
Algorithms for Art

Gallery Problems
Vasco José Rodrigues Cruz
Mestrado em Ciência de Computadores
Departamento de Ciência de Computadores

2022

Orientador 
Ana Paula Tomás, Professora Associada,

Faculdade de Ciências da Universidade do Porto





Todas  as  correções determinadas 

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________





Abstract

The Art Gallery Problem is one of the most renowned problems in Computational Geometry.
While its original formulation asks for the minimum number of guards that one needs for watching
over the interior of a simple polygon, several variants have emerged through the years, and
several results have revealed it to be a computationally hard problem in particular scenarios. In
this thesis we study applications of parameterized, approximation and randomized algorithms
to orthogonal variants of the Art Gallery Problem and characterize their computational and
combinatorial complexity.

We present a new randomized algorithm for finding approximate solutions to the Set
Cover problem and use it to determine minimum-cardinality vertex-guard sets on orthogonal
polygons under straight-line visibility. We develop time- and memory-efficient data structures
for implementing it and discuss kernelization strategies for reducing instance complexity. We
study the performance of the algorithm against a benchmark dataset, over which it exhibits a
very low approximation ratio, as well as satisfactory running times.

We define a new family of orthogonal polygons, the SCOTs, which are made up of rectangular
rooms linked by rectangular corridors, mimicking properties of real-world buildings. We prove
that, if a SCOT P is simple or r-independent, a minimum-cardinality guard set for guarding
P under r-visibility can be computed in polynomial time. For that, we propose three methods.
First, we describe a linear-time algorithm for simple SCOTs, with both vertex- and point-guards,
based on a tree decomposition of the polygon. Then, we present one that runs in time O (c

√
c)

with vertex-guards for a SCOT with c corridors. Finally, a third one is given for point-guards,
running in time O (c3 log c

)
. For the case where the SCOT has holes and is not r-independent,

we show that the problem becomes NP-hard – indeed the decision problem is NP-complete
for the case of point-guards – and give two approximation algorithms with factor O(log c) for
vertex-guards and point-guards.

At last, a dynamic programming algorithm for finding a lexicographically minimum optimal
guard set for polyominoes under chess rook visibility is proposed, proving that the problem is
fixed-parameter tractable parameterized by the length of the shortest side of the minimal unit
grid that encloses the polyomino.

Keywords: Approximation Algorithms · Art Gallery Problem · Computational Complexity · Com-
putational Geometry · Orthogonal Polygons · Parameterized Algorithms · Randomized Algorithms

i





Resumo

O Problema da Galeria de Arte é um dos problemas mais conceituados em Geometria Computa-
cional. Enquanto que a sua formulação original pede o número mínimo de guardas necessários
para vigiar o interior de um polígono simples, diversas variantes surgiram ao longo dos anos, e
vários resultados revelaram ser um problema computacionalmente difícil em cenários particulares.
Nesta tese estudamos aplicações de algoritmos parametrizados, de aproximação e aleatorizados
a variantes ortogonais do Problema da Galeria de Arte e caracterizamos a sua complexidade
computacional e combinatória.

Apresentamos um novo algoritmo aleatorizado para encontrar soluções aproximadas para
o problema de cobertura de conjuntos (Set Cover) e usamo-lo para determinar conjuntos de
guardas em vértices de cardinal mínimo em polígonos ortogonais segundo visibilidade em linha
reta. Desenvolvemos estruturas de dados eficientes em tempo e memória para o implementar e
discutimos estratégias de kernelização para reduzir a complexidade das instâncias. Estudamos
o desempenho do algoritmo num conjunto de dados de referência, sobre o qual evidencia uma
razão de aproximação muito baixa, bem como tempos de execução satisfatórios.

Definimos uma nova família de polígonos ortogonais, os SCOTs, que são formados por salas
retangulares ligadas por corredores retangulares, imitando propriedades de edifícios do mundo
real. Demonstramos que, se um SCOT P for simples ou r-independente, um conjunto mínimo
de guardas para vigiar P segundo r-visibilidade pode ser calculado em tempo polinomial. Para
tal, propomos três métodos. Primeiro descrevemos um algoritmo de tempo linear para SCOTs
simples, com guardas quer em vértices, quer em pontos, baseado numa decomposição em árvore
do polígono. De seguida, apresentamos um algoritmo que corre em tempo O(c

√
c) com guardas

em vértices para um SCOT com c corredores. Finalmente, um terceiro algoritmo é dado para
guardas em pontos, com tempo de execução O(c3 log c). Para o caso em que o SCOT tem buracos
e não é r-independente, mostramos que o problema se torna NP-difícil – de facto o problema de
decisão fica NP-completo para guardas em pontos – e fornecemos dois algoritmos de aproximação
com fator O(log c) para guardas em vértices e em pontos.

Por fim, é proposto um algoritmo baseado em programação dinâmica que determina um
conjunto ótimo de guardas lexicograficamente mínimo para poliominós segundo visibilidade de
torres de xadrez, mostrando que o problema é tratável em parâmetro fixo quando parametrizado
pelo comprimento do menor lado da grelha unitária minimal que envolve o poliominó.

iii



Palavras-chave: Algoritmos Aleatorizados · Algoritmos de Aproximação · Algoritmos Parametriza-
dos · Complexidade Computacional · Geometria Computacional · Polígonos Ortogonais · Problema
da Galeria de Arte

iv



To the three most important people in my life: my brother, my father and my mother.
If I am what I am, it is because of you.

To my grandparents.
You never, ever cease to replenish my strength.

v





Acknowledgements

I would like to express deep gratitude to Professor Ana Paula Tomás, who embraced me in
this journey and made me see how beautiful guarding polygons can be. Thank you for having
encouraged me, for having shown your persistent support even during off-hours and for having
provided numerous helpful suggestions that have unquestionably improved the quality of the
final product. Working with you has been a delight.

I thank my family for always being there in the nicest and hardest moments, without expecting
anything in return. You keep inspiring me to believe in myself. I owe you everything.

Many thanks to my friends and colleagues for the unforgettable moments we shared and
bonds we undoubtedly solidified for the rest of our lives. Thank you, Kevin, for the brilliant and
insightful conversations we had, which have definitely propelled my work in the right direction.

And, of course, to Francisco and to Pedro, for having made FCUP a house of the family.

This work was partially supported by CMUP, under the research project with reference
UIDB/00144/2020, whose opportunity I am very grateful for.

vii





Contents

Abstract i

Resumo iii

Acknowledgements vii

Contents xi

List of Tables xiii

List of Figures xxii

List of Algorithms xxiii

Acronyms xxv

1 Introduction 1

1.1 Background on the Art Gallery Problem . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions and thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 9

2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ix



2.2 Computational hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Parameterized complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Randomized Algorithm for Set Cover 19

3.1 Background on Set Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Hs-approximation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 f -approximation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Polygon discretization and instance generation . . . . . . . . . . . . . . . . . . . 22

3.2.1 First approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Second approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Definition of Randomized-Set-Cover . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Probability of success with uniformly random instances . . . . . . . . . . 27

3.3.3 Kernelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Algorithm reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.5 Number of repetitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Data structures used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Sampleable set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Experimental Analysis of Randomized-Set-Cover 45

4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Min-Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Fat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.4 Large-Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.5 Discussion and general remarks . . . . . . . . . . . . . . . . . . . . . . . . 54

x



4.3 Order of growth of |Πn| for grid n-ogons . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Min-Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Fat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 On r-Guarding SCOTs 59

5.1 Simple SCOTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 r-independent SCOTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Super-corridors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 3-approximation algorithm for vertex-guards and point-guards . . . . . . 66

5.2.3 Exact algorithm for vertex-guards . . . . . . . . . . . . . . . . . . . . . . 67

5.2.4 Exact algorithm for point-guards . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 NP-completeness with point-guards . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.4 NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.5 Approximation algorithms for vertex-guards and point-guards . . . . . . . 86

6 Rook Vision on Polyominoes 89

6.1 Parameterized algorithm for Rook-AGP . . . . . . . . . . . . . . . . . . . . . . 90

6.1.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusions and Future Work 97

Bibliography 99

xi





List of Tables

3.1 Total number and percentage of Set Cover instances that admit an optimal
cover of size 1, 2, 3 or more, or no feasible cover at all, for a fixed size of the
universe |U| ∈ {1, 2, 3, 4}. Notice that exactly half of the instances admit a cover
of size 1, for any universe size, and the percentage of instances that admit an
optimal cover of size 2 approaches 50%. . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Statistics for Min-Area grid n-ogons. . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Statistics for Fat grid n-ogons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Statistics for Random grid n-ogons. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Statistics for Large-Random grid n-ogons. . . . . . . . . . . . . . . . . . . . . 53

xiii





List of Figures

1.1 (a) A convex polygon. (b) A star-shaped polygon. Each of them only requires
one guard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Two lamp placements on a polygonal region P under straight-line visibility. The
left one does not fully cover P , while the one on the right is a feasible (and optimal)
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The example given by Chvátal to show that sometimes ⌊n/3⌋ guards are necessary.
It consists of a comb-shaped polygon with n = 3m vertices, for some integer
m ≥ 1. Notice that the points 1, 2, . . . , m can only be seen by a guard placed in
the shaded triangle that contains it. Since these triangles are disjoint, we need a
guard for each of these m points separately, yielding the m = ⌊n/3⌋ bound. . . . 3

1.4 Illustration of the sufficiency proof by Fisk’s method. The polygon is triangulated
and a 3-coloring of its vertices is found. The green vertices form a valid guard set
of size 2, which obeys the upper bound of ⌊n/3⌋ = ⌊10/3⌋ = 3 given by the Art
Gallery Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 (a) Two vertex-guards are required for guarding this polygon. (b) A single
point-guard would be enough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Illustration of the sufficiency proof by the method of Kahn et al. [64], adapted
from [99]. Similar in spirit to Fisk’s proof, the authors prove Orthogonal Art Gallery
Theorem (OAGT) by showing that any orthogonal polygon can be decomposed into
convex quadrilaterals by adding non-intersecting line segments between vertices
(convex quadrilateralization), which induces a 4-coloring of the vertices. . . . . . 4

2.1 (a) Simple polygon. (b) Polygon with self-intersections. (c) Polygon with holes.
(d) Not a polygon, because the chain of edges is not closed. (e) Not a polygon,
because edges cannot be curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Orthogonal polygon. v1 is a convex vertex and v2 is a reflex vertex. . . . . . . . 10

2.3 A 23-polyomino with a hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

xv



2.4 Which subset of an orthogonal polygon a guard at vertex v sees (a) under straight-
line visibility and (b) under r-visibility. . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 (a) Non-regularized straight-line visibility. Point p is collinear with vertices v1

and v2 and sees the union of a polygon and a needle. (b) Regularized straight-line
visibility. The visibility region of p does not include degeneracies and the needle
is discarded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Triangular expansion algorithm. Visibility is propagated to neighbour triangles
through windows on shared edges. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 (a) Information that (a) a vertex v, a half-edge e and (b) a face f keep in a
DCEL structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Overlay of two arrangements A1, A2. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 A polygon with n = 12 vertices, triangulated into n− 2 = 10 triangles by adding
n− 3 = 9 internal diagonals (dashed in the figure). . . . . . . . . . . . . . . . . 15

2.10 (a) The grid partition ΠHV (P ) of an orthogonal polygon P . (b) The convex
partition Π(P ) induced by vertex visibility regions (under straight-line visibility). 16

3.1 (a) A Set Cover instance (U ,F) and (b) a corresponding minimum cover C⋆.
{S2, S3} is another optimal cover for U . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Reduction from Minimum Vertex Guard (MVG) to Set Cover. The convex
partition of an orthogonal polygon with 8 vertices and 8 pieces is mapped to a
Set Cover instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Estimated fraction of Set Cover instances admitting an optimal cover of
cardinality 2 for each universe size 1 ≤ |U| ≤ 14, tending to 0.5. For each universe
size, 105 instances were sampled uniformly at random and solved using Uniform-
Randomized-Set-Cover. This trend suggests that the error probability of
Uniform-Randomized-Set-Cover hastily approaches 0 as uniform random
instances grow in size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The function 2x/
( x

⌊x/2⌋
)

asymptotically approaches
√

πx
2 . . . . . . . . . . . . . . 32

3.5 Valid set state transitions in Randomized-Set-Cover. . . . . . . . . . . . . . 34

xvi



3.6 Solving the instance of Figure 3.1 using the improved version of Randomized-
Set-Cover. The possible outcomes of the algorithm are shown. Elements in
bold blue have frequency 1 and, therefore, belong to fixed sets. Removed elements
x ∈ U appear in light gray instead of being omitted, so that it becomes clear
which set is which. Elements that, in some iteration, belong to every remaining set
are also shown in light gray, because they do not affect kernelization nor random
choices in any way and can be ignored. The algorithm finds an optimal solution for
this instance in a single run with probability 75%. After 3 runs, this probability
increases to 1− (1− 0.75)3, which is approximately 98.4%. . . . . . . . . . . . . 36

3.7 Two isomorphic Set Cover instances derived from the convex partition of an
orthogonal polygon. One can convert the first instance to the second one through
the permutation σ = (6 2 7 8 3 4 5 1). On the original instance, LMPid(S1, S7) = 2,
while, for the transformed instance, LMPσ(S1, S7) = 1. ∑ LMPid(Si, Sj) = 75 and∑

LMPσ(Si, Sj) = 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 (a) A bitset tree TS for the set S = {2, 3, 8, 10, 16, 18, 19, 20, 21, 22, 23, 24}, with
universe U = {0, 1, 2, . . . , 24} and W = 4. Elements were inserted in increasing
order of their value. Each node indicates a pair (b, w), where b is the identifier of
the block and w is the bitmask word corresponding to the block. Nodes are colored
black or red according to the color they would have in an underlying Red-Black
tree. (b) Order of iteration in TS of the elements of S, in increasing order of their
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 The unique (up to symmetry) Fat and Min-Area grid n-ogons for n ∈ {4, 6, 8, 10, 12}
(adapted from [94]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Evolution of the partition and instance generation times for Min-Areas with
number of vertices n = |F| (left) and partition size |Π(P )| (right). The time it
takes to generate an instance from Π(P ) is insignificant when compared to the
partition time, which hints that partition will be a bottleneck for our algorithm. 48

4.3 Preprocessing and solving times for Min-Area instances with n = |F| vertices
(left) and partition size |Π(P )| (right). Generating a Set Cover instance from
P takes consistently longer than solving it afterwards using Randomized-Set-
Cover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Evolution of the partition and instance generation times for Fats with number
of vertices n = |F| (left) and partition size |Π(P )| (right). Just like for Min-
Areas, mapping a partition to a Set Cover instance is faster than computing
the partition itself. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xvii



4.5 Preprocessing and solving times for Fat instances with n = |F| vertices (left)
and partition size |Π(P )| (right). Since the generated Set Cover instance has
a size that is quadratic in n, both times grow faster than for a Min-Area with
the same number of vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Partition and instance generation times for Randoms, averaged over all the
instances with a fixed number of vertices n = |F| (left) and a fixed partition size
|Π(P )| (right). Similarly to Min-Areas and Fats, instance generation takes
considerably less time than computing the partition. . . . . . . . . . . . . . . . 51

4.7 Preprocessing and solving times for Randoms, averaged over all the instances
with a fixed number of vertices n = |F| (left) and with a fixed partition size
|Π(P )| (right). Clearly the preprocessing phase dominates the time taken by the
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 The variation of the maximum value hit by APX when collectively considering
all the Random instances with a fixed n (left) or |Π(P )| (right). There is no
clear relationship between these parameters. . . . . . . . . . . . . . . . . . . . . 52

4.9 Growth of preprocessing and solving times for Large-Random polygons. Once
again, the time it takes to solve a Set Cover instance remains moderately low
with n and |Π(P )|, although the partition time explodes. . . . . . . . . . . . . . 53

4.10 The variation of the maximum value hit by APX when collectively considering
all the Large-Random instances with a fixed n (left) or |Π(P )| (right). As
observed in Randoms, no evident relationship exists between the parameters. . 54

4.11 Comparison of the average number of pieces in Π(P ) for each grid n-ogon class,
as the number of vertices n increases from 8 to 200. . . . . . . . . . . . . . . . . 55

4.12 From a Min-Area with n vertices to a Min-Area with n+2 vertices, the number
of visibility regions increases by a square and two triangles. The case where n = 4
does not satisfy the property because the respective Min-Area is convex. . . . 56

4.13 The number of pieces in the partition Π(P ), induced by vertex visibility regions,
of a Min-Area P with n vertices perfectly obeys the identity |Π(P )| = 3n

2 − 4
for every n = 8, 10, . . . , 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.14 The number of pieces in the partition Π(P ), induced by vertex visibility regions,
of a Fat P with n vertices perfectly obeys the identity |Π(P )| = 76 + 17(n−18)

2 +⌊
(n−18)2

16

⌋
+ 2

⌊
(n−20)2

16

⌋
for every n = 16, 18, . . . , 200. . . . . . . . . . . . . . . . . 58

4.15 The average size of Π(P ) for a Random grid n-ogon P seems to grow linearly with
n. The part of the plot with 14 ≤ n ≤ 200 integrates results from the Random
class, while for 250 ≤ n ≤ 1000 the data used comes from Large-Random. These
data, coming from two independent sessions, exhibit a smooth continuity. . . . . 58

xviii



5.1 (a) Simple (R, C)-SCOT, with |R| = 7 and |C| = 6. Rooms are represented as
white rectangles and corridors as shaded rectangles. The corridor connecting
rooms R1 and R2 is horizontal and the corridor connecting rooms R1 and R3 is
vertical. (b) SCOT with a cycle involving rooms R1, R2, R3 and R4. (c) SCOT
with multiple corridors between the same sides of rooms R1 and R2 and also
between R2 and R3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Convex vertices may be required in an optimal vertex-guard set for a general
orthogonal polygon under r-visibility. For this polygon, {v1} is a minimum-
cardinality guard set, but if we restrict ourselves to reflex vertices the only feasible
solution is {v2, v3}, which is not optimal. . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Blind spots on the corners of a room. These regions cannot be r-seen from outside
the room. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Step-by-step execution of the greedy algorithm for determining a minimum-
cardinality vertex-guard set in a simple SCOT P (with no room cycles and
no multiple corridors). (a) Initially, a tree T representing room adjacencies in P

is constructed. (b-g) We keep detaching leaf nodes from T until a single node
remains. We break the ties arbitrarily; in this example, leaves are removed in
increasing order of the node identifier. In each intermediate step, a guard is placed
on a reflex vertex to r-see exactly one room and one corridor. (h) When the
last leaf node remaining is removed, the entire polygon P becomes covered. The
number of guards used is |R| = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 (a) Simple SCOT P . (b) The stretches of the two horizontal corridors of P

perfectly coincide, so they are aligned corridors. (c) The stretches of the two
vertical corridors of P intersect, but do not coincide, so they are not aligned nor
disjoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 (a) r-independent SCOT. Notice that, even though the stretches of corridors
C1 and C2 coincide, C1 and C2 are not adjacent. (b) A SCOT that is not r-
independent. The stretches of corridors C3 and C4 intersect in a vertical line. A
guard placed at the top-right corner of C4 would r-see both corridors. . . . . . . 64

5.7 There are four super-corridors (r-equivalence classes of corridors) in this polygon:
{C1}, {C2, C3, C4}, {C5} and {C6}. Corridors C1 and C5 are not r-equivalent
because they are not adjacent and do not belong to a succession of adjacent,
aligned corridors. The same happens with corridors C4 and C6. . . . . . . . . . 64

5.8 (a) If r-equivalent corridors were not compressed, a succession of |S| − 1 corridors
connecting a subset of rooms S would contribute with 2(|S| − 1) pairs to |Q|,
because each corridor is incident to exactly two rooms. (b) By compressing this
maximal succession of aligned corridors into a super-corridor, Q now gets |S| pairs
instead: one for each room that is incident to the super-corridor. . . . . . . . . . 66

xix



5.9 (a) r-independent SCOT P , with four super-corridors: C ′
1 = {C1, C2}, C ′

2 = {C3},
C ′

3 = {C4} and C ′
4 = {C5, C6, C7}. A partial guard set watching over everything

in P except for rooms R5 and R6 is presented. Each guard covers exactly one
room and one super-corridor. (b) Bipartite graph H, whose subset of nodes A

represents rooms in P and whose subset B represents super-corridors. The edges
contained in a B-perfect matching M⋆, corresponding to the partial guard set
given in (a), are highlighted. The guard set could be extended with two guards,
one in R5 and another in R6, to optimally cover the entirety of P . . . . . . . . . 68

5.10 (a) A vertex-guard that is chosen to r-see both the room R2 and the super-corridor
that crosses all three rooms can be placed in any of the four vertices v1, v2, v3

or v4, because they are r-equivalent. (b) If the matching M⋆ determines that a
vertex-guard has to be placed seeing both the room R2 and the super-corridor,
there are two possibilities for the guard: either at v1 or at v2. . . . . . . . . . . 69

5.11 (a) r-independent SCOT P , showing a partial vertex-guard set covering every
region except for room R6 and super-corridor C ′

2. It is a counterexample for the
conjecture that max{|R|, |C′|} vertex-guards are sufficient for watching over any
r-independent (R, C, C′)-SCOT P . (b) Bipartite graph H = (A∪B, E), along with
a maximum cardinality matching M⋆, representing the partial guard placement in
P . H admits no perfect matching and therefore two extra guards are needed for
covering R6 and C ′

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.12 (a) Guard g only r-sees a corridor. (b-c) By moving g to an incident room, it
still sees the corridor, but now also sees a room. Therefore, the solution has not
become worse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.13 (a) Network G with demands and capacities, an instance of Minimum Flow
with Demands. Each edge (u, v) is annotated with a range [d(u, v), c(u, v)]. (b)
Example of a feasible flow in G, where on each edge (u, v) it is indicated inside
parenthesis the amount that flows through it, as (f(u, v)). . . . . . . . . . . . . 72

5.14 (a) Small original network G with edge capacities and demands. (b) New,
transformed network G′ obtained by reducing Minimum Flow with Demands
to Maximum Flow. The value on an edge (u, v) refers to the transformed capacity
c′(u, v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.15 Example adapted from [44]. (a) Original network G with edge capacities and
demands. (b) New network G′ obtained by reducing Minimum Flow with
Demands to Maximum Flow. The value on an edge (u, v) refers to the
transformed capacity c′(u, v). (c) A saturating flow f ′ in G′, obtained by running
a maximum flow algorithm over the transformed network. (d) A feasible flow
f in G corresponding to f ′ by taking f(u, v) = f ′(u, v) + d(u, v) for every edge
(u, v) ∈ E. Notice that f ′(t, s) = |f | = 11. . . . . . . . . . . . . . . . . . . . . . . 74

xx



5.16 (a) The same r-independent SCOT P of Figure 5.9a, with four super-corridors:
C ′

1 = {C1, C2}, C ′
2 = {C3}, C ′

3 = {C4} and C ′
4 = {C5, C6, C7}. (b) The network

G corresponding to P that is an instance of Minimum Flow with Demands.
It has a total of 26 nodes and 41 edges (including those on the gadgets). We
display nodes vertically split into five conceptual groups: source (s), gadgets for
horizontal super-corridors, room gadgets, gadgets for vertical super-corridors and
sink (t). Notice that pseudo-gadgets Γ(C ′

hf ) and Γ(C ′
vf ), for both horizontal and

vertical super-corridors, are connected to every room to enable solutions where
guards are placed in positions from where they cannot see any corridor in one or
both directions. Every edge in G has capacity ∞. All the edges belonging to real
gadgets have demand 1; every other edge has demand 0. . . . . . . . . . . . . . 76

5.17 (a) Minimum feasible flow f in the network G, with |f | = 6. The flow has not
been annotated on edges (u, v) with f(u, v) = 0 to avoid clutter. (b) SCOT P ,
with an optimal set of 6 point-guards that has been determined by flow f . . . . 79

5.18 (a) Example of a 25-polyomino P . (b) The 7× 7 minimal unit grid ∆(P ) that
contains P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.19 Anchor gadget Γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.20 Three anchor gadgets laying side by side and connected by horizontal corridors
(only as an example). Notice that corridors linking two adjacent anchor gadgets
are contained in the plane region 6 ≤ y ≤ N + 6. . . . . . . . . . . . . . . . . . . 81

5.21 Example of a reduction from Minimum Polyomino r-Guard to Minimum
SCOT r-Guard. SCOT B is not presented to scale so that the correspondence
between the guard sets in both instances is visually clearer. . . . . . . . . . . . . 82

5.22 An orthogonal polygon P whose vertices have rational coordinates, reprinted from
[1]. P can be covered under straight-line visibility with 9 point-guards if we allow
irrational coordinates, but requires 10 point-guards if we do not. . . . . . . . . . 85

5.23 The grid partition ΠHV (P ) of a SCOT P . . . . . . . . . . . . . . . . . . . . . . 86

6.1 A 19-polyomino P (shaded region) within a 10 × 3 grid and a corresponding
minimum-cardinality rook-guard set of 5 rooks, with coordinates (0, 0), (1, 2),
(4, 0), (5, 1) and (9, 0). P has a one-tile hole with coordinates (2, 1). . . . . . . . 89

6.2 Traversing the grid g in row-major order as we keep the current dynamic program-
ming state (r, c, hl, hr, Vu, Vd), while standing at cell (r, c). The yellow, striped
tiles indicate for which row (r − 1 or r) each element 0 ≤ x < C in Vu and Vd is
carrying information from. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xxi



6.3 Certificate propagation. When we reach a dynamic programming state for this
instance with (r, c) = (3, 2), hl = False and Vu = ∅, we must have hr = True and
Vd = {2}. Delaying the rook placement by propagating unchecked certificates
from the top-right and bottom-left cells is the only way to achieve an optimal
solution (1 rook) for this instance. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 A run of the algorithm over a 5-polyomino P . The operations performed and the
decisions taken at each state when obtaining one of the optimal solutions for P

(in fact, the lexicographically minimum one) are shown. The bolder tile marks
our current position at each step. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xxii



List of Algorithms

1 Greedy-Set-Cover(U ,F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Randomized-Set-Cover(U ,F) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Uniform-Randomized-Set-Cover(U ,F) . . . . . . . . . . . . . . . . . . . . . 28
4 Decide-⊆(A, B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Randomized-Set-Cover(U ,F), revised . . . . . . . . . . . . . . . . . . . . . . 35
6 Identify proper subsets in F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7 Insert(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8 Erase(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9 Choose-Random() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xxiii





Acronyms

AGP Art Gallery Problem

AGT Art Gallery Theorem

ETH Exponential Time Hypothesis

FPT fixed-parameter tractable

MVG Minimum Vertex Guard

OAGT Orthogonal Art Gallery Theorem

PTAS polynomial-time approximation
scheme

TOP thin orthogonal polygon

xxv





Chapter 1

Introduction

The warden of a museum wants to make sure that all the points in its interior are
guarded. For that, he will place guards at strategic positions. Each guard is stationary,
but is free to look around. How many guards does the warden need to hire?

One can see that, if the museum has the shape of a convex polygon (one whose internal angles
are all less than or equal to 180◦), a single guard is enough (Figure 1.1a). By definition, the
same holds for star-shaped polygons – polygons that contain at least one point from which the
entire boundary is visible (Figure 1.1b).

(a) (b)

Figure 1.1: (a) A convex polygon. (b) A star-shaped polygon. Each of them only requires one guard.

What about more general polygons? Despite the apparent simplicity of this question,
it has nevertheless triggered decades of research by mathematicians and computer scientists.
Traditionally known as the Art Gallery Problem (AGP), it is not only appealing, but also one of
the most celebrated and thoroughly studied problems in Computational Geometry. The original
formulation, posed in 1973 by Klee [81], asks about the minimum number of point-guards that
are required to watch over the interior of any simple polygon P (that is, one without holes or
self-intersections) with n vertices in the plane, where two points p, q ∈ P see each other if the
closed line segment pq lies completely within P .

Besides being of theoretical interest, it is not difficult to see how this problem is also practically
useful: many real-life situations can be modeled by slight variations of AGP. How many 360º
surveillance cameras are needed to watch over a university campus? How many lamps does one

1



2 Chapter 1. Introduction

need to install in order to keep an entire basement illuminated (Figure 1.2)? How many Wi-Fi
repeaters do we need to place in a building so that everyone has an Internet connection?

Figure 1.2: Two lamp placements on a polygonal region P under straight-line visibility. The left one
does not fully cover P , while the one on the right is a feasible (and optimal) solution.

Many variants of the problem have been proposed through the years, mainly regarding the
way guards see, which positions guards are allowed to be at, and which section of the polygon
has to be covered.

In this thesis we focus on characterizing the computational and combinatorial complexity of
guarding orthogonal polygons with guards either on vertices – Minimum Vertex Guard (MVG)
– or anywhere in the polygon. We research the hardness of guarding specific polygon families under
specific visibility models, improving known bounds. Different approaches commonly employed to
attack NP-hard problems are explored, namely randomized algorithms, approximation algorithms
and parameterized algorithms. On our journey to develop a new methodology, we meet the
renowned Set Cover problem, whose solutions we approximate through a new randomized
approach, and define new families of orthogonal polygons, for which we provide efficient polynomial
algorithms for tractable cases and a hardness proof for the general case.

In Section 1.2 we describe how the subjects we deal with are organized in this thesis and
hint at our contributions on them, but before that we believe an appropriate context must be
given. Without providing a theoretical background on the current state of affairs, the goals of
the present work would perhaps seem abrupt and their motivation hard to follow. As every
research and experimentation is the product of knowledge accumulated over time, we begin by
presenting in Section 1.1 an overview of the relevant history of the problem in an attempt to
clarify the state of the art that this work launches from. Some of the technical terminology used
in Section 1.1 will be addressed and formalized again in Chapter 2.

1.1 Background on the Art Gallery Problem

While much progress has been made, the Art Gallery Problem is not yet fully solved. Aside
from the main classic results that have been established right after the question gained publicity,
more and more fresh discoveries keep coming to light even in recent years. Chvátal [29] was the
first to show, in 1975, that ⌊n/3⌋ point guards are always sufficient, and sometimes necessary
(Figure 1.3), to guard any simple polygon with n vertices. This important result became known
as the Art Gallery Theorem (AGT).



1.1. Background on the Art Gallery Problem 3

1 2 3 m
. . .

Figure 1.3: The example given by Chvátal to show that sometimes ⌊n/3⌋ guards are necessary. It
consists of a comb-shaped polygon with n = 3m vertices, for some integer m ≥ 1. Notice that the points
1, 2, . . . , m can only be seen by a guard placed in the shaded triangle that contains it. Since these triangles
are disjoint, we need a guard for each of these m points separately, yielding the m = ⌊n/3⌋ bound.

Three years later, Fisk [49] published a more compact, one-paragraph demonstration of
the same theorem, whose elegance and simplicity earned him a spot in the “Proofs from THE
BOOK” [5]. His proof is based on 3-coloring the vertices of the dual graph of a polygon’s
triangulation and placing guards on all the vertices of the least frequent color (Figure 1.4). Every
triangle has a vertex of each color, so it is definitely covered if we place a guard on each vertex
of any fixed color. Since the least frequent color cannot occur more than ⌊n/3⌋ times, this gives
a proof for the AGT.

In 1981, Avis and Toussaint [10] published a divide-and-conquer algorithm that, closely
following Fisk’s constructive proof, determines a concrete positioning of up to ⌊n/3⌋ guards in
a simple polygon in O(n log n) time. Later improvements have shown how to actually do it
in linear-time, using Chazelle’s revolutionary triangulation algorithm [27] and Kooshesh-Moret
3-coloring algorithm [71].

⇒

Figure 1.4: Illustration of the sufficiency proof by Fisk’s method. The polygon is triangulated and a
3-coloring of its vertices is found. The green vertices form a valid guard set of size 2, which obeys the
upper bound of ⌊n/3⌋ = ⌊10/3⌋ = 3 given by the Art Gallery Theorem.

Through time, many authors contributed with an umbrella of interesting variants of the AGP.
For example, in the original definition, guards can see in straight lines, with a 360◦ range; this
is referred to as the general or straight-line visibility model. However, one may opt to replace
this notion so that instead they have a limited range of vision (α-floodlights [46]) or only see
axis-parallel rectangles contained in orthogonal polygons – those whose edges all meet at right
angles (r-visibility).

One can also enforce specific locations where guards are allowed to be placed: anywhere
in P (point-guards, Figure 1.5b), only at vertices (vertex-guards, Figure 1.5a) or only on
edges (boundary-guards). We may not as well require the entire polygon P to be guarded:
an exact region within P that we want to be watched over can also be specified. Usually,



4 Chapter 1. Introduction

these variations are abbreviated with names of the form G-S Art Gallery, where one wants
to find the smallest subset of G ∈ {Vertex, Edge, Point} that covers all the points in S ∈
{Vertex, Edge, Point}. The Vertex-Point variation of the problem is often called MVG
in the literature. Given that we have more freedom regarding where to place point-guards, the
size of a point-guard set for a polygon P is never greater than the size of a vertex-guard set for
the same polygon P (and is often smaller). Note that a vertex-guard set is, by definition, also a
valid point-guard set and a valid boundary-guard set.

(a) (b)

Figure 1.5: (a) Two vertex-guards are required for guarding this polygon. (b) A single point-guard
would be enough.

Each variant of the AGP leads to different combinatorial results and complexity bounds,
which may vary wildly according to the polygon class being considered. For instance, several
alternate proofs have shown ⌊n/4⌋ guards to be sufficient, and in some cases necessary, for
guarding orthogonal polygons with n vertices [64] (see Figure 1.6). This tighter bound is known
as the Orthogonal Art Gallery Theorem (OAGT).

Figure 1.6: Illustration of the sufficiency proof by the method of Kahn et al. [64], adapted from [99].
Similar in spirit to Fisk’s proof, the authors prove OAGT by showing that any orthogonal polygon can be
decomposed into convex quadrilaterals by adding non-intersecting line segments between vertices (convex
quadrilateralization), which induces a 4-coloring of the vertices.

NP-hardness results The Art Gallery Problem’s innocent-looking description can be deceiving,
though. In fact, it has been proved by Lee and Lin to be NP-hard [73], meaning that one cannot
hope for a polynomial-time algorithm that guards an arbitrary polygon P using either vertex-
guards, edge-guards or point-guards, unless P = NP. Perhaps surprisingly, the NP-hardness
result still holds for vertex-guarding or point-guarding orthogonal polygons [83], even if we only
want to cover their vertices [68]. This even holds for very restricted classes of polygons, such as
simple monotone polygons [72] and k-link polygons, for k ≥ 2 [23].



1.1. Background on the Art Gallery Problem 5

Parameterized algorithms Given that the problem is hard in a general setting, one of the
ways of attacking it is to explore specific structural properties of instances and take advantage
of them to develop parameterized algorithms that are very efficient in constrained scenarios. In
other words, one would like to find some instance parameter that tends to be pragmatically small
enough, so as to enable an algorithm to be very efficient for all practical purposes. Formally, if
the instance size is n and the parameter chosen is k, the existence of an algorithm running in
time f(k) nO(1), for some computable function f , would ensure fixed-parameter tractability of
the problem.

Following this reasoning, in 2020, Agrawal et al. [4] have shown that if, for example, one
only needs to guard the vertices of P with vertex-guards, the problem becomes fixed-parameter
tractable (FPT) with parameter the number of reflex vertices r. Concretely, this gives an
approach running in time rO(r2) nO(1) that becomes efficient when the polygon P is “almost
convex”, regardless of the number of the vertices, n.

The Exponential Time Hypothesis (ETH) is the unproven assumption, conjectured by
Impagliazzo and Paturi [60], that there is no 2o(n)-time algorithm for 3-SAT on n variables and,
if true, it has the consequence that P ̸= NP. In spite of recent positive developments, it has also
been proved that for Point-Point AGP or Vertex-Point AGP there is no algorithm running
in time f(k) no(k/ log k), for any computable function f and allowed number of guards k, even for
simple polygons, unless the ETH fails [20]. These results imply that the problem is W [1]-hard
when parameterized by the number of guards, k.

Approximation algorithms Another possible line of attack is to focus on finding guard sets
that do not need to be optimal as long as they are close to the minimum (in a mathematically
precise sense). These approximation algorithms are useful if we do not require sticking to exact
solutions, which is a perfectly reasonable assumption in many realistic settings. These ideas can
even be combined with randomization to achieve expectedly good running times.

Ghosh proposed in 2010 a reduction from MVG to the Set Cover problem, by partitioning the
polygon into vertex visibility regions that could be used to obtain a greedy O(log n)-approximation
polynomial algorithm [53]. Krohn and Nilsson [72] gave in 2013 an O(OPT )-approximation
algorithm for guarding orthogonal polygons. This means that, if the smallest guard set for a
given polygon P has size OPT , their algorithm assuredly finds one with size O(OPT 2). The
strength of this algorithm is that the approximation factor is entirely independent of the number
of vertices of the polygon. Three years later, the point-guard AGP was discovered to admit
an O(log OPT )-approximation algorithm running in randomized polynomial time for simple
polygons, assuming integer coordinates and a specific general position [21] which can be achieved
with small random perturbations. Also, a polynomial-time algorithm with factor O(log log OPT )
was published for guarding simple polygons with vertex- or edge-guards [69].

More recently, in 2017, Bhattacharya et al. [13] published allegedly 18- and 27-factor
approximation algorithms for guarding the vertices, the boundary or the interior of simple



6 Chapter 1. Introduction

polygons using vertex-guards, meaning that the size of the found guard set is guaranteed to be at
most a multiplicative constant away from the optimum. These findings settle an old conjecture
by Ghosh [53] that there exist constant-factor approximation algorithms for MVG.

Given the practicability of O(1)-approximating a minimum solution to AGP, it makes sense
to wonder whether one would also be able to approximate it with an arbitrary desired precision
in polynomial time. In other words, given an instance of the problem and a parameter ϵ > 0, we
could be interested in finding a solution that is within a factor of 1 + ϵ of being optimal. This
would imply AGP to admit what is called a polynomial-time approximation scheme (PTAS).
For specific classes of polygons, such as weakly-visible polygons under Vertex-Vertex or
Vertex-Edge guarding, there indeed exist PTASs [67].

Nevertheless, in 1998 and 2001 Eidenbenz et al. [40, 41] had published the first inappro-
ximability results for AGP, proving that guarding an n-vertex polygon P with or without holes
either with vertex-guards, edge-guards or point-guards is indeed APX-hard. This means that,
for polygons with holes, unless NP ⊆ TIME(nO(log log n)) these problems cannot be approximated
by a polynomial-time algorithm with ratio 1−ϵ

12 ln n, for any ϵ > 0. For polygons without holes,
on the other hand, there exists a constant ϵ > 0 such that no polynomial-time algorithm can
possibly guarantee an approximation ratio of 1 + ϵ for each of these problems.

Back to the realm of exact solutions, results under the notion of r-visibility have usually been
quite encouraging. Worman and Keil [102] gave, in 2007, an exact algorithm to guard simple
orthogonal polygons under r-visibility with complexity Õ(n17), by determining a maximum
independent set in a perfect graph as a sub-problem. Furthemore, despite guarding tree/thin
orthogonal polygons (TOPs) under the standard visibility model having been proved NP-hard –
in fact, APX-hard – by Tomás [91], Biedl and Mehrabi [14, 15] have shown how simple TOPs
can be r-guarded in polynomial time. If they have an arbitrary number of holes the problem
remains NP-hard, however. Simple orthogonal path polygons with dent edges can similarly be
r-guarded in linear time [58].

1.2 Contributions and thesis outline

The previous section addressed several directions that the current thesis follows. In this work
we explore applications of techniques commonly used to attack NP-hard problems to conceive
new efficient algorithms for several AGP variants and describe their computational complexity.
Including this Introduction, this thesis has 7 chapters, and its structure is as follows.

We start off by reviewing, in Chapter 2, geometric and computational hardness notions that
are recurrently invoked throughout the thesis, some of which have already been mentioned in
Section 1.1.

The remaining chapters naturally unfold into two main parts. We begin the first half in
Chapter 3, where we seek solutions for the problem of finding a minimum-cardinality vertex-guard



1.2. Contributions and thesis outline 7

set for orthogonal polygons through a reduction to Set Cover. With that in mind we propose
a new randomized algorithm for approximating Set Cover, study kernelization techniques to
speed up the algorithm and improve its probability of success, and present new efficient data
structures that have been developed for that purpose.

Chapter 4 describes the setup we adopted for empirically evaluating the performance of the
randomized algorithm that is proposed in Chapter 3 against a dataset of orthogonal polygons.
We discuss the results we obtained and, based on them, formulate a conjecture about the growth
of polygon convex partition sizes.

The second half begins with Chapter 5, in which we present a new class of orthogonal
polygons, the SCOTs, and study the complexity of guarding them under r-visibility. We provide
efficient algorithms for the cases where the problem is polynomially solvable, and give a proof of
NP-hardness and approximation algorithms for the remaining ones.

An exact algorithm for finding an optimal guard set for polyominoes under rook-vision is
proposed in Chapter 6, and this proves a result on the fixed-parameter tractability of the problem.

Finally, in Chapter 7 we draw conclusions about the work done, highlight the main results
we arrived at and discuss prospects of future work.





Chapter 2

Preliminaries

We dedicate the present chapter to defining terminology and formalizing recurrent concepts that
are transversal to the entirety of this thesis. We begin by defining relevant geometry concepts,
namely the central object of study in our work: polygons.

2.1 Geometry

2.1.1 Polygons

Definition 2.1 (Simple polygon). A simple polygon P is a subset of the plane R2 that is enclosed
by a finite, cyclic chain of n ≥ 3 non-disjoint line segments. Only pairs of segments that are
adjacent in the chain do intersect, and their intersections coincide with segment endpoints. The
intersection points are the vertices of P and the line segments are its edges.

In some scenarios, the constraint that only adjacent edges intersect at their common endpoints
is relaxed, enabling the polygon to have self-intersections (Figure 2.1b). Other times, more
than one cyclic chain is used to define the boundary of the polygon, introducing internal holes
(Figure 2.1c). In these two cases, the polygon is said to be non-simple – but, if the polygon has
no holes or self-intersections, it remains simple according to Definition 2.1 (Figure 2.1a). We
will work with both simple and non-simple polygons in this thesis, making it clear whether we
are referring to one type or another. All the non-simple polygons we treat have holes, but not
self-intersections.

It is usual to denote the interior of a polygon P by int P , its exterior by ext P and its boundary
by ∂P . We consider ∂P as part of the polygon, so P = int P ∪ ∂P .

Each vertex v of P is often classified as convex or reflex according to its internal angle, that
is, the angle formed by the two edges that are incident to v with the interior of P (Figure 2.2).

Definition 2.2 (Convex and reflex vertices). A vertex v of a polygon is said to be convex if its

9



10 Chapter 2. Preliminaries

(a) (b) (c) (d) (e)

Figure 2.1: (a) Simple polygon. (b) Polygon with self-intersections. (c) Polygon with holes. (d) Not a
polygon, because the chain of edges is not closed. (e) Not a polygon, because edges cannot be curve.

internal angle measures 180◦ or less. On the contrary, v is said to be reflex if its internal angle
measures strictly more than 180◦.

The main class of polygons our work is based upon is that of orthogonal polygons, which we
now formalize.

Definition 2.3 (Orthogonal polygon). A polygon P is orthogonal if each one of its convex
vertices has an internal angle of 90◦ and each one of its reflex vertices has an internal angle of
270◦.

It is useful to view every edge of an orthogonal polygon as being parallel to a pair of orthogonal
coordinate axes (which we can take as the x- or y-coordinate axes, without loss of generality). In
this representation, edges alternate between horizontal and vertical.

v1

v2

Figure 2.2: Orthogonal polygon. v1 is a convex vertex and v2 is a reflex vertex.

Theorem 2.1. A simple orthogonal polygon P of n vertices has exactly r = n−4
2 reflex vertices

and c = n+4
2 convex vertices.

Proof. Each of the r reflex vertices of P has an internal angle of 270◦ and each of the c convex
vertices of P has an internal angle of 90◦. Since the sum of the internal angles of a simple polygon
with n vertices is 180(n− 2)◦, we have the system of equationsn = r + c

180(n− 2) = 270r + 90c

which solves to r = n−4
2 and c = n+4

2 .



2.1. Geometry 11

Definition 2.4 (Polyomino). An m-polyomino Pm is a polyform that results from the (finite)
union of m squares of equal size edge to edge. More formally, an m-polyomino is a finite subset
of a regular square tiling of the plane, consisting of m closed unit squares whose interior is
connected [16, 18]. We may fairly interchangeably refer to the unit squares as pixels, cells or
tiles. One can construct any polyomino by starting with a pixel and then repeatedly gluing new
pixels to the already constructed set, edge to edge.

Figure 2.3: A 23-polyomino with a hole.

2.1.2 Visibility

This thesis is about watching over art galleries, and we could not discuss any ideas without first
making it clear how guards may actually see.

Definition 2.5 (Straight-line visibility). Let P be a simple polygon. Two points p, q ∈ P see
each other (or are visible from each other) under straight-line (or unrestricted) visibility if the
closed line segment pq does not intersect ext P .

Definition 2.6 (Rectangular visibility, r-visibility). Let P be a simple orthogonal polygon.
Two points p, q ∈ P see each other (or r-see each other, or are r-visible from each other) under
r-visibility if the minimal axis-aligned rectangle containing p and q does not intersect ext P . Note
that the rectangle degenerates to a line segment if p and q have the same x- or y-coordinate.

Definition 2.7 (Visibility polygon of a point). Let P be a simple polygon. The visibility region
of a point p ∈ P , which we denote by V(p), is the set of all the points of P that are visible to p.
We may write Vr(p) if the adopted model is r-visibility.

When the visibility notion we assume is r-visibility and that can be clearly inferred from the
context, we might simply use the term see instead of r-see. Figure 2.4 compares the visibility
regions of the same vertex under different models.

Clearly Vr(p) ⊆ V(p) for any point p ∈ P . This implies that any feasible guard set in the
r-visibility model is also a feasible guard set in the straight-line visibility model (in general, the
same does not hold in reverse).

It may happen, in some polygons P , that the visibility region of a point is the union of a
subpolygon Q ⊆ P and a set of line segments, called antennas or needles (Figure 2.5a). However,



12 Chapter 2. Preliminaries

v

(a)

v

(b)

Figure 2.4: Which subset of an orthogonal polygon a guard at vertex v sees (a) under straight-line
visibility and (b) under r-visibility.

in this work we restrict V(p) to Q, under a visibility assumption that is called regularized
visibility [95] (Figure 2.5b). The regularized region seen by p is therefore

V∗(p) = closure(int(V(p))) = (V(p) \ ∂V(p)) ∪ ∂ (V(p) \ ∂V(p)) .

We will use V(p) to mean V∗(p). This assumption allows us to disregard degeneracies and, as
we argue in due course, does not spoil the correctness nor optimality of our algorithms. The
regularized visibility region V(p) is a star-shaped polygon, so we also refer to it as a visibility
polygon.

p v1

v2

(a)

p v1

v2

(b)

Figure 2.5: (a) Non-regularized straight-line visibility. Point p is collinear with vertices v1 and v2 and
sees the union of a polygon and a needle. (b) Regularized straight-line visibility. The visibility region of p

does not include degeneracies and the needle is discarded.

2.1.2.1 Computing visibility

Efficient algorithms are known for computing V(v) for a vertex v within a polygon P of n vertices
under straight-line visibility – but some of them were proven faulty.

Shamos’ algorithm [85] allegedly runs in O(n), but was shown to be incorrect by El-Gindy [42].
El-Gindy and Avis [43] published another linear-time algorithm that updates three stacks while
examining vertices in clockwise order, which in turn was also proven incorrect by Joe and Simpson.
Lee [74] proposed an algorithm that only uses one stack and is simpler than El-Gindy and Avis’
– however Joe and Simpson have also shown that it fails for some polygons. Joe-Simpson’s
algorithm [62] was then published as an attempt to correct Lee’s algorithm, but corner-case



2.1. Geometry 13

instances were found through random testing during the organization of a geometric programming
contest for university students (“Art Gallery Competition”) [84].

Instead of applying these algorithms, in this work we compute visibility regions using the
triangular expansion algorithm. We privileged it due to its robustness, efficiency and simplicity.
The technique was first described in Tomás et al. [90, 94] as an adaptation of a work by Aronov
et al. [8], and was later integrated in CGAL [25].

As a preprocessing phase, the triangular expansion algorithm starts by computing a trian-
gulation of the polygon P (see Definition 2.10). A query asking for the visibility region V(p)
of a given point p is answered by performing a breadth-first search over the triangulation. We
start from the triangle that contains p and successively propagate visibility cones to adjacent
triangles, through the sections of the shared edges that are seen by p (Figure 2.6). Empirical
tests [25] demonstrate that triangular expansion is much faster than previous algorithms – about
two orders of magnitude on large inputs. This is because it is in some sense output-sensitive: the
search only involves relevant triangles that are totally or partially seen by p.

Figure 2.6: Triangular expansion algorithm. Visibility is propagated to neighbour triangles through
windows on shared edges.

2.1.3 Arrangements

Definition 2.8 (Arrangement). A planar arrangement A(C) is the subdivision of the R2 plane
induced by a set C of geometric objects, such as curves.

We will only consider arrangements in R2 induced by line segments. Such an arrangement can
be described by three types of topological objects: vertices (0-dimensional), edges (1-dimensional)
and faces (2-dimensional). Each face is a maximal connected component of the R2 plane that
does not contain any vertex or edge (in this sense, it is an open set). The boundary of each face
consists of several disjoint edge cycles, one of which is external and may delimit an unbounded
face (Figure 2.7b).

Data structures such as DCEL (doubly-connected edge list) [79] and quad-edge [55] can be used
to efficiently represent these entities using linear space, maintain the incidence relations among
them, obtain query results (such as point location) and perform operations such as computing the
overlay of two arrangements. A DCEL keeps a list of interconnected vertices, faces and half-edges



14 Chapter 2. Preliminaries

(splitting each edge into two twin directed edges with opposite directions) conveniently updated
(Figure 2.7). Each half-edge keeps pointers to its target endpoint, the incident face to its left and
its twin, next and previous half-edges. A vertex stores its coordinates and one arbitrary half-edge
originating from it. Finally, each face in the DCEL stores an arbitrary half-edge enclosing its
outer border and a linked-list of half-edges enclosing borders of inner faces that may eventually
exist.

e

twin(e)

next(e)

prev(e)

face(e)

target(e)

v

edge(v)

(a)

f

unbounded face

edge(f )

(b)

Figure 2.7: (a) Information that (a) a vertex v, a half-edge e and (b) a face f keep in a DCEL structure.

2.1.3.1 Overlays

Arrangement components can also be extended to store additional data, which proves convenient
when performing arrangement overlays. Overlaying two arrangements with extra data attached
to faces allows performing operations on polygons, such as Boolean set operations (union,
intersection, difference, symmetric difference) (Figure 2.8).

Definition 2.9 (Overlay, [100]). The overlay of two arrangements A1, A2 is another arrangement
A such that there are faces f1 and f2 in A1 and A2, respectively, if and only if there is a face f

in A that is a maximal connected component of f1 ∩ f2.

The overlay of two arrangements A1, A2 can be computed in O ((n + k) log n) time by
Bentley-Ottmann’s sweep-line algorithm [12], where n is the total number of edges of A1 and A2

and k is the number of edge intersections between A1 and A2. Indeed, it can be computed in
O(n + k) time [48] if both A1 and A2 form simply connected subdivisions – which is the case for
visibility regions.

It is useful in this work to naturally extend the definition to more than two arrangements,
in order to enable the notion of cumulative overlay. For example, for computing the overlay
between three arrangements A1, A2, A3, we first compute the overlay A′ of A1 and A2 and then
compute the overlay A′′ of A′ and A3.



2.1. Geometry 15

∪ =

A1

A2

Figure 2.8: Overlay of two arrangements A1, A2.

2.1.4 Partitions

Many art gallery algorithms are made efficient – or even possible – by first decomposing input
polygons into a set of smaller, disjoint subpolygons according to some well-defined rule.

Definition 2.10 (Triangulation). A triangulation of a polygon P is a subdivision of P into n− 2
triangles, by adding n− 3 internal, non-crossing diagonals between vertices of P (Figure 2.9).

Figure 2.9: A polygon with n = 12 vertices, triangulated into n− 2 = 10 triangles by adding n− 3 = 9
internal diagonals (dashed in the figure).

There are several algorithms for computing polygon triangulations. A noteworthy one is
Chazelle’s algorithm [27], which allows us to triangulate a simple polygon with n vertices in
optimal Θ(n) time.

Definition 2.11 (Convex partition). The convex partition [53] of a polygon P is denoted by
Π(P ) and corresponds to a partition of P induced by vertex visibility regions into convex pieces
(also called convex components). It can be represented as the overlay of the arrangements defined
by the boundaries of all the vertex visibility polygons (Figure 2.10b).

Because of the way a convex partition is produced, every piece in Π(P ) is bounded by line
segments that connect two vertices of the polygon – either polygon edges or constructed edges
–, and is included in the visibility region of some vertex. Each vertex of a piece is either a
vertex of P or a point called Steiner point. For any polygon P with n vertices, |Π(P )| ∈ O(n4)
because O(n2) diagonals are drawn to compute the partition. However, this bound is lowered to
|Π(P )| ∈ O(n3) if P is guaranteed to be simple [53].



16 Chapter 2. Preliminaries

Definition 2.12 (Grid partition). The grid partition [91] of an orthogonal polygon P (also
called r-cut [11] or pixelation [14]) is denoted by ΠHV (P ) and corresponds to a partition of P

into rectangular pieces called r-pieces (also called pixels [14] or basic regions [102]), obtained by
extending every horizontal and vertical edge incident to a reflex vertex towards the interior of P ,
until it touches another edge (Figure 2.10a).

r-piece

(a)

piece

piece

(b)

Figure 2.10: (a) The grid partition ΠHV (P ) of an orthogonal polygon P . (b) The convex partition
Π(P ) induced by vertex visibility regions (under straight-line visibility).

Observe that, for any orthogonal polygon P , the convex partition Π(P ) is more refined than
the grid partition ΠHV (P ). For a fixed number of vertices n = 2r + 4, the size of ΠHV (P ) is Ω(n)
and O(n2). These bounds are tight for polygons that we call Thin and Fat [11], respectively,
and we address these again in Chapter 3. The partition ΠHV (P ) can be computed in O(n2) time
using a sweep-line algorithm, as shown in [90]: first, a horizontal sweep locates the intersection
points of the horizontal edge extensions with ∂P ; these points are marked on vertical edges and
the polygon is then swept vertically to cut the r-pieces.

2.2 Computational hardness

2.2.1 Approximation algorithms

Approximation algorithms are one of the ways to attack NP-hard problems, in particular when
one does not require exact solutions and an estimate with guarantees of being close to optimum
is acceptable. We present a few concepts about approximability, partially adapted from [37],
that are relevant for later chapters.

Definition 2.13 (NPO problem). An NP-optimization problem (NPO) P is a quadruple
⟨I, sol, c, goal⟩ such that:

• I is the set of instances of P and is recognizable in polynomial time.

• given an instance x ∈ I, sol(x) is the set of feasible solutions of x and, for any y ∈ sol(x),
the size of the solution, |y|, is polynomial in the size of the instance, |x|.



2.2. Computational hardness 17

• given an instance x and a feasible solution y of x, c(x, y) ∈ R denotes the cost of y; c is
often called the objective function.

• the goal function refers to the type of the optimization problem: min or max.

Given some instance x ∈ I, the goal is to find an optimal solution, that is, a feasible solution
y such that

c(x, y) = goal{c(x, y′) | y′ ∈ sol(x)}

The cost of an optimal solution for an instance x ∈ I is denoted by OPT (x).

The class NPO contains all the NP-optimization problems. Every problem in NPO has a
corresponding decision problem in NP that asks, for a given instance x, whether there is a feasible
solution y that obeys a certain threshold on the cost c(x, y). For instance, Minimum Vertex
Cover is an NP-optimization problem which, given a graph G, asks for the smallest subset of
nodes that covers every edge. Its corresponding decision problem in NP is Vertex Cover,
which, given a graph G and a positive integer k, asks whether there is a subset of at most k

nodes that covers all the edges of G.

Definition 2.14 (α-approximation algorithm). Let P = ⟨I, sol, c, min⟩ be an NPO minimization
problem, let A be a polynomial-time algorithm for P and let α(·) : Z+ → [1, +∞]. Then, A is
an α-approximation algorithm for P if, for any instance x of P, the solution y computed by A
satisfies

c(x, y) ≤ α(|x|) ·OPT (x)

In this case, we refer to the function α as the approximation factor or approximation ratio of A.
If α is a constant function, that is, it does not depend on the size of the input |x|, we say that A
is a constant-factor approximation algorithm.

Definition 2.15 (APX class). An NPO problem P belongs to the class APX if it admits a
constant-factor approximation algorithm.

Definition 2.16 (APX-hard). An NPO problem is APX-hard if there is a constant ϵ > 0 such
that no polynomial-time algorithm can guarantee an approximation ratio of 1 + ϵ for P, unless
P = NP.

Definition 2.17 (PTAS). An NPO problem P belongs to the class PTAS if an algorithm A
exists such that, for any instance x of P and any fixed, constant rational ϵ ≥ 0 given as input, A
is a (1 + ϵ)-approximation algorithm for P.

By these definitions, it is clear that PTAS ⊆ APX ⊆ NPO, but it is not known whether these
inclusions are strict. If there is a PTAS for some APX-hard problem, then P = NP [9].



18 Chapter 2. Preliminaries

2.2.2 Parameterized complexity

Another way to cope with the intractability of NP-hard problems while seeking exact solutions is
to confine the combinatorial explosion to instance parameters that, in practice, may be much
smaller than the instance size. The goal of parameterized complexity is to exploit structural
properties of instances that, in realistic scenarios, may lead to very efficient algorithms.

Definition 2.18 (Fixed-parameter tractability). Formally, a parameterization of a problem
maps each instance x to a pair (x, k), where k is a non-negative integer (the parameter). A
parameterized problem is said to be fixed-parameter tractable (FPT), if it is decidable in f(k) nO(1)

time, where n = |(x, k)| and f is a computable function that only depends on k (likely running
in time exponential in k or even slower).

In this sense, the combinatorial hardness of the problem becomes condensed into a (hopefully
small) parameter instead of the whole input size. The complexity class of fixed-parameter
tractable problems is called FPT. Kernelization techniques are often employed as a preprocessing
phase to reduce an instance to an equivalent instance (kernel) that has a size bounded by a
function of k and is, thus, easier to solve.



Chapter 3

Randomized Algorithm for Set Cover

In this chapter, we solve Minimum Vertex Guard (MVG) for orthogonal polygons under
straight-line visibility by a reduction to the Set Cover problem. We present a new polynomial-
time algorithm we developed for approximating Set Cover and call it Randomized-Set-Cover.
It is randomized in the sense that some of the decisions it takes are based on a degree of randomness
– that is, a stream of uniformly random bits is also provided to the algorithm along with the input.
Randomized-Set-Cover is a Monte Carlo algorithm, so its running time can be precisely
characterized, but the solution it outputs for a given instance may not always be optimal.

We first present known background on the approximability of Set Cover and discuss
techniques for reducing MVG to Set Cover. We describe how a simple pre-processing step
(kernelization) can help significantly reduce the size of the instance being solved while still
preserving optimality, and how this step can be generalized to run after every iteration. We
also show that, for uniformly random inputs of Set Cover, one can deterministically find
optimal solutions with very high probability. Finally, we develop time- and memory-efficient
data structures for implementing Randomized-Set-Cover.

3.1 Background on Set Cover

Set Cover is one of the most fundamental optimization problems in Computational Complexity
Theory and Combinatorics. Its corresponding decision version integrates the “Karp’s 21 NP-
complete problems” [66].

Definition 3.1 (Set Cover, decision version). Given a pair (U ,F) consisting of a finite set
U (universe) and a family F = {S1, . . . , S|F|} of subsets of U such that ⋃S∈F S ⊆ U , and an
integer k ∈ Z+, Set Cover asks whether there exists a subset C ⊆ F such that U = ⋃

S∈C S

and |C| = k. Such a set C is called a cover for U .

Definition 3.1 defines Set Cover as a decision problem. However, it is also common to
address it as an optimization problem – also called Minimum Set Cover –, in which the goal is

19



20 Chapter 3. Randomized Algorithm for Set Cover

to determine a cover C⋆ ⊆ F for U of minimum cardinality:

Definition 3.2 (Set Cover, optimization version). Given a pair (U ,F) consisting of a finite
set U (universe) and a family F = {S1, . . . , S|F|} of subsets of U such that ⋃S∈F S ⊆ U , Set
Cover asks for a minimum-cardinality subset C ⊆ F such that U = ⋃

S∈C S or to report that no
such C exists. Such a set C is called a cover for U .

Throughout this thesis, we use Set Cover to denote the optimization problem. Note that,
by convenience, we have slightly modified the usual definition of the problem, which often requires
that ⋃S∈F S = U . Our definition allows ⋃S∈F S ⊂ U , for which case there is no feasible cover.
Figure 3.1 shows an example of an instance and a corresponding optimal solution.

U = {1, 2, 3, 4, 5}

F = {S1, S2, S3, S4, S5}

S1 = {1, 3}

S2 = {1, 2, 5}

S3 = {2, 3, 4}

S4 = {3, 5}

S5 = {1, 3, 4}

(a)

5

C⋆
= {S2, S5}

(b)

Figure 3.1: (a) A Set Cover instance (U ,F) and (b) a corresponding minimum cover C⋆. {S2, S3} is
another optimal cover for U .

Its statement is so general that many other frequently arising optimization problems can
be trivially encoded as instances of Set Cover, namely Vertex Cover, Dominating Set,
Hitting Set, and even the Art Gallery Problem itself [53]. As a simple example, suppose that
U represents a set of rooms in a university department and F represents a set of locations where
a Wi-Fi repeater can be installed, each repeater being able to provide stable Internet access to
some subset of rooms. Determining the minimum number of Wi-Fi repeaters that we need to
install so that each room is covered by at least one repeater can be modeled as a Set Cover
instance.

Its wide applicability makes Set Cover a very interesting object of study, both from
theoretical and practical standpoints. However, being NP-hard generally makes the usage of
exhaustive search algorithms prohibitive in practice. Unless the family of instances being treated
has very specific, and exploitable, properties, the usual approach involves instead looking for
approximate solutions that may still be very helpful in practice. We now mention some important,
state-of-the-art results regarding the approximability of Set Cover.

3.1.1 Hs-approximation algorithm

Definition 3.3 (Harmonic number). Hk = ∑k
i=1

1
i denotes the k-th harmonic number, for k ≥ 1.



3.1. Background on Set Cover 21

Proposition 3.1 ([33], A.14). For any integer k ≥ 1, Hk ≤ 1 + ln k.

Theorem 3.2. [63] Let (U ,F) be a Set Cover instance. An optimal solution for (U ,F) can
be approximated with factor Hs, where s = max{|S| : S ∈ F}, in polynomial time.

Chvátal [30] showed that the result of Theorem 3.2 extends to Weighted Set Cover, a
variation of Set Cover where each set S ∈ F is also assigned a cost and the goal is to find a
cover for U of minimum total cost.

An example of an algorithm that achieves such an approximation ratio for Set Cover is
Greedy-Set-Cover. Its greedy idea is very intuitive: at any step, choose the subset S ∈ F
that covers as many elements as possible among the ones that are still uncovered. Pseudocode
for the algorithm, based on the presentation of [33], is given in Algorithm 1.

Algorithm 1 Greedy-Set-Cover(U ,F)
1: X ← U ▷ uncovered elements
2: C ← ∅
3: While X ̸= ∅:
4: S ← choose set from F that maximizes |S ∩ X |
5: X ← X \ S

6: C ← C ∪ {S}
7: Return C

Greedy-Set-Cover can be implemented to run in linear time, O (∑S∈F |S|), using a bucket
queue data structure [33]. Because of Proposition 3.1, the approximation factor Hs is also often
presented in a weaker form as 1+ln |U|, or even simply as O(log |U|). In fact, a tighter analysis [87]
proves that Greedy-Set-Cover achieves an approximation ratio of ln |U| − ln ln |U|+ Θ(1). A
series of works [39, 47, 76] gives successively tighter inapproximability results and culminates in
showing that Set Cover cannot be approximated to within (1− o(1)) · ln |U|, unless P = NP
(Theorem 3.3). This implies that Greedy-Set-Cover essentially performs almost as good as
we can possibly achieve, under plausible complexity-theoretic assumptions.

Theorem 3.3 ([39], Corollary 1.5). For any constant ϵ > 0, it is NP-hard to approximate Set
Cover with factor (1− ϵ) · ln |U|.

For instances whose duals have bounded VC-dimension, specialized algorithms have been
proposed with significantly better approximation ratios [24]. For more about the VC theory,
refer to the original papers by Vapnik and Chervonenkis [97].

3.1.2 f-approximation algorithm

One may be able to improve the Hs approximation factor provided further constraints on the
Set Cover instance are ensured. Namely, if every element x ∈ U is infrequent in F , we can



22 Chapter 3. Randomized Algorithm for Set Cover

achieve a better ratio, as Theorem 3.4 formalizes.

Theorem 3.4 ([57]). Let (U ,F) be a Set Cover instance such that any element x ∈ U occurs
in at most f sets of F , for some f ≥ 1. An optimal solution for (U ,F) can be approximated with
factor f in polynomial time.

Notice that we can view Vertex Cover as a special case of Set Cover with f = 2
(every edge is incident to two vertices). A 2-approximation algorithm, attributed to Gavril and
Yannakakis in [82], is also known for Vertex Cover, based on greedily finding a maximal
matching M and adding all the nodes covered by M to the vertex cover. This result, in
fact, generalizes for hypergraphs whose hyperedges connect up to f nodes, from which an
f -approximation algorithm for Set Cover follows [52].

There are alternative methods to obtain an f -approximation in polynomial time, for some
constant f . For example, LP-rounding techniques formulate the problem as an integer linear
program (ILP) and solve the instance where integrality constraints are relaxed. Continuous
variables in the solution are then rounded back to feasible, integral values, in a way that guarantees
the approximation factor – either according to an established threshold criterion (deterministic
rounding) or by being interpreted as probabilities (randomized rounding) [98, 101].

We note that Hs and f are only loose upper bounds for the approximation factors provided
by Greedy-Set-Cover and LP-rounding methods; it could be that the ratio that they obtain
for a concrete instance is smaller than those.

To conclude our review on Set Cover, there exists a pair of L-reductions between Set Cover
and Dominating Set [65], implying that, if a polynomial-time α-approximation algorithm exists
for one of them, for some α, then a polynomial-time α-approximation algorithm also exists for
the other. This establishes a deep connection between Set Cover and Dominating Set in
terms of (in)approximability.

3.2 Polygon discretization and instance generation

In this chapter, we are interested in finding minimum-cardinality vertex-guard sets for orthogonal
polygons under straight-line visibility (MVG). For that we reduce the problem to Set Cover.
But a polygon is a continuous set of points, while Set Cover deals with finite, discrete sets, so
we cannot hope for such a reduction without first discretizing the instance in some way. In this
section we detail the steps taken in that direction.

A general strategy that works for any simple polygon P involves a partition of P into convex
pieces induced by vertex visibility regions (Definition 2.11). This induces an arrangement defined
by the boundaries of all the vertex visibility polygons, and provides a simple way to make up a
Set Cover instance (U ,F): convex pieces in Π(P ) correspond to elements in the universe U
and all the pieces that some vertex of P sees are turned into a set in F (Figure 3.2).



3.2. Polygon discretization and instance generation 23

1 2

3 4

56

78

π5

π4

π8

π1

π7

π6

π2

π3

S1 = {x1, x4, x5, x8}
S2 = {x4, x5, x8}
S3 = {x1, x3, x4, x5, x6, x7, x8}
S4 = {x1, x2, x3, x6, x7, x8}
S5 = {x2, x3, x6, x7}
S6 = {x2, x3, x6}
S7 = {x1, x2, x3, x4, x6, x7, x8}
S8 = {x1, x4, x5, x6, x7, x8}

Figure 3.2: Reduction from MVG to Set Cover. The convex partition of an orthogonal polygon with
8 vertices and 8 pieces is mapped to a Set Cover instance.

A useful property of convex partitions is that no piece in Π(P ) can be partially seen by a
vertex. That is, for any piece π ∈ Π(P ) and any vertex v, either v fully sees int π or v sees
nothing from int π.

Theorem 3.5. A vertex v of P completely sees the interior of a piece π ∈ Π(P ) if and only if v

sees some point in the interior of π.

Proof. Of course, if v completely sees int π, then v sees some point in int π. For the other direction,
suppose, by contradiction, that v sees a point q ∈ int π but does not see another point q′ ∈ int π

(that is, v sees π partially). Then, π can be split into two sub-pieces, one containing q and the
other containing q′, according to V(v). This contradicts the fact that the partition π belongs
to is induced by vertex visibility regions. Hence, either both q and q′ are seen by v or none of
them are, which means that, if v sees some point in int π, then v also sees every other point in
int π.

For computing regularized vertex visibility polygons we employed the triangular expansion
algorithm (Figure 2.5b). The reason why we adopted regularized visibility is that needles have
an empty interior and their boundary will be naturally guarded anyway by a subset of guards
that cover their immediate neighbourhood.

3.2.1 First approach

One way of generating the Set Cover instance after partitioning the polygon could be to
elect a representative point πp for each piece π, calculate its visibility polygon V(πp), and
determine which vertices of P are contained in V(πp). By inverse construction this tells us which
arrangement faces are seen by each vertex v ∈ P . Point-in-polygon tests of the form v ∈ V(πp) can
be performed in O(n) time per query using the even-odd ray-casting algorithm [86] or the winding



24 Chapter 3. Randomized Algorithm for Set Cover

number algorithm [6]. Queries can also be answered offline in O((|V(πp)|+ n) log (|V(πp)|+ n)
)

time overall, using a sweep-line approach that processes polygon edges and query points at the
same time [95]. Theorem 3.5 enables us to select any point from int π as the representative of
piece π. The centroid cπ = (cπx , cπy ) of π is often a useful choice, because it assuredly belongs to
the interior of π (by convexity of the piece) and can be computed in time linear in the number
of vertices of the piece. Assuming that the vertices of π are (x0, y0), (x1, y1), . . . , (x|π|−1, y|π|−1)
in counter-clockwise order and that (x|π|, y|π|) = (x0, y0), the coordinates of the centroid are
given [80] by

cπx = 1
6A

|π|−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (3.1)

cπy = 1
6A

|π|−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi) , (3.2)

where |π| is number of vertices of π and A is π’s signed area:

A = 1
2

|π|−1∑
i=0

(xiyi+1 − xi+1yi) (3.3)

Note that, in the place of explicitly computing a centroid visibility region V(cπ) just to check
if a vertex v ∈ V(cπ), we could instead check whether the line segment vcπ is fully contained in
P . Such a segment-in-polygon test vcπ ⊂ P could be performed in O(n) time by testing whether
vcπ intersects any edge of P and, if so, whether it passes through some vertex of P .

A classic result known as Carathéodory’s theorem [26] implies that any point in a convex
polygon Q can be expressed as the convex combination of any three vertices of Q. From this it
follows that, as an alternative to the centroid, we can instead take as the representative of piece
π the point (

x0 + x1 + x2
3 ,

y0 + y1 + y2
3

)
, (3.4)

which has the advantage of being computable in constant time.

3.2.2 Second approach

Although the previous method is concise, it is not clever in the sense that it fails to take advantage
of having already computed vertex visibility regions initially. It ends up performing inclusion
tests just to recover which vertices had contributed to producing each arrangement face in the
first place. Better would have been if we had kept this information about vertices all along from
the start.

In this regard, the optimization we actually perform in this work to speed up the instance
generation phase is done by bookkeeping information at the arrangement level. As we are
incrementally building the overlay of arrangements, we augment each face to additionally store



3.3. Definition of Randomized-Set-Cover 25

the set of vertices that see it. Every time two faces overlap in a given area after we extend the
current overlay with a new vertex visibility region V(v), we merge the sets kept by both faces.
This means that, after considering every vertex in succession, the final overlay will represent the
convex partition Π(P ) and each face (other than the unlimited, outer face) will be associated
with the set of vertices that (fully) see the corresponding piece π ∈ Π(P ). At the expense of a
slightly higher space consumption, we are now able to directly extract the Set Cover instance
from the overlay, without need for extra computations.

3.3 Definition of Randomized-Set-Cover

We now describe our Randomized-Set-Cover algorithm. It is a Monte Carlo algorithm, so it
always terminates within a given polynomial time bound, but there is a non-zero probability
that the cover it outputs for a given instance is not optimal.

For any finite set S, assume that S.Choose-Random() returns an element x ∈ S uniformly
at random in constant time. Check out Section 3.4.1 for the way a set supporting this method
can be efficiently implemented in practice. If no cover exists, the Randomized-Set-Cover
algorithm reports that the instance has no solution by returning ⊥ (“impossible”). Otherwise,
the algorithm starts with a cover C = F and works by removing, at each step, a random set
S ∈ C such that every one of its elements is also in at least one other set S′ ∈ C.

Algorithm 2 Randomized-Set-Cover(U ,F)
1: If

⋃
S∈F S ̸= U : Return ⊥

2: C ← F
3: While True:
4: Candidates← {S ∈ C : ∀x ∈ S,∃S′ ∈ C, S′ ̸= S, x ∈ S′}
5: If Candidates = ∅: Break
6: S ← Candidates.Choose-Random()
7: C ← C \ {S}
8: Return C

Notice that Candidates contains the sets whose elements all have frequency at least 2
in C. It is easy to see that the algorithm always finds a valid, minimal cover for U , although
its cardinality may not necessarily be minimum. C is minimal because, when the loop ends,
every set S ∈ C has at least one element which only S contains, so no set in C can be further
removed without breaking feasibility. The following invariant remains true when the termination
condition is tested at the beginning of every iteration of the While loop:

Invariant. Every element x ∈ U is covered by at least one set S ∈ C.



26 Chapter 3. Randomized Algorithm for Set Cover

Proof. This invariant is true when the termination condition is tested for the first time, as C = F
covers U (otherwise, the algorithm would have returned ⊥ at line 1). At lines 4–7, a random set
S ∈ C is removed such that every single element x ∈ S remains covered by at least one other set
S′ ∈ C – if such a set S exists – and so U remains covered after this iteration and the termination
condition is tested again. If S does not exist, the loop breaks and the set C at that point, which
is a cover for U , is returned.

3.3.1 Implementation

A possible implementation of Randomized-Set-Cover follows:

1: If
⋃

S∈F S ̸= U : Return ⊥
2: C ← F ▷ cover to be produced
3: Candidates← ∅ ▷ indices i of sets Si ∈ F that may be removed in the next iteration
4: For each x ∈ U :
5: S−1[x]← ∅
6: For each Si ∈ F :
7: For each x ∈ Si:
8: S−1[x]← S−1[x] ∪ {i} ▷ S−1[x] = {i ∈ {1, . . . , |F|} : x ∈ Si ∈ F}
9: For each Si ∈ F :

10: If ∀x ∈ Si, |S−1[x]| > 1:
11: Candidates← Candidates ∪ {i}
12: While Candidates ̸= ∅:
13: i← Candidates.Choose-Random()
14: Candidates← Candidates \ {i}
15: C ← C \ {Si}
16: For each x ∈ Si:
17: S−1[x]← S−1[x] \ {i}
18: If |S−1[x]| = 1:
19: Candidates← Candidates \ {j}, where S−1[x] = {j}
20: Return C

We now analyze the performance of the algorithm when given an instance (U ,F). Line 1
performs Θ(∑S∈F |S|) operations. The number of operations performed in lines 4–5 is Θ(|U|).
Also, in lines 6–11 we process Θ(∑S∈F |S|) elements. The While loop on lines 12–19 runs at most
|F| − |C⋆| times (|C⋆| ≤ |F|) and in each time O(maxS∈F |S|) elements are processed. However,
notice that each set S can be removed from Candidates at most once, and only then we do
consider the elements in S. Therefore, a tighter analysis shows that the number of operations
performed inside the While loop is in fact O(|F| − |C⋆|+∑

S∈F |S|) ⊆ O(|F|+∑
S∈F |S|).



3.3. Definition of Randomized-Set-Cover 27

As such, the algorithm performs O (|U|+ |F|+∑
S∈F |S|) operations overall, which is linear

in the size of the instance. Observe that the term |C⋆| does not appear in the expression of the
complexity class because |F| (with hidden constants) dominates |C⋆|.

As usually happens with any Monte Carlo algorithm, in order to improve the probability of
success in practice, we shall perform several runs over the same instance and output the best
cover we find among those trials. If we let R(U ,F) denote the number of repetitions over the
instance (U ,F) – which can be regarded as a parameter of the algorithm –, a full characterization
of the number of operations becomes:

O
(

R(U ,F) ·
(
|U|+ |F|+

∑
S∈F
|S|
))

3.3.2 Probability of success with uniformly random instances

First, it is helpful to understand why the probability of the algorithm finding a minimum cover
C⋆ for U is non-zero, that is, why any minimum cover can be obtained by successively removing
from F one of the sets S for which each element is also covered by some other set, S′ ∈ F . This
is because such a set S is trivially redundant and does not belong to any minimum cover: if some
cover C had such a set S, we could make C smaller by removing it, and thus the cover would not
be optimal in the first place. Since the algorithm assigns each of these redundant sets a uniform
(non-zero) probability of being chosen at each step, there is at least one way of having it make
the overall right sequence of choices.

For any given instance (U ,F), let n = R(U ,F) be the number of trials and let p be the
probability that Randomized-Set-Cover determines an optimal cover for it in an individual
trial. The number of times the algorithm determines a minimum cover among those trials is a
random variable X ∼ B(n, p), that is, X follows a binomial distribution with parameters n and
p. The expected number of times the algorithm actually determines a minimum cover for that
instance is E[X] = np and its variance is np(1− p).

Now, the optimality of Randomized-Set-Cover is clearly conditioned by the number of
times it makes a random guess in a single trial: the more deterministic it is, the better the
guarantees we have that it is moving in the right direction. In this section, we study how a simple
sanity test performed before running Randomized-Set-Cover can dramatically improve the
probability that the algorithm finds an optimal cover when applied to uniformly random Set
Cover instances.

A uniformly random instance (U ,F) of Set Cover is one where each element of 2U is in F
with probability 1

2 . Recall that, according to our definition of Set Cover, an instance where⋃
S∈F S ⊂ U is also valid. Given that each of the 2|U| subsets of U may appear in F or not, there

is a total of 22|U| different instances of Set Cover for a fixed cardinality |U|. Therefore, another
way of defining a uniformly random instance is that it is an instance which has probability 1/22|U|

of being drawn from a discrete uniform distribution.



28 Chapter 3. Randomized Algorithm for Set Cover

As discussed below, we observe that uniformly random instances are interesting in the sense
that, for growing |U|, they tend to admit optimal covers of size 1 or 2 with very high probability.
A straightforward algorithm with an O(|F|2) number of operations preceding Randomized-
Set-Cover would optimally solve the vast majority of these instances by simply testing, in
turn:

1. whether ⋃S∈F S ⊂ U : if so, there is no solution.

2. if not, whether U ∈ F : if so, there is an optimal cover of size 1 (which is {U}).

3. if not, whether any pair of sets (S, S′) ∈ F2 satisfies S ∪ S′ = U ; if so, there is an optimal
cover of size 2 (which is {S, S′}).

4. if not, return an arbitrary cover, such as one that is computed by Randomized-Set-Cover
(which, in this case, may not be optimal).

Algorithm 3 formalizes this reasoning. Note that this method can be made deterministic by
having it return any valid cover in step 4 – say, F itself.

Algorithm 3 Uniform-Randomized-Set-Cover(U ,F)
1: If

⋃
S∈F S ⊂ U : Return ⊥

2: If U ∈ F : Return {U}
3: For each pair (S, S′) ∈ F2:
4: If S ∪ S′ = U : Return {S, S′}
5: Return Randomized-Set-Cover(U ,F)

We now argue that uniformly random Set Cover instances admit small covers with high
probability.

Optimal cover of size 1 Any given uniformly random instance admits a cover of size 1 if and
only if U ∈ F and this happens with probability 1

2 .

Optimal cover of size 2 Let’s now focus on the case where U ̸∈ F , which also happens with
probability 1

2 . For every S ∈ F , we define an indicator random variable χS as:

χS =

1 if there is Ŝ ∈ F such that S ∪ Ŝ = U
0 otherwise

Notice that such an Ŝ cannot be S, otherwise S = U ∈ F , which we assumed to be false. For
such an Ŝ to exist, it has to contain every element of U that S is missing (i.e., Ŝ ⊇ U \ S). This
means that there are |U| − |S| fixed elements that must necessarily appear in Ŝ and |S| elements



3.3. Definition of Randomized-Set-Cover 29

that may or may not appear, so there are 2|S| possible candidates for Ŝ in 2U . As each of these
candidates occurs in F with probability 1

2 , the probability that at least one of them does indeed

is P[χS = 1] = 1−
(

1
2

)2|S|

.

As such, the probability that at least one S ∈ F admits a corresponding Ŝ ∈ F such that
S ∪ Ŝ = U is 1 − P [∧S∈F (χS = 0)] ≥ 1 −minS∈F P[χS = 0]. Finally, the probability that the
instance admits an optimal cover of size 2 is

1− P [∧S∈F (χS = 0)]
2 (3.5)

because, in order for that to happen, it must as well not admit an optimal cover of size 1, which
happens with probability 1

2 . Either way, since E[|F|] = 2|U|−1, it is intuitive that this probability
approaches 1

2 exponentially fast with the growth of |U|; Table 3.1 and Figure 3.3 confirm this
fact empirically.

In essence, as |U| grows, the probability that either (a) there is no cover or (b) there is an
optimal cover of size 3 or more becomes extremely low: almost all uniformly random instances
have an optimal cover of size 1 or 2. Hence, Uniform-Randomized-Set-Cover would very
seldom reach the last Return instruction in practice, especially for large universe sizes of |U|,
and so it would likely find an optimal cover C⋆ for U . Table 3.1 shows how the total number of
instances of each type evolves with the size of the universe for |U| ∈ {1, 2, 3, 4}.

Since the total number of instances grows extremely fast with the universe size, exact results
for |U| ≥ 5 were not computed. For instance, there exist 225 ≈ 4.29× 109 instances with |U| = 5
and 226 ≈ 1.84× 1019 instances with |U| = 6, which would take an unfeasible amount of time to
generate and solve optimally. Instead, for each universe size 1 ≤ |U| ≤ 14, 105 instances were
sampled uniformly at random without replacement from the set of all instances and solved using
Algorithm 3 to provide an estimate of the fraction of instances that admit an optimal cover of
size 2. The plot in Figure 3.3 summarizes these results and confirms our theoretical analysis.

Remark. For simplifying the previous analysis and making the space of valid instances more
symmetric, our definition of Set Cover allows the situation where ∅ ∈ F or F = ∅, which is not
very usual as ∅ could be trivially removed from the instance. If we had decided to ignore ∅ from

the count, the fraction 2(2|U|−2)

2(2|U|−1) − 1
of instances which admit an optimal cover of size 1 would

not be exactly 1
2 anymore, although this ratio would still very quickly converge to 1

2 . Therefore,
this simplification does not compromise our conclusions and even makes them more intuitive.

3.3.3 Kernelization

We recall that a binary relation R over a set S is a partial order if it is reflexive (∀x ∈ S, xRx),
antisymmetric (∀x, y ∈ S, xRy ∧ yRx⇒ x = y) and transitive (∀x, y, z ∈ S, xRy ∧ yRz ⇒ xRz).
The set S, along with R, is called a partially ordered set (or poset) and is denoted by (S, R).



30 Chapter 3. Randomized Algorithm for Set Cover

|U| OPT = 1 OPT = 2 OPT ≥ 3 Unfeasible instances Total

1 2 0 0 2 4 = 221

(50%) (0%) (0%) (50%)

2 8 2 0 6 16 = 222

(50%) (12.5%) (0%) (37.5%)

3 128 88 2 38 256 = 223

(50%) (34.375%) (0.78125%) (14.8438%)

4 32768 31392 434 942 65536 = 224

(50%) (47.9004%) (0.662231%) (1.43738%)

Table 3.1: Total number and percentage of Set Cover instances that admit an optimal cover of size
1, 2, 3 or more, or no feasible cover at all, for a fixed size of the universe |U| ∈ {1, 2, 3, 4}. Notice that
exactly half of the instances admit a cover of size 1, for any universe size, and the percentage of instances
that admit an optimal cover of size 2 approaches 50%.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1
0.2
0.3
0.4
0.5
0.6

|U|

Fr
ac

tio
n

of
in

st
an

ce
s

Figure 3.3: Estimated fraction of Set Cover instances admitting an optimal cover of cardinality 2
for each universe size 1 ≤ |U| ≤ 14, tending to 0.5. For each universe size, 105 instances were sampled
uniformly at random and solved using Uniform-Randomized-Set-Cover. This trend suggests that
the error probability of Uniform-Randomized-Set-Cover hastily approaches 0 as uniform random
instances grow in size.

Definition 3.4 (Antichain). Let (S, R) be a poset. An antichain in S is a subset of S in which
no two distinct elements are comparable by R.

For instance, set inclusion ⊆ is a partial order and, given a set S, an antichain in the power
set 2S is a subset A ⊆ 2S such that, for all X, Y ∈ A, neither X ⊆ Y nor Y ⊆ X.

Definition 3.5 (Partial order width). Let (S, R) be a poset. The width of R is the cardinality
of the largest antichain in S.

Definition 3.6 (Sperner family). A Sperner family is a family of sets F ⊆ 2S , for some set S,
in which none of the sets in F is a subset of another. That is, a Sperner family is an antichain in



3.3. Definition of Randomized-Set-Cover 31

the inclusion partial order over 2S .

Theorem 3.6 (Sperner’s theorem, [88]). The width of the partial order ⊆ on 2S, for a given set
S, is

( |S|
⌊|S|/2⌋

)
and the only antichains in S that have this cardinality are {X ⊆ S : |X| = ⌊|S|/2⌋}

and {X ⊆ S : |X| = ⌈|S|/2⌉}.

These results suggest a simple pre-processing step (kernelization step) which allows any
instance of Set Cover to potentially be reduced in size, in such a way that it is made faster to
solve while still preserving the optimum. Concretely, while there are any S, S′ ∈ F such that
S ⊂ S′, remove S from F – because S can always be replaced by S′ in any optimal solution.
Note that, after this transformation, only sets from an antichain in (F ,⊆) remain and, hence,
the transformed F ′ becomes a Sperner family. By Theorem 3.6, this transformation guarantees
that the resulting instance will have |F ′| ≤ ( |U|

⌊|U|/2⌋
)
.

Theorem 3.7 (Stirling’s approximation, [89]). n! ∼
√

2πn
(

n
e

)n, where e is the Euler’s number.

The notation f(n) ∼ g(n) stands for lim
n→+∞

f(n)
g(n) = 1. Theorem 3.7 gives a useful asymptote

for the central binomial coefficient:
(

2n

n

)
= (2n)!

(n!)2 ∼
2
√

πn
(

2n
e

)2n

2πn
(

n
e

)2n = 4n

√
πn

(3.6)

This corresponds to the following ratio between the worst-case cardinalities of F and F ′,
respectively before and after the kernelization:

|F|
|F ′| = 2|U|( |U|

⌊|U|/2⌋
) ∼

√
π|U|

2 (3.7)

Also see Figure 3.4. Note that this ratio does not give a lower nor an upper bound on the
performance of the transformation. Indeed, the kernelization step may not always have an effect
(such as in instances which are already given pre-kernelized in the input). However, in some
cases the reduction can be massive (such as in the case where F = 2U , which leads to F ′ = {U}
and therefore to a reduction factor of 2|U|

1 = 2|U|).

In terms of implementation, we can, for each pair of sets S, S′ ∈ F , test inclusions S ⊆ S′ and
S′ ⊆ S using the two-pointers technique presented in Algorithm 4, which is linear in |S|+ |S′|.
We assume that the elements in U have an order and that each set S ∈ F is given sorted in the
input – so the i-th element in S can be indexed by Si.



32 Chapter 3. Randomized Algorithm for Set Cover

0 5 10 15 20
0

0.5

1

1.5

2

2.5

x

y

( x
⌊x/2⌋

)
/2x√

πx
2

−1

Figure 3.4: The function 2x/
(

x
⌊x/2⌋

)
asymptotically approaches

√
πx
2 .

Algorithm 4 Decide-⊆(A, B)
1: i← 1
2: j ← 1
3: While i ≤ |A|:
4: If j > |B| ∨Ai < Bj :
5: Return False
6: If Ai = Bj :
7: i← i + 1
8: j ← j + 1
9: Return True

This pre-processing step can be performed in time O (|F|2|U|) – in fact O (|F| ·∑S∈F |S|), if
we conduct a careful analysis:∑

S,S′∈F

(|S|+ |S′|) =
∑
S∈F

∑
S′∈F

(|S|+ |S′|) (3.8)

=
∑
S∈F

|F| · |S|+ ∑
S′∈F

|S′|
 (3.9)

=
∑
S∈F

(|F| · |S|+ Σ) (3.10)

= |F| · Σ +
∑
S∈F

(|F| · |S|) (3.11)

= |F| · Σ + |F| · Σ (3.12)
= 2 · |F| · Σ (3.13)

where Σ = ∑
S∈F |S|. Note that the expression 2|F|Σ coincides with the bound |F|2|U| when



3.3. Definition of Randomized-Set-Cover 33

F = 2U , since in that case 2|F|Σ = 2 · 2|U| · |U| · 2|U|−1 = |F|2|U|. For this, we used the fact that

∑
X⊆S

|X| =
|S|∑

k=1
k

(
|S|
k

)
= |S| · 2|S|−1. (3.14)

Identity (3.14) holds because each element of S appears in exactly half of its 2|S| subsets, so it
contributes with 2|S|−1 to the sum.

Hence, we have:

Theorem 3.8. Any instance (U ,F) of Set Cover can be reduced to an instance (U ,F ′) having
the same set of optimal solutions and |F ′| ≤ ( |U|

⌊|U|/2⌋
)
, in time O (|F| ·∑S∈F |S|).

3.3.4 Algorithm reformulation

The hardness of Set Cover lies in the difficulty of breaking ties when deciding on which sets
to include or not in the final cover. Each valid choice forks into a series of possible paths,
inducing an implicit decision tree of progressively simpler instances. Randomized removals from
Candidates essentially provide a way of randomly breaking these ties, which avoids time being
spent in exhaustively examining every possible path in the decision tree.

A crucial observation is that we do not need to restrict kernelization to the beginning of the
algorithm. In fact, after some set S ∈ F is chosen to be removed, the structure of the instance
may radically change and become kernelizable again. So kernelization can prove to be even more
useful if we keep performing it after every iteration of the algorithm. In this sense, we can reframe
the algorithm as alternating between two main phases: randomized removals (pushing towards
efficiency) and deterministic kernelizations (pushing towards optimality). This interleaving of
two phases helps significantly reduce the number of random choices made throughout the whole
execution, which has a beneficial impact on the approximation ratio. While randomly removing
a set S ∈ F transforms the instance into another instance that may not be completely equivalent,
every kernelization step is guaranteed to preserve an optimal solution.

Another aspect to note is that, when we repeatedly run kernelization over and over again,
removing proper subsets is not the only thing we can do to simplify the Set Cover instance.
For example, if a set S has at least one element that only it contains, then S must necessarily
appear in the final cover, so we can remove S from the “equation” by just forcing it to be included
in C. And, after S has been permanently placed in the cover, all the elements it contains will
definitely be covered in the end anyway, regardless of other future decisions we make. Hence,
these elements are not required anymore to be explicitly covered later and can be ignored – that
is, subtracted from U and from every set in F . Moreover, by removing these elements from every
set, it may happen that some set now becomes empty and can be safely removed because it no
longer contributes to covering U . Or maybe some two sets now become identical to each other,
and including both in C would be redundant – so one of them may also be ignored. Furthermore,
we could also choose to ignore elements x ∈ U that, in some iteration, belong to every remaining
set S ∈ F , because any of these sets would clearly be covering them anyway.



34 Chapter 3. Randomized Algorithm for Set Cover

Hereupon we revise the kernelization process – and, with it, Randomized-Set-Cover itself
–, making it more complete and robust. Whenever we use “Randomized-Set-Cover” in the
remainder of this chapter we will be referring to this new version. In the new description of the
algorithm that follows, each set originally in F may at any time be in one of three states: fixed,
candidate or removed. A set that is fixed has at least one element with frequency 1 and, thus,
must definitely be placed in the cover (and can be safely removed from the instance in the next
kernelization iteration). Candidate sets are the redundant ones that are randomly removed from
the instance in every iteration – but at some point they may also become (permanently) fixed, if
after a subtraction operation they become the only sets containing some element. After a set S is
removed, either because it is superfluous or because it is not, S will not matter ever again during
the remainder of the execution. In this logic, the only possible state transitions are the ones in
Figure 3.5. Note that fixed sets and candidate sets may both be removed from the instance, but
for opposite reasons: a fixed set is (deterministically) removed from the instance to integrate the
final cover C, while a candidate set is (randomly) removed from the instance to not be placed in
C.

candidate fixed

removed

Figure 3.5: Valid set state transitions in Randomized-Set-Cover.

Let us define Fixed and Candidates as the sets of all fixed and candidate sets in F ,
respectively. Randomized-Set-Cover keeps running while Candidates ≠ ∅, alternately
kernelizing the instance and removing one of the sets S ∈ Candidates at random. As soon as
Candidates becomes empty, it terminates and the cover C is returned. Before finally describing
the algorithm, we define the following functions, each of them corresponding to a kernelization
stage:

Kernelize-Recompute-Fixed-Sets(): Identifies all the sets S ∈ Candidates for which some
element x has frequency 1 (that is, |S−1[x] = 1|), removes them from Candidates and
inserts them into Fixed.

Kernelize-Fixed-Sets(): For each fixed set S, subtracts S from every fixed or candidate set
and moves it into C (thus, incrementing |C| in 1). Also calls Kernelize-Recompute-
Fixed-Sets().

Kernelize-Equal-Sets(): Removes duplicate sets from Candidates, which may be caused
by set subtractions. (It may be noted that Candidates is a set and thus cannot contain
duplicate elements, making this operation theoretically redundant. However, from the
perspective of implementation we may need to explicitly enforce this uniqueness property,
and that is why we define Kernelize-Equal-Sets.) We may (arbitrarily) assume that
the first occurrence of a set is the one to keep; the following occurrences are removed. This
operation also calls Kernelize-Recompute-Fixed-Sets(). Note that, by definition, no



3.3. Definition of Randomized-Set-Cover 35

fixed set can be equal to any other set in F (that is, if two sets in F are equal, then they
must both be candidate sets). Therefore, this operation only needs to be performed over
Candidates. Also note that the choice of the subset to be removed has a direct effect in
the content of the final cover, although all of these possible covers have equal cardinality.

Kernelize-Proper-Subsets(): Removes from Candidates any set that is a proper subset of
another and calls Kernelize-Recompute-Fixed-Sets(). Again, by definition, only a
candidate set may be a proper subset of another set (fixed or candidate).

Kernelize(): Calls Kernelize-Fixed-Sets(), Kernelize-Equal-Sets() and Kernelize-
Proper-Subsets() in this order and returns True if and only if at least one of these three
phases has modified the instance (and False otherwise).

Algorithm 5 shows the more refined version of Randomized-Set-Cover, which we adopt
from this moment on.

Algorithm 5 Randomized-Set-Cover(U ,F), revised
1: Compute S−1[x] for every x ∈ U
2: Split F into Fixed and Candidates based on S−1[·]
3: C ← ∅
4: While True:
5: While Kernelize(): {} ▷ keep kernelizing until a fixed-point is reached
6: If Candidates = ∅: Break
7: S ← Candidates.Choose-Random()
8: Remove S from Candidates, erase every x ∈ S and update S−1[x] accordingly
9: Kernelize-Recompute-Fixed-Sets()

10: Return C

Example 3.1. Figure 3.6 exemplifies an execution of Randomized-Set-Cover and the possible
sequences of actions it may branch into, which we describe now. The very first thing the algorithm
does is split F into Fixed and Candidates. Since every element x ∈ U has frequency greater
than 1, every set becomes a candidate. Then the main “While Kernelize()” loop begins and
the set {1, 3} ⊆ {1, 3, 4} is removed by Kernelize-Proper-Subsets(). Since there remain no
fixed sets, equal sets or proper subsets, this kernelization iteration ends and the randomized
phase begins. Each of the four candidate sets is equally likely to be chosen, with probability 1/4.
Let us analyze what happens in each case.

• If the algorithm chooses to remove {1, 2, 5}, the frequency of 1, 2 and 5 becomes 1. Hence,
all three sets {2, 3, 4}, {3, 5} and {1, 3, 4} become fixed, and the algorithm terminates with
a suboptimal cover of size 3.



36 Chapter 3. Randomized Algorithm for Set Cover

Figure 3.6: Solving the instance of Figure 3.1 using the improved version of Randomized-Set-Cover.
The possible outcomes of the algorithm are shown. Elements in bold blue have frequency 1 and, therefore,
belong to fixed sets. Removed elements x ∈ U appear in light gray instead of being omitted, so that it
becomes clear which set is which. Elements that, in some iteration, belong to every remaining set are also
shown in light gray, because they do not affect kernelization nor random choices in any way and can be
ignored. The algorithm finds an optimal solution for this instance in a single run with probability 75%.
After 3 runs, this probability increases to 1− (1− 0.75)3, which is approximately 98.4%.

• If {2, 3, 4} is chosen, then the frequency of elements 2 and 4 becomes 1. Given that {1, 2, 5}
and {1, 3, 4} become fixed, they are both moved into C and their union {1, 2, 3, 4, 5} gets
subtracted from every remaining set, due to Kernelize-Fixed-Sets(). Therefore, {3, 5}
becomes empty and is removed due to Kernelize-Proper-Subsets(), which leaves an
optimal cover of size 2.

• If, on the other hand, {3, 5} is removed initially, {1, 2, 5} becomes fixed because it is the
only set containing element 5. {1, 2, 5} then gets subtracted from every set, leaving two
equal sets {3, 4}, both candidates. Kernelize-Equal-Sets() then removes one of them
arbitrarily; either way, the frequency of elements 3, 4 and 5 becomes 1 and, thus, the two
remaining sets become fixed. A cover of size 2 is then returned.

• Finally, if the set {1, 3, 4} is selected instead, elements 1 and 4 make sets {1, 2, 5} and
{2, 3, 4} become fixed. This in turn makes their union be subtracted from every set,
emptying {3, 5}. This empty set is then removed by Kernelize-Proper-Subsets() and
an optimal cover is produced.

Additional optimization For implementing Randomized-Set-Cover, we give each convex
piece a unique integer identifier, from 1 to |Π(P )| = |U|. These identifiers are perfectly arbitrary
in the sense that, if one were to permute them, the resulting Set Cover instance would become
different, but would still admit an equivalent solution set. What is subtler in this is that the
running time of Randomized-Set-Cover is in fact sensitive to the naming of the pieces: by
permuting piece identifiers, we obtain an isomorphic Set Cover instance which may take more
or less time to solve. This seemingly odd event is directly related with the way set operations



3.3. Definition of Randomized-Set-Cover 37

are implemented. We assume F = {S1, S2, . . . , S|F|}. To understand whether there are any sets
Si, Sj ∈ F such that Si ⊂ Sj , we do something analogous to Algorithm 6.

Algorithm 6 Identify proper subsets in F
1: For i ∈ {1, 2, . . . , |F|}:
2: For j ∈ {1, 2, . . . , |F|} \ {i}:
3: If |Si| < |Sj | ∧Decide-⊆ (Si, Sj)
4: . . . ▷ proper subset found

In the case Si ̸⊂ Sj for some Si, Sj ∈ F , the sooner an element x such that x ∈ Si and
x ̸∈ Sj is found, the sooner the predicate ∀x ∈ Si, x ∈ Sj gets evaluated to False by short-
circuiting (Boolean lazy evaluation). This corresponds to early pruning the evaluation in case a
counterexample x ̸∈ Sj is found.

Suppose Si = {x′
1, x′

2, . . . , x′
|Si|}, where x′

1 < x′
2 < · · · < x′

|Si|. We say that a prefix
x′

1, x′
2, . . . , x′

k of Si matches with Sj if x′
1, x′

2, . . . , x′
k ∈ Sj . When testing if Si ⊂ Sj by traversing

elements of Si in sorted order, the length of the longest matching prefix (LMP) of Si and Sj

directly affects the time it takes to evaluate the predicate. For minimizing the time it takes to
kernelize the Set Cover instance, we are interested in a permutation σ of the piece identifiers
that minimizes the sum of lengths of the longest matching prefixes among all pairs Si, Sj ∈ F :

min
σ

∑
i∈{1,2,...,|F|}

j∈{1,2,...,|F|}\{i}

LMPσ(Si, Sj) (3.15)

This subproblem is interesting by itself and may admit a nice exact solution. However, given
that at least one kernelization round happens in every iteration of Randomized-Set-Cover,
different subproblems of this kind would need to be constantly re-solved to optimality for an
ideal σ to be found, and that would make us spend an enormous amount of time. So, instead,
this subproblem was solved here by simply generating a permutation of the piece identifiers
uniformly at random immediately after the convex partition Π(P ) is computed (Figure 3.7).

For testing an inclusion Si ⊂ Sj , elements of Si are now traversed in increasing order of
x′

σ(1), x′
σ(2), . . . , x′

σ(k). This is a clean and efficient way of dealing with the problem, because the
worst case sum of lengths of longest matching prefixes is unlikely to be consistently hit when
considering a random permutation of the elements. The instance solving times we obtained
in practice were very satisfactory, as results in Section 4.2 tell. This transformation has the
advantage of being very straightforward and only needing to be performed once at the beginning.

3.3.5 Number of repetitions

It is undesirable that the algorithm performs random choices to remove sets from C very often. The
fewer times it has to choose randomly, the more deterministic it is, so the greater the probability



38 Chapter 3. Randomized Algorithm for Set Cover

1 2

3 4

56

78

π5

π4

π8

π1

π7

π6

π2

π3

1 2

3 4

56

78

π3

π8

π1

π6

π5

π4

π2

π7

S1 = {x1, x4, x5, x8}
S2 = {x4, x5, x8}
S3 = {x1, x3, x4, x5, x6, x7, x8}
S4 = {x1, x2, x3, x6, x7, x8}
S5 = {x2, x3, x6, x7}
S6 = {x2, x3, x6}
S7 = {x1, x2, x3, x4, x6, x7, x8}
S8 = {x1, x4, x5, x6, x7, x8}

S1 = {x1, x3, x6, x8}
S2 = {x1, x3, x8}
S3 = {x1, x3, x4, x5, x6, x7, x8}
S4 = {x1, x2, x4, x5, x6, x7}
S5 = {x2, x4, x5, x7}
S6 = {x2, x4, x7}
S7 = {x1, x2, x4, x5, x6, x7, x8}
S8 = {x1, x3, x4, x5, x6, x8}

Figure 3.7: Two isomorphic Set Cover instances derived from the convex partition of an orthogonal
polygon. One can convert the first instance to the second one through the permutation σ = (6 2 7 8 3 4 5 1).
On the original instance, LMPid(S1, S7) = 2, while, for the transformed instance, LMPσ(S1, S7) = 1.∑

LMPid(Si, Sj) = 75 and
∑

LMPσ(Si, Sj) = 85.

of finding an optimal solution becomes. If an instance, after being kernelized, suddenly turns
out to be easily solvable with few random choices, the probability of an individual run to locate
an optimal cover will increase, so not many repetitions will be required to achieve optimality.
However, how the kernelization is conducted depends very much on the structure of the sets
in F . Moreover, the accumulated outcome of the several kernelization steps itself becomes in
a sense unpredictable after a sequence of random choices have been made. It is therefore very
difficult to recommend a specific number of repetitions R(U ,F) that work well for any instance
(U ,F) – not falling short of what is needed, nor overshooting a reasonable amount.

Nevertheless, we propose an informal heuristic for choosing R(U ,F) when |F| is not very
large. It serves as an advisable lower bound.

Theorem 3.9 (Coupon collector’s problem, [22]). Let A be a set of n distinct elements and
B = ∅. Consider the operation of extracting an element uniformly at random from A, inserting
a copy into B and then replacing it back into A. The expected number of independent operations

that are performed until A = B is n ·Hn and its variance is given by n2 ·
n∑

k=1

1
k2 − n ·Hn.



3.4. Data structures used 39

Suppose that F ′ ⊆ F results from the first kernelization of F . Given that the kernelization
ensures that F is irreducible (in the sense that there is no immediate way to reduce it by further
kernelizing it), any of the sets in F ′ has, from the current state of the algorithm, equal potential
to lead to an optimal solution. Each of these sets may give origin to several sequences of choices,
each corresponding to a path in a decision tree. In order not to miss any of those starting points,
Theorem 3.9 suggests a number of repetitions in the order of Ω(|F| · H|F|). Notice that this
heuristic is only probabilistic and in no way guarantees success in finding an optimal solution,
nor even that each of the |F ′| starting points will be attempted. It also works better for smaller
values of |F|, since, by Theorem 3.9, the variability of the expected number of repetitions needed
is significant and grows quadratically with n.

3.4 Data structures used

We describe data structures that we have developed and used in our implementation of
Randomized-Set-Cover. Alternatives have been carefully weighted so as to make the algorithm
as efficient as possible – both in time and in memory.

3.4.1 Sampleable set

A new set data structure, which we call sampleable set, was devised for supporting the operation
Choose-Random() of the Candidates set that has been mentioned several times so far. Besides
Choose-Random(), a sampleable set also supports the more usual operations Insert(x) and
Erase(x). As an internal state, it maintains a vector items for storing the elements in a set S,
in any order, and a reverse map item_position for storing the index that each element x ∈ S

occupies in items. We assume that vector items supports the operations PushBack(x) and
PopBack(), which, respectively, append a new element x to the end of the container and remove
from it the element on the last position (Back()). On the other hand, map item_position

provides methods Contains(x) and Erase(x), which, respectively, return a Boolean indicating
whether element x is being mapped and stop mapping x (if it is currently doing so). Random(a, b)
returns an integer in range [a, b] uniformly at random in constant time.

Algorithm 7 Insert(x)
1: If item_position.Contains(x):
2: Return
3: items.PushBack(x)
4: item_position[x]← |items| − 1



40 Chapter 3. Randomized Algorithm for Set Cover

Algorithm 8 Erase(x)
1: If ¬item_position.Contains(x):
2: Return
3: position← item_position[x]
4: item_position.Erase(x)
5: last_item← items.Back()
6: items.PopBack()
7: If position ̸= |items|:
8: items[position]← last_item

9: item_position[last_item]← position

Algorithm 9 Choose-Random()
1: Return items[Random(0, |items| − 1)]

Example 3.2. Suppose that the following sequence of insertions was performed over an empty
sampleable set:

Insert(3), Insert(5), Insert(3), Insert(0), Insert(2), Insert(4)

The state is then:

items = [3, 5, 0, 2, 4]
item_position = [(3 : 0), (5 : 1), (0 : 2), (2 : 3), (4 : 4)]

If Erase(6) is called, nothing changes. If Erase(4) is called, we have:

items = [3, 5, 0, 2, �4] → [3, 5, 0, 2]
item_position = [(3 : 0), (5 : 1), (0 : 2), (2 : 3),����(4 : 4)] → [(3 : 0), (5 : 1), (0 : 2), (2 : 3)]

After Erase(5), the state becomes:

items = [3, �5, 0, 2] → [3, 2, 0]
item_position = [(3 : 0),����(5 : 1), (0 : 2), (2 : 3)] → [(3 : 0), (2 : 1), (0 : 2)]

Although keeping the elements of S organized in a tree structure could seem more plausible
at first, the difficulty of implementing a Choose-Random() method would increase, because we
would then have to extend each tree node with bookkeeping information, namely its subtree size,
in order to ensure that the random selection process is uniform (such a structure is often called
an augmented tree). This is why we ended up storing elements of S linearly in a vector container,
items. In that sense, we took advantage of the fact that the order of the elements in items

does not affect the probability of each one being selected by Choose-Random() to simplify the
implementation of all three functions. While Choose-Random() clearly takes constant time,
Insert(x) and Erase(x) may take either O(1) or O(log |S|) time, depending on whether the
reverse map item_position is implemented as a vector (for bounded values x ∈ S) or as a
tree-based dictionary (for large values).



3.4. Data structures used 41

3.4.2 Set

Apart from a sampleable set that efficiently supports the Choose-Random() operation, we are
interested in implementing a more general data type for sets S ∈ F . A set data type should
abstractly represent a collection of distinct elements, without any order. Often enough, any
element of a special domain can be mapped to a non-negative integer identifier that uniquely
encodes it, and therefore in this subsection we only discuss sets of integers. We require sets
S ∈ F to be dynamic or mutable, meaning that one may request insertions and deletions of
elements on demand. Additional methods are also helpful, such as for finding the cardinality
of the set, locating its minimum element and iterating through all the elements in some order.
Because of that, we do also impose a total order on the elements in the universe U , corresponding
to the natural order of their identifiers.

Many ways exist for implementing a set, each providing different guarantees in terms of
performance and different time and space trade-offs. We require deterministic sets, so probabilistic
data structures such as Bloom filters [19] are out of question in our application. A trivial
representation of a set is an array or a list that explicitly contains its elements in some order,
without duplicates. In most cases, this is very inefficient because operations such as membership
tests, insertions and removals take linear time in the set size. Another commonly used data
structure for dictionary-based sets, the hash table, has a constant-time performance per operation
on the average case, but collisions still make it linear in the table size on the worst case. The
most generic implementation of a dynamic set is often internally supported by some variation of
a self-balancing binary search tree, such as an AVL tree [3] or a Red-Black tree [54]. These data
structures typically achieve linear memory and logarithmic time per operation, which are strong
worst-case guarantees in general.

A trie [51] is another efficient data structure used for implementing sets, usually of strings.
It provides insertions, removals and membership tests of a given string s in time linear in the
length of the string, |s|. A trie can also be used for storing non-negative integers if one treats
them as strings of bits (or digits), but, since an integer 0 < x < n has a binary representation
with 1 + ⌊log2 x⌋ bits, each of these operations also takes O(log n) time.

It is in fact possible to improve the running time of each operation and the total space that
the representation of the set takes in memory even further by a significant constant factor. The
idea is to take advantage of the fact that a modern CPU can efficiently operate with 32- or
64-bit words and execute bitwise operations that take very few clock cycles to complete. If we
let U = {0, 1, . . . } be a universe of non-negative integers and W denote the word size (that is,
the length of the natural unit of data processed by a CPU, which we take as W = 64 bits), a
common approach is then to represent any set S ⊆ U as a bitmask S(2) of W ·

⌈
|U|
W

⌉
bits, whose

i-th bit (0 ≤ i < W ·
⌈

|U|
W

⌉
) is 1 if and only if i ∈ S.

This representation is very lightweight in terms of memory and achieves good performance
if the universe is not very large. However, regardless of whether S is dense or sparse, storing



42 Chapter 3. Randomized Algorithm for Set Cover

such a representation will still always require the same amount of bits. For example, both sets ∅
and U will each occupy W ·

⌈
|U|
W

⌉
bits in memory and computing their intersection will still take

time proportional to that value. This disadvantage motivates us to develop a new data structure,
which we are ready to describe.

3.4.2.1 Bitset tree

We now propose an optimized data structure for representing and manipulating sets of non-
negative integers that circumvents the problem of sparsity while still taking advantage of the
CPU’s bit-level parallelism. The magnitude of memory used by this structure for representing a
set of n elements taken from a universe U is not greater than min

(
n,
⌈

|U|
W

⌉)
.

Let us partition U into
⌈

|U|
W

⌉
blocks of one W -bit word each. We number the blocks 0 through⌈

|U|
W

⌉
− 1 in order, and number each position 0 through W − 1 within a block. The global

position of an element in U is described by a pair (b, p), which indicates the number b of the
block and its position p within the block. Concretely, for an element x ∈ U , its global position
is
(⌊

x
W

⌋
, x mod W

)
. Also, given the global position (b, p) of an element x, we can recover x as

x = b ·W + p.

Remark. Although computing divisions and remainders is assumed to be performable in O(1)
time, the hidden constants are often very large. In terms of implementation, a much faster way
to compute the global position of an element x ∈ U that we have decided to employ makes use of
bitwise operators: (b, p) =

(
x≫ log2(W ), x & (W − 1)

)
. Similarly, we can recover the element x

given its global position (b, p) as x =
(
b ≪ log2(W )

) | p. We assume we have precomputed the
value log2(W ), which is always an integer given that W is a power of 2. In this work, we take
W = 64 and log2(W ) = 6.

We define a bitset tree T as a self-balancing binary search tree of pairs of integers. Given
any set S ⊆ U , we construct a bitset tree representation for S, TS , as follows. Denote by S(2)

the bitwise representation of S with W ·
⌈

|U|
W

⌉
bits. For each block b

(
0 ≤ b <

⌈
|U|
W

⌉)
in S(2) that

corresponds to a W -sized word w that is not empty (i.e., w ̸= 00 . . . 0︸ ︷︷ ︸
W

), insert the pair (b, w) into

TS . See Figure 3.8a for an example of a bitset tree built for a given set. We denote by |TS | the
number of nodes in a bitset tree TS .

Proposition 3.10. If TS is the bitset tree built for a given set S ⊆ U , then |TS | ≤ min
(
|S|,

⌈
|U|
W

⌉)
.

Proof. The number of non-empty blocks in S(2) of size W ≥ 1 cannot exceed |S|. Besides, we
add at most one node in TS for each block in S(2), of which there are

⌈
|U|
W

⌉
many.

It can also be seen that, the denser the set is, the more efficient its bitset tree representation
comparatively becomes, because the number of blocks stops increasing after it hits the threshold
of
⌈

|U|
W

⌉
, even if we keep inserting more elements.



3.4. Data structures used 43

A few operations that are useful for the algorithm are described now.

Forward iterator A forward iterator is an object that allows iterating through the elements
of S in sorted order, while possibly performing some other operation in parallel (for instance,
printing them). It also refers to the “iterator” design pattern in object-oriented programming.
A naïve way of implementing a forward iterator for S would be to keep as the iterator state
the global position (b, p) we are currently at, and use that to loop through all the nodes (b, w)
in TS and, for each one, loop through all the bits of the word w. In the worst case, this takes
time O(|U|), which is unacceptable if blocks in S(2) are very sparse. For instance, if TS has

⌈
|U|
W

⌉
nodes, each with a single on bit in its word, we need to consider |U| bits in total.

Our implementation of a forward iterator is more efficient in that it uses bitwise tricks to
jump directly to the next on bit of the current word w being processed without having to linearly
look for it. As such, if for example a word only has one bit on, we process it and simply jump
to the next node in TS (using an iterator for the tree structure itself) without even needing to
consider the remaining W − 1 off bits. This enables us to iterate over S in time linear in its
size, O(|S|), while still maintaining the convenient tree structure we described. The idea is that
most modern hardware architectures provide fast, dedicated instructions to count the number
of trailing zeroes on the binary representation of a positive integer, with a very small constant
factor. We used the function __builtin_ctzll provided by the GCC compiler for C++;
refer to [32] for more on the hardware support of related operations. The number of trailing
zeroes on the binary representation of a positive integer x, tz(x), coincides with the position
of its least significant on bit (LSB). So the way we find every one of the k on bits in a word
w with a number of operations that, for all practical purposes, is Θ(k) is simple. Make a copy
w′ ← w; then, while w′ ̸= 00 . . . 0, compute the position of the LSB, which is tz(w′), and turn it
off: w′ ← w′ &

(
∼ 2tz(w′)

)
.

Figure 3.8b shows the order of iteration in TS of the elements of a given set S.

Test containment We can test whether a given element x, with global position (b, p), is in S

by checking if there is a node of the form (b, w) in TS and, if so, checking whether its mask w

has the p-th bit on: (w & (2p)) ≠ 0. This is performed in O(log |TS |) = O
(
log min

(
|S|,

⌈
|U|
W

⌉))
time, because performing a lookup for the node (b, w) takes logarithmic time, given that TS is
self-balancing, and then accessing its word w takes constant time.

Test inclusion, proper inclusion and equality For testing if S is a subset of another
set O ⊆ U , with bitset tree TO, we iterate over the pairs (b, wS) in TS in order. For each
one, we check if a node of the form (b, wO) does also occur in TO. If not, then definitely
S ̸⊆ O; otherwise, for S ⊆ O it must hold that wS & wO = wS . This approach takes
O(|TS | log |TO|) = O

(
min

(
|S|,

⌈
|U|
W

⌉)
log min

(
|O|,

⌈
|U|
W

⌉))
time.

Remark. Note that this is, in general, better than the more common way of testing inclusion



44 Chapter 3. Randomized Algorithm for Set Cover

which performs a bitwise AND between the entire bitmasks S(2) and O(2), each with exactly
W ·

⌈
|U|
W

⌉
bits, because it takes advantage of the sparsity of sets S and O.

The correctness of our method directly stems from the following property:

Proposition 3.11. Let A, B ⊆ U . Then, A ⊆ B if and only if for any C ⊆ U we have
A ∩ C ⊆ B ∩ C.

If we wanted to test whether S ⊂ O or S = O, we could additionally check if |S| < |O| or if
|S| = |O|, respectively.

Insert element For inserting an element x ∈ U into S, we first calculate its global position
(b, p) and check if a node (b, w) already exists in TS . If not, we create it, having w = 00 . . . 0.
Then, we turn on the p-th bit of w: w ← w | (2p). The time complexity of insertion is O(log |TS |).

Erase element For erasing a given x ∈ U from S, we first ensure that x ∈ S by testing
containment. In the positive case, we locate the node (b, w) in TS corresponding to x and turn
off w’s p-th bit: w ← w & ∼ (2p). If w becomes 00 . . . 0, we erase the node (b, w) from TS . The
time complexity for erasing is also O(log |TS |).

0

1100

4

1101

6

0001

2

0101

5

1111

(a)

0

1100

4

1101

6

0001

2

0101

5

1111

(b)

Figure 3.8: (a) A bitset tree TS for the set S = {2, 3, 8, 10, 16, 18, 19, 20, 21, 22, 23, 24}, with universe
U = {0, 1, 2, . . . , 24} and W = 4. Elements were inserted in increasing order of their value. Each node
indicates a pair (b, w), where b is the identifier of the block and w is the bitmask word corresponding
to the block. Nodes are colored black or red according to the color they would have in an underlying
Red-Black tree. (b) Order of iteration in TS of the elements of S, in increasing order of their values.



Chapter 4

Experimental Analysis of Randomized-
Set-Cover

This chapter describes the experimental setup we adopted for evaluating the performance of
Randomized-Set-Cover in terms of efficiency and optimality. An empirical analysis of the
algorithm is performed, in which we evaluate metrics such as running time and approximation
ratio by running Randomized-Set-Cover against a public dataset of orthogonal polygons.
Finally, we analyse the number of pieces that vertex visibility polygons induce in the tested
classes and propose a conjecture.

4.1 Experimental setup

The algorithm and a supplementary geometry library for partitioning input polygons were written
in C++17. The library is supported by CGAL 5.4 [50] and Boost 1.78.0. For generating an
integer uniform distribution over which random choices are made, the Mersenne Twister [78]
pseudo-random number generator (mt19937) was employed.

Randomized-Set-Cover was tested against a large benchmark dataset (AGP2007) that
was adapted from the ones provided accompanying [34] and [35]. These can be found in [36].
The tests were performed in an ASUS Vivobook Pro 15 N580 running Ubuntu 18.04.6 LTS with
a 2.20GHz Intel® Core™ i7-8750H CPU (12 cores) and 16 GiB of RAM.

Three main sessions of tests were conducted, one for each of three orthogonal polygon classes:
Fat, Min-Area and Random. These classes of instances are referred to as grid n-ogons and
correspond to n-vertex orthogonal polygons free of collinear edges that may be placed in an
n/2 × n/2 square grid. Bounds on their area and their structure have been studied in [11].
According to Definition 4.1, for a fixed number of vertices, Fat polygons are the ones for which
the number of pieces in their grid partition is maximum, while for Min-Areas this number is
minimum. On the other hand, Random instances consist of a sample of randomly generated
orthogonal polygons that have been created using the Inflate-Cut method, proposed in [92].

45



46 Chapter 4. Experimental Analysis of Randomized-Set-Cover

Afterwards, we also briefly describe a fourth session of tests that was performed with an
extended dataset of larger random instances to evaluate Randomized-Set-Cover’s scalability.
The dataset we used is a subset of the original dataset AGP2008a, which can also be found
in [36].

Throughout this chapter, we denote by ΠHV (P ) the set of r-pieces in the grid partition of a
grid n-ogon P , and by Π(P ) the set of pieces in the partition of P induced by vertex visibility
polygons, which is more granular than ΠHV (P ). Already next we retrieve main definitions and
results from [11] that back up our experimental analysis of Fats and Min-Areas.

Definition 4.1 ([11], Definitions 3 and 4). A grid n-ogon Q is called Fat if |ΠHV (Q)| ≥ |ΠHV (P )|
for all grid n-ogons P . Similarly, a grid n-ogon Q is called Thin if |ΠHV (Q)| ≤ |ΠHV (P )| for all
grid n-ogons P . Finally, a Thin grid n-ogon Q is called Min-Area if it has area n− 3.

Proposition 4.1 ([11], Propositions 2 and 4). Up to symmetry, there exists a unique Fat grid
n-ogon and a unique Min-Area grid n-ogon with a fixed number of vertices, n.

Figure 4.1: The unique (up to symmetry) Fat and Min-Area grid n-ogons for n ∈ {4, 6, 8, 10, 12}
(adapted from [94]).

Theorem 4.2 ([11], Theorem 1). Let P be a grid n-ogon with r = n−4
2 reflex vertices. If P is

Thin, then |ΠHV (P )| = 2r + 1 = n− 3, and, if P is Fat, then

|ΠHV (P )| =


3r2 + 6r + 4

4 = 3n2

16 −
3n

4 + 1 for r even

3(r + 1)2

4 = 3n2

16 −
3n

4 + 3
4 for r odd

In each of the four sessions, multiple instances of the corresponding class were solved. The
general approach we followed is what one would expect: for each instance P , its partition Π(P )
induced by vertex visibility polygons was computed and mapped to a Set Cover instance
(U ,F) to be solved with Randomized-Set-Cover. Elements of the universe U correspond to
pieces in Π(P ) and each set in F contains all the pieces that some vertex of P sees. We have
used the CGAL kernel Exact_predicates_exact_constructions_kernel for ensuring
robust geometric computations. Randomized-Set-Cover was run 20 times on each input for
deriving more accurate and meaningful results. We also took advantage of the fact that every
execution of the algorithm is independent by making each repetition run in a parallel thread.



4.2. Results 47

4.2 Results

We now describe the constitution of the dataset pertaining to each session and present the
results obtained from each experiment. Several measures were gathered or computed in each
test: the number of vertices n of the polygon, the number of pieces in its partition Π(P ), the
approximation ratio APX given by Randomized-Set-Cover and also, for comparison purposes,
the approximation factors Hs and f of the Greedy-Set-Cover and LP-rounding methods that
we have discussed in Sections 3.1.1 and 3.1.2. The sizes of optimal vertex-guard sets were provided
by the authors of the dataset, and had been determined through an Integer Programming (IP)
solver. The time it took for partitioning each polygon, generating the corresponding Set Cover
instance and solving it have as well been measured. For reference, the original running times
obtained by the dataset authors are provided too; these were obtained in a machine featuring
an Intel® Pentium® IV at 2.66 GHz, 1 GB of RAM, CGAL 3.2.1 and FICO Xpress-Optimizer
17.01.02.

In the tables and figures below, by total preprocessing time we mean the sum of the polygon
partition time and the Set Cover instance generation time, and the total time refers to the
sum of the total preprocessing time and the effective solving time of Randomized-Set-Cover.
These times are measured per input individually.

4.2.1 Min-Area

There are 97 Min-Area polygons in the dataset: one for each even n from 8 to 200. Table 4.1
contains collected statistics, while Figures 4.2 and 4.3 show how running times grow in average
with n and with |Π(P )|.

Randomized-Set-Cover has found an optimal solution for 100% of the Min-Areas. It is
interesting that f = 6 for all instances, which means that every piece in a Min-Area is seen
by no more than 6 different vertices. Between 42.93% and 97.90% (in average, 92.36%) of the
total time was spent in the preprocessing phase, and between 97.99% and 99.85% (in average,
99.62%) of the preprocessing phase time was spent for partitioning the polygon. Curiously, every
Min-Area instance was fully solved using pure kernelization – no random choice had the chance
to be made at all. This once again shows the power that kernelization can have in rendering
instances flat simple.

We remark that it had been shown in [77] that the size of an optimal guard set for a Min-
Area of n vertices is exactly ⌈n

6 ⌉ = ⌈ r+2
3 ⌉. Our results in Table 4.1 conform to this bound; for

instance, the average number of guards in all the 97 instances is given by 1
97
∑98

r=2

⌈
r+2

3

⌉
≈ 17.67.

The similarity in the shapes of both left and right plots of Figures 4.2 and 4.3 cannot go
unnoticed. Indeed, in Section 4.3.1 we observe that the numbers on the horizontal axes of the
right plots are obtained from a linear transformation f(n) = 3n

2 − 4 of the ones on the left plots,
and we prove that this holds for any Min-Area.



48 Chapter 4. Experimental Analysis of Randomized-Set-Cover

Parameter Min. Median Mean Max.

|F| = n 8 104 104 200
|U| = |Π(P )| 8 152 152 296

OPT 2 18 17.67 34
APX 1 1 1 1
Hs 2.593 2.829 2.827 2.829
f 6 6 6 6

Partition time (s) 0.000882 0.088503 0.112070 0.303239
Instance generation time (s) 1.409× 10−5 2.236× 10−4 2.343× 10−4 4.820× 10−4

Total preprocessing time (s) 0.0009001 0.0887157 0.1123040 0.3037210
Solving time (s) 0.0004246 0.0034440 0.0040966 0.0189626
Total time (s) 0.001672 0.091917 0.116401 0.313446

Original total time (s) 0.020 1.270 1.729 5.030

Table 4.1: Statistics for Min-Area grid n-ogons.

0 100 200
0

0.1

0.2

0.3

Number of vertices n

T
im

e
(s

)

Partition
Instance generation

0 100 200 300
0

0.1

0.2

0.3

Number of pieces |Π(P )|

T
im

e
(s

)

Figure 4.2: Evolution of the partition and instance generation times for Min-Areas with number of
vertices n = |F| (left) and partition size |Π(P )| (right). The time it takes to generate an instance from
Π(P ) is insignificant when compared to the partition time, which hints that partition will be a bottleneck
for our algorithm.

4.2.2 Fat

Similarly to Min-Areas, the dataset contains 97 Fat polygons, one for each even n from 8 to
200. The statistics gathered are summarized in Table 4.2, and running times are presented in
Figures 4.4 and 4.5.

Between 47.65% and 86.88% (in average, 59.00%) of the total time was spent preprocessing,
and between 88.69% and 99.40% (in average, 92.68%) of the preprocessing phase time was
spent partitioning the polygon. Randomized-Set-Cover found an optimal vertex-guard set
for every Fat in the dataset. It had been observed in [94] that a Fat polygon requires two



4.2. Results 49

0 100 200
0

0.1

0.2

0.3

Number of vertices n

T
im

e
(s

)

Preprocessing
Solving

0 100 200 300
0

0.1

0.2

0.3

Number of pieces |Π(P )|

T
im

e
(s

)

Figure 4.3: Preprocessing and solving times for Min-Area instances with n = |F| vertices (left) and
partition size |Π(P )| (right). Generating a Set Cover instance from P takes consistently longer than
solving it afterwards using Randomized-Set-Cover.

Parameter Min. Median Mean Max.

|F| = n 8 104 104 200
|U| = |Π(P )| 11 2151 2739 7743

OPT 1 2 1.979 2
APX 1 1 1 1
Hs 3.020 8.207 7.784 9.507
f 8 104 104 200

Partition time (s) 0.001333 0.670605 1.327012 5.242800
Instance generation time (s) 0.0000207 0.0518434 0.1394528 0.6115390
Total preprocessing time (s) 0.001353 0.720657 1.466465 5.854330
Solving time (s) 0.000993 0.631434 1.502703 6.271260
Total time (s) 0.002347 1.342260 2.969167 12.125600

Original total time (s) 0.03 8.97 21.93 95.19

Table 4.2: Statistics for Fat grid n-ogons.

vertex-guards for n ≥ 12 vertices, and only one for 4 ≤ n ≤ 10. Our algorithm did in fact
always find a vertex-guard set of such cardinality for every tested input – and because of that
Kernelize-Proper-Subsets() completely solved the instances with n ≤ 10 in a single iteration
all by itself (with zero random choices). It is very interesting that, for n ≥ 12, Randomized-
Set-Cover is able to solve Fat instances down to optimality 100% of the times, even when
random selections are made. It seems that the kernelization phase that takes place after each
random set is removed in a way compensates for possible mistakes, always leading the algorithm
towards the optimal solution, no matter the choices made.



50 Chapter 4. Experimental Analysis of Randomized-Set-Cover

0 100 200
0

2

4

Number of vertices n

T
im

e
(s

)

Partition
Instance generation

0 2 000 4 000 6 000 8 000
0

2

4

Number of pieces |Π(P )|

T
im

e
(s

)

Figure 4.4: Evolution of the partition and instance generation times for Fats with number of vertices
n = |F| (left) and partition size |Π(P )| (right). Just like for Min-Areas, mapping a partition to a Set
Cover instance is faster than computing the partition itself.

0 100 200
0

2

4

6

Number of vertices n

T
im

e
(s

)

Preprocessing
Solving

0 2 000 4 000 6 000 8 000
0

2

4

6

Number of pieces |Π(P )|

T
im

e
(s

)

Figure 4.5: Preprocessing and solving times for Fat instances with n = |F| vertices (left) and partition
size |Π(P )| (right). Since the generated Set Cover instance has a size that is quadratic in n, both
times grow faster than for a Min-Area with the same number of vertices.

4.2.3 Random

In the third session, we tested Randomized-Set-Cover with a larger amount of polygons:
10 058 Random orthogonal instances, each having between 14 and 200 vertices. For each
n = 14, 16, . . . , 200 in steps of 2, the dataset contains n Random grid n-ogons. Once more,
Table 4.3 gives an overview of the main results achieved by the algorithm and Figures 4.6 and 4.7
show how the instance size affects the time it takes to preprocess and solve an instance.

The number of pieces of Random polygons in the dataset ranges approximately from
minimum (Min-Area) to maximum (Fat) (see Figure 4.11), so there is high variance on the
number of pieces among the instances with the same number of vertices n. Because of that, the
right-hand-side plots on Figures 4.6 and 4.7 appear fuzzier.

For every random orthogonal polygon with 14 ≤ n ≤ 70 an optimal guard set was found,



4.2. Results 51

Parameter Min. Median Mean Max.

|F| = n 14 142 134.5 200
|U| = |Π(P )| 24 1618 1610 5039

OPT 1 23 21.84 38
APX 1 1 1.003 1.143
Hs 3.548 6.726 6.696 8.407
f 8 20 20.65 37

Partition time (s) 0.002699 1.873770 2.029742 9.210860
Instance generation time (s) 3.964× 10−5 4.995× 10−3 5.387× 10−3 2.762× 10−2

Total preprocessing time (s) 0.002739 1.879375 2.035129 9.238020
Solving time (s) 0.0008115 0.0614234 0.0636090 0.3057130
Total time (s) 0.00396 1.94698 2.09874 9.54373

Original total time (s) 0.030 4.120 4.334 12.110

Table 4.3: Statistics for Random grid n-ogons.

0 50 100 150 200
0

2

4

Number of vertices n

T
im

e
(s

)

Partition
Instance generation

0 2 000 4 000
0

5

10

Number of pieces |Π(P )|

T
im

e
(s

)

Figure 4.6: Partition and instance generation times for Randoms, averaged over all the instances with a
fixed number of vertices n = |F| (left) and a fixed partition size |Π(P )| (right). Similarly to Min-Areas
and Fats, instance generation takes considerably less time than computing the partition.

and for 72 ≤ n ≤ 200 the algorithm sporadically returned suboptimal solutions. Concretely, an
optimal vertex-guard set has been found for 9 396 instances (93.418% of the Random polygons).
For the instance on which the obtained APX was highest, the approximation ratio was only
1.143; the polygon had n = 140 vertices, the optimal cover had size 21 and the algorithm found
one with size 24. Moreover, the approximation ratio was strictly less than Hs and f for 100% of
the instances, having been achieved a consistently better performance than what is theoretically
guaranteed by Greedy-Set-Cover and LP-rounding methods.

Finally, between 50.12% and 98.73% (in average, 96.53%) of the total time was spent in the
preprocessing phase, while between 96.47% and 99.86% (in average, 99.65%) of the preprocessing



52 Chapter 4. Experimental Analysis of Randomized-Set-Cover

0 50 100 150 200
0

2

4

Number of vertices n

T
im

e
(s

)

Preprocessing
Solving

0 2 000 4 000
0

5

10

Number of pieces |Π(P )|

T
im

e
(s

)

Figure 4.7: Preprocessing and solving times for Randoms, averaged over all the instances with a fixed
number of vertices n = |F| (left) and with a fixed partition size |Π(P )| (right). Clearly the preprocessing
phase dominates the time taken by the algorithm.

phase time was spent for partitioning the polygon.

Despite a slight raise of APX with n, the collected data does not evidence a clear relationship
between the size of the instance (U ,F) and the approximation ratio (Figure 4.8).

0 50 100 150 200
1

1.05

1.1

1.15

Number of vertices n

M
ax

A
P

X

0 2 000 4 000
1

1.05

1.1

1.15

Number of pieces |Π(P )|

M
ax

A
P

X

Figure 4.8: The variation of the maximum value hit by APX when collectively considering all the
Random instances with a fixed n (left) or |Π(P )| (right). There is no clear relationship between these
parameters.

4.2.4 Large-Random

A fourth session of tests was conducted for evaluating the scalability of Randomized-Set-Cover.
We used progressively larger instances of randomly generated orthogonal polygons, with n = 250
to 1000 vertices, which we call Large-Random. From the original AGP2008a dataset, the first
5 instances provided for each n ∈ {250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000} have been
used in this session. See Table 4.4 and Figures 4.9 and 4.10 for the main results.



4.2. Results 53

Parameter Min. Median Mean Max.

|F| = n 250 500 568.2 1000
|U| = |Π(P )| 2385 6671 7329 15481

OPT 37 81 93.82 171
APX 1 1.014 1.016 1.054
Hs 6.445 7.228 7.280 8.557
f 18 25 24.96 34

Partition time (s) 4.739 32.759 58.342 206.674
Instance generation time (s) 0.006147 0.027755 0.034431 0.114595
Total preprocessing time (s) 4.745 32.784 58.376 206.789
Solving time (s) 0.1003 0.7821 1.2679 4.5575
Total time (s) 4.887 33.566 59.644 210.669

Table 4.4: Statistics for Large-Random grid n-ogons.

200 400 600 800 1 000
0

50

100

150

Number of vertices n

Pr
ep

ro
ce

ss
in

g
tim

e
(s

)

200 400 600 800 1 000
0

1

2

3

4

Number of vertices n

So
lv

in
g

tim
e

(s
)

5 000 10 000 15 000
0

100

200

Number of pieces |Π(P )|

Pr
ep

ro
ce

ss
in

g
tim

e
(s

)

5 000 10 000 15 000
0

2

4

Number of pieces |Π(P )|

So
lv

in
g

tim
e

(s
)

Figure 4.9: Growth of preprocessing and solving times for Large-Random polygons. Once again, the
time it takes to solve a Set Cover instance remains moderately low with n and |Π(P )|, although the
partition time explodes.



54 Chapter 4. Experimental Analysis of Randomized-Set-Cover

200 400 600 800 1 000

1.02

1.04

Number of vertices n

M
ax

A
P

X

5 000 10 000 15 000
1

1.02

1.04

Number of pieces |Π(P )|

M
ax

A
P

X

Figure 4.10: The variation of the maximum value hit by APX when collectively considering all the
Large-Random instances with a fixed n (left) or |Π(P )| (right). As observed in Randoms, no evident
relationship exists between the parameters.

4.2.5 Discussion and general remarks

According to our tests, Randomized-Set-Cover demonstrated a good performance overall. It
found a minimum-cardinality vertex-guard set for every Fat and Min-Area polygons, making
it clear that kernelization has a remarkable effect when performed repeatedly in alternation
with random choices. The approximation ratio was at most 1.143 for a Random polygon,
corresponding to an excess of only 3 guards from an optimal solution, and it remained low on
larger instances (Large-Random). We used a constant number of trials throughout the entire
experiment; by increasing this number, the error rate could be improved in exchange for higher
running times. We also believe that the geometric provenance of Set Cover instances imposes
on them a very symmetric structure that gives the algorithm an extra advantage.

Our experiments assert that the time spent solving Set Cover instances was low. However,
polygon partitioning constitutes a major burden for Randomized-Set-Cover, especially
when the resulting number of pieces is large, as observed with Fats and Large-Randoms.
Preprocessing, which overwhelmingly dominates the obtained running times, could likely be
improved by following some ideas of the literature about lazy decomposition. Usually they involve
starting with a grosser decomposition of the polygon and lazily postponing the calculation of the
full partition until the algorithm really needs it. For example, several strategies are studied in
[35] for efficiently building partial discretizations of orthogonal polygons which are computed on
demand, as an alternative to performing an entire partition to get Π(P ) right from the start. In
[93, 94] an anytime algorithm is proposed to compute successively better approximations of a
vertex-guard set, which performs a series of refinements of the partition and exploits dominance
of visibility regions. Finally, in [96] methods are devised for building initial discretizations, one
of which (Chwa-Points) explores known results on polygon witnessability [31].

We used no specific heuristics to drive the selection of a random set S ∈ Candidates, every
set being assigned the same weight. Alternatives to uniform weighting in the sampleable set could
perhaps have a positive impact on the reduction of the approximation factor of the algorithm
for Random instances. We believe it would be worthwhile to devise more refined heuristics,



4.3. Order of growth of |Πn| for grid n-ogons 55

such as dynamic re-weighting, that could take into account structural properties of the polygon
and exploit local dominance relations between vertices and pieces to guide the selection of the
most promising candidate set to remove. Some of our preliminary ideas involve assigning greater
weights (that is, probabilities of being chosen) to smaller sets S ∈ Candidates or to sets that
cover fewer low-frequency elements.

0 50 100 150 200

0

2 000

4 000

6 000

8 000

Number of vertices n

Av
er

ag
e

nu
m

be
r

of
pi

ec
es
|Π

(P
)|

Fat
Random

Min-Area

Figure 4.11: Comparison of the average number of pieces in Π(P ) for each grid n-ogon class, as the
number of vertices n increases from 8 to 200.

Figure 4.11 confirms once more that Fat polygons indeed have the maximum number of
pieces for a fixed n among all the polygons that make up the dataset, while Min-Areas have
the minimum and Randoms lie approximately in between. Although the number of pieces of a
Fat exhibits a quadratic behavior, curiously enough it seems that the size of the partition of a
Random polygon only grows linearly, just like Min-Areas. In the next section we look into this
behaviour and formulate a conjecture that attempts to exactly characterize these growths.

We conclude with a remark that, although this work focused on orthogonal polygons under
straight-line visibility, the ideas of Randomized-Set-Cover naturally extend to any generic
polygon, under any visibility notion that one wishes to adopt.

4.3 Order of growth of |Πn| for grid n-ogons

In this section, we derive a proposition and a conjecture regarding Min-Areas and Fats with
n vertices, based on the results obtained from our experiments of Section 4.2. These refer to
closed formulas that relate the number of vertices, n, with the number of pieces in the convex
partition of these polygons, which we denote by |Πn|. We remark that |Πn| refers to |Π(P )| for
a polygon P with n vertices, not to the number of r-pieces in its grid partition, |ΠHV (P )| (for



56 Chapter 4. Experimental Analysis of Randomized-Set-Cover

which closed formulas were already known, Theorem 4.2). We explain how the formulas were
guessed and gather evidence that supports them.

4.3.1 Min-Area

Proposition 4.3. Let |Πn| be the number of pieces in the partition of a Min-Area with n ≥ 6
vertices induced by vertex visibility regions. Then, |Πn| = 3n

2 − 4.

The proposition can be deduced from studying how the contribution of the number of squares
and triangles to the total partition size evolves with the number of vertices n (Figure 4.12), and
is validated by the plot in Figure 4.13.

5

= 1 + 2× 2

8

= 2 + 2× 3

11

= 3 + 2× 4

14

= 4 + 2× 5

17

= 5 + 2× 6

1

Figure 4.12: From a Min-Area with n vertices to a Min-Area with n + 2 vertices, the number of
visibility regions increases by a square and two triangles. The case where n = 4 does not satisfy the
property because the respective Min-Area is convex.

0 100 200
0

100

200

300

Number of vertices n

|Πn| obtained empirically
f(n) = 3n

2 − 4

Figure 4.13: The number of pieces in the partition Π(P ), induced by vertex visibility regions, of a
Min-Area P with n vertices perfectly obeys the identity |Π(P )| = 3n

2 − 4 for every n = 8, 10, . . . , 200.

4.3.2 Fat

Conjecture 4.4. Let |Πn| be the number of pieces in the partition of a Fat with n ≥ 16 vertices
induced by vertex visibility regions. Then, |Πn| = 76 + 17(n−18)

2 +
⌊

(n−18)2

16

⌋
+ 2

⌊
(n−20)2

16

⌋
.



4.3. Order of growth of |Πn| for grid n-ogons 57

We now explain how this formula was deduced. Observe the sequence |Πn| for n ≥ 8 and
consider differences between consecutive terms. We recall that |ΠHV (P )| ∈ Θ(n2) for a Fat grid
n-ogon P . Since the partition Π(P ) is finer than ΠHV (P ), we find the class Ω(n2) to suit |Πn|.
Therefore, let us analyze differences between consecutive differences of terms in the sequence:

|Π8| = 11
|Π10| = 21
|Π12| = 33
|Π14| = 46
|Π16| = 61
|Π18| = 76
|Π20| = 93
|Π22| = 111
|Π24| = 131
|Π26| = 152
|Π28| = 175
|Π30| = 199

...

|Π10| − |Π8| = 10
|Π12| − |Π10| = 12
|Π14| − |Π12| = 13
|Π16| − |Π14| = 15
|Π18| − |Π16| = 15
|Π20| − |Π18| = 17
|Π22| − |Π20| = 18
|Π24| − |Π22| = 20
|Π26| − |Π24| = 21
|Π28| − |Π26| = 23
|Π30| − |Π28| = 24

...

12− 10 = 2
13− 12 = 1
15− 13 = 2
15− 15 = 0
17− 15 = 2
18− 17 = 1
20− 18 = 2
21− 20 = 1
23− 21 = 2
24− 23 = 1

...

We can observe an alternating pattern 2, 1, 2, 1, 2, . . . which only seems to break at n = 18:
(|Π18| − |Π16|)− (|Π16| − |Π14|) = 15− 15 = 0. If we keep analyzing the sequence from n = 20,
it appears that the pattern does not break anymore. Let us conjecture that this is true and write:

|Π20| = 76 + 17 = 76 + 1 · 17 + 1 · 0 + 2 · 0
|Π22| = |Π20|+ (17 + 1) = 76 + 2 · 17 + 1 · 1 + 2 · 0
|Π24| = |Π22|+ (17 + 1 + 2) = 76 + 3 · 17 + 1 · 2 + 2 · 1
|Π26| = |Π24|+ (17 + 1 + 2 + 1) = 76 + 4 · 17 + 1 · 4 + 2 · 2
|Π28| = |Π26|+ (17 + 1 + 2 + 1 + 2) = 76 + 5 · 17 + 1 · 6 + 2 · 4
|Π30| = |Π28|+ (17 + 1 + 2 + 1 + 2 + 1) = 76 + 6 · 17 + 1 · 9 + 2 · 6
|Π32| = |Π30|+ (17 + 1 + 2 + 1 + 2 + 1 + 2) = 76 + 7 · 17 + 1 · 12 + 2 · 9

...

The sequence of multiplicities 0, 1, 2, 4, 6, 9, 12, . . . seems to be modeled by the general term
un =

⌊
n
2
⌋ · ⌈n

2
⌉

=
⌊

n2

4

⌋
, so we finally arrive at:

|Πn| = 76 + 17(n− 18)
2 +


(

n−18
2

)
4

2+ 2


(

n−20
2

)
4

2
= 76 + 17(n− 18)

2 +
⌊

(n− 18)2

16

⌋
+ 2

⌊
(n− 20)2

16

⌋

By inspection, the equality still holds for n = 16 and n = 18 and appears to be false only for
n ∈ {8, 10, 12, 14}. Conjecture 4.4 then follows and is corroborated by Figure 4.14.



58 Chapter 4. Experimental Analysis of Randomized-Set-Cover

0 100 200
0

2 000

4 000

6 000

8 000

Number of vertices n

|Πn| obtained empirically

f(n) = 76 + 17(n−18)
2 +

⌊
(n−18)2

16

⌋
+ 2

⌊
(n−20)2

16

⌋

Figure 4.14: The number of pieces in the partition Π(P ), induced by vertex visibility regions, of a Fat
P with n vertices perfectly obeys the identity |Π(P )| = 76 + 17(n−18)

2 +
⌊

(n−18)2

16

⌋
+ 2

⌊
(n−20)2

16

⌋
for every

n = 16, 18, . . . , 200.

4.3.3 Random

Since Random (and Large-Random) polygons lead to very variable partitions, the measure
|Πn| is not well-defined for them. Nonetheless, because |Π(P )| visually appears to follow a
linear trend for these polygon classes, we performed a linear regression by the least-squares
method between n and |Π(P )|, averaged over all Large-Random grid n-ogons P present in
the dataset. Figure 4.15 confirms this almost linear growth of the average size of Π(P ) for a
Large-Random grid n-ogon P , with a Pearson correlation coefficient of 0.992, and signals that
it can be approximated by the function f(n) = 13.4n− 282.5. The curve’s behavior extrapolates
for Random polygons on the observed range 14 ≤ n ≤ 200, for which the correlation is 0.999.

0 500 1 000
0

5 000

10 000

Number of vertices n

Average |Π(P )|
f(n) = 13.4n− 282.5

Figure 4.15: The average size of Π(P ) for a Random grid n-ogon P seems to grow linearly with n. The
part of the plot with 14 ≤ n ≤ 200 integrates results from the Random class, while for 250 ≤ n ≤ 1000
the data used comes from Large-Random. These data, coming from two independent sessions, exhibit a
smooth continuity.



Chapter 5

On r-Guarding SCOTs

Although the Art Gallery Problem is hard for generic polygon instances, buildings and art
galleries that we find in real life are not random: they show a very specific structure and a spatial
organization that is characteristic of the human way of architecting. In this chapter, we define a
new family of orthogonal polygons, the SCOTs, which prove to be useful models for mimicking
properties that are close to those one can find in real-world rectangular galleries. We study the
algorithmic complexity of guarding SCOTs under the r-visibility model – which we denominate
Minimum SCOT r-Guard –, describe which of their subfamilies can be solved in polynomial
time by providing algorithms for them and also prove hardness results for the remaining ones.

A SCOT is a connected orthogonal polygon that is made up of rectangular rooms linked
by rectangular corridors. After all, that is how real buildings tend to be arranged. A corridor
C links two rooms R1 and R2 in a SCOT if a side of C is strictly contained in an edge of R1

and the opposite side is strictly contained in an edge of R2. By “strictly contained” we mean
that a corridor C is always narrower than the rooms R1, R2 that are incident to it and none
of the four vertices of C coincide with either of the four corners of R1 or R2. A SCOT has no
“dangling” corridors, so every corridor is incident to exactly two rooms. Each corridor has an
implicit direction, horizontal or vertical, depending on whether it connects two rooms to its
right/left or above/below it, respectively.

There may exist cycles that involve four or more rooms, in which case the SCOT is called
cyclic (Figures 5.1b and 5.1c). The same pair of rooms may be linked by multiple, non-intersecting
corridors (Figure 5.1c). If there exist room cycles or multiple corridors, the SCOT has holes;
otherwise it is said to be simple (Figure 5.1a).

For convenience we denote a SCOT with set of rooms R and set of corridors C as (R, C)-SCOT.
The number of vertices in an (R, C)-SCOT is equal to n = 4|R|+ 4|C|, since each room and each
corridor contribute with four new vertices to the total count. Because SCOTs are connected,
|C| ≥ |R| − 1 and |R|+ |C| ∈ Θ(|C|).

An obvious way of guarding a SCOT is placing an individual guard in each room and in each
corridor, so we have a trivial upper bound of |R|+ |C| = n/4 for the number of guards needed

59



60 Chapter 5. On r-Guarding SCOTs

R1 R2

R3

R5

R4

R6

R7

(a)

R1 R4

R2 R3

R5

(b)

R1

R2

R3

R4

(c)

Figure 5.1: (a) Simple (R, C)-SCOT, with |R| = 7 and |C| = 6. Rooms are represented as white
rectangles and corridors as shaded rectangles. The corridor connecting rooms R1 and R2 is horizontal
and the corridor connecting rooms R1 and R3 is vertical. (b) SCOT with a cycle involving rooms R1,
R2, R3 and R4. (c) SCOT with multiple corridors between the same sides of rooms R1 and R2 and also
between R2 and R3.

under r-visibility (both for vertex-guards and for point-guards). This solution, however, may in
general not be optimal. An immediate question one should pose is whether Minimum SCOT
r-Guard can be solved in polynomial time at all. Theorem 5.1 establishes that this is true for
simple SCOTs.

Theorem 5.1. [102] A minimum-cardinality r-guard set for a simple orthogonal polygon with n

vertices can be found in time Õ (n17), where Õ(·) hides a polylogarithmic factor.

Despite the interest of this result, which sets Minimum SCOT r-Guard for simple SCOTs
in P, Õ (n17) is not a very gracious running time; this is the penalty that we get for the algorithm
to be applicable to a so broad polygon family. We are thus interested in exploiting the structure
of SCOTs for developing more efficient algorithms that are specific for this class of instances,
and understanding whether the problem involving SCOTs with holes remains polynomial.

A first observation towards a better algorithm is given by Lemma 5.2. It states that reflex
vertices are always better choices to place guards at: for the purposes of finding a minimum-
cardinality vertex-guard set for a SCOT, one could opt to ignore its convex vertices altogether
without risking losing optimality.

Lemma 5.2. Let P be an (R, C)-SCOT with |R| ≥ 2. For any convex vertex u of P , there is a
reflex vertex v of P such that v r-sees more than u (that is, v r-sees a superset of what u r-sees).

Proof. Since P has at least two rooms and is connected, every room has at least two reflex
vertices. The only convex vertices in P are the four corners of each room and only r-see the
room they belong to, given that corridors are narrower than incident rooms. A reflex vertex is
shared between a room and a corridor; therefore, it r-sees that room and (at least) that corridor
(possibly more, if there are multiple corridors along the same direction).



5.1. Simple SCOTs 61

Remark. It is not true for orthogonal polygons in general that, under r-visibility, an optimal
vertex-guard set exists consisting only of reflex vertices. For example, take the staircase polygon
in Figure 5.2.

v1

v2

v3

Figure 5.2: Convex vertices may be required in an optimal vertex-guard set for a general orthogonal
polygon under r-visibility. For this polygon, {v1} is a minimum-cardinality guard set, but if we restrict
ourselves to reflex vertices the only feasible solution is {v2, v3}, which is not optimal.

5.1 Simple SCOTs

In this section, we show that simple SCOTs can indeed be r-guarded in linear time by means of
a greedy algorithm. The algorithm we present works for vertex-guards and for point-guards. It
processes the SCOT as a tree graph induced by its rooms and corridors and detaches its leaves
one by one, until a complete guard set has been determined.

Theorem 5.3. Let P be a simple (R, C)-SCOT. Exactly |R| point-guards (and, indeed, vertex-
guards) are needed for r-guarding P .

Proof. We prove that |R| point-guards (and, indeed, vertex-guards) are necessary and sufficient
for covering P .

Necessity
For (fully) r-guarding some room R, it is mandatory that a guard is placed in the interior
of R: even if one placed a guard on every corridor incident to R, but outside of R, the
room’s corners would not be covered (Figure 5.3). As we need a guard per room, we cannot
use less than |R| guards in total.

Sufficiency
We provide a greedy algorithm as a constructive proof that |R| guards are sufficient.
Figure 5.4 provides a run of this algorithm for the simple SCOT of Figure 5.1a. Build an
undirected graph T = (V, E), with |V | = |R| and |E| = |C|. Each node in V represents a
room of P and there is an edge in E connecting two nodes if the corresponding rooms in P

are connected by a corridor. As P has no holes, T is a tree and has at least one leaf (a
node with degree 0 or 1). While T is not empty, select an arbitrary leaf u corresponding to
a room R. If u has degree 0, place a guard anywhere in R (namely, at one of the corners),
remove u from T and terminate. Otherwise (if u has degree 1), place the guard at one of



62 Chapter 5. On r-Guarding SCOTs

the reflex vertices that are shared between R and one of its corridors C and remove both
u and the incident edge corresponding to C. The tree T will become empty (i.e., P will
become r-guarded) after exactly |R| steps and in each step we have placed a vertex-guard,
so |R| guards are enough.

Figure 5.3: Blind spots on the corners of a room. These regions cannot be r-seen from outside the room.

5.2 r-independent SCOTs

In this section, we define a subfamily of SCOTs, the r-independent SCOTs, and prove that they
can also be guarded in polynomial time, though by means of conceptually different algorithms
regarding vertex-guards or point-guards.

Definition 5.1 (Corridor stretch). Let C be a corridor in a SCOT P . We define the stretch of
C as the infinite extension of C along its direction (horizontal or vertical) (Figure 5.5). That
is: if C is horizontal, the stretch of C is a horizontally unbounded region in the plane that is
bounded above and below by the lines that contain the top and bottom edges of C, respectively;
if C is vertical, its stretch is a vertically unbounded region in the plane that is bounded on the
left and right sides by the lines that contain the left- and right-side edges of C.

Definition 5.2 (Disjoint corridors and aligned corridors). Let C1 and C2 be two corridors
that are incident to the same room R in a SCOT P and have the same direction (either both
horizontal or both vertical). We say that C1 and C2 are disjoint if the stretch of C1 does not
intersect the stretch of C2 and that C1 and C2 are aligned if the stretch of C1 exactly coincides
with the stretch of C2 (Figure 5.5b).

Definition 5.3 (r-independent SCOT). An r-independent SCOT is a SCOT in which every pair
of adjacent corridors with the same direction is either disjoint or aligned (Figure 5.6a). Note
that P may have cycles over rooms and multiple corridors between the same pair of rooms.

5.2.1 Super-corridors

Let P be an r-independent (R, C)-SCOT. Notice that, for every pair (C1, C2) of adjacent, aligned
corridors along the same direction, C1 is r-seen if and only if C2 is r-seen. This induces an



5.2. r-independent SCOTs 63

R1 R2

R3

R5

R4

R6

R7

1

2

5 6

7

SCOT P : tree T :

3

4

(a)

R1 R2

R3

R5

R4

R6

R7

1

2

5 6

7

3

4

(b)

R1 R2

R3

R5

R4

R6

R7

1

5 6

7

3

4

(c)

R1 R2

R3

R5

R4

R6

R7

5 6

7

3

4

(d)

R1 R2

R3

R5

R4

R6

R7

4

5 6

7

(e)

R1 R2

R3

R5

R4

R6

R7

4

6

7

(f)

R1 R2

R3

R5

R4

R6

R7

6

7

(g)

R1 R2

R3

R5

R4

R6

R7

7

(h)

Figure 5.4: Step-by-step execution of the greedy algorithm for determining a minimum-cardinality
vertex-guard set in a simple SCOT P (with no room cycles and no multiple corridors). (a) Initially, a tree
T representing room adjacencies in P is constructed. (b-g) We keep detaching leaf nodes from T until a
single node remains. We break the ties arbitrarily; in this example, leaves are removed in increasing order
of the node identifier. In each intermediate step, a guard is placed on a reflex vertex to r-see exactly one
room and one corridor. (h) When the last leaf node remaining is removed, the entire polygon P becomes
covered. The number of guards used is |R| = 7.



64 Chapter 5. On r-Guarding SCOTs

(a) (b) (c)

Figure 5.5: (a) Simple SCOT P . (b) The stretches of the two horizontal corridors of P perfectly
coincide, so they are aligned corridors. (c) The stretches of the two vertical corridors of P intersect, but
do not coincide, so they are not aligned nor disjoint.

C1 C2

(a)

C3

C4

(b)

Figure 5.6: (a) r-independent SCOT. Notice that, even though the stretches of corridors C1 and C2

coincide, C1 and C2 are not adjacent. (b) A SCOT that is not r-independent. The stretches of corridors
C3 and C4 intersect in a vertical line. A guard placed at the top-right corner of C4 would r-see both
corridors.

equivalence relation between corridors (r-equivalence), according to which two adjacent corridors
are equivalent if and only if they are aligned. By transitivity, two nonadjacent corridors that
belong to the same succession of adjacent, aligned corridors along the same direction are also
r-equivalent (such as corridors C2 and C4 of the r-independent SCOT in Figure 5.7).

C1

C2 C3 C4

C5

C6

Figure 5.7: There are four super-corridors (r-equivalence classes of corridors) in this polygon: {C1},
{C2, C3, C4}, {C5} and {C6}. Corridors C1 and C5 are not r-equivalent because they are not adjacent
and do not belong to a succession of adjacent, aligned corridors. The same happens with corridors C4 and
C6.

Compression of aligned corridors into super-corridors We now describe a general
strategy that we will employ several times for dealing with r-independent SCOTs. Replace each
maximal succession of adjacent corridors C(1), C(2), . . . that are aligned along the same direction



5.2. r-independent SCOTs 65

by a super-corridor that may cross multiple rooms. In other words, conceptually represent all
of these r-equivalent corridors by a unique, long corridor that acts as their equivalence class,
C ′ = {C(1), C(2), . . . }. After this transformation, the problem has been reduced to the case where
all pairs of adjacent (super-)corridors are disjoint. We denote by C′ the set of all super-corridors
in P , that is, |C′| is equal to the number of equivalence classes of corridors. In the specific case
where all corridors in P were already pairwise disjoint, |C| = |C′| and |C ′| = 1 for every C ′ ∈ C′.
We say that a room R is incident to a super-corridor C ′ if and only if R is incident to some
corridor C that belongs to C ′.

Because the decomposition into super-corridors is so important for developing algorithms
specific to r-independent SCOTs, we will often denote by (R, C, C′)-SCOT an r-independent
(R, C)-SCOT with a set of super-corridors C′.

Lemma 5.4. Let P be an r-independent (R, C, C′)-SCOT. The number of pairs of rooms and
super-corridors (R, C ′) such that R ∈ R and C ′ ∈ C′ are incident is bounded above by 2|C|.

Proof. Let Q = {(R, C ′) : R ∈ R, C ′ ∈ C′, R is incident to C ′}. If all pairs of adjacent corridors
in P are disjoint, the bound |Q| ≤ 2|C| clearly holds: in this case, the amount of pairs in Q is
equal to the number of pairs of rooms and corridors (R, C) such that R and C are incident to
each other in P . Given that each corridor, connecting two rooms in P , introduces two new pairs
in Q (between the corridor and both rooms), this leads to |Q| = 2|C|.

However, the existence of r-equivalent corridors affects the cardinality of Q. Consider a
subset S of rooms in P and a maximal succession of |S| − 1 aligned corridors connecting these
rooms (Figure 5.8a). If these corridors were not compressed, they would contribute in total with
2(|S| − 1) pairs to the set Q. But compressing them into a single super-corridor contributes with
|S| pairs to Q: each one linking the super-corridor to a different room in S (Figure 5.8b). Since
the inequality x ≤ 2(x− 1) holds for all x ≥ 2 and indeed |S| ≥ 2 (otherwise, there would be no
corridor to consider at all), Q cannot exceed the size it would have without the transformation;
in particular, |Q| cannot be greater than 2|C|.

Compressing the corridors of an r-independent SCOT into super-corridors can be done in
O(|C| log |C|) time. For that, compute, for each room R, a list of all horizontal corridors incident
to R sorted by the y-coordinate of their top edges. Pick any horizontal corridor C and launch a
depth-first search from it. Transition from a corridor to an adjacent one if it is also horizontal
and both share the same top edge y-coordinate. Valid neighbours can be binary searched in
O(log |C|) time in the lists of the incident rooms. As soon as the current search terminates, add
to C′ a new super-corridor formed by all the corridors that have been visited during this search.
Repeat while there are unvisited horizontal corridors. Do the same for vertical corridors, but
now basing the search on the x-coordinate of their left edges.



66 Chapter 5. On r-Guarding SCOTs

...

R1 R2 R3 R|S|

1 2 3 4 5 2(|S|− 1)

(a)

...

R1 R2 R3 R|S|

1 |S|

(b)

Figure 5.8: (a) If r-equivalent corridors were not compressed, a succession of |S|−1 corridors connecting
a subset of rooms S would contribute with 2(|S| − 1) pairs to |Q|, because each corridor is incident to
exactly two rooms. (b) By compressing this maximal succession of aligned corridors into a super-corridor,
Q now gets |S| pairs instead: one for each room that is incident to the super-corridor.

5.2.2 3-approximation algorithm for vertex-guards and point-guards

In the following Sections 5.2.3 and 5.2.4 we provide exact, polynomial-time algorithms for
finding minimum-cardinality vertex-guard sets and point-guard sets for an r-independent SCOT.
However, before describing these, we draw the attention to the fact that the trivial algorithm that
places a guard per room and per super-corridor already gives us a linear-time 3-approximation
algorithm for r-independent SCOTs, using either vertex-guards or point-guards, if we assume that
corridors have already been compressed to super-corridors. We formalize this in Theorem 5.5.

Theorem 5.5. Let P be an r-independent (R, C, C′)-SCOT. A minimum-cardinality point-guard
set (and, indeed, vertex-guard set) for P can be approximated with factor 3 in time linear in
|R|+ |C′|.

Proof. Let C′
h ⊆ C′ and C′

v ⊆ C′ be the sets of horizontal and vertical super-corridors in P ,
respectively. Consider the guard set G obtained by, for each room of P , placing a guard at one
of its vertices and, for each super-corridor, placing as well a guard at one of its vertices. G is a
vertex-guard set, so it is also a point-guard set, and has size at most |R|+ |C′| = |R|+ |C′

h|+ |C′
v|.

Since at least max{|R|, |C′
h|, |C′

v|} guards are required for guarding P , the approximation factor
|G|

OP T (P ) is at most
|R|+ |C′

h|+ |C′
v|

max{|R|, |C′
h|, |C′

v|}
≤ 3 max{|R|, |C′

h|, |C′
v|}

max{|R|, |C′
h|, |C′

v|}
= 3.

Another linear-time 3-approximation algorithm for r-guarding general orthogonal polygons
was already known [75], but, contrary to our result in Theorem 5.5, it is only applicable for
covering simple polygons with point-guards.



5.2. r-independent SCOTs 67

5.2.3 Exact algorithm for vertex-guards

We now explain how an optimal vertex-guard set can be found for an r-independent (R, C, C′)-
SCOT in polynomial time. Once more, we need one guard per room, otherwise the corners of
some room will not be watched over. Notice that a vertex-guard can r-see at most one room and
one super-corridor of P . It is intuitive that, when placing a guard g in a room R, it is best to
try to also cover one of the incident super-corridors C ′, by placing g at one of the reflex vertices
shared by R and C ′, so as to avoid wasting extra guards for C ′ later. Informally, we would like to
maximize the number of guards that see two objects in P at once, so that the remaining guards
that, individually, only see one object are minimum.

We thus consider two phases for the positioning of the guards in P : first, we place one guard
in every room, also covering exactly one of the (not yet covered) incident super-corridors in each;
then, and only after that, we spend a guard for separately watching over each of the remaining
uncovered rooms and/or super-corridors. Of course, the first phase cannot be done in an arbitrary
way, because a non-optimal placement may lead to more guards being required in the second
phase.

The strategy we follow to ensure that this placement is done optimally involves finding a
maximum matching between rooms and incident super-corridors. For that, we build a bipartite
graph H = (V, E) with node parts A and B. The set A contains |R| nodes corresponding to
rooms in P and B contains |C′| nodes corresponding to super-corridors. We call a node in A a
room node and a node in B a super-corridor node, and we add an edge between a room node
and a super-corridor node in H if and only if their corresponding room and super-corridor are
incident in P . Note that a separate edge should be added for each room that the super-corridor
crosses (a super-corridor crosses a room if at least one of the corridors it contains is incident to
that room).

A concrete selection of pairs of rooms and super-corridors that may be chosen to be r-seen
collectively with a single guard can be modeled as a matching in graph H; in particular, by
Lemma 5.6, an optimal selection of guards corresponds to a maximum cardinality matching
(Figure 5.9). Let M⋆ be any maximum matching in H and let A′ ⊆ A and B′ ⊆ B be the sets of
room nodes and super-corridor nodes in G that are covered up by M⋆. Since, by definition, no
two edges in a matching are incident to the same node, we have that |A′| = |B′| = |M⋆|. The
proof of Lemma 5.6 explains how we can extract a vertex-guard set for P from the obtained
matching M⋆.

Lemma 5.6. The graph H has a matching M of size k ∈ Z+
0 if and only if the SCOT P has a

vertex-guard set G of size |R|+ |C′| − k.

Proof.

(⇒) Let M be a matching in H of cardinality k and G be an empty vertex-guard set. For each
edge (u, v) in M , add to G a guard at a reflex vertex that is shared between the room R



68 Chapter 5. On r-Guarding SCOTs

corresponding to u and a corridor that the super-corridor C ′ corresponding to v represents;
there are either two or four possibilities for choosing that vertex (depending on whether
C ′ contains one or two corridors incident to R, respectively), but it can in fact be picked
arbitrarily, because all these shared vertices r-see the exact same region in P (Figure 5.10).
Finally, place a guard in each of the rooms and/or super-corridors that may eventually still
be left unguarded. G is feasible and has size |M |+ (|A|− |M |) + (|B|− |M |) = |R|+ |C′|−k.

(⇐) Let G be a vertex-guard set for P , with |G| = |R| + |C′| − k, and let G′ be a subset of G
with |G′| = |C′| that covers all the super-corridors. G′ exists because each super-corridor
requires a different vertex-guard. By hypothesis, G′ leaves at most |R|− k rooms uncovered
and, thus, covers at least k different rooms. As we have placed each guard in a different
super-corridor, there is a matching of size k between room and super-corridor nodes in H.

M⋆ may, for instance, be found using Hopcroft-Karp’s algorithm [59], which runs in
time O

(√
|V ||E|

)
– indeed O

(√
min{|A|, |B|}|E|

)
. In this case, we have min{|A|, |B|} =

min{|R|, |C′|} and, by Lemma 5.4, |E| ≤ 2|C|. Theorem 5.7 then follows.

Theorem 5.7. Let P be an r-independent (R, C, C′)-SCOT. A minimum-cardinality vertex-guard
set for P can be determined in time O

(
|C|
√

min{|R|, |C′|}
)
.

C1

C2

C3

C4

C5 C6 C7

R1

R2

R3

R4

R5

R6

C ′

1

C ′

2

C ′

3

C ′

4

(a)

A, rooms B, super-corridors

R1

R2

R3

R4

R5

R6

C ′

1

C ′

2

C ′

3

C ′

4

(b)

Figure 5.9: (a) r-independent SCOT P , with four super-corridors: C ′
1 = {C1, C2}, C ′

2 = {C3},
C ′

3 = {C4} and C ′
4 = {C5, C6, C7}. A partial guard set watching over everything in P except for rooms

R5 and R6 is presented. Each guard covers exactly one room and one super-corridor. (b) Bipartite graph
H, whose subset of nodes A represents rooms in P and whose subset B represents super-corridors. The
edges contained in a B-perfect matching M⋆, corresponding to the partial guard set given in (a), are
highlighted. The guard set could be extended with two guards, one in R5 and another in R6, to optimally
cover the entirety of P .

Remark. One could guess that exactly max(|R|, |C′|) vertex-guards are needed for r-guarding
any r-independent (R, C, C′)-SCOT P . That is, it would be tempting to think that a A-perfect
matching and/or a B-perfect matching in H always exists and that exactly min(|R|, |C′|) guards



5.2. r-independent SCOTs 69

v1 v3

v4v2

R1 R2 R3

(a)

v1

v2

R1 R2

(b)

Figure 5.10: (a) A vertex-guard that is chosen to r-see both the room R2 and the super-corridor
that crosses all three rooms can be placed in any of the four vertices v1, v2, v3 or v4, because they are
r-equivalent. (b) If the matching M⋆ determines that a vertex-guard has to be placed seeing both the
room R2 and the super-corridor, there are two possibilities for the guard: either at v1 or at v2.

could be placed on the first phase, covering either all the rooms or all the super-corridors in
P (or both). However, this is not necessarily true and a counterexample of a SCOT P whose
corresponding bipartite graph H admits no perfect matching is presented in Figure 5.11a. We
prove it by invoking Hall’s theorem, which asserts that a bipartite graph G = (A ∪B, E) admits
an A-perfect matching if and only if every subset of nodes X ⊆ A has at least as many neighbours
in B:

Theorem 5.8 (Hall’s marriage theorem). [56] Let G = (A ∪B, E) be a bipartite graph and, for
some subset X ⊆ A, let NG(X) denote the neighbourhood of X, that is, the set of all the nodes
in B that are adjacent to some element of X. Then, G admits an A-perfect matching if and only
if, for any subset X ⊆ A, |X| ≤ |NG(X)|.

We can now argue that the matching in graph H represented in Figure 5.11b is of maximum
cardinality. For the set X = {R4, R6} we have NH(X) = {C ′

5} and thus |X| > |NH(X)|, which
then implies that H admits no perfect matching. Since |M⋆| = |A|−1 = |B|−1, M⋆ is maximum.
Thus, the smallest vertex-guard set for P has |M⋆|+ 2 = 7 > max{|R|, |C′|} guards.

5.2.4 Exact algorithm for point-guards

The proof of Theorem 5.7 shows how we can solve the problem with vertex-guards in time that
is polynomial in the instance size. It would be interesting to know if the same algorithm can
also be applied to optimally solve the version with point-guards. After some careful thinking, it
becomes clear that it cannot. The reason for this is that a point-guard placed in a room R which
is incident to a horizontal and a vertical super-corridor, respectively C ′

h and C ′
v, can actually

r-see both super-corridors if it is placed in the intersection of the room and the stretches of C ′
h

and C ′
v. Therefore, the matching would not account for the possibility of the same guard to

cover three different objects in P at once. As we have seen, this possibility does not extend to
vertex-guards, which are bound to only r-see at most one super-corridor.

Nevertheless, the problem of watching over r-independent SCOTs with point-guards is still
polynomial-time solvable, although by a conceptually different algorithm – which we present



70 Chapter 5. On r-Guarding SCOTs

C
′

1
C

′

2
C

′

3

C
′

4
C

′

2

C
′

6

C
′

5

C
′

5

R1

R2

R3

R4

R5

R6

(a)

A, rooms B, super-corridors

R1

R2

R3

R4

R5

R6

C ′

1

C ′

2

C ′

3

C ′

4

C ′

5

C ′

6

(b)

Figure 5.11: (a) r-independent SCOT P , showing a partial vertex-guard set covering every region
except for room R6 and super-corridor C ′

2. It is a counterexample for the conjecture that max{|R|, |C′|}
vertex-guards are sufficient for watching over any r-independent (R, C, C′)-SCOT P . (b) Bipartite graph
H = (A∪B, E), along with a maximum cardinality matching M⋆, representing the partial guard placement
in P . H admits no perfect matching and therefore two extra guards are needed for covering R6 and C ′

2.

next, along with some useful lemmas.

Lemma 5.9. For any r-independent SCOT P , there is a minimum-cardinality point-guard set
for P in which every guard lies inside a room.

Proof. Suppose P admits a minimum point-guard set G with at least one guard, g, having been
placed strictly inside a corridor C. What g (completely) r-sees is exactly the super-corridor
corresponding to C and nothing else. Shift g along the direction of C until it becomes strictly
contained in a room (Figure 5.12), call g′ its new position and let G′ = (G \ {g}) ∪ {g′} be the
new guard set, which satisfies |G′| = |G|. Now g′ still sees the super-corridor corresponding to
C, but it does also see a room. Therefore, the new position for the guard g′ has not made G′

worse than G in terms of covered area. Repeat the same argument while there are guards strictly
outside rooms in G′.

Lemma 5.9 says that, if we only consider solutions with guards placed in rooms, we do not
risk losing optimality. This observation proves useful for developing an algorithm that finds a
minimum-cardinality point-guard set by placing each guard strategically inside a room.

For that, we transform the problem into one of network flows, called Minimum Flow with



5.2. r-independent SCOTs 71

g

(a) (b) (c)

Figure 5.12: (a) Guard g only r-sees a corridor. (b-c) By moving g to an incident room, it still sees the
corridor, but now also sees a room. Therefore, the solution has not become worse.

Demands. This problem, sometimes referred to as circulation problem with lower bounds [70], is
a generalization of Maximum Flow in a network and can be solved in polynomial time. Before
delving into the reduction, we take a short detour so that we can focus on what the problem
of Minimum Flow with Demands is about, redefine some relevant concepts and detail an
approach for solving it.

5.2.4.1 Minimum flow with demands

Like in the standard setting, a flow network is a directed graph G = (V, E) with two distinguished
nodes, a source s and a sink t. We extend the usual definition so that each edge (u, v) ∈ E is now
characterized by two functions, d(u, v) and c(u, v), where 0 ≤ d(u, v) ≤ c(u, v). The function
d(u, v) is called the demand of the edge (u, v) and c(u, v) is called its capacity.

A flow in G is a function f : V × V → R which we want to satisfy the following properties:

• Flow conservation: for all u ∈ V \ {s, t}, it holds that
∑
v∈V

f(u, v) =
∑
v∈V

f(v, u).

• Edge constraints: for all u, v ∈ V , it holds that d(u, v) ≤ f(u, v) ≤ c(u, v).

So each edge in E has a lower bound for the value of the flow that must pass through it, in
addition to the upper bound imposed by its capacity. A flow that satisfies these properties is
called feasible.

Contrary to what happens in a regular flow network, a network with demands does not
necessarily admit a feasible flow. Minimum Flow with Demands asks for a feasible flow of
minimum value for the given network G – or to report that no feasible flow exists. The standard
Maximum Flow problem corresponds to setting d(u, v) = 0 for every edge (u, v) ∈ E and in
this case finding a minimum feasible flow is trivial: the zero flow, which sets f(u, v) = 0 for
every edge (u, v) ∈ E, is both feasible and minimum. However, in the more general setting of
Minimum Flow with Demands, finding some feasible flow suddenly becomes not obvious at
all, let alone minimizing it (Figure 5.13).

Let us first describe how we can find a feasible flow in G and afterwards we explain how to
minimize it.



72 Chapter 5. On r-Guarding SCOTs

s t

1 3

42

[1, 5]

[1, 1]

[2, 3]

[0, 1] [2, 2]

[1, 5]

[1, 2]

[4, 6]

[0, 2]

(1)

(a)

s t

1 3

42

[1, 5]

[1, 1]

[2, 3]

[0, 1]
[2, 2]

[1, 5]

[1, 2]

[4, 6]

[0, 2]

(1)

(0)

(3)

(1)

(2)

(1)

(4)

(0)

(1)

(b)

Figure 5.13: (a) Network G with demands and capacities, an instance of Minimum Flow with
Demands. Each edge (u, v) is annotated with a range [d(u, v), c(u, v)]. (b) Example of a feasible flow
in G, where on each edge (u, v) it is indicated inside parenthesis the amount that flows through it, as
(f(u, v)).

Finding a feasible flow We reduce Minimum Flow with Demands to Maximum Flow,
closely following the method described in [44]. For that, we construct a new network G′ = (V ′, E′)
(without demands on edges) that has the same nodes as G and, in addition, a new source s′ and
target t′. We replace each edge (u, v) ∈ E with three edges in E′: an edge (u, v) with capacity
c(u, v) − d(u, v), an edge (s′, v) with capacity d(u, v) and finally an edge (u, t′) with capacity
d(u, v) as well. In the case where multiple edges leave s′ to the same node v (or from the same
node u to t′), we merge them into a single edge and add up their capacities. Furthermore, we
add an extra edge from t to s having capacity ∞. See Figure 5.14 for a small example.

In other words, if we let c′ : E′ → R denote the resulting capacity function in G′, we define
the capacity of each edge in E′ as:

• c′(s′, v) =
∑
u∈V

d(u, v) and c′(v, t′) =
∑
w∈V

d(v, w) for every vertex v ∈ V .

• c′(u, v) = c(u, v)− d(u, v) for every edge (u, v) ∈ E.

• c′(t, s) =∞.

[1, 4] [2, 6] [3, 10]
s u v t

(a)

3 4 7
s
′ u v t t

′

1

2

3

1

2

3

∞

s

(b)

Figure 5.14: (a) Small original network G with edge capacities and demands. (b) New, transformed
network G′ obtained by reducing Minimum Flow with Demands to Maximum Flow. The value on
an edge (u, v) refers to the transformed capacity c′(u, v).

From this reduction, we have that |V ′| = |V |+2. Also, |E′| ≤ |E|+2(|V |−1)+1 = 2|V |+|E|−1



5.2. r-independent SCOTs 73

because we have added at most one edge from s′ to each node in V (other than s, since s has
in-degree 0 in G), at most one edge to t′ from each node in V (other than t, since t has out-degree
0 in G) and the edge (t, s). Hence this reduction takes time linear in |G| = |V |+ |E|.

A flow in G′ is saturating if its value equals the sum of the capacities of the edges leaving s′

(or, equivalently by construction, all the edges entering t′). Every saturating flow is a maximum
flow, because we cannot increase it further without overflowing the edge capacities. Also, if some
maximum flow is saturating, all the maximum flows are as well (and, if some maximum flow is
not saturating, then none is) [45].

Lemma 5.10. [44] G has a feasible flow from s to t if and only if G′ has a saturating flow from
s′ to t′.

Let f : E → R be a feasible flow in G. From the proof of Lemma 5.10, there is a saturating
flow f ′ : E′ → R in G′ that satisfies f ′(u, v) = f(u, v)− d(u, v). Conversely, for any saturating
flow f ′ in G′, the function f(u, v) = f ′(u, v) + d(u, v) is a feasible flow in G as well (when
restricted to the original set of edges, E). Moreover, we have that f ′(t, s) = |f |. See Figure 5.15
for an example. A significant consequence is that we can find some feasible flow in G – if one
exists – by running any maximum flow algorithm on the new network G′ and checking whether
the determined flow f ′⋆ is saturating. If it is, then f ′⋆(t, s) indicates the value of |f | and we can
in effect recover the actual flow f from f ′⋆. If it isn’t, no feasible flow exists in G.

Finding a minimum feasible flow Now that we are able to find a feasible flow, we would
like to compute a minimum feasible flow on G, which we denote by f⋆. The main observation is
that the entire flow of the old network G flows along the edge (t, s) in G′, that is, f ′⋆(t, s) = |f |.
This edge was defined to have capacity ∞, which essentially corresponds to the maximum flow in
G′ found by any maximum flow algorithm being unlimited from above (apart from the remaining
edge capacities themselves). By continuously limiting this edge with a smaller and smaller
capacity c′(t, s), the maximum flow value |f ′⋆| will keep decreasing until there is a moment when
the network G′ will stop admitting a saturated flow – and so the corresponding flow on the
original network G will no longer satisfy all the edge demand constraints. Thus, we can binary
search the lowest value k such that, by setting c′(t, s) = k, the new network G′ still admits a
saturating flow (which we can test by running a maximum flow algorithm on G′). The found
value k gives us the value of the minimum feasible flow f⋆ on the original network, G.

This method runs in time O (T (G′) log |f⋆|), where T (G′) is the time complexity of the
algorithm used for computing a maximum flow in G′. For instance, we get an overall running
time of O (|V ′|2|E′| log |f⋆|) = O ((|V |3 + |V |2|E|) log |f⋆|) = O (|V |2|E| log |f⋆|) if Dinic’s
algorithm [38] is used. We remark that a new paper [28], very recent by the time of writing
of this thesis, claims that Maximum Flow in a network H = (VH , EH) can be solved in
almost-linear time |EH |1+o(1). Should this result be confirmed, the algorithm we described for
solving Minimum Flow with Demands can be sped up to get an overall time complexity of
|E′|1+o(1) log |f⋆| ≤ (2|V |+ |E| − 1)1+o(1) log |f⋆|.



74 Chapter 5. On r-Guarding SCOTs

[7,20]

[5,10]

[4,10]

[0,5]

[3,10]

[1,15]

[4,10]

[6,20]

[2,15]

s t

(a)

8

4

7

10

3

13

5

6

∞

5

7

14
6

14

13

10

3

11

5

3

s
′ s t t

′

(b)

8/8

4/4

7/7

10/10

3/3

0/13

0/5

0/6

11/∞

2/5

7/7

0/14
0/6

0/14

3/13

10/10

3/3

11/11

5/5

3/3

s′ s t t′

(c)

[7,20]

[5,10]

[4,10]

[0,5]

[3,10]

[1,15]

[4,10]

[6,20]

[2,15]

s t

(10)

(1)

(4)

(7)

(2)

(4)

(6)

(5)

(5)

(d)

Figure 5.15: Example adapted from [44]. (a) Original network G with edge capacities and demands. (b)
New network G′ obtained by reducing Minimum Flow with Demands to Maximum Flow. The value
on an edge (u, v) refers to the transformed capacity c′(u, v). (c) A saturating flow f ′ in G′, obtained by
running a maximum flow algorithm over the transformed network. (d) A feasible flow f in G corresponding
to f ′ by taking f(u, v) = f ′(u, v) + d(u, v) for every edge (u, v) ∈ E. Notice that f ′(t, s) = |f | = 11.

5.2.4.2 Network construction

Having defined the problem Minimum Flow with Demands, we are ready to describe the
reduction from Minimum SCOT r-Guard for r-independent SCOTs with point-guards, that is,
how a network G can be built from a given r-independent (R, C, C′)-SCOT P . The idea is that,
in our construction, every guard will be placed in a room (which is plausible by Lemma 5.9)
and will r-see exactly one room, one horizontal super-corridor and one vertical super-corridor –
perhaps artificial, as we explain below.

First, we define two types of gadgets. A real-gadget is a set of two nodes u and v that are
connected by a directed edge (u, v) with demand 1 and capacity ∞. We call node u the in-node
of the gadget and the other one, v, its out-node. A pseudo-gadget is defined identically to a
real-gadget, but the edge linking the in-node to the out-node has demand 0. A real-gadget and a
pseudo-gadget are illustrated on Figure 5.16b (above and below the network, respectively). The



5.2. r-independent SCOTs 75

edges in real-gadgets are the only ones in G that have positive demand. Every edge in G has
capacity ∞.

We will represent each room, horizontal super-corridor and vertical super-corridor in P by a
corresponding real-gadget in G. We denote the gadgets corresponding to a given room R, to
a horizontal super-corridor C ′

h and to a vertical super-corridor C ′
v as Γ(R), Γ(C ′

h) and Γ(C ′
v),

respectively. Also, add to G two pseudo-gadgets, Γ(C ′
hf ) and Γ(C ′

vf ), representing two mock
super-corridors, one horizontal and one vertical, respectively.

Connect the out-node of Γ(C ′
hf ) to the in-node of the real-gadget Γ(R) of every room R with

demand 0 and capacity ∞ and in the same way connect the out-node of the real-gadget Γ(R) of
every room to the in-node of Γ(C ′

vf ). Make sure to connect s to Γ(C ′
hf ) and Γ(C ′

vf ) to t with
demands 0 and capacities ∞. For each pair of horizontal super-corridor and room (C ′

h, R) that
are incident in P , connect the out-node of Γ(C ′

h) to the in-node of Γ(R) with an edge of demand
0 and capacity ∞. For each pair of room and vertical super-corridor (R, C ′

v) that are incident
in P , connect the out-node of Γ(R) to the in-node of Γ(C ′

v), also with demand 0 and capacity
∞. Connect the source node s of G to the in-node of the real-gadget Γ(C ′

h) of each horizontal
super-corridor with a demand of 0 and a capacity of ∞. Finally, connect the out-node of every
real-gadget Γ(C ′

v) corresponding to a vertical super-corridor to the sink t, again with demand 0
and capacity ∞. See Figure 5.16 for an illustration of the whole reduction from a SCOT to a
network of flows with demands.

Lemma 5.11. The size of the network G and the time it takes to construct it are linear in the
SCOT size, |R|+ |C| ∈ Θ(|C|). More specifically, |V | ≤ 2|R|+ 2|C|+ 6 and |E| ≤ 3|R|+ 4|C|+ 4.

Proof. Let C′
h and C′

v be the sets of horizontal and vertical super-corridors in P . We have added two
nodes in G for each real-gadget, for each pseudo-gadget and for the source s and sink t. We have
added an edge from s to the in-node of every gadget corresponding to a (fictitious or not) horizontal
super-corridor (|C′

h|+ 1), an edge from Γ(C ′
hf ) to every room (|R|), an edge from every room to

Γ(C ′
vf ) (|R|) and an edge from the out-edge of the gadget corresponding to every (fictitious or not)

vertical super-corridor to t (|C′
v|+1). Also, we have added edges connecting rooms to incident super-

corridors whose amount is bounded above by 2|C|, by Lemma 5.4, and edges linking in-nodes to out-
nodes in gadgets (|R|+|C′

h|+1+|C′
v|+1). Therefore, |V | = 2(|R|+|C′|)+2×2+2 ≤ 2(|R|+|C|)+6

and |E| ≤ 2(|C′
h|+ 1) + 2(|C′

v|+ 1) + 3|R|+ 2|C| ≤ 3|R|+ 4|C|+ 4.

The meaning that we assign to one unit of flow on G is a point-guard in P ; for each unit
that flows from s to t, one guard is placed at some room in P . Recall that every edge in G has
capacity ∞. This implies that G always admits a feasible flow; in particular, one with |f⋆| =∞.
This also means that the number of guards allowed for watching over any room or corridor of P

is essentially unbounded: we do not care if multiple guards all see the same region in P , as long
as the resulting solution is still optimal. In practice, we can replace ∞ by an upper bound for
the number of guards needed for covering P entirely, such as |R|+ |C| or even |R|+ |C′|.

Intuitively, the edges in real-gadgets, which were assigned a positive demand, require any



76 Chapter 5. On r-Guarding SCOTs

C1

C2

C3

C4

C5 C6 C7

R1

R2

R3

R4

R5

R6

C ′

1

C ′

2

C ′

3

C ′

4

(a)

Γ(R2)

Γ(R3)

Γ(R4)

Γ(R5)

Γ(R6)

Γ(C ′

3
) Γ(C ′

1
)

Γ(C ′

2
)

Γ(C ′

vf )

Γ(R1)

Γ(C ′

hf )

s Γ(C ′

4
) t

(b)

Figure 5.16: (a) The same r-independent SCOT P of Figure 5.9a, with four super-corridors: C ′
1 =

{C1, C2}, C ′
2 = {C3}, C ′

3 = {C4} and C ′
4 = {C5, C6, C7}. (b) The network G corresponding to P that

is an instance of Minimum Flow with Demands. It has a total of 26 nodes and 41 edges (including
those on the gadgets). We display nodes vertically split into five conceptual groups: source (s), gadgets
for horizontal super-corridors, room gadgets, gadgets for vertical super-corridors and sink (t). Notice
that pseudo-gadgets Γ(C ′

hf ) and Γ(C ′
vf ), for both horizontal and vertical super-corridors, are connected

to every room to enable solutions where guards are placed in positions from where they cannot see any
corridor in one or both directions. Every edge in G has capacity ∞. All the edges belonging to real
gadgets have demand 1; every other edge has demand 0.



5.2. r-independent SCOTs 77

feasible flow on G to pass through them and, thus, force every room and (real) super-corridor to
have at least one guard covering it. Edges in pseudo-gadgets have demand 0 because we do not
explicitly require any guard to see them; their only importance is to assure a correspondence
between the network construction and the polygon. The same way a point-guard can see at most
one room, one horizontal super-corridor and one vertical super-corridor in P , one unit of flow
through the network G can satisfy the demands of at most three edges with positive demand,
covering a path of the form s → Γ(C ′

h) → Γ(R) → Γ(C ′
v) → t. If a placed guard only sees a

room and at most one super-corridor, the corresponding unit of flow will still cover up a path
from s to t in G – but that path will pass through artificial super-corridor nodes.

Remark. Notice how the order Γ(C ′
h) → Γ(R) → Γ(C ′

v) of the gadgets in a path from s to t

matters. Suppose that, alternatively, we had (incorrectly) decided it would be best for the gadget
of a vertical super-corridor C ′

v to immediately follow the gadget of an adjacent, horizontal super-
corridor C ′

h (or the other way around) in a path of the form s→ Γ(R)→ Γ(C ′
h)→ Γ(C ′

v)→ t.
The subtle issue here is that the fact that C ′

h and C ′
v are adjacent (i.e., incident to the same

room R′) does not necessarily imply that R′ = R. In such case we could be inadvertently
enabling a guard that is positioned in room R to also see a vertical super-corridor C ′

v that is
attached to another room R′, neighbour of R. On the other hand, the order we originally defined
correctly forces the guard to r-see both horizontal and vertical super-corridors in coherence with
the room it has been placed at, because consistency is enforced between the room and a horizontal
super-corridor and also between the room and a vertical super-corridor.

According to the meaning we have assigned to f , the value of the minimum feasible flow on G

is equal to the minimum number of point-guards that are needed for guarding P , which is what
Lemma 5.12 proves. Lemma 5.12 also explains how we can extract the actual guard set from the
resulting flow configuration found by the algorithm for Minimum Flow with Demands that
was proposed in Section 5.2.4.1. Recall that the value of the flow on G at any iteration of the
binary search, in particular |f⋆|, is bounded above by the capacity of the edge (t, s) in G′, for
which we have argued that an appropriate value could be |R|+ |C| ∈ Θ(|C|).

The reduction to Minimum Flow with Demands we have presented then implies a method
for determining a minimum-cardinality point-guard set for r-independent SCOTs under r-visibility.
Its overall time complexity depends on the exact Maximum Flow algorithm that is used as
subroutine. If Dinic’s algorithm [38] is used, by the proof of Lemma 5.11 the running time
that one obtains is O (|V |2|E| log |f⋆|) = O

(
(|R|+ |C|)3 log (|R|+ |C|)

)
= O (|C|3 log |C|). If,

on the other hand, the algorithm reported in [28] is used, one can achieve a time complexity
of (5|R|+ 6|C|+ 5)1+o(1) log |C|. Figure 5.17 exemplifies the parallelism between the minimum
feasible flow in G and the optimal point-guard set in P .

Remark. The upper bound 5|R|+ 6|C|+ 5 that we obtained for |E′| comes from the fact that
only edges in the real-gadgets of G have positive demand and, thus, contribute with positive
capacities to G′. When building the transformed network G′ from G, we add an edge from s′

to each real-gadget out-node, an edge from each real-gadget in-node to t′ and an edge from t

to s. Hence, we have |E′| = |E| + 2(|R| + |C′|) + 1 ≤ 5|R| + 6|C| + 5. Note that the bounds



78 Chapter 5. On r-Guarding SCOTs

|V | ≤ 2|R|+ 2|C|+ 6, |E| ≤ 3|R|+ 4|C|+ 4 and |E′| ≤ 2|V |+ |E| − 1 hold for general networks,
but blindly applying these would yield a looser bound of |E′| ≤ 7|R|+ 8|C|+ 15.

Lemma 5.12. The (R, C, C′)-SCOT P has a point-guard set G of size k ∈ Z+ if and only if the
network with demands G has a feasible flow f of value |f | = k.

Proof.

(⇒) Let G be a point-guard set for P with |G| = k. By Lemma 5.9, assume every guard in G is
placed inside a room. For each guard g ∈ G, let R ∈ R, C ′

h ∈ C′ and C ′
v ∈ C′ be the room,

horizontal super-corridor and vertical super-corridor that g r-sees; if it does not see any
horizontal and/or vertical super-corridor, take C ′

h and/or C ′
v as fictitious super-corridors.

Send 1 unit of flow from s to t through the path s→ Γ(C ′
h)→ Γ(R)→ Γ(C ′

v)→ t. This
can always be done because all the edge capacities are ∞. This yields a flow of value k.
Since the guard set G covers every room, every horizontal super-corridor and every vertical
super-corridor in P , the demand of every edge in G will be satisfied and therefore the flow
is feasible.

(⇐) Let G = ∅. Do what follows while in G there is some path from s to t that passes only
through edges (u, v) with f(u, v) > 0. Let γ = s→ Γ(C ′

h)→ Γ(R)→ Γ(C ′
v)→ t be such

a path, which can be found by a breadth-first search from s. Place a guard anywhere
in the intersection of R, the stretch of C ′

h and the stretch of C ′
v; if C ′

h and/or C ′
v are

fictitious super-corridors, place the guard in an arbitrary y-coordinate and/or an arbitrary
x-coordinate, respectively, within room R. Insert this guard into G. Decrement in 1 the
value of f(u, v) for every edge (u, v) along γ. Since the flow f satisfied every edge demand
in G, for any room and corridor in P there will be at least one guard in G watching over
it and |G| = k. The number of processed paths γ is equal to |f | and, since every path γ

considered has 4 edges, the cost per iteration is O(1), leading to an overall linear-time
reduction in practice, where |f | ≤ |R|+ |C|.

5.3 NP-completeness with point-guards

In Sections 5.1 and 5.2, we have presented efficient, polynomial-time algorithms for solving the
cases where the SCOT instance has no holes or is r-independent. These were majorly based
upon the specific structure of the polygon, which allowed for determining guard placements
that we can combinatorially prove optimal. It remains for us to question the hardness of the
general version of the problem – the one where the SCOT simultaneously has holes and is not
r-independent – and whether or not we can extend our ideas to also solve it in polynomial time.
As it turns out, the general version is intrinsically harder.



5.3. NP-completeness with point-guards 79

(2)

(3)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(2)

(1)

(3)

s

Γ(C ′

1
)

Γ(C ′

2
)

Γ(C ′

vf )

Γ(R2)

Γ(R3)

Γ(R4)

Γ(R5)

Γ(R6)

Γ(R1)

Γ(C ′

3
)

Γ(C ′

hf )

Γ(C ′

4
) t

(a)

C1

C2

C3

C4

C5 C6 C7

R1

R2

R3

R4

R5

R6

C ′

1

C ′

2

C ′

3

C ′

4

(b)

Figure 5.17: (a) Minimum feasible flow f in the network G, with |f | = 6. The flow has not been
annotated on edges (u, v) with f(u, v) = 0 to avoid clutter. (b) SCOT P , with an optimal set of 6
point-guards that has been determined by flow f .

Theorem 5.13. Minimum SCOT r-Guard with point-guards is NP-hard.

For the proof, we present a polynomial reduction from Minimum Polyomino r-Guard,
which is the problem of finding a minimum-cardinality r-guard set for a polyomino. Deciding
whether a polyomino with m cells can be r-guarded with up to k point-guards, for a positive
integer k, is NP-hard [61].

5.3.1 Construction

At a high level, the SCOT B we construct for a given m-polyomino P is composed of a sequence
of identical gadgets replicated side by side, horizontally. Each two consecutive gadgets in the
sequence are connected by one or more horizontal corridors as we will describe in due course.
For a visual preview of the final reduction, see Figure 5.21.

We define as ∆(P ) the minimal unit grid that contains the polyomino P (Figure 5.18).



80 Chapter 5. On r-Guarding SCOTs

Assume its dimensions are N rows ×M columns and its top-left corner has coordinates (0, 0).

(a)

0 1 2 3 4 5 6

0

1

2

3

4

5

6

(b)

Figure 5.18: (a) Example of a 25-polyomino P . (b) The 7× 7 minimal unit grid ∆(P ) that contains P .

5.3.1.1 Anchor gadget

We begin by defining an anchor gadget Γ that will be instanced several times in the construction
of our SCOT. Figure 5.19 exemplifies the gadget’s construction. It consists of an (N +7)×5 room
(Rc) whose top and bottom walls are contained, respectively, in the lines y = 0 and y = N + 7
(for convenience, we assume a Cartesian coordinate system (O, i⃗,−j⃗), that is, the y-axis grows
downwards). Two tiny rooms are appended onto the walls of Rc by means of corridors. On the
left there is a 5× 1 room (Rl), whose top edge also satisfies y = 0. Rl is connected to the big
room Rc by means of two 1× 1 corridors: one of the corridors (Cγ) has its top edge contained in
y = 1 and the other corridor (Cδ) has its own contained in y = 3. Similarly, above Rc there is a
1× 5 room (Rt) whose top wall is contained in y = −2. Rt is also connected to Rc through two
1× 1 corridors whose left walls obey x = 1 (Cα) and x = 3 (Cβ), respectively.

The coordinate system used to describe the anchor gadget is relative to the top-left corner
of its big room Rc. Every instance of the gadget has a similar description, but their absolute
coordinates will differ from each other when they actually get placed as components on the
SCOT.

5.3.1.2 Instance transformation

SCOT B is formed by M + 1 identical anchor gadgets Γ0, Γ1, . . . , ΓM arranged horizontally side
by side, numbered 0 through M from left to right. See Figure 5.20 for an example. The big rooms
of each two consecutive anchor gadgets Γi and Γi+1 (0 ≤ i < M) are separated by a horizontal
space of 3 units and the line y = 0 passes through the top edges of all the big rooms. All the
corridors connecting two consecutive anchor gadgets in B have fixed length 3 but variable width.

For placing corridors in B, sweep through the grid ∆(P ), column by column, from left to
right. When processing the i-th column (0 ≤ i < M), consider all the vertical maximal connected
components of cells that belong to that column in P . For each connected component spanning
rows a, a+1, . . . , b of the i-th column, add a corridor with length 3 and width b−a+1 connecting



5.3. NP-completeness with point-guards 81

5

2

1

1

N

5

y = 0

y = N + 7

2

Rl

Cγ

Cδ

Rt

Cα Cβ

Rc

Figure 5.19: Anchor gadget Γ.

big rooms i and i + 1 of B. That corridor has to be placed so that its top and bottom edges are
contained, respectively, in the lines y = a + 6 and y = (b + 1) + 6 = b + 7.

3 3

y = 6

y = N + 6

Figure 5.20: Three anchor gadgets laying side by side and connected by horizontal corridors (only as an
example). Notice that corridors linking two adjacent anchor gadgets are contained in the plane region
6 ≤ y ≤ N + 6.

5.3.2 Complexity

Lemma 5.14. The reduction reported is polynomial on m, the number of cells in polyomino P .



82 Chapter 5. On r-Guarding SCOTs

minimal unit grid ∆(P ) SCOT B25-polyomino P

Γ0 Γ1

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Γ7

Figure 5.21: Example of a reduction from Minimum Polyomino r-Guard to Minimum SCOT
r-Guard. SCOT B is not presented to scale so that the correspondence between the guard sets in both
instances is visually clearer.

Proof. N, M ≤ m is a suitable upper bound for the dimensions N ×M of the minimal unit
grid ∆(P ) containing P , so building M + 1 anchor gadgets is done in O(m) time. Sweeping
through the columns of the grid ∆(P ), determining maximal vertical connected components
and adding the corresponding corridors to the SCOT B can be done in time linear on the grid
size, O(m2). Every anchor gadget takes 7 horizontal and N + 9 vertical units of space, each
two consecutive anchor gadgets are connected by horizontal corridors of length 3 and all the
coordinates of vertices in B are defined by integer numbers bounded by a linear function of m.
As such, the reduction is polynomial on the size of the instance P .

5.3.3 Correctness

Lemma 5.15. Let Γ be an anchor gadget, possibly with extra horizontal corridors attached to its
left and right walls that result from the presented construction. Exactly 3 point-guards are required
for guarding Γ, ignoring the extra corridors. Moreover, we can construct such a point-guard set
in which every guard satisfies y ≤ 5.

Proof. We first show that exactly 3 point-guards are required for guarding Γ.

Necessity
The tiny rooms Rt and Rl of Γ lie in the half-plane defined by y ≤ 5. Given that, for
r-guarding some room, it is mandatory that a guard is placed in its interior, we cannot
cover the big room and the two tiny rooms with less than 3 guards.

Sufficiency
First, we choose one corridor among Cα and Cβ and also choose one corridor among Cγ

and Cδ. Suppose, without loss of generality, that we picked Cα and Cγ . Place a guard



5.3. NP-completeness with point-guards 83

on one of the reflex vertices shared by Rt and Cα and another guard on one of the reflex
vertices shared by Rl and Cγ . So far we have covered Rt, Rl, Cα and Cγ . The remaining
parts of Γ – the big room, Rc, and the corridors, Cβ and Cδ – can be covered with a third
guard: simply place it somewhere in the intersection of the stretches of Cβ and Cδ.

We now show that there is always an optimal solution for guarding Γ for which every guard
satisfies y ≤ 5. Suppose, by contradiction, that there is a better strategy, that is, one could
instead choose to place the third guard in the intersection of the big room Rc and the stretch of
another horizontal corridor C⋆ (other than Cγ and Cδ) incident in the big room to try to r-see
C⋆. We would then still need another fourth guard somewhere in the stretch of Cδ to cover up Cδ:
since all the remaining horizontal corridors incident in Γ are, by construction, positioned in the
half-plane y ≥ 6, they are r-independent from Cδ and therefore could not possibly be exploited
to guard Cδ using fewer guards. Given that Cα has already been covered, we have nothing to
lose by also placing the fourth guard in the stretch of Cβ (because that way we can cover up Cδ

and Cβ in one go); so the fourth guard could be placed in the intersection of the stretch of Cβ

and the stretch of Cδ. But then one could swap the third and fourth guards to obtain precisely
the solution described before. Therefore, there is no better strategy and a minimal guard set of 3
point-guards with y ≤ 5 always exists for watching over Γ. Any horizontal corridor that remains
in 6 ≤ y ≤ N + 6 can then be guarded independently from the gadget with extra guards.

Before proving that the reduction works, let us explain the intuitive idea behind it. By
Lemma 5.15, we can always construct an optimal solution for which all the rooms in B must
be covered by exactly 3(M + 1) guards that, together, do not see any extra corridor other than
those that already belong to the gadget by definition. Also, it can be understood that a guard
placed inside a room of B r-sees no less than a guard placed inside one of the incident corridors.
This holds because every room is wider than all the incident corridors, so it does not obstruct
r-visibility: only corridors do. Because of that, and given that distances in r-visibility are not
important, rooms in B can entirely be ignored, as if they were not even there and adjacent
corridors were directly connected to each other. This leaves us only corridors of B to cover –
precisely those corridors that correspond to pixels in P .

Lemma 5.16. [18] Under the r-visibility model, for any polyomino P there exists an optimal
solution for guarding P whose guards are placed only at pixel corners.

The proof of Lemma 5.16 goes through moving guards in a polyomino P into corners of the
pixels that contain them and showing that this transformation preserves feasibility.

Lemma 5.17. The polyomino P can be r-guarded by k ∈ Z+ point-guards if and only if the
SCOT B can be r-guarded by 3(M + 1) + k point-guards.

Proof. We show that we can map any solution for P to an analogous one for B which has 3 extra
guards per anchor gadget (and vice-versa).



84 Chapter 5. On r-Guarding SCOTs

(⇒) Let GB = ∅ and let GP be a guard set for P with |GP | = k in which every guard is placed at
a pixel corner by Lemma 5.16. For each guard g ∈ GP that is placed at the intersection of
the line y = q, for some 0 ≤ q ≤ N , and the left (respectively, right) pixel corner of the i-th
column of ∆(P ) (0 ≤ i < M), place a guard in GB at the intersection of y = q + 6 and the
left (respectively, right) side of a corridor connecting gadgets i and i + 1 in B. Note that, if
i < M − 1, the guard g also belongs to the (i + 1)-th column of ∆(P ), but we do not place
an extra, redundant guard in GB . Next, insert 3(M + 1) guards satisfying y ≤ 5 into GB to
cover every gadget in P , according to Lemma 5.15. We have that |GB| = 3(M + 1) + k. By
the assumption that GP covers up the entirety of P , and since rooms in B are wider than
the incident corridors and distances do not affect r-visibility, GB covers up all the corridors
connecting adjacent anchor gadgets in B and, thus, B is covered entirely as well.

(⇐) Let GP = ∅ and let GB be a guard set for SCOT B with |GB| = 3(M + 1) + k in which every
guard covering an anchor gadget satisfies y ≤ 5 by Lemma 5.15. Assume that every guard
in GB other than those 3(M + 1) that see anchor gadgets are placed in corridors connecting
consecutive anchor gadgets Γi and Γi+1 (0 ≤ i < M). We can assume that because, by
moving a guard g from a big room Rc of an anchor gadget to an incident corridor, the
only region g stops seeing completely is Rc, which is still covered by one of the 3(M + 1)
guards we have discriminated for watching over anchor gadgets. For each guard g ∈ GB

that is placed at the intersection of the line y = q + 6, for some 0 ≤ q ≤ N , and a corridor
connecting gadgets Γi and Γi+1 in B (0 ≤ i < M), let d be the horizontal distance between
g and Γi and place a guard in GP at the point (i + d, q). Big rooms Rc of anchor gadgets
in B do not block r-visibility from incident corridors. Therefore, guards in GB covering up
all the corridors imply that the corresponding guards in GP will also cover up all the pixels
of P and, thus, GP is a valid guard set for P , with |GP | = k.

5.3.4 NP-completeness

Lemmas 5.14 and 5.17 prove that Minimum SCOT r-Guard for point-guards is NP-hard. Next
we show that the decision problem is also NP-complete. However simple the invoked argument
can be, we draw attention to the fact that proving NP-completeness results for Art Gallery
Problem (AGP) variants requires some care and is not as obvious as it may seem. We now
explain why.

The class ∃R contains the problems that are equivalent, under polynomial-time reductions,
to deciding whether a system of polynomial equations with coefficients in Z and variables in R
has a solution. As of now, it is known that NP ⊆ ∃R, but whether ∃R ⊆ NP also holds remains
an open question.

Until recently, the general AGP under straight-line visibility has been known to be NP-hard,
but there was no clue whether it is also NP-complete. A possible way of proving that the



5.3. NP-completeness with point-guards 85

point-guard AGP is in NP would be to argue that any instance admits an optimal guard set of
rational coordinates with a polynomial number of bits – and that would indeed work if, in 2017,
Abrahamsen et al. [1] had not demonstrated the existence of polygons with integer coordinates
for which any optimal point-guard set must contain a guard with irrational coordinates. This
holds even for orthogonal polygons (Figure 5.22). In the next year, it was shown that guarding
simple polygons where all vertices have integer coordinates is indeed ∃R-complete [2]. This result
places AGP outside of the class NP, ruling out its NP-completeness, unless NP = ∃R. In this
sense, while at first the standard argument that any solution of AGP can obviously be checked
to be a feasible guard set in polynomial time may seem reasonable, there is actually a subtle
issue in this logic.

3:14 Irrational Guards are Sometimes Needed

H1 H2

H3 H4

l` lm lr

T1

T2

Q2

Q3

Q4

Q1

I

Figure 8 The rectilinear polygon PR can be guarded with 9 guards only when we allow placing
guards at irrational points.

The irrational coordinates of the guards in our examples are all of degree 2, i.e., they
are roots in second-degree polynomials with integer coefficients. We would like to know if
polygons exist where irrational numbers of higher degree are needed in the coordinates of an
optimal solution.

We show that there exist polygons for which |OPTQ| ≥ 4
3 |OPT |. It follows from the work

by Bonnet and Miltzow [4] that it always holds that |OPTQ| ≤ 9|OPT |. It is interesting to
see if any of these bounds can be improved.

Acknowledgements. We want to thank Sándor Fekete, Frank Hoffmann, Udo Hoffmann,
Linda Kleist, Péter Kutas, Günter Rote and Andrew Winslow for discussions on the problem
and links to the literature. Special thanks goes to Michał Adamaszek for providing the
sage code. We want to further thank the developers of the software GeoGebra. Being
able to do computations and visualize parameter changes in real time facilitated our search
tremendously.

References
1 Pankaj Kumar Agarwal, Kurt Mehlhorn, and Monique Teillaud. Dagstuhl Seminar 11111,

Computational Geometry, March 13-18 , 2011.
2 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic

geometry. Springer-Verlag Berlin Heidelberg, 2006.
3 Patrice Belleville. Computing two-covers of simple polygons. Master’s thesis, McGill Uni-

versity, 1991.
4 Édouard Bonnet and Tillmann Miltzow. An approximation algorithm for the art gallery

problem. CoRR, abs/1607.05527, 2016.
5 Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems.

In Proceedings of the 24th Annual European Symposium on Algorithms (ESA), pages 19:1–
19:17, 2016.

6 Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines and 2-link polygons
is APX-hard. In Proceedings of the 13th Canadian Conference on Computational Geometry
(CCCG), pages 45–48, 2001.

7 John Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of
the twentieth annual ACM symposium on Theory of computing (STOC), pages 460–467.
ACM, 1988.

Figure 5.22: An orthogonal polygon P whose vertices have rational coordinates, reprinted from [1]. P

can be covered under straight-line visibility with 9 point-guards if we allow irrational coordinates, but
requires 10 point-guards if we do not.

To show that Minimum SCOT r-Guard is, nevertheless, still in NP, we must take advantage
of the fact that we are adopting the notions of r-visibility on orthogonal polygons, which introduce
a very specific structure to the problem. We invoke a result from [14, 17] that establishes an
r-visibility dominance hierarchy between points in the interior, on the edges and at vertices of
r-pieces in the grid partition ΠHV (P ):

Lemma 5.18. ([14], Lemmas A.1 and A.2) Let P be an orthogonal polygon. Let π ∈ ΠHV (P )
be an r-piece, let p be any point in the interior of π, let pb be any point in the interior of a
side e of π and let pv be any endpoint of e. Under r-visibility, Vr(p) ⊆ Vr(pb) ⊆ Vr(pv), being
Vr(p) ⊆ P the set of points that p r-sees.

Lemma 5.18 guarantees that, for any SCOT P and positive integer k, if P can be watched
over with k point-guards, then there is also a point-guard set of size k that is representable
polynomially in the instance size, |P |. This enables us to state Theorem 5.19.

Theorem 5.19. Minimum SCOT r-Guard with point-guards is in NP.

Proof. Let P be a SCOT and ΠHV (P ) be its orthogonal grid partition. Lemma 5.18 implies that
any feasible guard set for P can be transformed so that any guard lies at one of the vertices of an



86 Chapter 5. On r-Guarding SCOTs

Figure 5.23: The grid partition ΠHV (P ) of a SCOT P .

r-piece π ∈ ΠHV (P ). A vertex of an r-piece in ΠHV (P ) either is a vertex of P or corresponds to
the intersection of the extension of two or more edges of P . Therefore, if the coordinates of the
vertices of P have a polynomial representation, then so have the coordinates of the guards. Such
a solution is verifiable in polynomial time.

In accordance with Theorems 5.13 and 5.19, we are finally set to state our main result.

Theorem 5.20. The decision version of Minimum SCOT r-Guard with point-guards is
NP-complete.

5.3.5 Approximation algorithms for vertex-guards and point-guards

We have proved that the unrestricted version of Minimum SCOT r-Guard for point-guards,
where SCOTs may have holes and do not need to be r-independent, is NP-complete. We conclude
this chapter by arguing that this problem can be approximated with logarithmic factor in the
number of corridors, for both vertex-guards and point-guards.

Theorem 5.21. Let P be an (R, C)-SCOT. A minimum-cardinality vertex-guard set for P can
be approximated with factor O (log |C|) in polynomial time.

Proof. Compute the grid partition ΠHV (P ) in time O(n2) = O ((|R|+ |C|)2) = O(|C|2) by
sweep-line (see Section 2.1.4). Reduce the problem to a Set Cover instance (U ,F), where U
contains an element for each r-piece π ∈ ΠHV (P ), and the subset of pieces seen by each vertex
of P forms a set in F . Finally, an optimal solution for this instance can be approximated with
factor O(log |U|) = O(log |ΠHV (P )|) = O

(
log (|R|+ |C|)2

)
= O (log |C|) using the Greedy-

Set-Cover algorithm (Algorithm 1).

Theorem 5.22. Let P be an (R, C)-SCOT. A minimum-cardinality point-guard set for P can be
approximated with factor O (log |C|) in polynomial time.

Proof. Just as with vertex-guards, compute the grid partition ΠHV (P ) in time O(|C|2) by sweep-
line. Reduce the problem to a Set Cover instance (U ,F), where U contains an element for
each r-piece π ∈ ΠHV (P ), and the subset of pieces seen by each r-piece corner forms a set in F .
Again, an optimal solution for (U ,F) can be approximated with factor O(log |U|) = O (log |C|)



5.3. NP-completeness with point-guards 87

using the Greedy-Set-Cover algorithm (Algorithm 1), and, by Lemma 5.18, every position
that is relevant for placing point-guards at is being taken into account.





Chapter 6

Rook Vision on Polyominoes

In a 2021 publication by Alpert and Roldán [7], a new version of the Art Gallery Problem (AGP)
for polyominoes is brought forward, in which guards are modeled as rook pieces from chess and
can be placed on any tile of the polyomino. A rook standing in a pixel π sees, along rows and
columns, exactly those pixels it would attack in a regular chess game: it covers both horizontal
and vertical maximally connected segments of tiles that contain π. The rook’s line of sight ends
when it hits the polyomino’s exterior. The authors call this visibility model rook vision. The
goal is, again, to cover the whole interior of a polyomino by placing the minimum amount of
rook guards on its tiles (Figure 6.1).

1 20

1

2

3

4

5

6

7

8

9

0

1 20

1

2

3

4

5

6

7

8

9

0

Figure 6.1: A 19-polyomino P (shaded region) within a 10 × 3 grid and a corresponding minimum-
cardinality rook-guard set of 5 rooks, with coordinates (0, 0), (1, 2), (4, 0), (5, 1) and (9, 0). P has a
one-tile hole with coordinates (2, 1).

Similarly to what happens in other versions of the AGP, two guards can see through each
other, meaning that their visibility is not mutually blocked. Note that under rook vision this
detail is irrelevant, given that the overall region that is guarded by two guards is the union of
their visibility regions anyway.

We refer to this variant of the problem as Rook-AGP. Formally, an instance of Rook-AGP
is a pair (P, k), where P is a polyomino and k is a positive integer. The problem asks whether k

rooks can be placed on pixels of P to guard every pixel of P and is shown by the authors to be

89



90 Chapter 6. Rook Vision on Polyominoes

NP-hard, so, unless P = NP, one cannot hope for a polynomial-time algorithm that solves every
instance of Rook-AGP. Besides proving the hardness of Rook-AGP, the authors also give
bounds on the number of rooks needed, similar in nature to the Art Gallery Theorem (AGT):

Theorem 6.1. ([7], Theorem 1) ⌊m/2⌋ rooks are sufficient and occasionally necessary to guard
any m-polyomino Pm with m ≥ 2 pixels.

In the current chapter, we propose a new exact algorithm for determining a minimum
cardinality rook-guard set for polyominoes. It is efficient for polyominoes P for which at least one
of the side lengths of their minimal enclosing unit grid ∆(P ) is bounded. More concretely, the
algorithm is exponential parameterized by the smallest side length of the grid, min{R, C}, where
R and C are, respectively, the number of rows and columns of ∆(P ), and becomes polynomial if
the smallest of the dimensions of the grid is constant, even if the other one is arbitrarily large.
Our algorithm works even if the input polyominoes have holes.

6.1 Parameterized algorithm for Rook-AGP

An m-polyomino Pm can be represented as the minimal unit grid ∆(P ) that contains its pixels.
Assume that the top-left corner pixel of ∆(P ) is placed at the origin of the coordinate system,
(0, 0). In this context, we define R and C to be the number of rows and columns of such a
minimal grid and g to denote an R × C Boolean matrix where gr,c = True if and only if there
is a pixel π ∈ Pm with row and column coordinates (r, c) (0 ≤ r < R, 0 ≤ c < C). A dense
polyomino has a number of pixels m ∈ Θ(R× C).

We describe an algorithm for efficiently solving Rook-AGP when either dimension R or
C is comparatively smaller than the other, even if the product R× C is arbitrarily large. The
algorithm is parameterized by min{R, C}, runs in time O

(
R · C · 3min{R,C}

)
and has a memory

consumption of O
(
R · C · 4min{R,C}

)
– which can be reduced to O

(
R · C · 3min{R,C}

)
at the

expense of an extra log
(
R · C · 3min{R,C}

)
factor in the time complexity. Note that, even for a

dense polyomino with no further restriction, we already have that 3min{R,C} ≤ 3
√

R·C given that
at least one of R or C has to be at most

√
R · C.

Without loss of generality, suppose C ≤ R (if not, transpose g, as this will not affect the
optimum). Append an extra empty row and an extra empty column to g, also adjusting R← R+1
and C ← C + 1 accordingly.

We now characterize the solution through a forward dynamic programming recurrence.
Throughout the following description, we write the set {0, 1, . . . , u}, for any non-negative integer
u, abbreviated as [u]. First, we define the dynamic programming state. Observe Figure 6.2 for a
visual interpretation of our idea. Let G(r, c, hl, hr, Vu, Vd) be the minimum number of rooks we
need to cover the subpolyomino of Pm spanning from cell (r, c) (0 ≤ r < R, 0 ≤ c < C) to cell
(R− 1, C − 1) (both cells inclusive), when traversing the grid g in row-major order, given that:



6.1. Parameterized algorithm for Rook-AGP 91

• hl ∈ B (“horizontal-left”), where B = {True, False}. hl is True if and only if a rook has been
placed on a cell (r, x), for some 0 ≤ x < c, in the current solution;

• hr ∈ B (“horizontal-right”). hr is True if and only if a rook must be placed on a cell (r, x),
for some c ≤ x < C, for the current solution to be valid;

• Vu ⊆ [C − 1] (“vertical-up”) is a set such that, for any 0 ≤ x < c, x ∈ Vu if and only if a
rook has been placed on a cell (y, x), for some 0 ≤ y ≤ r, and, for any c ≤ x < C, x ∈ Vu if
and only if a rook has been placed on a cell (y, x), for some 0 ≤ y < r;

• Vd ⊆ [C − 1] (“vertical-down”) is a set such that, for any 0 ≤ x < c, x ∈ Vd if and only if a
rook must be placed on a cell (y, x), for some r < y < R, and, for any c ≤ x < C, x ∈ Vd if
and only if a rook must be placed on a cell (y, x), for some r ≤ y < R.

r

c

Figure 6.2: Traversing the grid g in row-major order as we keep the current dynamic programming state
(r, c, hl, hr, Vu, Vd), while standing at cell (r, c). The yellow, striped tiles indicate for which row (r − 1 or
r) each element 0 ≤ x < C in Vu and Vd is carrying information from.

As can be understood from the previous definitions, if we are currently processing cell (r, c),
the elements 0, 1, . . . , c−1 in Vu and Vd contain information from row r, while the most up-to-date
information carried by elements c, c + 1, . . . , C − 1 refers to row r − 1 since these columns have
not yet been visited on the current row. All the cells “before” our current position (in row-major
order) – that is, all the cells in rows above r and all the cells in the current row to the left of
(r, c) – have already been handled and the decision that was taken at them is deemed final.

Suppose we are currently processing cell (r, c) as the grid traversal takes place. When a rook
guard is placed exactly on (r, c), above in the same column as (r, c) or to the left in the same
row, it is clear that (r, c) is covered when we leave it. However, the cell (r, c) can also be guarded
by a rook below or to the right of it; and we have no way of knowing whether we will opt to
place a guard there in the future, given that we haven’t reached those positions yet.

The idea behind introducing parameters hr and Vd, which we call certificate propagation,
provides a solution to this issue (Figure 6.3). Since we do not have a way of knowing our future
decisions, we can enforce them by:

1. foretelling that a guard will be placed below or to the right;



92 Chapter 6. Rook Vision on Polyominoes

2. propagating this requirement below or to the right;

3. either certifying the requirement by futurely placing a guard at an admissible spot, or
failing (returning an impossibility flag, ∞) if we notice that the solution currently being
built cannot possibly certify (guarantee) that requirement.

Also, certificate propagation is the reason why we began by appending an extra row and an extra
column to the grid g. These extras act as sentinels, allowing us to keep validating the current
solution, because every time we reach the end of a row or a column we always hit the boundary
of the polyomino, which triggers the certificate validation as we will see.

1 20

1

2

3

0

1 20

1

2

3

0

validate horizontal and

vertical certificates

Figure 6.3: Certificate propagation. When we reach a dynamic programming state for this instance with
(r, c) = (3, 2), hl = False and Vu = ∅, we must have hr = True and Vd = {2}. Delaying the rook placement
by propagating unchecked certificates from the top-right and bottom-left cells is the only way to achieve
an optimal solution (1 rook) for this instance.

We now define the optimal solution recursively. The cases when r = R or c = C are boundary
conditions and, respectively, either return a final answer for the base case (we need 0 guards to
cover an empty polyomino) or transfer the subproblem to the next row (still adhering to the
row-major order).

G(r, c, hl, hr, Vu, Vd) =

0 if r = R

G(r + 1, 0, False, False, Vu, Vd) if c = C (and r ̸= R)
(6.1)

If we are not at any of those boundary positions at the moment, we have two cases, according to
the value of gr,c:

• When gr,c = False (we are outside of the polyomino), this is the right time to assert the
validity of the current solution by ensuring that there are no pending certificates in the
current row and column. If there are horizontal or vertical pending certificates, then we
surely cannot validate them since we are outside the polyomino, and thus we return ∞
(signaling unfeasibility). Otherwise, we have no operation pending in this cell and simply
move on to the next position in row-major order, also discontinuing the visibility of all the
rooks that have been placed above or to the left of (r, c).

G(r, c, hl, hr, Vu, Vd) =

∞ if hr = True or c ∈ Vd

G(r, c + 1, False, False, Vu \ {c}, Vd) otherwise
(6.2)



6.1. Parameterized algorithm for Rook-AGP 93

• If gr,c = True (we are inside of the polyomino), we define:

G1(r, c, hl, hr, Vu, Vd) = G(r, c + 1, True, False, Vu ∪ {c}, Vd \ {c}) + 1 (6.3)
(place a guard at (r, c) and validate certificates)

G2(r, c, hl, hr, Vu, Vd) = G(r, c + 1, hl, hr, Vu, Vd) (6.4)
(safely and inconsequentially skip to the next column)

G3(r, c, hl, hr, Vu, Vd) = G(r, c + 1, hl, True, Vu, Vd) (6.5)
(propagate a certificate to the right)

G4(r, c, hl, hr, Vu, Vd) = G(r, c + 1, hl, hr, Vu, Vd ∪ {c}) (6.6)
(propagate a certificate downwards)

G5(r, c, hl, hr, Vu, Vd) = G(r, c + 1, hl, True, Vu, Vd ∪ {c}) (6.7)
(propagate certificates downwards and to the right)

We are then left with two final cases. If the current tile (r, c) has already been guarded
by some guard on a cell (r, x) (for 0 ≤ x < c) or on a cell (y, c) (for 0 ≤ y < r) (that is,
hl = True or c ∈ Vu), then we choose the best option between placing a guard in (r, c) or
not:

G(r, c, hl, hr, Vu, Vd) = min
i∈{1,2}

Gi(r, c, hl, hr, Vu, Vd) (6.8)

Otherwise, we must ensure that this tile is guarded by some guard on a cell (r, x) (for
c ≤ x < C) or on a cell (y, c) (for r ≤ y < R):

G(r, c, hl, hr, Vu, Vd) = min
i∈{1,3,4,5}

Gi(r, c, hl, hr, Vu, Vd) (6.9)

The optimal number of guards k needed to guard Pm that we are interested in computing
is then given by G(0, 0, False, False, ∅, ∅). An actual minimum-cardinality guard set can also be
determined without any penalty in the time complexity by recording the sequence of optimal
choices taken at each visited subproblem.

We assume that, in the presented definitions of Equations (6.8) and (6.9), the algorithm
considers valid alternatives in the order G1, G2, G3, G4, G5. Hence, in case of a tie for
the best choice, recurrence transitions favor guard sets that have rooks with lexicographically
smaller coordinates. This implies that, given a solution S⋆ = {(r⋆

1, c⋆
1), . . . , (r⋆

k, c⋆
k)} produced

by the algorithm – where (r⋆
1, c⋆

1) < · · · < (r⋆
k, c⋆

k) – and another optimal solution S′ =
{(r′

1, c′
1), . . . , (r′

k, c′
k)} – where (r′

1, c′
1) < · · · < (r′

k, c′
k) –, there is some 1 ≤ i ≤ k such that, for

all 1 ≤ j < i, (r⋆
j , c⋆

j ) = (r′
j , c′

j) and (r⋆
i , c⋆

i ) < (r′
i, c′

i).

Proposition 6.2. The optimal guard set found by the algorithm is lexicographically minimum
among all the optimal solutions for the given instance Pm.

Figures 6.1 and 6.4 contain lexicographically minimum rook-guard sets found by our algorithm.



94 Chapter 6. Rook Vision on Polyominoes

1 20

1

0

(a)

1 20

1

0

(b)

1 20

1

0

(c)

1 20

1

0

(d)

1 20

1

0

(e)

1 20

1

0

(f)

1 20

1

0

(g)

1 20

1

0

(h)

Figure 6.4: A run of the algorithm over a 5-polyomino P . The operations performed and the decisions
taken at each state when obtaining one of the optimal solutions for P (in fact, the lexicographically
minimum one) are shown. The bolder tile marks our current position at each step.

Example 6.1. Let us exemplify with Figure 6.4 how the algorithm runs for a given polyomino
P . We sweep through the grid g in row-major order.

(a) The recursive procedure is first called for the state (0, 0, False, False, ∅, ∅). The algorithm
chooses to place a guard at (0, 0), thus we set hl = True and Vu = {0} when transitioning
to the next tile.

(b) We move to the state (0, 1, True, False, {0}, ∅), which corresponds to a tile outside of P . In
this tile, we have nothing to do, so we simply move to the next position and break the
visibility of the guard placed at (0, 0) – by setting hl back to False – in order to prevent it
from seeing the remaining cells of the row 0.

(c) The next state to consider is (0, 2, False, False, {0}, ∅). Here, we move back into P . In
order to ensure that the current cell is seen, the algorithm can choose between placing a
guard there or propagating a certificate downwards. In this case, it chooses to propagate a
certificate, by inserting 2 into Vd; to represent this demand, column 2 appears striped.

(d) We are now at (0, 3, False, False, {0}, {2}), which corresponds to the extra column we
have appended to g before running the algorithm. Since tile (0, 3) is outside of P , we
move on to (0, 4, False, False, {0}, {2}), which gets transparently forwarded to the next row,
(1, 0, False, False, {0}, {2}), by the base case of the recurrence.

(e) The current cell (1, 0) is already guarded by the rook above, so the algorithm decides to
continue right.

(f) The cell corresponding to (1, 1, False, False, {0}, {2}) is not guarded yet, but, instead of
placing a guard at (1, 1), the algorithm opts to propagate a certificate to the right (by
setting hr = True). It does this because it recursively determines that a single guard is
able to optimally cover the uncovered section of P .



6.1. Parameterized algorithm for Rook-AGP 95

(g) We then arrive at the state (1, 2, False, True, {0}, {2}). By placing a guard at the cell (1, 2),
both vertical and horizontal pending certificates get validated, and so we can move right.

(h) The recursion hits the extra column again and confirms that hr = False, thus no pending
certificates are left to be validated. The algorithm continues through the whole bottom
row, looking for pending certificates. Since the entire polygon has already been guarded
at this point, no pending certificates will be found and the algorithm will return the
lexicographically minimum optimal solution {(0, 0), (1, 2)}.

6.1.1 Complexity

Theorem 6.3. The algorithm has time complexity Õ
(
R · C · 3min{R,C}

)
and space complexity

O
(
R · C · 3min{R,C}

)
, where Õ(·) hides a polylogarithmic factor.

Proof. Again, assume that C ≤ R (otherwise, rotate the polyomino 90◦ before running the
algorithm). Each dynamic programming transition is done in O(1) time and there seems to be
an upper bound of R · C · 2 · 2 · 2C · 2C states. At first sight it may then seem that the time
complexity of the algorithm is O

(
R · C · 4C

)
. While this analysis is not wrong, we can actually

prove a tighter bound. In fact, observe that, at any moment, Vd ⊆ Vu = [C − 1] \ Vu, because
we can only validate pending certificates for unguarded segments of columns. Specifically, every
time we place a guard in a cell (r, c), we erase c from Vd (if it exists) and insert it into Vu (if
it doesn’t exist already). This property implies that the total number of states visited when
considering a fixed position (r, c) is not actually 2C × 2C = 4C , but instead

C∑
s=0

(
C

s

)
· 2C−s =

C∑
s=0

(
C

s

)
· 2s = (1 + 2)C = 3C (6.10)

by the binomial theorem and Pascal’s triangle row symmetry. In other words, there is a bijection
between each Vu and Vu; for each 0 ≤ s ≤ C, there are

(C
s

)
subsets of [C − 1] with size s and

each of them has 2s sub-subsets. As such, given that the dynamic programming transitions are
performed in constant time, the algorithm’s time complexity is O

(
R · C · 3C

)
.

The space taken as it is remains O
(
R · C · 4C

)
, though, if one explicitly initializes a full

memoization table right from the start. For reducing it to O
(
R · C · 3C

)
, one can store only

the solution for all the visited states using, for instance, a dictionary-like structure which allows
for performing insertions and searches in time logarithmic in its size. This penalizes the time
complexity with an extra factor of log

(
R · C · 3C

)
= log R + log C + C log 3, but in turn greatly

reduces the memory required for the algorithm to run.

Taking these results into account, we may finally conclude that:

Theorem 6.4. Rook-AGP is fixed-parameter tractable (FPT) parameterized by min{R, C}.





Chapter 7

Conclusions and Future Work

It all began with Klee making a simple question of how many guards would be required for
watching over the interior of a polygonal art gallery with n vertices. As quickly as new algorithms
for the Art Gallery Problem are invented, novel interesting variants of the problem do also
appear, as well as results on their hardness and inapproximability – and we have carried on with
this quest. We now summarize our contributions with this work and discuss our main results.

In the first main half of this thesis, we have presented a randomized algorithm for finding
approximate solutions for Set Cover and used it to solve Minimum Vertex Guard (MVG) on
orthogonal polygons under straight-line visibility. It has been observed how simple it is to solve
uniformly random instances with probability approaching 1, and how interleaving kernelization
and randomized phases contributes to improving both the approximation ratio and the running
time of Randomized-Set-Cover. We developed time- and memory-efficient data structures,
namely sampleable set and bitset tree, which consist, respectively, of a set that supports the
operation Choose-Random (for implementing Candidates) and a compact self-balancing
binary search tree of bitmasks (for representing sets in F). The ideas used in their construction
allowed significant speed gains to be achieved by exploiting bit-level parallelism and maximizing
cache usage when operating with sparse sets in memory.

Experimental tests against a dataset of three classes of grid n-ogons – Min-Areas, Fats
and Randoms – proved Randomized-Set-Cover to be highly performant. The algorithm
has found an optimal guard set for every Min-Area and Fat instance and exhibited low
approximation ratio on every Random instance from the dataset, having beaten the guarantees
of both Greedy-Set-Cover and LP-rounding methods. What the experiments suggest is that
kernelization compensates for possible mistakes that random set removals may incur in, always
pushing the algorithm towards optimality.

While the effective solving time was low, the execution time was observed to be mostly
dominated by the preprocessing phase, specifically polygon discretization. A possible way of
making up for this bottleneck in the future could be to explore lazy partitioning strategies, instead
of building an entire decomposition right from the start. Moreover, we think it would be fruitful to

97



98 Chapter 7. Conclusions and Future Work

experiment with refined heuristics for dynamically re-weighting candidate sets to be removed, as
an alternative to the plain uniform selection. We believe that, by exploring these ideas, we could
improve both the running time and approximation factor of Randomized-Set-Cover even
further. Despite the focus having been given to orthogonal polygons, the techniques developed
in this thesis for Randomized-Set-Cover naturally extrapolate to general polygons, under
any visibility model. Based on the experimental results obtained, we observed a seemingly linear
growth of the average number of pieces in the convex partition of a Random grid n-ogon, proved
an exact, also linear bound for Min-Areas and formulated a conjecture for Fats. Given that
the combinatorial structure of these polygons is well behaved, we are convinced that there exists
a very straightforward proof for this conjecture.

In the second half of this work, we have defined a new family of orthogonal polygons, the
SCOTs. Their topology encompasses many properties that we usually see on real-world art
galleries, which enable us to develop efficient algorithms for r-guarding them. We have proved
that, if the SCOT is simple or r-independent, the Minimum SCOT r-Guard problem is in P,
and have given three methods for solving these cases. First, we described a linear-time algorithm
for simple SCOTs, with both vertex- and point-guards, based on a tree decomposition of the
polygon. We then presented one that runs in time O

(
|C|
√

min{|R|, |C′|}
)

for r-independent
(R, C, C′)-SCOTs with vertex-guards, based on bipartite matchings. Finally, another one was
given for r-independent SCOTs with point-guards, running in time O (T (G′) log |f⋆|), where
T (G′) is the time that it takes to compute a maximum flow in a network G′ that we have
defined, and |f⋆| is the optimal number of guards, based on a reduction to Minimum Flow
with Demands.

On the contrary, should the SCOT have holes and not be r-independent, we have shown
that the problem becomes NP-hard – indeed NP-complete for the case of point-guards – by
reducing from Minimum Polyomino r-Guard. Minimum SCOT r-Guard with vertex-guards
is also in NP, because any solution is a subset of the vertices of the SCOT, however whether
it remains NP-hard is left as an open question. Finally, we have also given O(log |C|)-factor
approximation algorithms for unrestricted SCOTs with both vertex-guards and point-guards.
We leave open whether the problem is hard to approximate with constant factor, either for
point- or vertex-guards – and this seems as well a very promising road to continue work in
the future. Another attractive direction is to understand the degree to which these ideas can
be generalized to other polygon families, also formed by convex rooms and corridors, but not
necessarily orthogonal.

At last, we have shown a result on the fixed-parameter tractability of the problem of guarding
polyominoes, possibly having holes, with chess rooks, by giving a dynamic programming algorithm
with complexity Õ(R · C · 3min{R,C}), where R× C are the dimensions of the minimal unit grid
enclosing the polyomino. The solution returned by the algorithm is optimal and guaranteed
to be lexicographically minimum among all the optimal solutions. It would be interesting to
research alternative structural properties that could as well be useful parameters in practice and
to extend these ideas on rook-guards to queen-guards.



Bibliography

[1] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. Irrational Guards are
Sometimes Needed. In 33rd International Symposium on Computational Geometry, SoCG
2017, volume 77 of LIPIcs, pages 3:1–3:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.SoCG.2017.3.

[2] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The Art Gallery Problem
is ∃R-complete. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, pages 65–73. ACM, 2018. doi:10.1145/3188745.3188868.

[3] M. G. Adelson-Velskii and E. M. Landis. An Algorithm for the Organization of Information.
Technical report, Joint Publications Research Service Washington DC, 1963.

[4] Akanksha Agrawal, Kristine V. K. Knudsen, Daniel Lokshtanov, Saket Saurabh, and
Meirav Zehavi. The Parameterized Complexity of Guarding Almost Convex Polygons. In
36th International Symposium on Computational Geometry, SoCG 2020, volume 164
of LIPIcs, pages 3:1–3:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.SoCG.2020.3.

[5] Martin Aigner and Günter M. Ziegler. How to guard a museum, pages 281–284. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2018. ISBN: 978-3-662-57265-8. doi:10.1007/978-3-
662-57265-8_40.

[6] D. Alciatore and Rick Miranda. A Winding Number and Point-in-Polygon Algorithm.
Glaxo Virtual Anatomy Project Research Report, Department of Mechanical Engineering,
Colorado State University, 1995.

[7] Hannah Alpert and Érika Roldán. Art Gallery Problem with Rook and Queen Vision.
Graphs and Combinatorics, 37(2):621–642, 2021. doi:10.1007/s00373-020-02272-8.

[8] Boris Aronov, Leonidas J. Guibas, Marek Teichmann, and Li Zhang. Visibility Queries and
Maintenance in Simple Polygons. Discrete and Computational Geometry, 27(4):461–483,
2002. doi:10.1007/s00454-001-0089-9.

[9] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
Verification and Hardness of Approximation Problems. In 33rd Annual Symposium on

99

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.3
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.3
http://dx.doi.org/10.1145/3188745.3188868
http://dx.doi.org/10.1145/3188745.3188868
http://dx.doi.org/10.4230/LIPIcs.SoCG.2020.3
http://dx.doi.org/10.1007/978-3-662-57265-8_40
http://dx.doi.org/10.1007/s00373-020-02272-8
http://dx.doi.org/10.1007/s00454-001-0089-9
http://dx.doi.org/10.1007/s00454-001-0089-9
http://dx.doi.org/10.1109/SFCS.1992.267823
http://dx.doi.org/10.1109/SFCS.1992.267823


100 Bibliography

Foundations of Computer Science, FOCS 1992, pages 14–23. IEEE Computer Society, 1992.
doi:10.1109/SFCS.1992.267823.

[10] David Avis and Godfried T. Toussaint. An Efficient Algorithm for Decomposing a Polygon
into Star-Shaped Polygons. Pattern Recognition, 13(6):395–398, 1981. doi:10.1016/0031-
3203(81)90002-9.

[11] António Leslie Bajuelos, Ana Paula Tomás, and Fábio Marques. Partitioning Orthogonal
Polygons by Extension of All Edges Incident to Reflex Vertices: Lower and Upper Bounds
on the Number of Pieces. In Computational Science and Its Applications - ICCSA
2004, International Conference, volume 3045 of LNCS, pages 127–136. Springer, 2004.
doi:10.1007/978-3-540-24767-8_14.

[12] Jon Louis Bentley and Thomas A. Ottmann. Algorithms for Reporting and Counting
Geometric Intersections. IEEE Transactions on computers, 28(09):643–647, 1979.
doi:10.1109/TC.1979.1675432.

[13] Pritam Bhattacharya, Subir Kumar Ghosh, and Sudebkumar Pal. Constant Approximation
Algorithms for Guarding Simple Polygons Using Vertex Guards. arXiv preprint
arXiv:1712.05492, abs/1712.05492, 2017.

[14] Therese Biedl and Saeed Mehrabi. On r-Guarding Thin Orthogonal Polygons. arXiv
preprint arXiv:1604.07100, 2016. (extended version of ISAAC’2016).

[15] Therese Biedl and Saeed Mehrabi. On Orthogonally Guarding Orthogonal Polygons with
Bounded Treewidth. Algorithmica, 83(2):641–666, 2021. doi:10.1007/s00453-020-00769-5.

[16] Therese Biedl, Mohammad T. Irfan, Justin Iwerks, Joondong Kim, and Joseph S. B.
Mitchell. The Art Gallery Theorem for Polyominoes. Discrete & Computational Geometry,
48(3):711–720, 2012. doi:10.1007/s00454-012-9429-1.

[17] Therese C. Biedl and Saeed Mehrabi. On r-Guarding Thin Orthogonal Polygons. In
Seok-Hee Hong, editor, 27th International Symposium on Algorithms and Computation,
ISAAC 2016, volume 64 of LIPIcs, pages 17:1–17:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPIcs.ISAAC.2016.17.

[18] Therese C. Biedl, Mohammad Tanvir Irfan, Justin Iwerks, Joondong Kim, and Joseph S. B.
Mitchell. Guarding Polyominoes. In Proceedings of the 27th ACM Symposium on Compu-
tational Geometry, SoCG 2011, pages 387–396. ACM, 2011. doi:10.1145/1998196.1998261.

[19] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Communications of the ACM, 13(7):422–426, 1970. doi:10.1145/362686.362692.

[20] Édouard Bonnet and Tillmann Miltzow. Parameterized Hardness of Art Gallery
Problems. In 24th Annual European Symposium on Algorithms, ESA 2016, volume 57
of LIPIcs, pages 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.ESA.2016.19.

http://dx.doi.org/10.1016/0031-3203(81)90002-9
http://dx.doi.org/10.1016/0031-3203(81)90002-9
http://dx.doi.org/10.1007/978-3-540-24767-8_14
http://dx.doi.org/10.1007/978-3-540-24767-8_14
http://dx.doi.org/10.1007/978-3-540-24767-8_14
http://dx.doi.org/10.1109/TC.1979.1675432
http://dx.doi.org/10.1109/TC.1979.1675432
http://arxiv.org/abs/1712.05492
http://arxiv.org/abs/1712.05492
http://dx.doi.org/10.1007/s00453-020-00769-5
http://dx.doi.org/10.1007/s00453-020-00769-5
http://dx.doi.org/10.1007/s00454-012-9429-1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.17
http://dx.doi.org/10.1145/1998196.1998261
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.19
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.19


Bibliography 101

[21] Édouard Bonnet and Tillmann Miltzow. An Approximation Algorithm for the Art Gallery
Problem. In 33rd International Symposium on Computational Geometry, SoCG 2017,
volume 77 of LIPIcs, pages 20:1–20:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.SoCG.2017.20.

[22] Robert King Brayton. On the Asymptotic Behavior of the Number of Trials Necessary to
Complete a Set with Random Selection. Journal of Mathematical Analysis and Applications,
7(1):31–61, 1963. doi:10.1016/0022-247X(63)90076-3.

[23] Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding Lines and 2-Link Polygons
is APX-hard. In Proceedings of the 13th Canadian Conference on Computational Geometry
(CCCG’01), pages 45–48, 2001.

[24] Hervé Brönnimann and Michael T. Goodrich. Almost Optimal Set Covers in
Finite VC-dimension. Discrete & Computational Geometry, 14(4):463–479, 1995.
doi:10.1007/BF02570718.

[25] Francisc Bungiu, Michael Hemmer, John Hershberger, Kan Huang, and Alexander Kröller.
Efficient Computation of Visibility Polygons. In Proceedings of the 30th European Workshop
on Computational Geometry (EuroCG 2014), 2014.

[26] Constantin Carathéodory. Über den Variabilitätsbereich der Fourier’schen Konstanten
von positiven harmonischen Funktionen. Rendiconti Del Circolo Matematico di Palermo
(1884-1940), 32(1):193–217, 1911. doi:10.1007/BF03014795.

[27] Bernard Chazelle. Triangulating a Simple Polygon in Linear Time. Discrete &
Computational Geometry, 6(3):485–524, 1991. doi:10.1007/BF02574703.

[28] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum Flow and Minimum-Cost Flow in Almost-Linear Time. arXiv
preprint arXiv:2203.00671, 2022. doi:10.48550/arXiv.2203.00671.

[29] Vasek Chvátal. A Combinatorial Theorem in Plane Geometry. Journal of Combinatorial
Theory, Series B, 18(1):39–41, 1975.

[30] V. Chvátal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations
Research, 4(3):233–235, 1979. ISSN: 0364765X, 15265471. doi:10.1287/moor.4.3.233.

[31] Kyung-Yong Chwa, Byung-Cheol Jo, Christian Knauer, Esther Moet, René Van Oost-
rum, and Chan-Su Shin. Guarding Art Galleries by Guarding Witnesses. Interna-
tional Journal of Computational Geometry & Applications, 16(02n03):205–226, 2006.
doi:10.1142/S0218195906002002.

[32] W. contributors. Find first set | Hardware support — Wikipedia, The Free Encyclopedia,
2022. (Accessed on 16/06/2022).

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT press, 3rd edition, 2009.

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.20
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.20
http://dx.doi.org/10.1016/0022-247X(63)90076-3
http://dx.doi.org/10.1016/0022-247X(63)90076-3
http://www.cccg.ca/proceedings/2001/mikael-2351.ps.gz
http://www.cccg.ca/proceedings/2001/mikael-2351.ps.gz
http://dx.doi.org/10.1007/BF02570718
http://dx.doi.org/10.1007/BF02570718
http://arxiv.org/abs/1403.3905
http://dx.doi.org/10.1007/BF03014795
http://dx.doi.org/10.1007/BF03014795
http://dx.doi.org/10.1007/BF02574703
http://dx.doi.org/10.48550/arXiv.2203.00671
http://dx.doi.org/10.1287/moor.4.3.233
http://dx.doi.org/10.1142/S0218195906002002
https://en.wikipedia.org/wiki/Find_first_set#Hardware_support


102 Bibliography

[34] Marcelo C. Couto, Cid C. de Souza, and Pedro Jussieu de Rezende. An Exact and Efficient
Algorithm for the Orthogonal Art Gallery Problem. In SIBGRAPI 2007, Proceedings of
the XX Brazilian Symposium on Computer Graphics and Image Processing, pages 87–94.
IEEE Computer Society, 2007. doi:10.1109/SIBGRAPI.2007.15.

[35] Marcelo C. Couto, Cid C. de Souza, and Pedro Jussieu de Rezende. Experimental Evaluation
of an Exact Algorithm for the Orthogonal Art Gallery Problem. In Catherine C. McGeoch,
editor, Experimental Algorithms, 7th International Workshop, WEA 2008, Proceedings,
volume 5038 of LNCS, pages 101–113. Springer, 2008. doi:10.1007/978-3-540-68552-4_8.

[36] Marcelo C. Couto, Pedro J. de Rezende, and Cid C. de Souza. Instances for the Art
Gallery Problem, 2009. https://www.ic.unicamp.br/∼cid/Problem-instances/Art-Gallery
(Accessed on 07/06/2022).

[37] Pierluigi Crescenzi. A Short Guide to Approximation Preserving Reductions. In Proceedings
of Computational Complexity. Twelfth Annual IEEE Conference, pages 262–273. IEEE,
1997. doi:10.1109/CCC.1997.612321.

[38] Yefim Dinitz. Dinitz’ Algorithm: The Original Version and Even’s Version. In Oded
Goldreich, Arnold L. Rosenberg, and Alan L. Selman, editors, Theoretical Computer Science,
Essays in Memory of Shimon Even, volume 3895 of LNCS, pages 218–240. Springer, 2006.
doi:10.1007/11685654_10.

[39] Irit Dinur and David Steurer. Analytical Approach to Parallel Repetition. In
Symposium on Theory of Computing, STOC 2014, pages 624–633. ACM, 2014.
doi:10.1145/2591796.2591884.

[40] Stephan Eidenbenz, Christoph Stamm, and Peter Widmayer. Inapproximability Results
for Guarding Polygons and Terrains. Algorithmica, 31(1):79–113, 2001. doi:10.1007/s00453-
001-0040-8.

[41] Stephan J. Eidenbenz. Inapproximability Results for Guarding Polygons without Holes. In
Algorithms and Computation, 9th International Symposium, ISAAC ’98, Taejon, Korea,
December 14-16, 1998, Proceedings, volume 1533 of LNCS, pages 427–436. Springer, 1998.
doi:10.1007/3-540-49381-6_45.

[42] Hossam El Gindy. Visibility in Polygons with Applications. Master’s thesis, McGill
University, 1980.

[43] Hossam El Gindy and David Avis. A Linear Algorithm for Computing the Visibility Polygon
from a Point. Journal of Algorithms, 2(2):186–197, 1981. doi:10.1016/0196-6774(81)90019-5.

[44] Jeff Erickson. Algorithms – Lecture 25: Extensions of Maximum Flow, 2015. (Lecture
notes).

[45] Jeff Erickson. Algorithms – F. Balances and Pseudoflows, 2020. (Lecture notes).

http://dx.doi.org/10.1109/SIBGRAPI.2007.15
http://dx.doi.org/10.1109/SIBGRAPI.2007.15
http://dx.doi.org/10.1007/978-3-540-68552-4_8
http://dx.doi.org/10.1007/978-3-540-68552-4_8
https://www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery
https://www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery
http://dx.doi.org/10.1109/CCC.1997.612321
http://dx.doi.org/10.1007/11685654_10
http://dx.doi.org/10.1145/2591796.2591884
http://dx.doi.org/10.1007/s00453-001-0040-8
http://dx.doi.org/10.1007/s00453-001-0040-8
http://dx.doi.org/10.1007/3-540-49381-6_45
http://dx.doi.org/10.1016/0196-6774(81)90019-5
http://dx.doi.org/10.1016/0196-6774(81)90019-5
https://courses.engr.illinois.edu/cs498dl1/sp2015/notes/25-maxflowext.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/F-pseudoflows.pdf


Bibliography 103

[46] Vladimir Estivill-Castro and Jorge Urrutia. Optimal Floodlight Illumination of Orthogonal
Art Galleries. In Proceedings of the 6th Canadian Conference on Computational Geometry
(CCCG’94), pages 81–86. University of Saskatchewan, 1994.

[47] Uriel Feige. A Threshold of ln n for Approximating Set Cover. Journal of the ACM (JACM),
45(4):634–652, 1998. doi:10.1145/285055.285059.

[48] Ulrich Finke and Klaus H. Hinrichs. Overlaying Simply Connected Planar Subdivisions
in Linear Time. In Proceedings of the Eleventh Annual Symposium on Computational
Geometry, SoCG 1995, page 119–126, New York, NY, USA, 1995. ACM. ISBN: 0897917243.
doi:10.1145/220279.220292.

[49] Steve Fisk. A Short Proof of Chvátal’s Watchman Theorem. Journal of Combinatorial
Theory, Series B, 24(3):374, 1978.

[50] Efi Fogel and Monique Teillaud. The Computational Geometry Algorithms Li-
brary CGAL. ACM Communications in Computer Algebra, 49(1):10–12, 2015.
doi:10.1145/2768577.2768579.

[51] Edward Fredkin. Trie Memory. Communications of the ACM, 3(9):490–499, 1960.
doi:10.1145/367390.367400.

[52] Mohsen Ghaffari. Advanced Algorithms. Computer Science, ETH Zürich, 2020.

[53] Subir Kumar Ghosh. Approximation Algorithms for Art Gallery Problems in Polygons.
Discrete Applied Mathematics, 158(6):718–722, 2010. doi:10.1016/j.dam.2009.12.004.

[54] Leonidas J. Guibas and Robert Sedgewick. A Dichromatic Framework for Balanced Trees.
In 19th Annual Symposium on Foundations of Computer Science (sfcs 1978), pages 8–21.
IEEE Computer Society, 1978. doi:10.1109/SFCS.1978.3.

[55] Leonidas J. Guibas and Jorge Stolfi. Primitives for the Manipulation of General Subdivisions
and the Computation of Voronoi Diagrams. ACM transactions on graphics (TOG), 4(2):
74–123, 1985. doi:10.1145/282918.282923.

[56] Philip Hall. On Representatives of Subsets. Classic Papers in Combinatorics, pages 58–62,
1987. doi:10.1007/978-0-8176-4842-8_4.

[57] Dorit S. Hochbaum. Approximation Algorithms for the Set Covering and Vertex Cover
Problems. SIAM Journal on computing, 11(3):555–556, 1982. doi:10.1137/0211045.

[58] Hamid Hoorfar and Alireza Bagheri. Guarding Path Polygons with Orthogonal Visibility.
arXiv preprint arXiv:1709.01569, 2017.

[59] John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM Journal on computing, 2(4):225–231, 1973. doi:10.1137/0202019.

[60] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

http://dx.doi.org/10.1145/285055.285059
http://dx.doi.org/10.1145/220279.220292
http://dx.doi.org/10.1145/220279.220292
http://dx.doi.org/10.1145/2768577.2768579
http://dx.doi.org/10.1145/2768577.2768579
http://dx.doi.org/10.1145/367390.367400
http://dx.doi.org/10.1016/j.dam.2009.12.004
http://dx.doi.org/10.1109/SFCS.1978.3
http://dx.doi.org/10.1145/282918.282923
http://dx.doi.org/10.1145/282918.282923
http://dx.doi.org/10.1007/978-0-8176-4842-8_4
http://dx.doi.org/10.1137/0211045
http://dx.doi.org/10.1137/0211045
http://arxiv.org/abs/1709.01569
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1006/jcss.2000.1727


104 Bibliography

[61] Chuzo Iwamoto and Toshihiko Kume. Computational Complexity of the r-visibility Guard
Set Problem for Polyominoes. In Discrete and Computational Geometry and Graphs -
16th Japanese Conference, JCDCGG 2013, Revised Selected Papers, volume 8845 of LNCS,
pages 87–95. Springer, 2013. doi:10.1007/978-3-319-13287-7_8.

[62] Barry Joe and Richard B Simpson. Corrections to Lee’s Visibility Polygon Algorithm. BIT
Numerical Mathematics, 27(4):458–473, 1987. doi:10.1007/BF01937271.

[63] David S. Johnson. Approximation Algorithms for Combinatorial Problems. Journal of
Computer and System Sciences, 9(3):256–278, 1974. doi:10.1016/S0022-0000(74)80044-9.

[64] Jeff Kahn, Maria Klawe, and Daniel Kleitman. Traditional Galleries Require Fewer
Watchmen. SIAM Journal on Algebraic Discrete Methods, 4(2):194–206, 1983.

[65] Viggo Kann. On the Approximability of NP-complete Optimization Problems. PhD thesis,
Department of Numerical Analysis and Computing Science, KTH Royal Institute of
Technology, 1992.

[66] Richard M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972. doi:10.1007/978-1-4684-2001-2_9.

[67] Matthew J. Katz. A PTAS for Vertex Guarding Weakly-Visible Polygons – An Extended
Abstract. arXiv preprint arXiv:1803.02160, 2018.

[68] Matthew J. Katz and Gabriel S. Roisman. On Guarding the Vertices of Rectilinear Domains.
Computational Geometry, 39(3):219–228, 2008.

[69] James King and David Kirkpatrick. Improved Approximation for Guarding Simple
Galleries from the Perimeter. Discrete & Computational Geometry, 46(2):252–269, 2011.
doi:10.1007/s00454-011-9352-x.

[70] Jon Kleinberg and Éva Tardos. Algorithm Design. Pearson Education, Addison-Wesley,
2006.

[71] Ali A. Kooshesh and Bernard M. E. Moret. Three-Coloring the Vertices of a Triangulated
Simple Polygon. Pattern Recognit., 25(4):443, 1992. doi:10.1016/0031-3203(92)90093-X.

[72] Erik A. Krohn and Bengt J. Nilsson. Approximate Guarding of Monotone and Rectilinear
Polygons. Algorithmica, 66(3):564–594, 2013. doi:10.1007/s00453-012-9653-3.

[73] D. T. Lee and Arthur K. Lin. Computational Complexity of Art Gallery Problems. IEEE
Transactions on Information Theory, 32(2):276–282, 1986. doi:10.1109/TIT.1986.1057165.

[74] Der-Tsai Lee. Visibility of a Simple Polygon. Computer Vision, Graphics, and Image
Processing, 22(2):207–221, 1983. doi:10.1016/0734-189X(83)90065-8.

[75] Andrzej Lingas, Agnieszka Wasylewicz, and Pawel Zylinski. Linear-Time 3-Approximation
Algorithm for the r-Star Covering Problem. In Shin-Ichi Nakano and Md. Saidur Rahman,

http://dx.doi.org/10.1007/978-3-319-13287-7_8
http://dx.doi.org/10.1007/978-3-319-13287-7_8
http://dx.doi.org/10.1007/BF01937271
http://dx.doi.org/10.1016/S0022-0000(74)80044-9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/1803.02160
http://arxiv.org/abs/1803.02160
http://dx.doi.org/10.1007/s00454-011-9352-x
http://dx.doi.org/10.1007/s00454-011-9352-x
http://dx.doi.org/10.1016/0031-3203(92)90093-X
http://dx.doi.org/10.1016/0031-3203(92)90093-X
http://dx.doi.org/10.1007/s00453-012-9653-3
http://dx.doi.org/10.1007/s00453-012-9653-3
http://dx.doi.org/10.1109/TIT.1986.1057165
http://dx.doi.org/10.1016/0734-189X(83)90065-8
http://dx.doi.org/10.1007/978-3-540-77891-2_15
http://dx.doi.org/10.1007/978-3-540-77891-2_15


Bibliography 105

editors, Algorithms and Computation, 2nd International Workshop, WALCOM 2008,
volume 4921 of LNCS, pages 157–168. Springer, 2008. doi:10.1007/978-3-540-77891-2_15.

[76] Carsten Lund and Mihalis Yannakakis. On the Hardness of Approximating Minimization
Problems. Journal of the ACM (JACM), 41(5):960–981, 1994. doi:10.1145/185675.306789.

[77] Ana Mafalda Martins and António Leslie Bajuelos. Characterizing and Covering Some
Subclasses of Orthogonal Polygons. In International Conference on Computational Science,
pages 255–262. Springer, 2006. doi:10.1007/11758525_34.

[78] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: a 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 8(1):3–30, 1998. doi:10.1145/272991.272995.

[79] David E. Muller and Franco P. Preparata. Finding the Intersection of Two Convex Polyhedra.
Theoretical Computer Science, 7(2):217–236, 1978. doi:10.1016/0304-3975(78)90051-8.

[80] Robert Nürnberg. Calculating the Area and Centroid of a Polygon in 2D, 2013. (Lecture
notes).

[81] Joseph O’Rourke. Art Gallery Theorems and Algorithms, volume 57. Oxford New York,
NY, USA, 1987.

[82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Courier Corporation, 1998.

[83] Dietmar Schuchardt and Hans-Dietrich Hecker. Two NP-Hard Art-Gallery Prob-
lems for Ortho-Polygons. Mathematical Logic Quarterly, 41(2):261–267, 1995.
doi:10.1002/malq.19950410212.

[84] Ilya Sergey. Experience Report: Growing and Shrinking Polygons for Random Testing
of Computational Geometry Algorithms. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, pages 193–199. ACM,
2016. doi:10.1145/2951913.2951927.

[85] Michael Ian Shamos. Problems in Computational Geometry. Carnegie-Mellon University,
Pittsburgh, 1975.

[86] Moshe Shimrat. Algorithm 112: Position of Point Relative to Polygon. Communications
of the ACM, 5(8):434, 1962. doi:10.1145/368637.368653.

[87] Petr Slavık. A Tight Analysis of the Greedy Algorithm for Set Cover. Journal of Algorithms,
25(2):237–254, 1997. doi:10.1006/jagm.1997.0887.

[88] Emanuel Sperner. Ein Satz über Untermengen einer endlichen Menge. Mathematische
Zeitschrift, 27(1):544–548, 1928. doi:10.1007/BF01171114.

[89] James Stirling. Methodus Differentialis: Sive, Tractatus de Summatione et Interpolatione
Serierum Infinitarum. Impensis Ric. Manby, London, 1730.

http://dx.doi.org/10.1145/185675.306789
http://dx.doi.org/10.1145/185675.306789
http://dx.doi.org/10.1007/11758525_34
http://dx.doi.org/10.1007/11758525_34
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1016/0304-3975(78)90051-8
https://www.ma.ic.ac.uk/~rn/centroid.pdf
http://dx.doi.org/10.1002/malq.19950410212
http://dx.doi.org/10.1002/malq.19950410212
http://dx.doi.org/10.1145/2951913.2951927
http://dx.doi.org/10.1145/2951913.2951927
http://dx.doi.org/10.1145/368637.368653
http://dx.doi.org/10.1006/jagm.1997.0887
http://dx.doi.org/10.1007/BF01171114


106 Bibliography

[90] Ana Paula Tomás. Análise de Alguns Problemas Geométricos em Polıgonos Ortogonais.
Technical report, Departamento de Ciência de Computadores, Faculdade de Ciências da
Universidade do Porto, 2004. (Accessed on 12/06/2022).

[91] Ana Paula Tomás. Guarding Thin Orthogonal Polygons Is Hard. In Fundamentals of
Computation Theory - 19th International Symposium, FCT 2013, Proceedings, volume 8070
of LNCS, pages 305–316. Springer, 2013. doi:10.1007/978-3-642-40164-0_29.

[92] Ana Paula Tomás and António Leslie Bajuelos. Generating Random Orthogonal Polygons.
In Current Topics in Artificial Intelligence CAEPIA 2003 and 5th Conf. on Technology
Transfer, TTIA 2003. Revised Selected Papers, volume 3040 of LNCS, pages 364–373.
Springer, 2003. doi:10.1007/978-3-540-25945-9_36.

[93] Ana Paula Tomás, António Leslie Bajuelos, and Fábio Marques. Approximation Algorithms
to Minimum Vertex Cover Problems on Polygons and Terrains. In Computational Science
- ICCS 2003, International Conference, volume 2657 of LNCS, pages 869–878. Springer,
2003. doi:10.1007/3-540-44860-8_90.

[94] Ana Paula Tomás, António Leslie Bajuelos, and Fábio Marques. On Visibility Problems in
the Plane – Solving Minimum Vertex Guard Problems by Successive Approximations. In
International Symposium on Artificial Intelligence and Mathematics, AI&Math 2006, 2006.

[95] Csaba D. Toth, Joseph O’Rourke, and Jacob E. Goodman. Handbook of Discrete and
Computational Geometry. CRC Press, 2017.

[96] Davi C. Tozoni, Pedro J. de Rezende, and Cid C. de Souza. The Quest for Optimal
Solutions for the Art Gallery Problem: A Practical Iterative Algorithm. In Experimental
Algorithms, 12th International Symposium, SEA 2013, Proceedings, volume 7933 of LNCS,
pages 320–336. Springer, 2013. doi:10.1007/978-3-642-38527-8_29.

[97] Vladimir N. Vapnik and A. Ya. Chervonenkis. On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities. Theory of Probability and its Applications, 16
(2):264–280, 1971. doi:10.1137/1116025.

[98] Vijay V. Vazirani. Approximation Algorithms, volume 1. Springer, 2001.

[99] Giovanni Viglietta. Lesson 9. The Art Gallery Problem — I628E – Information Processing
Theory. Online, January 2020. (Accessed on 20/05/2022).

[100] Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman,
and Baruch Zukerman. 2D Arrangements. In CGAL User and Reference Manual. CGAL
Editorial Board, 5.4.1 edition, 2022. (Accessed on 03/02/2022).

[101] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[102] Chris Worman and J. Mark Keil. Polygon Decomposition and the Orthogonal Art Gallery
Problem. International Journal of Computational Geometry & Applications, 17(02):105–138,
2007. doi:10.1142/S0218195907002264.

https://www.dcc.fc.up.pt/Pubs/TR04/dcc-2004-03.pdf
http://dx.doi.org/10.1007/978-3-642-40164-0_29
http://dx.doi.org/10.1007/978-3-540-25945-9_36
http://dx.doi.org/10.1007/3-540-44860-8_90
http://dx.doi.org/10.1007/3-540-44860-8_90
http://anytime.cs.umass.edu/aimath06/proceedings/P18.pdf
http://anytime.cs.umass.edu/aimath06/proceedings/P18.pdf
http://dx.doi.org/10.1007/978-3-642-38527-8_29
http://dx.doi.org/10.1007/978-3-642-38527-8_29
http://dx.doi.org/10.1137/1116025
http://dx.doi.org/10.1137/1116025
https://www.jaist.ac.jp/~ogata/lecture/i628e/lesson9.pdf
https://www.jaist.ac.jp/~ogata/lecture/i628e/lesson9.pdf
https://doc.cgal.org/5.4.1/Manual/packages.html#PkgArrangementOnSurface2
http://dx.doi.org/10.1142/S0218195907002264
http://dx.doi.org/10.1142/S0218195907002264

	Abstract
	Resumo
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Background on the Art Gallery Problem
	1.2 Contributions and thesis outline

	2 Preliminaries
	2.1 Geometry
	2.1.1 Polygons
	2.1.2 Visibility
	2.1.3 Arrangements
	2.1.4 Partitions

	2.2 Computational hardness
	2.2.1 Approximation algorithms
	2.2.2 Parameterized complexity


	3 Randomized Algorithm for Set Cover
	3.1 Background on Set Cover
	3.1.1 Hs-approximation algorithm
	3.1.2 f-approximation algorithm

	3.2 Polygon discretization and instance generation
	3.2.1 First approach
	3.2.2 Second approach

	3.3 Definition of Randomized-Set-Cover
	3.3.1 Implementation
	3.3.2 Probability of success with uniformly random instances
	3.3.3 Kernelization
	3.3.4 Algorithm reformulation
	3.3.5 Number of repetitions

	3.4 Data structures used
	3.4.1 Sampleable set
	3.4.2 Set


	4 Experimental Analysis of Randomized-Set-Cover
	4.1 Experimental setup
	4.2 Results
	4.2.1 Min-Area
	4.2.2 Fat
	4.2.3 Random
	4.2.4 Large-Random
	4.2.5 Discussion and general remarks

	4.3 Order of growth of |n| for grid n-ogons
	4.3.1 Min-Area
	4.3.2 Fat
	4.3.3 Random


	5 On r-Guarding SCOTs
	5.1 Simple SCOTs
	5.2 r-independent SCOTs
	5.2.1 Super-corridors
	5.2.2 3-approximation algorithm for vertex-guards and point-guards
	5.2.3 Exact algorithm for vertex-guards
	5.2.4 Exact algorithm for point-guards

	5.3 NP-completeness with point-guards
	5.3.1 Construction
	5.3.2 Complexity
	5.3.3 Correctness
	5.3.4 NP-completeness
	5.3.5 Approximation algorithms for vertex-guards and point-guards


	6 Rook Vision on Polyominoes
	6.1 Parameterized algorithm for Rook-AGP
	6.1.1 Complexity


	7 Conclusions and Future Work
	Bibliography

