-sized

space buffer on both sides (Fig. 2.2). This buffer is required as it allows sufficient space for our

construction gadgets to “walk” along the perimeter path being built.

Process Overview:

1. Given the Kolmogorov-optimal description of a shape, run a base conversion Turing machine

to get its binary equivalent.

2. Given that binary string, run another Turing machine that outputs the description of a path

around the shape’s spanning tree as a set of instructions (forward, left, right).

3. Given those instructions, build the path. Our construction begins with a tape containing this

path description for a scale 24 shape.

2.4.2 Construction Overview

The construction overview begins at step 3 of the conceptual overview, using the output

from step 2. Throughout this paper, we will be referring to this output as the tape, meaning the

fuel-efficient Turing machine tape with path-building instructions encoded on it. This tape is

detailed in Section 2.5.
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(a) Abstract
tape

(b) Overlay
Process

(c) Resulting
Assembly

(d) Begin Read (e) Continue
Read

(f) End Read

(g) Begin Walk (h) Continue
Walk

(i) End Walk

(j) Begin Ex-
tend

(k) Continue
Extend

(l) End Extend

(m) Begin Re-
duction

(n) Continue
Reduction

(o) End Reduc-
tion

Figure 2.4: (a)-(c) The overlay process covers the tape while making the data readable on top.
(d)-(f) Reading the leftmost piece of data and creating an information block (depicted in green).
(g)-(i) Information Walking on the path to the end where the information is used. (j)-(l) When the
information block reaches the end of the path, the block triggers a Path Extension. (m)-(o) Once the
information has been read, Tape Reduction removes that piece of the tape.

(a)

(b) (c) (d)

Figure 2.5: (a) A completed tape consisting of all forward instructions. (b) Overlay Initiator gadget
attaching to tape. (c-d) Overlay fillers begin covering all tape sections from right to left.

Construction Steps Overview:

1. Overlay. The overlay process is the first step in shape construction. Figure 2.4a-c shows

an abstraction of how the output from step 2 in the concept overview gets covered during

the overlay process. The overlay initiator gadget can only attach to a completed tape. This

begins a series of cooperative attachments that will cover the tape. Each bit of information on
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the tape is covered by its corresponding overlay piece, and thus is readable on the top of the

overlay. The overlay process is finished once the entire tape is covered.

2. Reading. After the overlay process is complete, information can be extracted from the tape

through the read process (Figs. 2.4d-f). Information can only be extracted from the covered

leftmost section of the tape if it has not already been read. When a tape section is read,

information is extracted from the tape and a corresponding information block is created.

3. Information Walking. Once the information block is created, it begins walking until it

reaches the end of the tape/path (Figs. 2.4g-i). Walking gadgets allow the information to

travel down the entire path.

4. Path Extension. When an information block cannot travel any further, the path is extended

(Figs. 2.4j-l). The path can be extended forward, left, or right. The direction of the path

extension is dependent on which information block is at the end of the path. After the path is

extended, the information block is removed from the path.

5. Tape Reduction. Once information is extracted from the tape and sent down the path, one

tape section is removed (Figs. 2.4m-o). Only tape sections that have been read are removed,

which then allows the next section to be read. This process continues until every section of

the tape is read/removed.

6. Repeat. Repeat the tape read, information walk, path extend, and tape reduction processes

until all path instructions have been read (Figs. 2.3a-c).

7. Path Filling. The final tape section that gets read begins the shape fill process (Figs. 2.3d-f).

In this process, the path is padded with tiles which fill it in and results in the final shape.

2.5 Construction Details

In this section, we detail the steps of our construction process.This is the process by which

information is read from the tape and portions of the path are assembled.
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We will also cover the gadgets required for each step, and review the tape construction from

the fuel-efficient Turing machine used in [14]. This construction uses pre-constructed assemblies

called gadgets. These gadgets are designed to work in a temperature τ = 10 system. In our figures,

a perpendicular black line through the middle of the edge of two adjacent tiles indicates a unique

2τ = 20 strength bond2. Each gadget provides a different function to the shape creation process.

Turing Machine Tape. A detailed look at a fuel-efficient Turing machine tape is seen in Figure 2.5a.

Notice each tape section has a pair of tiles on top of it where the information is stored. Each pair of

dark grey tiles on top of the tape sections represents a piece of information describing the path.

The Overlay Initiator Gadget attaches to the end of the completed tape, and begins the

overlay process (Fig. 2.5b-d). Each bit of information on the tape is covered by a corresponding

overlay section, allowing the information to be read on top of the overlay. This process continues,

section by section, until the entire tape is covered. Once finished, the overlay layer will act as an

interface, allowing the gadgets to use the information on the tape.

(a) (b) (c)

Figure 2.6: (a) The Read Gadget attaches (n+ T +F = 2+ 7+ 1 ≥ τ). (b) The information
block attaches (F +F + J2 = 1+1+8≥ τ), along with the read-helpers.(c) After all read helpers
have attached, the read gadget becomes unstable and detaches (F +F +M + n+ T +F +Q =
1+1+1+2+7+1−7≤ τ).

Read. The read gadget is required for “reading” the Turing machine tape. Essentially, this gadget

extracts the information that is relayed from the tape through the overlay blocks. The read process

(Fig. 2.6a-c) can only begin if the leftmost tape section has not previously been read. Once attached,

2The strongest detaching force used in our construction is a τ strength detachment, and since the internal bonds of
our gadgets are meant to withstand even the strongest repulsive force, it follows that those bonds must be of strength at
least 2τ .
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the gadget allows the attachment of an information block (corresponding to the information being

read) that will be used to carry the build instructions through the rest of our construction. Once the

information block is present, the remaining read-helpers can attach. The final helper destabilizes the

read gadget, allowing it to fall off and expose the newly attached information block. The read gadget

was designed to produce this information block, alter the tape section that is being read (making

it unreadable), and then detach from the assembly. This design ensures that each tape section is

only read once, and allows us to transfer the instructions to other locations in our construction via

the walking gadgets. A particular cut in the read process is of note, as it may result in an infinite

attachment/detachment loop (between Fig. 2.6b-c). This is merely a peculiarity which has no impact

on our construction.

(a) (b) (c)

Figure 2.7: (a) A Walking Gadget attaches to the overlay and the information block (F +F + J1 =
1+1+8≥ τ). (b) The negative interaction between the D glues destabilizes the old information
block, along with the two walking-helpers (J2+A2+A2+F +F +D = 8+2+2+1+1−7≤ τ).
(c) Once the second walking-helper is attached, the walking gadget becomes unstable (F +O2+
J1+D = 1+7+8−7≤ τ).

Information Walking. The walking gadgets begin the information walking process (Fig. 2.7),

which allows instructions to travel throughout our construction. After a tape section has been read

and an information block has been placed, a walking gadget can attach. Once attached, the walking

gadget allows a new information block (of the same type) to attach, while also detaching the the

previous information block. Notice that this detachment will always be O(1) size. After the previous

information is removed, the walking gadget detaches as well, allowing the new info block to interact

with other gadgets. Thus, the same information has traveled from the tape, through the overlay, and

is now traveling along the tape. This process is repeated until the information has traveled to the

end of the path, at which point it is used to construct the next path portion. This method is desirable
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because it does not allow duplicate readable instructions to be attached to the path at any time.

(a) (b) (c)

Figure 2.8: (a) The forward-extension gadget attaches to the information block and Turing tape
(B+C+F + p = 3+ 4+ 1+ 2 ≥ τ). (b) The second extension-helper comes with the negative
D glue that causes targeted destabilization (X + p+ J1+X +D = 2+ 2+ 8+ 2− 7 ≤ τ). The
extension gadget and its helpers, along with the information block and its helpers are no longer
stable along their tape-overlay edges. (c) The final result is a one path-pixel extension of the path.

Path Extension. After the information block has reached the end of the path, a path extension

gadget can attach to the assembly. Once attached, the gadget allows the path extension process

(Fig. 2.8) to begin, which extends the path in a given direction (forward, left, or right) based on

the instruction carried by the information block. The extension gadget “reads” the information

block, and then extends the path in the given direction. Afterwards, the extension helpers destabilize

the information block and extension gadget, causing a O(1) sized detachment. We designed the

extension gadget to essentially replace an instruction block with a corresponding path portion. This

design allows us to attach a O(1) sized path portion for each instruction read from the tape.

(a) (b) (c)

Figure 2.9: (a) The tape reduction gadget attaches to the read-helpers (A2+U = 2+8 ≥ τ). (b)
Filler tiles attach (s+ s = 8+ 8 ≥ τ), and create a strong bond to the tape reduction gadget. (c)
The two negative o glues cause a strong targeted destabilization of the previously read tape section
(e+u1+u2+o+o = 3+8+8−5−5≤ τ).

Tape Reduction. After a tape section has been read, we no longer need it. Instead of continuing
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to grow the assembly, we can remove O(1) size portions of the tape as it is being read. This is

where the tape reduction gadget initiates the tape reduction process (Fig. 2.9).The attachments left

behind by the read/walk processes allow the tape reduction gadget to attach to a tape section that

has already been read. The gadget then removes itself, along with the previously read tape section,

exposing the next section of the tape for reading. This technique is desirable because it allows us to

break apart the tape into O(1) sized pieces as we use it. As the tape is reduced, the path continues

to grow until there are no more tape sections to be read.

(a) (b) (c)

Figure 2.10: (a) The fill initiator gadget attaches to the tape (H + I = 8+ 5 ≥ τ). (b) The first
topside fillers attach (s+G1 = 8+ 8 ≥ τ,Y 0+G1 = 9+ 8 ≥ τ), as well as the underside fillers
(X +S+X = 2+5+2≥ τ,Y 0+G3 = 9+8≥ τ) (c) The topside and underside line filler blocks
continue to attach (Y 2+G1 = 9+8≥ τ,Y 6+G3 = 9+8≥ τ).

Filling. After the entire path has been built, all previous tape sections will have been read/removed,

save for one. The fill initiator gadget then attaches to the final tape section (Fig. 2.10), and begins

the fill process. A series of cooperative attachments flood the sides (above and below) the path

we’ve constructed. The initiator gadget, as well as the final tape section, remain to become the first

pixel of the shape.

2.6 Turning Corners

The previous section detailed all of the tools needed for our construction to build straight

lines. This section shows the mechanisms required for the path to turn left or right during its

construction. The process by which the information is extracted and moves along the path is

identical to that of Section 2.5. The key difference is how the information is used once it gets to the

end of the path. Previously, forward extension and walking gadgets were used to extend the path.
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Here, specific gadgets are used in order to turn the path left and right.

(a) (b) (c)

Figure 2.11: (a) The left-extension gadget attaches to the information block and shape path (B+C+
L+X = 3+4+1+2≥ τ). (b) The negative D glue on the second extension-helper causes targeted
destabilization. The extension gadget and its helpers, along with the information block and its helpers
are no longer bound to the path with sufficient strength. (X+X+G1+X+D= 2+2+8+2−7≤ τ)
(c) The final result is a one path-pixel extension of the path to the left of the direction the info block
was walking.

(a) (b) (c)

Figure 2.12: (a) The right-extension gadget attaches to the information block (B+C+R+X =
3+4+1+2≥ τ). (d) The second extension-helper comes with a negative D glue that causes targeted
destabilization. The extension gadget and its helpers, along with the information block and its helpers
are no longer bound to the path with sufficient strength(X +X +G1+X +D= 2+2+8+2−7≤ τ).
(f) The final result is a one path-pixel extension of the path to the right of the direction the info
block was walking.

Extend Left and Right. The process for extending left and right is very similar to extending

forward. Just as before, the information block must walk to the end of the path before it can be

used for extension. The difference now, is the direction of the extension. The left/right information

block allows the left/right-extension gadget to attach and extend the path using the same mechanics

as forward-extension. (Figs. 2.11 and 2.12). The extension gadget reads the information block,

extends the path in the given direction, and then detaches all but the newly extended path.
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(a) (b) (c)

Figure 2.13: The left-walking gadget attaches to the path and the information block (C+F +W =
4+1+5≥ τ). (b) The negative interaction between the D glues destabilizes the old information
block, along with the two walking-helpers(X +G1+C+F +D = 2+8+4+1−7≤ τ). (c) Once
the second walking-helper is attached, the walking gadget becomes unstable due to the negative Q
glues (W +O3+F +Q = 5+7+1−4≤ τ).

Walk Left and Right. The walk-(left/right) procedures also utilize the same mechanics as walking

forward, but with slightly different gadgets(Figs. 2.13 and 2.14). The information block only

allows the correct walking gadget to attach and begin the walking process. Once attached, the

walking gadget allows a new information block (of the same type) to attach, while also detaching

the previous info block. After the previous information is removed, the walking gadget detaches as

well, allowing the new info block to interact with other gadgets. Thus, the same information has

traveled along a left or right path turn.

(a) (b) (c) (d)

Figure 2.15: (a) The northern topside fillers attach until they encounter a left corner (Y 2+G1 =
9+8≥ τ). (b) The southern underside fillers attach until they reach a corner as well (Y 6+G3 =
9+8≥ τ).(c) The underside south-east filler attaches (Y 6+G2 = 9+8≤ τ) (d) A completely filled
left turn.
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(a) (b) (c)

Figure 2.14: The right-walking gadget attaches to the path and the information block (C+F +W =
4+1+5≥ τ). (b) The negative interaction between the D glues destabilizes the old information
block, along with the two walking-helpers (X +G1+C+F +D = 2+8+4+1−7≤ τ). (c) Once
the second walking-helper is attached, the walking gadget becomes unstable due to the negative Q
glues(F +O3+E +Q = 1+7+5−4≤ τ).

Fill Left. The filler blocks continue attaching until they encounter a corner (Fig. 2.15). For left

turns, the topside fillers encounter a concave corner, while the underside fillers encounter a convex

corner. The design of the filler blocks allows them to simply transition from one block type to the

next for concave corners. Convex corners, however, require a filler transition block to start filling

in the new direction. Again, there are unique sets of filler blocks for filling along the topside and

underside of the path.

(a) (b) (c) (d)

Figure 2.16: (a) The northern topside fillers attach until they encounter a right corner (Y 2+G1 =
9+8 ≥ τ). (c) The eastern topside fillers attach (Y 5+G2 = 9+8 ≥ τ).(d) The south underside
fillers attach until they reach a corner as well (Y 6+G2 = 9+8≤ τ) (f) A completely filled right
turn.

Fill Right. The right-fill process is a reflection of the left-turn process (Fig. 2.16). Here, the topside
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fillers encounter the convex corner, and the underside fillers encounter the concave corner. Both

filler types are designed to flood their respective sides of the path.

2.7 Gadget Variations

(a) Walker 1 (b) Walker 3 (c) Walker 2 (d) Walker 4

Figure 2.17: These are the walking gadget variations. Each variation also has specific versions for
the different instructions that are carried by the information blocks. While slightly different, all
walking gadgets utilize the same mechanics shown in Section 2.5. The changes here are due to what
they are walking on, be it the tape or the path.

Walkers 1 & 2 The first walking gadget (Fig 2.17a) is used for all subsequent steps along the tape,

after the standard walking gadget (Sec 2.5) has executed the information block’s initial step. The

second walking gadget (Fig 2.17c) allows the information block to transition from walking on the

tape, to walking on the path. This gadget is required because single tape and path sections differ in

size and glue types.

Walkers 3 & 4 Once an information block has transitioned from the tape to the path, the third

walking gadget (Fig 2.17b) allows it to take an initial step on the path. The fourth walking gadget

(Fig 2.17d) allows the information block to continue walking along the path. These gadgets are

required because a single path section is shorter than a single tape section, which these gadgets

account for.
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(a) Extender 1 (b) Extender 2

(c) Extender 3 (d) Extender 4

Figure 2.18: As with the walking gadgets, all extension gadgets are mechanically the same as the
gadget introduced in Section 2.5. While their function of these gadgets are the same (to extend the
path by one section), the primary difference is in their geometry.

Extenders 1 & 2 Two gadgets (Figure 2.18a-b) are required to extend the path after the initial

extension gadget (Sec 2.5) builds the first path portion. Extender 1 (Fig 2.18a) is designed to build

the second path portion. Once the second path portion has been built, the extender 2 (Fig 2.18b)

carries out all remaining forward extensions, with the exception of two special cases after a left turn.

Extenders 3 & 4 After a left extend (Sec 2.6, two more extender variations (Fig 2.18c-d) are

required to extend the path to a sufficient length that allows the walking/extending gadgets to be

used. The first two of these forward extensions require extenders 3 and 4. Extender 3 (Fig 2.18c)

extends the path in the new direction after the turn. Extender 4 (Fig 2.18d) then builds an additional

path portion in the direction of the turn.

2.8 Constant Scaled Shapes

In this section, we formally state the results based on our construction.

Theorem 1. For any finite connected shape S, there exists a 2HAM system Γ= (TS,10) that uniquely

produces S (with a O(1) garbage bound) at a O(1) scale factor, and |TS|= O( K(S)
logK(S)).

Proof. We show this by constructing a 2HAM system Γ = (TS,10). One portion of TS consists of

the tile types which assemble a higher base Kolmogorov-optimal description of S (Section 2.10).
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This portion of TS consists of O( K(S)
logK(S)) tile types, as analyzed in Section 2.10. Another portion

of TS consists of the tile types needed to assemble a fuel-efficient Turing machine, as described

by [14], that performs a simple base conversion to binary using O( K(S)
logK(S)) tile types, as analyzed

in Section 2.10. The next portion of TS consists of the tile types required to assemble another

fuel-efficient Turing machine that finds and outputs the description of a path around the spanning

tree of S. This Turing machine is of O(1) size, and thus adds O(1) tile types using the method

from [14]. The final portion of TS consists of the tile types that construct the gadgets and assemblies

shown in Section 2.5. With the number of tile types used for computing the path description and for

our construction process being O(1), our final tile complexity is O( K(S)
logK(S)).

Now, consider assembly A to be the fully constructed tape assembly (Section 2.5) encoded

with path-building instructions specific to S. Also, suppose assembly B is some terminal assembly

that has shape S at a constant scale factor. To assemble A, we had to start with an assembly which

represents a higher base description of S. By using the fuel-efficient Turing machines of [14], we

can transition this higher-base assembly into A. During this process the only assembly larger than

56 tiles is the Turing machine tape on which the computation is being performed, which inevitably

becomes A.

Note that the remaining assembly process of Γ follows the details of Section 2.5. This process

was designed so that two assemblies are combinable only if at least one of those assemblies is at

most a constant size (70 tiles), and every breakable assembly can only break into two subassemblies

if one of those assemblies is at most another constant size (118 tiles). In our construction, the only

assemblies which are not bounded by this 118 tile constant are A, B, and any intermediate assembly

that consists of some portion of the tape, and some partially assembled section of the final shape.

Of these, B is the only terminal assembly.

While A and the intermediate assemblies continue engaging in a series of attachments and

detachments, the tape continues to get smaller and the path continues to grow. The attachment and

detachment of O(1) size pieces with these assemblies will continue until we reach the terminal

assembly B, at which time A will have been disassembled into chunks of constant-sized garbage.
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Therefore, we see that A→Γ B.

2.9 Lower Bound

Here we present a brief argument for the lower bound of Ω( K(S)
logK(S)) on the tile types needed

to assemble a scaling of a shape S, under the assumption of constant bounded temperature, constant

bounded glue strengths, and a fairly reasonable assumption that the system to build S does not grow

infinitely many distinct producible assemblies. This argument is essentially the same as what is

presented in [2, 11, 15], and we refer the reader there for a more detailed explanation.

Theorem 2. Consider a 2HAM system Γ = (T,τ) such that τ is bounded by some constant, and

each glue used within T has an absolute strength value bounded by a constant, and the number of

producible assembles of Γ is finite. If Γ uniquely produces a scale-c version of a shape S for some

constant garbage bound, then |T |= Ω( K(S)
logK(S)).

Proof. Note that a 2HAM system Γ = (T,τ = O(1)) can be uniquely represented with a string of

O(|T | log |T |) bits. In particular, each tile may be encoded as a list of its 4 glues, and each glue

may be represented by a O(log |T |)-bit string taken from an indexing of the maximum possible 4|T |

distinct glue types of the system, along with a constant number of bits encoding the glue strength.

The constant bounded temperature incurs an additional additive constant. Given this representation,

consider a simulation program that inputs a negative glue 2HAM system, and outputs the positions

of any uniquely produced scale-c shape (with up to O(1) garbage), if one exists. Utilizing the

assumption of a finite set of producible assemblies, this simulator could achieve this by simply

generating all producible assemblies in a brute force manner and halting upon verifying that all such

assemblies grow into a terminal scaling of shape S. This simulator, along with the O(|T | log |T |)

bit encoding of a system Γ which assembles S at scale c, constitute a program which outputs the

positions of S, and is thus lower bounded in bits by K(S). Therefore K(S)≤ d|T | log |T | for some

constant d, implying |T |= Ω( K(S)
logK(S)).
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2.10 Extension to K(S)
logK(S)

The starting assembly for our shape construction algorithm is the tape assembly from [14]

with a binary string as its value. For a binary string A = a0 . . .ak−1, such an assembly can be

constructed in a straightforward manner using O(k) tile types (simply place a distinct tile for each

position in the assembly, for example). However, by using a base conversion trick, we can take

advantage of the fact that each tile type is asymptotically capable of representing slightly more than

1 bit in order to build the string in O(k/ logk) tile types. To achieve this, first we consider the base-b

representation B = b0 . . .bd−1 of the string A for some higher base b > 2. Note that the number of

digits of this string is d ≤ d k
blog2 bce= O( k

logb). We are able to assemble this shorter string (by brute

force with distinct tile types at each position) with only O(d) tile types.

Next, we consider a Turing machine which converts any base b string into its equivalent base

2 representation. Such a Turing machine can be constructed using O(b) transition rules. Therefore,

we can apply the result of [14] to run this Turing machine on the initial tape assembly representing

string B to obtain string A. The cost of this construction in total is O(d) tiles to construct the initial

tape assembly, plus O(b) tiles to implement the rules of the conversion Turing machine3, for a total

of O(d +b) tiles.

Finally, we select b = d k
logke = O( k

logk), which yields d = O( k
logk−log logk) = O( k

logk), im-

plying that the entire tile cost of setting up the initial tape assembly representing binary string B

is O(b+ d) = O( k
logk) tile types. In our case k = O(K(S)) where K(S) denotes the Kolmogorov

complexity of shape S for some given universal Turing machine, and so we achieve our final tile

complexity of O( K(S)
logK(S)).

2.11 Conclusion

In this work, we considered the optimal shape building problem in the negative glue 2-

handed assembly model, and provided a system that allows the self-assembly of general shapes at

scale 24. Shape construction has been studied in more powerful self-assembly models such as the

3The formal theorem statement of [14] cites the product of the states and symbols of the Turing machine as the tile
type cost. However, the actual cost is the number of transition rules, which is upper bounded by this product.
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staged RNA assembly model and the chemical reaction network-controlled tile assembly model.

However, our result constitutes the first example of optimal general shape construction at constant

scale in a passive model of self-assembly where no outside experimenter intervention is required,

and system monomers are state-less, static pieces which interact solely based on the attraction and

repulsion of surface chemistry.

Our work opens up a number of directions for future work. We have not considered a

runtime model for this construction, so analyzing and improving the running time for constant-

scaled shape self-assembly in the 2-handed assembly is one open direction. Another is determining

the lowest necessary temperature and glue strengths needed for O(1) scale shape construction. We

use temperature value 10 for the sake of clarity, and have not attempted to optimize this value.

BIBLIOGRAPHY

[1] C. CHALK, E. D. DEMIANE, M. L. DEMAINE, E. MARTINEZ, R. SCHWELLER, L. VEGA,

AND T. WYLIE, Universal shape replicators via self-assembly with attractive and repul-

sive forces, in Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA’17), 2017.

[2] Q. CHENG, G. AGGARWAL, M. H. GOLDWASSER, M.-Y. KAO, R. T. SCHWELLER, AND

P. M. DE ESPANÉS, Complexities for generalized models of self-assembly, SIAM Journal on

Computing, 34 (2005), pp. 1493–1515.

[3] E. D. DEMAINE, M. L. DEMAINE, S. P. FEKETE, M. ISHAQUE, E. RAFALIN, R. T.

SCHWELLER, AND D. L. SOUVAINE, Staged self-assembly: nanomanufacture of arbitrary

shapes with O(1) glues, Natural Computing, 7 (2008), pp. 347–370.

[4] E. D. DEMAINE, S. P. FEKETE, C. SCHEFFER, AND A. SCHMIDT, New geometric algorithms

for fully connected staged self-assembly, in DNA Computing and Molecular Programming,

vol. 9211 of Lecture Notes in Computer Science, 2015, pp. 104–116.

32



[5] E. D. DEMAINE, M. J. PATITZ, R. T. SCHWELLER, AND S. M. SUMMERS, Self-assembly

of arbitrary shapes using RNAse enzymes: Meeting the kolmogorov bound with small scale

factor, in STACS 2011: Proceedings of the 28th International Symposium on Theoretical

Aspects of Computer Science, 2011.

[6] D. DOTY, L. KARI, AND B. MASSON, Negative interactions in irreversible self-assembly,

Algorithmica, 66 (2013), pp. 153–172.
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CHAPTER III

SELF-ASSEMBLY OF ANY SHAPE WITH CONSTANT TILE TYPES USING HIGH

TEMPERATURE

Collaborators: Cameron Chalk, Robert Schweller, and Tim Wylie. My contribution: CC

developed the initial concept for this construction, while I generated the tileset details. The text

was written by all. This chapter was published as: Cameron Chalk, Austin Luchsinger, Robert

Schweller, and Tim Wylie, “Self-Assembly of Any Shape with Constant Tile Types using High

Temperature,” In Proceedings of the 26th Annual European Symposium on Algorithms, 2018.

3.1 Abstract

Inspired by nature and motivated by a lack of top-down tools for precise nanoscale manufac-

ture, self-assembly is a bottom-up process where simple, unorganized components autonomously

combine to form larger more complex structures. Such systems hide rich algorithmic properties—

notably, Turing universality—and a self-assembly system can be seen as both the object to be

manufactured as well as the machine controlling the manufacturing process. Thus, a benchmark

problem in self-assembly is the unique assembly of shapes: to design a set of simple agents which,

based on aggregation rules and random movement, self-assemble into a particular shape and nothing

else. We use a popular model of self-assembly, the 2-handed or hierarchical tile assembly model,

and allow the existence of repulsive forces, which is a well-studied variant. The technique utilizes

a finely-tuned temperature (the minimum required affinity required for aggregation of separate

complexes).

We show that calibrating the temperature and the strength of the aggregation between the

tiles, one can encode the shape to be assembled without increasing the number of distinct tile
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types. Precisely, we show one tile set for which the following holds: for any finite connected

shape S, there exists a setting of binding strengths between tiles and a temperature under which the

system uniquely assembles S at some scale factor. Our tile system only uses one repulsive glue

type and the system is growth-only (it produces no unstable assemblies). The best previous unique

shape assembly results in tile assembly models use O( K(S)
logK(S)) distinct tile types, where K(S) is the

Kolmogorov (descriptional) complexity of the shape S.

3.2 Introduction

Due to the limited tool set for precise fabrication at the nanoscale, the bottom-up approach

of self-assembly is an attractive area of research. Such bottom-up approaches, such as DNA

origami [18], allow for the assembly of nanoscale materials with detailed, precisely designed shapes

and patterns. Abstract self-assembly models are used to predict the behavior of systems wherein

simple, separate entities form larger complex structures based on a simple rule set for movement

and/or attachment using only local interactions and no global leader. Such systems include swarm

robotics and molecular self-assembly, particularly self-assembling nucleic acid structures such as

DNA tiles [9].

A common benchmark in such models, which aims at the manufacture of precise nanoscale

structures, is the self-assembly of shapes. In our case, a shape is defined simply as a finite, connected

subset of Z2. The model studied herein is the two-handed tile assembly model (also called the

hierarchical tile assembly model) [1]. In this model, the separate entities are tiles, adorned with

glues. The intuition is that tiles wander about randomly, and when tiles with matching glues meet,

the tiles bind to form a larger assembly; further, such larger structures wander about and may bind

to other larger assemblies or tiles.

The main measure of complexity is the number of unique types of tiles necessary and

sufficient to uniquely assemble the shape, termed the tile complexity. The temperature of a system,

denoted by τ , is the minimum required binding strength between two entities to enforce a stable

attachment; the sum of the strengths between the shared glues of two assemblies must meet or exceed

the temperature. Some studies of the model include negative-strength glues [2, 8, 12, 13, 14, 15, 20],
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which are repulsive forces which act against a particular bond between two assemblies. Studies

of these repulsive forces are motivated by experimental implementation of self-assembly systems

which exhibit this behavior [17].

Our contributions. We give one tile set with a constant number of distinct tile types

which satisfies the following: given any finite connected shape S⊂ Z2, there exists an assignment

of strengths between glues (a glue function) and a temperature τ such that the system uniquely

assembles S. The system encodes the shape in its temperature parameter τ and its glue function.

Then, by utilizing the inclusion of one negative-strength glue type, the system assembles a width-τ

assembly. This width-τ assembly is utilized as a seed for a tile set designed by [23] which “runs”

the program encoded by the seed to assemble the shape. This work is the first to show that any

shape can be built with a constant number of distinct tile types (where the glues are a function of τ)

at any scale without a staged model1, i.e., it is the first to achieve this in a fully “hands-off” model

which requires no experimenter intervention during the assembly process.

Previous results. For self-assembling a shape S, we list the previously known results,

which do not use negative glues and use O(1) temperature unless otherwise specified. Let K(S)

be the Kolmogorov complexity2 of S, and let T (S) be the (smallest) runtime of a Kolmogorov-

optimal program outputting S. A tile complexity of Θ

(
K(S)

logK(S)

)
is known, using a scale factor of

T (S) [23]. With negative-strength glues, a tile complexity of Θ

(
K(S)

logK(S)

)
is known, using a O(1)

scale factor [12]. In a staged version of the model, where several self-assembly systems are run in

parallel across a series of bins and then mixed together in stages, a tile complexity of Θ

(
K(S)

logK(S)

)
at scale factor T (S) is known for O(1) bins and O(1) stages along with a method for (optimally)

reducing the number of sufficient and necessary tile types by increasing the number of bins and

stages [3].

In another staged version of the model, where tiles are partitioned into DNA and RNA types,

and RNA types may be “washed away” at a given stage, a tile complexity of Θ

(
K(S)

logK(S)

)
at scale

1In the staged self-assembly model, the results of [3] give a construction which can effectively use O(1) tile types
to assemble the shape by increasing the number of bins and stages used.

2The Kolmogorov complexity of S is the number of bits in the smallest program which outputs S w.r.t. a universal
Turing machine. For more information on Kolmogorov complexity, see [11].
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factor O(log |S|) is known [7]. In a staged model where the self-assembly process is controlled by a

chemical reaction network which activates and deactivates tiles’ binding sites, a tile plus reaction

network complexity of Θ

(
K(S)

logK(S)

)
at scale factor O(1) is known [19].

Related work in high-temperature3 self-assembly. The first studies of utilizing temper-

ature to encode information involved the “online”, mid-assembly-process changing of tempera-

tures [10, 24]. Our result utilizes a high temperature bonding threshold for self-assembly attachment,

which we leverage to encode precise information for guiding the self-assembly process through

precisely set glue strengths. A number of recent related works have also studied the effects of higher

temperature self-assembly systems within various models. Within the aTAM, larger temperatures

have been shown to affect the possible behavior of systems [4], and the tile complexity of self-

assembled shapes [22]. Within the 2HAM, unique-assembly verification has been shown to be hard

for high-temperature systems [21], while the dynamics of certain higher-temperature systems have

been shown to be impossible to simulate at lower temperatures [6].

3.3 Definitions and Model

In this section we first define the two-handed tile self-assembly model with both negative

and positive strength glue types. We also formulate the problem of designing a tile assembly system

that constructs a constant-scaled shape given the optimal description of that shape.

Tiles and Assemblies. A tile is an axis-aligned unit square centered at a point in Z2, where

each edge is labeled by a glue selected from a glue set Π. A strength function str : Π→ Z denotes

the strength of each glue. Two tiles equal up to translation have the same type. A positioned shape

is any subset of Z2. A positioned assembly is a set of tiles at unique coordinates in Z2, and the

positioned shape of a positioned assembly A is the set of those coordinates. For a given positioned

assembly ϒ, define the bond graph Gϒ to be the weighted grid graph in which each element of ϒ is

a vertex and the weight of an edge between tiles is the strength of the matching coincident glues

3We say high-temperature self-assembly for consistency with previous literature. The term high temperature may
be misleading; e.g., we are not attempting to model what happens in DNA-based self-assembly systems when the
literal temperature of the system is raised to high values. Intuitively, higher temperature in this model implies more
fine-grained glue strengths. Another natural way to think of high temperature is to fix the temperature to one, but allow
rational glue strengths.
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or 0.4 A positioned assembly C is τ-stable for positive integer τ provided the bond graph GC has

min-cut at least τ .

For a positioned assembly A and integer vector ~v = (v1,v2), let A~v denote the positioned

assembly obtained by translating each tile in A by vector~v. An assembly is a translation-free version

of a positioned assembly, formally defined to be a set of all translations A~v of a positioned assembly

A. An assembly is τ-stable if and only if its positioned elements are τ-stable. A shape is the set

of all integer translations for some subset of Z2, and the shape of an assembly A is defined to be

the set of the positioned shapes of all positioned assemblies in A. The size of either an assembly or

shape X , denoted as |X |, refers to the number of elements of any positioned element of X .

Combinable Assemblies. Two assemblies are τ-combinable provided they may attach along

a border whose strength sums to at least τ . Formally, two assemblies A and B are τ-combinable into

an assembly C provided GC′ for any C′ ∈C has a cut (A′,B′) of strength at least τ for some A′ ∈ A

and B′ ∈ B. We call C a combination of A and B. Figure 3.1 gives examples of combinable and not

combinable assemblies.

A B

A B

(a) C X

C X
D D E E

(b)

Figure 3.1: The black lines between two tiles indicate unique unimportant τ-strength bonds.
If τ = 2, str(A) = 1 and str(B) = 1, then the two assemblies in (a) are τ-combinable, since
str(A)+ str(B)≥ τ and the positioned assemblies may be translated such that the A and B glues are
aligned— such a combination is termed cooperative binding, since neither the A nor B glue are alone
sufficient to satisfy τ-combination. In (b), we consider two cases concerning the negative strength
glue X . If τ = 2, str(C) = 2, and str(X) = −1, then the assemblies in (b) are not τ-combinable
since str(C)+ str(X) < τ . If τ = 1, str(C) = 2, str(D) = 2, str(E) = 1 and str(X) = −1, then
the assemblies are τ-combinable since str(C)+ str(X) ≥ τ; however, the resultant assembly is
unstable, since a cut along the X and E glue has strength str(X)+ str(E)< τ ; this violates the valid
growth-only system definition.

Two Handed Assembly Model: Growth-only Version A two-handed tile assembly system

(2HAM system) is an ordered pair (T,τ) where T is a set of single tile assemblies, called the tile set,

and τ ∈N is the temperature. In the growth-only model, assembly proceeds by repeated combination

of assembly pairs to form new assemblies starting from the initial tile set. The producible assemblies
4Note that only matching glues of the same type contribute a non-zero weight, whereas non-equal glues always

contribute zero weight to the bond graph. Relaxing this restriction has been considered [5].
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are those constructed in this way.

Definition 6 (2HAM Producibility (growth-only)). For a given 2HAM system Γ = (T,τ), the set of

producible assemblies of Γ, denoted PRODΓ, is defined recursively:

• (Base) T ⊆ PRODΓ

• (Combinations) For any A,B ∈ PRODΓ such that A and B are τ-combinable into C, then

C ∈ PRODΓ.

The inclusion of negative glues, in general, allows for unstable assemblies to be producible.

In previous literature, such assemblies “detach”, forming two new producible assemblies. We

impose the following constraint on growth-only systems which disallows production of unstable

assemblies which would fall apart. Satisfying the growth-only constraint argues that the system

has simpler kinetics than a non-growth-only system since the system does not rely on detachment

events.

For a system Γ = (T,τ), we say A→Γ
1 B for assemblies A and B if A is τ-combinable with

some producible assembly to yield B, or if A = B. Intuitively this means that A may grow into

assembly B through one or fewer combination. We define the relation →Γ to be the transitive

closure of→Γ
1 , ie., A→Γ B means that A may grow into B through a sequence of combinations.

Definition 7 (Valid Growth-Only System). A 2HAM system Γ = (T,τ) is a valid growth-only system

if for all A ∈ PRODΓ, A is τ-stable.

Definition 8 (Terminal Assemblies). A terminal assembly of a valid growth-only 2HAM system

is a producible assembly that cannot combine with any other producible assembly. Formally, an

assembly A ∈ PRODΓ of a 2HAM system Γ = (T,τ) is terminal provided A is not τ-combinable with

any producible assembly of Γ.

We formalize what it means for a 2HAM system to uniquely build a given assembly or a

given shape.
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Definition 9 (Unique Assembly). A 2HAM system uniquely produces an assembly A if all producible

assemblies have a growth path towards the terminal assembly A. Formally, a 2HAM system

Γ = (T,τ) uniquely produces an assembly A provided that A is terminal, and for all B ∈ PRODΓ,

B→Γ A.

Definition 10 (Unique Shape Assembly5). A 2HAM system uniquely produces a shape S if all

producible assemblies have a growth path to a terminal assembly of shape S. Formally, a 2HAM

system Γ = (T,τ) uniquely assembles a finite shape S if for every A ∈ PRODΓ, there exists a terminal

A′ ∈ PRODΓ of shape S such that A→Γ A′.

Figure 3.2: A simplified overview of the growing step. Si is a width-Θ(i), height-Θ(2i) assembly
with particular exposed edge glues. Si nondeterministically assembles one of two assemblies; a top
and bottom. The top and bottom share one glue of strength 2τ−1 shown in yellow, and i many
−1 strength glues shown in red. Thus, the top and bottom bind with strength 2τ− i−1, which is
τ-stable only if i < τ . The resultant assembly adds two width and doubles the height of Si, so its
dimensions are Θ(i+1)×Θ(2i+1). Further, its exposed glues allow the process to repeat.

3.4 Assembly of General Shapes with Constant Tiles

Here we give the main construction of the paper. First presented is our key contribution—

assembly of a precise-width rectangle— detailed in Subsection 3.4.1, followed by its composition

with established techniques from [23] for the main result in Subsection 3.4.2.

5Some previous literature calls this strict self-assembly, typically to contrast another definition, weak self-assembly;
we choose the name unique shape assembly to contrast unique assembly.
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3.4.1 Key idea: precise-width rectangle using O(1) tile types
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Figure 3.3: The base assembly, shown in two separate subassemblies; (a) shows the top subassembly,
and (b) the bottom. The two subassemblies combine using cooperative binding at the strength-d τ

2e
glues labeled X . The dotted line indicates distinct tile types which attach along the path with full τ

strength glues. The snaking pattern ensures that each subassembly is complete before both X glues
are available. Once these two subassemblies bind, the resultant assembly satisfies S0.

Here, we present a construction for building a precise-width rectangle from a constant-

bounded set of tile types. Note that the convention in this paper is width × height. Formally,

Lemma 1. Given a temperature τ > 2, there exists a negative glue, growth-only 2HAM tile system

Γ = {T,τ} such that |T | = O(1) and Γ uniquely produces an assembly which is a (18+ 4τ)×

(2τ+5−6) rectangle.

Proof. We give a proof by construction. Unless explicitly stated otherwise, all glues have strength

d τ

2e, so at least two matching glues are required for a τ-stable attachment. This is called cooperative binding.

The construction is split into two steps: growing and finishing. Figure 3.2 shows a simplified

overview of the growing step. The growing step of the construction concerns producing an assembly

with width 7+2τ , through a process consisting of τ iterations of growth, each adding a constant-

bounded width to the assembly. The i+1th iteration of growth is initiated by a combination of two

assemblies with total binding strength 2τ− i−1; thus, after the τ th iteration of growth, the binding

strength which would initiate the next iteration of growth has total binding strength 2τ− τ−1 < τ ,

and growth halts.
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The finishing step involves the system’s “detecting” that the growth process has completed.

This is achieved using the following technique: by adding a total strength of 1 shared between two

assemblies at each iteration of growth, once the assemblies have completed τ repetitions of growth,

they bind with strength τ . This step also gives the system its property of unique assembly of an

assembly whose shape is a rectangle (and not just unique shape assembly). That is, there is exactly

one terminal assembly of the system— as opposed to several terminal assemblies with the correct

rectangular shape. Maintaining this property in this lemma is required to achieve the same property

in Theorem 3.
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Figure 3.4: An assembly satisfying Si. The dots indicate an omitted set of repeated tiles; e.g., the
dots between the tiles exposing p indicate the omission of the i glues with label p. On the right are
the keystones, which attach cooperatively using R glues. Only one keystone may attach, introducing
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Figure 3.7: A bottom assembly (left) and top assembly (right). At the top of the figure are the tiles
whose glues bond a bottom and top assembly; in particular, the a and−1 glues, with str(a) = 2τ−1
and str(−1) = −1. A top and bottom assembly grown from an assembly Si each expose i glues
with strength −1. Then the strength of the attachment between them is 2τ− i−1, and is sufficient
when i < τ but insufficient when i = τ . Note that +2 and +2′ glues do not match; their purpose is
described later in the finishing step.

Growing The construction is described and proven correct via induction. The induction

is on iterations of rectangular assemblies with well-defined exposed glues, termed Si. Formally,

Si refers to a (7+ 2i)× (2i+4− 6) rectangular assembly with the following exposed glue labels,

written as strings built by concatenating the glue labels in left-to-right/top-to-bottom order):

• North glues: qpigni+5

• East glues: E2i+3−5R2E2i+3−3

• South glues: QPiGNi+5

• West glues: LW 2i+3−7LW 4LW 2i+3−7L
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The goal is to show that if an assembly satisfying Si is producible, then an assembly satisfying

Si+1 is producible iff i < τ . Further, only O(1) tile types are used in the inductive step. Then it

suffices to show that S0 is producible in O(1) tile types, implying Sτ is producible, which has width

× height as in the lemma statement.

Base case. An assembly satisfying S0 is shown to be trivially assembled by a set of O(1)

tile types in Figure 3.3.

Inductive step. The next three paragraphs describe the inductive step. The goal is to show

that if Si is producible, then a top and bottom assembly are producible which can bind to produce

Si+1 iff i < τ . Consider an assembly with exposed glues satisfying Si. The two R glues exposed

allow attachment of a keystone assembly via cooperative binding as seen in Figure 3.4. There are

two keystone types: up and down. Only one may attach. The L glues in the middle of the west-side

exposed glues, spaced by four W glues, also allow the attachment of a supertile using cooperative

binding. Once the keystone or west-side supertile has attached, a single tile type suffices to attach

tiles along any long set of repeating glues on the assembly (e.g., the E glues on the east side), until

the glue is no longer available, as seen in Figure 3.5. This type of single tile type attaching along

arbitrary walls is termed propagation of a tile.

The tiles which propagate to the corners of the west side of the assembly allow the attachment

of three tiles around the corner which allow propagation of tiles along the north and south faces

of the assembly. Once these tiles propagate, depending on which keystone was attached to the

assembly, the attachment of a tooth occurs on the corresponding face (e.g., on the north face if the

up keystone was attached) as shown in Figure 3.6. The tooth is a supertile with a specific geometry

which will be motivated later on. The tooth initiates a propagation of tiles along the corresponding

face. The result is the production of two assemblies, one having attached the up keystone and

attached all previously discussed propagating tiles and supertiles, and one having attached the down

keystone and similar tiles. We refer to the former as a top assembly, and the latter as a bottom

assembly.

When a top assembly and bottom assembly attach, the result is an assembly satisfying Si+1.
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A top assembly and bottom assembly are designed to attach iff i < τ . When i ≥ τ , the binding

strength between a top and bottom assembly is τ − 1, and thus is insufficient. This design can

be seen in Figure 3.7. Note that the −1 glues are propagated via the N-labeled glues from the

base assembly. Since Si has i+5 many N glues exposed, 5 of which are covered by the tooth, the

bottom/top assembly which assembles from Si exposes i many −1 glues. Then the bonding strength

between top and bottom assemblies is 2τ−1− i, which is less than τ iff i≥ τ . The complementary

geometry of the teeth ensure that a top and bottom assembly which are assembled from Si and S j

respectively, with i 6= j, cannot align their a glues and will not attach.

Dimensions of Si. The base assembly satisfying S0 is 7× 10. When a top and bottom

assembly attach, both have added 2 width in tiles; one tile width propagated on the west side, and

one on the east. Then the width of Si is 7+2i. A top and bottom assembly which have combined

add 6 height in tiles on top of doubling in height: 2 via tile propagation on the top and bottom, and

4 along where the top and bottom assemblies attach. Then the height of Si, h(i), is defined by the

recurrence h(i) = 2h(i−1)+6 with h(0) = 10. Solving the recurrence gives a height of 2i+4−6.

Then consider a combination of a top and bottom assembly which formed from some assembly

satisfying Si−1; the resultant dimension is (7+2i)× (2i+4−6).

Finishing When a top and bottom assembly combine to form an assembly satisfying Sτ ,

the growing step shows that the process will not continue to produce Sτ+1. However, the attachment

of a supertile on the west side, a keystone, and the resultant tile propagation still occurs. The

teeth attach and so do the tiles which propagate resulting from the attachment of a tooth. Then

an assembly satisfying Sτ implies the production of the corresponding top and bottom assemblies.

These assemblies are not rectangular. This step involves detecting that the iterative process has

reached τ repetitions, and the system should finish its rectangle.

Figure 3.8 gives an overview of the finishing step. The technique discussed in the growing

phase is employed by two disjoint tile sets, one called system 1 and the other system 2. The sets

of glues on the tiles in the two systems are disjoint except for two glues: the −1 glue, and the +2

glue described but not used in the growing phase. In the growing phase, recall that on the north
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face of a bottom assembly of system 1 which assembled from Si, there are i many strength 2 glues

labeled +2 exposed which are not used (recall Figure 3.7). These glues are designed to match

with the corresponding glues in system 2. Then the strength of binding between these shared glues

is 2i− i = i. Thus, only when i ≥ τ is this binding τ-stable. Similarly, system 1’s top assembly

attaches with the system 2’s bottom assembly under the same constraint. These resultant assemblies

expose cooperative binding locations which were not present before this attachment, allowing these

two new assemblies to combine, and then fill into a rectangle using a O(1)-sized tile set. Next,

we give the dimensions of the completed rectangular assembly: system 1’s top and system 2’s

bottom assembly, once attached, form a (7+2(τ +1)) = (9+2τ)× (2(τ+1)+4−6) = (2τ+5−6)

assembly— this can be derived from the combination of two assemblies satisfying Sτ assembling

into an assembly satisfying Sτ+1 not in exposed glues, but in size. System 1’s top and system 2’s

bottom are combined with system 1’s bottom and system 2’s top into one via a width-two column,

resulting in a 2(9+2τ)+2 = 18+4τ×2τ+5−6 assembly.

System 1 
Top

System 2
Bottom

System 2 
Top

System 1 
Bottom

Figure 3.8: An overview of the finishing step. The system described in the growing step, denoted
here as system 1, is repeated, denoted system 2, such that the only matching glues between the
two systems are a strength-2 glue type and the one strength-(−1) glue type. Between a system 1
top/bottom and system 2 bottom/top assembled from Si, the number of shared strength-2 glues and
strength-(−1) glues is i, so the sum of strengths between shared glues is 2i− i = i. This allows the
top/bottom assembly of system 1 to make a τ-stable attachment to the bottom/top of system 2 only
after each system assembles Sτ , thus detecting when the rectangle has Θ(τ) width. Once these tops
and bottoms attach, new cooperative binding locations initiate a constant-sized set of tiles to bind
the two rectangles, simply to satisfy unique assembly of the rectangle.
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3.4.2 From rectangle to shape

To assemble the target shape, a technique is combined with Lemma 1. The technique, shown

by Soloveichik and Winfree [23], first assembles a seed block bearing a representation (a series

of exposed glues) of a Kolmogorov-optimal program which computes the spanning tree of S. A

O(1)-sized tile set is used to “run” the program (via Turing machine (TM) simulation) from the

seed block. The seed block assembles into a c× c assembly, logically representing one coordinate

of S. Assembly proceeds from the seed block in a subset of the four cardinal directions depending

on the spanning tree computed by the program. If the spanning tree has an edge in a direction to

a coordinate adjacent to the seed block, a c× c growth block is assembled in that direction. Each

time a growth block is assembled, the program is run again to determine which adjacent coordinates

(w.r.t. the growth block) are connected by edges in the spanning tree; if so, a growth block is

assembled in that direction. After assembling all growth blocks, the unique assembly is a c× c

scaled version of S.

The seed block of [23] is assembled using O( K(S)
logK(S)) tile types. In our case, the seed block

is assembled using the O(1)-sized tile set of Lemma 1: we assemble a rectangle of width n where n

is the length of a unary encoding of the Kolmogorov-optimal program. This seed is combined with

the O(1)-sized tile set which runs the program and assembles the shape. Figure 3.9 is a simplified

overview of constructing a seed block compatible with a TM simulating tileset. The formal result is

as follows:

Theorem 3. Given a shape S, there exists a negative glue, growth-only 2HAM tile system Γ= {T,τ}

with |T |= O(1) whose unique assembly has shape S at some scale factor.

Proof. The system is a union of the Lemma 1 system and a subset of the TM simulating tile set

of [23]. If the entire TM simulating tile set is added to the system, depending on the seed block,

some tiles may never bind to the seed block, and thus do not grow into the target shape and violate

unique assembly definition. We include the subset of the TM simulating tile set which will be used

by the program encoded by the seed block. Observe that the unique assembly produced by the

system of Lemma 1 is not a square, nor does it have any exposed glues designed to bind with the
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TM simulation tile set. In order to assemble a square from the terminal assembly of Lemma 1,

two such rectangular assemblies are assembled in parallel, one which is rotated 90 degrees— this

“rotation” is w.r.t. the other rectangular assembly and the way the two assemblies will bind. These

two assemblies combine and then “fill-in” to a square trivially using a constant-sized tile set—

similar to propagation of tiles along an edge, cooperative binding can be used to add tiles between

two assembled rectangles to assemble a square (technique first used in [16]). Once assembly of the

square is complete, more tile propagation via another constant-sized tile set assembles a one-tile

perimeter which exposes glues— described in the following paragraph— which allow the assembly

to act as a seed block similar to the Soloveichik and Winfree construction [23].

Let P be the (binary) program used to assemble S via the construction of [23], R be some

mapping from binary strings to unary strings, and R′ be some mapping from unary strings {1}i with

i ∈N to unary strings {1} j with j = 20+4m for m ∈N— the intuition for the mapping R′ is to map

arbitrary unary strings to numbers which are widths of assemblies assembled by Lemma 1.

Once the square seed block is assembled and a one-tile perimeter is attached, three glue

types are exposed: 1, b, and λ . Across the length of filler tiles (those in the square which are

not from the Lemma 1 construction), λ glues are placed; these symbols are ignored by the TM

simulating tile set. The b glues are placed at the beginnings and ends of the edges of the square;

these indicate where to start the TM simulation. Along the edges of the rectangles from the Lemma 1

construction, glues labeled 1 are placed; these 1 glues are the relevant glues logically. The TM

simulation converts these to unary strings by R′−1, and then to P by R−1. Then the TM simulation

tiles run the program P which assembles the shape.
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Figure 3.9: The combination of two Lemma 1 constructions into a seed block. The two-tile
assembly in the first subfigure initializes the attachment of the set of white tiles, which indicate a
constant-sized set of filler tiles which are used to fill in a full square. Once the square is filled in,
new cooperative binding locations are exposed where the filler tiles meet the non-filler tiles. At this
location, tiles begin to propagate, adding a one-tile perimeter to the assembly. The orange tiles on
the outmost perimeter of the rightmost figure demarcate the beginning and ending of glues exposing
the unary program which constructs the shape S via a TM simulation. The rest of the perimeter
exposes glues which the TM simulation ignores.

3.5 Future Work

The most apparent direction for future work is to achieve the unique assembly of shapes

at a O(1) scale factor with O(1) tile types. This result may be achieved through a combination

of the techniques used in this work and in [12], which achieves O(1)-scale factor with O( K(S)
logK(S))

tile types where K(S) is the Kolmogorov complexity of the shape S. Their construction utilizes a

dynamic behavior of negative glues not utilized in this work called “breaking”: the combination

of two assemblies may result in an unstable assembly, which then breaks into two assemblies—

a formal model and some usages of breakage may be seen in [2, 8, 20]. Their usage of breaking

involves performing a computation— via a self-assembly process which simulates a TM— which

builds the shape pixel-by-pixel (using O(1)-sized assemblies per pixel), and then breaks the TM

simulating assembly into O(1)-sized pieces, leaving the shape S at a O(1) scale factor (along with

“small garbage” of O(1) size). That technique may be applicable to the construction given in this

work in order to break the precise-width rectangles after they are used as input for the TM which

outputs S.
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Another direction might be to achieve the unique assembly of scaled shapes with O(1)

tile types using only positive-strength glues. We have briefly discussed previous positive-strength

results which use Θ

(
K(S)

logK(S)

)
tile types. Could this be lowered to O(1) tile types by calibrating

the temperature and glue strengths, or is there some super-constant lower bound that cannot be

breached?
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CHAPTER IV

FULL TILT: UNIVERSAL CONSTRUCTORS FOR GENERAL SHAPES WITH UNIFORM

EXTERNAL FORCES

Collaborators: Jose Balanza-Martinez, David Caballero, Angel A. Cantu, Luis Angel

Garcia, Rene Reyes, Robert Schweller, and Tim Wylie My contribution: LAG presented the

initial concept for the patterns and general shapes constructor. He and I then continued to work

out the details for this result. I was also responsible for the initial creation of the relocation

and reconfiguration gadgets used in the PSPACE-completeness proof. The text was written by

all. This chapter was published as: Jose Balanza-Martinez, David Caballero, Angel A. Cantu,

Luis Angel Garcia, Austin Luchsinger, Rene Reyes, Robert Schweller, and Tim Wylie, “Full Tilt:

Universal Constructors for General Shapes with Uniform External Forces,” In Proceedings of the

30th ACM-SIAM Symposium on Discrete Algorithms, 2019.

4.1 Abstract

We investigate the problem of assembling general shapes and patterns in a model in which

particles move based on uniform external forces until they encounter an obstacle. In this model,

corresponding particles may bond when adjacent with one another. Succinctly, this model considers

a 2D grid of “open" and “blocked" spaces, along with a set of slidable polyominoes placed at open

locations on the board. The board may be tilted in any of the 4 cardinal directions, causing all

slidable polyominoes to move maximally in the specified direction until blocked. By successively

applying a sequence of such tilts, along with allowing different polyominoes to stick when adjacent,

tilt sequences provide a method to reconfigure an initial board configuration so as to assemble a

collection of previous separate polyominoes into a larger shape.
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While previous work within this model of assembly has focused on designing a specific

board configuration for the assembly of a specific given shape, we propose the problem of designing

universal configurations that are capable of constructing a large class of shapes and patterns. For

these constructions, we present the notions of weak and strong universality which indicate the

presence of “excess” polyominoes after the shape is constructed. In particular, for given integers

h,w, we show that there exists a strongly universal configuration with O(hw) 1×1 slidable particles

that can be reconfigured to build any h×w patterned rectangle. We then expand this result to show

that there exists a weakly universal configuration that can build any h×w-bounded size connected

shape. Following these results, which require an admittedly relaxed assembly definition, we go

on to show the existence of a strongly universal configuration (no excess particles) which can

assemble any shape within a previously studied “drop” class, while using quadratically less space

than previous results.

Finally, we include a study of the complexity of motion planning in this model. We consider

the problems of deciding if a board location can be occupied by any particle (occupancy problem),

deciding if a specific particle may be relocated to another position (relocation problem), and

deciding if a given configuration of particles may be transformed into a second given configuration

(reconfiguration problem). We show all of these problems to be PSPACE-complete with the

allowance of a single 2×2 polyomino in addition to 1×1 tiles. We further show that relocation

and occupancy remain PSPACE-complete even when the board geometry is a simple rectangle if

domino polyominos are included.

4.2 Introduction

The “tilt” model is an elegant and simple model of robotic motion planning and assembly

proposed by Becker et. al. [7] with foundations in classical motion planning. The model consists of

a 2D grid board with “open” and “blocked” spaces, as well as a set of slidable polyominoes placed

at open locations on the board. At the micro or nano scale, individually instructing specific particles

may be impossible. Thus, this model uses a global external force to give all movable particles the

same instruction. This may be done through any external force such as a magnetic field or gravity.
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In this work we assume gravity is the global force, and this is where the term tilt comes from. In

the simplest form of the problem, the board may be tilted (as an external force) in any of the four

cardinal directions, causing all slidable polyominoes to slide maximally in the respective direction

until reaching an obstacle. These mechanics have proved to be interesting bases for puzzle games,

as evidenced by the maximal movement of [1] and the global movement signals in [2]. By adding

bonding glues on polyomino edges, as is done in self-assembly theory [13, 19, 22], the polyominoes

may stick together after each tilt, enabling this model to be a framework for studying the assembly

of general shapes.

In this work we propose a new type of problem: the design of board configurations that

are universal for a class of general shapes or patterns. That is, we are interested in designing a

single board configuration that is capable of being reconfigured to assemble any shape or pattern

within a given set of shapes or patterns by applying the proper sequence of tilts. This problem is

distinct from problems considered in prior work in which a given shape is assembled by encoding

the particular shape into a specific board configuration (i.e. encoding the shape by way of placement

of “blocked” locations and initial polyomino placement). As an analogy, prior work has focussed

on building a specific purpose machine for building copies of a target shape via a simple repeating

tilt sequence. Here, we propose to build something more akin to a computer printer in which any

shape or pattern, provided sufficient fuel/ink/polyominoes, may be requested from the machinery,

and the particular shape requested is encoded by a provided tilt sequence.

As our primary focus in this paper relates to the problem of reconfiguring board configura-

tions, a natural computational question arises: what is the complexity of deciding if a given board

configuration may be reconfigured into a second target board configuration? In [9], the authors show

that minimizing the number of tilts to reconfigure between two configurations is PSPACE-complete.

In this paper, we add to this growing understanding of reconfiguration complexity by showing that

deciding if reconfiguration is possible is PSPACE-complete with 1×1 movable tiles and a single

2×2 movable polyomino. A related problem, which asks if a given location can be occupied by any

polyomino, has also been considered. This problem was shown to be NP-hard [8] in the restricted
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case of 1×1 polyominoes that never stick together (but is not known to be in NP). We also extend

this line of work by showing this problem is PSPACE-Complete if polyominoes larger than than

1×1 tiles are allowed. We also show that this problem remains PSPACE-comeplete with different

constraints such as limiting the number of larger polyominos and the board complexity.

4.2.1 Motivations

The beauty of the Tilt model is its simplicity combined with its depth. These features

allow this model to be a framework for computation and assembly within a number of potential

applications at various scales. A few examples at the macro, micro, and nano-scale are as follows.

Macro-scale The simplicity of the Tilt model allows for implementation with surprisingly

simple components. For instance, Becker et al. have constructed a modular, reconfigurable

board with both geometry and sliding components, which they have demonstrated with video

walkthroughs [6]. Further, the components allow for attaching magnets to implement bonding

between components. These bonded components can be viewed as polyominoes, which can even be

sorted within a tilt system [15]. Even a basic set of Legos is capable of quickly implementing many

of our proposed constructions. These systems can be represented realistically with games like Tilt

by Thinkgames [3] and the marble based Labyrinth [11].

Micro-scale It has been shown how to control magneto-tactic bacterium via global signals

to move bacteria around complex vascular networks via magnets [5], and how the same type of

bacteria can be moved magnetically through a maze [16]. This has a plethora of medical uses,

such as minimal invasive surgery, targeted drug payloads, subdermal micro-constructions, “targeted

delivery of hemotherapeutic agents or therapeutic genes into malignant cells while sparing healthy

cells” [21], and “medical intervention in targeted zones inaccessible to catheterization” [17].

Nano-scale Promising potential applications for Tilt Assembly systems may even be

found in the emerging field of DNA nanotechnology. DNA walkers have been engineered to traverse

programmed paths along substrates such as 2D sheets of DNA origami [14, 24]. Such walkers

may be augmented with activation signals to drive the walker forward one step by way of a DNA
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Result Shape Universal Tilts Size Bonding Geometry Theorem
Class ComplexityComplexity

Fixed Shape DROP No O(hw)1 O(h3w3) 2 labels Connected Thm. 6 in [10]
Universal Patterns All Strongly O(hwk) O(hwk) k labels Simple Thm. 4
Universal Shapes All Weakly O(hw) O(hw) 1 label Simple Thm. 5
Universal Shapes DROP Strongly O(h2w) O(h2w) 2 labels Connected Thm. 6

Table 4.1: An overview of the shape construction results. The Result is the type of constructor
achieved, and the Shape Class refers to the types of shapes that can be built. The Tilts are the
number of board tilts, or external forces, required to build the shape. The Size refers to the size of
the board necessary with respect to the size of the h×w bounding box of the shape being built. The
Bonding Complexity is the number of distinct particle types that can attach to each other and are
necessary to build the shape. The k labels needed for patterns is the number of desired types of
particles in the pattern (1≤ k ≤ |S|). The Geometry Complexity refers to the complexity of the
open and blocked pieces of the board based on the hierarchy provided in Section 4.3. The Theorem
refers to where this information is from.

Problem Shapes Geometry Complexity Theorem
Relocation/Occupancy 1×1 Connected NP-hard 1 in [8]

Reconfiguration Optimization 1×1 Connected PSPACE-complete 10 in [8]
Relocation/Occupancy 1×1, 2×2 Connected PSPACE-complete 8, 3

Reconfiguration 1×1, 2×2 Connected PSPACE-complete 9

Table 4.2: An overview of the computational complexity results related to tilt assembly and
our results. The Problem gives the computational question. The Shapes refer to the size of the
polyominos that are allowed to move within the world. The Geometry column refers the complexity
of the nonmovable tiles needed in the reduction. The Complexity refers to the computational
complexity class that the problem was proven to be a member, and the Theorem is the reference to
the result.

strand-displacement reaction [23]. By flooding the system with a given signal, the walker could be

pushed to continuously walk forward until stopped by some form of blocked location. By further

implementing four such signal reactions (one for each cardinal direction), and adding a specifically

chosen signal type at each stage or step of the algorithm, a set of these DNA walkers become a

nanoscale implementation of the Tilt Assembly model. If feasible, such an implementation implies

our Tilt algorithms offer a novel technique for the construction of nanoscale shapes and patterns.

4.2.2 Our Contributions in Detail

We first show the existence of a universal configuration for building any h×w bounded

shape or pattern. The result utilizes simple geometry (the set of open spaces on the board has
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genus-0), only a single type of bonding particle, and is quadratically smaller in size than the

corresponding non-universal construction from previous work [10]. Moreover, this is the first result

in the literature that is capable of building any connected shape. However, in the case of general

shape construction, we say this system is only weakly universal in that it allows for the inclusion

of “helper” polyominoes that are not counted as part of the final shape as they do not stick to any

other tile. Our next result is for strong universality in which only a single final polyomino of the

desired shape is permitted. In this case we achieve a restricted class of shapes termed “Drop” shapes

which are shapes buildable by dropping 1×1 polyominoes onto the outside of the shape from any

of the four cardinal directions. Previous non-universal work has focused on both constructing and

identifying members of the Drop shapes class [10]. A summary of universal shape construction

results, along with closely related prior work, is provided in Table 4.1.

Our next set of results focuses on various decision problems within the tilt model. The

occupancy problem asks if a given location on a board can be occupied by a polyomino. The

relocation problem asks if a specific tile is able to be relocated to a given location. The recon-

figuration problem asks whether a given board configuration may be reconfigured into a second

given configuration. We show these problems to be PSPACE-complete, even when polyominoes are

restricted to be 1×1 and a single 2×2 piece that never stick to each other. Our proofs rely on a

reduction from a 2-tunnel gadget network game with different gadget types that was recently proven

to be PSPACE-complete by Demaine, Grosof, Lynch, and Rudoy [12]. Previous work on occupancy

has shown the problem to be NP-hard [8] even when restricted to 1×1 pieces that do not stick. A

closely related problem of computing the minimum number of tilts needed to reconfigure between

two board configurations has been shown to PSPACE-complete for 1×1 non-sticking pieces [8]. A

summary of our complexity results, along with closely related prior work, is provided in Table 4.2.

1This technique permits “pipelined” construction for the creation of n copies of the target shape in amortized O(1)
number of tilts per copy.
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4.3 Preliminaries

Board. A board (or workspace) is a rectangular region of the 2D square lattice in which specific

locations are marked as blocked. Formally, an m×n board is a partition B = (O,W ) of {(x,y)|x ∈

{1,2, . . . ,m},y ∈ {1,2, . . . ,n}} where O denotes a set of open locations, and W denotes a set of

blocked locations- referred to as “concrete” or “walls.” We classify the different possible board

geometries according to the following hierarchy:

• Connected: This hierarchy level was known as complex. We modify this class to allow for a

proper hierarchy of shape classes. A board is said to have connected geometry if the set of

open spaces O for a board is a connected shape.

• Simple: defines simple geometry based on the connectivity of W . We also modify the concept

for hierarchical purposes. A connected board is said to be simple if O has genus-0.

• Monotone: A simple board is monotone if O is either horizontally monotone or vertically

monotone.

• Convex: A monotone board is convex if O is both horizontally monotone and vertically

monotone.

• Rectangular: A convex board is rectangular if O is a rectangle.

Our board definitions have changed since [4] in order to create the hierarchy shown above.

Tiles. A tile is a labeled unit square centered on a non-blocked point on a given board. Formally,

a tile is an ordered pair (c,a) where c is a coordinate on the board, and a is an attachment label.

Attachment labels specify which types of tiles will stick together when adjacent, and which have

no affinity. For a given alphabet of labels Σ, and some affinity function G : Σ×Σ→{0,1} which

specifies which pairs of labels attract (G(a,b) = 1) and which do not (G(a,b) = 0), we say two

adjacent tiles with labels a and b are bonded if G(a,b) = G(b,a) = 1.
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Polyomino. A polyomino is a finite set of tiles P = {t1, . . . tk} that is 1) connected with respect

to the coordinates of the tiles in the polyomino and 2) bonded in that the graph of tiles in P with

edges connecting bonded tiles is connected. A polyomino that consists of a single tile is informally

referred to as simply a “tile".

Configurations. A configuration is an arrangement of polyominoes on a board such that there

are no overlaps among polyominoes, or with blocked board spaces. Formally, a configuration

C = (B,P = {P1 . . .Pk}) consists of a board B, along with a set of non-overlapping polyominoes P

that each do not overlap with the blocked locations of board B.

Step. A step is a way to turn one configuration into another by way of a global signal that moves

all polyominoes in a configuration one unit in a direction d ∈ {N,E,S,W} when possible without

causing an overlap with a blocked location, or another polyomino. Formally, for a configuration

C = (B,P), consider the translation of all polyominoes in P by 1 unit in direction d. If no overlap

with blocked board spaces occurs, then the new configuration is derived by first performing this

translation, and then merging each pair of polyominoes that each contain one tile from a now

(adjacently) bonded pair of tiles. If an overlap does occur, for each polyomino for which the

translation causes an overlap with a blocked space, temporarily add these polyominoes to the set of

blocked spaces and repeat. Once the translation induces no overlap with blocked spaces, execute the

translation and merge polyominoes based on newly bonded tiles to arrive at the new configuration.

If all polyominoes are eventually marked as blocked spaces, then the step transition does not change

the initial configuration. If a configuration does not change under a step transition for direction d,

we say the configuration is d-terminal. In the special case that a step causes a polyomino to “leave

the board", we simply remove the polyomino from the configuration.

Tilt. A tilt in direction d ∈ {N,E,S,W} for a configuration is executed by repeatedly applying a
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step in direction d ∈ {N,E,S,W} until a d-terminal configuration is reached. We say that a con-

figuration C can be reconfigured in one move into configuration C′ (denoted C→1 C′) if applying

one tilt in some direction d to C results in C′. We define the relation→∗ to be the transitive clo-

sure of→1. Therefore, C→∗C′ means that C can be reconfigured into C′ through a sequence of tilts.

Tilt Sequence. A tilt sequence is a series of tilts which can be inferred from a series of directions

D = 〈d1,d2, . . . ,dk〉; each di ∈ D implies a tilt in that direction. For simplicity, when discussing a

tilt sequence, we just refer to the series of directions from which that sequence was derived. Given

a starting configuration, a tilt sequence corresponds to a sequence of configurations based on the tilt

transformation. An example tilt sequence 〈S,W,N,W,S,W,S〉 and the corresponding sequence of

configurations can be seen in Figure 4.1.

(a) Start (b) South (c) West (d) North (e) West (f) South (g) West (h) South

Figure 4.1: Tilt Example

Universal Configuration. A configuration C′ is universal to a set of configurations C = {C1,C2, . . . ,Ck}

if and only if C′→∗ Ci ∀ Ci ∈ C .

Configuration Representation. A configuration may be interpreted as having constructed a

“shape" in a natural way. Define a shape to be a connected subset S⊂ Z2. A configuration strongly

represents S if the configuration consists of a single polyomino whose tile coordinates are exactly

the points of some translation of S. A weaker version (discussed in detail in section 4.4) allows for

some “helper" polyominoes to exist in the configuration and not count towards the represented shape.

In this case, we say a configuration weakly represents S. We extend this idea of shape representation

to include patterns. We say a configuration represents a pattern if each attachment label used in
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the representation corresponds to exactly one symbol of the pattern. For example, a configuration

with attachment labels {a1,a2, . . . ,an} represents a pattern with symbols {s1,s2, . . . ,sn} if the loca-

tion of each tile ti ∈C with attachment label ai matches with the positions of symbol si in the pattern.

Universal Shape Builder. Given this representation, we say a configuration C′ is universal for

a set of shapes U if and only if there exists a set of configurations C such that 1) each u ∈U is

represented by some C ∈ C and 2) C′ is universal for C . If each u ∈U is strongly represented by

some C ∈ C , we say C′ is strongly universal for U . Alternately, if each u ∈U is weakly represented

by some C ∈ C , we say C′ is weakly universal for U . In a similar way, a configuration can be

universal for a set of patterns.

4.4 Patterns and General Shapes

In this section we present a shape builder which is universal for the set of all h×w binary-

patterned rectangles. We then extend this approach to achieve a universal constructor for any

connected shape, or even any patterned connected shape. We first cover a high-level overview of

how the construction works and then formally state and prove the result.

(a) Starting Configuration

1

3

2

(b) Sections

Figure 4.2: An overview of the universal pattern and shape constructor. (a) The universal binary-
patterned rectangle builder configuration in a starting configuration. (b) We refer to various sections
of the configuration by different names. Section 1 is the fuel chamber, section 2 is the loading
chamber, and section 3 is the construction chamber.
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4.4.1 Binary-patterned Rectangles: Construction

The high-level idea behind this construction is simple: tiles are removed from the fuel

chamber one at a time and are either used in “line assembly,” or ejected from the system. Once a

patterned line is complete, it is used for “rectangle assembly”. Essentially, we are assembling a

patterned rectangle pixle-by-pixel, row-by-row. For a given rectangle size (h×w), we can construct

a tilt assembly configuration (Figure 4.2) which can assemble any binary-patterned rectangle of that

size.

(a) (b) (c) (d)

Figure 4.3: The rectangle construction process at different points. Patterns are built row by row
and then added to the final shape. (a) depicts an assembled row of the pattern. (b) and (c) show
subsequent configurations after more rows have been added and (d) shows the final assembled
pattern.

Fuel Chamber The fuel chamber is the portion of our system which contains the tiles that

are used for construction. Our construction utilizes 2 types of tiles that attach to themselves and to

each other, and 1 tile that does not attach to anything (we often refer to this tile as sand)2. We must

be able to fill up the entire hw-sized porion of the construction chamber with either of the “sticky”

tiles, so we need to allocate room for that many tiles in the fuel chamber. In the fuel chamber, each

sticky tile must be separated by a sand tile, so we do not end up with “clumps” of fuel. Thus, we

have 4hw tiles in our fuel chamber. To progress fuel through the fuel chamber, an input sequence of

〈N,E,S〉 is required. It is important to note that each of our commands in Table 4.3 ends with this

sequence, thereby naturally advancing the fuel through the fuel chamber.

Loading Chamber The loading chamber is the next portion of the construction. It is here

that tiles can either be removed from the configuration, or loaded into the upper part of the loading

2The term sand is inspired by the game Minecraft [18] in which blocks of type “sand” do not stick to adjacent
blocks and will fall freely if nothing lies beneath them. Here, sand refers to 1×1 tiles that do not stick to any other tile
and are not counted as part of the final assembly.
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(a) Add/Remove Tile (b) Add Line

Figure 4.4: Basic sequences used in the constructor. The cyclic sequence to advance the fuel is
〈S,E,N,E,S,E, . . .〉. (a) The sequence to add a tile to the line is 〈E,N,E,S〉. (b) The sequence to
remove a tile from the system is 〈E,S,N,E,S〉.

chamber. As tiles are added to the loading chamber, one row (line) of the pattern is built. The

vertical portion of this chamber is the same height as the fuel chamber, and the horizontal portion

has a width of w. Once a line is complete, it is added to the construction chamber.

Construction Chamber The construction chamber is the portion of the tilt assembly

system where our pattern will be constructed. Its dimensions are determined by the size of the

rectangle to be constructed. The upper portion (with dimensions h× 2w) is where the binary-

patterned rectangle will be constructed. The lower portion (with dimensions 1×2w) is where the

pre-assembled lines enter from the loading chamber. The construction chamber can be thought of

as having two parts. The left portion is where lines are added to the already existing pattern, and the

right portion is where the pattern is stored for other move sequences.

Line Construction The 1×w lines (rows of the rectangle) are constructed pixel-by-pixel

(tile-by-tile) from right-to-left. For each pixel, the user decides if a blue or red tile should be placed

and discards the other (as well as the separating sand). The sequences required for tile addition and

removal are in Figure 4.4.

Rectangle Construction Once the line (row) is complete, the next step is to add it to the

construction chamber. The line construction process is then repeated over and over again, with each

new line being added to the construction chamber. Thus, the rectangle is built row-by-row from
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top-to-bottom. The sequences for all moves are in Table 4.3.

Moves Add tile Remove tile Add line
Tilts 〈E,N,E,S〉 〈E,S,N,E,S〉 〈W,N,E,S〉

Table 4.3: Tilt sequences used for general shape and pattern construction. Note that a tile will not
be removed during the Add Tile and Add Line commands (despite the presence of 〈E,S〉 in both)
because of the preceding N command and the fact that the rightmost column of the fuel chamber
will be missing at least 1 tile.

4.4.2 Patterned Rectangles and General Shapes: Formal Results

Theorem 4. Given two positive integers h,w ∈ Z+, there exists a configuration C which is strongly

universal for the set of patterns U = {u | u is an h×w rectangle, where each pixel has a label x ∈

{0,1}}. This configuration has size O(hw) and uses O(hw) tilts to reconfigure into a configuration

which strongly represents any pattern u ∈U.

Proof. We show this by constructing a configuration C = (B,P), similar to that shown in Figure 4.2a,

where B is the board and P is the set of 1× 1 polyominoes in the fuel chamber in their starting

configuration.

The three chambers of the board (fuel, loading, and construction) with scale based on h and w are:

• Fuel chamber. Let the fuel chamber of this configuration be of height h+3 and length 8w+2.

The fuel chamber is a rectangular area with staggered columns of blocked locations, so as

to create a serpentine path of length 4hw. Let this path be filled with tiles of alternating

attachment labels a,b buffered with label ε , where G(a,a) = 1,G(a,b) = 1,G(b,b) = 1 and

ε is the attachment label with no affinity. This allows enough room to have a single serpentine

line of 4hw tiles that do not stick to each other.

• Loading chamber. The loading chamber must have a vertical hallway whose height is the

same as the height of the fuel chamber (h+ 2). Let the loading chamber also contain a

horizontal tunnel whose width is w+2.
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• Construction chamber. The construction chamber can be described as a large set of open loca-

tions with a perimeter of blocked locations resembling the figures above. Let the construction

chamber have height h+2 and width 2w+2.

By observing the dimensions of the chambers, the height of the board is 2h+5 and the width of the

board is 9w+4. So, the size of the board is O(hw).

Reconfiguration. Consider the set of configurations C ′, where each c′ ∈ C ′ is similar to

that shown in Figure 4.2a and strongly represents some u ∈ U by a patterned-rectangle in the

construction area. From configuration c, and the construction shown above, there exists a tilt

sequence to construct any binary-colored line pixel-by-pixel. There also exists a tilt sequence to

construct a rectangle with these binary-colored lines row-by-row. These sequences, along with that

to discard any superfluous tiles, shows that there exists a complete sequence to build any rectangular

binary pattern. Thus, ∀ c′ ∈ C ′,C→∗ c′.

General Patterns By increasing the size of the fuel chamber, we can easily generalize

this result to k tile types (represented by labels or colors). Given k different labeled tiles for the

pattern, the fuel chamber just needs to repeat the sequence of tiles in order, with sand in between

each labeled tile, enough times to ensure the desired pattern can be built.

Corollary 1. Given three positive integers h,w,k ∈ Z+, there exists a configuration C which is

strongly universal for the set of patterns U = {u | u is an h×w rectangle, where each pixel has a label x∈

{0,1, . . . ,k}}. This configuration has size O(hwk) and uses O(hwk) tilts to reconfigure into a con-

figuation which strongly represents any pattern u ∈U.

Proof. We use the construction from Theorem 4 and extend the fuel chamber to include k colors.

The length of the serpentine fuel line would then be O(hwk) meaning the width of our board would

now scale with k as well. Also, since each pixel requires the user to select a color and discard the

others, the number of tilts would also scale with k.

General Shapes With a simple extension of this result, we are able to achieve the construc-

tion of general shapes. By including sand in the building process and the finished pattern, we can

69



construct any connected shape. This is weakly built by our definition since there are non-attached

tiles built along with it. Figure 4.5 shows this process.

Theorem 5. Given two positive integers h,w ∈ Z+, there exists a configuration C which is weakly

universal for the set of shapes U = {u|u ⊆ {1, . . . ,h}×{1, . . . ,w}}. This configuration has size

O(hw) and uses O(hw) tilts to reconfigure into a configuration which weakly represents any shape

u ∈U.

Proof. Following Theorem 4, we know that we can construct any rectangular binary pattern. By

removing one of the labeled (“sticky”) tile types, we can create a binary pattern using only one

labeled type and the ε (sand) tiles. Then the only connected portion of the shape is the parts with the

one labeled tile type. Hence, we can build a connected shape surrounded by “sand.” This process

results in a shape builder that is universal for the set of polyomino shapes that fit within an h×w

bounding box.

(a) (b) (c) (d)

Figure 4.5: The shape construction process at different intervals. (a) The first row of the shape
being built, however, the shape does not need this row and so only sand is added to the row. (b-c)
Partially built shape with several disconnected sections of the shape being built simultaneously. (d)
The finished shape with sand encasing the shape.

Patterned Shapes By keeping any number of labeled tiles, we can also build any patterned

connected shape.

Corollary 2. Given three positive integers h,w,k ∈ Z+, there exists a configuration C which is

weakly universal for the set of shapes U = {u|u⊆{1, . . . ,h}×{1, . . . ,w}, and each pixel in u has a label x∈

{0,1, . . . ,k}}. This configuration has size O(hwk) and uses O(hwk) tilts to reconfigure into a con-

figuration which weakly represents any shape u ∈U.

Proof. By the same argument as Theorem 1, we can add k colors to our fuel chamber, causing the

board size and number of tilts to scale with k.
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4.4.3 Additional Notes

Keeping the Undesirable Tiles One aspect of the constructor that may be undesirable

or infeasible for some pracitcal implemenations is the idea of removing pieces from the board.

Although not shown explicitly, the constructor (and subsequently the tilt sequences) can easily be

modified to handle the removed tiles in numerous alternate ways.

• Trash. The easiest solution is to have a chamber that the tiles are thrown down into such that

they become trapped (this can be achieved with a large enough chamber with one opening

at the center of the top wall). The chamber must be large enough to accommodate pieces

arbitrarily sticking together, and still prevent tiles from returning to the constructor.

• Only Sand as Trash. Each labeled (colored) sticky tile can have its own fuel chamber still

using sand to separate each piece. Each fuel chamber would be a 2n2×1 vertical chamber

that requires a unique tilt sequence to get a piece of fuel of that type out. The only trash is

then sand, so the trash chamber would also only need to be h×w large.

• Reusing tiles. With the standard fuel tank, the unwanted tile could be routed down and around

to the back of the fuel chamber to be reinserted. This recycling would only require an extra

chamber of sand to put between labeled pieces that were recycled consecutively because the

sand in between them was used in the shape.

Freeing the shape Another possible drawback of the constructor as presented is that the

shape is trapped in the constructor itself. The constructor may be easily modified to allow for one

shape to be released and another constructed. By enlarging the construction chamber to have a

height of 2h, and removing the top h tiles from the left wall, we can create an opening for the

finished shape to leave the constructor. Thus, the remove shape tilt sequence 〈N,W 〉 could be added,

as it does not overlap with any of the pre-existing tilt sequences.
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4.5 Drop Shapes

Next, we consider a class of shapes discussed in [10] which we refer to as drop shapes.

A drop shape is any polyomino which is constructable by adding particles from any of the four

cardinal directions {N, E, S, W} towards a fixed seed. For a formal definition of this class of shapes,

see constructable polyominoes for the Tilt Assembly Problem (TAP) in [10]. Figure 4.6 shows

an example of a valid and invalid drop shape. Here, we present a shape builder which is strongly

universal for the set of drop shapes.

(a) Valid (b) Invalid

Figure 4.6: Drop Shapes examples. (a) This polyomino is buildable with the drop shape method,
whereas (b) is a polyomino that is not a constructable drop shape. From a fixed single tile seed, it is
not possible to build (b) by adding one tile at a time from a cardinal direction.

4.5.1 Universal Drop Shape Builder: Construction

Figure 4.7 is an example of our universal drop-shape builder for polyominoes fitting within

a 4×4 bounding box. At a high-level, this construction works by following five phases, which are

indicated by the labeled areas in Figure 4.7b.

1. Select a red or blue tile from the fuel chamber. Area 1 shows the two types of fuel that stick

to each other. Here, we use a sequence to pick the one we want.

2. Choose which direction to add the tile from. We move the shape into the appropriate N,S,E,

or W location and move the tile to the side we are adding from. As the area 2 labels show, we

can move the new tile to the appropriate side of the shape.

3. Choose which column/row to add the tile on the shape. This example is for any 4×4 shape,

so we choose columns (N/S) or row (E/W) to shoot the tile onto the shape where it will be

added.
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(a) Starting Configuration

1

2

2

2

2

4

5

3

3

3

3

(b) Sections

Figure 4.7: (a) The universal drop-shape builder. (b) An overview of the parts of the drop shape
builder. Area 1 is the fuel chamber, area 2 is the selection chamber, the area 3’s are the alignment
chambers, area 4 is the construction chamber, and area 5 is the holding chamber.

4. This area is where the shape is held when the new tile is added. There is a different holding

area for each of the four directions.

5. In the last phase we move the shape to area 5 where it is held while we get the next tile to

add. This holding chamber ensures the polyomino being built does not interfere with getting

the next tile ready.

A full overview of the process with a flowchart and the necessary tilt sequences is shown in

Figure 4.10a and Table 4.4, respectively.
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Figure 4.8: Tile selection gadget. Each tile is pulled out with the sequence 〈E,N,W,S,E,S〉, and
stops at the first square. Then the left tile type (blue) is either pulled out of the gadget or put back
in the storage area. This shows it being added back to the storage with 〈E,S,W,N,W,S〉. This
sequence puts the next tile type (red) in a decision location. The red tile is selected with the sequence
〈W,N,W,S,W,S〉.

Fuel Chamber: Section 1 The fuel chamber consists of one or more tile reservoirs. Each

reservoir contains a tile type with the same attachment label. The tilt sequence 〈E,N,W,S,E,S〉

extracts one fuel tile out of each reservoir. After extraction, we select which tile we want one at

a time. For each extracted tile, we can either perform a tilt sequence to return the fuel tile to its

reservoir, or to select it to be used in shape construction. Figure 4.8 shows an example of selecting

the second type of fuel. Once a fuel tile has been selected with the sequence 〈W,N,W,S,W,S〉, the

storing tilt sequence must be performed for the rest of the fuel tiles that were not selected. To store a

fuel tile the tilt sequence is 〈E,S,W,N,W,S〉. Note that the position of a selected fuel piece remains

the same after an application of the storage sequence.

On all iterations after the first, we must also consider the position of the polyomino/assembly

which is being constructed. Before executing the tilt sequence to extract a tile, the polyomino is

located in the northmost eastmost notch of the holding chamber. A quick observation will note

that the tilt sequence required to traverse the holding chamber is identical to the tile extraction

sequence. Also note that the position of the assembly after an extraction, like the selected fuel piece,

is invariant after each application of the storage sequence. When the extracted fuel tile is to enter

the selection chamber, the assembly will be ready to enter the construction chamber.
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Selection Chamber: Section 2 After selecting the fuel tile and storing the rest of the

extracted tiles, we now move the fuel tile into the selection chambers. This stage of the construction

simply selects the direction of attachment. After tilting 〈N〉, the fuel enters the eastern selection

chamber and the assembly enters the construction chamber. To select an attachment from the east,

perform the tilt sequence 〈E,S,W 〉 (notice that this will position the assembly to the west of the

eastern alignment chamber), else tilt 〈W 〉 to select the next direction. After this western tilt, to

select an attachment from the north, perform the tilt sequence 〈N,E,S〉 (notice this also positions

the assembly below the northern alignment chamber), else tilt 〈S〉 to select the next direction. Now,

after this southern tilt, to attach from the west perform the tilt sequence 〈W,N,E〉 (this too positions

the assembly to the east of the western alignment chamber), else to select the last direction tilt 〈E〉.

At this point, the fuel must be attached from the south. The sequence 〈S,W,N〉 will prepare the

fuel tile for an attachment from the south (while also positioning the assembly to the north of the

southern alignment chamber).

Alignment Chambers: Sections 3 After an attachment direction has been chosen, the tile

enters a gadget to select the row/column of the polyomino to target with the new tile. Figure 4.9

shows an example for a northern selection gadget for a 4×4 polyomino. The tilt sequence to align

with a particular location varies with respect to the direction of attachment. If the rightmost pixel

of a northern attachment is chosen, the tilts 〈W,S〉 would be performed. Each successive column

is chosen by performing the sequence 〈E,S,W,S〉. This sequence is repeated, each time moving

tile further down the gadget, until the desired location is reached, at which point the attachment

sequence 〈W,S〉 is executed. The alignment sequence for each attachment chamber does not affect

the position of the assembly (it will remain positioned in the attachment chamber). Note the

southern alignment gadget is slightly different but serves the same purpose. This difference is so

the alignment and extraction sequences do not overlap.

75



Figure 4.9: The column selection gadget for drop shapes. Assuming the shape to build is at a fixed
location, this gadget allows any column to be selected to drop the new tile onto. The number of
columns to drop from in this gadget determines the size of the shape we can build. Thus, this is for
a drop shape within a 4×4 bounding box. This gadget is repeated on each of the four sides of the
drop-shape constructor (with a slightly modified one on the south side).

Construction Chamber: Section 4 This central chamber is where the constructed assem-

bly will be housed as it is being assembled. As we saw in the selection paragraph, the sequences

required to position the assembly in front of a particular alignment chamber are the same as the

sequences required to prepare the fuel piece to attach from that chamber. This, along with the

alignment chamber process, allows us to pinpoint the attachment location of a fuel piece to the

assembly.

Holding Chamber: Section 5 Once the new tile has been added, we return the assembly

to the holding chamber, which is where the assembly resides while the next fuel tile is being selected

(Section 1). Once again, the target location in the holding chamber is the northmost westmost notch.

As mentioned, the holding chamber’s tilt sequences’s are identical to that of the fuel chamber’s.

This ensures that we can select a fuel type without repositioning the assembly.

4.5.2 Universal Drop Shape Builder: Theorem and Proof

Theorem 6. Given two positive integers h,w ∈ Z+, there exists a configuration C which is strongly

universal for the set of drop shapes U = {u|u⊆ {1, . . . ,h}×{1, . . . ,w}}. WLOG, let h≥ w. This

configuration has size O(h2w) and uses O(h2w) tilts to reconfigure into a configuration which

strongly represents any shape u ∈U.

76



s0 〈E,N,W,S,E,S〉+ 〈E,S,W,N,W,S〉i + 〈W,N,W,S,W,S〉+ 〈E,S,W,N,W,S〉 j

sE1 〈N,E,S,W,S〉
sN1 〈N,W,N,E,S〉
sW1 〈N,W,S,W,N,E〉
sS1 〈N,W,S,E,S,W,N〉
sE2 〈S,W,N,W 〉 j + 〈N,W,S,E,S,E,S〉
sN2 〈E,S,W,S〉 j + 〈W,S,E,N,E,S,E,S〉
sW2 〈N,E,S,E〉 j + 〈S,E,N,W,E,S,E,S,E,S〉
sS2 〈W,N〉 j + 〈E,N,W,S,W,N,E,S,E,S〉

Table 4.4: The sequence of tilts used in the flowchart (Figure 4.10a). s0 denotes the tile selection
from i+ j+1 different tile types and chambers. The sequence also places the current polyomino
in the correct area for the next sequences (Figure 4.10b). For area 2 in Figure 4.7b, sE1, sN1, sW1,
sS1 represents choosing to attach the new tile from the east, north, west, or south side, respectively.
Similarly, the alignment selection (area 3), from the east, north, west, or south side, is represented
by sE2, sN2, sW2, and sS2, respectively. Note there may be up to j−1 columns.

Claunch

CE1

CN1 CW1

CS1

CE2

CN2 CW2

CS2

Cstart

S0

SE1

SN1 SW1

SS1

SE2

SN2 SW2

SS2

S0

S0 S0

S0

(a) Flowchart

1

2
3 4

(b) Example Claunch Position

Figure 4.10: (a) A flowchart where each state represents a set of configurations and the symbols
represent sequences that can move from one state to another. The sequences for each of the symbols
is shown in Table 4.4. (b) An example configuration in the Claunch state. Configurations in Claunch
always have the assembly located in box 1 at the rightmost bottom corner, the next fuel tile to be
shot located in box 2, and all fuel pieces in the fuel chamber are in their proper reservoir pushed to
the far left as depicted in box 3 and 4. A configuration strongly representing a drop shape u ∈U is
in Claunch with no more tiles to launch and the fuel chamber empty.
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Proof. This is a proof by construction. We begin with a configuration C where all chambers are

empty except the fuel chambers. Following the process outlined in Figure 4.10a, we can extract

the desired fuel piece, and the fuel piece can be moved from the alignment chamber to the shape

via the construction chamber. We repeat this process to add single fuel pieces to the shape from

any direction. After the fuel chambers are empty, we have generated a configuration C′ from C by

performing a series of tilts. Thus, C→∗C′, and to show the transition from the starting configuration

to the configuration that represents shape u∈U , we use the process shown in the flowchart of Figure

4.10a.

4.6 PSPACE-complete Results

This section is a continuation of the work done by [7, 8, 9]. In their papers, they discuss the

occupancy problem in a tilt-based system which asks whether a given location can be occupied by

any tile on the board. We extend their line of investigation by introducing a set of new problems

based on their work. We then go on to show PSPACE-completeness for the problems defined.

This section is divided into 4 main subsections. In Section 4.6.1, we present several natural

decision problems for the tilt model. Section 4.6.2 is where we summarize the puzzle solvability

problem from [12], which we use for our PSPACE-hardness reductions. In Section 4.6.3, we

show that the relocation problem is PSPACE-complete, even when limiting all movable particles to

1×1’s with a single 2×2. Finally, in Section 4.6.4 we show that the reconfiguration problem is

PSPACE-complete, even with this same limitation on the size of the movable particles.

4.6.1 Problems in the Tilt Model

In this section we define the three tilt decision problems we consider.

Occupancy Problem The occupancy problem asks whether or not a given location can be

occupied by any tile on the board. Formally, given a configuration C = (B,P) and a coordinate e∈ B,

does there exist a tilt sequence such that C→∗ C′ where C′ = (B,P′) and ∃p ∈ P′ that contains a

tile with coordinate e?
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Relocation The relocation problem asks whether a specified polyomino can be relocated

to a particular position. That is, given a configuration, a polyomino within that configuration,

and a translation of that polyomino, does there exist a sequence of tilts which moves the original

polyomino to its translation?

Reconfiguration The reconfiguration problem asks whether a configuration can be recon-

figured into another. Formally, given two configurations C = (B,P) and C′ = (B,P′), does there

exist a tilt sequence such that C→∗ C′?

The occupancy problem was shown to be NP-Hard by [7, 8, 9] when only using 1×1 tiles.

Their reduction also works to show NP-hardness for the relocation problem when only using 1×1

tiles. Additionally, they show that finding the optimal tilt sequence to reconfigure a board from

one configuration to another is PSPACE-complete. In this section, we show that the relocation,

reconfiguration, and occupancy problems are all PSPACE-complete. Our hardness proofs rely on a

recent result in [12]. They indroduce the puzzle solvability problem, which asks whether or not a

robot can traverse a system of specific types of gadgets, and show that it is PSPACE-Complete. We

present a summary of this problem, and then show our reductions.

4.6.2 Puzzle Solvability

The model introduced in [12] is based on single-agent robot motion planning problems,

where an agent navigates a given environment to a target destination. The authors introduce a

general model of gadgets, of which the environment to be traversed may be comprised. We define

several key components of these gadgets, as well as the specific types of gadgets themselves. We

then state the puzzle solvability problem, which we later reduce from.

Gadget Components:

• Locations. A gadget consists of one or more locations, which are the points of entry and exit

to the gadget.

• States. Each state s of the gadget defines a labeled directed graph on the locations, where a

directed edge (a,b) with label s′ means that the robot can enter the gadget at location a and
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exit at location b, forcing the state to change to s′. The gadgets are defined by state spaces. A

state space is a directed graph whose vertices are state and location pairs, where a directed

edge from (s,a) to (s′,b) means that the robot can traverse through the gadget from a to b if

it is in state s, such that traversing will change the state of the gadget to s′. We use gadgets

with at most two states.

• Toggle. A toggle is a tunnel that can only be traversed in a single direction as dictated by its

state. Each toggle has 2 states dictating which direction a robot is allowed to traverse the

tunnel. Tunnels are routes between two locations that the robot can traverse through. The

state of the toggle gadget changes when the tunnel is traversed.

• Lock. A lock is a tunnel which has two states, locked and unlocked. The unlocked state

allows bidirectional traversal. The locked state does not allow traversal whatsoever.

Gadgets and Puzzles:

• C2T. Crossing 2-Toggle is a gadget that has two toggle tunnels perpendicular to each other.

Traversing either tunnel causes the gadget’s state to change, which means the state (or

direction) of both tunnels are changed (or reversed). Figure 4.11a shows a representation of

both states of the C2T gadget.

• CTL. The Crossing Toggle-Lock gadget also has two perpendicular tunnels. One tunnel is a

toggle, and the other is a lock. Traversing the toggle switches the lock between its locked and

unlocked state. Figure 4.11b shows the representation of both states of the CTL gadget.

• Puzzle. A puzzle is a problem posed as a system of interconnected gadgets, their initial states,

the wires connecting them, and the robot’s start and goal location. A puzzle is said to be

solvable if there is a path from the start location to the goal location using only moves allowed

by the wires and gadgets.

Puzzle Solvability Problem This problem simply asks if a given puzzle of gadgets is

solvable. In other words, does there exists a sequence of moves that relocates the robot from its
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(a) Crossing 2-Toggle (C2T) (b) Crossing Toggle-Lock (CTL)

Figure 4.11: (a) The two states of the crossing 2-toggle gadget. Robot traversal through either
tunnel toggles the gadget between these two states. (b) The two states of the crossing toggle-lock
gadget. Robot traversal through the directed tunnel toggles the gadget between these two states
(locked and unlocked).

start location to its goal location? If the puzzle consists of only C2T gadgets, we refer to this as the

C2T puzzle solvability problem. The same goes for the CTL gadget.

Theorem 7. The C2T puzzle solvability problem and the CTL puzzle solvability problem are both

PSPACE-complete.

Proof. This was shown in Corollary 5.2 from [12].

4.6.3 Relocation

The work from [9] implies that the relocation problem is NP-hard when using only 1×1

movable particles. In this section, we show that the problem is PSPACE-complete when adding a

single 2×2 polyomino.

Relocation Gadget Preliminaries Here we present a gadget in the tilt model that behaves

like the C2T gadget described above. Figure 4.12 shows an overview of the gadget. Figure 4.12a

shows the basic sections of the gadget which we describe below. The main idea is that a 1× 1

tile (referred to as the state tile) is confined to one of two different paths within the gadget and a

2×2 polyomino (referred to as the robot polyomino) may only traverse the gadget in a specified

direction if the state tile is in the correct corresponding path. To implement this dependency, we

created locations within the gadget where the state tile and robot polyomino need to use each

other’s geometry to traverse the gadget. Figures 4.12b and 4.12c show the paths of the state tile

and robot polyomino, respectively. We note some fundamental properties of the C2T gadget which

we recreate in the full-tilt model. Figure 4.13 shows an example of a pathway not reachable by the
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(a) Sections of Gadgets (b) Paths of the State Tile (c) Paths of the Robot Polyomino

Figure 4.12: (a) Relocation sections where 1) represents entrance/exits locations, 2) represents areas
where the robot polyomino becomes stuck if unassisted by the state tile, and 3) and 4) represent the
NE and SE state tile areas. State and robot paths are shown in (b) and (c), where the state tile is
stuck on the solid lines and traverses through the dotted lines when changing states, and where the
robot polyomino travels through one location to the next through the solid lines, unassisted by the
state tile, or traverses the dotted lines if assisted by the state tile.

robot polyomino without the geometric assistance of a state tile. This is the same as the C2T gadget

not allowing the robot’s traversal through an exit location. In Figure 4.13 we depict an example

of a state tile confined to a pathway that is moved into another with the assistance of the robot

polyomino. This depicts one of two different states that the state tile can be in. This mimics the

C2T’s state changing function. By combining these elements we are able to create a complex gadget

which is able to allow a robot to traverse through it only if the gadget is in the correct state.

Robot Polyomino The robot polyomino is a 2× 2 polyomino that traverses through a

puzzle. Figure 4.12c shows all paths of the robot in a gadget. The dotted lines show its path without

the help of the state tile.

State Tile The relocation gadget has a state tile, which is a single tile trapped inside the

gadget. The state tile can freely move in one of the solid lines shown in Figure 4.12b, where the

dotted lines depict a pathway traversable by the state tiles only with the assistance of the traversing

robot polyomino’s geometry.

Relocation Gadget Our Relocation gadget consists of openings at its four cardinal direc-

tions which we will call N,E,S,W . The internal geometry is diagonally symmetrical and allows
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(a) State Path Depiction
(b) Enforced State
Change (c) Robot Limited Path (d) Robot Assisted Path

Figure 4.13: Relocation Properties. (a) A gadget with states 1 (dark) and 2 (light). (b) The robot-
traversal “toggles” the gadget. (c) A gadget cannot be traversed by the robot alone. (d) The same
gadget being robot-traversed with the help of the state tile.

for traversal between its openings. Wires are made with 2-tile wide hallways attached at gadget

openings. A high-level overview of the four relocation gadget sections is shown in Figure 4.13.

Entrance/Exit Chambers Marked as section 1 in 4.12a, the entrance/exit chambers repre-

sent locations in a C2T gadget. These chambers do not enforce any behavior or move sequence

constraints on a robot polyomino, letting it move in or out of the chamber with no difficulty. How-

ever, these chambers have spaces on its sides designed to keep the state tile within the gadget. Once

a state tile becomes stuck in the spaces, the gadget becomes inoperable. These chambers change

from entrance to exit chambers depending on the state of the gadget, where if the state tile is in the

NE side of the gadget, the NE chambers become entrance chambers and the SW side chambers

become exit chambers and vice versa. These different states correspond to the depicted states of

C2T gadgets in Figure 4.11.

Assistance Chamber Marked as section 2 in 4.12a, an assistance chamber is where the

state tile meets the robot polyomino to assist it in its traversal through the gadget. The robot

polyomino can reach the assistance chamber opposite of where it entered from. The only way a

robot polyomino can move through an assistance chamber is if the state tile is in the correct path.

See Figure 4.14 for an example travesal. If a robot polyomino enters a gadget whose state tile is in

the opposite side, the robot polyomino becomes stuck inside the gadget. This forces the robot to

enter through the correct entry points.
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State Chambers Sections 3 and 4 in 4.12a are the state chambers of the relocation gadget.

They store the state tiles and dictate the gadget’s state. We refer to these states as the NE state/path

and the SW state/path. See Figure 4.12b for the possible paths of the state tile in its two states. As

shown in the figure, the NE(SW ) chamber allows a path for the state tile to move freely between its

north (south) side and east (west) side.

Directed Tunnels We say a directed tunnel (a,b) exists in our relocation gadget if a

sequence of tilts exists such that we can relocate our robot polyomino from location a to location

b. For example, the directed tunnel (W,E) exists if our robot polyomino can travel from the west

entrance of our relocation gadget to the east entrance.

(a) 〈S,E,N,E,S〉 (b) 〈E,N,E,S〉 (c) 〈E,N,E,N,E〉

Figure 4.14: Example of a traversing sequence and state change when a gadget is in the state from
Figure 4.11a. The robot polyomino enters the gadget in (a) and performs the sequence shown. The
robot geometrically assists the state tile to traverse around in (b), and in (c) the state tile assists the
robot polyomino via its geometry to exit through the opposite location. In the end the robot would
have traversed the gadget, and the state tile would have gone from section 4’s red path in Figure
4.12b to section 3’s green path; Therefore, the gadget was toggled.

Intersections To allow robots to change directions in the paths between gadgets, we must

have geometry to stop the robot and then choose which direction it will proceed. We place a 2×2

blocking piece of geometry in the middle of the wire and expand the surrounding area to allow

the robot to make traversing decisions. Examples of 3-way and 4-way intersections are shown in

Figures 4.15a and 4.15b, respectively.
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(a) 3-way intersection (b) 4-way intersection (c) Intermediate Wire

Figure 4.15: Intersections of tunnels. The geometric block in the center stops the robot and allows
it to choose any of the tunnels to move through. (a) Three tunnels intersecting. (b) A four-way
intersection. (c) The intermediate wire used in a system of reconfiguration gadgets to “reset” the
state tiles.

Relocation is PSPACE-complete Here, we show the hardness reduction for the relocation

problem. The central idea of our reduction is that our relocation gadget has the same functionality

as the C2T gadget. In order to prove this, we prove a series of lemmas (using a brute-force proof-

by-computer) about how our gadget works. This equivalent functionality is then used towards the

main theorem of this section. We begin with a simple recursive algorithm which, given an initial

configuration, creates a tree of all reachable configurations.

Algorithm 1 Create Configuration Tree
function CREATETREE(startConfig)

Create a new node for startConfig.
Add startConfig to the list of visited configurations.
for all d in {N,E,S,W} do

Create new configuration by tiliting startConfig in direction d.
if the new configuration is not in the list of visited configurations then

Create a child node for direction d and call createTree on the new configuration.

Lemma 2. Given relocation gadget configurations C and C′, there exists a node for C′ in the

configuration tree created by createTree(C) if and only if C→∗ C′.

Proof. Since algorithm 1 recursively calls itself until the base case where all four child configura-

tions have already been visited, it is easy to see that all reachable configurations are generated by

this algorithm.

Forest Generation For the following lemmas, we use a brute-force proof-by-computer

approach in which we generate a forest of trees (each created by calling algorithm 1) from each of
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the configurations where the robot polyomino is located in any of the four entrance/exit chambers.

In other words, a tree is generated for every combination of robot polyomino entrance/exit location

and all possible state tile locations. We can easily modify algorithm 1 to flag nodes as north, east,

south, or west nodes if their corresponding configuration has the robot polyomino located at the

north, east, south, or west entrance/exit chambers. Sourcecode:

Lemma 3. Directed tunnels (N,S) and (E,W ) exist in a relocation gadget if and only if the gadget

is in the NE state.

Proof. To prove this, we show that the existance of directed tunnels (N,S) and (E,W ) implies that

the gadget is in the NE state, and that the gadget being in the NE state implies the existance of

directed tunnels (N,S) and (E,W ). By Lemma 2, we see that the (N,S) / (E,W ) directed tunnels

exist for any north (east) configuration which is the root of a tree that contains a south (west) node

(i.e. there is a tilt sequence to move the robot polyomino from the north entrance to the south). For

the first implication, we search the brute-force forest and verify that all trees which have a north

(east) root and contain a south (west) node also begin with the state tile at some location in the NE

path. For the second implication, we search the brute-force forest and verify that all trees which

have a north (east) root and begin with the state tile at some location in the NE path contain a south

(west) node.

Lemma 4. Directed tunnels (S,N) and (W,E) exist in a relocation gadget if and only if the gadget

is in the SW state.

Proof. We perform a similar forest-searching process as Lemma 3 and show a similar implication

for directed tunnels (S,N) / (W,E) and gadget state SW .

Lemma 5. Directed tunnels (N,E),(N,W ),(S,E),(S,W ),(E,N),(E,S),(W,N),and (W,S) do not

ever exist in a relocation gadget (regardless of its state).

Proof. For each directed tunnel (a,b)∈{(N,E),(N,W ),(S,E),(S,W ),(E,N),(E,S),(W,N),(W,S)},

we search the forest and verify that no tree exists which has root flagged for direction a and contains

a node flagged for direction b.
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Lemma 6. If a directed tunnel in a relocation gadget is traversed, the state of the gadget is toggled.

Proof. From Lemma 5, we can deduce that the only directed tunnels which may exist in a relocation

gadget are (N,S), (E,W ), (S,N), and (W,E). Consider directed tunnel (N,S). We search the forest

and find all trees which have a north root and contain a south node. By Lemma 3 we know that

these trees have root configurations where the state tile is in the NE path. We verify that all south

nodes in these trees represent configurations in which the state tile is in the SW path. We perform

equivalent verifications for the remaining directed tunnels.

Lemma 7. The relocation gadget correctly implements the behavior of the C2T gadget.

Proof. By Lemmas 3 and 4, we see that robot traversal through our relocation gadget is dictated by

what state the gadget is in. Lemma 5 shows that this traversal must be in a straight line. Lemma 6

shows that robot traversal forces the gadget to change state. Thus, our relocation gadget has the

same functionality as the C2T.

Theorem 8. The relocation problem is PSPACE-complete. Moreover, it remains PSPACE-complete

when polyominoes are all 1×1 squares with a single 2×2 square.

Proof. First, we observe that this problem is in PSPACE. To see this, consider a directed graph

G = (V,E) where each vertex is a configuration on the board B and each edge ei, j = (vi,v j) connects

two vertices if there exists one tilt that reconfigures vi to v j. Clearly, a nondeterministic search of

this graph will yield the answer in polynomial space, implying membership in NPSPACE. Since

NPSPACE = PSPACE, we get membership in PSPACE.

We now show PSPACE-hardness by a reduction from the C2T puzzle solvability problem

from [12]. Given an instance of a C2T puzzle, use the tools described above to create a tilt model

configuration as follows: For each C2T gadget in the puzzle, create a relocation gadget such that the

initial state of the relocation gadget matches the initial state of the C2T gadget. For each straight

wire in the puzzle, create a 2-tile wide tunnel in the tilt configuration. For each 3/4-way wire

intersection in the puzzle, create a 3/4-way tunnel intersection in the tilt configuration. For the goal

location of the puzzle, create a 2×2 goal chamber in the the tilt configuration.
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Lemmas 3 and 4 show that there exists a way for the robot polyomino to traverse our

relocation gadget. This, along with the fact there clearly exists a move sequence to traverse each

wire tunnel/intersection, shows that if the given C2T puzzle instance has a solution, then there exists

a tilt sequence which relocates the robot polyomino to the goal chamber. Thus, a solution for the

puzzle solvability problem implies a solution to the relocation problem.

Now, consider the case where the given C2T instance is not solvable. Since Lemma 7 shows

that an individual relocation gadget has the same functionality as an individual C2T gadget, the only

way that our relocation problem could be solvable is if the functionality of our relocation gadget

changed when placed in a system of gadgets. The only way one relocation gadget could possibly

influence another is if a state tile could leave one gadget and enter another. After generating the

brute-force forest with a modified algorithm 1 (flagging any configurations in which the state tile

exits the reconfiguration gadget) we search the forest and verify that no such configurations exist.

Thus, no solution for the C2T puzzle solvability problem implies no solution for the relocation

problem. By Theorem 7, we see that the relocation problem is PSPACE-complete.

Corollary 3. The occupancy problem is PSPACE-complete. Moreover, it remains PSPACE-complete

when polyominoes are all 1×1 squares with a single 2×2 square.

Proof. This follows from the same construction that was used in Theorem 8. Since we know that

no state tile can ever leave a relocation gadget, the only polyomino which could occupy the goal

location is the robot polyomino. Thus, the same implications hold for the C2T puzzle solvability

problem and the occupancy problem.

4.6.4 Reconfiguration

In [9], it was shown that computing a shortest sequence of tilts required to transform one

configuration into another is PSPACE-complete. In this section, we show that even the problem

of determining if a reconfiguration sequence exists between two given configurations is PSPACE-

complete.
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Reconfiguration Gadget Model Preliminaries For the reconfiguration problem we must

provide a unique final configuration, as opposed to just a final location of a single polyomino. The

previous gadget is insufficient for this problem as there is generally not a unique final configuration

for all successful traversals, and it would not be polynomial time computable even in the cases that

it were. The issue is that we would not know the state of each of the gadgets, and thus not know the

locations of the state tiles throughout the system. We address this issue by extending the relocation

gadget to allow for a final tilt sequence that moves all state tiles of all gadgets (regardless of the

state) into one unique position in each gadget, thereby providing a polynomial time computable

target configuration for the reduction.

Reconfiguration Gadget The reconfiguration gadget is a relocation gadget with additional

geometry. Each state tile has additional pathways that lead to an inescapable chamber on the

perimeter of the gadget. The robot polyomino otherwise uses the same paths as in the relocation

gadget.

Reconfiguration Ring Each reconfiguration gadget has a reconfiguration ring located on

its perimeter reachable by the state tiles only. These hallways help solve the reconfiguration problem

as they convert all gadgets to one global unique configuration. To insert all state tiles to this ring, we

can move the state tile through the new geometry (depicted in Figure 4.17a) into the reconfiguration

ring, and render all gadgets inoperable.

Restarting Positions We define restarting positions (depicted by the solid state tiles in

Figure 4.17a) as the locations where we initialize all state tiles of the same state. Applying a global

motion signal will ensure that all state tiles (in the same state) will be in the same position at all

times.

Intermediate Wire An intermediate wire (Figure 4.15c) is a small chamber gadget placed

on wires between every pair of reconfiguration gadgets to ensure the state tiles will not enter the

reconfiguration ring. The intermediate gadget gives the robot enough room to make tilts in all

directions. After every reconfiguration gadget traversal, the robot can move freely in the intermediate
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(a) Reconfiguration Gadget Sections (b) Reconfiguration Gadget Positions

Figure 4.16: (a) Sections 1 are the entrance chambers, sections 2 are the pre-reconfiguration tunnels,
section 3 is the reconfiguration tunnel, section 4 is the relocation gadget. The solid lines depict the
pathways the state tile and robot polyomino are free to move through, and the dotted lines depict the
pathways which are only accessible through cooperation between the state tile and robot polyomino.

wire and reposition the state tiles to their restarting positions.

Reconfiguration is PSPACE-complete Using the same proof by computer described

above, we show that in a system of reconfiguration gadgets the state tiles can be placed in their

restarting positions by using the intermediate wire. We do this to avoid accidentally placing a state

tile in the reconfiguration ring, caused by performing tilt sequences that move the robot around the

system. We show that by placing intermediate wires before every reconfiguration gadget, we can

traverse through one gadget to the next and place the state tiles back in their restarting positions.

Therefore, everytime the robot enters a gadget the state tiles will be in one of the two restarting

positions we depict in Figure 4.16b. When the robot has been relocated to its appropiate location,

we can then proceed to move all state tiles to their reconfiguration ring. This converts all of the

gadgets into one configuration.

Lemma 8. For every system of gadgets there exists a sequence of tilts that allows the robot to

traverse the gadget system without moving the state tile into the reconfiguration ring.
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(a) Reconfiguration state tile paths.

Figure 4.17: When the robot has reached its goal location, all the state tiles will be in one of the two
state paths (red or light green). The user could then maneuver all state tiles through the paths (dark
green and blue) and place them inside the reconfiguration ring. Doing so will convert all gadgets to
a global configuration.

Proof. There exists a set of tilt sequences that allow the robot polyomino to traverse the gadget

while preserving the state tile restarting positions defined above. Thus, depending on the direction

traveled, every state tile will be in a specific location depending on the gadget’s state as the

polyomino is exiting the gadget, or trivially be one tilt away. This is true not only for the gadget

being traversed, but also for every gadget in the system. This ensures that while traversing through

the hallways no state tiles are forced into a reconfiguration ring. From the top-right and bottom-left

state tile restarting positions, a total of 13 tilts are required to permanently trap the state tile in the

reconfiguration ring, and tilts must be performed in a clockwise order to progress the tile through the

reconfiguration hallway. The maximum number of hallways to connect two gadgets or a gadget to

an intersection is five. Thus, at most five tilts are needed in a hallway traversal. This means no state

tile can enter the reconfiguration ring while only traversing hallways. The intersections are designed

to use counter-clockwise tilts in choosing a direction, and therefore does not allow progression

through the chamber. Finally, since the entrance to every gadget is preceeded by an intermediate

wire, we can perform tilts in these wires to reposition the state tiles to their optimal positions. In the
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worst case scenario all state tiles are located in their gadget’s reconfiguration hallway, however, we

have shown that even from this scenario there is a tilt sequence that will reposition all state tiles into

their optimal starting positions.

Theorem 9. The reconfiguration problem is PSPACE-complete. Moreover, it remains PSPACE-

complete when polyominoes are all 1×1 squares with a single 2×2 square.

Proof. Since the reconfiguration gadget shares the same structure and properties as the relocation

gadget, it also behaves as a C2T gadget. We use an exhaustive computer simulation, as in the

proof of the relocation gadget, to ensure the gadget works as described. Lemma 8 shows that

solving the relocation problem is feasible using just reconfiguration gadgets. Therefore, after

solving the relocation problem using reconfiguraton gadgets, we can move all state tiles into their

reconfiguration ring. Doing so will move all state tiles into a specific location within each gadget

that is specified as part of our final configuration D, which also has the required location of the

robot.

4.7 Future Work

There are a number of open questions and directions for future work that stem from our

results. In the area of complexity, we have shown that relocation, occupancy, and reconfiguration

problems are PSPACE-complete if both 1× 1 tiles and a single 2× 2 block are considered.The

complexity of this problem is only known to be NP-hard if restricted to 1×1 movable blocks [8].

In [8] the authors showed that 1×1 blocks have substantial limitations such as the impossibility

of implementing a certain type of fanout gate. This might be evidence that this variant is not

PSPACE-complete. However, the existence of necessarily exponentially long tilt sequences for

reconfiguration shown in [8] provides some evidence that the problem does not lie within the class

NP. An alternate set of questions involve the trade off between of number of larger than 1×1 tiles

and the board complexity. Does the problem remain PSPACE-complete when both are restricted, or

does the problem become simpler, perhaps allowing for a polynomial time solution?

Another direction of future work is to explore strong universal configurations for classes
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beyond the “drop” class. One plausible extension might entail building drop shapes as a subroutine

and combining them together in a hierarchical “staged assembly” fashion. Another could be to

employ a “sand sifter” along with this staged assembly as a part of the pattern builder. Related

to this is the consideration of speeding up the assembly process by attempting to build distinct

portions of a target shape in parallel. This approach has been recently explored [20], but has not

been considered in the context of building universal configurations.

One interesting direction for future work involves relaxing the constraint in which polyomi-

nos slide maximally until stopped. Instead, polyominos could slide a fixed amount per tilt, or travel

at some particular speed. This strengthens the model significantly, but is motivated by a number

of practical proposed implementations. What interesting added capabilities does this modification

allow, and how do complexity questions change for this model?
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CHAPTER V

HIERARCHICAL SHAPE CONSTRUCTION AND COMPLEXITY FOR SLIDABLE

POLYOMINOES UNDER UNIFORM EXTERNAL FORCES

Collaborators: Jose Balanza-Martinez, David Caballero, Angel A. Cantu, Mauricio Flores,

Timothy Gomez, Rene Reyes, Robert Schweller, and Tim Wylie My contribution: I was responsible

for Lemma 9, Lemma 10, and Theorem 10: the algorithm for determining a polyomino’s membership

in our hierarchy. The text was written by all. This chapter was published as: Jose Balanza-

Martinez, David Caballero, Angel A. Cantu, Mauricio Flores, Timothy Gomez, Austin Luchsinger,

Rene Reyes, Robert Schweller, and Tim Wylie, “Self-Assembly of Any Shape with Constant Tile

Types using High Temperature,” In Proceedings of the 31st ACM-SIAM Symposium on Discrete

Algorithms, 2020.

5.1 Abstract

Advances in technology have given us the ability to create and manipulate robots for

numerous applications at the molecular scale. At this size, fabrication tool limitations motivate

the use of simple robots. The individual control of these simple objects can be infeasible. We

investigate a model of robot motion planning, based on global external signals, known as the tilt

model. Given a board and initial placement of polyominoes, the board may be tilted in any of the 4

cardinal directions, causing all slidable polyominoes to move maximally in the specified direction

until blocked.

We propose a new hierarchy of shapes and design a single configuration that is strongly

universal for any w×h bounded shape within this hierarchy (it can be reconfigured to construct

any w×h bounded shape in the hierarchy). This class of shapes constitutes the most general set

97



of buildable shapes in the literature, with most previous work consisting of just the first-level of

our hierarchy. We accompany this result with a O(n4 logn)-time algorithm for deciding if a given

hole-free shape is a member of the hierarchy. For our second result, we resolve a long-standing

open problem within the field: We show that deciding if a given position may be covered by a tile

for a given initial board configuration is PSPACE-complete, even when all movable pieces are 1×1

tiles with no glues. We achieve this result by a reduction from Non-deterministic Constraint Logic

for a one-player unbounded game.

5.2 Introduction

Advances in technology have given us the ability to create and manipulate robots for

numerous applications at the molecular scale. At this size, fabrication tool limitations often make

precise construction of the objects infeasible and thus self-assembly methods have been employed.

This allows the creation of simple primitives that come together algorithmically to form the desired

objects [11]. Similarly, the individual control of these simple nano-scale objects can be infeasible

due to the cost or the desired simplicity of the building blocks. Thus, a growing area of interest is

robot motion planning based on global external signals, known as the tilt model [4, 5]. This simple

model gives all robots the same movement signal, which means all robots can be identical, and only

their location and the geometry of the board need to be considered for fabrication.

The tilt self-assembly model consists of a 2D grid board with “open” and “blocked” spaces,

as well as a set of slidable polyominoes placed on the board. The model uses a global external

force to give all movable particles the same movement instruction. This may be done through any

external force such as a magnetic field or gravity. This model has a history of assuming gravity as

the external global force, hence the term tilt. In this model, a board may be tilted (an application of

the global external force) in any of the four cardinal directions, causing all slidable polyominoes to

slide maximally in the respective direction until reaching an obstacle. Various puzzle games exist

which utilize the mechanics of this model; the maximal movement of [1] and the global movement

signals in [2].
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Shape Class Result Theorem
Hole-free Level-1 Drop Shapes (D1) O(n logn) Thm. 5 in [8]

Level-1 Drop Shapes (D1) O(n2h!) Alg. 1 in [10]
Straight 2-Cuttable Hole-free Shape O(n3 logn) Thm. 2 in [12]

Straight 2-Cuttable Shape with Convex Holes O(n4 logn) Thm. 2 in [12]
Hole-free Drop Shapes (D) O(n4 logn) Thm. 10

Table 5.1: Known results for deciding membership in the drop-shape hierarchy of a size-n shape
(We refer to size as the number of tiles.). h denotes the number of holes in the shape. Previous
results only decided shapes in D1. With holes, no polynomial time algorithm is known even for D1.

Class Universal Tilts Board Size Theorem

Drop Shapes (D1)
No O(hw) O(h3w3) Thm. 6 in [8]
Yes O(h2w) O(h2w) Thm. 4.1 in [3]

Drop Shape Hierarchy (D)
No O(hw) O(h2w2) Thm. 3 in [12]
Yes O(h3w2) O(h2w2 log2(hw)) Thm. 13

Table 5.2: Construction results for shapes with a h×w bounding box.

5.2.1 Related Work.

In [8], the authors introduced a class of shapes constructed by “dropping” pixels on a fixed

seed from any of the four cardinal directions. Along with this new class of “drop-shapes”, they

presented a polynomial-time algorithm to check if a given hole-free shape is in this drop class (i.e.,

it can be constructed via this pixel dropping method). Given a hole-free shape, they showed how

to construct a tilt model micro-factory which can build the shape. In [10] the authors provide an

algorithm to determine if any given shape is in the class of drop shapes with the run time being

exponential in the number of holes.

The efficient construction of drop-shapes in the tilt model was explored in [12]. The authors

present a construction which efficiently builds a particular set of shapes in sublinear time through

the use of parallelization. They introduce a hierarchical process whereby multi-tile subassemblies

may be successively combined in a drop fashion. They define two classes of shapes 2-cuttable and

straight 2-cuttable as any polyomino that can be decomposed into monotone subpolyominoes using

valid 2-cuts and valid straight 2-cuts respectively. They also give a polynomial time algorithm for

determining if a given simple polyomino, or one with convex shaped holes, is straight 2-cuttable.
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Problem Polyominoes Result Theorem

Occupancy/Relocation
1×1 NP-hard Thm. 1 in [4]

1×1, 2×2 PSPACE-Complete Thm. 5.1 in [3]
1×1 PSPACE-Complete Thms. 14, 4

Reconfiguration Minimization 1×1 PSPACE-Complete Thm. 4 in [6]

Reconfiguration
1×1, 2×2 PSPACE-Complete Thm. 6.1 in [3]

1×1 PSPACE-Complete Thm. 5

Table 5.3: Known complexity results in the full tilt model. All current results for occupancy also
imply hardness for relocation. Reconfiguration Minimization is finding the minimum length tilt
sequence. Each of the results that use a 2×2 polyomino only uses a single one and multiple 1×1s.

They also have a polyomial time algorithm for finding if a valid 2-cut exists in the same two types

of shapes. Given a shape in their buildable class, a tilt model configuration could be generated to

assemble that shape through a sequence of tilts.

This drop-shape construction work was extended in [3]. Rather than focusing on designing

configurations for specific drop-shapes, the authors create a general drop-shape constructor. They

introduced the concept of universal constructors in the tilt model. These are constructors which,

starting from one initial configuration, can construct any shape from a particular set. In this work, a

configuration that is universal for the set of drop-shapes was created.

These construction results are usually paired with complexity results to decide what can be

constructed. One of the most natural questions in the tilt model asks if a particular location on a

board may ever be occupied by a particle from the starting configuration. This problem, known as

the occupancy problem, was first introduced in [4]. The authors proved the problem was NP-hard,

even when considering the restricted case of a configuration with only 1×1 tiles. The authors also

showed that a dual-rail logic fanout was not possible with only 1×1 tiles, which seemed to serve as

evidence that this problem was not PSPACE-complete. Following, in [3] the authors proved that

the occupancy problem is PSPACE-complete if a single “large” polyomino is allowed (they used a

single 2×2 polyomino along with 1×1 tiles).
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5.2.2 Our Contributions.

In this paper, we formalize the notion of hierarchical construction (first started in [12]) by

presenting a hierarchy of shape classes. In Section 5.4, we formally define a drop-shape hierarchy.

We also present a O(n4 logn)-time algorithm for determining if a given hole-free shape is in this

hierarchy. To accompany this result, we present the design for a configuration that is strongly

universal for any shape within the hierarchy in Section 5.5. This result constitutes the most general

set of buildable shapes in the literature, with previous work consisting of just the first level of our

hierarchy. The second main result of this paper is in Section 5.6, where we resolve an open problem

from [4] by showing that the occupancy problem, contrary to expectation, is PSPACE-complete

even when restricting all polyominoes to be 1×1 tiles.

5.3 Model Preliminaries

Board. A board (or workspace) is a rectangular region of the 2D square lattice in which

specific locations are marked as blocked. Formally, an m× n board is a partition B = (O,W ) of

{(x,y)|x ∈ {1,2, . . . ,m},y ∈ {1,2, . . . ,n}} where O denotes a set of open locations, and W denotes

a set of blocked locations- referred to as “concrete” or “walls.” We classify the different possible

board geometries according to the following hierarchy:

• Connected:1 A board is said to have connected geometry if the set of open spaces O for a

board is a connected shape.

• Simple:2 A connected board is said to be simple if O has genus-0.

• Monotone: A simple board is monotone if O is either horizontally monotone or vertically

monotone.

• Convex: A monotone board is convex if O is both horizontally monotone and vertically

monotone.
1In [3], this hierarchy level was known as complex. We modify this class to allow for a proper hierarchy of shape

classes.
2In [3], they define simple geometry based on the connectivity of W . We also modify the concept for hierarchical

purposes.
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• Rectangular: A convex board is rectangular if O is a rectangle.

Our board definitions have changed since [3] in order to create the hierarchy shown above.

Tiles. A tile is a labeled unit square centered on a non-blocked point on a given board.

Formally, a tile is an ordered pair (c,a) where c is a coordinate on the board, and a is an attachment

label. Attachment labels specify which types of tiles will stick together when adjacent, and which

have no affinity. For a given alphabet of labels Σ, and some affinity function G : Σ×Σ→ {0,1}

which specifies which pairs of labels attract (G(a,b) = 1) and which do not (G(a,b) = 0), we say

two adjacent tiles with labels a and b are bonded if G(a,b) = G(b,a) = 1.

Slidable Polyominoes. A slidable polyomino is a finite set of tiles P = {t1, . . . tk} that is 1)

connected with respect to the coordinates of the tiles in the slidable polyomino and 2) bonded in

that the graph of tiles in P with edges connecting bonded tiles is connected. When the context is

clear, we often refer to these simply as polyominoes. A slidable polyomino that consists of a single

tile is informally referred to as a “tile".

Configurations. A configuration is an arrangement of polyominoes on a board such that

there are no overlaps among polyominoes, or with blocked board spaces. Formally, a configuration

C = (B,P = {P1 . . .Pk}) consists of a board B, along with a set of non-overlapping polyominoes P

that each do not overlap with the blocked locations of board B.

Step. A step is a way to turn one configuration into another by way of a global signal

that moves all polyominoes in a configuration one unit in a direction d ∈ {N,E,S,W} when

possible without causing an overlap with a blocked location, or another polyomino. Formally, for

a configuration C = (B,P), consider the translation of all polyominoes in P by 1 unit in direction

d. If no overlap with blocked board spaces occurs, then the new configuration is derived by first

performing this translation, and then merging each pair of polyominoes that each contain one tile

from a now (adjacently) bonded pair of tiles. If an overlap does occur, for each polyomino for

which the translation causes an overlap with a blocked space, temporarily add these polyominoes

to the set of blocked spaces and repeat. Once the translation induces no overlap with blocked
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spaces, execute the translation and merge polyominoes based on newly bonded tiles to arrive at

the new configuration. If all polyominoes are marked as blocked spaces, then the step transition

does not change the initial configuration. If a configuration does not change under a step transition

for direction d, we say the configuration is d-terminal. In the special case that a step causes a

polyomino (or subpolyomino) to leave the board, we remove the polyomino from the configuration.

(a) Start (b) South (c) West (d) North (e) West (f) South (g) West (h) South

Figure 5.1: Tilt Example

Tilt. A tilt in direction d ∈ {N,E,S,W} for a configuration is executed by repeatedly

applying a step in direction d ∈ {N,E,S,W} until a d-terminal configuration is reached. We say

that a configuration C can be reconfigured in one move into configuration C′ (denoted C→1 C′) if

applying one tilt in some direction d to C results in C′. We define the relation→∗ to be the transitive

closure of→1. Therefore, C→∗ C′ means that C can be reconfigured into C′ through a sequence of

tilts.

Tilt Sequence. A tilt sequence is a series of tilts which can be inferred from a series of

directions D = 〈d1,d2, . . . ,dk〉; each di ∈ D implies a tilt in that direction. For simplicity, when

discussing a tilt sequence, we just refer to the series of directions from which that sequence was

derived. Given a starting configuration, a tilt sequence corresponds to a sequence of configurations

based on the tilt transformation. An example tilt sequence 〈S,W,N,W,S,W,S〉 and the corresponding

sequence of configurations can be seen in Figure 5.1.

Universal Configuration. A configuration C′ is universal to a set of configurations C =

{C1,C2, . . . ,Ck} if and only if C′→∗ Ci ∀ Ci ∈ C .

Configuration Representation. A configuration may be interpreted as having constructed

a “shape” in a natural way. Define a shape to be a connected subset S ⊂ Z2. A configuration

strongly represents S if the configuration consists of a single polyomino whose tile coordinates are
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exactly the points of some translation of S. A weaker version allows for some “helper” polyominoes

to exist in the configuration and not count towards the represented shape. In this case, we say a

configuration weakly represents S.

Universal Shape Builder. Given this representation, we say a configuration C′ is universal

for a set of shapes U if and only if there exists a set of distinct configurations C such that 1)

each u ∈U is represented by some C ∈ C and 2) C′ is universal for C . If each u ∈U is strongly

represented by some C ∈ C , we say C′ is strongly universal for U . Alternately, if each u ∈U

is weakly represented by some C ∈ C , we say C′ is weakly universal for U . In a similar way, a

configuration can be universal for a set of patterns.

5.4 Drop-Shape Hierarchy

We utilize the same definitions for polyominoes and cuts as used in [12].

Polyomino. For a set P⊂ Z2 of grid points in the plane, let the graph GP be the induced

grid graph in which two vertices p1, p2 ∈ P are connected if they are unit distance apart. For any set

P with connected grid graph GP, a polyomino may be induced by replacing each point p ∈ P with a

unit square centered at p. A polyomino is said to be hole-free or simple if the induced graph Z2 \P

is connected. We say that polyominoes which are equal up to translation have the same shape. We

often use these terms interchangeably.

(a) Valid 2-cut (b) Invalid 2-cut (c) Valid 3-cut (d) Invalid 3-cut

Figure 5.2: Examples of valid and invalid cuts for a given polyomino. It is important to note that
along with direct collision, we consider a cut to be invalid if the resulting polyominoes must slide
past adjacent squares.

Cuts. A cut is an orthogonal curve moving between points of Z2. A p-cut is a cut that

splits a polyomino P into p subpolyominoes. We say that a cut is valid if all of the induced
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subpolyominoes may be partitioned into two nonempty groups which may be pulled apart in

opposite directions without blocking each other. A polyomino A is blocked by another polyomino

B in direction d if A cannot be pulled in direction d without colliding with B (note that A sliding

adjacent to tiles in B is also considered as a collision). See Figure 5.2 for examples of valid and

invalid cuts.

Tangled Polyomino. A tangled polyomino is one which does not have a valid 2-cut. That

is, any cut either splits the polyomino into two subpolyominoes which cannot be pulled apart

(invalid), or it splits the polyomino into more than two subpolyominoes (p-cut where p > 2).

Figure 5.3a provides an example of a tangled polyomino.

(a)

x

c

ScSb

Sa

(b)

Figure 5.3: (a) A tangled polyomino for which no 2-cut exists. (b) An abstract representation of
tangled polyomino S from Lemma 10 which depicts the required properties as stated in the proof.

Drop Construction Step. A drop construction step is described by a direction {N,E,S,W}

and a latitude or longitude l representing the column/row that a shape is placed. The shape arrives

from (l,∞) for north, (l,−∞) for south, (∞, l) for east, and (−∞, l) for west. The shape moves

along the row/column until it reaches the first grid position adjacent to to an existing tile. We will

refer to this as “dropping” a tile or shape.

Drop-Shape Hierarchy. Here we define the hierarchy of drop-shapes (denoted D). We

use notation Dh to denote level-h of the drop-shape hierarchy. Beginning with level-1, the levels of

our hierarchy are defined recursively, containing the specified elements and nothing else:

• Level-0 (D0). The single tile.

• Level-1 (D1). The set of shapes in D1 is defined recursively:
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– (Base) D0 ⊂D1

– (Drop Combinations) For any A ∈D1, any polyomino C that is produced by dropping a

single tile onto A is also in D1.

• Level-h (Dh). In general, the set of shapes in Dh is defined recursively:

– (Base) Dh−1 ⊂Dh

– (Drop Combinations) For any A ∈Dh−1 and B ∈Dh, any polyomino C that is produced

by dropping A onto B is also in Dh.

• Strict Level-h (D̂h): The set of shapes that are in Dh, but not in Dh−1. Formally, D̂h = Dh \

Dh−1.

• The Hierarchy (D): The hierarchy is defined as the union of all levels. Formally, D=
⋃

∞
i=0Di

Since tangled polyominoes cannot be decomposed, no tangled polyomino is in the hierarchy.

Decomposition Tree. A decomposition tree for a given polyomino P is a rooted binary tree

of polyominoes with root node being P, each leaf being either a single tile or a tangled polyomino,

and all non-leaf nodes having two children consisting of two polyominoes that make a valid 2-cut

for the polyomino at the given node. A decomposition tree is said to be atomic if all leaves are

single tiles.

Strict Decomposition Tree. A decompostion tree is said to be a Strict Decomposition

Tree if for every node p,either p ∈D0, or for some h > 0, p ∈ D̂h and has children pi ∈Dh and

p j ∈Dh−1.

Singly-Connected Tile. A tile t in polyomino P is said to be singly-connected w.r.t. P if

and only if it is connected to P− t on only one of its four edges.

5.4.1 Membership in the Drop-Shape Hierarchy.

A key contribution of this paper is a board configuration that is universal for all shapes in the

drop-shape hierarchy of up to a given size n. This leads to the natural question of how efficiently can

we decide if a given polyomino is a member of the drop-shape hierarchy D. D is equivalent to the
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set of 2-cuttable shapes defined in [12]. There, the authors present an algorithm for determining if a

shape is in the set of straight 2-cuttable shapes, which is known to be a subset of D. It is currently

unknown if the set of straight 2-cuttable shapes is equivalent to D. In this section we develop

an efficient algorithm for deciding membership in D for the case of genus-0 polyominoes. We

first formally define the drop-shape hierarchy membership problem. We then prove two technical

lemmas (Lemmas 9, 10) that will be used to establish the correctness of an efficient algorithm for

deciding membership, provided in Theorem 10.

Drop-Shape Hierarchy Membership Problem. The drop-shape hierarchy membership

problem asks: Given a polyomino P, is P ∈D?

Lemma 9. Given a hole-free polyomino P, P∈D if and only if there exists an atomic decomposition

tree for P.

Proof. This proof builds off of Theorem 2 from [7], where they show that decomposition is the

reverse of construction. Clearly, P is in the drop-shape hierarchy if such a decomposition tree

exists, as the reverse drop construction step sequence can be performed to yield P. If no such

decomposition tree exists, this means that all decomposition trees contain at least one leaf which is

a tangled polyomino. Since a tangled polyomino cannot be in the hierarchy (as there are no valid

2-cuts), there must always exist a drop construction step which uses a polyomino that is not in the

hierarchy.

Lemma 10. If there exists a decomposition tree for hole-free polyomino P which has a tangled

polyomino S as a leaf, S must be a leaf in every decomposition tree of P.

Proof. Given that there exists a decomposition tree TA which has tangled shape S as a leaf, assume

that some other decomposition tree TB exists which does not have S as a leaf. This implies that TB

uses some decomposition sequence which involves a polyomino P′ such that S⊂ P′ ⊆ P and there

exists a 2-cut for P′ which also goes through subpolyomino S.

Let c be a valid 2-cut for P′ which also cuts through S. Since we know that S by itself is

tangled, one of the following must be true: 1) c was an invalid 2-cut through S which is now valid
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because of the additional tiles introduced by P′−S. 2) c was a valid p-cut (with p > 2) through S

which has now become a valid 2-cut because of the additional tiles introduced by P′−S. Since the

addition of more tiles can never unblock a cut, we see that the first case cannot be true. The second

case is not so straightforward, and requires more investigation.

First, consider the stand-alone polyomino S. We know c was a valid p-cut through S (with

p > 2) which has now become a valid 2-cut through P′. For now, let it suffice to assume that c was a

valid 3-cut through S. We will generalize to p later. This means that c cuts S into 3 subpolyominoes

{Sa,Sb,Sc} that can be partitioned into two sets which may be pulled apart in opposite directions

without blocking each other. W.l.o.g., let that partition be {{Sa},{Sb,Sc}}. Figure 5.3b shows a

sketch that highlights the essential properties S must have. Since c is a 3-cut through S, we know

that there must exist a path of empty spaces which separates Sb from Sc and begins at an empty

space x along c which is adjacent to Sa. Furthermore, we know that subpolyominoes Sb and Sc must

both block each other in the direction that {Sb,Sc} is pulled apart from {Sa}; otherwise, a valid

2-cut would have existed in S (by pulling Sb or Sc off of S by itself).

Now, consider the polyomino P′ with subpolyomino S. If location x contained a tile in

polyomino P′, we know that said tile would be blocked in each of the four directions by one of

S’s three subpolyominoes (there would be no way to remove the tile without also removing some

portion of S). This, along with the fact that S is a node in the decomposition tree Ta, shows that

location x must be empty in polyomino P′. In order for c to be a 3-cut through S and a 2-cut through

P′, the induced subpolyominoes Sb and Sc must be connected via a path of tiles in P′−S. Clearly,

this path cannot exist on Sa’s side of c, as it would make c an invalid 2-cut for P′. So, this path

must connect Sb and Sc on their side of c. Since location x cannot contain a tile in P′ we see that the

connection between Sb and Sc must cut off x’s connection to the outside plane. This cannot be the

case, however, because P′ is a hole-free polyomino.

So, c could not have simultaneously been a valid valid 2-cut through P′ and valid 3-cut

through S. It is easy to observe that any valid p-cut through S (which is also a valid 2-cut through

P′) must have at least one pair of induced polyominoes with the same properties as Sb and Sc, and
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all others may be considered as Sa for the purposes of this proof. Thus, no valid 2-cut through

P′ may cut through S. This implies that decomposition tree TB must not exist, as was originally

assumed, and every decomposition tree must contain S as a leaf.

Theorem 10. A hole-free size-n polyomino P can be checked for membership in the drop-shape

hierarchy in O(n4 logn) time.

Proof. This algorithm is straightforward. Given hole-free polyomino P, perform the following

steps:

1. Base Case: If P is a single tile, return yes. If P is tangled, return no. Otherwise, continue to

step 2.

2. Select a valid 2-cut which cuts P into subpolyominoes A and B. Continue to step 3.

3. Recurse on A and B by performing to step 1 for each of them. If both return yes, return yes;

otherwise, return no.

We see that this algorithm creates a decomposition tree for polyomino P. The proof of correctness

follows from the previous lemmas. If all leaves in the decomposition tree are single tiles, Lemma 9

tells us that P is in the hierarchy. If the decomposition tree contains a leaf which is a tangled

polyomino, Lemmas 9 and 10 together show that P is not in the hierarchy.

The runtime is achieved as follows: Since a decomposition tree for a size-n hole-free

polyomino P has at most n leaves, we know the tree has at most 2n−1 nodes. Therefore, we can say

that our algorithm is called at most 2n−1 times. Step 1 of the algorithm checks if the polyomino

is tangled (i.e., it checks if P has a valid 2-cut). Theorem 5 from [12] shows that a valid 2-cut

can be found for a hole-free size-n polyomino in O(n3 logn) time. So, our algorithm is called at

most 2n−1 times, with each call spending at most O(n3 logn) time to find a valid 2-cut. Thus, we

achieve a runtime of O(n4 logn) to determine if P is in the drop-shape hierarchy.

109



5.4.2 Hierarchy Characteristics.

In this section we derive some key properties of the drop-shape hierarchy. In particular,

in Theorem 11 we show that any member of the hierarchy of size-n must be a member of level

Dblog |P|c. This result allows us to efficiently bound the size of the board needed to assembly size-n

polyominoes in Section 5.5. Next, in Theorem 12 we establish that the drop-shape hierarchy is a

true hierarchy, i.e. that each level h of the hierarchy contains shapes that are not members of any

level lower than h.

Lemma 11. For any polyomino P ∈ D̂H there exists a Strict decomposition Tree, for any H ≥ 0.

Proof. We will prove this by induction on the size of the shape. For our base case we know any

single tile has a strict decomposition tree.

Now for our inductive step assume that there exists a strict decomposition tree for any

polyomino p where 1 ≤ |p| ≤ n for some n. Consider a polyomino P ∈ D̂H where |P|= (n+1).

We know that since P ∈ D̂H there exists two polyominoes Pa ∈DH and Pb ∈DH−1 that can be

dropped onto each other to build P. We know that since both Pa and Pb are subpolyominoes of

P, n ≥ |Pa| and n ≥ |Pb|. From our inductive step we can assume that both Pa and Pb have strict

decomposition trees and the only new node we add is P which has the properties required by a strict

decomposition tree.

From here we see that every polyomino in a strict level H ≥ 0 has a strict decomposition

tree.

Lemma 12. For any polyomino P ∈ D̂H such that H > 0, any strict decomposition tree of P must

have a node P′ with two children Pl and Pr such that P′ ∈ D̂H and both Pl ∈ D̂H−1 and Pr ∈ D̂H−1.

Proof. First we will prove there must exist a node P′ with two children Pl and Pr such that P′ ∈ D̂H

and both Pl ∈DH−1 and Pr ∈DH−1, then we will show why they both must be strict.

Let us first look at the root P. If both children of P are in DH−1 than P is the node we are

describing. Now consider the case where p is a child of P and p /∈DH−1. Since we are looking

at a strict decomposition tree we know that p ∈ D̂H . Since the tree rooted at p is also a strict
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decomposition tree we have the same two cases. However since a strict tree is also an atomic tree

all the leaves of the tree must be single tiles so eventually the first case must be true.

Now we will show Pl /∈DH−2 and Pr /∈DH−2. Without loss of generality assume Pl ∈DH−2,

this would mean that P′ can be built by dropping a shape in DH−2 onto a shape in DH−1 which by

definition would mean P′ ∈DH−1 which we know is not true since P′ ∈ D̂H .

Since Pl ∈DH−1 and Pr ∈DH−1, and Pl /∈DH−2 and Pr /∈DH−2 we can see that Pl ∈ D̂H−1

and Pr ∈ D̂H−1. Therefore there must exist a node P′ ∈ D̂H with both children in D̂H−1.

Lemma 13. For any polyomino P ∈ D̂H , |P| ≥ 2H

Proof. We prove this by induction on H. For the base case we can see that the only strict level-0

shape is the single tile. We can see that 1≥ 20 is true.

For the inductive step assume for any p ∈ D̂H , |p| ≥ 2H . Consider a polyomino P ∈ D̂H+1.

We know from lemma 11 there must exist a strict decomposition tree and from lemma 12 that there

must exist a node in a strict decomposition tree P′ that has two children Pl,Pr ∈ D̂H . We can also

see that since Pl and Pr are children of P′,

|P′|= |Pr|+ |Pl|

From our assumption since both Pl,Pr ∈ D̂H , |Pr| ≥ 2H and |Pl| ≥ 2H

|P′| ≥ 2H +2H

|P′| ≥ 2H+1

Finally, since P′ is a subpolyomino of P, |P| ≥ |P′|.

|P| ≥ 2H+1
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Theorem 11. For any polyomino P ∈D, P ∈Dblog |P|c

Proof. We can see from lemma 13 for any P ∈ D̂h, log |P| ≥ h. We also know that for any

H ≥ h,P ∈DH . Let H = blog |P|c, we can see that P ∈Dblog |P|c.

Lemma 14. For all positive integers h, given a hole-free polyomino P ∈ Dh, for any singly-

connected, non-blocked tile t ∈ P, P− t ∈Dh.

Proof. We will prove this is true by induction on h. Lemma 3 of [8] showed that given a hole free

polyomino P1 ∈D1, for any tile t1 ∈ P1 that is non-cut (P1− t1 is connected), non-blocked, and

convex (there exists a 2× 2 square that solely contains t1), P1− t1 ∈D1. For simplicity we will

refer to a singly-connected, non-blocked tile as a candidate tile. A candidate tile is convex and

non-cut. In general, we will say that C(Dh) is true if and only if for all polyominoes Ph ∈Dh, for

any candidate tile t ∈ Ph, P− t ∈Dh.

The base case C(D1) was shown to be true by Becker et al. in [8]. Assume C(Dh) holds.

We will prove by contrapositive that C(Dh) =⇒ C(Dh+1).

Assume¬C(Dh+1). Consider a polyomino P∈Dh+1, a candidate tile t ∈P, and a polyomino

P−t =P′ /∈Dh+1. Let T be a strict decomposition tree of P. The first cut in T is not solely removing

t, since that would result in P′ /∈Dh+1 (violating the strict decomposition tree), so we will also

consider T ′, a decomposition tree for P′ that initially makes the same cuts as T . Since T is a strict

decomposition tree, for the children of its root, pl and pr, one is in Dh+1 and the other is in Dh.

W.L.O.G., let t exist in the child node pl . Now, consider the nodes derived from making equivalent

cuts in T ′, p′l and p′r. Since t only existed in pl , pr = p′r. There are two cases. First, if pl ∈Dh. We

know p′l /∈Dh because p′r = pr and pr ∈Dh+1, but P′ /∈Dh+1. This means that pl ∈Dh and t ∈ pl

was a candidate tile, and pl− t = p′l /∈Dh, and therefore ¬C(Dh). The second case is pl /∈Dh, but

since it is a strict decomposition tree it must then be in D̂h+1. If this is the case, then consider pl

as the root polyomino. Repeat the same process to pl and p′l that we did to P and P′. Since all

leaves in a strict decomposition tree are single tiles, we eventually arrive at a child node p in Dh,

where t ∈ p is a candidate tile, and a p− t = p′ /∈Dh. Therefore, ¬C(Dh+1) =⇒ ¬C(Dh), and by

contrapositive: C(Dh) =⇒ C(Dh+1).
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Theorem 12. For all positive integers h, there exists a polyomino in D̂h.

Proof. Polyominoes in D̂1 have previously been labeled as drop shapes. This is the set of shapes

that can be built by dropping only single tiles, excluding the singleton tile itself. A polyomino in

D̂2 can be seen in Figure 5.4b. We will call this polyomino P2. We can use a method we will refer

to as fractalization to generate a polyomino in D̂3 from P2. See Figure 5.4c.

To show existence of a polyomino for every strict level of the hierarchy, we will show how a

polyomino p ∈ D̂h that was generated through repeated fractalization to P2 can be used to create a

polyomino p′ ∈ D̂h+1. This method takes 2 copies of p, which we will label p1 and p2, and places

them horizontally adjacent to each other 2 unit spaces apart (without loss of generality, assume p1

is to the left of p2). Then, two tiles are added; one above the north-most right-most tile of p1 and

the other above the north-most left-most tile of p2. A string of single tiles is then wrapped around

both polyominoes such that there is 1 unit space between the border and the bounding boxes of the

inner polyominoes. This border polyomino connects the two tiles that were added from above. The

border polyomino blocks both p1 and p2 in all directions, creating polyomino p′, See Figure 5.4a.

We know that p′ ∈ Dh+1, as it can clearly be 2-cut across the border resulting in two

polyominoes in Dh that can be built by dropping single tiles onto p. This cut is shown in Figure

5.4. We must now show that p′ is not in Dh. If p′ was in Dh, there would exist a valid 2-cut in

which at least one of the resulting polyominoes derived from that cut was in Dh−1. This cut can not

occur solely across the border connecting the two polyominoes, as the two resulting polyominoes

derived from that cut are polyominoes that can be turned into p by repeatedly removing non-blocked,

singly-connected tiles. Therefore by Lemma 14, since p ∈ D̂h we can see that these polyominoes

can not be in Dg for g < h. It is also clear that this cut can not occur solely within p1 and/or p2, as

they are are now both blocked in all directions. It is also not possible for the cut to cross both the

border and p1 or p2. First observe that due to the way these polyominoes are connected, there will

never be 2×2 square fully occupied by tiles. Since there are also no holes, there is never a choice of

which path to take to get from one tile to another. This means there is a single path of connectivity

between any two tiles in p′, and therefore a single path of connectivity between any tile in p1 and
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any tile in p2. This path will always include the border that connects the two. If the cut occurs

within the border, then this path is removed, meaning there are now 2 disconnected polyominoes.

W.l.o.g., assume this cut also occurs within p1, splitting it into pl and pr. Since there is only one

path between any two tiles, there is now no path between pl and pr. There is also no path between

p2 and pl or pr. It follows that there are now 3 disconnected polyominoes as a result of this cut,

leaving this cut an n-cut, where n = 3. If the cut continued through p1 or into p2, n could increase,

but never decrease. This shows that the 2-cut in question does not exist, meaning p′ /∈Dh. Since

p′ ∈ Dh+1 and p′ /∈ Dh, p′ ∈ D̂h+1. This shows that the fractalization method can be repeated to

generate a polyomino in D̂h for all positive integers h. Figure 5.4 shows the fractalization method

being used to create a polyomino in D̂3 and a polyomino in D̂4.

p1

. . . . . .

. . .

. . .

. . . p2

(a) Generalization of the
fractalization method

(b) Polyomino in D̂2 (c) Polyomino in D̂3 (d) Polyomino in D̂4

Figure 5.4: Fractalization method used to reach higher strict levels of the hierarchy. The gray tiles
represent the single tile border created, while the red tiles represent the polyominoes in D̂h used.
The green dashed line represents the 2-cut that shows this shape is in Dh+1.

5.5 Drop-Shape Hierarchy Constructor

This section presents a construction that builds any shape in the drop-shape hierarchy. The

construction is a direct extension of [3]. In that work, a universal constructor was given for drop-

shapes (D1 of our hierarchy) which fit in a w×h bounding box. At a high-level, we can extend

the construction with larger chambers that are functionally identical to the D1 constructor, but are

scaled to allow the dropping of large polyominoes.

D1 Constructor. This construction (shown in Figure 5.5a) was introduced in [3] and is

capable of building any polyomino P ∈D1, provided P fits within a given w×h bounding box. The

high level idea for this constructor is that tiles can be extracted from the fuel chambers and dropped

onto any row or column of a shape in the center construction area. For the reader, we have included
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(a) D1 Constructor (b) Di Constructor Gadget

Figure 5.5: (a) The preexisting universal drop-shape constructor which builds any shape in D1.
(b) The Di constructor gadget which allows the dropping of large polyominoes, it also depicts the
sequence for selecting a direction to drop from. The paths from Di constructor gadget look the
same in the D1.

a descriptions of the tile selection, direction selection, and column selection process from [3] in

Figures 5.6 and 5.5b, as well as the tilt sequences for these commands in Table 5.4. This constructor

uses a modified tilt selection gadget which allows for the disposal of fuel tiles once the desired

polyomino has been built.

Di Constructor Gadget. This gadget (shown in Figure 5.5b) is an extension to the D1

constructor. Overall, this gadget is similar to the D1 constructor, but scaled to allow the dropping of

w×h polyominoes rather than single tiles. Because we are dropping two multi-tile polyominoes

together, we need to double the dropping area to account for any drop that might be blocked by

the adjacent wall in the dropping area. However, the dimensions of the polyomino built after the

drop cannot exceed the w×h bounding box. The same tilt sequences used in the D1 constructor are

used in this constructor. This allows for a large polyomino to be dropped onto another in the same

fashion as a tile is dropped in the other constructor. By attaching a series of these constructors onto

a D1 constructor, we can build polyominoes which are in higher levels of the hierarchy.

Bit String Tunnels. To connect the constructor chambers, we use bit string tunnels (Fig-

ure 5.8) which require a unique move sequence to move a polyomino from a constructor Di to a
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(a) D1 Column Selection (b) Di Column Selection (c) Di Tile Selection Gadget

Figure 5.6: (a) The column selection gadget for D1 shapes. Assuming the shape to build is at a
fixed location, this gadget allows any column to be selected to drop the new tile onto. The number
of columns to drop from in this gadget determines the size of the shape we can build. Thus, this
is for a drop shape within a 4×4 bounding box. This gadget is repeated on each of the four sides
of the drop-shape constructor (with a slightly modified one on the south side in order to allow
a non-conflicting move sequence.). (b) The column selection gadget for a 4× 4 Di constructor.
Notice that the tunnels are large enough to accommodate shapes that fit in a 4×4 bounding box,
and the attachment area is twice as big as the D1 version. This is to allow large polyominoes
to be dropped onto any row/column of another large polyomino. (c) The fuel selection gadget
for D1. Each tile is pulled out with the sequence 〈E,N,W,S,E,S〉, and stops at the first square.
Then the left tile type (blue) is either pulled out of the gadget or put back in the storage area.
This shows it being added back to the storage with 〈E,S,W,N,W,S〉. This sequence puts the next
tile type (red) in a decision location. The red tile is selected with the sequence 〈W,N,W,S,W,S〉.
Once the desired shape has been built, one can remove the remaining fuel tiles off the board with
〈E,N,W,S,E,S,W,S,E,S,W,S,E,W 〉. This sequence extracts both tile types off the storage area,
and then removes them off the board.

constructor Di+1. These tunnels require a sequence of up/down tilts, which can be thought of as 0 or

1 bits. It’s easy to see that a construction which builds level h shapes requires logh many up/down

selectors. At the end of every bit string tunnel there is a reset gadget as shown in Figure 5.7b section

3 which enforces all subpolyominoes to be in their launch configurations once a subpolyomino has

traversed from constructor to constructor.

D4 Constructor. Figure 5.9 shows a complete constructor which can build any polyomino

P s.t. P ∈D4 and P fits in a 4×4 bounding box. Since P can have at most 16 tiles, Theorem 11

tells us that P ∈D4, i.e., the largest hierarchy level needed is four. Thus, the bit string tunnel only

needs two up/down choice to encode all of the possible tunnel transitions.

Theorem 13. Given positive integers w,h ∈ Z+, there exists a configuration which is strongly

universal for the set of shapes U = {u | u ∈D,u fits in a w×h bounding box}. This configuration
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Command Tilt Sequence
1. Extract blue tile (EBlue) 〈E,N,W,S,E,S,W,N,W,S,E,S,W,N,W 〉
2. Extract red tile (ERed) 〈E,N,W,S,E,S,E,S,W,N,E,S,W,S,W,N,W 〉
3. Add from east (AE) 〈N,E,S,W,S〉+ 〈S,W,N,W 〉 j + 〈N,W,S,E,S,E,S〉
4. Add from north (AN) 〈N,W,N,E,S〉+ 〈E,S,W,S〉 j + 〈W,S,E,N,E,S,E,S,W, S,E,S,E,S〉
5. Add from west (AW ) 〈N,W,S,W,N,E〉+〈N,E,S,E〉 j+〈S,E,N,W,N,E,S,E,S,E,S,E,S,W,S,E,S,E,S,W,N〉
6. Add from south (AS) 〈N,W,S,E,S,W,N〉+ 〈W,N〉 j + 〈E,N,W,S,W,N,E,S,E,S〉
7. Send to BST (SBST ) 〈N,W,S,E,S,E,S,W,S,E,S,W,S〉
8. Traverse 1-bit (T1) 〈W,N,W,S,W 〉
9. Traverse 0-bit (T0) 〈W,S,W,N,W 〉
10. Reset to launch (R) 〈W,S,E,S,W,N,W 〉
11. Remove from board (D) 〈E,N,W,S,E,S,W,S,E,S,W,S,E,W 〉

Table 5.4: Commands EBlue,ERed move either a red or blue tile into launch configuration. Commands
AE ,AN ,AW , and AS add a subpolyomino in the launch configuration into the shape being built.
These said commands have been slightly modified from previous work to avoid conflicting with the
remaining commands. Commands SBST ,T0, and T1 send the subpolyominoes to their respective bit
string tunnels (BST’s) and allow one of them to traverse through the tunnels. Command R returns
back any polyominoes to their corresponding launch configuration. Finally, command D removes
one red and blue tile from the board.

has size O(h2w2 log2(hw)) and uses O(h3w2) tilts to move into a configuration which strongly

represents any shape u ∈U.

Proof. This is a proof by construction. We begin with a configuration C where the chambers of all

Di gadgets are empty except for the fuel chambers in D1. We know from [3] that the D1 gadget

can build any level-1 drop shape. The building process follows the flowchart in Figure 5.7a using

the tilt sequences in Table 5.4. This allows building any i-level shape bounded by h and w where

i≤ loghw (by Theorem 11). While building the desired polyomino, all subpolyominoes follow the

same sequence and thus reach the same position in their respective constructors simultaneously.

Once a subpolyomino needs to move from a Di to a Di+1 constructor, all subpolyominoes are

sent to their corresponding bit string tunnel. The uniqueness of each tunnel guarantees only one

subpolyomino successfully traverses towards the next constructor while the others are held back in

the bit selector tunnel. The reset gadget at the end of each bit string tunnel enforces sequence R in

Table 5.4 which sets every polyomino to its launch position.

Once the desired polyomino has been built and is located in the Di constructor, we can

perform sequence D until there is no more fuel pieces in the fuel chamber. We then have configura-
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Claunch

CE

CN

CW

CBST

Cstart

CS

CBST-O

(a) (b)

Figure 5.7: (a) A flowchart where each state represents a set of configurations and the symbols
represent sequences that can move from one state to another. The sequences for each of the symbols
is shown in Table 5.4. The sequence marked as Ui is a unique combination of T0 and T1 tilt sequences
for each ith constructor. Note that after performing the SBST ,Ui,R sequences one has successfully
relocated the shape located in Di to Di+1 and can add both shapes located in constructor Di+1
with either of the AN ,AE ,AS,AW sequences. (b) This is an overview of the different sections of the
hierarchy constructor. Section 1 is the D1 shape constructor from previous work, section 2 is the bit
string tunnels, section 3 is the reset gadget and section 4 is the column selection chambers for the
Di constructor.

tion C′ from C by performing a series of tilts. Consequentially, C→∗ C′. The overall process of

transitions from the starting configuration to the configuration that represents shape u ∈U , is shown

in Figure 5.7a.

(a) Bit String Tunnel 00 (b) Bit String Tunnel 01

(c) Bit String Tunnel 10 (d) Bit String Tunnel 11

Figure 5.8: This Figure demonstrates a 2-bit string tunnel. Notice that the tilt sequence
〈W,N,W,S,W,S,W,N,W 〉 would only allow a shape to completely traverse bit string tunnel 01.
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Figure 5.9: D4 Constructor. This constructor is capable of building any 4×4-bounded polyomino
in D4.

Figure 5.10: (a) Di Constructor in Claunch configuration. Section 1 is where shapes in all Di
constructors will be located when in Claunch configuration. Section 2 indicates where a shape
outputted from a reset gadget will be located when in Claunch configuration. (b) D1 Constructor in
Claunch configuration. Section 3 indicates where a single tile will be located after it is extracted from
it’s corresponding storage chamber. Similarly, once a tile is extracted from its storage chamber all
shapes throughout the constructors will be located in Section 1.

5.6 Occupancy, Relocation, and Reconfiguration Complexity

Here, we prove that the occupancy, relocation, and reconfiguration problems are PSPACE-

complete when limited to only 1×1 tiles by a polynomial time reduction from Non-Deterministic

Constraint Logic. The occupancy problem asks whether a given position within a given board

configuration can be occupied by a polyomino for some tilt sequence. Relocation asks whether

a given position may be occupied by a specific given polyomino. And Reconfiguration asks if a

given initial board configuration may be converted into a second given board configuration. The

occupancy problem was originally defined by Becker et al. using only 1×1 tiles. They showed
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it is NP-hard and the minimum move sequence for reconfiguration is PSPACE-complete [4, 6].

The authors also showed the impossibility of a fan out with dual rail logic which could be viewed

as evidence against the problem being PSPACE-complete. However, recent work showed that

with even a single additional 2× 2 polyomino, the relocation and reconfiguration problems are

PSPACE-complete [3]. In this section we definitively answer the question with only 1×1 tiles and

show all three problems to be PSPACE-complete with only 1×1 tiles. To achieve this result we

provide a polynomial time reduction from Non-Deterministic Constraint Logic [9]. The formal

problem definitions are as follows.

Occupancy Problem. The occupancy problem asks whether or not a given location can be

occupied by any tile on the board. Formally, given a configuration C = (B,P) and a coordinate e∈ B,

does there exist a tilt sequence such that C→∗ C′ where C′ = (B,P′) and ∃p ∈ P′ that contains a

tile with coordinate e?

Relocation. The relocation problem asks whether a specified polyomino can be relocated

to a particular position. That is, given a configuration, a polyomino within that configuration,

and a translation of that polyomino, does there exist a sequence of tilts which moves the original

polyomino to its translation?

Reconfiguration. The reconfiguration problem asks whether a configuration can be recon-

figured into another. Formally, given two configurations C = (B,P) and C′ = (B,P′), does there

exist a tilt sequence such that C→∗ C′?

5.6.1 Non-Deterministic Constraint Logic.

A constraint logic graph is a weighted directed graph with a constraint on each of the vertices

[9]. The constraint specifies the minimum weight required from the edges directed in (the sum of

the inflow) to any vertex. An example of two vertices can be seen in Figure 5.11e. When given a

graph, the usual problem studied is whether a particular edge can be “flipped”- the direction of the

edge changed, i.e., is there a sequence of edge flips that maintain the constraints on all vertices, and

allows the target edge to be flipped? This is a one-player unbounded game. The problem is still
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PSPACE-complete when the edge weights are all strength 1 or 2, and vertices have max degree 3.

We address the following equivalent problem.

Configuration-to-Configuration Problem. Given two states of a constraint graph G and

G′, does there exist a sequence of edge flips starting with G that results in G′ [9].

Vertex Gadget. We will assume a max degree of three for all vertices, which means there

are 8 possible arrangements of in/out edges. Define the vertex state as a label from 0 to 7 determined

by the directions of its incident edges. We label each edge of a vertex Ea,Eb,Ec. The state is then

the decimal value of a binary string of length three with each bit representing an edge (EaEbEc)

where an edge directed inward is a 0, and an edge directed outward is a 1. Thus, the state values

go from 000 to 111. We say a vertex is in a legal state if the weight of all edges pointed inward is

greater than or equal to the constraint of the graph.

A vertex gadget contains a single 1×1 tile referred to as the state tile, a transition area, and

a number of state gadgets equal to the number of legal states of that vertex. Since there are eight

states, there are eight basic paths in the gadget that the state tile could be in representing the vertex’s

state. Figure 5.11e gives an example vertex gadget (a CL AND vertex) and the possible paths, and

also shows the numbering of the states and the corresponding orientations of the original edges for

that state. Table 5.5 gives the only move sequences needed for the system.

Flipping an edge is represented by a move sequence performed while in a valid state that

moves the state tile from one state path to another, which happens simultaneously in two vertex

gadgets since an edge connects two vertices. This edge flip happens in all vertex gadgets, but if the

edge is not incident to that vertex, there is no effect on the path of the state tile.
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Figure 5.11: (a) A vertex gadget with the path/transition areas labeled with the corresponding state
numbers and the representative edge orientations in a constraint graph. Each state is a different
color. Paths that do not change the state of a tile are dotted. The grey lines are invalid states. (b)
The necessary vertices for a one-player unbounded game are reversible AND and OR vertices in a
constraint graph with constraint 2. The AND vertex has two red edges (weight 1) and a blue edge
(weight 2). Directing the blue edge outward requires both red edges to be directed inward. The OR
vertex has three blue edges. Only one edge needs to be directed inward. (c) An example of a state
transition area the vertex it represents. White rows represent edges that do not change the state of
the vertex (they are not incident). Red and blue rows represent the incident edges and the weights of
those edges. (d) The state gadgets for two different vertices Vl and Vr. Both vertices share edge 3. Vl
represents state 4 of an OR vertex. Vr represents state 3 of an AND vertex. If edge 1 is selected (the
red tile and line), Vl will remain in state 3 while Vr will go to state 7. Selecting edge 3 changes the
state of both gadgets. (e) An overview of the layout of the different components for the reduction.
The dotted red lines represent the vertex gadgets (not to scale), the green boxes below denote the
geometry specific to each vertex to force the state tile into the top row (if in the wrong state) or the
bottom row (if in the correct state). The bottom row requires all |V | state tiles in order for a tile to
get into the goal location g.

State Transition Gadget. The state transition gadget is the transition area and the concrete

that encode legal transitions from a given state. This will be unique to each vertex gadget. These are

outlined in Figure 5.11e as states 0−4. Figure 5.11c shows one of these areas with an explanation

of the different paths. There are |E | levels on the right, where each level represents an edge in the

graph. When a 〈W 〉 command moves the state tile left, the tile stops at the blocked spot on that level.

All edges not incident to the vertex have no effect on the path of the state tile (the dotted lines in
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Flip edge ek ∈ E 〈〈E,S〉k,〈W,N,E〉〉
Extraction 〈〈E,S〉|E |+1,〈W,S〉〉

Table 5.5: Move sequences for the reduction. 〈·〉K means repeat the sequence K times. |E | is the
number of edges in the original constraint graph, as opposed to 〈E〉 which is the ‘east’ command.

Figure 5.11e and white rows in Figure 5.11c). The three edges that are incident will change the path

of the state tile when a 〈S〉 command follows. If it is not a valid edge flip (due to the constraints), the

state tile will be permanently stuck in a path representing an invalid state. If the new state is valid,

the state tile will be in that state path. Note this will happen for both vertex gadgets representing a

vertex incident to the edge chosen. Figure 5.11d shows an example of two state transition areas in

two vertex gadgets representing two vertices that share an edge.

Goal Area. An overview of the reduction layout is in Figure 5.11e where the goal area is

shown at the bottom of all the vertex gadgets. Once all the tiles are in positions that represent the

target configuration, the tiles can be extracted into the goal area. An extraction is made the final

level in a state gadget. After extraction the tiles enter the goal area. The goal area consists of two

rows. The valid row and the invalid row. The invalid row (top row) traps any tiles that enter when

a vertex was not in the specified (in the target configuration) state. The valid row (bottom row)

contains the goal position (g in Figure 5.11e). The goal position is |V | positions to the right of the

left wall. Thus, |V | tiles must be in this row in order to have the last tile be in this location. In order

to have enough tiles to reach the goal position, each vertex must be in the correct state to output the

tile to the goal area. This ensures all vertices, and thus the entire graph, is in the specified target

configuration.

Lemma 15. After performing a move sequence to flip an edge, only the two vertex gadgets repre-

senting vertices incident to that edge will have their state tile change state paths. All other vertex

gadgets will have their state tile stay in the same state path.

Proof. Since we enumerate all the edges and make each state gadget have an exit point for each

edge, a move sequence to select and flip an edge moves all tiles out of their state gadget to the
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transition area. We create the transition area for each vertex gadget based on the edges that are

connected to that vertex. If flipping an edge causes a vertex to change states we place a concrete

block to stop the tile in the state column of the new state. If flipping an edge does not affect a vertex

then when that tile leaves the state gadget and goes to the transition area there will be a block of

concrete to stop the tile in the state column of the state it was previously in. Since all tiles start at

the top of the state gadget, they all move out of the same level, so only two vertex gadgets will have

their state tile change state gadgets. We can see this in Figure 5.11d. Flipping the first edge will

change the state of the right vertex but not the left. Flipping the third edge edge will change the

state of both.

Lemma 16. If a vertex enters an illegal state, the representative vertex gadget’s state tile will be

trapped in an ‘illegal’ state path and cannot be extracted.

Proof. If an edge flip would cause a vertex to enter an illegal state the tile will still be sent out of

the state gadget into that states column. Since when we create the vertex gadget we block off the

right of the top of any illegal state columns once a tile goes to the top or bottom of a state column it

can only travel between the both of these. The only way this tile can be removed from this column

is if a second tile enters this column. However, there is no way for another tile to enter the vertex

gadget so there is no way to extract the tile once it becomes trapped in the column.

Theorem 14. Occupancy is PSPACE-complete with only 1×1 tiles in the full tilt model.

Proof. We show Occupancy is PSPACE-hard with only 1× 1 tiles by a reduction from Non-

Deterministic Constraint Logic. Given an instance of a constraint graph G (with initial configuration

Ci) and a goal configuration Cg of that graph, enumerate the edges and vertices of the configuration.

For each vertex in the graph create a Vertex Gadget. We create the configuration in the tilt model, Si,

as described above with the goal location g and vertex gadgets laid out side by side above the goal

area as shown in Figure 5.11e. The vertex gadgets will have a state transition gadget for each legal

state of that vertex. The transition area is built based on the edges of the vertex. Then there exists a
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sequence of edge flips to transition Ci to Cg if and only if there exists a sequence of tilt commands

that transition board Si to a board configuration with some tile at location g.

Given a sequence of edge flips to transition Ci to Cg in G = (V,E ), F = 〈 f1, . . . fl〉 where

fi ∈ E , we can directly translate this into the move sequence necessary based on Table 5.5. Each

vertex has its state tile start in the starting state of the vertex. Lemma 15 shows we can select any

specific edge and perform a move sequence to select and flip that edge to change the state of two

vertices and leave all other state tiles in the same state path. Since there exist move sequences to flip

edges and change the states of vertex gadgets, a series of edge flips that are a solution to an NCL

configuration-to-configuration problem can be turned into a move sequence that changes all vertex

gadgets to their goal states which can then be extracted to solve the occupancy problem.

If given Si and a sequence of tilts T = 〈t1, . . . tz〉, where ti ∈ {N,E,S,W}, that solved the

occupancy problem, the edges to flip could be found from the sequences of Table 5.5. We know

by Lemma 16 that any tilt sequence not corresponding to a legal edge flip would trap a state tile,

and thus occupancy could not be solved. Thus, if our sequence solves the problem, only legal edge

flips were made. Further, to solve occupancy, we need all |V | state tiles in the goal area, meaning all

vertex gadgets were in the correct state, as specified in Cg.

Corollary 4. Relocation is PSPACE-complete with only 1×1 tiles in the full tilt model.

Proof. If we ask whether we can relocate the state tile in the vertex gadget for vn to the goal location

g, we have an equivalence of the Occupancy problem.

Corollary 5. Reconfiguration is PSPACE-complete with only 1×1 tiles in the full tilt model.

Proof. Since state tiles remain in their vertex gadget, they remain in the same order when extracted.

The goal configuration is all tiles extracted from the vertex gadgets in the valid row ordered by

vertex number. In order to extract all the tiles into the valid row, all gadgets must be in the correct

state when extracted.
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5.7 Conclusion

In this paper we presented a hierarchy of shapes that are buildable within the full tilt model.

We proved several characteristics about the drop-shape class, then gave an algorithm to decide

membership in the class for hole-free shapes. We then provided a universal constructor that strongly

builds this class of shapes. We then answered an open question by proving that the Occupancy

problem in full tilt is PSPACE-complete even with only 1×1 tiles.

We leave a number of open problems. When considering drop-shape membership, our

algorithm does not consider shapes with holes. Does there exist an efficient algorithm to determine

membership in D for all shapes? Also in defining membership in levels of our hierarchy we only

consider one tile type that sticks to itself in determining if a cut is valid. What shapes can be

built in lower levels of the hierarchy if more tile types are allowed? Does there exist a tile type

hierarchy and how does it relate to the drop shape hierarchy? In regards to Theorem 11, does

there exist a tighter bound on the level of the hierarchy a shape must be in? Lastly, for complexity

of the occupancy, relocation, and reconfiguration problems, we use a connected board to show

PSPACE-completeness. Is the problem easier when limiting the board type to simple or monotone,

or does it remain PSPACE-complete?
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