22,004 research outputs found

    An overview of offset analgesia and the comparison with conditioned pain modulation : a systematic literature review

    Get PDF
    Background: Offset analgesia (OA) is an increasingly described phenomenon to measure endogenous pain inhibition, in which a greater decrease in pain intensity is experienced than would be predicted by the decrease in painful stimulation. The temporal filtering in this OA phenomenon differs from the spatial filtering in the commonly described conditioned pain modulation (CPM). Yet, the knowledge on the efficacy of OA in chronic pain patients is scarce, compared to CPM efficacy. Objective: This systematic review has been conducted to provide an overview of the current knowledge regarding OA, and to compare it to CPM. Study Design: A systematic review of research studies that investigated the application or mechanisms of OA. Setting: The present study took place at Ghent University and the University of Antwerp. Methods: This systematic review follows the PRISMA guidelines. The electronic databases Pubmed and Web of Science were searched in January 2015. Full text clinical reports addressing OA were included. The checklists for randomized controlled trials, case-control studies, and cohort-studies provided by the Dutch Institute for Healthcare Improvement and the Dutch Cochrane Centre were used to assess methodological quality. The articles received a level of evidence A1, A2, B, C, or D, based on study design and risk of bias. These levels were used to determine the strength of conclusion (level 1 to 4). Results: Seventeen articles met the inclusion criteria. Sixteen studies used quantitative sensory testing to provoke OA; however, differences in protocols are present. OA can function as a non-opioid mediated assessment tool for endogenous pain inhibition, and activates brain regions such as periaqueductal gray (PAG), dorsolateral prefontral cortex, insula, medulla, pons and cerebellum, indicating strong brain derived pain modulation. The primary somatosensory cortex is, conversely, less activated during OA. OA is decreased in neuropathic patients. Nonetheless, evidence for the influence of individual factors on OA is limited. OA and CPM seem to rely on different mechanisms. Limitations: Search strategy was taken wide, wherefore a large variety of research perspectives were included. Conclusions: This systematic review displays OA as a temporal filtering mechanisms that is more brain-derived compared to the spatial assessment method CPM. There is strong evidence for reduced OA in neuropathic patients, however, evidence regarding OA in (sub) acute and central sensitization patients, and the influence of personal factors on OA is currently scarce and needs further investigation

    Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale

    Get PDF
    Graphene exhibits unconventional two-dimensional electronic properties resulting from the symmetry of its quasiparticles, which leads to the concepts of pseudospin and electronic chirality. Here we report that scanning tunneling microscopy can be used to probe these unique symmetry properties at the nanometer scale. They are reflected in the quantum interference pattern resulting from elastic scattering off impurities, and they can be directly read from its fast Fourier transform. Our data, complemented by theoretical calculations, demonstrate that the pseudospin and the electronic chirality in epitaxial graphene on SiC(0001) correspond to the ones predicted for ideal graphene.Comment: 4 pages, 3 figures, minor change

    On the engineering of crucial software

    Get PDF
    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described

    Radiation modeling in the Earth and Mars atmospheres using LRO/CRaTER with the EMMREM Module

    Get PDF
    Abstract We expand upon the efforts of Joyce et al. (2013), who computed the modulation potential at the Moon using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on the Lunar Reconnaissance Orbiter (LRO) spacecraft along with data products from the Earth-Moon-Mars Radiation Environment Module (EMMREM). Using the computed modulation potential, we calculate galactic cosmic ray (GCR) dose and dose equivalent rates in the Earth and Mars atmospheres for various altitudes over the course of the LRO mission. While we cannot validate these predictions by directly comparable measurement, we find that our results conform to expectations and are in good agreement with the nearest available measurements and therefore may be used as reasonable estimates for use in efforts in risk assessment in the planning of future space missions as well as in the study of GCRs. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other solar energetic particles measurements) is an online system designed to provide the scientific community with a comprehensive resource on the radiation environments of the inner heliosphere. The data products shown here will be incorporated into PREDICCS in order to further this effort and daily updates will be made available on the PREDICCS website (http://prediccs.sr.unh.edu). Key Points We model GCR dose and dose equivalent rates in Earth and Mars atmospheres Dose rates are in reasonable agreement with nearby measurements Data products will soon be made available on PREDICCS website

    The unusually large population of Blazhko variables in the globular cluster NGC 5024 (M53)

    Full text link
    We report the discovery of amplitude and phase modulations typical of the Blazhko effect in 22 RRc and 9 RRab type RR Lyrae stars in NGC 5024 (M53). This brings the confirmed Blazhko variables in this cluster to 23 RRc and 11 RRab, that represent 66% and 37% of the total population of RRc and RRab stars in the cluster respectively, making NGC 5024 the globular cluster with the largest presently known population of Blazhko RRc stars. We place a lower limit on the overall incidence rate of the Blazhko effect among the RR Lyrae population in this cluster of 52%. New data have allowed us to refine the pulsation periods. The limitations imposed by the time span and sampling of our data prevents reliable estimations of the modulation periods. The amplitudes of the modulations range between 0.02 and 0.39 mag. The RRab and RRc are neatly separated in the CMD, and the RRc Blazhko variables are on averge redder than their stable couterparts; these two facts may support the hypothesis that the HB evolution in this cluster is towards the red and that the Blazhko modulations in the RRc stars are connected with the pulsation mode switch.Comment: ACCEPTED IN MNRAS 14 pages, 9 figures and 6 table

    Stochastic analysis of spectral broadening by a free turbulent shear layer

    Get PDF
    The effect of the time-varying shear layer between a harmonic acoustic source and an observer on the frequency content of the observed sound is considered. Experimental data show that the spectral content of the acoustic signal is considerably broadened upon passing through such a shear layer. Theoretical analysis is presented which shows that such spectral broadening is entirely consistent with amplitude modulation of the acoustic signal by the time-varying shear layer. Thus, no actual frequency shift need be hypothesized to explain the spectral phenomenon. Experimental tests were conducted at 2, 4, and 6 kHz and at free jet flow velocities of 10, 20, and 30 m/s. Analysis of acoustic pressure time histories obtained from these tests confirms the above conclusion, at least for the low Mach numbers considered

    Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain

    Get PDF
    The medial prefrontal cortex (mPFC) plays a major role in both sensory and affective aspects of pain. There is extensive evidence that chronic pain produces functional changes within the mPFC. However, our understanding of local circuit changes to defined subpopulations of mPFC neurons in chronic pain models remains unclear. A major subpopulation of mPFC neurons project to the periaqueductal gray (PAG), which is a key midbrain structure involved in endogenous pain suppression and facilitation. Here, we used laser scanning photostimulation of caged glutamate to map cortical circuits of retrogradely labeled cortico-PAG (CP) neurons in layer 5 (L5) of mPFC in brain slices prepared from male mice having undergone chronic constriction injury (CCI) of the sciatic nerve. Whole-cell recordings revealed a significant reduction in excitability for L5 CP neurons contralateral to CCI in the prelimbic (PL), but not infralimbic (IL), region of mPFC. Circuit mapping showed that excitatory inputs to L5 CP neurons in both PL and IL arose primarily from layer 2/3 (L2/3) and were significantly reduced in CCI mice. Glutamate stimulation of L2/3 and L5 elicited inhibitory inputs to CP neurons in both PL and IL, but only L2/3 input was significantly reduced in CP neurons of CCI mice. We also observed significant reduction in excitability and L2/3 inhibitory input to CP neurons ipsilateral to CCI. These results demonstrating region and laminar specific changes to mPFC-PAG neurons suggest that a unilateral CCI bilaterally alters cortical circuits upstream of the endogenous analgesic network, which may contribute to persistence of chronic pain

    Effects of stress and relaxation on central pain modulation in chronic whiplash and fibromyalgia patients compared to healthy controls

    Get PDF
    Background: Compelling evidence has demonstrated that impaired central pain modulation contributes to persistent pain in patients with chronic whiplash associated disorders (WAD) and fibromyalgia (FM). However, there is limited research concerning the influence of stress and relaxation on central pain modulation in patients with chronic WAD and FM. Objectives: The present study aims to investigate the effects of acute cognitive stress and relaxation on central pain modulation in chronic WAD and FM patients compared to healthy individuals. Study Design: A randomized crossover design was employed. Setting: The present study took place at the University of Brussels, the University Hospital Brussels, and the University of Antwerp. Methods: Fifty-nine participants (16 chronic WAD patients, 21 FM, 22 pain-free controls) were enrolled and subjected to various pain measurements. Temporal summation (TS) of pain and conditioned pain modulation (CPM) were evaluated. Subsequently, participants were randomly allocated to either a group that received progressive relaxation therapy or a group that performed a battery of cognitive tests (= cognitive stressor). Afterwards, all pain measurements were repeated. One week later participant groups were switched. Results: A significant difference was found between the groups in the change in TS in response to relaxation (P = 0.008) and cognitive stress (P = 0.003). TS decreased in response to relaxation and cognitive stress in chronic WAD patients and controls. In contrast, TS increased after both interventions in FM patients. CPM efficacy decreased in all 3 groups in response to relaxation (P = 0.002) and cognitive stress (P = 0.001). Limitations: The obtained results only apply for a single session of muscle relaxation therapy and cognitive stress, whereby no conclusions can be made for effects on pain perception and modulation of chronic cognitive stress and long-term relaxation therapies. Conclusions: A single relaxation session as well as cognitive stress may have negative acute effects on pain modulation in patients with FM, while cognitive stress and relaxation did not worsen bottom-up sensitization in chronic WAD patients and healthy persons. However, endogenous pain inhibition, assessed using a CPM paradigm, worsened in chronic WAD and FM patients, as well as in healthy people following both interventions

    Quadrature Phase Shift Keying (QPSK) Modulator Design using Multi-Port Network in Multilayer Microstrip-Slot Technology for Wireless Communication Applications

    Get PDF
    The design of the quadrature phase shift keying (QPSK) modulator by using a multi-port network is proposed in this article for the use in wireless communication applications. The multi-port network is in the form of multilayer microstrip-slot technology. This multi-port network is composed of three 3-dB rectangular-shaped directional couplers with virtual stubs and an equal power division divider with in-phase characteristic. The design is performed by applying a full-wave electromagnetic simulation software, CST Microwave Studio (CST MWS). Keysight’s Advanced Design System (ADS) is applied in analyzing and evaluating the QPSK constellation of the proposed modulator. This comparatively small size of proposed design has been fabricated, and its wideband performance of 2 to 6 GHz is verified
    • …
    corecore