2,779 research outputs found

    Downscaling Coarse Resolution Satellite Passive Microwave SWE Estimates

    Get PDF
    The spatio-temporal heterogeneity of seasonal snow and its impact on socio-economic and environmental functionality make accurate, real-time estimates of snow water equivalent (SWE) important for hydrological and climatological predictions. Passive microwave remote sensing offers a cost effective, temporally and spatially consistent approach to SWE monitoring at the global to regional scale. However, local scale estimates are subject to large errors given the coarse spatial resolution of passive microwave observations (25 x 25 km). Regression downscaling techniques can be implemented to increase the spatial resolution of gridded datasets with the use of related auxiliary datasets at a finer spatial resolution. These techniques have been successfully implemented to remote sensing datasets such as soil moisture estimates, however, limited work has applied such techniques to snow-related datasets. This thesis focuses on assessing the feasibility of using regression downscaling to increase the spatial resolution of the European Space Agency’s (ESA) Globsnow SWE product in the Red River basin, an agriculturally important region of the northern United States that is widely recognized as a suitable location for passive microwave remote sensing research. Multiple Linear (MLR), Random Forest (RFR) and Geographically Weighted (GWR) regression downscaling techniques were assessed in a closed loop experiment using Snow Data Assimilation System (SNODAS) SWE estimates at a 1 x 1 km spatial resolution. SNODAS SWE data for a 5-year period between 2013-2018 was aggregated to a 25 x 25 km spatial resolution to match Globsnow. The three regression techniques were applied using correlative datasets to downscale the aggregated SNODAS data back to the original 1 x 1 km spatial resolution. By comparing the downscaled SNODAS estimates to the original SNODAS data, it was found that RFR downscaling produced much less variation in downscaled results, and lower RMSE values throughout the study period when compared to MLR and GWR downscaling techniques, indicating it was the optimal downscaling method. RFR downscaling was then implemented on daily Globsnow SWE estimates for the same time period. The downscaled SWE results were evaluated using SNODAS SWE as well as in situ derived SWE estimates from weather stations within the study region. Spatial and temporal errors were assessed using both the SNODAS and in situ reference datasets and overall RMSEs of 21 mm and 37 mm were found, respectively. It was observed that the southern regions of the basin and seasons with higher downscaled SWE estimates were associated with higher errors with overestimation being the most common bias throughout the region. A major contribution of this study is the illustration that RFR downscaling of Globsnow SWE estimates is a feasible approach to understanding the seasonal dynamics of SWE in the Red River basin. This is extremely beneficial for local communities within the basin for flood management and mitigation and water resource management

    Data-driven model development in environmental geography - Methodological advancements and scientific applications

    Get PDF
    Die Erfassung räumlich kontinuierlicher Daten und raum-zeitlicher Dynamiken ist ein Forschungsschwerpunkt der Umweltgeographie. Zu diesem Ziel sind Modellierungsmethoden erforderlich, die es ermöglichen, aus limitierten Felddaten raum-zeitliche Aussagen abzuleiten. Die Komplexität von Umweltsystemen erfordert dabei die Verwendung von Modellierungsstrategien, die es erlauben, beliebige Zusammenhänge zwischen einer Vielzahl potentieller Prädiktoren zu berücksichtigen. Diese Anforderung verlangt nach einem Paradigmenwechsel von der parametrischen hin zu einer nicht-parametrischen, datengetriebenen Modellentwicklung, was zusätzlich durch die zunehmende Verfügbarkeit von Geodaten verstärkt wird. In diesem Zusammenhang haben sich maschinelle Lernverfahren als ein wichtiges Werkzeug erwiesen, um Muster in nicht-linearen und komplexen Systemen zu erfassen. Durch die wachsende Popularität maschineller Lernverfahren in wissenschaftlichen Zeitschriften und die Entwicklung komfortabler Softwarepakete wird zunehmend der Fehleindruck einer einfachen Anwendbarkeit erzeugt. Dem gegenüber steht jedoch eine Komplexität, die im Detail nur durch eine umfassende Methodenkompetenz kontrolliert werden kann. Diese Problematik gilt insbesondere für Geodaten, die besondere Merkmale wie vor allem räumliche Abhängigkeit aufweisen, womit sie sich von "gewöhnlichen" Daten abheben, was jedoch in maschinellen Lernanwendungen bisher weitestgehend ignoriert wird. Die vorliegende Arbeit beschäftigt sich mit dem Potenzial und der Sensitivität des maschinellen Lernens in der Umweltgeographie. In diesem Zusammenhang wurde eine Reihe von maschinellen Lernanwendungen in einem breiten Spektrum der Umweltgeographie veröffentlicht. Die einzelnen Beiträge stehen unter der übergeordneten Hypothese, dass datengetriebene Modellierungsstrategien nur dann zu einem Informationsgewinn und zu robusten raum-zeitlichen Ergebnissen führen, wenn die Merkmale von geographischen Daten berücksichtigt werden. Neben diesem übergeordneten methodischen Fokus zielt jede Anwendung darauf ab, durch adäquat angewandte Methoden neue fachliche Erkenntnisse in ihrem jeweiligen Forschungsgebiet zu liefern. Im Rahmen der Arbeit wurde eine Vielzahl relevanter Umweltmonitoring-Produkte entwickelt. Die Ergebnisse verdeutlichen, dass sowohl hohe fachwissenschaftliche als auch methodische Kenntnisse unverzichtbar sind, um den Bereich der datengetriebenen Umweltgeographie voranzutreiben. Die Arbeit demonstriert erstmals die Relevanz räumlicher Überfittung in geographischen Lernanwendungen und legt ihre Auswirkungen auf die Modellergebnisse dar. Um diesem Problem entgegenzuwirken, wird eine neue, an Geodaten angepasste Methode zur Modellentwicklung entwickelt, wodurch deutlich verbesserte Ergebnisse erzielt werden können. Diese Arbeit ist abschließend als Appell zu verstehen, über die Standardanwendungen der maschinellen Lernverfahren hinauszudenken, da sie beweist, dass die Anwendung von Standardverfahren auf Geodaten zu starker Überfittung und Fehlinterpretation der Ergebnisse führt. Erst wenn Eigenschaften von geographischen Daten berücksichtigt werden, bietet das maschinelle Lernen ein leistungsstarkes Werkzeug, um wissenschaftlich verlässliche Ergebnisse für die Umweltgeographie zu liefern

    Incorporating microclimate into species distribution models

    Get PDF
    International audienceSpecies distribution models (SDMs) have rapidly evolved into one of the most widely used tools to answer a broad range of ecological questions, from the effects of climate change to challenges for species management. Current SDMs and their predictions under anthropogenic climate change are, however, often based on free‐air or synoptic temperature conditions with a coarse resolution, and thus fail to capture apparent temperature (cf. microclimate) experienced by living organisms within their habitats. Yet microclimate operates as soon as a habitat can be characterized by a vertical component (e.g. forests, mountains, or cities) or by horizontal variation in surface cover. The mismatch between how we usually express climate (cf. coarse‐grained free‐air conditions) and the apparent microclimatic conditions that living organisms experience has only recently been acknowledged in SDMs, yet several studies have already made considerable progress in tackling this problem from different angles. In this review, we summarize the currently available methods to obtain meaningful microclimatic data for use in distribution modelling. We discuss the issue of extent and resolution, and propose an integrated framework using a selection of appropriately‐placed sensors in combination with both the detailed measurements of the habitat 3D structure, for example derived from digital elevation models or airborne laser scanning, and the long‐term records of free‐air conditions from weather stations. As such, we can obtain microclimatic data with a relevant spatiotemporal resolution and extent to dynamically model current and future species distributions

    Limitations of Remotely Sensed Aerosol as a Spatial Proxy for Fine Particulate Matter

    Get PDF
    Background: Recent research highlights the promise of remotely sensed aerosol optical depth (AOD) as a proxy for ground-level particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5). Particular interest lies in estimating spatial heterogeneity using AOD, with important application to estimating pollution exposure for public health purposes. Given the correlations reported between AOD and PM2.5, it is tempting to interpret the spatial patterns in AOD as reflecting patterns in PM2.5. Objectives: We evaluated the degree to which AOD can help predict long-term average PM2.5 concentrations for use in chronic health studies. Methods: We calculated correlations of AOD and PM2.5 at various temporal aggregations in the eastern United States in 2004 and used statistical models to assess the relationship between AOD and PM2.5 and the potential for improving predictions of PM2.5 in a subregion, the mid-Atlantic. Results: We found only limited spatial associations of AOD from three satellite retrievals with daily and yearly PM2.5. The statistical modeling shows that monthly average AOD poorly reflects spatial patterns in PM2.5 because of systematic, spatially correlated discrepancies between AOD and PM2.5. Furthermore, when we included AOD as a predictor of monthly PM2.5 in a statistical prediction model, AOD provided little additional information in a model that already accounts for land use, emission sources, meteorology, and regional variability. Conclusions: These results suggest caution in using spatial variation in currently available AOD to stand in for spatial variation in ground-level PM2.5 in epidemiologic analyses and indicate that when PM2.5 monitoring is available, careful statistical modeling outperforms the use of AOD

    Automated mapping of climatic variables using spatio-temporal geostatistical methods

    Get PDF
    Javno dostupni meteorološki podaci, kako sa stanica tako i iz daljinske detekcije, korišćeni su za prostorno vremensku interpolaciju temperature vazduha iznad površine Zemlje. Zastupljenost i pogodnost javno dostupnih podataka je ocenjena, kroz tri aspekta kontrole kvaliteta: (a) zastupljenost u geografskom i prostornom domenu, (b) zastupljenost u karaktestičnom prostoru (feature space; bazirano na MaxEnt metodi), kao i (c) pogodnost korišćenja podataka za prostorno-vremensku predikciju (na osnovu kros-validacije prostorno-vremnskog regresionog kriginga). Rezultati pokazuju da je kombinovani set podataka (GSOD i ECA&D) značajno klasteriran i u geografskom i u karakterističnom prostoru. Uprkos klasteriranju, preliminarni rezultati globalne interpolacije primenom prostorno-vremenskog regresionog kriginga koristeći merenja sa stanica i snimke daljinske detekcije su pokazali da se tako mogu dobiti precizne globalne karte dnevne temperature. Oko 9000 stanica kombinovanog seta podataka (GSOD i ECA&D) je korišćeno za prostorno-vremensko geostatističko modeliranje i predikciju dnevnih temperatura u rezoluciji 1 km, iznad površine Zemlje. Za predikciju srednjih, minimalnih i maksimalnih temperatura korišćen je regresioni kriging uz pomoćne prediktore: MODIS LST 8-dnevni snimci, topografski lejeri (DEM i TWI) i geometrijski temperaturni trend. Model i predikcija se odnose na 2011 godinu, ali ista metodologija bi se mogla primeniti od 2001 godine do danas (od kada su dostupni MODIS snimci). Rezultati pokazuju da je prosečna tačnost predikcije za srednju, minimalnu i maksimalnu temperaturu vazduha oko ±2°C za oblasti gusto pokrivene stanicama i između ±2°C i ±4°C za oblasti koje su slabo pokrivene stanicama. Najniža tačnost predikcije je dobijena u planinskim predelima i na Antartiku, oko 6°C. R softverski paket, meteo, je razvijen kao resenje za automatsko kartiranje. Razvijen je i paket plotGoogleMaps za automatsku vizuelizaciju na Web-u, koristeći Google Maps API.Publicly available global meteorological data sets, from ground stations and remote sensing, are used for spatio-temporal interpolation of air temperature data for global land areas. Publicly available data sets were assessed for representation and usability for global spatio-temporal analysis. Three aspects of data quality were considered: (a) representation in the geographical and temporal domains, (b) representation in the feature space (based on the MaxEnt method), and (c) usability i.e. fitness of use for spatio-temporal interpolation (based on cross-validation of spatio-temporal regression-kriging models). The results show that clustering of meteorological stations in the combined data set (GSOD and ECA&D) is significant in both geographical and feature space. Despite the geographical and feature space clustering, preliminary tested global spatio-temporal model using station observations and remote sensing images, shows this method can be used for accurate mapping of daily temperature. Around 9000 stations from merged GSOD and ECA&D daily meteorological data sets were used to build spatio-temporal geostatistical models and predict daily air temperature at ground resolution of 1 km for the global land mass. Predictions were made for the mean, maximum and minimum temperature using spatio-temporal regression-kriging with a time series of MODIS 8 day images, topographic layers (DEM and TWI) and a geometrical temperature trend as covariates. The model and predictions were built for the year 2011 only, but the same methodology can be extended for the whole range of the MODIS LST images (2001–today). The results show that the average accuracy for predicting mean, maximum and minimum daily temperatures is RMSE = ± 2°C for areas densely covered with stations, and between ± 2°C and ± 4°C for areas with lower station density. The lowest prediction accuracy was observed in highlands (> 1000 m) and in Antarctica with a RMSE around 6°C. Automated mapping framework is developed and implemented as R package meteo. Likewise, package plotGoogleMaps for automated visualisation on the Web, base on Google Maps API is developed

    Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution

    Get PDF
    Combined Global Surface Summary of Day and European Climate Assessment and Dataset daily meteorological data sets (around 9000 stations) were used to build spatio-temporal geostatistical models and predict daily air temperature at ground resolution of 1km for the global land mass. Predictions in space and time were made for the mean, maximum, and minimum temperatures using spatio-temporal regression-kriging with a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) 8 day images, topographic layers (digital elevation model and topographic wetness index), and a geometric temperature trend as covariates. The accuracy of predicting daily temperatures was assessed using leave-one-out cross validation. To account for geographical point clustering of station data and get a more representative cross-validation accuracy, predicted values were aggregated to blocks of land of size 500x500km. Results show that the average accuracy for predicting mean, maximum, and minimum daily temperatures is root-mean-square error (RMSE) =2 degrees C for areas densely covered with stations and between 2 degrees C and 4 degrees C for areas with lower station density. The lowest prediction accuracy was observed at high altitudes (>1000m) and in Antarctica with an RMSE around 6 degrees C. The model and predictions were built for the year 2011 only, but the same methodology could be extended for the whole range of the MODIS land surface temperature images (2001 to today), i.e., to produce global archives of daily temperatures (a next-generation repository) and to feed various global environmental models. Key Points Global spatio-temporal regression-kriging daily temperature interpolation Fitting of global spatio-temporal models for the mean, maximum, and minimum temperatures Time series of MODIS 8 day images as explanatory variables in regression par

    Identifying Sources of Landscape Variation to Improve Predictions of Post-Fire Sagebrush Steppe Recovery

    Get PDF
    Sagebrush steppe ecosystems are endangered landscapes, threated by the annual grass-fire cycle where invasion by annual grasses drives larger fires and larger fires drive invasion. Despite extensive input of resources by land management agencies, restoration of these ecosystems is notoriously variable and difficult to predict. Understanding and accounting for variation is key to effectively allocating limited resources and having success in restoring burned sagebrush landscapes. I utilized Bayesian modeling to assess how variation in weather, seed dispersal, and topography/slope/landscape position affects understanding of post-fire sagebrush-steppe recovery and how we can best incorporate sources of variation into models predicting where plant communities will most successfully recover. We first asked how weather conditions directly after fire (in the first 4 years) during important phenological windows or during the antecedent five-years affected long-term vegetation trajectories and how inclusion of weather metrics affected the transferability of vegetation abundance models from one site to another. We found that annual grasses, perennial grasses, and sagebrush all responded differently to post-fire weather, with grasses more limited by post-fire precipitation and sagebrush more limited by post-fire temperatures. However, while including weather variables improved model transferability from one site to another for perennial and annual grass abundance (not for sagebrush), the chosen weather metrics did not matter. Next, we aimed to assess how sagebrush seed dispersal varies across large landscapes, such as megafires. We conducted a vertical seed trapping experiment and terminal velocity measurements in the lab and combined the data to parameterize a hierarchical Bayesian model that incorporated both an empirical and mechanistic component. We determined that seed dispersal is highly variable, even at a small scale. Our seed rain projections suggest that seed dispersal from natural recovery may pose severe seed limitations for large burned areas, although natural dispersal is likely to be extremely variable. Our novel data fusion approach to seed dispersal modeling has generalizable applications to estimating seed dispersal at larger scales for other species of concern. Finally, we asked how accuracy and precision of fractional vegetation cover estimates derived from several different satellite-derived products varied with plant cover type, scale, time, and topography in post-fire systems. We found that all gridded map products tested tended to overestimate very low cover and underestimate very high cover, although some products are more accurate than others. We also found that field-derived models of vegetation tend to agree more with satellite-derived models of vegetation at larger scale and less at a smaller scale. Finally, we found that annual herbaceous cover tends to be overestimated in higher elevation, more topographically diverse areas, whereas perennial herbaceous cover tends to be underestimated in these areas. Together these analyses provide a means by which to better understand variability and the reliability of post-fire vegetation recovery models. Incorporation of the sources of variability we have identified here will help refine future models of recovery, whether they are based on data sources from the field, lab, or remote-sensing

    Bayesian geostatistical modelling of high-resolution NO2 exposure in Europe combining data from monitors, satellites and chemical transport models

    Get PDF
    Bayesian geostatistical regression (GR) models estimate air pollution exposure at high spatial resolution, quantify the prediction uncertainty and provide probabilistic inference on the exceedance of air quality thresholds. However, due to high computational burden, previous GR models have provided gridded ambient nitrogen dioxide (NO; 2; ) concentrations at smaller areas of investigation. Here, we applied these models to estimate yearly averaged NO; 2; concentrations at 1 km; 2; spatial resolution across 44 European countries, integrating information from in situ monitoring stations, satellites and chemical transport model (CTM) simulations. The tropospheric values of NO; 2; derived from the ozone monitoring instrument (OMI) onboard the National Aeronautics and Space Administration's (NASA's) Aura satellite were converted to near ground NO; 2; concentration proxies using simulations from the 3-D global CTM (GEOS-Chem) at 0.5° × 0.625°spatial resolution and surface-to-column NO; 2; ratios. Simulations from the Ensemble of regional CTMs at spatial resolution of 0.1° × 0.1°were extracted from the Copernicus atmosphere monitoring service (CAMS). The contribution of these covariates to the predictive capability of geostatistical models was for the first time evaluated here through a rigorous model selection procedure along with additional continental high-resolution satellite-derived products, including novel data from the pan-European Copernicus land monitoring service (CLMS). The results have shown that the conversion of columnar NO; 2; values to surface quasi-observations yielded models with slightly better predictive ability and lower uncertainty. Nonetheless, the use of higher resolution CAMS-Ensemble simulations as covariates in GR models granted the most accurate surface NO; 2; estimates, showing that, in 2016, 16.17 (95% C.I. 6.34-29.96) million people in Europe, representing 2.97% (95% C.I. 1.16% - 5.50%) of the total population, were exposed to levels above the EU directive and WHO air quality guidelines threshold for NO; 2; . Our estimates are readily available to policy makers and scientists assessing the burden of disease attributable to NO; 2; in 2016

    Spatiotemporal modelling of PM2.5_{2.5} concentrations in Lombardy (Italy) -- A comparative study

    Full text link
    This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM2.5_{2.5} concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM2.5_{2.5} concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statistical approaches
    corecore