72 research outputs found

    Compression of Three-Dimensional Magnetic Resonance Brain Images.

    Get PDF
    Losslessly compressing a medical image set with multiple slices is paramount in radiology since all the information within a medical image set is crucial for both diagnosis and treatment. This dissertation presents a novel and efficient diagnostically lossless compression scheme (predicted wavelet lossless compression method) for sets of magnetic resonance (MR) brain images, which are called 3-D MR brain images. This compression scheme provides 3-D MR brain images with the progressive and preliminary diagnosis capabilities. The spatial dependency in 3-D MR brain images is studied with histograms, entropy, correlation, and wavelet decomposition coefficients. This spatial dependency is utilized to design three kinds of predictors, i.e., intra-, inter-, and intra-and-inter-slice predictors, that use the correlation among neighboring pixels. Five integer wavelet transformations are applied to the prediction residues. It shows that the intra-slice predictor 3 using a x-pixel and a y-pixel for prediction plus the 1st-level (2, 2) interpolating integer wavelet with run-length and arithmetic coding achieves the best compression. An automated threshold based background noise removal technique is applied to remove the noise outside the diagnostic region. This preprocessing method improves the compression ratio of the proposed compression technique by approximately 1.61 times. A feature vector based approach is used to determine the representative slice with the most discernible brain structures. This representative slice is progressively encoded by a lossless embedded zerotree wavelet method. A rough version of this representative slice is gradually transmitted at an increasing bit rate so the validity of the whole set can be determined early. This feature vector based approach is also utilized to detect multiple sclerosis (MS) at an early stage. Our compression technique with the progressive and preliminary diagnosis capability is tested with simulated and real 3-D MR brain image sets. The compression improvement versus the best commonly used lossless compression method (lossless JPEG) is 41.83% for simulated 3-D MR brain image sets and 71.42% for real 3-D MR brain image sets. The accuracy of the preliminary MS diagnosis is 66.67% based on six studies with an expert radiologist\u27s diagnosis

    Lossless image compression using an edge adapted lifting predictor

    Get PDF
    We present a novel and computationally simple prediction stage in a Daubechies 5/3 - like lifting structure for lossless image compression. In the 5/3 wavelet, the prediction filter predicts the value of an odd-indexed polyphase component as the mean of its immediate neighbors belonging to the even-indexed polyphase components. The new edge adaptive predictor, however, predicts according to a local gradient direction estimator of the image. As a result, the prediction domain is allowed to flip + or - 45 degrees with respect to the horizontal or vertical axes in regions with diagonal gradient. We have obtained good compression results with conventional lossless wavelet coders. © 2005 IEEE

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Performance Evaluation of Data Compression Systems Applied to Satellite Imagery

    Get PDF

    The Wavelet Transform for Image Processing Applications

    Get PDF

    Novi algoritam za kompresiju seizmičkih podataka velike amplitudske rezolucije

    Get PDF
    Renewable sources cannot meet energy demand of a growing global market. Therefore, it is expected that oil & gas will remain a substantial sources of energy in a coming years. To find a new oil & gas deposits that would satisfy growing global energy demands, significant efforts are constantly involved in finding ways to increase efficiency of a seismic surveys. It is commonly considered that, in an initial phase of exploration and production of a new fields, high-resolution and high-quality images of the subsurface are of the great importance. As one part in the seismic data processing chain, efficient managing and delivering of a large data sets, that are vastly produced by the industry during seismic surveys, becomes extremely important in order to facilitate further seismic data processing and interpretation. In this respect, efficiency to a large extent relies on the efficiency of the compression scheme, which is often required to enable faster transfer and access to data, as well as efficient data storage. Motivated by the superior performance of High Efficiency Video Coding (HEVC), and driven by the rapid growth in data volume produced by seismic surveys, this work explores a 32 bits per pixel (b/p) extension of the HEVC codec for compression of seismic data. It is proposed to reassemble seismic slices in a format that corresponds to video signal and benefit from the coding gain achieved by HEVC inter mode, besides the possible advantages of the (still image) HEVC intra mode. To this end, this work modifies almost all components of the original HEVC codec to cater for high bit-depth coding of seismic data: Lagrange multiplier used in optimization of the coding parameters has been adapted to the new data statistics, core transform and quantization have been reimplemented to handle the increased bit-depth range, and modified adaptive binary arithmetic coder has been employed for efficient entropy coding. In addition, optimized block selection, reduced intra prediction modes, and flexible motion estimation are tested to adapt to the structure of seismic data. Even though the new codec after implementation of the proposed modifications goes beyond the standardized HEVC, it still maintains a generic HEVC structure, and it is developed under the general HEVC framework. There is no similar work in the field of the seismic data compression that uses the HEVC as a base codec setting. Thus, a specific codec design has been tailored which, when compared to the JPEG-XR and commercial wavelet-based codec, significantly improves the peak-signal-tonoise- ratio (PSNR) vs. compression ratio performance for 32 b/p seismic data. Depending on a proposed configurations, PSNR gain goes from 3.39 dB up to 9.48 dB. Also, relying on the specific characteristics of seismic data, an optimized encoder is proposed in this work. It reduces encoding time by 67.17% for All-I configuration on trace image dataset, and 67.39% for All-I, 97.96% for P2-configuration and 98.64% for B-configuration on 3D wavefield dataset, with negligible coding performance losses. As a side contribution of this work, HEVC is analyzed within all of its functional units, so that the presented work itself can serve as a specific overview of methods incorporated into the standard
    corecore