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Abstract

One key task in environmental geography is obtaining information of geo-

graphic features in space or in space and time. For this purpose, modelling

strategies are needed that allow a delineation of spatio-temporal information

based on limited field data. In this context, the nonlinearity and complexity of

environmental systems require modelling strategies that allow handling arbitrary

relationships and large sets of potential predictor variables. These requirements

provoke a paradigm-shift from a parametric towards a non-parametric and data-

driven model development which is strengthened by an increasing availability of

geographic data. In that respect, machine learning algorithms have been proven

to be an important tool to learn patterns in nonlinear and complex systems.

While the large number of machine learning applications in scientific journals

as well as recent software developments nowadays feign a simplicity of these

methods, their application is not a trivial task. This holds especially true for ge-

ographic data as they have certain characteristics, especially spatial dependency,

that make them stand out against the mass of "ordinary" data. However, this is

widely ignored in geographic machine learning applications.

This thesis assesses the potential and the sensitivity of machine learning in

environmental geography. In this context, a number of machine learning appli-

cations in a broad spectrum of environmental geography have been published,

providing a collection of comprehensive knowledge about machine learning in

environmental geography. The individual contributions are incorporated in the

major hypothesis that, only if characteristics of geospatial data are considered,

data-driven modelling strategies lead to a reliable gain of information and to ro-

bust spatio-temporal model results. Beside this superior methodological focus,

each application aims at providing new insights in its respective field of research.

In this thesis, a number of relevant environmental monitoring products have

been developed. The results emphasize that a high expertise of the machine learn-

ing methods as well as of the scientific field is crucial to advance the environmental

geography. The thesis is the first to raise awareness of spatial or spatio-temporal

over-fitting in geographic machine learning applications and the significant con-

sequences to the outcome. To approach this problem, a new method for model

development is provided that is adapted for geographic data and allows for im-

proved model results. The thesis is finally an appeal to think beyond the "stan-

dard machine learning way" as it proves that applying standard machine learning

concepts on geographic data results in considerable over-fitting and misinterpre-

tation of the results. Only when characteristics of geographic data are considered,

machine learning provides a powerful tool to provide scientifically valuable results

in environmental geography.





Zusammenfassung

Die Erfassung räumlich kontinuierlicher Daten und raum-zeitlicher Dynamiken

ist ein Forschungsschwerpunkt der Umweltgeographie. Zu diesem Ziel sind Mo-

dellierungsmethoden erforderlich, die es ermöglichen, aus limitierten Felddaten

raum-zeitliche Aussagen abzuleiten. Die Komplexität von Umweltsystemen er-

fordert dabei die Verwendung von Modellierungsstrategien, die es erlauben, be-

liebige Zusammenhänge zwischen einer Vielzahl potentieller Prädiktoren zu berück-

sichtigen. Diese Anforderung verlangt nach einem Paradigmenwechsel von der

parametrischen hin zu einer nicht-parametrischen, datengetriebenen Modellent-

wicklung, was zusätzlich durch die zunehmende Verfügbarkeit von Geodaten ver-

stärkt wird. In diesem Zusammenhang haben sich maschinelle Lernverfahren

als ein wichtiges Werkzeug erwiesen, um Muster in nicht-linearen und kom-

plexen Systemen zu erfassen. Durch die wachsende Popularität maschineller

Lernverfahren in wissenschaftlichen Zeitschriften und die Entwicklung komforta-

bler Softwarepakete wird zunehmend der Fehleindruck einer einfachen Anwend-

barkeit erzeugt. Dem gegenüber steht jedoch eine Komplexität, die im Detail

nur durch eine umfassende Methodenkompetenz kontrolliert werden kann. Diese

Problematik gilt insbesondere für Geodaten, die besondere Merkmale wie vor

allem räumliche Abhängigkeit aufweisen, womit sie sich von "gewöhnlichen" Daten

abheben, was jedoch in maschinellen Lernanwendungen bisher weitestgehend ig-

noriert wird.

Die vorliegende Arbeit beschäftigt sich mit dem Potenzial und der Sensitivität

des maschinellen Lernens in der Umweltgeographie. In diesem Zusammenhang

wurde eine Reihe von maschinellen Lernanwendungen in einem breiten Spek-

trum der Umweltgeographie veröffentlicht. Die einzelnen Beiträge stehen unter

der übergeordneten Hypothese, dass datengetriebene Modellierungsstrategien nur

dann zu einem Informationsgewinn und zu robusten raum-zeitlichen Ergebnissen

führen, wenn die Merkmale von geographischen Daten berücksichtigt werden.

Neben diesem übergeordneten methodischen Fokus zielt jede Anwendung darauf

ab, durch adäquat angewandte Methoden neue fachliche Erkenntnisse in ihrem

jeweiligen Forschungsgebiet zu liefern.

Im Rahmen der Arbeit wurde eine Vielzahl relevanter Umweltmonitoring-

Produkte entwickelt. Die Ergebnisse verdeutlichen, dass sowohl hohe fachwissen-

schaftliche als auch methodische Kenntnisse unverzichtbar sind, um den Bereich

der datengetriebenen Umweltgeographie voranzutreiben. Die Arbeit demons-

triert erstmals die Relevanz räumlicher Überfittung in geographischen Lernan-

wendungen und legt ihre Auswirkungen auf die Modellergebnisse dar. Um diesem

Problem entgegenzuwirken, wird eine neue, an Geodaten angepasste Methode zur

Modellentwicklung entwickelt, wodurch deutlich verbesserte Ergebnisse erzielt
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werden können. Diese Arbeit ist abschließend als Appell zu verstehen, über

die Standardanwendungen der maschinellen Lernverfahren hinauszudenken, da

sie beweist, dass die Anwendung von Standardverfahren auf Geodaten zu starker

Überfittung und Fehlinterpretation der Ergebnisse führt. Erst wenn Eigenschaften

von geographischen Daten berücksichtigt werden, bietet das maschinelle Lernen

ein leistungsstarkes Werkzeug, um wissenschaftlich verlässliche Ergebnisse für die

Umweltgeographie zu liefern.
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2 1 Introduction

1 Introduction

One of the key tasks in environmental geography is obtaining information of

geographic features in space or in space and time. Considering current trends

towards big data, increasing volume, velocity, and variety of geographic data

(van Zyl, 2014) lead to new opportunities for environmental monitoring that are

accompanied with a paradigm shift towards data-driven data analysis. In this

context, machine learning algorithms learn patterns in nonlinear and complex

systems. That makes them an important tool in environmental geography that is

highly associated with nonlinearity and complex underlying interactions. Whilst

the number of machine learning applications in environmental geography rapidly

increases, the characteristics of geographic data (especially spatial dependencies)

remain widely unconsidered in geographic machine learning applications.

The following introduction will give an overview on the modelling tasks in

environmental geography and the necessary paradigm shift towards data-driven

model development. Based on limitations and challenges of recent machine learn-

ing applications, the aim and hypotheses of this thesis are developed followed by

a description of the general outline of this thesis.

1.1 Modeling tasks in environmental geography

To understand the potential for data-driven modelling in environmental geog-

raphy, it is worth clarifying the major tasks in geography that require modelling

approaches.

• Mapping of geographic features

A frequent task in geography is obtaining spatially explicit information of

environmental features based on limited field observations. Thus, small

scale data records are transferred into space to obtain maps of the feature

of interest. Mapping of geographic features is a common task in all fields of

environmental geography. In biogeography, mapping of land cover (Gómez

et al., 2016) or biodiversity (Miller, 1994) are common applications. In

soil science and geomorphology, mapping of soil characteristics (McBrat-

ney et al., 2003; Brevik et al., 2016) and geomorphological features (Smith

et al., 2011) are routine. The aims of spatial mapping are diverse and serve

several purposes like policy making and planning of e.g. conservation areas

according to biodiversity characteristics (Ferrier, 2002). Spatial mapping

in geography is further used as a tool for risk assessment, e.g. of geomor-

phological hazards (Reichenbach et al., 2005; Lee and Sambath, 2006) or
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flooding (Porter and Demeritt, 2012). In addition, spatially explicit data

serve as essential baseline products that subsequent scientific studies can

build upon.

• Spatio-temporal monitoring of geographic features

Whilst some geographic features can be considered as being temporally

comparably static (e.g. soil types), other features are highly dynamic not

only in space but also in time (e.g. soil moisture). Therefore, spatio-

temporal monitoring extends the approach of temporally static mapping

of geographic features by considering temporal dynamics. The aim of a

spatio-temporal monitoring is to obtain dynamics of a certain feature in

space and time. Potential areas for application in environmental geography

are the monitoring of dynamic vegetation characteristics as e.g. phenol-

ogy (Zhang et al., 2003). In climatology, most variables of interest are

even more dynamic than vegetation characteristics, as for example air tem-

perature (Hengl et al., 2011) or rainfall (Kidd and Huffman, 2011). The

variability of climate has an impact on other spheres that react in a highly

dynamic way. Soil temperature or soil moisture for example react on the

dynamic climatic impacts and its spatio-temporal monitoring is an impor-

tant field in soil science (Gasch et al., 2015). Spatio-temporal monitoring

allows analysing dynamics and trends and form valuable tools for planning,

policy making (Ceccato et al., 2014) and as baseline products for scientific

studies.

• Forecasting

Spatio-temporal dynamics are not only studied from past and present times,

but predictions are also made into the future. Forecasting is especially rele-

vant in the field of climatology with regard to short term weather forecasts

and long-term trends. Climate change predictions are the most prominent

example in this context (IPCC, 2014). Forecasting also plays a role in other

disciplines, for example concerning projections of land use and land cover

change (Veldkamp and Lambin, 2001; Thies et al., 2014). By building sce-

narios of future behaviour, forecasting is an essential tool for policy making

and to develop strategies for adaptation (IPCC, 2014).

• Enhancing knowledge about system behaviour

Another aim in environmental geography that requires modelling is the

understanding of system behaviour. It is a question of how individual

components influence a system and how a system reacts to changing condi-

tions (Bossel, 1994). Examples from the field of biogeography and climatol-

ogy could be gaining knowledge about vegetation-atmosphere interactions

(Krinner et al., 2005) while in geomorphology the delineation of factors

influencing the risk of landslides are relevant (Vorpahl et al., 2012).
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As it is apparent from the list of modelling tasks, there are two general targets

pursued: Mapping, monitoring as well as forecasting of geographic features aim

at creating accurate maps, time series or scenarios, while the second target is

associated with system understanding and the identification of driving forces

that lead to those spatial or spatio-temporal patterns. These two general targets

are approached with two different categories of models: predictive models and

explanatory models (Shmueli, 2010).

Predictive models (Kuhn and Johnson, 2013a) in environmental geography

are mainly statistical. Such models are built upon the statistical relationship be-

tween field data of the target and spatially available predictor data (e.g. remote

sensing data). As a very simple example, we could assume the task of mapping

air temperature using the assumption of decreasing air temperature with increas-

ing elevation. The statistical model is established from ground observations of

air temperature (i.e. via climate stations) and corresponding information about

elevation. The developed model can then be applied on the entire set of the

spatially available data (i.e. digital elevation model) to obtain spatially explicit

temperature estimates. While predictive models aim at accurate estimations of

a feature in space and time (i.e. monitoring of air temperature), the explanatory

models aim at an accurate understanding of processes and interactions (i.e. how

is elevation related to air temperature?). Explanatory models can be statistical

where potential influencing factors are tested for their relationship to the tar-

get, or conceptual or physical (Gray and Gray, 2017) where the model aims at

representing a simplified representation of a system.

In this thesis, I will focus on predictive models, however, with consideration

of explanatory components. Main emphasis will be on modelling strategies for

spatial mapping and spatio-temporal monitoring. Though most of the content is

applicable to the modelling task of forecasting as well, forecasting is not explicitly

considered in this thesis.

1.2 Predictive modelling strategies

In view to the task of spatial mapping and spatio-temporal monitoring, it is

a question of how the spatial or spatio-temporal dynamics of a parameter can

be obtained. The initial situation is that we usually have point data (e.g. from

climate stations) or data from small scale surveys (e.g. vegetation plot records)

available that give us the geographic feature of interest for certain spatial locations

and at certain points in time. However, initially we do not know anything about

the feature’s behaviour beyond the sample locations and beyond the date of the

survey.
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In the following sections, the pathway from point or small scale data to spa-

tially explicit and temporally continuous data will be outlined. First, the "classic"

approaches will be discussed followed by the delineation of the need towards data-

driven model development.

1.2.1 Classic modelling strategies

1.2.1.1 Spatial Interpolations

The most obvious approach to obtain spatially explicit data might evolve from

Tobler’s first law of geography that implies "everything is related to everything

else, but near things are more related than distant things"" (Tobler, 1970). This

law established the basis for the concept of spatial interpolations. The principle

of spatial interpolations is that the characteristics of a feature are spatially cor-

related and therefore, point data can be transferred into space according to the

distance.

Let’s consider the task of spatio-temporal monitoring of hourly rainfall to illus-

trate the idea and problems associated with the concept of spatial interpolations.

As an example, we have a number of climate stations distributed over southern

Africa, that measure precipitation on an hourly resolution. However, we want

to know rainfall for the entire area of southern Africa. According to the idea

of interpolation, recorded rainfall values at a certain point in time (Fig. 1.1A)

are interpolated by considering the distance to the climate stations (e.g. using a

simple kriging interpolation, Fig. 1.1B). However, two problems are associated

with this approach. The first problem becomes obvious by visual interpretation

of the resulting map (Fig. 1.1B). Though the interpolation might have produced

reliable results in the areas where the density of climate stations was high, the

results become highly unreliable in areas with a low density of stations. Ob-

viously, as rainfall is a highly dynamic parameter, a spatial interpolation that

simply bases on the distance to the weather stations does not produce satisfying

results. Admittedly, the example shown here is very simple. Though it could be

extended by using a more complex interpolation approach, e.g. including further

explanatory predictors as e.g. elevation (Goovaerts, 2000) or by using more com-

plex algorithms (Ly et al., 2011), there is a second problem that is associated

with this concept. Using spatial interpolations, monitoring is restricted to the

date where field records are available as the concept relies on the field data. Thus,

if no field data are available, no spatial mapping can be performed. Considering

the example of rainfall monitoring, this problem might be of low relevance since

modern data loggers quasi-continuously produce data. However, other studies

rely on temporally restricted data when field surveys are of high temporal and

economic costs (e.g. vegetation surveys).
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Due to the continuous dependence on field data as well as the lack of a suitabil-

ity for dynamic variables, spatial interpolations do not provide a comprehensive

and satisfying solution for the task of spatio-temporal monitoring when dealing

with highly dynamic features and spatially or temporally limited ground truth

data. Therefore, other approaches are required.

m
m

No Rainfall

No Data

m
m

No Rainfall

No Data

A B

Figure 1.1: A very simple interpolation of rainfall in southern Africa from 2014/04/24
10:00. A shows the measured rainfall from several climate stations (Meyer
et al., 2017a). B shows the results from a simple kriging approach.

1.2.1.2 Statistical parametric models

Another well-established way for spatial mapping or spatio-temporal monitor-

ing uses spatially available proxies or predictors for the feature of interest. With

regard to remote sensing, there is much information available from space, that can

be related to geographical features or processes by regression or classification anal-

ysis. Examples include the increase of biomass with increasing satellite-retrieved

NDVI (Gizachew et al., 2016), the relationship between satellite-based surface

temperature and air temperature (Vogt et al., 1997), or the increasing probabil-

ity for rainfall with decreasing cloud temperatures that as well are provided by

satellites (Vicente et al., 1998).

Once a statistical model is built between satellite data and the response vari-

able, it can be applied to the full extent of the satellite scene, or even to a time

series, allowing spatial mapping or spatio-temporal monitoring of the response

(e.g. Gizachew et al., 2016; Shi et al., 2016; Lopresti et al., 2015, to mention just

a few). By using this strategy, we got rid of the dependency on continuously

available field data because once the model is built, no further ground truth data

are required.

A model using just one predictor variable might, however, only in rare cases

provide a good estimate of the response variable. Usually more than a single

predictor is required to explain a feature’s characteristic. Though common para-

metric models can also be of a more complex form and include more than one

predictor (e.g. Lakshmi, 2013; Badreldin and Sanchez-Azofeifa, 2015; Lin et al.,
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2012), the parametric approaches have a significant limitation: they are based on

an a priori assumption of the data distribution (Breiman, 2001b) as well as of

the form of the relationship between predictors and response (James et al., 2013).

This form is often assumed to be linear but can also be exponential or even more

complex. While it is still possible to assess the appropriate relationship between

predictor and response when only one or very few predictors are used, it becomes

nearly impossible to assess the individual relationships when a large number of

predictors is considered. A large number of predictors is further problematic

in view to multicollinearity (Graham, 2003). Since most geographic data are

correlated (e.g. spectral reflectance in different wavelengths), and this behaviour

cannot be included in most parametric models, a considerable reduction in the

number of predictors is often necessary from a technical perspective. Most sys-

tems, however, can only be described by a large number of interacting predictor

variables and behave in a nonlinear manner. This problem raises the need for

more flexible models that can handle large numbers of predictors, different types

of variables and arbitrary relationships.

1.2.2 The paradigm shift towards data-driven model development

As more and more (spatial) data become available the requirement for more

flexible models force a paradigm shift towards true data-driven model develop-

ment (Miller and Goodchild, 2015). Data-driven model development, or what

Breiman (2001b) refers to as algorithmic modelling in contrast to data modelling,

is a designation associated with big data and aims at finding relationships in

the data without an a priori assumption about the system (Breiman, 2001b;

Lary et al., 2016). In this context, machine learning algorithms are applied as

a predictive modelling tool to learn arbitrary relationships in the data and to

make predictions according to the learned function. The advantage compared

to parametric approaches is that machine learning algorithms learn relationships

between predictors and responses by themselves. This allows a greater flexibility

and the utilization of many, correlated, or even potentially uninformative pre-

dictor variables. In this context it is of note that the greater flexibility is at

the expense of interpretability. Machine learning algorithms are referred to as a

black box because the exact learned relationship between predictors and response

is difficult to interpret (Lary et al., 2016). However, machine learning algorithms

are advantageous when prediction is in the foreground rather than an exact un-

derstanding of underlying relationships. Therefore, they have high potential for

mapping or monitoring of geographic features.

In general, we can distinguish between two categories of learning: supervised

learning and unsupervised learning (James et al., 2013). Supervised learning

is based on training data that consist of predictor variables and a response (i.e.
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measurements). The aim of supervised applications is to learn how the predictors

can best describe the response. In contrast, unsupervised learning is based on

predictor variables solely, thus there is no response variable and the data are

considered to be unlabelled. The aim of unsupervised learning is then to structure

the predictor variables in a way that a subsequent labelling of the data is possible.

According to the major modelling tasks outlined in section 1.1, this thesis focus

on supervised learning tasks. The fundamentals of supervised machine learning

will be explained in the following.

1.3 Machine learning fundamentals and terminology

Machine learning is a collective term for a variety of data-driven algorithms

that aim at learning the relationship between predictor and response variables

and make predictions based on the developed model. A usual modelling task

(Fig. 1.2) starts with the acquisition of the target variable which is also referred

to as response variable, dependent variable or ground truth. Usually this is data

taken from field surveys or data loggers. Predictor variables (also referred to as

independent variables) are then required to estimate the response variable.

Predictor and response variables form the initial dataset which is then split

into training and testing data, thus into data that is used to train the model, and

data that is used to validate or test the model. Based on the training data, a

machine learning algorithm then learns the relationship between predictors and

response which is designated as model training. Most machine learning algorithms

have so called hyperparameters or tuning parameters that control the model com-

plexity which cannot be directly estimated from the data (Kuhn and Johnson,

2013a). Therefore, a tuning of these parameters must be included in the process

of model training.

Both, model tuning and model training, must always be evaluated in view to

independent data, thus the effect of the hyperparameters as well as the perfor-

mance of the final model must always be evaluated with held back data. If this is

not considered, the resulting model has a high risk of over-fitting because highly

complex models are able to fit to noise in the training data. This, however, is not

applicable for the general relationship between predictors and response (James

et al., 2013). In this context, cross-validation has been evaluated as a robust

tool to tune the complexity of models to avoid over-fitting (Kuhn and Johnson,

2013a; James et al., 2013). For cross-validation, the data are split into several

folds (resamples). For each iteration, a model is trained with a respective set of

hyperparameters using all data except for one fold and the performance of the

model to predict on the held back fold is then assessed. In this way, the optimal

set of hyperparameters can be retrieved and an objective performance metric of



1.4 Machine learning in environmental geography - State of the art 9

the final model can be given.

Once the model is trained, it can be applied on an entire set of predictors

to make predictions in space, or on a new set of predictors to make predictions

in space and time. It is of note, that the term prediction in this context is not

synonymous to the term forecast. Though predictions might be made for future

conditions, the term more generally means to estimate the response variable for

unknown data, thus for locations where no ground truth data were available or

for unknown points in time (within a defined model domain).

Finally, it is of note that supervised machine learning can aim at two different

tasks: regression or classification. While the response of classification models is

categorical (e.g. land cover classes), the response of regression models is contin-

uous or numeric.

Algorithm
Learns relations

Model

Predictors

Response

Predictors
New set

Prediction/
Estimation

Data set

Validation

Figure 1.2: A very brief description of the process of machine learning. The grey col-
ored shapes represent data, orange the modelling procedure and yellow the
outcome.

1.4 Machine learning in environmental geography - State of the

art

Machine learning algorithms are well-established in environmental sciences

(Lary et al., 2016; Kanevski et al., 2009; Hsieh, 2009) and find application in all

fields of environmental geography. In this context, machine learning is widely used

in conjunction with remote sensing (see review in Paola and Schowengerdt, 1995;

Lary et al., 2016; Camps-Valls, 2009; Mountrakis et al., 2011) as it provides an

excellent source for spatial and spatio-temporal predictor variables for a variety

of environmental research tasks. The following section gives a brief - by no

means exhaustive - overview where machine learning is used in different fields of

environmental geography.
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1.4.1 Biogeography

One of the typical applications of machine learning in the field of biogeog-

raphy is the mapping of land use/cover based on optical satellite information

(Gislason et al., 2006; Rodriguez-Galiano et al., 2012). In this context, machine

learning algorithms, as for example neural networks or support vector machines,

have shown to be superior compared to traditional methods such as the maxi-

mum likelihood classifier (Huang et al., 2002; Otukei and Blaschke, 2010; Waske

et al., 2009). Using machine learning and multispectral data, land cover could be

classified into broad vegetation types and the use of hyperspectral data allowed

further classification down to a species level (Baldeck et al., 2015; Lawrence et al.,

2006). Multispectral, as well as hyperspectral data, in conjunction with machine

learning are further used to map vegetation cover (Lehnert et al., 2015b), bio-

physical characteristics (Verrelst et al., 2012), biomass (Ali et al., 2015) or tree

diversity (Vaglio Laurin et al., 2014). Ground truth data for these studies were

usually provided by field surveys where vegetation characteristics were sampled

on a plot scale.

Whilst spectral satellite data can be considered to be directly related to vegeta-

tion patterns, machine learning was used in modelling tasks, where more indirect

predictor variables were applied. Baltensperger and Huettmann (2015) mod-

elled the diversity of mammals in Alaska using derived remote sensing products

that included land cover, climatological information as well as terrain properties.

Habitat suitability was also modelled with machine learning on derived remote

sensing products, for example to obtain potential habitats for Pinus sylvestris on

the Iberian Peninsula (Garzón et al., 2006).

1.4.2 Climatology

Machine learning has a long-term history in the field of spatial atmospheric sci-

ence. Cloud type classifications (Tian et al., 1999; Giannakos and Feidas, 2013),

cloud characteristics (Jung et al., 1998) as well as rainfall (Hsu et al., 1997; Hong

et al., 2004; Behrangi et al., 2009a; Kühnlein et al., 2014b) were modelled using

machine learning. With a few exceptions (Kühnlein et al., 2014a,b), artificial

neural networks are the prevailing algorithms in the field of cloud and rainfall

modelling. This is in contrast to other fields of environmental geography, where

a high variability of algorithms is applied. The idea behind cloud and rainfall

retrievals is that the spectral information (e.g. optical, Kühnlein et al., 2014b) is

related to cloud properties which are further related to rainfall probabilities. As

well as monitoring climatic patterns, machine learning was applied as an alter-

native statistical downscaling approach for general circulation models (Tripathi

et al., 2006).
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As climate provides boundary conditions for other systems (Bonan, 2008),

climate monitoring products are of high relevance for subsequent studies, e.g. as

important predictors for biodiversity mapping (Baltensperger and Huettmann,

2015).

1.4.3 Soil science and hydrology

The application of machine learning in soil science and hydrology is rather

recent but of increasing interest to the scientific community. A large field of ap-

plication is mapping of soil taxonomic units (see review in Heung et al., 2016) but

also mapping of soil properties like soil moisture (Ahmad et al., 2010; Ali et al.,

2015), soil organic carbon (Ließ et al., 2016; Henderson et al., 2005), or nitrogen

and phosphorus content (Henderson et al., 2005). As ground truths, point obser-

vations from soil samples or soil profiles are being used and the response variable

is usually predicted from topographic information, spectral satellite data and/or

climate indices (Heung et al., 2016).

Another application of machine learning that also has the aim to provide high

resolution soil moisture datasets is the downscaling of low resolution satellite-

based soil moisture products with higher resolution predictors (Srivastava et al.,

2013; Im et al., 2016).

In regard to hydrology, machine learning finds frequent application in stream-

flow modelling and forecasting (Rasouli et al., 2012; Asefa et al., 2006; Short-

ridge et al., 2016). However, these applications are usually not spatially explicit

but focus on temporal patterns. Space as well as time, however, recently found

consideration in machine-learning based run-off modelling (Gudmundsson and

Seneviratne, 2015). Further hydrological applications of machine learning are

compiled in Govindaraju and Rao (2000).

1.4.4 Geomorphology

The most common application of machine learning in geomorphology is the

mapping of landslide susceptibility (Micheletti et al., 2014; Catani et al., 2013;

Goetz et al., 2015; Brenning, 2005) which reaches into the field of risk assess-

ment. Machine learning was also applied to map landforms, for example types

of glaciated landscapes (Brown et al., 1998). Machine learning applications for

geomorphology are further reviewed in Valentine and Kalnins (2016).
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1.5 Formulation of the scientific problem, aims and hypotheses

As outlined in section 1.4, machine learning is used in all fields of environmen-

tal geography and the number of applications is considerably increasing. Machine

learning, however, is not a very recent discovery in environmental geography.

In contrast, machine learning to obtain spatio-temporal datasets from limited

ground truth data was already applied in the 1990s, however, at this time, due to

the high complexity of application, it was only used by experts in this field. Major

developments in software packages in recent years, allow greater access to machine

learning for virtually everyone. Well-known GIS software (ArcGIS, SAGA, QGIS,

GRASS, IDRISI, etc) provides easily accessible machine learning functionality for

environmental mapping. Especially R, as a frequently used software in natural

science, has a variety of machine learning algorithms implemented (Hothorn,

2017). The caret package for R (Classification And REgression Training, Kuhn,

2016a) allows access to most of the implemented algorithms via a handy and uni-

fied syntax and further provides a variety of functions for data processing, model

tuning and evaluation, parallel computing as well as model visualization.

While the large number of machine learning applications in scientific journals,

as well as the today user-friendly software, feign a simplicity of machine learning,

the complexity of the methods has not changed with time. Underestimating the

technical complexity increases the risk of incorrect utilization of algorithms and

can lead to false interpretations and conclusions. This is especially problematic

in the field of geography since machine learning algorithms were not originally

developed for spatial and spatio-temporal data analysis and the common work-

books that serve as guidelines on how machine learning is used (e.g. Kuhn and

Johnson, 2013a; James et al., 2013) do not refer to geographic data. Therefore,

machine learning algorithms in geography are usually applied in the same way

as in statistical medicine, economics, and other non-spatial fields. However, geo-

graphic data have certain characteristics (see section 1.5.1) that make them stand

out against the mass of "ordinary" data and this should have serious consequences

for the utilization of machine learning in geography.

1.5.1 Characteristics of geographic data

The most obvious and important characteristic of geographic data is surely

its localisation in space (geospatial data). Geospatial data refer to a location

on ground and provide data of a variable at the corresponding location. Vector

point data might be the most intuitive example for geospatial data and the most

frequent type of ground truth data for prediction models. Point data can be

linked to a point on earth by its coordinates and a reference system and include

certain information about a geographic feature at this point (e.g. via data loggers
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on climate stations). In contrast, the majority of earth observation data and the

main source of predictor variables being used in predictive models are provided

by remote sensing (Lary et al., 2016) and typically represented as raster data.

Raster data provide discrete or continuous information of geographic features

in a spatially explicit way. Especially such spatially explicit data illustrate one

of the key characteristics of geospatial data: they are within a certain degree

dependent in space causing spatial patterns to mostly appear as either patches or

gradients (Legendre, 1993). This dependence of a variable in space causes spatial

autocorrelation. Spatial autocorrelation means that samples are more/less similar

than what might be expected from a random distribution (Legendre, 1993). The

geographic feature at location "x" depends in a certain way on the feature on

neighbouring locations and/or on the environmental characteristics not only of

the location "x" itself but also of the neighbourhood. Thus, observations (i.e.

spatial pixels or points) are not independent of each other.

Autocorrelation of geospatial data does not only happen in space but also in

time (Shen et al., 2016). Especially when time series of geographic features are

to be analysed (e.g. air temperature, soil moisture, vegetation greenness), the

observations at one point often feature a temporal autocorrelation resulting in

dependency in space and time (spatio-temporal autocorrelation).

Though spatial and spatio-temporal autocorrelation is probably the key char-

acteristic, geographic data have further characteristics that might be important

in view to machine learning applications. The irregularity of many geographic

features lead to unbalanced data, e.g. considering the ratio between raining and

non raining clouds (Kühnlein et al., 2014b) which is highly unbalanced as the

averaged proportion of non raining clouds is considerably higher compared to

raining clouds. Further, geographic datasets feature a large variability in size.

Often large amounts of potential predictor variables (e.g. via remote sensing)

contrast with only a few samples of response variables (e.g. vegetation surveys).

These characteristics (especially the spatial and/or temporal dependency)

make geographic data special when compared to the standard data used in other

scientific fields. This raises the question if, and how, these characteristics need

to be incorporated in machine learning applications.

1.5.2 Aims and hypotheses

This thesis aims at assessing the potential and sensitivity of machine learning

for environmental geography. In this context, as the characteristics of geographic

data are being widely ignored in the large amount of recent machine learning

applications, the superior aim of this thesis is to advance the field of machine

learning in environmental geography by addressing these characteristics. The
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thesis is developed in view to the hypothesis that, only if the characteristics of

geographic data are considered, data-driven modelling strategies lead to a gain

of information and to robust spatio-temporal model results.

Therefore, based on a variety of environmental monitoring applications, the

thesis aims at developing adequate modelling strategies with respect to charac-

teristics of geographic data, to provide reliable spatio-temporal data from lim-

ited field observations that support knowledge about different ecosystem compo-

nents. The series of applications provides the basis to discuss the influence of

geographic data and consequent modelling strategies in the general context of

machine learning-based spatio-temporal monitoring of the environment.

1.5.3 Concept and structure of this thesis

During this thesis, a number of contributions in a broad spectrum of environ-

mental geography have been published so that this thesis presents a collection

of comprehensive knowledge about machine learning in environmental geogra-

phy. The individual contributions are incorporated in the major hypothesis that,

if characteristics of geospatial data are not considered, data-driven modelling

strategies lead neither to a gain of information nor to robust spatio-temporal

model results. Each chapter further provides new insights or monitoring prod-

ucts in its respective field of research.

Within this thesis the individual contributions are structured according to

their field of research (Fig. 1.3). Chapters 2, 3 and 4 thematically focus on

rainfall retrieval based on optical satellite data. Chapter 5 further covers this

climatological context and aims at developing a spatio-temporal satellite-based

monitoring product of air temperature for Antarctica. From the field of bio-

geography, chapter 6 evaluates different hyperspectral and multispectral indices

to map vegetation cover and biomass on the Qinghai-Tibet-Plateau. Chapter

7 presents a method to automatically create Google Earth based training data

for a larger scale monitoring of bush encroachment in South Africa. From the

field of soil science, chapter 8 addresses modelling soil properties in space, time

and depth on a farm scale and chapter 9 aims at developing a model to obtain

soil respiration estimates from mid-infrared data. In a geomorphological context,

chapter 10 aims at identifying factors that lead to rockfall in the Turtmann Val-

ley in the Swiss Alps. The final publication in this thesis (chapter 11) wraps

up the findings from the individual case studies by addressing the problem of

spatio-temporal over-fitting due to the characteristics of geospatial data.

The key findings of this thesis could only be a result of a development process

and are consequently maturing over the individual publications. Therefore, the

final chapter of this thesis (chapter 12) summarizes the major methodological
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developments from this study and discusses them in the broader methodological

context. This chapter will further highlight the scientific outcome of the individ-

ual chapters and give recommendations for the utilization of machine learning in

environmental geography.
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2 Comparison of four machine learning algorithms for

their applicability in satellite-based optical rainfall

retrievals

Hanna Meyer, Meike Kühnlein, Tim Appelhans, Thomas Nauß

Abstract

Machine learning (ML) algorithms have successfully been demonstrated to be

valuable tools in satellite-based rainfall retrievals which shows the practicability

of using ML algorithms when faced with high dimensional and complex data.

Moreover, recent developments in parallel computing with ML present new pos-

sibilities for training and prediction speed and therefore makes their usage in

real-time systems feasible. This study compares four ML algorithms - random

forests (RF), neural networks (NNET), averaged neural networks (AVNNET)

and support vector machines (SVM) - for rainfall area detection and rainfall

rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies

for cloud top height, cloud top temperature, cloud phase and cloud water path

serve as predictor variables. The results indicate an overestimation of rainfall

area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high

probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour

basis, the performance of the rainfall rate assignment yielded R2 values between

0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms’ per-

formance were rather small, NNET and AVNNET were identified as the most

suitable algorithms. On average, they demonstrated the best performance in

rainfall area delineation as well as in rainfall rate assignment. NNET’s compu-

tational speed is an additional advantage in work with large datasets such as

in remote sensing based rainfall retrievals. However, since no single algorithm

performed considerably better than the others we conclude that further research

in providing suitable predictors for rainfall is of greater necessity than an opti-

mization through the choice of the ML algorithm.

Keywords Machine learning; Rainfall retrieval; Rainfall rate; Rainfall area;

MSG SEVIRI
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2.1 Introduction

Spatially explicit, continuous and high-resolution monitoring of precipitation

is important for a variety of fields in the environmental sciences as well as for the

economy and society as a whole. Satellite-based methods are currently the only

way to fulfill the requirement of area-wide information. Amongst the variety of

available satellite systems, optical sensors on-board geostationary satellites offer

high spatial and temporal resolution, which is important when considering local

and short-term rainfall events (Thies and Bendix, 2011). Furthermore, the latest

systems feature adequate spectral resolutions for detecting cloud-top properties

such as cloud top height, cloud top temperature, cloud phase and cloud water

path (Thies et al., 2008b).

Over the last several decades, many optical satellite-based rainfall retrieval

techniques for the detection of precipitating clouds and assignment of rainfall

rates have been developed (see valuable overviews by Kidd and Levizzani, 2011;

Prigent, 2010; Thies and Bendix, 2011; Kidd and Huffman, 2011; Levizzani et al.,

2002). These retrievals are generally based on parametric relations between spec-

tral properties as proxies for cloud-top properties, rainfall areas and rainfall rates.

Rainfall areas are commonly delineated from non-raining clouds using thresh-

olds in selected satellite channels and/or derived information (Ba and Gruber,

2001; Feidas and Giannakos, 2012; Roebeling and Holleman, 2009; Thies et al.,

2008b,a). Rainfall rates are then assigned by relating the spectral information

to measured or modelled rainfall rates (Adler and Negri, 1988; Kühnlein et al.,

2010; Roebeling and Holleman, 2009; Vicente et al., 1998).

The parametric techniques used within rainfall retrievals have the advantage

that they directly map the conceptual knowledge of rainfall processes to their

retrieval using remotely sensed proxies. However, machine learning (ML) ap-

proaches have generally been shown to be superior when the prediction, and

not the understanding of underlying processes, is the focus (Kuhn and Johnson,

2013a). Moreover, parametric approaches usually consider only a limited num-

ber of predictor variables while ML algorithms can handle the full set of available

information.

Precipitation processes leading to different rainfall intensities are very com-

plex. In this context ML algorithms have been deemed valuable tools for dealing

with complexity, non-linearity and highly correlated predictor variables. Neural

network algorithms are most frequently used in rainfall retrieval techniques to

link the input information to rainfall estimates (Behrangi et al., 2009b; Capacci

and Conway, 2005; Giannakos and Feidas, 2013; Grimes et al., 2003; Hong et al.,

2004; Hsu et al., 1997; Rivolta et al., 2006; Tapiador et al., 2004). Random forests

is an ensemble technique commonly applied in remote sensing especially for land
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cover classifications (Gislason et al., 2006; Pal, 2005; Rodriguez-Galiano et al.,

2012; Steele, 2000), and its application in rainfall retrievals is very new. Recently,

Islam et al. (2014) used random forests to classify rainfall areas from satellite-

borne passive microwave radiometers. At the same time, Kühnlein et al. (2014b)

and Kühnlein et al. (2014a) investigated the potential of random forests as a

tool within satellite-based rainfall retrievals using Meteosat Second Generation

(MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) data. Both

obtained promising results for the use of random forests in rainfall retrievals.

Support vector machines are less frequently used in remote sensing (Mountrakis

et al., 2011) and have yet to be employed in optical rainfall retrievals. However,

their potential has been shown in satellite-based land cover classifications (Kav-

zoglu and Colkesen, 2009; Pal, 2005) and in estimating biophysical parameters

like chlorophyll concentration (Bruzzone and Melgani, 2005).

Though some rainfall retrieval techniques use different ML algorithms, to our

knowledge, no study has compared different algorithms for rainfall assessment on

the same dataset up until now. Hence, this study compares random forests (RF),

neural networks (NNET), its extension averaged neural networks (AVNNET)

and support vector machines (SVM) for their applicability in rainfall retrieval

techniques.

This paper is structured as follows: Section 2.2 explains the methodology

of the comparison study including data preprocessing, model training and the

validation strategy. Section 2.3 presents the results of the comparison study

which are then discussed in Section 2.4.

2.2 Data and methodology

Following the approach developed by Kühnlein et al. (2014b), rainfall area and

rainfall rates were predicted for Germany during summer 2010. Day, twilight and

night precipitation events were all treated separately due to differing information

content about the cloud properties at different times of day. MSG SEVIRI data

were used since they permit a quasi-continuous observation of the rainfall distri-

bution and rainfall rate in near-real time. A radar-based precipitation product

from the German Weather Service, RADOLAN RW (Bartels et al., 2004), was

used for ground truth data.

The general work flow included preprocessing the data to provide three datasets

for model training: A day, twilight and a night dataset. The retrieval process was

two-fold and consists of (i) the identification of precipitating cloud areas and (ii)

the assignment of rainfall rates. Since the focus of this study is on the comparison

of the algorithms, the validation of rainfall rate assignments was based on rainfall
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areas derived from the radar network rather than the results from step (i). This

ensures that the performance of rainfall rate models is comparable without con-

fusion based on errors from the prior rainfall area delineation. Fig. 2.1 shows the

work flow of the model training and comparison: For each dataset one model for

rainfall area delineation and one model for rainfall rate assignment was tuned and

trained for each of the chosen ML algorithms. The final models were applied to

a test dataset and their performance was compared between the ML algorithms.

The following sections describe these steps in detail. All modeling and analysis

was completed using the R environment for statistical computing (R Core Team,

2013). Model tuning, training and prediction was performed using the caret

package (Kuhn, 2014a) as a wrapper package for a large list of machine learning

algorithms implemented in R. Parallel processing was performed on 16 cores using

the R package “doParallel” (Revolution Analytics and Weston, 2014).
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Figure 2.1: Flow chart of the main methodology applied in this study.

2.2.1 Datasets

2.2.1.1 Satellite data

MSG SEVIRI (Aminou et al., 1997) scans the full disk every 15 minutes with

a spatial resolution of 3 by 3 km at sub-satellite point. Reflected and emit-

ted radiances are measured by 12 channels, three channels at visible and very

near infrared wavelengths (between 0.6 and 1.6 µm), eight from near-infrared to

thermal infrared wavelengths (between 3.9 and 14 µm), and one high-resolution
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visible channel.

MSG SEVIRI data were downloaded from the EUMETSAT data center (www.

eumetsat.int) and were preprocessed based on a newly designed Meteosat pro-

cessing scheme implemented in co-operation with the computer science depart-

ment at Marburg University. The processing chain uses xxl technology and cus-

tom raster extensions which were designed to support OpenCL acceleration (see

https://github.com/marburgedu/xxl).

2.2.1.2 RADOLAN RW data

RADOLAN RW is based on measurements with a C-band Doppler radar of

16 German and neighboring radar stations. Rain intensity adapted Z-R relation-

ships, statistical clutter filtering and shadowing effects are treated within an on-

line calibration process. Furthermore, precipitation intensities are adapted with

ground-based precipitation measurements. The precipitation product is available

at a temporal resolution of one hour covering the entire area of Germany at a

spatial resolution of 1 by 1 km (Bartels et al., 2004).

2.2.2 Preprocessing of SEVIRI and Radar data

SEVIRI and RADOLAN RW data were preprocessed according to Kühnlein

et al. (2014b) and afterwards available on an hourly basis. Scenes with at least

2000 rainy pixels were designated as precipitating events based on the RADOLAN

RW product. The SEVIRI channels at visible and very near infrared wavelengths

(0.6 to 1.6 µm) are not available at night. Use of the 3.9 µm channel is complicated

during day and at twilight due to the varying solar component in this channel.

Therefore, the dataset was split into day, twilight and night datasets. To ensure

sufficient solar illumination in the VIS and NIR channels, scenes with a solar

zenith angle less than 70◦ belong to the daytime dataset as suggested by Kühnlein

et al. (2014a). Scenes with a solar zenith angle greater than 70◦ and less than

108◦ are assigned to the twilight, and those greater than 108◦ are assigned to the

night dataset. The resulting daytime dataset consists of 327 scenes, the twilight

dataset has 339 scenes and the night-time dataset has 130. The differences in the

number of scenes for each period arises from a higher number of rain events during

daytime and twilight conditions and from uneven ranges of solar zenith values

used to separate into day, twilight and night. The distribution of rainfall areas

was skewed with considerably more rain pixels than non-rain pixels (Tab. 2.1) in

all three datasets. The overall mean rainfall rate was between 1.69 mm in the

daytime dataset and 2.14 mm in the night dataset (Tab. 2.1). However, the mean

values changed considerably between the scenes.

www.eumetsat.int
www.eumetsat.int
https://github.com/marburgedu/xxl
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Table 2.1: Summary of rainfall areas and rainfall rates of the three input datasets.

Day Twilight Night

Rainfall area (% of cloudy pixels)

Mean rain pixels 17.0 25.0 23.0

Mean non rain pixels 83.0 75.0 77.0

Min rain pixels per scene 2.8 2.4 1.5

Max rain pixels per scene 78.0 59.0 53.0

Rainfall rate (mm)

Mean rain rate 1.69 2.14 2.00

Standard deviation rain rate 2.15 2.51 2.12

Min mean rainfall rate per scene 0.56 0.67 0.44

Max mean rainfall rate per scene 7.35 6.91 4.38

Overall min 0.10 0.10 0.10

Overall max 168.00 72.20 40.66

2.2.3 Predictor variables

Summarizing the conceptual models of optical rainfall retrieval over the last

several decades, optical cloud properties which are related to rainfall areas and

rainfall rates are the cloud top height (CTH), the cloud top temperature (CTT),

the cloud phase (CP) and the cloud water path (CWP). CTT-based retrievals

have commonly used the CTT as a proxy for CTH based on the assumption

that cold clouds produce (more) rain (e.g. Arkin and Meisner, 1987; Adler and

Negri, 1988), which worked well for deep convective clouds but not for advective-

stratiform systems. On the other hand, CWP-based retrievals take neither CTH

nor CTT into account; they assume that precipitating clouds must have a large

enough combination of the cloud droplets and the vertical extend of the clouds

(e.g. Lensky and Rosenfeld, 1997; Nauss and Kokhanovsky, 2006; Thies et al.,

2008b,b; Kühnlein et al., 2010). In accordance with previous studies as sum-

marized by Kühnlein et al. (2014a), the spectral SEVIRI bands and derivations

which can be used as proxies for these cloud properties were used as predictor

variables (Tab. 2.2). The predictor variables contain the SEVIRI channels as

well as channel combinations. Although this partially duplicates information,

the channel combinations might be able to highlight patterns that are not appar-

ent when only the individual channels are used. While Kühnlein et al. (2014a)

also used all of these parameters, previous studies have generally been restricted

to the utilization of a small subset and have generally focused on one of the two

main conceptual models introduced above because of the parametric models used

for the respective rainfall retrievals.
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Table 2.2: Overview of the predictor variables used to model rainfall areas and rainfall
rates at day, twilight and night conditions (after Kühnlein et al., 2014b)

Day Twilight Night

VIS0.6

VIS0.8

NIR1.6

IR3.9 IR3.9 IR3.9

WV6.2 WV6.2 WV6.2

WV7.3 WV7.3 WV7.3

IR8.7 IR8.7 IR8.7

IR9.7 IR9.7 IR9.7

IR10.8 IR10.8 IR10.8

IR12.0 IR12.0 IR12.0

IR13.4 IR13.4 IR13.4

∆T6.2−10.8 ∆T6.2−10.8 ∆T6.2−10.8

∆T7.3−12.1 ∆T7.3−12.1 ∆T7.3−12.1

∆T8.7−10.8 ∆T8.7−10.8 ∆T8.7−10.8

∆T10.8−12.1 ∆T10.8−12.1 ∆T10.8−12.1

∆T3.9−7.3 ∆T3.9−7.3 ∆T3.9−7.3

∆T3.9−10.8 ∆T3.9−10.8 ∆T3.9−10.8

Sun zenith Sun zenith

2.2.4 Compilation of training and testing datasets

To avoid differences in algorithm performance resulting from different capabil-

ities to deal with unscaled data, all predictor variables were centered and scaled.

First, the data were visually checked for normal distribution. Scaling was then

performed by dividing the values of the mean-centered variables by their standard

deviations. The three datasets (day, twilight, night) were randomly split into a

training and a testing dataset on a scene-basis. One-third of the scenes were used

for training and two-thirds for validation. Models were trained on a pixel basis.

Since the full set of training pixels would exceed acceptable computation times,

only 5% of the cloudy pixels from the training scenes were selected for rainfall

area training. For the training of rainfall rates, 10% of the rain pixels based on

the RADOLAN RW product were considered. These were randomly chosen by

stratified sampling to account for the distribution of the dataset.
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2.2.5 Model tuning

For a description of the ML algorithms used, see James et al. (2013); Kuhn

and Johnson (2013a). For all ML algorithms, a stratified 10-fold cross-validation

was performed for a number of tuning values to determine the optimal model

settings. To do this, the training samples were randomly partitioned into 10

equally sized folds with respect to the distribution of the response variable (i.e.

raining cloud pixels, rainfall rate). Thus, every fold is a subset (1/10) of the

training samples and has the same distribution of the response variable as the

total set of training samples. Models were then fitted by repeatedly leaving out

one of the folds. A model’s performance was determined by predicting on the

fold left out. The performance metrics from the hold-out iterations were averaged

to the overall model performance for the respective set of tuning values. For

classification models, the ROC-based distance to the perfect model (see section

2.2.5.4) (Fig. 2.2) was chosen as the performance metric. For regression models,

RMSE was used.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Threshold

POD

1−POFD

Dist

Figure 2.2: Example of threshold tuning. POD and POFD are calculated for each tuned
threshold in the ROC space. The optimal operating point in ROC space
leads to a classification with the best trade-off between failing to detect rain
against the costs of raising false alarms. At this point, the distance to the
perfect model (POD of 1 and a 1-POFD of 1) is smallest. In this case,
classifying pixels with a probability for rain larger than 0.18 leads to best
results.

2.2.5.1 Random forests tuning

The random forests implementation of the "randomForest" package (Liaw and

Wiener, 2002) in R was applied. The number of predictor variables randomly
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selected at each split (mtry) was tuned for each value between two and the number

of input variables, following the suggestion of Kuhn and Johnson (2013a). The

number of trees (ntree) was set to 1000 after no increase of accuracy was observed

after 1000 trees.

2.2.5.2 NNET and AVNNET tuning

The NNET algorithm stems from the "nnet" package (Venables and Ripley,

2002) in R. The number of hidden units was tuned for each value between two

and the number of predictor variables (Kuhn and Johnson, 2013a). Weight decay

was tuned between 0 and 0.1 with 0.02 increments. The caret package offers

support for averaging single neural nets. The tuning parameters used for NNET

were kept the same for AVNNET. To average the model, five repetitions were

performed with different random seeds.

2.2.5.3 SVM tuning

The "kernlab” package (Karatzoglou et al., 2004) in R provided the SVM

algorithm used in this study. The cost value was tuned for 0.5, 2, 8, 16, 32,

64, 128 and 512. A radial kernel function was used to account for non-linearity.

Sigma was analytically solved as the median of |x − x′|2 (Caputo et al. (2002)

Karatzoglou et al., 2004, in). For regression models, an ε-insensitive loss function

(Vapnik, 1995) was used where ǫ =1 which controls the width of the tolerated

error of data points around the hyper plane.

2.2.5.4 Threshold tuning for rainfall area classification models

The performance of ML algorithms suffers when training classes are highly

unbalanced. In such a situation, ML algorithms tend to maximize performance

by over-predicting the majority class (Liu et al., 2006). This is particularly unde-

sirable for this study’s predictions as the intended prediction target (rain) usually

represents the minority class. To overcome this problem, the optimal probability

cut-off from predictive models was determined based on ROC analysis (Fawcett,

2006; Hamel, 2009) following the methodology of Kuhn (2014b). ROC curves

as a metric for model selection describe a model’s performance independently of

the probability threshold which separates raining pixels from non-raining pixels.

However, when probabilities are then translated to classes, the question of the

most suitable threshold arises. Per default, a data point is classified as "rain"

when its probability for rain is 0.5 or more. However, this default does not nec-

essarily generate the best results. The optimal operating point in ROC space

describes the threshold which leads to a classification with the best trade-off be-

tween sensitivity (POD) and specificity (1-POFD), i.e. between failing to detect
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rain against the costs of raising false alarms. A perfect model has a POD of 1

and a POFD of 0. Calculating POD and POFD for different thresholds reveals

the threshold where the distance to the perfect model is minimal (Fig. 2.2). For

this reason, the threshold was treated as a tuning parameter for the selection

of the most suitable model to predict rainfall areas. The optimal threshold was

expected to be considerably smaller than 0.5 since rainy pixels were the minority

class. Therefore, the range of thresholds tested went from 0 to 0.4 with incre-

ments of 0.02 and from 0.4 to 1 with increments of 0.1. The threshold with

the minimal distance to a perfect model was used for the final training of the

respective model.

2.2.6 Model prediction and validation

The tuning parameters (Tab. 2.3) that performed best were then applied to

train the models. The trained models were used to predict rainfall areas and

rainfall rates on the testing scenes. For validation, the performance measures

described in the following sections were calculated on a scene-by-scene basis for

each model.

Table 2.3: Optimal tuning parameters which were the result of the tuning study and
used for the final models.

Rainfall area Rainfall rate

DAY TWILIGHT NIGHT DAY TWILIGHT NIGHT

RF
mtry 10 9 11 5 14 7

threshold 0.2 0.3 0.28

NNET

decay 0.09 0.01 0.05 0.09 0.03 0.07

size 18 14 14 14 8 14

threshold 0.18 0.28 0.28

AVNNET

decay 0.07 0.09 0.01 0.03 0.07 0.01

size 12 12 14 18 14 14

threshold 0.18 0.28 0.3

SVM

sigma 0.0341 0.0525 0.0603 0.0352 0.0488 0.0589

cost 32 512 128 512 128 32

threshold 0.1 0.22 0.22

2.2.6.1 Validation of rainfall area classification models

Categorical verification scores were calculated from confusion matrices show-

ing agreement and disagreement between predicted and observed rainfall areas

(Tab. 2.4, 2.5). Bias quantifies the over- or underestimation of raining pixels.

Rain is underestimated in the model if the bias is <1; values >1 indicate overes-

timation of rain in the model. This is a pure quantitative measure that doesn’t

account for an agreement between observed and predicted rainfall areas. The
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probability of detection (POD) gives the percentage of rain pixels that the model

correctly identified as rain. The probability of false detection (POFD) gives the

proportion of non-rain pixels that the model incorrectly classified as rain. Simi-

lar to POFD, the false alarm ratio (FAR) gives the proportion of predicted rain

where no rain is observed. The critical success index (CSI) is the proportion of

true positives to both kinds of errors. Correctly classified non rain pixels are

not considered. This index is similar to the equitable threat score (ETS) which

corrects for proper classification of rain just by chance. Hansen-Kuipers discrim-

inant (HKD) and Heidke skill score (HSS) also account for chance agreement.

HSS gives the proportion of correct classifications (both rain pixels and non-rain

pixels) after eliminating expected chance agreement. HKD provides insight into

whether predicting a pixel as rain leads to a considerable increase in false alarms.

HSS is independent of bias in the classifications and is the difference between

POD and POFD.

Table 2.4: Confusion matrix as baseline for the calculation of the verification scores
used for the validation of rainfall area predictions.

Observation

rain no rain

Prediction
rain True positives (TP) False positives (FP)

no rain False negatives (FN) True negatives (TN)

Table 2.5: Calculation of the confusion matrix-based verification scores for the valida-
tion of rainfall area predictions.

Name Equation Range Optimum

Bias Bias = T P +F P
T P +F N -∞ to ∞ 1

Probability of Detection POD = T P
T P +F N 0 to 1 1

Probability of False Detection POFD = F P
F P +T N 0 to 1 0

False Alarm Ratio FAR = F P
T P +F P 0 to 1 0

Critical Success Index CSI = T P
T P +F P +F N 0 to 1 1

Equitable Threat Score ETS = T P −ph
T P +F P +F N−ph with -1/3 to 1 1

ph = (T P +F N)∗(T P +F P )
T P +T N+F P +F N

Heidke Skill Score HSS = T P ∗T N−F P ∗F N
[(T P +F N)∗(F N+T N)+(T P +F P )∗(F P +T N)]/2 -∞ to 1 1

Hansen-Kuipers Discriminant HKD = T P
T P +F N − F P

F P +T N -1 to 1 1

2.2.6.2 Validation of rainfall rates regression models

Since most rainfall retrievals estimate on a 3-hour or 24-hour basis, the pre-

dictions and RADOLAN RW observations were aggregated and validated on a

3-hour and 24-hour basis. Because this study only includes scenes with at least

2000 rainy pixels and some of these scenes went into training, the aggregations

(i.e. integral of the mean rainfall over 3 hours) were calculated from all available

scenes that fell under the time interval (not necessarily 3 or 24 scenes). Error

metrics as well as the coefficient of determination and relative error were used
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for validation of the rainfall rate models. The mean error (ME) gives the mean

of the signed differences between observed and predicted and is therefore useful

for quantifying a bias and direction of the prediction. The mean absolute er-

ror (MAE) gives the strength of the prediction error. Root mean square error

(RMSE) is more sensitive to large errors because it squares the errors and there-

fore penalizes large deviations from the mean. The difference between MAE and

RMSE error gives valuable information about the variance of the errors. RMSE,

ME and MAE are given in the same unit as the input, thus in mm. The coeffi-

cient of determination (R2) gives the strength of the relation between measured

rainfall rates and observed rainfall rates. The relative error is the rainfall rate

error relative to the observed rainfall rate in % (Formula 2.1).

∑N
i=1 |100 ∗ (1 − predictedi

observedi
)|

N
(2.1)

2.3 Results

2.3.1 Comparison of predicted rainfall areas

Fig. 2.3 shows the performance of the rainfall area predictions on a scene basis.

The differences in the models’ performance were relatively low. The prediction of

rainfall areas during daytime conditions yielded better results than during twilight

and night-time conditions. Additionally, the variability between the scenes was

lower during the day. All algorithms overestimated rainfall areas with a mean

bias of 1.4 to 2.0 and a FAR of > 0.5. For predicting rainfall areas during night

conditions, RF had the highest bias. SVM generally featured the lowest bias

values. On average, about 81% (SVM) to 85% (NNET) of the radar-observed

rain pixels were also identified by the respective models during day. For all times

of day, NNET and AVNNET showed the highest POD but also a relatively high

FAR. Regarding AUC, CSI, ETS, HKD and HSS which consider both, POD and

FAR, AVNNET and NNET showed the highest values (i.e. best performance).

SVM performed the worst in terms of these scores but had a noticeably lower

POFD than the other algorithms. NNET and AVNNET generally showed little

difference, with AVNNET performing slightly better at twilight and night.

An exemplary scene from 2010/05/06 14:50 UTC (Fig. 2.4) was used to spa-

tially depict the predictions. The spatial patterns of the rainfall area predictions

which are shown in Fig. 2.5 are in accordance with the patterns indicated by the

verification scores: All models show a high POD but considerably overestimated

rainfall areas. SVM returned fewer false positives (no rain in reference, rain in

the prediction) than the other models but also more false negatives (rain in ref-

erence, no rain in prediction) at the same time. AVNNET and NNET featured
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the same spatial patterns of rain/no rain predictions. RF featured the highest

FAR in this scene.

2.3.2 Comparison of predicted rainfall rates

Fig. 2.6 shows the performance of the rainfall rate predictions on a scene

basis. The 3-hour prediction of rainfall rates during daytime conditions showed

the lowest errors as well as the lowest variability. The differences in performance

of the different algorithms were again very small. SVM showed lower MAE values

than the other algorithms, regardless of the time of day. However, the RMSE

was high, on average 2.13 mm. ME indicated a trend to overestimate rainfall

rates using RF (average ME at daytime: 0.22). Neither NNET nor AVNNET

had observable issues with over- or underestimation (ME: <0.05). SVM tended

to underestimate rainfall rates (ME= -0.47). RMSE didn’t change considerably

between the models.

With aggregation on to 24 hours, R2 increased significantly for all models.

Aggregated to 3 hours, average R2 scores were 0.37 (RF), 0.37 (NNET), 0.38

(AVNNET) and 0.34 (SVM). Aggregated to 24 hours, the R2 increased to 0.42

(RF), 0.43 (NNET), 0.44 (AVNNET) and 0.39 (SVM). However, the RMSE in-

creased at the same time compared to the 3-hour predictions for day and night.

The relative error for RF, NNET and AVNNET was comparable. On average,

the predicted rainfall rates deviated 57% from the observed values. SVM had a

noteworthy high relative error of 123%.

The prediction of the exemplary day from 2010/05/06 (Fig. 2.7) showed that

all algorithms underestimated high rainfall rates but overestimated low rainfall

rates. This pattern was slightly more noticeable in AVNNET than in NNET. On

average, SVM predicted lower rainfall rates than the other algorithms.

2.4 Discussion

2.4.1 Prediction of rainfall areas

The prediction of rainfall areas generally showed a moderate performance

when compared to the RADOLAN RW data. Independent of the ML algorithm,

the models had a high POD but noticeably overestimated rainfall areas, which

led to the comparably low performance skills. This is because models were tuned

to reach a good balance between POD and PFD, meaning that allowing for

false positives was necessary to obtain a suitable proportion between POD and

PFD. The findings highlight the general challenge of the retrieval to discern rain

from non rain clouds, which needs further research. The edges of rain clouds,
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Figure 2.3: Comparison of the rainfall area prediction performances of the four ML
algorithms at day, twilight and night conditions using the performance
metrics Bias, probability of detection (POD), probability of false detec-
tion (POFD), false alarm ratio (FAR), critical success index (CSI), eq-
uitable threat score (ETS), Hansen-Kuipers discriminant (HKD), Heidke
skill score (HSS) and area under the curve (AUC). Note that outliers are
excluded since a visual assessment of the differences between models was
impossible when a large span of values was illustrated.
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Figure 2.4: IR image of the MSG SEVIRI scene from 2010/05/06 14:50 UTC. This
scene was used to visualize spatial patterns of rainfall predictions.

in particular, were often incorrectly predicted as raining. In this context, SVM

was a very conservative classifier. Its predictions did lead to the lowest PFD but

simultaneously yielded the lowest POD. No algorithm performed considerably

better than the others. The threshold tuning appeared to be a valuable approach

since it yielded better results than the static approach of Kühnlein et al. (2014a)

to account for the unbalanced data.

2.4.2 Prediction of rainfall rates

AVNNET was the best algorithm for rainfall rate assignment. It performed

slightly better than NNET especially in twilight and night conditions. Both

datasets were smaller so that averaging of single NNET predictions might have

been advantageous in cases where only limited data are available for training. The

fact that AVNNET and NNET are similar in performance indicate the stability

of single NNET models since averaging only slightly improves the performance.

However, averaging single NNET predictions leads to a generalization which be-

comes obvious in less extreme values, neither low nor high rainfall rates. RF,

similar to AVNNET, averages single predictions (from each tree) and therefore

tend to overestimate low rainfall rates and underestimate high rainfall rates.



2.4 Discussion 33

Figure 2.5: Visualization of the rainfall area predictions of the four ML algorithms
for the exemplary scene from 2010/05/06 14:50 UTC. Green pixels were
correctly predicted either as rain (dark green) or no rain (light green). Red
and orange colors represent prediction errors, either due to false alarms
(orange) or misses (red).

Therefore, each model is suited to different characteristics and should be chosen

depending on what must be modeled. For modeling extreme values, for example,

ensemble methods such as AVNNET and RF are not suitable.

Generally, predicting rainfall rates with daytime conditions showed better re-

sults than the twilight and night predictions which supports the findings of Kühn-

lein et al. (2014b). This might be because of the additional information about

CWP which is directly related to solar scattering processes assessable by VIS and

NIR channels that are not available at twilight or night. Each algorithm reflected

the same behavior according to temporal aggregation and time of day.

A temporal aggregation of rainfall rates to 24 hours increased the performance

of the retrieval technique. Note that since not all scenes of one day went into

prediction and aggregation, performance could be expected to improve when a

full set of one day was available. Aggregated on 24 hours, the performance of

NNET and AVNNET converges. Differences in model performances were not

noticeable between the 3-hour and 24-hour predictions.

An explicit comparison to other rainfall retrievals was neither in the scope of

this study nor directly possible due to differences in ground truth data, spatial

extent, time period as well as spatial and temporal resolution. However, readers

who are not familiar with the range of rainfall retrieval performances can refer to
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Figure 2.6: Comparison of the rainfall rate prediction performances of the four ML
algorithms on a scene-by-scene basis aggregated to 3 hours as well as 24
hours. The performance metrics are mean absolute error (MAE), mean
error (ME), coefficient of determination (R2), relative error (Rel. Error)
and root mean square error (RMSE). Note that outliers are excluded since
a visual assessment of the differences between models was impossible when
a large span of values was illustrated.

Kidd and Levizzani (2011) who compared different precipitation products over

Northwest Europe with a spatial resolution of 25◦ x 25◦. Compared to the per-

formance of the retrievals included in their study, our retrieval can at least keep

up with even complex retrievals like TRMM products or CMORPH even despite

the higher spatial resolution.
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Figure 2.7: Visualization of the 24-hour aggregated rainfall rate predictions of the four
ML algorithms for the exemplary day 2010/05/06.

2.4.3 Technical considerations

Though recent developments in parallel computing make it possible to train

ML models based on large datasets, processing time is still a decisive factor when

choosing algorithms, especially when dealing with datasets that have high spatial

and temporal resolution, as in the case of optical rainfall retrievals. Tab. 2.6 de-

picts the computation times for this study using the example of the day dataset.

Model training with optimal tuning parameters was fastest with NNET (three

minutes) and slowest with SVM (108 minutes). In addition to being 30 times

faster than SVM, NNET was also three times faster than RF in the classification

models. Due to averaging multiple models, AVNNET was two to three times

slower than NNET. However, the overall training contained an extended tuning

study, which differed in length due to each of the four algorithm’s different re-

quirements. Since tuning is an essential step in model building, the time it takes

to complete is also valuable information to take into consideration. In regression

mode (i.e. rainfall rate prediction), tuning considerably extended the computa-

tion time for SVMs - to up to 43 hours. Though NNET uses one additional tuned
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parameter, it was still hands down the fastest algorithm needing only 8 minutes

for the same task.

Using caret as a wrapper package, all models essentially require the same

number of lines of code. Efforts for customization of each model are essentially

non-existent.

Table 2.6: Processing time in minutes for model tuning and training as well as just
model training with the optimal tuning parameters. The values are based
on the models for daytime, which contained the largest number of training
scenes. The number of pixels used for training rainfall areas was 88,751 (5%
of cloudy pixels) and 28,251 (10% of rain pixels) for training rainfall rates.

Rainfall area models Rainfall rate models

Tune
and
Train

Train
with
optimal

Tune
and
Train

Train
with
optimal

RF 80 11 358 34

NNET 46 3 9 1

AVNNET 135 9 41 3

SVM 718 108 2600 2076

2.5 Summary and conclusions

This study investigated the suitability of different ML algorithms for their ap-

plicability in optical rainfall retrievals. Though the algorithms showed very little

difference in their performance, NNET proved to be the most suitable algorithm.

On average it performed best in rainfall area delineation as well as rainfall rate

assignment. Its comparably fast computation time is another advantage when

working with large datasets that are commonplace in remote sensing based rain-

fall retrievals. In some cases AVNNET performed better than single NNET,

however, the slight increase in performance is not justified by the considerably

longer computation time. RF showed an intermediate performance with interme-

diate computation time. However, it is worth noting that among the algorithms

tested, RF is the most intuitive and easy to use since it does not require data

to be preprocessed and may therefore be justified despite its slightly lower per-

formance. SVM performed worst and required far too much computation time.

We therefore recommend using NNET as an ML algorithm in optical rainfall

retrieval applications. Since (AV)NNET was the best performing algorithm in

both, rainfall area detection and rainfall rate assignment, there is no need to use

different algorithms for the two steps in the rainfall retrieval.
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Despite our recommendation, no algorithm performed considerably better that

the others. Thus, continued research is recommended determining suitable pre-

dictors for rainfall, rather than in optimizing through the choice of an ML algo-

rithm. So far, our work has solely focused on the spectral properties of clouds,

which is, according to Thies and Bendix (2011), most important for applications

in cloud classification. However, we assume that textural properties are highly

related to rainfall rates, as they present spatial characteristics of a cloud. This

assumption is supported by a recent study of Giannakos and Feidas (2013) which

shows the potential of textural parameters for the classification of rainy clouds.

Thus, we will employ spatial filters across different SEVIRI channels as proxies for

cloud texture and larger scale patterns at the same time in future studies on opti-

cal rainfall retrievals. Using these variables we will expand on the contemporary

purely pixel-based approach by including information about their neighborhood.
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3 Revealing the potential of spectral and textural pre-

dictor variables in a neural network-based rainfall

retrieval technique

Hanna Meyer, Meike Kühnlein, Christoph Reudenbach, Thomas Nauß

Abstract

Estimating rainfall areas and rates from geostationary satellite images has the

opportunity of both, a high spatial and a high temporal resolution which can-

not be achieved by other satellite-based systems until now. Most recent retrieval

techniques are solely based on spectral channels of the satellites. These retrievals

can be classified as "purely pixel-based" because no information about the neigh-

bourhood pixels is included. Assuming that precipitation is highly correlated

with cloud processes and therefore with cloud texture, textural information de-

rived from the neighbourhood of a pixel might give valuable information about

the cloud type and hence about a respective probability of the rainfall rate. To

study the potential of textural variables to improve optical rainfall retrieval tech-

niques, rainfall areas and rainfall rates were estimated over Germany for the

year 2010 using a neural network approach. In addition to the spectral pre-

dictor variables from Meteosat Second Generation (MSG), different Grey Level

Co-occurance Matrix (GLCM) based textural variables were calculated from all

MSG channels. Using recursive feature selection, models were trained and their

performance was compared to spectral-only models. Contrary to the expecta-

tions, the performance of the models did not increase when textural information

was included.
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3.1 Introduction

Estimating rainfall from geostationary satellite images has the opportunity of

both, a high spatial and a high temporal resolution which cannot be achieved

by other satellite-based systems until now. Though recent studies indicate the

great potential of optical rainfall retrievals (see valuable overviews by Kidd and

Levizzani, 2011; Levizzani et al., 2002, 2001; Prigent, 2010; Thies and Bendix,

2011), the task to accurately estimate rainfall from space remains challenging

due to the variability of rainfall patterns on the one hand, and due to its high

spatio-temporal dynamic on the other.

The majority of recent optical rainfall retrievals are based on machine learning

algorithms to relate the spectral satellite information to rainfall areas or rain-

fall rates rather than using parametric approaches (Capacci and Conway, 2005;

Grimes et al., 2003; Rivolta et al., 2006; Giannakos and Feidas, 2013; Hsu et al.,

1997; Kühnlein et al., 2014a). Though different machine learning algorithms are

used in the respective retrieval techniques, Meyer et al. (2016b) compared the

performances of different ML algorithms and concluded that there is a need to

improve retrievals by defining suitable predictor variables rather than optimizing

the retrievals by the choice of the ML algorithm which all performed similar if

trained properly.

Among the recent retrievals, the predominating predictor variables that are

used are infrared channels (Feidas and Giannakos, 2012; Behrangi et al., 2009b)

which are in some studies complemented by visible, near infrared and water

vapour channels as well as various channel differences (Kühnlein et al., 2014a,b;

Thies et al., 2008b,c; Ba and Gruber, 2001). These retrievals can be classified as

"purely pixel-based" because each pixel in an image is treated completely inde-

pendent from its neighborhood and no information about the surrounded pixels

is included. However, textural information derived from the neighbourhood of

a pixel might give valuable information about the cloud type and, due to corre-

sponding microphysical processes, about a respective probability of the rainfall

rate. Related to this, textural measures of cloud surfaces were repeatedly used as

proxy for the cloud type (Christodoulou et al., 2003; Ameur et al., 2004; Welch

et al., 1988; Giannakos and Feidas, 2013), see also a review by Tapakis and

Charalambides (2013). For example, Kidd and Levizzani (2011) describe stra-

tus clouds as appearing smooth in a certain visible environment while convective

clouds tend to have a heterogeneous surface in the visible as well as in the infrared

(Christodoulou et al., 2003).

Grey Level Co-occurance Matrix (GLCM) based textural measures by Har-

alick et al. (1973) indicate the spatial distribution of grey values in a specific

environment and are commonly used in remote sensing of clouds. Welch et al.
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(1988) and Christodoulou et al. (2003) used the GLCM based textural metrics

for cloud classification using Landsat and Meteosat Second Generation (MSG)

Spinning Enhanced Visible and Infrared Imager (SEVIRI) images respectively.

Some studies also successfully included GLCM based textural parameters in op-

tical rainfall retrieval techniques (Uddstrom and Gray, 1996; Liu et al., 2014;

Giannakos and Feidas, 2011, 2012; Hong et al., 2004; Hsu et al., 1997). However,

in these retrievals, texture is solely derived from IR channel brightness temper-

atures in a 3 × 3 pixel window, or/and the study are based on a very limited

number of scenes. An extended study on the contribution of textural informa-

tion ind different pixel environments using the full spectral information of optical

satellite data is still lacking.

Given the still challenging character of satellite-based rainfall estimation, the

aim of this study is to analyze the potential of textural variables in different

spectral ranges for an improvement of optical rainfall retrieval techniques.

3.2 Methods

Rainfall areas and rainfall rates were estimated over Germany for the year

2010. Therefore, MSG SEVIRI data were used since they permit a quasi-continuous

observation of the rainfall distribution and rainfall rate in near-real time. A radar-

based precipitation product from the German Weather Service, RADOLAN RW

(Bartels et al., 2004), was used for ground truth data. The general retrieval

process was two-fold and consists of (i) the identification of precipitating cloud

areas and (ii) the assignment of rainfall rates. Since the focus of this study is

on revealing the potential of textural variables, the assignment of rainfall rate

was based on on rainfall areas derived from RADOLAN RW rather than from

the results from step (i). This ensures that the performance of rainfall rate mod-

els is comparable without confusion based on errors resulting from the rainfall

areas delineation step. Due to unavailability of visible channels during night,

rainfall areas and rates were modeled for day and night scenes separately. For

all modeling tasks (rainfall areas during day, rainfall areas during night, rainfall

rate during day, rainfall rate during night), the individual models were compared

based on the utilization of spectral and textural variables or spectral variables

only (Fig. 3.1). The following sections describe the model comparison workflow

in detail. Modeling and analysis was completed using the R environment for sta-

tistical computing (R Core Team, 2015) in conjunction with the caret package

(Kuhn, 2014a) for machine learning applications.
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Figure 3.1: Overview of the methods to compare models that use spectral and textural
variables with models that use spectral variables only.

3.2.1 Satellite and ground truth data

MSG SEVIRI (Aminou et al., 1997) scans the full disk every 15 minutes with

a spatial resolution of 3 × 3 km at sub-satellite point. The spatial resolution in

the study area Germany is approximately 4.5 × 4.5 km. Reflected and emitted

radiances are measured by 12 channels, three channels at visible and very near

infrared wavelengths (between 0.6 and 1.6 µm), eight channels ranging from near-

infrared to thermal infrared wavelengths (between 3.9 and 14 µm) and one high-

resolution visible channel. In this study, SEVIRI data from the year 2010 was

preprocessed and a cloud-mask based on Kühnlein et al. (2014b) was computed

on an hourly basis. All MSG SEVIRI channels except for the high-resolution vis-

ible channel were included in this study for modelling rainfall during day. During

night, the three channels in the visible and near infrared were not used since they

don’t provide reliable information. In addition to the spectral channels, combina-

tions of brightness temperature differences, as for example the difference between

the 6.2 µm and the 10.8 µm channel (T6.2 - T10.8), were calculated following

Kühnlein et al. (2014a) and resulting in 17 spectral variables during day (spectral

channels and the channel differences T6.2 - T10.8, T7.3 - T12.1, T8.7 - T10.8,

T10.8 - T12.1, T3.9 - T7.3, T3.9 - T10.8) and 14 spectral variables during night.

The GLCM based metrics homogeneity, contrast, dissimilarity, entropy and sec-

ond moment (Haralick et al., 1973) were calculated from all spectral predictors
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in a 3 × 3 as well as a 5 × 5 pixel environment using the "glcm" package in R

(Zvoleff, 2015). To avoid high computational efforts, the number of quantiza-

tion/grey levels was reduced from 1024 to 128. The GLCM was calculated for

four directions and the averages of all directions were taken as final parameters.

In addition to the GLCM based indices, the mean, minimum, maximum and

standard deviation values in the 3 × 3 as well as 5 × 5 pixel environment of all

spectral variables were used as further predictors. In total, including the spectral

variables, 342 potential predictor variables during day and 266 during night were

provided for the modelling approach. All predictors were centered and scaled by

dividing the values of the mean-centered variables by their standard deviations.

RADOLAN RW data was used as ground truth. It is based on measurements

with a C-band Doppler radar of 16 radar stations covering the area of Germany.

Relationships between radar reflectivity and precipitation rate (Z/R relation-

ship), statistical clutter filtering and shadowing effects are treated within an on-

line calibration process. Furthermore, precipitation intensities are adapted with

ground-based precipitation measurements. The precipitation product is available

at a temporal resolution of one hour covering the entire area of Germany at a

spatial resolution of 1 × 1 km (Bartels et al., 2004). RADDOLAN RW data were

re-projected to the geostationary projection using a bi-linear resampling in order

to match the geometry of the SEVIRI data.

3.2.2 Compilation of training and test data sets

Scenes with at least 3000 rainy pixels in the RADOLAN RW product were

included in the study. Only these scenes were considered for further analysis.

The scenes were split into day scenes (scenes with a solar zenith angle less than

70◦) and scenes where the visible channels are not reliably available (i. e. night

and twilight). All twilight and night scenes are treated equally in this study and

are termed "night" in the following. Since model training using several hundred of

predictor variables is computing cost intensive, a selection of 100 training scenes

during day and night were each selected randomly. The random selection gave

100 rain events from 78 different days during day and from 76 different days

during night. All other rain events in the year 2010 were used for independent

testing. From the training sample, 5% of the cloudy pixels were considered for

training the rainfall area models and another 25% were used for the rainfall rate

training. The selection of training pixels was performed using stratified random

sampling to account for the distribution of the dataset. The final training sample

size consisted of 110920 pixels for rainfall areas training during day and 63896

during night as well as 141931 pixels for rainfall rate training during day and

102384 during night.
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3.2.3 Neural network training

Neural networks are a well-established method in cloud and rainfall detection

studies (e.g. Hsu et al., 1997; Hong et al., 2004; Lazri et al., 2014; Tebbi and

Haddad, 2016) and it was shown that they perform best in this optical rainfall

retrieval technique with a high computation speed which is important consider-

ing the high amount of predictors and data points (Meyer et al., 2016b). We

used a single-hidden-layer neural network, implemented in the "nnet" package

(Venables and Ripley, 2002) in R. Neural networks require two hyperparameters

to be tuned: the number of neurons in the hidden layer and the weight decay

(Kuhn and Johnson, 2013a). For all steps of parameter tuning as well as variable

selection and model training, a stratified 10 fold cross-validation was performed

to determine the optimal model settings. Thus, the training samples were ran-

domly partitioned into 10 equally sized folds with respect to the distribution of

the response variable (i. e. equal distribution of rainy/non rainy cloud pixels

and equal distribution of rainfall rates respectively). Models were then fitted by

repeatedly leaving one of the folds out. Performance of a model was determined

by predicting on the respective held-out fold. Receiver Operating Characteristics

(ROC) were used as performance metric for rainfall areas models and coefficient

of determination (R2) for rainfall rate models. The performance metrics from

the hold-out iterations were averaged to the overall cross validated model perfor-

mance for the respective set of tuning values.

The performance of ML algorithms suffers when training classes are highly

unbalanced since they tend to maximize performance by over-predicting the ma-

jority class. This is particularly critical for the modeling task of this study as the

intended response variable (rainy clouds) usually represents the minority class.

To overcome problems caused by unbalanced classes (see e. g. Liu et al., 2006),

the optimal probability cut-off from rainfall area models was determined based on

ROC analysis (Fawcett, 2006; Hamel, 2009) following the methodology of Kuhn

(2014b). We therefore used the threshold from the estimated probabilities as ad-

ditional tuning parameter in the classification models (tuned between 0.0 and 0.4

with increment 0.02 and between 0.5 and 1.0 with increment 0.1). The threshold

leading to the minimal distance to a perfect model was used for the final training

of the respective model (See Meyer et al. (2016b) for further description on this

method).

3.2.3.1 Recursive feature selection

Though neural networks are known as being able to deal with highly correlated

predictor variables, Kuhn and Johnson (2013a) have shown that neural networks

are not as unaffected by adding non-informative or redundant parameters. Fur-

ther, from a technical point of view, many predictors result in a high amount of
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data which increases computation costs. Feature selection is a suitable method

to take all potential predictor variables into account but overcome the mentioned

issues. We used recursive feature elimination according to Guyon et al. (2002)

which is implemented in the caret R package (Kuhn, 2014a). Recursive feature

elimination fits the model first with all predictor variables. It then calculates

variable importance according to the weights method of Gevrey et al. (2003) and

removes the least important variables. In the next step, the model is re-calculated

with the reduced number of variables. This step is repeated for different numbers

of variables. The best number and combination of variables is then determined

by comparing the performance of the individual models.

Since feature selection is very computation time consuming, hyperparameter

tuning was reduced to a minimum: The number of neurons in the hidden layer

was tuned between 2 and 10 with increment 2; 15 to 30 with increment 5; 40 to 80

with increment 10 and 100 to the number of predictor variables with increment

50. Weight decay was kept constant at 0.05. A more detailed tuning study was

carried out after the optimal variables were determined.

3.2.3.2 Fine tuning and model training

Models using the optimal variables determined by feature selection as well

as the spectral-only models were extensively tuned and trained. Weight decay

was tuned between 0 and 0.1 with increment 0.02. The number of neurons in

the hidden layer was tuned between 2 and the number of predictor variables

with increment 2. The best performing tuning parameters were applied for final

model training. The trained models were used to estimate rainfall areas and

rainfall rates of the testing scenes.

3.3 Results

The performance of the rainfall areas models first increased with the number

of predictor variables, for both, day and night (Fig. 3.2a). The optimal number of

predictor variables was identified to be 20 (ROC = 0.902) for day and 14 for night

(ROC = 0.786). Regarding the night model, the performance then dropped down

and remained constant from 75 variables onward. The day model was not affected

by a reduced performance with an increasing number of predictor variables. The

performance remained constant after the optimal ROC value was reached. The

rainfall rate models were more affected by the number of predictor variables

(Fig. 3.2b). The performance first increased to its maximum using 30 variables

during day (R2 = 0.313) and 14 variables during night (R2 = 0.211) respectively.

The R2 then rapidly decreased in both, the day and the night models.
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Figure 3.2: Dependence of the number of variables on the performance of (a) rainfall
areas during day (upper line) and night (lower line) indicated by ROC and
(b) rainfall rates during day (upper line) and night (lower line) incicated
by R2. The grey areas show the standard error.

There were no significant differences between the models which used the op-

timal variables revealed during the (textural) feature selection and the models

which used spectral variables only (Fig. 3.3). The average Root Mean Square Er-

ror (RMSE) of rainfall rate estimation during day was 1.09 mm for spectral-only

models and 1.08 mm for the spectral+textural model. During night, the aver-

age RMSE was 1.02 in both models. Regarding the estimation of rainfall areas,

both models had a Probability Of Detection (POD) of 0.70 and a Probability Of

False Detection (POFD) of 0.36 during night. During day, the POFD of both,

spectral-only as well as spectral+textural models was 0.20. POD was 0.80 in the

spectral-only model and 0.81 in the spectral+textural model.

3.4 Discussion and Conclusion

The data-driven methodology allowed to initially include a wide range of po-

tential predictors including even correlated and potentially uninformative vari-

ables. The decreasing performance with increasing number of variables, however,

showed that a feature reduction is necessary when a high number of predictor

variables is presented to the models. In general, the performance of the retrieval

is in the same range as indicated by similar studies (Kühnlein et al., 2014b,a; Gi-

annakos and Feidas, 2013). Surprisingly, the use of textural variables did not con-

siderably increase the performance of the models. Concerning the delineation of

rainfall areas, these findings correspond to those of Giannakos and Feidas (2011).

Though Giannakos and Feidas (2012) showed that textural variables can slightly

improve estimations of rainfall rate delineations compared to spectral-only mod-
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Figure 3.3: Boxplots showing the performance of the full models as well as spectral-
only models (a) for rainfall areas indicated by POD and POFD and (b) for
rainfall rates indicated by RMSE and R2. Each data point in the boxplot
corresponds to one MSG scene of the test data set. Note that outliers of
the RMSE are excluded to faciliate a visual assessment of the differences
between models.

els, these findings could not be confirmed by this study. The contradictions might

result from the considerable smaller number of training scenes used by Giannakos

and Feidas (2012) which induce a higher risk for overfitting.

Though during feature selection many textural variables were selected for the

final model, the independent model validation did not indicate an improvement

compared to the spectral-only models. The differences between the cross vali-

dated performance and the performance indicated by independant model valida-

tion might be a matter of slight overfitting. Since the cross validation was not

based on a leave-one-scene-out cross validation, the samples have not been inde-

pendent which might explain the difference between cross validated performance
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and the completely independent performance.

No advantage of adding textural variables to spectral predictor variables could

be found by using the presented simple neural network in conjunction with recur-

sive feature selection. However, it can’t be excluded that other feature selection

strategies like e.g. principal component analysis (see Behrangi et al., 2009a, for

its application in rainfall retrievals), auto-associative neural networks (Kerschen

and Golinval, 2004) or forward feature selection in conjunction with the neural

network (Meyer et al., 2016a) would be able to make sense of the textural in-

formation. Also, though using single-layer neural networks is common practice

for rainfall retrievals (e.g. Giannakos and Feidas, 2013), the amount of potential

predictor variables in this study is exceptionally high. Against the background of

extremely high correlations between the predictor variables it can’t be excluded

that deeper architectures of neural networks would be able to detect relations

that could not be revealed using a single hidden layer. Therefore, increasing the

number of hidden layers (Grimes et al., 2003) might lead to results that favor

the combined spectral and textural models. Also the application of more recent

deep-learning concepts as e.g. Convolutional Neural Networks that might offer

new ways to include texture and neighborhood information that could lead to

improved rainfall estimations. This becomes even more attractive as improved

software tools for deep learning are recently evolving that further support high

performance computing to significantly reduce computation times.

In summary, we could show that textural variables in optical rainfall retrievals

that use simple machine learning architecture and recursive feature selection could

not improve the final performance compared to spectral-only models. Therefore,

in order to avoid high computation time it is reasonable to retain the pixel-based

approach which requires the spectral channels of the optical satellite system as

predictors only. A potential reason for the similar performance of the models

could rely either in the simple architecture of the neural network or in the spectral

resolution of modern sensors which allow the (direct or implicit) retrieval of a

variety of cloud optical/geometrical and microphysical properties. For example,

studies by e.g. Rosenfield and Fitzpatrick-Lins (1986); Nauss and Kokhanovsky

(2006) have shown that large enough combinations of the effective cloud droplet

radius and the optical cloud thickness are good predictors for rainfall. In the end,

such microphysical insights into precipitation generating processes might be as

effective in estimating rainfall area and rates as textural variables which focus no

morphometric cloud features.
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Abstract

A spatially explicit mapping of rainfall is necessary for Southern Africa for eco-

climatological studies or nowcasting but accurate estimates are still a challenging

task. This study presents a method to estimate hourly rainfall based on data from

the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared

Imager (SEVIRI). Rainfall measurements from about 350 weather stations from

2010-2014 served as ground truth for calibration and validation. SEVIRI and

weather station data were used to train neural networks that allowed the estima-

tion of rainfall area and rainfall quantities over all times of the day. The results

revealed that 60 % of recorded rainfall events were correctly classified by the

model (Probability Of Detection, POD). However, the False Alarm Ratio (FAR)

was high (0.80), leading to a Heidke Skill Score (HSS) of 0.18. Estimated hourly

rainfall quantities were estimated with an average hourly correlation of rho =

0.33 and a Root Mean Square Error (RMSE) of 0.72. The correlation increased

with temporal aggregation to 0.52 (daily), 0.67 (weekly) and 0.71 (monthly). The

main weakness was the overestimation of rainfall events. The model results were

compared to the Integrated Multi-satellitE Retrievals for GPM (IMERG) of the

Global Precipitation Measurement (GPM) mission. Despite being a comparably

simple approach, the presented MSG based rainfall retrieval outperformed GPM

IMERG in terms of rainfall area detection where GPM IMERG had a consider-

ably lower POD. The HSS was not significantly different compared to the MSG

based retrieval due to a lower FAR of GPM IMERG. There were no further sig-

nificant differences between the MSG based retrieval and GPM IMERG in terms

of correlation with the observed rainfall quantities. The MSG based retrieval,

however, provides rainfall in higher spatial resolution. Though estimate rainfall

from satellite data remains challenging especially at high temporal resolutions,

this study showed promising results towards improved spatio-temporal estimates

of rainfall over Southern Africa.
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4.1 Introduction

The dynamics of rainfall play an important role in Southern Africa especially

in the arid and semi-arid areas where farming is a main income and the qual-

ity of the pastures mainly depends on water availability (Fynn and O’Connor,

2000). Accurate nowcasting of rainfall at high temporal and spatial resolutions

is therefore of interest for the farmers in Southern Africa and would help them

to assess the carrying capacity of their land. It is of further importance as a

baseline product for a variety of environmental research studies as rainfall is a

key variable for many ecological and hydrological processes.

Rain gauges are still considered as the most accurate way to measure rain-

fall. Southern Africa features a network of rain gauges operated by the weather

services of the individual countries as well as by a variety of research projects.

However, the network does not feature a sufficient density to capture spatially

highly variable rainfall dynamics. To obtain spatially explicit data, ground-based

radar networks are well established to measure rainfall in other parts of the world

(e.g. RADOLAN in Germany, Bartels et al., 2004). A radar network covering the

entire region of Southern Africa, however, is currently not available and the ex-

isting radar-based rainfall estimates in South Africa are still afflicted with many

uncertainties (IPWG, 2016). A satellite-based monitoring of rainfall is therefore

an obvious alternative.

A number of global satellite-derived products have been developed in the last

decades (e.g. TRMM, CMORPH, PERSIANN, see review in Kidd and Huffman,

2011; Prigent, 2010; Thies and Bendix, 2011; Kidd et al., 2011; Levizzani et al.,

2002). Since 2014, the latest product from the Global Precipitation Measure-

ment (GPM) mission, as a successor of the Tropical Rainfall Measuring Mission

(TRMM), provides the most recent global estimates of precipitation at high spa-

tial and temporal resolutions. It might be expected that the GPM products

would feature a high degree of accuracy since the TRMM-3B42 product has been

identified as the most accurate retrieval at least for east Africa (Cattani et al.,

2016).

In addition to global rainfall retrievals, a number of regionally adapted re-

trievals were developed in the last decades (Kühnlein et al., 2014a,b; Meyer et al.,

2016b; Feidas and Giannakos, 2012; Giannakos and Feidas, 2013). Kühnlein et al.

(2014b,a) and Meyer et al. (2016b) presented a methodology to estimate rainfall

from optical Meteosat Second Generation (MSG) Spinning Enhanced Visible and

InfraRed Imager (SEVIRI) data for Germany. In this approach, machine learning

algorithms were used to relate the spectral properties of MSG to reliable radar

data as a ground truth. Though the retrieval showed promising results, such

spatially comprehensive ground truth data are lacking for Southern Africa. An
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adaptation of the retrieval technique to Southern Africa hence requires a model

training that relies on sparse weather station data as a ground truth.

This study aims to test the suitability of a MSG and artificial neural network

based rainfall retrieval which is regionally trained using rain gauge data to provide

spatially explicit estimates of rainfall areas and rainfall quantities for Southern

Africa. The suitability of the model is assessed by validation with independent

weather station data and comparison to the Integrated Multi-satellitE Retrievals

for GPM (IMERG) product.

4.2 Methods

The methodology is divided into a pre-processing of satellite and rain gauge

data, model tuning and training including its validation, model estimation and

comparison to GPM IMERG (Fig. 4.1).
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Figure 4.1: Flow chart of the methodology applied in this study.
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4.2.1 Study area

The area of investigation comprises South Africa, Lesotho and Swaziland,

Namibia, Botswana, Zimbabwe as well as parts of Mozambique (Fig. 4.2). Aver-

age annual rainfall in Southern Africa roughly follows an aridity gradient from

the dry west to the more humid east. With the exceptions of some coastal re-

gions in South Africa, most rain falls during the summer months. In the coastal

areas of South Africa, frontal systems cause light rain that may last over sev-

eral days. The majority of interior areas are dominated by local and short-term

convective heavy showers mostly with thunder in the afternoon or evening hours.

Rain from synoptic systems lasting up to several days also occurs. Snow and hail

only contribute a negligible amount to the overall precipitation totals. The inter-

annual variability of rainfall is high for the arid areas. For a detailed description

of Southern African rainfall characteristics see Kruger (2007) and Kaptué et al.

(2015).

Figure 4.2: Map of the average annual precipitation sums in the study area as esti-
mated by WordClim (Hijmans et al., 2005). Points show the locations of
the weather stations that were used as ground truth data in this study. Auto-
matic Rainfall Stations (ARS) and Automatic Weather Stations (AWS) are
operated by the South African Weather Service (SAWS). Further stations
are operated by SASSCAL WeatherNet as well as by the IDESSA project.
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4.2.2 Data and Preprocessing

4.2.2.1 Station data

Rainfall data for 2010 to 2014 were obtained from the South African Weather

Service (SAWS). The data were recorded at 229 automatic rainfall stations and

91 automatic weather stations (Fig. 4.2). They were complemented by 22 sta-

tions from SASSCAL WeatherNet (www.sasscalweathernet.org) located in south-

ern Namibia and Botswana. For 2014, data from an additional 15 stations in

South Africa operated by the IDESSA project (An Integrative Decision Support

System for Sustainable Rangeland Management in Southern African Savannas,

www.idessa.org) were available. The data passed general provider-dependent

quality checks before it was used in this study. This includes filtering of data

beyond common data ranges, or situational checks for consistency with related

parameters (e.g. air humidity) by SASSCAL. SAWS payed attention to rainfall

values > 10 mm within 5 minutes and deleted those values if unreliable. Data

from all providers was then included in an on-demand processing database system

(Wöllauer et al., 2015) where it was automatically cross-checked for reliability by

filtering values < 0 and > 500 mm of rainfall per hour. All station data that

provided sub-hourly information was aggregated to a temporal resolution of 1

hour within the database. Though the station data is not randomly distributed

in the model domain, it covers the entire aridity gradient, from sites with very

low (< 200 mm) precipitation to sites in areas with highest (∼ 1500 mm) yearly

precipitation sums.

4.2.2.2 Satellite data

MSG SEVIRI (Aminou et al., 1997) scans the full disk every 15 minutes with

a spatial resolution of 3 × 3 km at sub-satellite point ( 3.5 × 3.5 km in South-

ern Africa). Reflected and emitted radiances are measured by 12 channels, three

channels at visible (VIS) and very near infrared wavelengths (NIR, between 0.6

and 1.6 µm), eight channels ranging from near-infrared to thermal infrared wave-

lengths (IR, between 3.9 and 14 µm) and one high-resolution VIS channel with

a spatial resolution of 1 × 1 km which was not considered in this study.

The rainfall retrieval technique presented here works under the assumption

that VIS, NIR and IR channels of MSG SEVIRI provide proxies for microphysical

cloud properties, which are, in turn, related to rainfall. VIS and NIR channels

have been shown to be related to cloud optical depth (Roebeling et al., 2006;

Benas et al., 2017) and cloud water path (Kühnlein et al., 2014a) where the

NIR channel is further related to cloud particle size (Roebeling et al., 2006).

The IR channels have been shown to provide information about the cloud top

temperature which was used as a proxy for cloud height (Hamann et al., 2014).
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The cloud droplet effective radius as well as liquid water path during night was

approximated using IR differences (Merk et al., 2011; Kühnlein et al., 2014a).

MSG SEVIRI Level 1.5 data (EUMETSAT, 2010) was preprocessed to ra-

diance values according to EUMETSAT (2012a) and brightness temperatures

according to EUMETSAT (2012b) using a processing scheme based on a cus-

tom raster processing extension of the eXtensible and fleXible Java library (see

https://github.com/umr-dbs/xxl) which enables parallel raster processing on CPUs

and GPUs using OpenCL.

4.2.2.3 Cloud mask

A cloudmask was used to exclude all pixels that were not cloudy in the respec-

tive SEVIRI scenes. For 2010 to 2012, the CM SAF CMa Cloudmask product

(Kniffka et al., 2014) was applied. Due to the availability of the CM SAF CMa

cloudmask dataset which was currently limited to the years 2004 to 2012, we used

the cloud mask information of the CLAAS-2 data record (Finkensieper et al.,

2016) for the years 2013 and 2014 which is the 2nd edition of the SEVIRI-based

cloud property data record provided by the EUMETSAT Satellite Application Fa-

cility on Climate Monitoring (CM SAF; see also Stengel et al. (2014) for further

information on CLAAS). All pixels that were classified as cloud contaminated or

cloud filled were interpreted as cloudy. Pixels that were classified as cloud-free

were excluded from further analysis.

4.2.3 Model strategies for rainfall estimation

4.2.3.1 General model framework

The modeling methodology follows the study of Kühnlein et al. (2014b,a) who

used the spectral channels of MSG SEVIRI to train a Random Forest model that

is able to spatially estimate rainfall areas and rainfall rates over Germany. Based

on this study, Meyer et al. (2016b) have shown that neural networks outperform

the initially used Random Forest algorithm. In these previous studies on the

rainfall retrieval, the radar based RADOLAN product (Bartels et al., 2004) was

used as ground truths to train the model. The high data quality and spatially ex-

plicit information allowed the model to be optimised without too much confusion

caused by uncertainties in the training data. However, the goal of the retrieval

was that it can be applied to areas where spatially explicit data for rainfall are

not available, as it is the case in Southern Africa.
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4.2.3.2 Training and test data sets

Cloud masked MSG data from 2010 to 2014 were extracted at the locations

of the weather stations. To match the temporal resolution of all available rain

gauge data, the extracted data were aggregated to hourly values. This was done

by taking the median value of the four scenes available every hour. However, only

if all four scenes were masked as cloudy, the corresponding hourly values for a

respective station were used for further analysis. The extracted and aggregated

MSG data were then matched with the corresponding rain gauge information

under consideration of the time shift between MSG data (UTC) and rain gauge

data (UTC + 2).

The spectral channels as well as the channel differences ∆ T6.2 - 10.8, ∆ T7.3 -

12.1,∆ T8.7 - 10.8, ∆ T10.8 - 12.1, ∆ T3.9 - 7.3, ∆ T3.9 - 10.8 and the sun zenith

were used as predictor variables during daytime, in accordance to (Kühnlein et al.,

2014a) and previous studies on MSG based delineation of cloud properties (see

section 4.2.2.2). Thus, the predictor variables contain the SEVIRI channels as

well as channel combinations. Although this partially duplicates information, the

channel combinations allow highlighting patterns that might not be apparent in

the individual channels. As additional potential predictors, Meyer et al. (2017b)

tested different cloud texture parameters and have shown that the chosen spectral

channels and differences are sufficient as predictors.

Since neural networks require that the predictor variables are standardized, all

predictors were centered and scaled by dividing the values of the mean-centered

variables by their standard deviations. Since the VIS and NIR channels of MSG

are not available during the nighttime, the dataset was split into a daytime dataset

(data points with a solar zenith angle < 70◦) and a nighttime dataset (data

points with a solar zenith angle > 70◦) and were considered in separate models.

Though two different models might lead to rough transitions between daytime

and nighttime estimates, accurate estimates were in the foreground of this study,

leading to the decision of separate models according to data availability. The

response variables (rainfall yes/no and rainfall quantities) were taken from the

rain gauge measurements.

The years 2010 to 2012 were used for model training. The year 2013 was used

for validation. The retrieval process was two-step and consisted of (i) the identi-

fication of precipitating cloud areas and (ii) the assignment of rainfall quantities.

All 2010 to 2012 data from the rain gauges that are masked as cloudy by the

cloud mask products were used for training the rainfall area model. All recorded

rainfall events were used for training the rainfall quantities model. The resulting

training dataset comprised 917774 (daytime) and 1409072 (nighttime) samples

for the rainfall area training and 69703 (daytime) and 129325 (nighttime) samples

for training of rainfall quantities from 26243 individual MSG scenes.
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4.2.3.3 Tuning and model training

A single-hidden-layer feed-forward neural network was applied as machine

learning algorithm. The spectral channels of MSG SEVIRI as well as the chan-

nel differences served as input nodes (predictor variables). The neural network

was then applied to learn the relations between these spectral information and

rainfall areas or rainfall quantities, respectively. In this context, a sophisticated

pre-selection of input variables is not required, as the network is able to deal with

correlated and even uninformative predictors unless their number is very high

(Meyer et al., 2017b), which was not the case in this study. For the technical

realisation, all steps of model training were performed using the R environment

for statistical computing (R Core Team, 2016). The neural network implementa-

tion from the "nnet" package (Venables and Ripley, 2002; Ripley and Venables,

2016) in R was used in conjunction with the "caret" package (Kuhn, 2016b) that

provides enhanced functionalities for model training, estimation and validation.

Neural networks require two hyperparameters to be tuned to avoid under- or

overfitting of the data: the number of neurons in the hidden layer, as well as

the weight decay. The neurons in the hidden layer represent nonlinear combi-

nations of the input data and their number influences the performance of the

model (Panchal et al., 2011). Weight decay penalizes large weights and controls

the generalisation of the outcome (Krogh and Hertz, 1992). The number of neu-

rons as well as weight decay were tuned using a stratified 10-fold cross-validation.

Thus, the training samples were randomly partitioned into 10 equally sized folds

with respect to the distribution of the response variable (i.e., raining cloud pix-

els, rainfall rate). Thus, every fold is a subset (1/10) of the training samples

and has the same distribution of the response variable as the total set of train-

ing samples. Models were then fitted by repeatedly leaving out one of the folds.

The performance of a model was then determined by predicting on the held back

fold. The performance metrics from the held back iterations were averaged to

the overall model performance for the respective set of tuning values. For the

rainfall areas classification models, the distance to a "perfect model", based on

Receiver Operating Characteristics (ROC) analysis (see Meyer et al. (2016b) for

its application in rainfall retrievals) was used as decisive performance metric. For

the rainfall quantities regression models, the Root Mean Square Error (RMSE)

was used. The number of hidden units were tuned for each value between two

and the number of predictor variables. Weight decay was tuned between 0 and

0.1 with increments of 0.02 (Kuhn and Johnson, 2013b). For training of rain-

fall areas, the threshold that separates rainy from non-rainy clouds according to

the estimated probabilities was an additional tuning parameter. The optimal

threshold was expected to be considerably smaller than 0.5 since the amount of

non rainy samples was higher than the amount of rainy samples. Therefore, the

range of tested thresholds was 0 to 0.1 with increments of 0.01, and 0.4 to 1 with
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increments of 0.1. See Meyer et al. (2016b) for further details of the threshold

tuning methodology.

The optimal values for the hyperparameters that were revealed in the tuning

study (Tab. 4.1) were adopted for the final model fitting. In this step, the model

is fit to all training data using the optimal hyperparameters.

Table 4.1: Optimal hyperparameters for the individual models revealed during the tuning
study and applied in the final model fitting.

No. of neurons Weight decay Threshold

Rainfall areas at daytime 5 0.05 0.07

Rainfall areas at nighttime 5 0.07 0.01

Rainfall quantities at daytime 5 0.05

Rainfall quantities at nighttime 5 0.05

4.2.3.4 Spatial estimations of rainfall

Final models were applied to all hourly MSG SEVIRI scenes from 2010-2014

for the Southern Africa extent to obtain spatio-temporal estimates of rainfall.

Therefore, the clouded areas of a scene were first classified into rainy or not rainy

using the respective model. The rainfall quantities were then estimated for the

estimated rainfall areas. To ensure consistency within one scene, the choice of the

model being applied (either the daytime or nighttime model) was made according

to the mean solar zenith angle of the respective scene. If the mean solar zenith

angle was < 70◦, rainfall for the entire scene was estimated using the daytime

model. For scenes with a mean solar zenith angle > 70◦, the nighttime model

was applied.

4.2.4 Validation

Model estimates and weather station records from the entire year 2013 were

used as independent data for model validation. For the validation of estimated

rainfall areas, all pixels at the location of the weather stations that were classified

as cloudy by the cloud mask product were considered. Therefore the information

from the weather stations about whether it was raining or not was compared

to the model estimate for the respective MSG pixel. The validation data con-

tained 403211 samples during daytime and 565415 samples during nighttime.

Average hourly Probability Of Detection (POD), Probability Of False Detection

(POFD), False Alarm Ratio (FAR) and Heidke Skill Score (HSS) were calculated

as validation metrics. The POD gives the percentage of rain pixels that the model

correctly identified as rain (Tab. 4.2, 4.3). POFD gives the proportion of non-rain

pixels that the model incorrectly classified as rain. The FAR gives the proportion
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of estimated rain where no rain is observed. The HSS also accounts for chance

agreement and gives the proportion of correct classifications (both rain pixels and

non-rain pixels) after eliminating expected chance agreement.

Table 4.2: Confusion matrix as baseline for the calculation of the verification scores
used for the validation of the rainfall area estimates.

Observation

Rainfall No Rainfall

Estimation
Rainfall True positives (TP) False positives (FP)

No Rainfall False negatives (FN) True negatives (TN)

Table 4.3: Categorical metrics for validation of rainfall area estimates.

Metric Formula Range otimal value

Probability Of Detection POD = T P
T P +F N 0 - 1 1

Probability Of False Detection POFD = F P
F P +T N 0 - 1 0

False Alarm Ratio FAR = F P
T P +F P 0 - 1 0

Heidke Skill Score HSS = T P ∗T N−F P ∗F N
[(T P +F N)∗(F N+T N)+(T P +F P )∗(F P +T N)]/2 -∞ - 1 1

To evaluate the ability of the model to estimate rainfall quantities, the cor-

relation between the measured and the estimated hourly rainfall was calculated

using Spearman’s Product Moment Correlation (rho) to account for a non-normal

distribution of the data. RMSE was also calculated. All cloudy data points (in-

cluding non-rainy data points) were used for the validation of rainfall quantities.

The rainfall quantities were further aggregated to daily, weekly and monthly

rainfall sums to assess the performance of the model on different temporal scales.

4.2.5 Comparison to GPM

The results of the presented rainfall retrieval were compared to the rainfall

estimates of the GPM mission. GPM, as a successor of the Tropical Rainfall

Measuring Mission (TRMM), consists of an international network of satellites

designed for worldwide high resolution precipitation estimates (Hou et al., 2014;

Skofronick-Jackson et al., 2017). GPM provides data from March 2014 onwards.

The GPM IMERG product estimates rainfall by combining all available passive-

microwave estimates as well as microwave-calibrated infrared satellite estimates

and data from rainfall gauges. GPM IMERG is available in 6h, 18h and 4 months

latency.

In this study the 4 month latency (final product) with 30 minutes temporal

and 0.1◦ spatial resolution (∼10km x 10km) was used (Huffman et al., 2014). Due

to different data availabilities of GPM IMERG, MSG as well as weather station

data, the comparison was conducted for the overlapping time period late March

2014 to August 2014. GPM was aggregated from 30 minutes to 1h to match the

temporal resolution of the MSG based estimates. Both products were validated
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using the weather station data as a reference. The performance metrics were

compared between the MSG product and the GPM product on an hourly basis.

4.3 Results

4.3.1 Model performance

On average, 60 % of the rainfall observations were correctly identified as rainy

by the model with a high number of scenes having much higher PODs (Fig. 4.3).

The POFD was low (18 % in average) but the estimates featured a high FAR

of 0.80. The average HSS per scene was 0.18. The POD was highest for high

measured rainfall quantities and decreased for lower rainfall quantities (Fig. 4.4).

FAR was highest for low predicted rainfall quantities and decreased for higher

predicted quantities.

The average hourly RMSE was 0.72 mm h−1 (Fig. 4.5). Especially data

points with low or medium measured rainfall could be estimated with low RMSE

(Fig. 4.4). The RMSE was higher for high measured rainfall. Correlation in-

dicated by Spearman’s rho was 0.33 on hourly average. The performance of

modeled rainfall quantities increased with the aggregation level (Fig. 4.6). The

average correlation increased from rho = 0.33 (hourly) to 0.52 on a daily, 0.67

on a weekly and 0.71 on a monthly basis. An overestimation of rainfall is ob-

served especially when aggregated to monthly totals. An example of temporally

aggregated rainfall estimates for 2013 are shown in Fig. 4.7.
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Figure 4.3: Validation of estimated rainfall areas for 2013 on an hourly basis. Each
of the data points is the average performance of one hour. The data are
visualized as "vioplot" where a boxplot is complemented by the kernel density
of the data shown as grey areas at the sides of the boxplot.
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Figure 4.4: Comparison of POD for different hourly measured rainfall quantities as well
as FAR for different predicted rainfall quantities. RMSE was compared for
different measured rainfall quantities. All data points from 2013 were used
for the calculation of the statistics. Thresholds for the three rainfall classes
were set according to the first and third quartiles of the measured hourly
rainfall quantities.
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Figure 4.5: Validation of estimated rainfall quantities for 2013 on an hourly basis. Each
of the data points is the average performance of one hour. See Fig. 4.3 for
further information on the figure style.

4.3.2 Comparison to GPM

Compared to GPM IMERG, the MSG based rainfall retrieval for the period

Mar-Aug 2014 showed a higher POD (0.57) than GPM IMERG (0.28) which

considerably underestimated rainfall events (Fig. 4.8). In contrast, GPM IMERG

had a lower FAR (0.70) than the MSG based model (0.81). However, the FAR

was high for both retrievals. The average HSS was the same for both retrievals

(0.17), but the median HSS for GPM IMERG was 0 which was considerably lower
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Figure 4.6: Validation of estimated rainfall quantities for 2013 at (a) hourly resolution
and on the different aggregation (b) daily, (c) weekly, (d) monthly. Each
of the data points represents a station at the respective level of temporal
aggregation. Rho represents the average correlation for each time step of
the respective aggregation level. For an easy visual interpretation, the data
are presented via hexagon binning where the number of data points falling
in each hexagon are depicted by color.

than using the MSG based retrieval (0.10). Concerning the rainfall quantities,

neither the correlation to measured rainfall nor the RMSE showed significant

differences between both retrievals (Fig. 4.9). The average rho was 0.36 for the

MSG based retrieval and 0.34 for GPM IMERG. The average RMSE was 0.88

for the MSG based retrieval and 0.85 for MSG IMERG.

Fig. 4.10 gives an example of the differences between the MSG based retrieval

and GPM IMERG for 2014/04/24 12:00 UTC where severe floods occurred in the

Eastern Cape province of South Africa. The colour composite of the correspond-

ing MSG scene shows that clouds had a high optical depth in this area. The

pattern is reflected in the estimates of the MSG based retrieval that estimated

rainfall for the areas with high values of optical depth. This was partly confirmed

by the weather station data. However, rainfall was also estimated for areas where

weather stations did not record any rainfall. In contrast, GPM IMERG showed

an underestimation of rainfall areas, but still captured the high rainfall quanti-

ties that were recorded by the weather stations. The summary statistics for this

hour are a POD of 0.75 for the MSG based retrieval and 0.19 for GPM IMERG.

FAR was 0.65 and HSS 0.34 for the MSG based retrieval compared to a FAR
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Figure 4.7: Monthly precipitation sums in mm of the year 2013 as estimated by this
study.

of 0.89 and a HSS of 0.08 for GPM IMERG. The correlation between estimated

and observed rainfall was 0.39 for the MSG based retrieval and -0.06 for GPM

IMERG.

4.4 Discussion

The presented monthly maps reflect the general spatial and temporal rainfall

patterns of Southern Africa as shown in Kruger (2007). They also reflect the

annual characteristics of the year 2013. For example, the heavy rainfall events

over southern Mozambique and the Limpopo River basin during mid January

(Manhique et al., 2015).

The validation of the rainfall retrievals showed promising results but also high-

lights the difficulties of optical satellite-based rainfall estimates. The strength of

the retrieval in terms of rainfall areas classification was a high POD for heavy

rainfall events. The rainfall quantities for the heavy rainfall events were, how-
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Figure 4.8: Comparison of the performance of the MSG based retrieval and GPM
IMERG for rainfall area delineation between March and August 2014. Each
of the data points is the average performance of one hour. See Fig. 4.3 for
further information on the figure style.

ever, underestimated in most cases. The major problem of the model was the

overestimation of rainfall events leading to an overestimation of rainfall quan-

tities. However, false alarms in the retrieval were generally predicted with low

rainfall quantities. In this context, it is of note that in view to the scene-based

validation strategy, FAR can easily increase in dry conditions when there are just

a few false alarms in the estimates and no rainfall was observed by any station.

However, the FAR was still high for hours with a considerable number of rainfall

events. This might be partly explainable by spatial displacement due to parallax

shifts. Though the shift is generally below 1 pixel in this region, even minor

shifts can affect model training as well as the estimates. For future enhancement

of the rainfall retrieval, a correction of the parallax shift (Vicente et al., 2002)

would be appropriate. Differences in spatial and temporal scale are also an im-

portant issue especially since a majority of rainfall events in Southern Africa are

of small spatial and temporal extent. The aggregation to an hour as well as the



4.4 Discussion 67

0
2

4
6

8
1

0

MSG IMERG

●
●

RMSE

m
m

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MSG IMERG

●
●

rho

Figure 4.9: Comparison of the performance of the MSG based retrieval and GPM
IMERG for hourly rainfall quantities between March and August 2014.
Each of the data points is the average performance of one hour. See Fig. 4.3
for further information on the figure style.

assumption that the weather station observation is representative for the entire

pixel are also problematic, though essential. The issue of scale especially affects

the broader resolution GPM IMERG data where a several km sized pixel is val-

idated by a single point measurement. Beside of the issue of scale and spatial

displacement, the retrieval technique depends on the quality of the rain gauge ob-

servations. Although the data was quality checked, common problems associated

with rain gauge measurements e.g. wind drift or evaporation leading to errors

in the ground truth data and affect model training and validation remain (Kidd

and Huffman, 2011). Also, due to different installation dates of the individual

weather stations as well as the natural challenge of maintaining weather stations

in remote areas, no gapless dataset could be compiled. Therefore, different sensor

and data provider dependent calibration techniques, gaps in the time series of the

data as well as the general problems associated with rain gauge measurements

might lead to inconsistencies and uncertainties. However, no reliable alternatives

are available and rain gauge measurements are still considered as most reliable

source of rainfall data.

The retrieval techniques relied on the cloud mask for an initial selection of

relevant data points used for model training, validation and the final spatio-

temporal estimates. Therefore, it can’t be excluded that some data points were

falsely excluded from the analysis as they were falsely masked as being not cloudy

but rainfall was measured on the ground. However, we assume that rainy clouds

are easy to capture by common cloud masking algorithms and that the resulting

bias is therefore comparably small.

Despite the errors and uncertainties associated with the presented rainfall
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m
m

Figure 4.10: Sample satellite scene from 2014/04/24 10:00 UTC represented as a
VIS0.8-IR3.9-IR10.8 false colour composite according to (Rosenfeld and
Lensky, 1998) where cloud optical depth is indicated by red colouration,
cloud particle sizes and phases in green and the brightness temperature
modulates in blue. The rainfall estimates for this scene (estimated using
the daytime model) are shown as well as the corresponding GPM IMERG
product. Observed rainfall is depicted where weather station data were
available. For visualization purposes, the spatial extent of the stations
was increased. White background in the colour composite as well as in the
MSG based retrieval and the GPM IMERG product represent no data due
to missing clouds. In addition, white background in the representation of
the observed rainfall is due to the absence of weather stations.

retrieval, the combination of MSG data and neural networks are a promising

approach. The model presented in this study outperformed the GPM IMERG

product in terms of rainfall area detection where GPM IMERG considerably un-

derestimated rainfall events. This behavior is partly explainable by scale because

GPM IMERG has a coarser resolution of 0.1◦. This makes local processes difficult

to capture which is an disadvantage considering that in Southern Africa especially

small scale convective showers contribute to rainfall sums Kruger (2007). In terms

of rainfall quantities, GPM IMERG and the presented retrieval did not show sig-

nificant differences in correlation. The sample spatial comparison has shown that

GPM IMERG has more differentiated rainfall estimates while the MSG based

retrieval tends to estimate the mean distribution.
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The presented MSG based retrieval is an easy to use method and allows for

time series at a relatively high spatial resolution. Aside of the promising re-

sults compared to GPM IMERG, the daily estimates of the MSG based retrieval

are at least comparable to other products incorporated in the IPWG validation

study IPWG (2016). A detailed comparison could currently not be given since

validation data and strategy were not identical. Incorporation of the presented

retrieval scheme to the IPWG validation study is intended by the authors for

future assessment.

4.5 Conclusions

The rainfall retrieval technique developed in this study provides hourly rainfall

estimates at high spatial resolution based on the spectral properties of MSG

SEVIRI data and neural networks. The retrieval showed promising results in

terms of rainfall area detection and estimation of rainfall quantities. However, the

results also showed that the estimation of rainfall remains challenging. The main

weakness of the presented retrieval was the overestimation of rainfall occurrence.

However, the retrieval could compete with the GPM IMERG product in terms

of rainfall quantity and was even better for rainfall area detection.

High resolution spatial datasets of rainfall is requested by a variety of research

disciplines. The developed MSG based rainfall retrieval is able to deliver time

series from the launch of MSG SEVIRI onward. An operationalization for near

real-time rainfall estimates is intended. It can therefore serve as valuable dataset

where high resolution rainfall for Southern Africa are needed. As an example it

will serve as an important parameter within the "IDESSA" (An Integrative Deci-

sion Support System for Sustainable Rangeland Management in Southern African

Savannas) project that aims to implement an integrative monitoring and decision-

support system for the sustainable management of different savanna types. The

hourly and aggregated rainfall quantity estimations are available from the authors

on request.
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Abstract

Spatial predictions of near-surface air temperature (Tair) in Antarctica are re-

quired as baseline information for a variety of research disciplines. Since the

network of weather stations in Antarctica is sparse, remote sensing methods have

large potential due to their capabilities and accessibility. Based on the MODIS

land surface temperature (LST) data, Tair at the exact time of satellite overpass

was modelled at a spatial resolution of 1 km using data from 32 weather stations.

The performance of a simple linear regression model to predict Tair from LST

was compared to the performance of three machine learning algorithms: Random

Forest (RF), generalized boosted regression models (GBM) and Cubist. In ad-

dition to LST, auxiliary predictor variables were tested in these models. Their

relevance was evaluated by a Cubist-based forward feature selection in conjunc-

tion with leave-one-station-out cross-validation to reduce the impact of spatial

overfitting. GBM performed best to predict Tair using LST and the month of

the year as predictor variables. Using the trained model, Tair could be estimated

with a leave-one-station-out cross-validated R2 of 0.71 and a RMSE of 10.51 ◦C.

However, the machine learning approaches only slightly outperformed the sim-

ple linear estimation of Tair from LST (R2 of 0.64, RMSE of 11.02 ◦C). Using

the trained model allowed creating time series of Tair over Antarctica for 2013.

Extending the training data by including more years will allow developing time

series of Tair from 2000 on.

Keywords Air temperature; Antarctica; Feature selection; Machine learning;

MODIS LST
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5.1 Introduction

Near-surface air temperature (Tair) plays an important role in ecological,

glaciological and climatological processes in Antarctica. Climate change further

raises the need to study the spatio-temporal trends in Tair and its induced re-

gional feedback processes. Therefore, spatially explicit Tair datasets are of high

interest for the scientific community and research effort for its construction is in

high demand (Schneider and Reusch, 2016).

A common approach to obtain spatially explicit Tair datasets is spatial inter-

polation based on station records (Appelhans et al., 2015; Hofstra et al., 2008;

Jarvis and Stuart, 2001; Stahl et al., 2006). However, interpolation methods rely

on a sufficiently dense number of points. Due to the remoteness of Antarctica,

the network of weather stations is sparse (Lazzara et al., 2012) which makes

simple interpolation approaches difficult. The applications of these methods to

Antarctica are therefore limited to a low temporal resolution of e.g. annual means

(Wang and Hou, 2009), rather than aiming at daily products. In order to obtain

medium resolution datasets of Tair, remote sensing is a promising alternative: it

offers spatially explicit proxies for Tair, and is therefore suitable for areas with

low weather station density, such as Antarctica Rhee and Im (2014). Though

Tair cannot be directly measured from space, land surface temperature (LST) is

a widely used derived product from infrared bands and a proxy for Tair Gallo

et al. (2011) due to surface-atmosphere energy exchange processes.

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on-

board the Terra and Aqua spacecrafts acquires LST data four times per day

(two during the day, two during the night) with a spatial resolution of 1km.

MODIS LST was successfully used to estimate Tair for various regions of the

world (Vancutsem et al., 2010; Colombi et al., 2007; Zhu et al., 2013; Sohra-

binia et al., 2014; Mostovoy et al., 2006; Benali et al., 2012; Neteler, 2010; Huang

et al., 2015). Kilibarda et al. (2014) performed a kriging based spatio-temporal

interpolation of global daily temperatures including MODIS LST as predictor.

However, since the focus of this study was on a global Tair prediction, Antarctica

was only marginally represented in the training data. Applications of MODIS

LST to predict Tair for Antarctica are limited to the study of Wang et al. (2013)

who compared monthly averages of MODIS LST with Tair in the Lambert Glacier

Basin in East Antarctica.

The majority of the studies rely on linear regressions or simple bias correc-

tions to estimate Tair from LST alone. However, the linearity of the relation is

questionable. Colombi et al. (2007) found differences in the performance of the

linear model according to daytime and altitude. Vancutsem et al. (2010) no-

ticed variations in the performance depending on region and season, while Benali
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et al. (2012) used several predictors and tested different model structures which

included auxiliary predictors. Also Xu et al. (2012) included land cover type and

altitude in their models to improve the simple linear model between LST and

Tair. Most recently, Janatian et al. (2017) tested the importance of 11 auxiliary

variables in addition to LST in a stepwise regression analysis and revealed julian

day, altitude and solar zenith angle as effective additional predictors for Tair.

Emamifar et al. (2013) used M5 regression trees to model daily Tair in Iran from

MODIS LST and auxiliary variables and highlighted the advantage of tree-based

models for an operational monitoring of Tair. Surprisingly, machine learning al-

gorithms were only rarely applied in the context of estimating Tair using LST

(Xu et al., 2014; Emamifar et al., 2013). However, those methods are good con-

tenders to model Tair, since they can handle non-linearity and highly correlated

predictor variables (Kuhn and Johnson, 2013a; James et al., 2013).

The aim of this study is to create a medium resolution spatially explicit daily

Tair product for Antarctica. In this context, we have tested the performance of

different machine learning algorithms to estimate Tair from LST and auxiliary

variables as an alternative to a simple linear approach.

5.2 Methods

5.2.1 Data and Preprocessing

5.2.1.1 LST

The daily LST data (version 5, Wan, 2008) based on the MODIS sensor

onboard the Aqua and Terra satellites are distributed as the MOD11A1 and

MYD11A1 products Land Processes Distributed Active Archive Center (LP DAAC)

(2013). The MODIS LST products consist of daytime and nighttime measure-

ments at 1 km resolution. Their calculation is based on a split-window algorithm

that uses the emissivities from MODIS bands 31 and 32 that were, in turn, calcu-

lated using information about land cover type, atmospheric column water vapour

and lower boundary air surface Wan (2008). The data are cloud-masked on the

basis of the MODIS Cloud Mask algorithm Ackerman et al. (1998) that applies

typical thresholds in the visible and infrared channels. The MODIS LST data

are stated to be very accurate with a deviation of mostly below 1K in the range

between -10 ◦C and 58 ◦C Wan (2008). Regarding colder environments, West-

ermann et al. Westermann et al. (2012) validated MODIS LST for Svalbard in

Norway and found a bias of 3K. No decrease in performance could be observed

with decreasing temperatures of down to about −40 ◦C.

In this study, the products were not used as temporal aggregates (e.g., 8-day
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composites) but the instantaneous LST values at the respective time of satellite

overpass were used. Aqua and Terra pass Antarctica several times per day since

the overlap of the orbits increases the closer you get to the poles. The prod-

uct consists of data from different overpass times. The overpass times of the

corresponding LST values are used for each pixel in full hours.

5.2.1.2 Station Records

Three sources of automatic weather station data were used as ground truth

in this study. The Antarctic Meteorological Research Center (AMRC) at the

University of Wisconsin (Lazzara et al., 2012) provides data from weather stations

distributed over the entire continent. Air temperature was measured 3 m above

ground level. The Long Term Ecological Research (LTER) programme (Doran

et al., 1995) provides weather station data from the McMurdo Dry Valleys where

air temperature was measured 3 m above ground level. With focus on soil climate,

the United States Department of Agriculture (USDA) provides data from weather

stations in the Ross Sea Region (Seybold et al., 2009). Air temperature from the

USDA sites was measured at 1.6 m above ground. Temperature sensors of all

providers were mounted within radiation shields.

In total, 32 weather stations were used for model training and validation

(Figure 5.1). All weather stations provide data in 15 minutes to hourly temporal

resolution and were, if necessary, aggregated to one hour. Therefore, all measured

Tair values that were recorded within each hour were averaged.

5.2.1.3 Auxiliary Data

The Radarsat Antarctic Mapping Project (RAMP) Digital Elevation Model

(DEM), version 2 (Liu et al., 2015), was used as one of the auxiliary predictor

variables. The 200 m resolution DEM was bilinearly resampled to 1000 m to

match the resolution of the MODIS LST data. Slope, aspect, and skyview factor

(which describes the fraction of visible sky) were derived from this DEM using

SAGA GIS (Conrad et al., 2015). Aspect was classified into north, east, south

and west and used as a categorical variable in the model. The Bedmap2 data

(Fretwell et al., 2013) were used to classify the landscape into ice covered or ice

free areas according to their ice surface elevation information. The month of the

year (Jan-Dec), the season (Spring, Summer, Autumn, Winter) and time of day

(1–24 h) were included as categorical variables, as well as the sensor type (either

Terra or Aqua) to account for potential sensor specific differences in LST.
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Figure 5.1: Map of weather stations used for model training and evaluation overlayed on
a Landsat composite image (U.S Geological Survey, 2007). The McMurdo
Dry Valleys are shown in detail.

5.2.1.4 Compilation of Model Training and Testing Data

MODIS LST data, as well as the auxiliary variables were extracted at the lo-

cation of the weather stations. The MODIS LST values at the respective overpass

times were matched with the corresponding station records. For model training,

a subset of 40% of the data was used, corresponding to 12280 data points. They

were selected by stratified random sampling with respect to the station. The

remaining 60% were used as test subset to assess the model performance and the

problem of overfitting which will be explained in Section 5.2.2.2.

5.2.2 Modelling

5.2.2.1 Algorithms

A simple linear regression between LST and Tair was considered as a baseline

model since it is the most intuitive and widely used method to estimate Tair

from MODIS LST. The three machine learning algorithms Random Forest (RF),

generalized boosted regression models (GBM), and Cubist were considered as

alternative models. These algorithms were chosen for two reasons. First, they

are able to deal with both continuous and categorical variables. Second, these

algorithms showed good performance in Tair interpolations using similar predictor

and response variables in other environments (Appelhans et al., 2015). A major
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advantage of the machine learning algorithms is that, according to the conceptual

designs, they are able to account for different relationships between predictor and

response variables under different conditions (e.g., summer/winter). A split into

separate models which has been found advantageous in, e.g. Huang et al. (2015)

is therefore not necessary. James et al. (2013) and Kuhn and Johnson (2013a)

provide a detailed description of the machine learning algorithms.

The Caret package (Kuhn, 2014a) for R was used as a wrapper package for

the GBM (Ridgeway, 2015), RF (Liaw and Wiener, 2002), and Cubist (Kuhn

et al., 2014) implementations in R. Models were trained in parallel on 16 cores

using the R package "doParallel" (Revolution Analytics and Weston, 2014).

5.2.2.2 Cross-Validation Strategies and Feature Selection to Minimize Overfitting

Overfitting the time series of the training data is a common phenomenon in

spatio-temporal prediction models (e.g., Gasch et al., 2015). This means that

models can very well predict the time series of the weather stations used for

training, but fail in the prediction of "unknown" locations. The term overfitting

usually refers to a poor fit of the testing data due to inappropriate model pa-

rameters Kuhn and Johnson (2013a). However, though it is rarely approached in

literature, we hypothesize that overfitting can also be a result of inappropriate

predictor variables.

Overfitting due to inappropriate predictor variables becomes obvious in the

difference of the model performance estimated by a random test subset com-

pared to the performance estimated by a Leave-One-Station-Out Cross-Validation

(LOSOCV). In order to train a model which is able to successfully predict be-

yond the location of the training weather stations, a selection of robust variables

is required.

Wrapper feature selection methods, that evaluate multiple models, are an

intuitive and effective solution to reduce the number of variables to the most im-

portant ones Guyon and Elisseeff (2003); Kuhn and Johnson (2013a). However,

the most commonly used method for feature selection, recursive feature elimina-

tion, relies on variable importance scores which are calculated using the training

subset solely (Kuhn and Johnson, 2013a). Thus, recursive feature selection does

not account for variable induced overfitting since the subsequent models are based

on the ranked variables from the training dataset. If a variable leads to consider-

able overfitting, it has a high importance in the models. Therefore, this variable

will be ranked as an important variable in the recursive feature selection process

and is not removed in this process, regardless of a resulting high LOSOCV error.

Therefore, a forward feature selection Guyon and Elisseeff (2003) in conjunc-

tion with LOSOCV was applied to remove variables that lead to spatial over-
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fitting. We first trained models using all possible 2-variable combinations of

predictor variables. The best model of these initial models was kept. The num-

ber of predictor variables was then iteratively increased. The improvement of the

model was tested for each additional predictor using LOSOCV. We stopped in-

creasing the number of variables when none of the remaining variables decreased

the LOSOCV Root Mean Square Error (RMSE) within one standard deviation

of the current best model.

Since the process requires considerable computation time, feature selection

was only performed using the fastest algorithm, Cubist, and it was assumed that

the importance of the variables would be similar for all three algorithms.

To estimate overfitting due to inappropriate predictor variables we compared

the performance of the full model (all predictor variables) with the performance

of the model that based on the selected variables. We estimated the performance

using the LOSOCV predictions. Further, to assess the ability of the model to

predict on random test subsets of the data from weather stations used for model

training, we predicted on the held out 60% of the overall data set. Overfit-

ting was estimated by comparing the random test subset performance with the

LOSOCV performance. RMSE and coefficient of determination (R2) were used

as evaluation scores.

5.2.2.3 Final Model Training, Evaluation and Prediction

The predictor variables retained in the feature selection process were used for

training of the final RF, GBM and Cubist models. During model training, the

optimal hyperparameters were identified (parameter tuning). Hyperparameters

are algorithm specific parameters that cannot be directly estimated from the data

but must be specified prior to model training. A majority of the hyperparameters

control the model complexity Kuhn and Johnson (2013a). Therefore they must

be carefully chosen to avoid overfitting due to highly complex model structures

Kuhn and Johnson (2013a). In contrast, a very low complexity might not lead to

an optimal fit of the data. To identify the optimal values, models were repeatedly

trained using different values for the hyperparameters and the performance was

estimated using LOSOCV. While tuning was kept to a minimum (3 different val-

ues per parameter) during the time consuming feature selection, the final models

were extensively tuned (Table 5.1). See (Kuhn and Johnson, 2013a; James et al.,

2013) for a description of the hyperparameters. The optimal values leading to

the lowest RMSE based on LOSOCV were used in the final models.

Models were evaluated according to their LOSOCV RMSE. Further, the final

models were applied on the overall dataset to assess differences in the performance

depending on season and location of the weather stations. Differences were as-
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sessed using t-tests. The Tair predictions were further aggregated to daily, weekly

and monthly estimates by simple averaging of instantaneous predictions.

Table 5.1: Tested values for the hyperparameters of the different prediction models and
the optimal parameters revealed during parameter tuning. N is the number
of predictor variables.

Algorithm Hyperparameter Tested Values Opt. Value

Random Forest mtry 2 to N with increment 1 2

Cubist
committees 1 to 50 with increment 5 31

neighbors 0 to 9 with increment 1 0

GBM

number of trees 25 to 500 with increment 25 75

max depth of interactions 1 to N with increment 1 1

shrinkage 0.01, 0.1 0.01
min observations in
terminal nodes

10 10

5.3 Results

5.3.1 Selected Features

The variable importance scores of the full models that used all predictor vari-

ables revealed the importance of LST to predict Tair (Figure 5.2a). Besides LST,

terrain-related variables were important, followed by month, season and time of

the day. The sensor (Terra or Aqua), as well as the location of the stations on

either ice or no-ice had no relevance for the model outcome.

Using the forward feature selection method explained in Section 5.2.2.2, par-

ticularly the terrain related variables were identified as leading to overfitting.

During forward feature selection, the number of predictor variables was reduced

to only LST and month. However, LST was by far the most important predictor

in the model (Figure 5.2b). Within one standard deviation of this two-variable

model, no further variable could improve the performance.

Figure 5.3 visualizes the problem of spatial overfitting by showing the agree-

ment between measured and predicted Tair using two different validation strate-

gies and two different models. Figure 5.3a,b shows the agreement of the full

model that uses all predictor variables. Figure 5.3c,d shows the agreement of the

model that uses only LST and month as predictor variables. The models were

validated using the 60% random subset (Figure 5.3a,c) or using LOSOCV (Figure

5.3b,d). When the full model was applied to the random test subset, it showed

a very good fit to the measured Tair (RMSE = 6.00 ◦C, R2 = 0.78). However,

when the model was validated by LOSOCV, the error increased (RMSE = 13.00
◦C, R2 = 0.65) which suggests overfitting. Regarding the 2-variable model, the
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Figure 5.2: Relative variable importance revealed by Cubist for (a) the full model and
(b) the model that used variables selected during forward feature selection
only. Variable importance was estimated as the percentage of times each
variable was used in the model Kuhn (2014a).

comparably good results of the full model validated by the random subset could

not be kept because the variables that led to overfitting were missing (RMSE =

9.00 ◦C, R2 = 0.71). When the 2-variable model was validated by LOSOCV, the

differences to the random subset validation were less striking (RMSE = 10.84 ◦C,

R2 = 0.69). However, compared to the full model, the RMSE could be decreased

by 2.16 ◦C. This increase in the LOSOCV performance of the forward feature

selection based model, highlights the importance of the feature selection to avoid

spatial overfitting caused by inappropriate predictor variables.

5.3.2 Model Comparison and Evaluation

The linear model has the form Tair = 0.66× LST − 3.99. The model was able

to predict Tair with a LOSOCV R2 of 0.64 and a RMSE of 11.02 ◦C. GBM was

identified as the best performing algorithm (Figure 5.4) with a R2 of 0.71 and a

RMSE of 10.51 ◦C. The tuned and trained GBM model was therefore chosen as

the final model to create the Tair product. Cubist performed slightly worse than

GBM (RMSE = 10.85 ◦C, R2 = 0.69) and the differences to the linear model were

small. RF showed the lowest performance among the tested algorithms (RMSE

= 11.95 ◦C, R2 = 0.56).

In the following, we focus on the GBM model, since this model was applied

in the creation of the final Tair product. In order to further assess characteristics

of the model predictions, the model was applied to the full dataset.

The interquartile ranges of the measured and predicted data were similar

(Figure 5.5). However, the model was not able to predict very high or very low
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Figure 5.3: Agreement between measured Tair and predicted Tair using Cubist as mod-
eling tool. Models were first trained using the full set of predictor vari-
ables (FULL) and second using only LST and month as predictors that
were revealed during forward feature selection (FFS). Two different vali-
dation strategies were used: Comparison to a 60% random subset of the
total dataset (RSS), as well as Leave-One-Station-Out Cross-Validation
(LOSOCV). The problem of overfitting becomes obvious by comparing the
performance of the full model validated by RSS (a) with the performance
of the full model validated by LOSOCV (b). Using the 2-variable model,
the performance validated by RSS decreased (c) compared to the full model.
Only slight differences between RSS and LOSOCV (c,d) indicate that there
is no considerable overfitting in the 2-variable model. The most important
point is that the 2-variable model could improve the LOSOCV performance
(d) compared to the full model. Data are represented as smoothed scatter
plots where the intensity of the color represent the data point density.

values. Since low Tair values (<40 ◦C) were still frequently measured by the

weather stations, the main weakness of the model was the inability to predict low

temperatures.

Figure 5.6 shows a comparison between the measured and predicted time series

of example weather stations (Figure 5.6a–c), as well as of the average time series

of all 32 weather stations (Figure 5.6d). The seasonal Tair patterns were generally

well captured both by the LST and by the predicted Tair time series. Compared to

the linear model, the GBM model could differentiate between summer and winter
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Figure 5.4: Correlation between measured and predicted Tair based on LOSOCV of (a)
the linear model, (b) RF, (c) Cubist and (d) GBM. The intensity of the
color represent the data point density.
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Figure 5.5: Distribution of measured Tair compared to predicted Tair.
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months and was therefore closer to the measured time series of the McMurdo Dry

Valleys (Figure 5.6a,b), as well as of the average time series. During winter, no

clear advantage of GBM over the linear model could be observed for the McMurdo

Dry Valleys (Figure 5.6a,b). Both models fail in the prediction of the time series of

"Harry" which is located on ice and has considerably lower measured temperature

values (Figure 5.6c). Regarding the average time series, GBM outperformed the

linear model during both, summer and winter.
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Figure 5.6: Time series of the three example weather stations (a) "Brownworth", (b)
"Bull pass" and (c) "Harry", as well as (d) the average time series of all
32 weather stations for the year 2013. "Brownworth" and "Bull pass" are
weather stations located in the McMurdo Dry Valleys. "Harry" is located
on ice. The lines represent the measured Tair (solid black), MODIS LST
(dotted black), GBM model predictions (orange), as well as linear model
predictions (blue).

On average, the RMSE between measured and predicted values was signifi-

cantly higher in the winter months (e.g., Jul, Aug) than in the summer months

(e.g., Jan, Dec) (Figure 5.7). This holds especially true for the weather stations

that are located on ice-free areas such as the McMurdo Dry Valleys (Figure 5.7b).

In general, the errors were significantly lower for the weather stations in ice-free

areas compared to the stations located on ice (p < 0.01) (Figures 5.7 and 5.8).

Regarding the stations located on ice, those in the west and south had the lowest

RMSE. Apart from this observation, no clear spatial patterns could be observed

for these stations (Figure 5.8).
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Figure 5.7: Monthly RMSE of Tair predictions separately for (a) weather stations lo-
cated on ice and (b) weather stations located on ice-free areas.

Figure 5.8: Spatial distribution of RMSE of predicted Tair for the 32 weather station.
The McMurdo Dry Valleys are shown in detail. The weather stations are
overlayed on a Landsat composite image (U.S Geological Survey, 2007).

When the product was aggregated to daily, weekly or monthly data the agree-

ment between measured and predicted Tair increased with the aggregation level

(p < 0.01, Fig. 5.9). Figure 5.10 shows the final product aggregated to monthly

data.
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Figure 5.10: Monthly aggregates of Tair as predicted by the GBM model.
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5.4 Discussion

GBM using LST and month as predictors was the best performing model.

Nevertheless, the simple linear estimation of Tair from LST is competitive in

Antarctica where no considerable land cover differences occur. However, the

machine learning algorithms including the month as additional predictor were

better able to approximate the time series of the weather stations.

The weakness of the model was the prediction of very low temperatures (ap-

prox. below −35 ◦C), where the accordance between measured and predicted Tair

decreased. A direct comparison of the performance of the Antarctica Tair product

to other studies is difficult, not only due to differing environments and temporal

scales, but most particularly due to different validation methods being used. Be-

nali et al. (2012); Hengl et al. (2011); Shi et al. (2016) found considerably higher

agreement between measured and predicted Tair by including auxiliary variables

in their models (RMSE usually below 2.5 ◦C). However, their model training and

validation strategies do not rely on LOSOCV. Since LOSOCV is considered to

be a stricter validation strategy (Gasch et al., 2015), it is not surprising that the

agreement was better in these studies. Keeping in mind that the model perfor-

mance in our study was considerably higher without LOSOCV compared to the

LOSOCV performance (Figure 5.3a,b), it is likely that using a similar validation

approach would lead to less divergent results.

Forward feature selection in conjunction with LOSOCV allowed removing vari-

ables that led to overfitting. Particularly the terrain related variables caused this

problem. One characteristic of these variables is that they change in space but

not in time which means that each weather station has a unique combination of

these variables. We assume that these "static variables" are prone to overfitting

since they are overrepresented in the predictor dataset. The weather station de-

pendent combination of unique properties is quasi-comparable to an ID of the

stations which is then used as predictor variable. Using an ID as predictor, the

model would be able to fit general characteristics of the individual time series

which are, however, not valid for unknown locations. Therefore, these variables

need to be checked using feature selection in conjunction with LOSOCV and

removed if they are misleading.

Though the LOSOCV performance could be improved using selected predictor

variables only, the new Tair product is afflicted with considerable errors that need

to be explained. A first explanation comes from the characteristic of machine

learning algorithms which are not able to predict extreme values (i.e., very low

and very high temperatures) Kuhn and Johnson (2013a). However, since the

model also showed high errors in the Tair range that was well represented in the

training data, this probably only slightly contributed to the overall error.
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It could be shown that the weather stations located in ice-free areas could be

predicted with much higher accuracy compared to the weather stations located

on ice which could not be solved by including the information of ice as predictor

variable. Though the MODIS LST product is cloud masked, we realized that

cirrus clouds could not reliably be removed from the data. Due to the "white on

white" and "cold on cold" problem (Bromwich et al., 2013; Allen Jr. et al., 1990),

cloud classification over Antarctica is challenging in winter months and over snow

or ice covered areas. This causes Tair predictions in winter months and over snow

and ice covered areas more prone to errors than in summer months and/or over

ice-free areas. Also Janatian et al. (2017) reported a significant decrease of model

performance to predict Tair in low temperatures which might also be a result of

inaccurate cloud masking in cold environments.

Another issue that likely affects the model performance is that, due to the

remoteness of Antarctica, the maintenance of weather stations is challenging,

and the number of stations available for ground truthing is very limited. Due to

the difficulty of maintenance, the data are likely afflicted with higher errors than

those of less remote areas. Errors in the data used as ground truth can have a

high impact on the model outcome. An extensive quality check of the weather

station data would be important in future extensions of this study.

We found no systematic patterns of accuracy for the stations located on ice.

This suggests that the causes for the low performance are due to local influences

rather than due to systematic errors in the LST product. Very local microcli-

matic influences that cannot be captured by the 1km resolution are a potential

explanation but also the suggested errors in the station data. Therefore, a station-

specific assessment of error sources is a future task in view to an improvement of

the results.

Despite the errors, the Tair product is of high value for scientific studies in

Antarctica.

The advantage is the high temporal (sub-daily to daily), as well as spatial res-

olution which could only be achieved using remote sensing data. The estimates

provide instantaneous Tair information at the time of overpass of the Terra and

Aqua satellites. These instantaneous estimates are useful to feed models that re-

quire high temporal resolution Tair estimates. However, a variety of studies might

be more interested in temporal aggregates of the product, such as on weekly or

monthly scales. In this context it is of note that the simple averaging to daily

composites, as performed in this study, could be improved by considering the

diurnal Tair cycle (Jin and Dickinson, 1999).

The product allows to monitor the spatio-temporal dynamics of Tair, not

only on a continental scale, but also in a regional scale for example for the Mc-

Murdo Dry Valleys. The Tair product can be considered as a baseline dataset to



88 5 Mapping daily air temperature for Antarctica

understand the regional and local climate variability of Antarctica. This espe-

cially applies to research areas requiring a spatially coherent gridded dataset for

regional climate model evaluation in terms of linking local meteorological pro-

cesses, such as topographically induced warming and cooling events, to non-local

atmospheric circulation patterns (such as low pressure systems). However, it is

of note that the product is currently not suitable to analyse patterns of small

temperature changes. As an example, the estimated increase of Tair by 2.4 ± 1.2
◦C over the West Antarctic Ice Sheet since the 1950s Bromwich et al. (2013) will

most likely not be captured. Against the background of the relevance of climate

change, an improvement of the product will be required. However, a variety of

ecological studies focus on the ice-free areas of Antarctica and on the summer

months where organisms are active (Convey et al., 2014). In this context, the

product provides Tair estimates with acceptable errors, especially when temporal

aggregates (weekly, monthly) are considered.

The model was trained using data from 2013 only. To extend the model over

the entire MODIS lifespan (MODIS LST is available since 2000), it will be nec-

essary to include a subset of data from further years for model training to ensure

that a wider range of inter-annual environmental conditions is included. Since the

month was revealed as the second important predictor variable, it is important

to include data from further years into training to avoid an overfitting to this

specific year. At this point, the advantage of the linear model is of note which

has shown a comparable performance. Since this model relied on LST solely,

and we presume that the relation between LST and Tair is not strongly affected

between interannual changes (except for sensor degradation), it can directly be

applied beyond the training year 2013.

It is of note that the relationship between LST and Tair is influenced by

various other parameters that could not be employed in this study. Mean wind

speed and direction could be responsible for horizontal heat advection, while near-

surface wind turbulence allows for surface-atmosphere energy exchange through

the sensible and latent heat flux. In further studies, it might be worth to combine

the LST data with regional climate model results that estimate parameters such

as the surface energy balance components (net surface radiation, sensible, latent

and ground heat flux).

5.5 Conclusions

A methodology was presented to predict Tair from MODIS LST and auxiliary

data using machine learning algorithms. LST and month of the year were the

most suitable and robust predictors for Tair. Among the tested models, GBM

was the most promising algorithm. However, the differences to the commonly
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used simple linear approach were rather small. The main weakness of the model

was failing to predict extremely low temperatures (e.g., below −35 ◦C). The Tair

estimates are in 1km spatial and daily temporal resolution for the entire continent

for the year 2013. The product is available from the authors on request. Future

research needs to focus on on minimizing errors followed by an extension of the

product to the overall lifespan of the MODIS sensor.
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6 From local spectral measurements to maps of veg-

etation cover and biomass on the Qinghai-Tibet-

Plateau: Do we need hyperspectral information?

Hanna Meyer, Lukas W. Lehnert, Yun Wang, Christoph Reudenbach, Thomas Nauß, Jörg

Bendix

Abstract

Though the relevance of pasture degradation on the Qinghai-Tibet Plateau (QTP)

is widely postulated, its extent is still unknown. Due to the enormous spatial ex-

tent, remote sensing provides the only possibility to investigate pasture degrada-

tion via frequently used proxies such as vegetation cover and aboveground biomass

(AGB). However, unified remote sensing approaches are still lacking. This study

tests the applicability of hyper- and multispectral in situ measurements to map

vegetation cover and AGB on regional scales. Using machine learning techniques,

it is tested whether the full hyperspectral information is needed or if multispectral

information is sufficient to accurately estimate pasture degradation proxies. To

regionalize pasture degradation proxies, the transferability of the locally derived

ML-models to high resolution multispectral satellite data is assessed. 1183 Hy-

perspectral measurements and vegetation records were performed at 18 locations

on the QTP. Random Forests models with recursive feature selection were trained

to estimate vegetation cover and AGB using narrow-band indices (NBI) as pre-

dictors. Separate models were calculated using NBI from hyperspectral data as

well as from the same data resampled to WorldView-2, QuickBird and RapidEye

channels. The hyperspectral results were compared to the multispectral results.

Finally, the models were applied to satellite data to map vegetation cover and

AGB on a regional scale. Vegetation cover was accurately predicted by Random

Forest if hyperspectral measurements were used (cross validated R2 = 0.89). In

contrast, errors in AGB estimations were considerably higher (cross validated

R2 = 0.32). Only small differences in accuracy were observed between the mod-

els based on hyperspectral compared to multispectral data. The application of

the models to satellite images generally resulted in an increase of the estimation

error. Though this reflects the challenge of applying in situ measurements to

satellite data, the results still show a high potential to map pasture degradation

proxies on the QTP. Thus, this study presents robust methodology to remotely

detect and monitor pasture degradation at high spatial resolutions.

Keywords Pasture degradation; Qinghai Tibet Plateau; Hyperspectral measure-

ments; Regionalization; Random Forests; Biomass; Vegetation cover
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6.1 Introduction

Livestock grazing is the dominant land-use of the grasslands on the Qinghai-

Tibet Plateau (QTP). The pastures are the economical basis for the Tibetan

people, providing forage for approximately 13 million yaks and 41.5 million sheep

(Long et al., 1999) and have been formed by thousands of years of pastoralism

(Miehe et al., 2009). However, in the last decades the Tibetans are faced with

increasing grazing pressure caused by increasing population numbers (Harris,

2010). Pasture degradation due to over-grazing is presumably the consequence

which is strengthened by climate change (Lehnert et al., 2016) and improper

grazing management (Cao et al., 2013). The degradation of the pastures is of

significant economic importance for the population. In addition, it affects even

larger scale patterns such as the discharge flow rates and sediment redistribu-

tion in major river catchments (Asner et al., 2004) or an alteration of radiation

feedback (Gong Li et al., 2000).

Values for the extent of pasture degradation on the QTP vary heavily, because

studies are conducted in a subjective way, are poorly documented, or cover only

small spatial extents (Harris, 2010). To overcome these spatial deficits, remote

sensing based approaches are needed. Therefore, satellite images with a high

spatial resolution taken with sensors like WorldView-2 (WV), RapidEye (RE)

or Quickbird (QB) must be analyzed. Due to the large spatial extent and the

difficult access to the area, semi-automatic approaches requiring very little field

data would be advantageous.

Proxies for pasture degradation on larger scales were successfully derived from

multi- (Wessels et al., 2008; Zha et al., 2003) as well as hyperspectral (Beeri et al.,

2007; Huang et al., 2004; Lehnert et al., 2014) remote sensing data. While veg-

etation cover is the most frequently used proxy for pasture degradation in mul-

tispectral approaches (Gao et al., 2010; Liu et al., 2004; Lehnert et al., 2015b),

hyperspectral data were used to quantify further proxies for pasture degradation

including biomass (Itano and Tomimatsu, 2011), species diversity (Fava et al.,

2010) and chemical foliage composition (Kokaly and Clark, 1999; Lehnert et al.,

2013, 2014). The most commonly considered hyperspectral indices to estimate

these proxies encompassed shape and size of absorption features (Mutanga and

Skidmore, 2004), red edge parameters (Mutanga and Skidmore, 2007), vegeta-

tion indices as well as narrow band indices (Thenkabail et al., 2002). Though

some studies compared indicators derived by spectrometer measurements with

satellite-derived indices (Numata et al., 2008) there has been little research on

applying revealed relationships between the spectrometer-derived hyperspectral

indices and proxies for pasture degradation on larger scale multispectral satellite

images (Liu et al., 2004; Psomas, 2008).
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This study is aimed at assessing the suitability of hyper- and multispectral

remote sensing data to regionalize proxies for pasture degradation on the QTP.

Therefore,

1. it should be tested if a high spectral resolution of hyperspectral data com-

pared to multispectral approaches considerably improves the estimation

accuracy of machine learning models to derive vegetation cover and above-

ground biomass (AGB) as proxies for pasture degradation, and

2. the usability of spectrometer measurements should be assessed to derive

models applicable to regionalize pasture degradation proxies based on high

spatial resolution multispectral satellite images.

6.2 Data and methods

A valid and comprehensive dataset of field observations to ensure a thorough

training and validation of the derived parameter estimations is a prerequisite to

perform a regionalization of pasture degradation proxies on the QTP. Therefore,

this section is divided into a short description of the study area followed by the

acquisition of field data and the description of the satellite data. The main part

describes the derivation and regionalization of pasture degradation parameters

using hyper- and multispectral data.

6.2.1 Study area

Alpine meadows and alpine steppes are the dominating vegetation types on the

QTP (Hou, 2001) (Fig 6.1). Alpine meadows can be found at altitudes between

3500 m and 4500 m a.s.l. where annual precipitation exceeds 400 mm (Sheehy

et al., 2006). They usually feature a closed vegetation cover which is unique

among the vegetation of the QTP (Miehe, 2004). Alpine meadows are composed

of plants of the genus Carex (Miehe et al., 2008b) (partly former Kobresia, Global

Carex Group, 2015), where the dominant species Carex parvula typically forms a

thick turf-layer protecting the soil surface against erosion (Miehe et al., 2008b).

In degraded areas, the turf is less intact (Miehe et al., 2011b). Alpine steppes

are dominated by species of the genus Stipa. The vegetation cover is typically

less than that of alpine meadows and does not have a sod layer. In addition to

grasses, cushion plants characterise this vegetation type (Miehe, 2004; Sheehy

et al., 2006). For a detailed description of the vegetation types refer to Miehe

et al. (2008a,b); Miehe (2004); Sheehy et al. (2006).
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Figure 6.1: Map of the study area including vegetation types considered in this study and
the position of the 18 sampling locations. The distributions of vegetation
types are from Hou (2001) and Miehe et al. (2008b).

6.2.2 Field work

To record a comprehensive dataset regarding the spectral and degradation

proxies, 18 sampling locations on the QTP were investigated in 2011 and 2012

between mid June and early September, when the growth of vegetation is high-

est on the plateau (Fig. 6.1, Tab. 6.1). The sites were chosen with the aim to

cover different areas of alpine steppes and alpine meadows and were restricted to

accessability rights.

Hyperspectral measurements and RGB photography to obtain vegetation cover

were taken following grazing gradients starting at a small villages or camp sites

and moving away from them. The length of the transects was variable depending

on the distance to neighbouring settlements or was finished when fences led to a

rapid change in gradients. The direction of the transects was chosen such that the

aspect and slope remained fairly constant throughout the transect. Along each

transect, measurements were performed in predefined distances. The distance

between sites was 15 m in the first third of the transect. Moving away from the

settlement, we increased the increments to 30 m in the second and 60 m in third

part of the transect to account for the non-linearity of cattle density with in-

creasing distance from the settlements (Sternberg, 2012) which affects vegetation

cover and biomass. At each location, a representative site near the settlement

and a site at the end of the transect was determined for biomass measurement.
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Table 6.1: Overview of the 18 locations which were sampled during field work in 2011
and 2012.

Vegetation Number of

Site Lat. Lon. Year Type Spectral measurements AGB samples

Aze 101.89 33.7 2011, 12 meadow 147 1

Baganxiang 96.56 33.96 2012 meadow 188 6

Bayankala 97.61 34.08 2011 meadow 4 0

Daleg 99.64 33.15 2012 meadow 77 2

Huang He 98.26 34.6 2011 steppe 16 0

Koko Nor 99.81 36.7 2011 meadow 5 0

Latse 86.85 29.38 2012 meadow 17 0

Luqu 102.42 34.54 2011 meadow 3 0

Maqu 100.23 34.49 2011 meadow 6 0

Moincer 80.73 31.15 2012 steppe 110 5

Nam Tso 91.13 30.79 2012 meadow 191 6

Qumahe I 94.92 34.85 2012 meadow 237 2

Qumahe II 94.99 34.88 2012 steppe 88 1

Sazin Gompa 99.82 35.5 2011 meadow 6 0

Tianzhu 102.79 37.19 2011 steppe 3 0

Xicheng 101.57 38.04 2011 steppe 6 0

Xinghai 99.98 35.61 2011 steppe 8 0

Zhidoi 95.74 33.82 2011, 12 meadow 71 2

6.2.2.1 Spectral measurements

Hyperspectral measurements were taken using a HandySpec Field spectrom-

eter (Tec5 AG, Oberursel, Germany) measuring from 305 to 1705 nm with a

spectral resolution of 1 nm. The device has two channels which cross at 1050

nm. Spectrometer measurements were conducted between 10 am and 5 pm using

direct and indirect radiation from the sun as light source. Measurements were

calibrated with a white panel every time the spectrometer was turned on. In

addition, the device was recalibrated if light conditions changed. Reflectance was

measured from small subsets of the ecosystem (termed "site" in the following),

corresponding to a circle of 20 cm in diameter at every 10 meters on the transect.

Sandmeier et al. (1998) investigated BRDF effects of grass and found anisotropic

factors of approximately 1 for a similar measurement setup. Because the vegeta-

tion height is considerably lower at the QTP than in the study of Sandmeier et al.

(1998), we did not correct our hyperspectral samples for bi-directional effects. In

total 1183 spectra were sampled at the 18 locations. The exact geographical

position of all sites was recorded using a differential GPS (Topcon HiPer II) in

postprocessing mode.
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6.2.2.2 Proxies for pasture degradation

Vegetation cover of the field of view of each hyperspectral measurement was

assessed by RGB image analysis. Therefore a common digital camera was po-

sitioned at a fixed height directly under the spectrometer sensor and one image

covering the field of view of the sensor was taken. Vegetation cover was then as-

sessed by performing a simple threshold classification. See Lehnert et al. (2015b)

for further information on this method. The percentage of green vegetation pixels

in the image (i.e. vegetation cover) was used as one of the response variables in

the model. The AGB was sampled on 25 of the measured sites. Therefore, the

AGB on 0.5 x 0.5 m plots was completely cut directly above the surface. The

harvest was air dried and weighted. See Tab. 6.2 for a summary of the vegetation

cover and AGB data.

Table 6.2: Summary statistics of the vegetation cover and AGB samples which were
used as response variables in this study.

Summary Statistic Vegetation cover (%) AGB (g/m2)

Minimum 0.1 14.7

Maximum 100.0 112.9

Mean 55.0 37.4

Standard deviation 28.1 24.2

6.2.3 Satellite data

QB, RE and WV images were ordered in advance of the field work for each

of the sampling locations. The data had spatial resolutions of 2 m (QB), 2

m (WV) and 5 m (RE) respectively. QB features four channels, RE has an

additional channel in the red edge and the 8 channels of WV nearly cover the

whole spectrum from 400 to 1000 nm with a high spectral resolution in the red

edge (Tab. 6.3). The final set of satellite images are shown in Tab. 6.4.

6.2.4 Methodology to remotely derive pasture degradation parame-

ters

All processing steps were performed using R Version 3.2 (R Core Team, 2015)

if not mentioned otherwise. Hyper- and multispectral functionality was provided

by the R package "hsdar" (Lehnert et al., 2015a). The R packages "caret" (Kuhn,

2014a) and "randomForest" (Liaw and Wiener, 2002) were used for training of the

machine learning models, and the "raster" package (Hijmans, 2015) was used in

the upscaling process. Fig. 6.2 gives an overview about the individual processing

steps which are described in the following.
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Table 6.3: Overview of the spectral bands of the three satellite sensors QuickBird, Rapid-
Eye and WorldView-2.

QuickBird RapidEye WorldView-2

Channel from to from to from to

1 450 520 440 510 401 453

2 520 600 520 590 448 508

3 630 690 630 685 511 581

4 760 900 690 730 589 627

5 760 850 629 689

6 704 744

7 772 890

8 862 954

Table 6.4: Summary of the satellite images which were available for this study.

Location Sensor Acquisition Date

Aze WorldView-2 2012-09-02

Huang He RapidEye 2011-08-28

Moincer QuickBird 2012-07-23

Namco QuickBird 2012-09-12

Qumahe QuickBird 2012-09-05

Tianzhu WorldView-2 2011-09-12

Zhidoi WorldView-2 2012-08-13

6.2.4.1 Calculation of predictor feature spaces

The study aims to compare the suitability of hyper- and multispectral re-

motely sensed data to estimate pasture degradation parameters. Therefore, the

hyperspectral data acquired in the field were first resampled to QB, RE and WV

channels. Spectral resampling has been performed using the spectral response

functions of the respective sensors. The resulting simulated multispectral data

are not affected by side effects typical for satellite data such as atmospheric influ-

ences or the delay between field and satellite data acquisitions. This is ensured

because of the small distance between sensor and object on the ground as well as

the instantaneous measurement of vegetation cover (using the instantaneous RGB

image) or biomass (cutting at the same day as measurements were taken). The

multispectral information used for the models were not taken from the satellite

images directly since vegetation cover and AGB were sampled on a scale which

was smaller than the resolution of one pixel. This approach allows to directly

compare hyper- and multispectral results since the data source is identical. From

the hyperspectral and from each multispectral dataset, separate feature spaces
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Figure 6.2: Schema of the processing flow. The white boxes represent datasets taken
in the field. The gray colors depict different processing steps to answer the
main objectives. Rectangles are processing steps and rhombs are datasets.

were compiled. For comparability to the multispectral satellite images, only the

range from 305 to 1000 nm was considered in the hyperspectral dataset. The

feature spaces consisted of normalized band indices similar to the normalized

difference vegetation index (NDVI) but including all possible band combinations

(Thenkabail et al., 2002; Psomas et al., 2011):

NBIλi,λj =
Rλi − Rλj

Rλi + Rλj
(6.1)

Here, R is the reflectance at the wavelength λi or λj. As an additional predictor

variable, the vegetation type at the respective sampling location was included as

indicated by Hou (2001) and verified or adapted by expert knowledge. For AGB

modeling, vegetation cover was used as a second additional predictor variable.

6.2.4.2 Estimation of pasture degradation parameters using Random Forests

Machine learning algorithms such as Random Forests (RF) (Breiman, 2001a)

are known as being able to deal with complex interacting as well as highly cor-

related predictor variables as it is the case regarding spectral bands of optical

sensors. A valuable overview as well as practical guide for the usage of RF can

be found in Kuhn and Johnson (2013a) and James et al. (2013). Though other

machine learning algorithms as for example neural networks or support vector

machines might perform equally well, RF is an intuitive, computationally effi-

cient and easy to use method which does not require any preprocessing of the

variables.
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In this study RF was used in conjunction with recursive feature elimination.

Recursive feature elimination fits the model first with all predictor variables, i.e.

with all variables in the predictor feature spaces. It then calculates variable im-

portance according to Liaw and Wiener (2002) and removes the least important

variables. In the next step the model is re-calculated with the updated set of vari-

ables. This step is repeated for different numbers of variables. The best number

and combination of variables is then determined by comparing the performance

of the individual models.

As settings for each RF model, a number of 500 trees was used. The number

of predictor variables randomly selected at each split (mtry) was tuned between 2

and the number of predictor variables in the respective feature space as suggested

by Kuhn and Johnson (2013a). Since especially the AGB data set is rather small,

an independent test data set would not be truly representative for the overall data

set. Therefore, instead of splitting the data into training and test data, a leave-

one-location-out cross validation for vegetation cover modeling and a 50 times

repeated 3 fold cross validation for AGB modeling was performed to assess the

error of estimation. Leave-one-location-out means that models are repeatedly

trained by leaving the data from one of the 18 locations out. Therefore, the size

of the validation data varied between 3 and 237 samples. The vegetation cover

of the remaining station was then predicted and compared to the measured data

to estimate the models ability to predict vegetation cover at unknown locations.

The error assessment of the AGB modeling could not be performed using a leave-

one-location-out cross validation due to the low sample size. A repeated three

folds cross validation to account for the small size of the data set (25 samples) was

calculated instead. Thus, the dataset was randomly partitioned into 3 equally

sized folds. Consequently, the size of the validation data for each model run was

between 8 and 9 samples. Models were then iteratively trained by leaving one of

the folds out and predicting on the remaining fold. The procedure was repeated

50 times.

Separate models were trained for the hyper- and each multispectral data of

QB, RE and WV. As predictors, all variables in the respective feature space that

were identified as important variables during feature selection were used. The

cross validated R2 as well as the root-mean-square error (RMSE) values were

compared among the hyper- and the multispectral models.

6.2.4.3 Regionalization

The satellite images were preprocessed prior to the usage for regionalization

of degradation parameters. Preprocessing included radiometric, geometric and

atmospheric correction. The atmospheric correction was performed using the

6S code (Kotchenova et al., 2006) which was extended as described in Curatola
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Fernández et al. (2015). See Lehnert et al. (2015b) for a detailed description of

the parametrization of the 6S-correction for the QTP as well as all other steps in

preprocessing. NBIs were calculated for the satellite images. The pastures and

the surrounding grassland area which were investigated in situ, were manually

defined in the satellite images. Subsequently, biomass and vegetation cover have

been estimated for all pixels belonging to the investigated areas. The performance

of the regionalization was validated by comparing the measured values with the

predicted values at the respective site where the samplings were performed.

6.3 Results

6.3.1 Feature selection and predictive importance of NBIs

Regarding the prediction of vegetation cover, the NBIs selected for final RF

training in the feature selection step indicated that important predictor variables

were those including at least one band in the red edge or those calculated from

channels between the green and the red part of the electromagnetic radiation

(Fig. 6.3). The NBIs selected for final training of AGB did not show such a clear

pattern but a majority of the important NBIs were combinations of green bands

and red edge bands (Fig. 6.4).

6.3.2 Accuracies of estimations based on hyper- and multispectral

data

Using cross validation to estimate the accuracies of the models when faced

with unknown data, the model using hyperspectral bands for predicting vege-

tation cover showed a high performance of R2 = 0.89 and a RMSE of 9.26%

(Tab. 6.5). The loss of explained variance was only 1% when multispectral NBIs

were used instead of hyperspectral ones (Tab. 6.5). There were no relevant dif-

ferences between the three sensors regarding the ability to predict vegetation

cover.

The performance of the models to predict AGB was lower. Using the hy-

perspectral feature space, the cross validated R2 was 0.31 and the RMSE was

20.71 g. As for vegetation cover, a resampling to multispectral bands of QB, RE

and WV did not affect the performance of the resulting models. A resampling

to WV even yielded a slightly higher R2 of 0.35 compared to the hyperspectral

model.
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Figure 6.3: Correlograms depicting the R2 values (color) of linear regressions between
NBIs calculated from reflectance values at the x- and y-axes and vegetation
cover. Optimal performing NBIs in the RF model revealed by recursive
feature selection are marked by red squares. In the hyperspectral model only
the 100 best performing NBIs are depicted. Models used all hyperspectral
NBIs (a) as predictor variables or NBIs of bands resampled to QB (b), RE
(c) , WV (d).

Table 6.5: Cross validated results of the feature selection with RF training for the dif-
ferent models calculated in this study. Units of RMSE are % and g/m2

respectively.

Model No. of Variables R2 RMSE

Vegetation cover

Hyperspectral 1350 0.89 9.26

Quickbird 7 0.88 9.68

Rapid Eye 11 0.88 9.65

World View-2 28 0.88 9.66

AGB

Hyperspectral 3500 0.32 20.71

Quickbird 5 0.32 20.95

Rapid Eye 8 0.31 21.25

World View-2 30 0.35 21.28



6.3 Results 103

Figure 6.4: R2 values of linear regressions between NBI and AGB represented by color.
See Fig. 6.3 for further explanations.

6.3.3 Application to satellite data

Fig. 6.5 shows the results of the models applied to a sample satellite image.

In this case the QB image from the site Qumahe was chosen since this location

features a wide range of vegetation cover and AGB. The performance of the

model applied to the satellite images decreased compared to the simulated images

(Fig. 6.6, 6.7). On average, the performance of the vegetation cover models

dropped from an overall R2 = 0.99 using the simulated spectra to R2 = 0.74.

While the performance using the simulated spectra did not change between

the individual satellite sensors, the performance differed when applied to the

satellite images. The vegetation cover samples which were located in QB images

could be predicted with a R2 of 0.48. The results showed a high performance for

sites with low vegetation cover, whereas high vegetation cover sites (> 0.4) were

underestimated by the model (Fig. 6.6 b). The samples located in RE scenes

were predicted with a R2 of 0.53 and the WV samples with R2 = 0.87. The RE

model results showed that sites with low vegetation cover could successfully be

separated from sites with high vegetation cover (Fig. 6.6 d). However, it was

lacking an accurate grading within the two clusters.

Regarding AGB, the overall R2 decreased from 0.94 to 0.64 when satellite NBI

values were used as predictor variables rather than the simulated satellite bands



104 6 From spectral measurements to maps of pasture degradation

from the in situ spectral measurements. The predicted AGB was not evaluated for

the individual sensors since the sample size was too small to achieve meaningful

results.

The distribution of the vegetation cover values at the different locations dif-

fered largely in that the highest vegetation cover values were observed in the

eastern declivity while vegetation cover values in the arid western part were low-

est (Fig. 6.8). The vegetation cover in the transition zone between Alpine steppes

and Alpine meadows were highly variable. Here, values from below 10% up to

80% cover were observed. The distribution of biomass estimates generally fol-

lowed that of the vegetation cover (Fig. 6.9). In general, the differences were less

pronounced and higher ranges were observed. Especially in the transition zone,

the distributions were complex with multiple maxima.
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Figure 6.5: Example of the spatial predictions at the loation "Qumahe". The QB scene
is depicted as false color composite highlighting green vegetation (a). The
albedo values in this image were used to predict vegetation cover (b) and
AGB (c).
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Figure 6.6: Validation of the vegetation cover models. (a) shows the predictions for all
sensors, (b), (c), (d) focus on QB, RE and WV, respectively. Dark gray
points represent the results from models using the simulated spectra and
light gray points represent the results when the models are applied to the
satellite images.
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Figure 6.7: Validation of the AGB models. The predictions for all sensors are repre-
sented. See Fig. 6.6 for further explanation.

6.4 Discussion

Our approach based on NBIs and RF to predict vegetation cover and AGB

as proxies for pasture degradation on the QTP yielded promising results. This

highlights the great potential of machine learning algorithms to derive vegetation
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Figure 6.8: Distribution of vegetation cover values at the different locations where satel-
lite data was available. For axis labels see the plot at Nam Tso location.
Note that outliers are omitted in the boxplots; lines and boxes correspond
to extreme values, the first quartile, third quartile, and the median.

Figure 6.9: Distribution of biomass values at the different locations where satellite data
was available. See Fig. 6.8 for further explanations.

parameters from remotely sensed datasets. This has already been shown regard-

ing the estimation of e.g. the leave area index (Vuolo et al., 2013) or chlorophyll



6.4 Discussion 107

content (Verrelst et al., 2012). Our results highlight the high ability of all tested

satellite sensors to predict vegetation cover using RF as a modeling tool. Al-

though, the large scale prediction of AGB was more afflicted with uncertainties

than that of vegetation cover, the accuracies were higher than in previous studies

only using vegetation indices as proxies for biomass (Yang et al., 2009).

Resampling to multispectral bands only resulted in a slight decrease of the

performance compared to the hyperspectral models. Therefore, the tested multi-

spectral satellite sensors provide a sufficient spectral resolution to estimate vege-

tation cover and AGB. The usage of hyperspectral data as e.g. applied in Psomas

et al. (2011) or Beeri et al. (2007) for AGB modeling is therefore not necessary.

Consequently, multispectral datasets are preferred for the task of vegetation cover

and AGB modeling on the QTP, because hyperspectral sensors have a lower data

availability and higher computational effort.

Though the models showed a high performance using the simulated spectra of

QB, RE, WV, the performance decreased when applied to the satellite images.

The step to actually transfer models based on in situ measurements to satellite

data was not performed in the majority of the studies aiming to reveal the poten-

tial of in situ spectral measurements to map pasture characteristics (e.g. Shen

et al. (2008); Fava et al. (2010); Numata et al. (2008). However, estimates about

the loss of performance are important to assess the potential of in situ measure-

ments in a regionalization of pasture degradation. The decrease in performance

can be explained by a combination of several factors including the spatial scale

of the satellite images, time gaps between measurement and image acquisition

as well as small deviations between the measured site and the actual position

in the image. Due to the larger scale of the satellite image, heterogeneity in

vegetation cover and AGB or even patchiness within the extent of a pixel may

affect the results. To overcome this problem, the measured area must be abso-

lutely representative for the whole pixel in which they are located. However, this

can not always be taken for granted, especially not in the alpine steppes where

patchiness is partly a characteristic of the vegetation type. The issue of scale is

clearly reflected by the data: WV with the best spatial resolution is closest to the

performance of the simulated spectra and QB with a lower resolution showed the

lowest performance. The issue of patchiness of the vegetation is reflected in the

QB based model (Fig. 6.6 b): Since most of the sites in the QB model are from

alpine steppe, sites with high vegetation cover are compensated when the size

of a whole pixel is considered. Therefore, the model underestimated vegetation

cover of sites which actually had a high cover. A truly direct comparison between

the QB, RE and WV models is not possible since the images are from different

locations, thus the sample size as well as the range of the observed vegetation

cover and AGB is not the same for all images.
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Nevertheless, one must consider that the issues of spatial scale, time gaps as

well as small location errors affect the validation of the model. Since the model

was calculated using spectra from the exact position where vegetation cover was

determined and AGB was harvested, and also considering that there was no time

gap between determination of the response variables and the measurement of the

spectra, the regionalization might be even better than shown by the validation

results.

Aside from the issue of scale, the data reflect a common drawback of the RF

method. Since RF is an ensemble method that averages the predictions of several

individual models, extreme values cannot be captured. This pattern becomes

obvious in the validation of the WV based models (Fig. 6.6 d) where a saturation

effect regarding vegetation cover > 80% is the consequence. However, since most

of the area features a lower plant cover, this saturation will only have an effect

in extremely moist areas at the eastern declivity (Lehnert et al., 2015b).

Our estimations of vegetation cover revealed distinct patterns regarding the

large scale differences of the plateau’s vegetation and its small scale variability.

Generally, estimates of vegetation cover are difficult to be compared to observa-

tions from literature since most studies report sums of species cover rather than

overall cover values. If compared to other field studies in the western part, our

model tended to underestimate the vegetation cover in the arid western part by

approx. 5 - 10% (Miehe et al., 2011a). In the transition zone, the estimations of

our model were in good agreement to values published from field surveys (Babel

et al., 2014). The spatial pattern of biomass estimations were less pronounced

than those for vegetation cover. This highlights that the biomass models were

largely independent from the vegetation cover observed at the point of measure-

ment. Thus, separate models have to be trained to estimate biomass on the QTP

rather than to use simple transfer functions between vegetation cover - or even

NDVI - and biomass (Shen et al., 2008). Our biomass estimations were similar

to other field observations (Yang et al., 2009).

It could be shown that in situ measurements are well suited to establish reli-

able models that are able to predict vegetation cover and AGB based on NBIs.

The advantage of the models which are calculated using measurements of differ-

ent locations on the QTP is twofold. (1) They can be applied to a wide range

of high resolution satellite sensors which is particularly important because of a

lack of data availability on the QTP. (2) The approach allows estimating pasture

degradation proxies at remote locations which may be partly outside of the inves-

tigated area. This can not be achieved if models would be calibrated by directly

using the satellite data as predictors such as in e.g. Zha et al. (2003).

Field samplings were carried out at 18 locations on the QTP and regionaliza-

tion bases on 7 satellite images. Though the locations were selected with regrad
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to representativity for the respective area and a view to obtain a full gradient

of vegetation coverage, it is of note that a direct transferability of the models

to the entire plateau must be considered with care. It is of further note that

due to the small sampling size of AGB, a leave-one-location-out cross-validation

of the AGB models was not possible, therefore the transferrability of the model

to "unknown" locations could not be assessed. In further studies, it would be

desirable to extend the database of ground truth data in order to improve the

significance of the AGB model.

The seasonality of the vegetation as well as long-term trends have been studied

on a low spatial resolution (Jin et al., 2013; Lehnert et al., 2016; Sun et al., 2013;

Zhong et al., 2010). Those studies show that there are pronounced seasonal

changes in the phenology of the grasslands. However, the proxies for pasture

degradation provided by our study give an instantaneous impression about the

status of the pastures on a high spatial resolution. The assessment of trends

and phenological changes on such a high spatial resolution is unfortunately not

possible. Nevertheless, future satellite missions (e.g. sentinel) may provide more

appropriate sources of data.

6.5 Conclusions

The aims of this study were (i) to test if hyperspectral data outperforms

multispectral data when estimating vegetation cover and AGB on the QTP, and

(ii) to assess the possibility to derive high spatial resolution maps of these pasture

degradation proxies. It has been shown that in situ measurements from different

sites are suitable to calculate models that predict pasture degradation proxies.

In this context, RF has been shown to be a promising tool to deal with the

high amount of predictor variables. Whilst vegetation cover could be estimated

with high accuracy, the prediction of AGB was less accurate and is a challenging

pasture degradation proxy for future studies.

Regrading our first aim, the spectral resolution of the three commonly used

high resolution satellite sensors QuickBird, RapidEye and WorldView-2 provide

sufficient information. Thus, hyperspectral data have no advantage compared to

multispectral data in the scope of vegetation cover and AGB modeling.

Concerning the second aim it could be shown that though the simulated satel-

lite bands using hyperspectral measurements as basis were equally well perform-

ing as the hyperspectral models, the performance decreases when actually applied

to the satellite data. This emphasizes the issue of scale differences between the

locally taken samples and the spatial resolution of the images. The mentioned

issues in the regionalization process are not solely subject to this study but a
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challenge that all studies aiming at transferring in situ measurements to a re-

gional scale are faced with. Despite these uncertainties, the results highlight the

potential of locally taken samples in combination with multispectral satellite data

for the plateau wide regional mapping of pasture degradation proxies.

This study provides a first attempt to derive high resolution maps of pasture

degradation proxies on the QTP which is urgently required to gather spatially

explicit information on pasture degradation. The knowledge of pasture degrada-

tion is important for local people and politicians to maintain ecosystem services

provided by the largest high mountain grassland ecosystem of the world.
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7 Automatic classification of Google Earth images for

a larger scale monitoring of bush encroachment in

South Africa

Annika Ludwig, Hanna Meyer, Thomas Nauß

Abstract

Bush encroachment of savannas and grasslands is a common form of land

degradation in the rangelands of South Africa. To assess the carrying capacity of

the land and to understand underlaying processes of bush encroachment, continu-

ous monitoring of this phenomenon is needed. The aim of this study is to provide

training sites for satellite-based monitoring of bush encroachment in South Africa

on a medium spatial resolution satellite sensor (e.g. MODIS or Landsat) scale.

Since field surveys are time consuming and of limited spatial extent, the satellite

based creation of training sites using Google Earth images is intended. Training

pixels for woody vegetation and non woody land cover were manually digitized

from 50 sample Google Earth images. A Random Forests model was trained

to delineate woody from non woody pixels. The results indicate a high perfor-

mance of the model (AUC=0.97). The model was applied to a further 500 Google

Earth images with a spatial extent of 250 x 250m. The classified images form the

database of training sites which can be used for larger scale monitoring of bush

encroachment in South Africa.

Keywords Bush encroachment; Environmental Monitoring; Google Earth; Ran-

dom Forests; Rangelands; South Africa
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7.1 Introduction

Bush encroachment of arid and semi-arid savannas and grasslands is seen as

a common form of land degradation in the rangelands of South Africa. Bush

encroachment is defined as the suppression of palatable grasses and herbs by

woody vegetation which are palatable to browsers but not eaten by the majority

of domestic livestock (Ward, 2005). The negative economic consequences are

enormous since grass dependent livestock represents the main income for many

local farmers who are now faced with a reduced carrying capacity of their land

(Ward, 2005). Therefore, a monitoring of bush encroachment is needed for several

reasons: it allows farmers to identify locations with upcoming bushes giving them

a tool for management and allows them to assess the current carrying capacity of

their land. It also serves scientists as a baseline to reveal the yet unknown causes

of bush encroachment.

Since spatially extensive field surveys are very cost extensive, remote sensing

represents the only way to meet the demand of a high resolution, quasi-continuous

and area wide monitoring. There are a number of case studies aiming at mon-

itor bush encroachment in South Africa using remote sensing data (Hudak and

Wessman, 1998; Hudak and Wessman, 2001; Munyati et al., 2011; Symeonakis

and Higginbottom, 2014). What these case studies have in common is that the

spatial expansion of the product was limited by the availability of the ground

truths. A variety of field surveys which provide ground truths were conducted

in the South African rangelands on a local scale (Dreber et al., 2014; Skarpe,

1991; Wiegand et al., 2005; Britz and Ward, 2007; Roques et al., 2001; Buiten-

werf et al., 2012). Though field surveys undoubtedly represent the most accurate

way to identify training sites, they rarely match the spatial extent of medium

resolution satellite systems (e.g. MODIS or Landsat) which are more suitable for

operational monitorings. Therefore, satellite-based training sites with a spatial

extent large enough to match at least one pixel of medium resolution satellite

systems are needed to serve as ground truth in larger scale monitoring of bush

encroachment.

There are a number of high resolution satellite products available which allow

an accurate classification into woody vegetation and non woody land cover to

provide ground truths for larger scale monitoring. Gessner et al. (2013) classified

Quickbird images from Namibia into woody and non woody vegetation and used

these classifications as ground truth for Landsat based estimations for the per-

centage of woody vegetation. WorldView images also provide a high resolution

which enable delineation of woody from non woody land cover. Though these

images have not yet been explicitly applied in upscaling chains aiming at the es-

timation of woody vegetation, they have been successfully used as training sites
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for analysing grass cover based on WorldView-2 data on a Landsat and MODIS

scale Lehnert et al. (2015b). The drawback of high resolution images like World-

View and Quickbird are their relatively high costs, often a limiting factor for the

accessability of images for reasearch projects. In contrast, Google Earth images

are free of charge and offer a high spatial resolution which makes them perfectly

suited for generating training sites. Though Google Earth images are often used

as ancillary data source to digitize training sites, they are rarely used as a direct

data source for land cover classifications (Aher et al., 2014; Almeer, 2012; Hu

et al., 2013). This might be due to two central challenges: Firstly, Google Earth

images are only available in RGB bands and feature no infrared channel which

is commonly used for classifying vegetation. Secondly, they are only available at

fixed dates which differ between locations. While the first drawback might be

overcome by use of a visible vegetation index (VVI), the second issue is more

challenging. However, as machine learning algorithms (e.g. Random Forests) are

more extensively used an increasing number of monitoring strategies can build

more general models between reflectance and percentage of a land class (e.g.

Gessner et al., 2013) rather than estimating woody vegetation from single scenes

only. Following such approaches where training sites are taken from multiple

scenes, the acquisition date of the Google image is less important so long as a

Landsat/MODIS image is available for the date of the Google image.

This study aims to provide training sites for an upcoming satellite-based moni-

toring of bush encroachment on a medium spatial resolution scale (e.g. MODIS or

Landsat) in South African savannas and grasslands. To pursue this target we use

Google Earth images and Random Forests to automatically delineate woody veg-

etation from non woody land cover. The classified images will form the database

of training sites for the upcoming larger-scale monitoring.

7.2 Methods

The work flow of this study (Fig. 7.1) first requires example 50 Google Earth

RGB images as baseline. From these images (i) training pixels for woody and

non woody areas were manually digitized and (ii) derivated predictor variables

were calculated from the Google Earth RGB images. A Random Forests model

was then trained to delineate woody from non woody pixels using a subset of the

training pixels. The model was validated using the hold out samples. In a further

step, the model was applied to 500 randomly chosen Google Earth images. The

reliability of each classification was assessed using the predicted probabilities for

woody vegetation. Using the reliable classifications only, the predicted percentage

of woody vegetation will serve as input for the upcoming larger scale monitoring

of bush encroachment. The following sections describe these steps in detail.
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All steps of modeling and analysis were performed using the R environment for

statistical computing (R Core Team, 2013). The caret package (Kuhn, 2014a)

as a wrapper package for machine learning algorithms implemented in R was

applied for model tuning, training and prediction.

Random forest
based classification 
of woody vegetation 

Google Earth
images

Validation

Determination of
training pixels

MODIS/Landsat 
based time series

Prediction on new 
images

Calculation of 
predictor variables

Database of 
training sites

Calculate reliability 
of the classifications

Figure 7.1: Overview of the processing flow.

7.2.1 Study area

The areas of interest in this study are the savanna and grassland biomes of

South Africa, Lesotho and Swaziland (Fig. 7.2). Both biomes, savannas and

grasslands, are characterized by a mixture of grasses and sparse trees or bushes

and affected by the problem of bush encroachment. See Mucina and Rutherford

(2006) for further decription on the vegetation of South Africa.

The determination of the study area was done on the basis of the biome

classification of Mucina and Rutherford (2006). Only areas classified as savanna

or grassland were taken into account. In a second step, all anthropogenic areas

as defined by the MODIS land cover product were masked so that only savanna

and grassland areas were considered for further analysis.

7.2.2 Data and variables

50 Google Earth images were downloaded at randomly chosen locations within

the study area. Each image had a spatial extent of 250 x 250m which corresponds,
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Figure 7.2: Map of the study area including the location of training images as well
as images used for prediction. Only savanna and grassland biomes were
inculded in the analysis.

or exceeds the size of a pixel from medium spatial resolution satellite sensors

(e.g. MODIS or Landsat). The images were downloaded as georeferenced RGB

images using the gmap function from the dismo package in R (Hijmans et al.,

2015). The highest available spatial resolution for each respective image was

used, corresponding to a pixel size of approximately 30 by 30cm. For all images,

the RGB values as well as the HSV values and a visible vegetation index (VVI,

described in e.g Joseph and Devadas, 2015) were used as predictor variables.

The vegetation index takes advantage of the spectral properties of vegetation in

the visible spectrum of light to distinguish between vegetated and non-vegetated

surfaces. Additionally, texture measures were included by calculating the mean

and standard deviation (sd) values in a 3x3 environment of all 7 spectral variables.

The two-level variable "Biome" was further included to account for differing land

cover characteristics between grasslands and savannas. In total, 22 predictor

variables were used.

Training sites for woody vegetation and non woody land cover were manually

digitized from the 50 Google Earth images (in total 220507 pixels for woody veg-

etation and 283289 pixels for non woody land cover). The values of the predictor

variables at each of the training pixels were extracted from the raster data.
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7.2.3 Random Forests classification

Random Forests was used to create a model which delineates woody vegetation

from non woody land cover. The Random Forests (RF) algorithm of Breiman

(2001a) is based on the concept of regression and classification trees. Random

Forests repeatedly builds trees from random samples of the training data. In clas-

sification models, the class which is most often predicted from the individual trees

is taken as the final estimate. To overcome the correlation between trees, a subset

of predictors (mtry) is randomly selected at each split. The best predictor from

the random subset is used at the respective split to partition the data. Random

Forests was chosen for several reasons: (i) because it showed good performance

in land cover classification applications (Gislason et al., 2006), (ii) it performs as

an intuitive classifier which can handle different types of variables and associated

ranges of their values, thus no standardization is required. Further, Random

Forests allow to estimate variable importances which allow interpretation despite

being a black box.

For the modeling process, the set of training pixels was randomly split into

a training (25%) and a test (75%) data set using stratified sampling which ac-

counts for the distribution of each class. Using only the training data set, mtry

was tuned between 2 and 22 using a stratified 10 fold cross validation. The

number of trees (ntree) was set to 500 since no increase of performance could be

observed from 500 trees onwards. Further, since Random Forests is robust to non

informative variables (Kuhn and Johnson, 2013a), there was no need for further

feature selection. Models were fitted by repeatedly leaving one of the folds out.

The performance of each model was determined by predicting the respective held-

out fold. The performance metrics from the hold-out iterations were averaged to

the overall model performance for the respective mtry value. Receiver operating

characteristics (ROC) was used as performance metric to find the optimal model.

7.2.4 Validation

The hold out testing samples of the training pixels were used for a completely

independent model validation. The metrics used for validation were receiver

operating characteristics (ROC), probability of detection (POD), probability of

false detection (POFD) and false alarm ratio (FAR). ROC curves as metric for

model selection describe a model’s performance independently of the probabil-

ity threshold which separates woody vegetation pixels from non-woody pixels

(Fawcett, 2006; Hamel, 2009). A ROC curve is constructed by iterating through

multiple of probability thresholds to classify the probabilities for woody vege-

tation as output of the Random Forests model into woody vegetation and non

woody land cover. At each threshold the data set is classified into woody vegeta-
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tion and non woody land cover and the confusion matrix is calculated using the

hold out samples for model validation. For each confusion matrix, the true posi-

tive rate and the false positive rate is calculated (see e.g. Hamel, 2009). The ROC

curve is then drawn by plotting the true positive rate of each threshold against

the corresponding false positive rate. In contrast to the confusion metrics based

on the classified data, there is consequently not only one scalar value rating the

model but several scalar values, each for one threshold. Therefore, ROC ensures

that a model which assigns e.g. a probability value of 0.49 for a woody vegetation

pixel can be interpreted as a better model than a model with a probability value

of 0.1. If only confusion metrics were considered, then both models would be

rated as being equal (i.e. non-woody) because both probabilities are under the

default threshold of 0.5. This characteristic makes the ROC curve suitable and

intuitive for classification model validation and comparison. The area under the

ROC curve (AUC) gives the overall model performance and can be interpreted

as the probability that woody vegetation and non woody land cover are correctly

separated by the model.

In addition to the ROC values categorical verification scores were calculated

from confusion matrices (Tab. 7.1) showing agreement and disagreement between

predicted and observed woody vegetation based on the default 0.5 probability

threshold (Tab. 7.2). The probability of detection (POD) gives the percentage

of woody vegetation pixels that were correctly identified as woody vegetation by

the model. The probability of false detection (POFD) gives the proportion of

non woody pixels that were falsely classified as woody vegetation by the model.

FAR gives the proportion of incorrectly predicted woody vegetation pixels from

all pixels that were predicted as woody vegetation.

Table 7.1: Confusion matrix as baseline for the calculation of verification scores used
for the validation of the prediction model.

Observation

Woody Non Woody

Prediction
Woody True positives (TP) False positives (FP)

Non Woody False negatives (FN) True negatives (TN)

7.2.5 Prediction on new Google Earth images

To build the database of training sites, 500 randomly chosen sites within the

study area were selected and the corresponding Google Earth images were down-

loaded. The predictor variables were calculated for the 500 images as described

above and the fitted models were used to classify the images. Random selection

of images leads to the complication that some images did not appear to be rep-

resenative for the study area due to unusual patterns or the strongly deviating
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Table 7.2: Cross tabulation based validation metrics

Metric Formula Range Optimal value

Probability of detection POD = T P
T P +F N 0-1 1

Probability of false detection POFD = F P
F P +T N 0-1 0

False alarm ratio FAR = F P
T P +F P 0-1 0

brightness of the images. To overcome this issue, the reliability of the image clas-

sifications was calculated on the basis of the probabilities for both classes which

were predicted by the Random Forests model. For this purpose, the percentage

of pixels which had a probability larger than 75% for either woody or non woody

was calculated. From the 500 images, only those which had a higher reliability

than the first quartile of all 500 images were finally taken for the database. The

image acquisition date was obtained by loading the randomly chosen locations

into Google Earth and manually reading the date of the images at the highest

zoom level.

7.3 Results and Discussion

7.3.1 Model performance and variable importance

The revealed optimal value for mtry during model training was 10 which cor-

responds to an cross validated AUC of 0.996 indicating that there is an excellent

fit of the training data. Applied on the independent test data, the model still

showed a very high performance (Tab. 7.3, 7.4) with an AUC value of 0.974. 97%

of the woody vegetation pixels in the test data set were correctly identified as

woody vegetation by the model (Tab. 7.4). The probability that a non woody

pixel was falsely classified as woody was very low (2%). These results show that

using representative pixels for model training, woody vegetation and non woody

land cover can be succesfully delineated on the basis of Google Earth RGB images

and Random Forests.

The variable importance of the Random Forests model (Fig. 7.3) calculated

according to Liaw and Wiener (2002) revealed a significance of the VVI as pre-

dictor variable in the model. Its 3 x 3 standard deviation and mean values were

the most important variables in the model. In addition, the pixel based VVI was

among the 10 most important variables (out of 22). RGB channels as well as hue
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and saturation were also identified as important variables, just like the biome

variable.

Table 7.3: Contingency table of the test data set.

Woody Non Woody

Woody 159763 4002

Non Woody 5617 208464

Table 7.4: Performance of the Random Forests model calculated using the test data set.

AUC POD POFD FAR

0.974 0.966 0.019 0.024
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Figure 7.3: Variable importance of 15 highest ranked predictor variables in the Random
Forests model. Importance values were scaled to have a maximum value of
100.

7.3.2 Database of training sites

The model was based on a selection of representative pixels for woody veg-

etation and non woody land cover. For the application on the new images, the

model was faced with an increased variability in the spectral characteristics of

both, woody and non woody land cover. Therefore, the need for a reliability

check was important to account for e.g. strong deviations which were not trained

by the model. Fig. 7.4 shows that the majority of the images were classified with

high reliability. The first quartile of reliability was 70%. Images with a reliability

lower than this threshold were rejected from the database. Using this threshold,

367 images from the initial 500 passed the reliability check. 133 images could

not be classified with sufficient reliability. This is most likely due to structures
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of land cover which were not captured in the manually digitized training pixels.

An extension of the training pixels might therefore be meaningful but can only

be achieved by field surveys since some patterns are visually hard to identify in

the Google Earth images.

Fig. 7.5 shows three examples of different Google Earth images. The first

one shows a clear savanna pattern: a slightly vegetated ground with patches

of bushes and trees. This pattern was easily predicted by the model since the

sandy ground clearly contrasts with the dark color of the woody vegetation.

Accordingly, the model could classify this image with a high reliability resulting

from very high probabilities for the corresponding woody or non woody class

(Fig. 7.5, Tab. 7.5). The second example, from a grassland site, featured a high

uncertainty in the upper part of the image. This uncertainty is reasonable, since

it is even hard to rate by visual analysis of the satellite images whether these are

small woody shrubs or dense grasses. Though the classification came up with

a acceptable result, this image fails the reliability check, since only 64% of the

pixels had probabilities larger than 75% for the corresponding land cover class.

The third example, which is also from a grassland site, features a pattern of shrubs

with different spatial extents in an area with medium ground cover by grasses

and non woody plants. Compared to the first example, there is less contrast

in the RGB between woody and non woody vegetation. The model reflects this

pattern giving a high percentage of pixels with probabilities for woody vegetation

around 50%, close to the threshold for classification as either woody or non woody.

However, with a total reliability of 74%, this image was rated as accurate enough

for the database. Overall, the images from sandy savannas could be classified

with highest reliability due to high contrasts between woody and non woody

land cover in the visible channels.

The final database (see excerpt in Tab. 7.5) includes further information with

respect to a larger scale monitoring. The date of the image acquisition, the exact

coordinates of the image, the resulting percentage of woody vegetation and the

reliability of the classification. The number of images in the database was initially

limited to 500 images due to the effort of manually reading the date of the images.

However, the database can be extended at any time.

Table 7.5: Excerpt of the training site database for the three example images shown in
Fig. 7.5.

Image Date Location Woody (%) Reliability (%)

Example 1 2014/01/20 23.6215, -26.0288 44.7 86.5

Example 2 2014/10/26 24.7972, -28.3681 44.2 63.9

Example 3 2015/06/07 26.1853, -29.8878 39.5 74.2
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Figure 7.4: Reliability of 500 Google Earth images. The first quartile (70%) was used
as the threshold to select images for the database.
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Figure 7.5: Three example RGB images, the predicted probabilities for woody vegetation
and the corresponding classification results.
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7.4 Conclusions

A method to develop low cost training sites for bush encroachment monitor-

ing was presented. The study showed the capability of Google Earth images and

Random Forests for automatic delineation of woody vegetation from non woody

land cover. In total, 367 images were reliable enough for the database, covering

a wide range of savanna and grassland in South Africa. The results are of sig-

nificance for upcoming studies and area wide monitoring of bush encroachment.

Since the extent of one image matches or exceeds the resolution of medium spa-

tial resolution satellite sensors (e.g. MODIS or Landsat), the results for woody

vegetation in the images can be used as training sites for a monitoring. Such

monitoring could be based on a similar method as applied in this study: satellite

data taken from the same date as the respective Google Earth images can be used

together with the database from this study to train a model (using e.g. Random

Forests) with the aim to predict bush percentage on the overall satellite image.

In this way, a time series of bush encroachment for the savannas and grasslands

of South Africa can be calculated. The database is available from the authors on

request.
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8 Spatio-temporal interpolation of soil water, tem-

perature, and electrical conductivity in 3D+T: the

Cook Agronomy Farm data set

Caley Gasch, Tomislav Hengl, Benedikt Gräler, Hanna Meyer, Troy Magney, JDavid Brown

Abstract

The paper describes a framework for modeling dynamic soil properties in 3-

dimensions and time (3D+T) using soil data collected with automated sensor

networks as a case study. Two approaches to geostatistical modeling and spatio-

temporal predictions are described: (1) 3D+T predictive modeling using random

forests algorithms, and (2) 3D+T kriging model after detrending the observations

for depth-dependent seasonal effects. All the analyses used data from the Cook

Agronomy Farm (37 ha), which includes hourly measurements of soil volumetric

water content, temperature, and bulk electrical conductivity at 42 stations and

five depths (0.3, 0.6, 0.9, 1.2, and 1.5 m), collected over five years. This data set

also includes 2- and 3-dimensional, temporal, and spatio-temporal covariates cov-

ering the same area. The results of (strict) leave-one-station-out cross-validation

indicate that both models accurately predicted soil temperature, while predictive

power was lower for water content, and lowest for electrical conductivity. The

kriging model explained 37 %, 96 %, and 18 % of the variability in water content,

temperature, and electrical conductivity respectively versus 34 %, 93 %, and 5 %

explained by the random forests model. A less rigorous simple cross-validation

of the random forests model indicated improved predictive power when at least

some data were available for each station, explaining 86 %, 97 %, and 88 % of the

variability in water content, temperature, and electrical conductivity respectively.

The high difference between the strict and simple cross-validation indicates high

temporal auto-correlation of values at measurement stations. Temporal model

components (i.e. day of the year and seasonal trends) explained most of the

variability in observations in both models for all three variables. The seamless

predictions of 3D+T data produced from this analysis can assist in understand-

ing soil processes and how they change through a season, under different land

management scenarios, and how they relate to other environmental processes.

Keywords Digital soil mapping; Random forests algorithm; Regression-kriging;

Regionalization; Soil sensor network
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8.1 Introduction

Comprehension of dynamic soil properties at the field scale requires measure-

ments with high spatial and temporal resolution. Distributed sensor networks

provide frequent in situ measurements of environmental properties at fixed lo-

cations, providing data in 2- or 3-dimensions and through time (Porter et al.,

2005; Pierce and Elliott, 2008). While sensor networks produce ample data for

observing dynamic soil properties, data processing for inference and visualization

become increasingly difficult as data dimensionality increases. Ideally, the end

product should consist of seamless interpolations that accurately represent the

spatial and temporal variability in the property of interest. These products can

then be used for predictions at unobserved locations, they can be integrated into

process models, and they can simply aid in visualization of soil properties through

space and time.

Multiple approaches have been developed for spatial interpolation of soil prop-

erties and digital soil mapping, including:

1. multiple regression models based on the soil forming factors, terrain at-

tributes, spatial coordinates, or derived principal components (McKenzie

and Ryan, 1999);

2. smoothing (splines) and neighborhood-based functions (Mitas and Mitasova,

1999);

3. geostatistics, or kriging, and variations thereof (see overviews by McBratney

et al. (2003) and Hengl (2009).

Of these, regression-kriging (Odeh et al., 1995; Hengl et al., 2007), which com-

bines a multiple regression model (a trend) with a spatial correlation model (a

variogram) for the residuals, produces unbiased, continuous prediction surfaces.

Regression-kriging has been adapted for soil mapping with great success, in part

because of the flexibility in defining the trend model as a linear, non-linear,

or tree-based relationship between the response and predictors. Furthermore,

regression-kriging relies on the incorporation of auxiliary data, providing mecha-

nistic support for the soil property predictions.

The widest application of regression-kriging in soil science has likely been

for producing 2-dimensional (2D) maps (Hengl, 2009). However, soil data is of-

ten also collected at multiple depths, and geostatistical interpolation techniques

can be expanded to represent soil predictions across both vertical and horizontal

space (Malone et al., 2009; Veronesi et al., 2012). Global predictions of multiple

soil properties obtained from 3-dimensional (3D) regression models were recently
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showcased by Hengl et al. (2014a). Here, spline functions define the vertical

trend (depth) within the regression model, while horizontal trends are defined by

covariate grids. These approaches are sufficient for understanding static soil prop-

erties across 2- and 3D space; however, modeling dynamic soil properties requires

expansion of the geostatistical model to incorporate correlation in data through

time (Heuvelink and Webster, 2001; Kyriakidis and Journel, 1999). Addition

of temporal and/or spatio-temporal predictors can assist in explaining tempo-

ral variation in a response variable, but fitting a variogram model in 2D and

time (2D+T) poses additional challenges (summarized by Heuvelink and Web-

ster, 2001). Specifically, time exists in only one dimension and has a directional

component, while spatial properties might be correlated in vertical, horizontal,

or 3D directions. The easiest solution for approximating dependence across both

space and time is based on anisotropy scalings, which relate horizontal distances

to distance in depth and temporal separation.

Modeling 2D+T data has successfully been implemented for predicting soil

water from repeated field-wide measurements obtained with time-domain reflec-

tometry, directly with ordinary kriging (Huisman et al., 2003), and with the

incorporation of estimated daily evapotranspiration (Jost et al., 2005) and net

precipitation (Snepvangers et al., 2003) as covariates. More recently, daily air

temperature predictions have been produced from spatio-temporal interpolation

models of weather station data at the regional (Hengl et al., 2012) and global

(Kilibarda et al., 2014) scales. These models combine spatial covariates (terrain

attributes) and spatio-temporal covariates (remotely sensed daily land surface

temperature) in the trend model to explain greater than 70 % of variation in

weather station observations.

Previously, 3D+T data has been analyzed in a spatio-temporal context, wherein

interpolations produce predictions in a slice-wise manner (i.e. by depth or by time

point) (Bárdossy and Lehmann, 1998; Wang et al., 2001; Wilson et al., 2003). To

our knowledge geostatistical methods have not yet been expanded to produce

predictions from data collected in 3D and time (3D+T). This may be, in part,

due to the rarity of quality 3D+T data. With each added dimension, the number

of observations required for accurate interpolation increases, as does the need for

ancillary (covariate) data if a regression-kriging model is applied. Theoretically,

adapting the existing regression-kriging framework for predicting in 3D+T can

follow the same mathematical logic as the models that scale up from 2D to 3D

or 2D to 2D+T (Heuvelink and Webster, 2001). In that context, existing geosta-

tistical tools for interpolating spatio-temporal data can also assist in modeling

3D+T data (Pebesma, 2012; Pebesma and Gräler, 2013).

In this paper, we demonstrate two approaches for interpolating 3D+T soil wa-

ter, temperature, and electrical conductivity data (collected from a distributed
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soil sensor network) at the field-scale: one that is based on using random forests

algorithms, and one that is based on spatio-temporal kriging. The kriging model

uses different dependence structures (i.e. variogram models) for horizontal, ver-

tical, and temporal components, which are then combined using concepts from

2D+T geostatistics. The models were motivated by the existing geostatistical

frameworks and incorporate spatial, temporal, and spatio-temporal covariates.

We present the implementation of the models, accuracy assessments, visualiza-

tion and applications of model output, and future directions for improvement

with a long term objective to develop robust 3D+T models for mapping soil data

that has been collected with high spatial and temporal resolution.

8.2 Materials and methods

8.2.1 The Cook Agronomy Farm data set

The R.J. Cook Agronomy Farm is a Long-Term Agroecosystem Research

Site operated by Washington State University, located near Pullman, Washing-

ton, USA (46°47′N, 117°5′W; Figure 8.1). The farm is 37 ha, stationed in the

hilly Palouse region, which receives an annual average of 550 mm of precipita-

tion (Western Regional Climate Center, 2013), primarily as rain and snow in

November through May. Soils are deep silt loams formed on loess hills; clay silt

loam horizons commonly occur at variable depths (Natural Resource Conserva-

tion Service (NRCS), 2013). Farming practices at Cook Agronomy Farm are

representative of regional dryland annual cropping systems (direct-seeded cereal

grains and legume crops).

At 42 locations (stations), five 5TE sensors (Decagon Devices, Inc., Pullman,

Washington) were installed at 0.3, 0.6, 0.9, 1.2, and 1.5 m depths. Locations

were chosen from an existing non-aligned systematic grid and stratified across

landscape units to represent the variability in terrain of Cook Agronomy Farm

(Figure 8.1). Every hour, the 5TE sensors measure:

1. volumetric water content, (m3/m3),

2. temperature, (◦C),

3. and bulk electrical conductivity, (dS/m).

Data are stored on Em50R data loggers (Decagon Devices, Inc., Pullman,

Washington), which are buried to allow data collection regardless of farm opera-

tions (seeding, spraying, and harvest). The sensor network has been in operation

since 2009. For the purpose of this article, hourly sensor data was aggregated to



130 8 Spatio-temporal interpolation of soil properties in 3D+T

daily averages and all plots and statistical modeling refers to daily values. Sensor

data collected for three years at one station and all five depths is illustrated in

Figure 8.2, and hexbin plots (Sarkar, 2008; Carr, 2014) illustrate the distribution

of all observations of all three variables across depth in Figure 8.3. Please note

that absolute values of sensor readings require further correction for accurate in-

terpretation. Thus, interpretation of the presented readings should focus on the

observed relative changes.

In addition to the sensor readings, this data set contains spatial and temporal

regression covariates either at 10 m resolution, or as a temporal measurement

that is assigned to all possible locations in the area of interest at a given time

step (hereafter, spatially constant). Dimensionality of the covariates differs: some

covariates are available only in horizontal space (elevation, wetness index, vege-

tation images), some covariates are available as 3D images (soil properties) and

some are available either in time (daily temperatures and rainfall from the nearest

meteorological station) or spacetime (cropping identity). The covariates used for

modeling water content, temperature, and electrical conductivity are described

in Table 8.1. Note that only the response variables (sensor readings) exist in

3D+T, while the predictor variables are a combination of 2D, 3D, 2D+T, and

temporal covariates.

The SAGA wetness index, a modification of the topographic wetness index

(Beven and Kirkby, 1979), was derived from the digital elevation model (DEM)

using the RSAGA package (Brenning, 2013) for R (R Core Team, 2014). A to-

tal of 11 Level 3A RapidEye images satellite images acquired between 2011 and

2013 were used to incorporate vegetation patterns on Cook Agronomy Farm.

Images were pre-processed exactly as in Eitel et al. (2011). Following image pre-

processing, spectral bands (near infrared—NIR and red-edge—RE) were math-

ematically converted into the Normalized Difference Red-Edge Index (Barnes

et al., 2000):

NDRE =
NIR − RE

NIR + RE
(8.1)

The RE region of the electromagnetic spectrum has been shown to be superior

to red (as used in the Normalized Difference Vegetation Index, or NDVI, Tucker,

1979) for mapping variations in plant chlorophyll and nitrogen content (Carter

and Knapp, 2001; Lichtenthaler and Wellburn, 1983; Eitel et al., 2007, 2008,

2009). The images were aggregated to produce one NDRE mean grid and one

NDRE standard deviation grid, which were resampled from a 5 m to a 10 m grid

to align with other covariate grids.

The 3D maps for the occurrence of the Bt horizon, bulk density (g/cm3), and
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soil pH were generated using 184 soil profiles distributed across Cook Agronomy

Farm (Figure 8.1) using the GSIF package for automated soil mapping (Hengl

et al., 2014b). Soil profiles were described using the National Soil Survey Center

NRCS USDA guidelines for soil profile description (National Soil Survey Center

NRCS USDA, 2011). To make the maps, the presence or absence of a Bt horizon

was interpolated using a logistic regression-kriging model and the DEM, apparent

electrical conductivity grids, soil unit description map (Natural Resource Conser-

vation Service (NRCS), 2013) and depth as covariates. Bulk density and soil pH

were predicted with regression-kriging models with the DEM, wetness index, soil

mapping units, apparent electrical conductivity grids, and depth as covariates.

The daily meteorological data (precipitation, minimum and maximum tem-

perature) were obtained from a weather station located 8 km from the farm in

Pullman, WA (Western Regional Climate Center, 2013). Daily precipitation was

transformed to cumulative precipitation, which reverts to zero after a period of

precipitation. Meteorological covariates are only available in the time domain

(i.e. they are assumed to be spatially constant).

As the only 2D+T covariate we used the cropping system classification maps,

which are available each year from 2006 through 2013. The crop identities include:

barley, canola, garbanzo, lentil, pea, or wheat, each with either a spring or winter

rotation.

All sensor observations and covariates were assembled into a spatio-temporal

regression matrix, using the overlay functionality of the spacetime package in R

(Pebesma, 2012). The resulting spatio-temporal regression matrix was very large

— even though we only included measurements from 42 stations, the matrix con-

tained close to a quarter million records (about four years of daily measurements

at 42 locations and five depths i.e. 4 × 365 × 42 × 5 = 306,600 - missing data

= 219,240 water content observations, 222,614 temperature observations, and

222,065 conductivity observations).

8.2.2 Conceptual foundation for 3D+T modeling

We model water content, soil temperature, and electrical conductivity as a

spatio-temporal process of a continuous variable Z, where Z varies over space

and time. The statistical model of such a process is typically composed of the

sum of a trend and a stochastic residual (Burrough, 1998; Heuvelink et al., 2012;

Kilibarda et al., 2014). In this case we begin with a 3D+T model of the form:

Z(x, y, d, t) = m(x, y, d, t) + ε′(x, y, d, t) + ε′′(x, y, d, t) (8.2)

where x, y, d, t are the space-time coordinates, d is depth from the land surface, m
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Figure 8.1: Cook Agronomy Farm overview map with soil profile sampling points (dots)
and instrumented locations (triangles). A total of 210 sensors (42 locations
x 5 depths) have been collecting measurements of volumetric water content,
temperature, and bulk electrical conductivity since 2009.

is the trend, ε′(x, y, d, t) is the spatio-temporally correlated stochastic component

and ε′′(x, y, d, t) is the uncorrelated noise. We model the trend (m) as a function

of spatial (2D or 3D), temporal, or spatio-temporal explanatory variables (co-

variates, such as in Table 8.1) available over the entire spatio-temporal domain

of interest.

8.2.3 3D+T random forests model

The trend model, m in Eq. 8.2, can be fitted using linear regression or some

kind of Generalized Linear Model depending on the distribution of the target

variable (Pinheiro and Bates, 2009). Our focus here is on fitting the trend model

using random forests algorithms (Breiman, 2001a) for two main reasons. First,

with random forests algorithms, the target variable does not need to assume spe-

cific distributions or adhere to linear relationships (Ahmad et al., 2010; Kuhn and

Johnson, 2013a). Second, random forests is advantageous for fitting a predictive

model for a multivariate data set with high dimensionality. A disadvantage of

random forests models, on the other hand, is that model fitting can be com-

putationally intensive, which may become a limitation as data set complexity

increases. The second disadvantage is that random forests typically tends to

over-fit data sets that are particularly noisy (Statnikov et al., 2008).

We model, for example changes in soil water content, in the form:

R> fm = VW ~ DEM + TWI + NDRE.M
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Figure 8.2: Sensor values from five depths (0.3, 0.6, 0.9, 1.2, and 1.5 m) at one sta-
tion at Cook Agronomy Farm from January 2011 — January 2014. The
black line indicates locally fitted splines (here used for visualization purposes
only).

+ NDRE.Sd + Bt + BLD + PHI + Precip_cum

+ MaxT_wrcc + MinT_wrcc + cdayt + Crop

where DEM + TWI + ... + Crop are the covariates (see also Table 8.1) both

measured at the same x, y, d, t locations, VW is the volumetric water content,

and cdayt is the transformed cumulative day, computed as:

cdayt = cos
(

[tD − φ] ·
2π

365

)

(8.3)

where tD is the linear date (cumulative days), φ is the time delay from the coldest

day and a trigonometric function is assumed to model seasonal fluctuation of daily

temperature. The predictive model, based on the spatio-temporal regression

matrix (regm.VW) is:

R> rfm.VW <- randomForest(fm, data = regm.VW)
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Figure 8.3: Distribution of observations (based on all dates) for water content, temper-
ature, and electrical conductivity across soil depth.

The random forests prediction model from above can be used to generate

predictions for any position in space and time, provided that all covariates are

available at that location, but it does not provide inference on the mean trend

and spatio-temporal correlation structure as in a regression-kriging model that

has interpretable parameters.

In theory, 3D+T residuals of this model could be further analyzed for spatio-

temporal auto-correlation and used for kriging. However, in this specific study,

examination of residuals obtained from the random forests models for all three

variables revealed the absence of any correlation structure over horizonal space

(x, y). Since the random forests models explained a high amount of the variability

in the data (>90 % for all three response variables), all residual variation was

considered to be uncorrelated noise (ε′′(x, y, d, t) in Eq. 8.2).

8.2.4 3D+T kriging model

To explore an alternative approach to spatio-temporal random forests mod-

eling, we developed a 3D+T regression-kriging model based on existing geosta-

tistical methods. In this case, we use the same model as in Eq. 8.2, except we

do not use any gridded or meteorological covariates to explain the trend model
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Table 8.1: Cook Agronomy Farm data set spatio-temporal covariates. DEM — Digital
elevation model, TWI — SAGA wetness index, NDRE.M — Normalized Dif-
ference Red Edge Index (mean), NDRE.sd — Normalized Difference Red Edge
Index (s.d.), Bt — Occurrence of Bt horizon, BLD — Bulk density of soil, PHI

— Soil pH, Precip_cum — Cumulative precipitation in mm, MaxT_wrcc —
Maximum measured temperature, MinT_wrcc — Minimum measured temper-
ature, Crop — Crop type. Response variables include VW — soil volumetric
water content in m3/m3, C — soil temperature in ◦C, and EC — soil bulk
electrical conductivity in dS/m.

2D depth time spatio-temporal support size

Code (x, y) (d) (t) ∆x, y ∆d ∆t

DEM X 10 m 0 m >10 yrs

TWI X 10 m 0 m >10 yrs

NDRE.M X 10 m 0 m 3 yrs

NDRE.sd X 10 m 0 m 3 yrs

Bt X X 10 m 0.3 m >10 yrs

BLD X X 10 m 0.3 m >10 yrs

PHI X X 10 m 0.3 m >10 yrs

Precip_cum X spatially constant 0 m 1 d

MaxT_wrcc X spatially constant 0 m 1 d

MinT_wrcc X spatially constant 0 m 1 d

Crop X X 10 m 0 m 1 year

VW, C, EC X X X 42 points on 0.37 km 0.3 m 1 d

(m). Instead, to model the observed water content, temperature, and electrical

conductivity, we only use simple seasonal detrending. Because annual patterns

of weather conditions influence these soil properties in a systematic way (see Fig-

ure 8.2), detrending is necessary before we can apply any kriging. Moreover,

because strength of seasonality decreases with depth and shows some delay in

time, separate seasonal models were fit at each depth. Daily soil temperatures

throughout the year nicely follow a sine curve with intercept c, amplitude a and

shift b for the day of the year t∗

D (1 to 365) given by:

sC(t∗

D) = c + a · sin
(

b + t∗

D

365
· 2 · π

)

(8.4)

The other two variables, water content and electrical conductivity, require a
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somewhat more complex function because values are fairly stable during periods

of crop inactivity. These correspond to sustained minima during the dry season

(late summer to autumn) and sustained maxima after winter recharge (late winter

to spring). The seasonal function for these variables is:

sV (t∗

D) = c + a · cos (breaks(t∗

D) · π) (8.5)

with:

breaks(t∗

D) :=






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1 +
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D
+365−b4

b1+365−b4
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D ≤ b1

0 , b1 < t∗
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t∗

D
−b2

b3−b2
, b2 < t∗

D ≤ b3

1 , b3 < t∗

D ≤ b4

1 +
t∗

D
−b4

b1+365−b4
, t∗

D ≤ b4

where 1 ≤ b1 < · · · < b4 ≤ 365 are four consecutive break points during one year,

which resemble the on- and offset of sustained minima and maxima. Hence, the

function cos(breaks(t∗

D)·π) connects two plateaus at 1 (from b1 to b2) and -1 (from

b3 to b4) with smooth transitions along a stretched cosine curve. The parameters

c and a in Eq. 8.5 correspond to an intercept and amplitude respectively, V

indicates the variable (water content or electrical conductivity).

The models in Eq. 8.4 and Eq. 8.5 use purely mathematical functions that can

be used to describe the seasonality of this data set. An alternative approach would

be to use the daily mean value of sensor readings as the trend. We were interested

in using these parameters to learn about how the seasonal trends of the measured

soil properties change across depths. In analyses where such interpretation is

unnecessary, the simpler approach may be adequate.

Assuming that the remaining residual is normally distributed and has zero

mean, only its variance-covariance remains to be specified. To tackle the 3D+T

data set, we assume a metric covariance model over horizontal and vertical dis-

tances after an isotropy scaling has been applied. The more general set-up would

yield a 3D variogram surface in 4-dimensional space (gamma ∼ horizontal dis-

tance + depth + time) and can thus be reduced to the simpler 2D surface (gamma

∼ 3D distance + time).

In order to obtain an objective estimate of the anisotropy ratio between hori-

zontal and vertical distances, we calculated 2D empirical variograms where each

day is used as a repetition of the process (i.e. distances are only calculated within

each day and not across time). Based on this variogram surface, a pure metric
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model can be estimated and its anisotropy scaling can then be used to construct

pseudo 3D data where the depth value has been rescaled by the anisotropy ratio.

The sum-metric variogram structure for the spatial, temporal, and spatio-

temporal (‘joint’) components, treated as mutually independent, is defined as

(Heuvelink et al., 2012):

γ(h, u) = γS(h) + γT (u) + γST (
√

h2 + (α · u)2), (8.6)

where γ(h, u) is the semivariance of variable Z for 3D distances in space (h) and

in time (u), γS , γT are spatial and temporal components respectively, each with

a sill, range, and nugget. The joint space-time component, γST , also includes

a parameter for the conversion of temporal separation (u) to spatial distance

(h), denoted α. Variogram parameters are estimated from the observations and

then fit with a metric semivariance function, used in kriging to predict Z at

unobserved spacetime points. For example, kriging predictions are produced

from water content observations as:

R> svgmVW3DT <- variogramST(resid~1, VW.st)

R> fvgmVW3DT <- fit.StVariogram(svgmVW3DT,

vgmST("sumMetric",

space=vgm(sill, model, range, nugget),

time=vgm(sill, model, range, nugget),

joint=vgm(sill, model, range, nugget),

stAni=ratio)

R> predVW.resid <- krigeST(resid~1, VW.st, Pred.st,

fvgmVW3DT)

where resid∼1 defines the sample variogram for the water content residuals

after detrending, which are stored in the spacetime object, VW.st. The sample

variogram svgmVW3DT is used to fit a 3D+T sum-metric model, vgmST, wherein

the variogram for each component is defined with user inputs for initial model

parameters (partial sill, model type, range, nugget, and anisotropy ratio α), based

on inspection of the sample variogram. The fitted variogram fvgmVW3DT is then

used to make predictions at unobserved locations, stored in a spacetime object

Pred.st. The residual predictions predVW.resid are added to the seasonal trend

to obtain predicted water content at any spacetime point. The formulas of kriging

in the spatio-temporal domain do not differ fundamentally in a mathematical or

statistical sense from those of spatial kriging (Heuvelink et al., 2012).
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8.2.5 Cross-validation

We run cross-validation for the two spatio-temporal prediction approaches

(3D+T random forests model and 3D+T kriging after detrending) separately.

Moreover, we run two versions of cross-validation for the random forests model:

1. 3D+T random forests prediction (RF):

• RF-loc: strict cross-validation, using leave-onestation-out iterations

of model fitting and validation, and

• RF-rnd: simple cross-validation, by randomly subsetting spacetime

points, and using 5-fold sets of model fitting and validation,

2. 3D+T regression kriging (kriging):

• kriging-loc: leave-one-station-out using the fitted variogram model,

then validation.

Specific details of the cross-validation methods appear below, but first, it is

important to emphasize that fundamental differences between the two modeling

approaches do not allow the predictions for cross-validation to be obtained in the

exact same way. In particular, the RF model is informed directly by the obser-

vations rather than a parametric model. So, if observations are removed, a new

model is developed, driven by the included observations. Conversely, the kriging

model quantifies the variability in the data and how it changes with distance. The

inherent replication of point pairs within each lag distance buffers the resulting

variogram model from the removal of an observation. These differences material-

ize in the cross-validation steps as follows: once a RF model has been fit with all

data, the same model cannot be used on a subset of the observations (a training

set) to make predictions, so a leave-one-out approach for n observations requires

n training models, each unique, for n predictions. This differs from the kriging

cross-validation in that the same theoretical variogram model—developed from

all observations—is applied to each of the n training sets to make n predictions

because automatically re-fitting the variogram for each training set would be

cumbersome and is unlikely to produce considerably different variogram models.

For strict cross-validation of the RF model (RF-loc), 42 models were iter-

atively trained, each using the data of 41 stations (a ‘station’ includes all five

depths and all time points, a 5-variate time series). Each model was then applied

to predict on the respective withheld 5-variate time series. The results of the

strict cross-validation indicate predictive performance at new, unsampled loca-

tions. For simple cross-validation of the RF model (RF-rnd), 10 % of observations

were randomly subset from the full set of spacetime points, and subject to 5-fold
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cross-validation. This less-rigorous approach provides information on predictive

performance when at least some observations exist at all locations, and is use-

ful for understanding the accuracy of interpolating missing data at an existing

sample location.

To validate the kriging model (kriging-loc), we assumed the variogram

model to be known and used the fitted model for all predictions in the cross-

validation. Each of the 42 stations (including all five depths) was removed from

the data set in turn. This withheld 5-variate time series was then predicted using

the remaining data. For computational reasons, the prediction was limited to the

closest 500 spatio-temporal neighbours (using ansiotropy scalings for the 3D+T

distances) from a temporal window of ±10 days for prediction.

For each variable and each model approach, we calculated standard model

performance measures: root mean square error (RMSE), mean absolute error

(MAE), mean error (ME), and coefficient of determination (R2) for observations

and predictions obtained in cross-validation. As a baseline comparison, spatially

constant predictions were made from the seasonal models alone (Eq. 8.4 and

Eq. 8.5) for each variable and each depth. The same four cross-validation statis-

tics were computed for these predictions. Although we do not apply exactly the

same cross-validation procedures to the two methodological approaches, we as-

sume that the cross-validation results will reveal useful information about each

model’s performance.

8.2.6 Software implementation

All analysis was conducted in R (R Core Team, 2014) unless otherwise noted

in the text. Preparation of sensor network data and covariate data was assisted

by the following packages: aqp (Beaudette and Roudier, 2013), gdata (Warnes

et al., 2014), GSIF (Hengl et al., 2014b), gstat (Pebesma and Gräler, 2013), plyr

(Wickham, 2014), raster (Hijmans et al., 2014), rgdal (Bivand et al., 2014), RSAGA

(Brenning, 2013), and spacetime (Pebesma, 2012). The randomForest package

(Liaw and Wiener, 2002) was used for the RF modeling. The kriging approach

was mainly based on the gstat package (Pebesma, 2004) in combination with

the spacetime package (Pebesma, 2012). The lattice (Sarkar, 2008) and plotKML

(Hengl et al., 2015) packages were used for data visualization.

A subset of this data set (for the period Jan. 1, 2011 — Dec. 31, 2012) and

example code for the main processing steps has been added to the GSIF package

(Hengl et al., 2014b) for demonstration and can be obtained by calling ?cookfarm

after loading the package.
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8.3 Results

8.3.1 3D+T random forests model

The importance plots for predicting water content, temperature, and electrical

conductivity with the RF models are shown in Figure 8.4. The covariates with

higher importance will influence the prediction more if randomly permuted within

the model. The mean decrease in accuracy metric (%IncMSE) indicated that the

cumulative date was the most important predictor for all three variables, followed

by crop identity for water content and electrical conductivity, and soil pH and crop

identity for soil temperature. The decrease in mean squared error (IncNodPurity)

also indicated that cumulative day was important for modeling water content, and

all three weather covariates were important for soil temperature. Soil properties

(pH, Bt presence, and bulk density) were most important for modeling bulk

electrical conductivity by the same metric.

The randomForest package reported that the RF models, based only on covari-

ate data, explain 93 % of the variance in water content, 98 % in temperature, and

93 % in conductivity observations. As described in section 8.2.3, we did not fit

space-time variograms to the residuals because residual variation did not display

any strong spatio-temporal correlation. Further processing would produce pure-

nugget variograms (of uncorrelated noise), which do not impart any additional

explanatory power.

Prediction surfaces for water content (for the first day of five months in 2012)

produced directly from the RF model are shown in Figure 8.5. This period of

time represents the growing season, when large changes in water content occur as

crops develop and rapidly extract soil water. Prediction maps for water content,

soil temperature, and electrical conductivity for the whole period of observation

(spacetime prediction stacks) can be obtained by contacting the authors.

8.3.2 3D+T kriging model

Fitted parameters for the seasonality functions (Eq. 8.4 and Eq. 8.5) are listed

in Table 8.2. The seasonal effects varied by depth: as depth increases, the change

in soil properties was delayed, and the amplitude of the change, on average, in-

creased for water content and decreased for soil temperature. For electrical con-

ductivity, the amplitude was highest at 0.9 m. High temperatures corresponded

with low water content and associated conductivity.

Table 8.3 lists the h/v ratios for horizontal-vertical distance scaling, as well

as the variogram parameters for each variable. We set the h/v ratios so that

1 m in depth horizontally corresponded to 21 m for water content, 516 m for soil
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Figure 8.4: Importance plots (covariates sorted by importance) derived using the ran-

domForest package (Liaw and Wiener, 2002). %IncMSE is the mean de-
crease in accuracy; IncNodPurity is the decrease in mean squared error.

temperature, and 53 m for electrical conductivity.

The water content and electrical conductivity variogram models only con-

tained the metric component (γst), each with four parameters (sill, range, nugget,

and the anisotropy parameter α), while soil temperature used a sum-metric model

with spatial, temporal, and joint components as in Eq.(8.6). The lack of pure

spatial and temporal components in water content and conductivity indicated

that these correlation structures appeared to be sufficiently modeled through a
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Figure 8.5: Spatio-temporal predictions of soil water content at Cook Agronomy Farm
for the growing season in 2012 using the random forests (RF) model. Note
that relative changes in water content are accurate, but absolute sensor
readings require correction.

metric model. In all three cases, the correlation in time was stronger over larger

separation distances, indicated by anisotropy ratios (sp/t) that were less than

one. For example, correlation at 1 m was equal to correlation at 5 days for water

content, 2 days for temperature, and 17 days for electrical conductivity. This

translates to the inclusion of more temporal neighbors than spatial neighbors

when making kriging predictions. Sample and 3D+T fitted variograms are de-

picted in Figure 8.6, along with isolated 3D spatial and temporal components.

Please note that the optimization of the spatial and temporal components of each

3D+T variogram is done based on the full spatio-temporal model. Hence, the

fit represents the entire variogram surface. As a result, the individual space and

time components may not intersect the sample data and appear as a poor fit

compared with the overall surface. Prediction surfaces for water content during

the 2012 growing season were also created from the 3D+T kriging model, shown

in Figure 8.7.

8.3.3 Model accuracy

For all three variables, Figure 8.8 shows hexbin plots of observed versus pre-

dicted values with the full RF model, strict cross-validation of the RF model

(RF-loc), and cross-validation of the kriging model (kriging-loc). Table 8.4

lists the global cross-validation statistics for the two models in addition to the
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Table 8.2: Parameters of the seasonality functions (Eqs. 8.4 and 8.5) for water content
(VW), soil temperature (C) and electrical conductivity (EC) at each depth. The
parameters represent the intercept (c), amplitude (a) and shift (b) in seasonal
effects at each depth.

var. depth c a b b1 b2 b3 b4

VW

0.3 m 0.26 0.06 45 128 223 257

0.6 m 0.29 0.06 66 153 228 280

0.9 m 0.31 0.06 71 152 258 282

1.2 m 0.32 0.05 71 169 266 289

1.5 m 0.35 0.03 117 186 205 245

C

0.3 m 9.7 -8.9 63

0.6 m 9.6 -7.4 55

0.9 m 9.5 -6.3 46

1.2 m 9.5 -5.4 38

1.5 m 9.4 -4.6 30

EC

0.3 m 0.20 0.05 55 133 219 241

0.6 m 0.31 0.08 93 160 225 248

0.9 m 0.37 0.11 77 148 254 290

1.2 m 0.41 0.09 84 184 225 274

1.5 m 0.44 0.07 62 110 281 332

Table 8.3: Variogram parameters for each variable. VW is water content, C is soil tem-
perature, EC is electrical conductivity, h

v
is the anisotropy ratio for horizontal-

vertical distances (m); st-vgm is the sum-metric component of the spatio-
temporal variogram; sp

t
is the anisotropy ratio between spatial and temporal

(m/days) distances (α); sill, range, and nugget are variogram parameters;
and the semivariance function of each model is either Exponential (Exp) or
Spherical (Sph). Sill and nugget units are the same as the measured variable.

var. h
v st-vgm α = sp

t sill model range nugget

VW 21 joint 0.20 0.005 Exp 32 m 0

C 516

space 0.26 Exp 97 m 0.39

time 4.69 Exp 147 days 0

joint 0.48 0.27 Sph 20 m 0

EC 53 joint 0.06 0.06 Exp 21 m 0

spatially constant seasonal models used for detrending.

The goodness of fit between observations and predictions using the full RF

model was >90 % for all three variables. However, under strict cross-validation
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Figure 8.6: Spatio-temporal sample variogram, metric variogram, and isolated 3D spa-
tial and temporal components for water content, temperature, and electrical
conductivity. The double axis on the 3D variogram illustrates the relation-
ship between vertical and horizontal depths.

(RF-loc), the predictive power of the RF model decreased, especially for wa-

ter content (34 %) and conductivity (5 %). The R2 values for soil temperature

remained high in cross-validation. The less rigorous cross-validation procedure

(RF-rnd) demonstrated stronger predictive power and lower error for all three

variables, with 86 %, 97 %, and 88 % of variability explained for water content,

temperature, and conductivity, respectively.

The seasonal models alone predicted all variables well, with the kriging models

only capturing a bit more variability. As with the RF model, the kriging model

was most successful at predicting soil temperature. The R2 of the kriging model

for the highly variable electrical conductivity was low at 18 %. Both the RF and

kriging models had difficulty predicting the infrequently high conductivity values.

8.4 Discussion

8.4.1 Model performance

In this paper we examined two approaches to producing continuous predic-

tions from 3D+T point observations of three dynamic soil variables, measured
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Figure 8.7: Spatio-temporal predictions of soil water content at Cook Agronomy Farm
for the growing season in 2012 using the kriging model. Note that relative
changes in water content are accurate, but absolute sensor readings require
correction.

daily at the field scale, by a 3D sensor network, for multiple years, and on com-

plex terrain that hosts rotating cropping systems. First, we assembled a highly

dimensional spatio-temporal regression matrix, and when fit with random forests

algorithm, covariates successfully explained the variability in observations. All

of the measured variables displayed seasonal patterns (Figure 8.2), so temporal

covariates explained much of the variability in the observations. Cumulative day

was an important covariate for all three soil variables, as was crop identity. At

Cook Agronomy Farm, the field is divided into multiple strips, which are the ba-

sis for crop rotations. Different cropping systems have different patterns of water

use, biomass production, rooting depth, and influences on the soil surface e.g.

shading, residue production, and interception of precipitation (Al-Mulla et al.,

2009; Qiu et al., 2011). These characteristics are likely responsible for the differ-

ences in dynamic soil properties between the strips, and from year to year—thus,

they can explain both spatial and temporal variability.

We expected precipitation to be an important predictor of soil water content;

however, weather covariates, were only deemed important according to the de-

crease in mean squared error metric. While precipitation is the only source of

soil water in this dryland agricultural system, evapotranspiration also plays an

important role in controlling soil water content, along with terrain and soil prop-

erties (Cantón et al., 2004; Hébrard et al., 2006). Perhaps inclusion of estimated
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Figure 8.8: Hexbin plots for observed and predicted values for the full RF model showing
goodness of fit (top), strict cross-validation of the RF model (center), and
of the kriging model (bottom).

evapotranspiration as a covariate, as in Jost et al. (2005), would complement our

covariate set in predicting soil water. The confounding and interacting effects of

weather, terrain, and soil properties that influence soil water content were likely

not recognized by the random forests model, as covariates are assessed individu-

ally.

Similarly, we expected air temperatures to be important in explaining vari-

ability in soil temperature. Daily minimum and daily maximum temperatures

indeed had high importance, according to one of the rankings; however, air tem-

peratures may not be representative of heat fluxes at the soil surface, due to crop

influences mentioned above.

Soil bulk electrical conductivity is correlated with soil moisture, organic mat-

ter, soil salinity, and soil texture (Friedman, 2005). Accordingly, we expected

covariates that are important in predicting soil water content to also predict con-
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Table 8.4: Global cross-validation statistics including the spatially constant predictions
based on the fitted seasonality functions, the kriging model (kriging-loc), and
two sets of statistics for the RF model (RF-loc and RF-rnd). VW is water
content, C is soil temperature, and EC is electrical conductivity, RMSE is
root mean squared error, MAE is mean absolute error, ME is mean error,
and R2 is coefficient of determination. The R2 for EC was calculated on the
log scale, due to a skewed distribution.

var. approach RMSE MAE ME R2

VW

season 0.08 0.06 0.00 0.31

kriging-loc 0.07 0.06 0.00 0.37

RF-loc 0.07 0.06 0.00 0.34

RF-rnd 0.03 0.02 0.00 0.86

C

season 1.37 1.03 0.00 0.93

kriging-loc 0.98 0.70 0.01 0.96

RF-loc 1.30 0.96 0.06 0.93

RF-rnd 0.94 0.67 0.00 0.97

EC

season 0.27 0.20 0.00 0.13

kriging-loc 0.27 0.19 -0.01 0.18

RF-loc 0.31 0.21 0.00 0.05

RF-rnd 0.10 0.05 0.00 0.88

ductivity, in addition to soil properties related to soil texture (bulk density and

Bt horizon presence). These covariates were ranked with high importance in the

RF model.

According to the strict cross-validation, the predictive success of the RF model

decreased as the variability of the target variable increased. This suggests that

the model was sensitive to the micro-scale variation in the data, rather than cap-

turing the general spatio-temporal trend of the data. While the random forests

algorithm generally tries to resist overfitting (Breiman, 2001a), instances of over-

fitting have been documented (Statnikov et al., 2008). Conversely, under the

simple cross-validation, the predictive power was strong. Clearly, the inclusion of

at least some spacetime points at a location were crucial for making predictions at

each location using the random forests algorithm. The 42 instrumented stations

are intentionally stratified across the terrain and soil feature space, and no two

locations are the same. We suspect that the stations are sparse enough across the

complex landscape of Cook Agronomy Farm that predicting new, unique loca-

tions occurs with higher error. It would be interesting to see if additional sensor

stations would improve predictive power, and/or if model performance was im-

proved in a more uniform study area. Identifying the optimal sample size for high

predictive accuracy in a complex study area is a question that still needs to be
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addressed. Through this analysis, we have also realized that there are multiple

ways of dividing the data set for cross-validation of these models — each provid-

ing different information about dependence across space, time, or both. Here, we

applied validation methods familiar to spatial analysis, but we suspect that these

methods are limited for handling complex 3D+T data. In the future, we hope

to explore cross-validation methods that better assess predictive power through

space, time, and their interaction.

We also expanded the kriging framework to accommodate the 3D+T data.

These models first required that we de-trend the data with depth-dependent

seasonality functions. The parameters of the seasonality functions that we fit

demonstrate that all three variables experienced a temporal delay as soil depth

increases. These results reflect the infiltration process during soil water recharge,

and later in the season, water draw-down by crop roots at increasing depths.

Similarly, seasonal soil temperature changes experienced a lag as soil insulation

increases with depth. Soil electrical conductivity followed a similar seasonal pat-

tern as water content, but with the largest minima and maxima at depths where

clay horizons occur. These depth-dependent temporal patterns explained most

of the variability in all three variables, akin to in the RF model.

3D+T variograms parameters indicated that spatial heterogeneity was high,

while temporal correlation was stronger over longer separation distances (spatial

range parameters were shorter than temporal range parameters). Soil tempera-

ture was correlated over shorter time periods, but was more constant over vertical

space (as indicated by the h/v ratio). Water content was correlated over longer

time periods, but over shorter vertical space. This translates to temperature

changes in the soil occurring at a faster rate than changes in water content, but

water content was more variable across 3D space. Electrical conductivity was the

least dynamic of all, because it is partially dependent on static soil properties e.g.

clay content (Corwin and Lesch, 2005). The presented 3D+T kriging approach

only uses day of the year as a covariate. Including some of the many covariates

used in the random forests approach to define the regression trend might also

improve the performance of regression-kriging for this data set.

For both modeling approaches, temporal patterns explained most of the vari-

ability in the observations, while spatial components were secondary. Spatial

heterogeneity is high at Cook Agronomy Farm, with hilly terrain, variable soil

horizonation, and multiple crop rotations. Our ability to predict this spatial

complexity with high precision was limited with only 42 stations. Thus, the high

temporal sampling density within this data set seems to be more important to

our modeling efforts.
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8.4.2 Interpretation of model predictions

All three soil variables show interesting patterns through the soil profile, across

horizontal space and time. The range of water content was higher in the shallower

soils, which are exposed to extremely wet and extremely dry conditions. Addi-

tionally, on average, soil water was retained in deeper soil, relative to shallower

depths. This was similar to soil temperature, where deeper soils are insulated

from extreme air temperatures, in both cold and warm seasons. Electrical con-

ductivity was variable through the profile, with some higher values occurring in

shallow soils, possibly due to fertilizer application (De Neve et al., 2000; Eigen-

berg et al., 2002). High values also occurred at the 1.2 m depth, which may be

an indication of accumulated carbonates or other materials. It is important to

note that the electrical conductivity readings represent the conductivity of the

bulk soil (including solid and liquid states). These values may be converted to

conductivity of the soil solution, which would be of interest for assessing soil

salinity specifically related to land and vegetation management. Soil solution

salinity is calculated from the bulk conductivity using the dielectric permittivity,

soil temperature, and water content measured by the sensors (Decagon Devices,

Inc., 2014; Hilhorst, 2000). Depending on the research question, either bulk or

soil solution conductivity could be interpolated with the methods described here.

It is possible that soil solution electrical conductivity may display less variability

and be easier to predict in space and time.

The prediction surfaces produced from the RF model showed more fine-scale

variability, compared to the kriging predictions. This was a result of the inclusion

of crop, terrain, and soil covariates in the predictive model. Within the prediction

surfaces, spatial patterns of covariate features are visible; particularly for the

covariates that ranked with high importance in the models (e.g. cropping strips

and Bt presence in Figure 8.5). The only spatial information provided by the

kriging model was the spatio-temporal correlation around each sample point—

causing the speckled appearance of the map. Nevertheless, in both cases, we can

see that deeper soil retained water when shallow soil was dry late in the growing

season. The seasonality and draw-down of soil water was more apparent in the

RF model predictions, than in the kriging predictions, particularly in deeper soil.

Certainly, the kriging predictions provide a more spatio-temporally smoothed

representation of the response variables, compared with the RF model.

8.4.3 Final conclusions and future directions

We have demonstrated two approaches for interpolating dynamic 3D+T soil

data. We observed that both models were highly successful in predicting soil tem-

perature and that the predictive power decreased as property variability increased
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— particularly when data from a station was entirely absent. The temporal com-

ponents in each model contributed most to explaining all three soil variables

across depth, emphasizing the importance of the seasonal changes in this data

set. Modeling changes in soil properties through time is, perhaps most interest-

ing for variables where such change can be observed at temporal scales of a few

days to a few years (Figure 8.9). Certainly, dynamic properties that irregularly

or erratically change will require innovative modeling approaches for explaining

such temporal behavior.

It should be noted that these methods are experimental and invite modifi-

cation and improvement. The results presented here are specific to the Cook

Agronomy Farm data set; the work serves as a case study for exploring 3D+T

interpolation approaches, and a basis upon which we can build. We observed

that temporal autocorrelation and time (day of the year) largely contribute to

the portion of variation that we can explain. A future direction could include

combining a random forests model with residual kriging. Given such a large data

set, we can experiment with thinning the regression matrix to remove spatial

and/or temporal correlation from the random forests model, and integrate those

predictions with spatio-temporal kriging.

Development of 3D+T models to create continuous predictions from point

data will allow dynamic soil properties to be incorporated into spatially-explicit

process and biophysical models. These spatio-temporal predictions of soil water

content, temperature, and electrical conductivity, as well as the 3D maps of basic

soil properties such as pH and bulk density, can inform precision agricultural

practices. All these soil variables can assist in understanding site specific charac-

teristics of Cook Agronomy Farm, such as crop performance, or risk of fertilizer

loss to the groundwater or the atmosphere. The fitted initial spatio-temporal

models can also be used to optimize soil monitoring networks (Heuvelink et al.,

2012) and/or recommend sampling and modeling strategies for properties that

might co-vary through space and time.

3D+T predictions of key soil properties also assist in visualizing dynamic

below-ground properties, which, unlike above-ground properties, cannot be ob-

served with photography or remote sensing. Time-lapse animations of 3D soil

properties provide information that is difficult to access through static, piece-

wise, representations. As a supplement to this paper, we have included KML

(Keyhole Markup Language) files to illustrate how 3D+T predictions can be

visualized in an interactive browser such as Google Earth.

Modeling data in 3D+T is not limited to soil or agricultural applications. Any

point data collected in 3D and through time could benefit from 3D+T interpola-

tions. In short, 3D+T models allow us to visualize and access knowledge about

dynamic properties that are difficult to directly observe. As technologies for mon-
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itoring ecosystem properties improve and high resolution spatial data collection

becomes cheaper and easier, the majority of soil maps could become 3D+T.
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Figure 8.9: Types of soil variables in terms of temporal stability or change.
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9 Soil respiration and its temperature sensitivity: rapid

acquisition using mid-infrared spectroscopy

Nele Meyer, Hanna Meyer, Gerhard Welp, Wulf Amelung

Abstract

Spatial patterns of soil respiration (SR) and its sensitivity to temperature (Q10)

are one of the key uncertainties in climate change research but since their assess-

ment is very time-consuming, large data sets can still not be provided. Here, we

investigated the potential of mid-infrared spectroscopy (MIRS) to predict SR and

Q10 values for 124 soil samples of diverse land use types taken from a 2868 km2

catchment (Rur catchment, Germany/Belgium/Netherlands). Soil respiration

at standardized temperature (25◦C) and soil moisture (45% of maximum water

holding capacity, WHC) was successfully predicted by MIRS coupled with partial

least square regression (PLSR, R2 = 0.83). Also the Q10 value was predictable

by MIRS-PLSR for a grassland submodel (R2 = 0.75) and a cropland submodel

(R2 = 0.72) but not for forested sites (R2 = 0.03). In order to provide soil respi-

ration estimates for arbitrary conditions of temperature and soil moisture, more

flexible models are required that can handle nonlinear and interacting relations.

Therefore, we applied a random forest model, which includes the MIRS spectra,

temperature, soil moisture, and land use as predictor variables. We could show

that SR can be simultaneously predicted for any temperature (5-25◦C) and soil

moisture level (30-75% of WHC), indicated by a high R2 of 0.73. We conclude

that the combination of MIRS with sophisticated statistical prediction tools al-

lows for a novel, rapid acquisition of SR and Q10 values across landscapes and

thus to fill an important data gap in the validation of large scale carbon modeling.

keywords Heterotrophic soil respiration; Environmental soil classes; PLSR;

Random forest
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9.1 Introduction

Heterotrophic soil respiration (SR) represents the second largest carbon (C)

flux in terrestrial ecosystems (Raich and Schlesinger, 1992) and its accurate mod-

eling is therefore of immense importance for reliable assessments of net ecosystem

exchange. Heterotrophic soil respiration is, amongst other factors, mainly a func-

tion of soil organic carbon (SOC) quantity (Wang et al., 2003), SOC degradabil-

ity (Conant et al., 2008), soil temperature (Kirschbaum, 1995), and soil moisture

(Orchard and Cook, 1983). Due to the large number of determining factors,

there are still many uncertainties in the accurate prediction of SR across vari-

ous soils and weather conditions. Especially the effect of temperature on SR is

one of the key uncertainties in climate change research (Kirschbaum, 2006). The

temperature sensitivity of SR is often expressed as the Q10 value, which is the

increase of SR by a 10◦C increase in temperature (Kirschbaum, 1995; Van’t Hoff,

1898). Although the Q10 value is implemented as a fixed constant in modeling

approaches (e.g., 1.5 in CLM, Foereid et al. (2014), or 2 in CASA and TEM,

Potter et al. (1993); Raich et al. (1991)), measurements have demonstrated that

the temperature sensitivity is variable, with Q10 values ranging from 1 to higher

than 12 (Hamdi et al., 2013; Meyer et al., under review). With increasing de-

mand of implementing variable Q10 values into carbon models instead of a fixed

value (e.g., Lefèvre et al., 2014) the need to understand and predict spatiotem-

poral patterns of Q10 becomes critically important. Based on Q10 values and

SR at a reference temperature, SR at any other temperature is usually calculated

according to equation 9.1:

SRT = SRREF ∗ Q10(T −TREF )/10 (9.1)

where SRT is soil respiration at the requested temperature, SRREF is soil

respiration at a reference temperature, TREF is the reference temperature and

T is the requested temperature. Consequently, both, an inaccurate Q10 value

and an inaccurate SRREF can lead to large over- or underestimation of carbon

fluxes (e.g., Meyer et al., under review; Zhou et al., 2009). Hence, improvements

of SRREF and Q10 estimates are required for accurate predictions of carbon

fluxes. Due to the time-consuming analyses, efforts to unravel the spatiotem-

poral variability of SR and Q10 values are often limited to small sample sizes

(e.g., Reichstein et al., 2003; Zheng et al., 2009). An option could be the use of

pedotransfer functions. However, due to the complexity of determining factors

these are frequently not available or again time-consuming to develop (e.g., Fierer

et al., 2006). Hence, a method, which allows for a rapid and reliable estimate

of SR and Q10 across the landscape, would be highly desirable. Mid-infrared

spectroscopy (MIRS) coupled with partial least square regression (PLSR) has
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proven its suitability for the rapid assessment of a broad range of soil proper-

ties like the content of SOC (Bornemann et al., 2010; Cobo et al., 2010; Janik

and Skjemstad, 1995), nitrogen (Janik and Skjemstad, 1995; Zimmermann et al.,

2007), pH values (Cobo et al., 2010; D’Acqui et al., 2010; Janik and Skjemstad,

1995), texture (Cobo et al., 2010; Zimmermann et al., 2007), or specific carbon

fractions (Bornemann et al., 2008, 2010; Ludwig et al., 2008). Inasmuch as SR

and Q10 depend on SOC quantity and degradability, it seemed thus reasonable to

speculate that it should also be possible to assess SR and Q10 values using MIRS.

Earlier studies already indicated the potential of near infrared spectroscopy as a

prediction method for SR (e.g., Chang et al., 2001; Ludwig et al., 2002; Palmborg

and Nordgren, 1993). Yet, the potential of the wider range of infrared signals

using MIRS to predict SR received far less attention. Further, previous spectro-

scopic approaches did not focus on the temporal variability of SR but predicted

SR rates at a single level of soil moisture and temperature. In this study, we

investigated the potential of MIRS for the high throughput estimate of SR across

the landscape and for various weather conditions. First, we aimed at investi-

gating whether a MIRS-based prediction of SR can potentially be achieved for

standardized temperature and soil moisture conditions. To achieve a scaling of

SR across various temperatures, we further aimed at investigating whether Q10

values are predictable by MIRS. We hypothesized that a prediction of both SR

and Q10 is feasible using standard multivariate statistical procedures, e.g., par-

tial least square regression (PLSR). To directly estimate SR beyond standardized

weather conditions, in a second step, we aimed at building up a prediction model

that allows for the simultaneous prediction of SR at any given temperature and

soil moisture level. As the number of potential predictor variables and interac-

tions increased, more complex statistical models were required. We hypothesized

that the simultaneous prediction can be accomplished by using Random Forest

modeling that is able to deal with nonlinearity and various types of predictor vari-

ables. The accomplished prediction model should represent a basis for a rapid

estimation of SR across the landscape.

9.2 Material and Methods

9.2.1 Study area

The Rur River catchment is situated predominantly in western Germany and

partly in the Netherlands and Belgium. The study site covers a total area of

2868 km2 and exhibits distinct gradients of elevation, temperature, and precipi-

tation. The northern part is characterized by a fairly flat area (< 100 m above

sea level) with a maximum average temperature of 10.9◦C and a minimum an-

nual precipitation of 703 mm. Elevation increases towards the south where low
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mountain ranges occur (Eifel, up to 700 m above sea level). Average temperature

decreases to a minimum of 6.1◦C and annual precipitation increases to a maxi-

mum of 1358 mm in the southeastern parts (Hijmans et al., 2005; Simmer et al.,

2015). Intensive agriculture and urban areas dominate the flat northern parts

while the southern part is mainly characterized by forests and grasslands. The

Rur Catchment is the main research area of the Collaborative Research Center

SFB/TR 32 (Simmer et al., 2015; Vereecken et al., 2016) and is also part of the

Terrestrial Environmental Observatories program, TERENO (Zacharias et al.,

2011).

9.2.2 Soil sampling

To capture a broad range of soil properties within the catchment, we di-

vided the catchment into environmental soil classes (ESC), which we defined as

a unique combination of the factors land use, aggregated soil group, and texture

(Table 9.1). For further information on this classification approach, see Meyer

et al. (under review). Sampling was conducted during two field campaigns in

two subsequent years (2015, 2016). In the first sampling campaign, we took 9

soil samples from each of the 12 most frequent ESCs. To account for possible

influences of the climatic and altitudinal gradient and to avoid spatial autocorre-

lation, 3 of the 9 samples were taken from different locations in the northern part

of the catchment, 3 from the central part, and 3 from the southern part. For a

detailed description of the soil sampling design see Meyer et al. (under review).

We complemented this sampling set by taking additional samples in the same sea-

son but one year after the first sampling campaign. This was necessary because

the number of cropland and grassland samples from the first sampling campaign

was comparatively low. The final sampling set comprised 124 samples including

30 cropland soils, 31 grassland soils, and 63 forest soils (including deciduous and

coniferous forests) from various soil groups and texture classes and from a depth

of 0-29 cm, each (Table 9.1).

All samples were sieved at field-moist conditions to 2 mm. Parts were stored at

-18◦C for respiration analyses, and parts were dried at 40◦C for chemical analyses

and MIRS measurements.

We are aware that sieving has been criticized for altering SR compared to real-

world conditions (Herbst et al., 2016). However, Černohlávková et al. (2009) and

Thomson et al. (2010) found that the effect of sieving on SR may be neglected

for field-moist samples, i.e., they recommend sieving field-moist samples, and so

we did. Further, in a preliminary study, we investigated the extent by which

SR and Q10 is affected by sieving (field-moist) and freeze-storage and found no

significant difference (data not shown). Hence, we are confident that our results

are transferrable to real world conditions.
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Table 9.1: Environmental soil classes (ESC) and sample set

Land

use

Land use

sub-type

Aggregated

soil group
Texture

Number

of samples

Cropland - Terrestrial Silt 10

Cropland - Terrestrial Sand 3

Cropland - Stagnic Silt 9

Cropland - Terrestrial Loam 3

Cropland - Semi-terrestrial Silt 5

Grassland - Terrestrial Silt 11

Grassland - Terrestrial Sand 2

Grassland - Terrestrial clay 1

Grassland - Stagnic Silt 9

Grassland - Semi-terrestrial Silt 9

Forest Deciduous Terrestrial Silt 9

Forest Deciduous Terrestrial Sand 9

Forest Deciduous Stagnic Silt 9

Forest Deciduous Semi-terrestrial Silt 9

Forest Coniferous Terrestrial Silt 9

Forest Coniferous Terrestrial Sand 9

Forest Coniferous Stagnic Silt 9

9.2.3 Determination of physicochemical soil properties

The total C and N contents of the sieved and milled soils were determined by

elemental analysis (ISO 10694, 1995). All samples were free of inorganic C. Thus,

total C equaled SOC. Maximum water holding capacity (WHC) and actual soil

moisture were determined on field moist samples, the procedure mainly following

Alef and Nannipieri (1995).

9.2.4 Soil respiration measurements and determination of Q10

Samples were allowed to thaw for three days at 4◦C. Afterwards, subsamples

were rewetted to 30%, 45%, 60%, and 75% of water holding capacity (WHC) by

adding deionized water which was homogenized with the soil using a mixer. In

case of higher water contents than required, samples were left open at 4◦C for a

few hours to days until the desired water content was reached. After adjusting

the water content, 75 g (dry weight) of soil was filled into plastic vessels, three

replications each, and slightly compressed to a bulk density of 1.3 g cm−3 to

create standardized conditions (Breulmann et al., 2014). At least four blanks of

empty plastic vessels were prepared for each incubation run. The samples were
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then pre-incubated at 4◦C for 120 h to level effects of mixing and water addition

and to stabilize the respiration rate (Blagodatsky et al., 2000).

Soil respiration measurements were conducted using an automated respirom-

eter that allows incubating 95 samples in parallel (Respicond VIII, Nordgren In-

novations AB, Sweden). The system provides a continuous measurement of CO2

evolution by trapping CO2 in potassium hydroxide (KOH) (Nordgren, 1988). The

decrease in electrical conductivity in KOH solution caused by CO2 entrapment

was automatically measured every hour by platinum electrodes, and the changes

in conductivity were automatically transformed to CO2 evolution rates, based on

equation 9.2 where A is a conductivity constant that depends on the molarity

of the KOH solution, Ct0 is the conductance of the fresh KOH measured at the

beginning of the incubation and Ct1 is the conductance at time t.

CO2 = A ∗
Ct0 − Ct1

Ct0
(9.2)

Soil samples were sequentially set to 5◦C, 10◦C, 15◦C, 20◦C, and 25◦C by

heating the water bath of the Respicond system. Samples were kept at each

temperature for 24 h (see also Gritsch et al., 2015). The first 12 hours after each

temperature rise were treated as equilibration time. This was necessary because

soil microorganisms may need a couple of hours to adapt to the new temperature

level. The proposed duration of this equilibration time differs among studies and

mostly depends on the amount of soil sample used. Typically, they range from 2 h

(Koch et al., 2007) to 24 h (Vanhala et al., 2008). Here, we decided for 12 h. The

subsequent 12 hours were used for the calculation of soil respiration and were ex-

pressed as the average hourly CO2 release. The average soil respiration rate from

the three incubation vessels was used for further analyses. After completion of

each temperature level, vessels were left open for about 30 minutes to equilibrate

with ambient O2 concentrations. The KOH solution was replaced subsequently.

The short-term incubation approach was chosen to minimize effects of changing

C pool sizes during the incubation. Longer incubation times can underestimate

Q10 because SOC decreases with increasing incubation time (Hamdi et al., 2013;

Kirschbaum, 2006).

The ratio between soil respiration and SOC (SR25/SOC ratio) was calculated

as an indicator of SOC degradability (Craine et al., 2010) from soil respiration

at 45% WHC and 25°C (SR25).

An exponential equation was used to calculate the relationship between tem-

perature and soil respiration (Q10). The equation was fitted over the total tem-

perature range of 5-25◦C according to equation 9.3 where SRT is soil respiration

at a given temperature, a and b are fitted parameters, and T is temperature.
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SRT = a ∗ expb∗T (9.3)

The Q10 value was then calculated by inserting the parameter b into equation

9.4.

Q10 = exp10∗b (9.4)

9.2.5 Mid infrared spectroscopy (MIRS)

For MIRS analyses, sieved samples were dried at 40◦C, milled, and about

20 mg was filled into microtiter plates and compacted with a plunger to create

a plain and dense surface. Spectra were recorded using a Bruker Tensor 27

(Bruker HTS-XT), which records absorption from 7500 to 550 cm−1 wavenumber

(corresponding to a range of 1333-18180 nm wavelength), with a resolution of

4 cm−1. Spectra were automatically corrected for atmospheric water vapor and

CO2. Each sample was replicated five times and represents an average of 120

scans. The average spectrum of the five replicates was used for further analyses

and model construction.

9.2.6 Relation between MIRS spectra and soil respiration parameters

Pearson’s product moment correlation coefficient between absorption at each

wavenumber and soil respiration parameters (i.e., SR25,45, Q10, SOC, and SOC-

degradability) was calculated to get an impression, which individual spectral

bands are indicative for the respective parameter. Correlation analyses were

performed on baseline-corrected spectra in order to eliminate noise.

9.2.7 Partial least square regression (PLSR)

In a first step, we aimed at investigating the potential of MIRS to predict

SR and the Q10 value under standardized conditions of temperature and soil

moisture. Here, we chose SR at a temperature of 25◦C and at a soil moisture

level of 45% WHC (SR25,45). Also for the determination of Q10 we used a

WHC of 45%. A temperature of 25°C was chosen because it is often used as

reference temperature in carbon models, e.g., in CLM, and a soil moisture level

of 45% WHC was chosen because it represents an intermediate level. Further, we

also tested the predictability of the SOC-normalized SR at 45% WHC and 25◦C

(SR25,45/SOC), which is an indicator of SOC-degradability. This was done to

exclude that the predictability of SR25,45 only bases on a predictability of SOC

contents.



9.2 Material and Methods 161

The PLSR was performed using the OPUS QUANT software. The models

were validated using leave-one-out cross validation, which is widely accepted es-

pecially for comparatively small sample sets (Bornemann et al., 2008; Reeves

et al., 2001). Thus, n − 1 samples were used for model calibration and the per-

formance of the model was validated by estimating the excluded sample. This

procedure was repeated successively until each sample was excluded once. The

number of ranks, the spectral preprocessing method, and the inclusion of spectral

bands were selected in such a way that R2 was maximized and the root mean

square error of cross validation (RMSECV) was minimized. The selection of

the optimal model was automatically performed by the optimization function of

the OPUS QUANT software, which allows testing the performance of more than

1000 variants. PLSR for the prediction of Q10 and SR25 was performed on the

complete data set and on subsets of individual land use types separately.

The prediction accuracy of MIRS-PLSR was evaluated by the coefficient of

determination (R2) and by residual predictive deviation (RPD), which is the

ratio of the standard deviation of the reference data to the standard error of

cross validation. The RPD is commonly classified as excellent for RPD > 2.5,

good for RPD of 2.0-2.5, acceptable for RPD of 1.5-2.0, and poor for RPD <1.5

(Cozzolino et al., 2005; Viscarra Rossel et al., 2007).

9.2.8 Random Forest modeling

For the simultaneous prediction of SR at any temperature and soil moisture

level, a Random Forest model was used. Random Forest is a well-established

and commonly used machine learning algorithm (Breiman, 2001a). It is known

to be able to deal with nonlinearity, different types of predictor variables (e.g.,

nominal and metric data), complex interactions, as well as with collinearity of

the predictors. Hence, Random Forest might be superior to PLSR analyses for

more complex models. The algorithm bases on the concept of decision trees. As

Random Forest is an ensemble method, several individual trees are built and the

averaged predictions of the individual trees are taken as final estimate. For a

detailed description of the algorithm see Breiman (2001a) and Kuhn and John-

son (2013a). Random Forest has also shown its applicability for MIRS based

prediction models in Knox et al. (2015).

Random Forest modeling was performed in R using the implementation of

Liaw and Wiener (2002) in conjunction with the wrapper package "caret" Kuhn

(2017). As predictor variables, we included the MIRS spectra, the incubation

temperature, soil moisture, and land use. The latter was necessary because the

results from the MIRS-PLSR based predictions of Q10 values showed that differ-

ent spectral bands are indicative for the Q10 value in each land use type. Random

Forest was performed on baseline-corrected spectra and parts of the spectra were
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removed before analysis (wavenumbers >4000 cm−1) because they were assumed

to be insensitive (see also Bornemann et al., 2010). To investigate which vari-

ables were most important for the model accuracy, scaled variable importance

was estimated according to Liaw and Wiener (2002).

The model performance and its ability to predict SR for unknown samples was

estimated using a leave-one-sampling-point-out cross-validation. Each sampling

point contains SR data for five temperatures and four soil moisture levels (i.e., 20

respiration measurements). Therefore, models were fitted by successively leaving

the entire data of one sampling point out. The model was calibrated with the

remaining respiration data (i.e., 2460 measurements), while the excluded data

were used for model validation. This procedure was repeated successively un-

til each sample was estimated with a model calibrated with all other samples.

The leave-one-sampling-point-out approach was necessary as dependent data are

prone to overfitting (Roberts et al., 2017). This became obvious in a delusively

high performance measure (R2 = 0.94) when SR for a specific sample, temper-

ature, and soil moisture level was estimated from a model, which included the

same sample for calibration, but at other temperatures and soil moisture levels.

Therefore, though Random Forest implements an internal performance indicator

(out of bag error, Breiman, 2001a), it was necessary to exclude all data from the

respective sample in view of a reliable validation.

9.3 Results and Discussions

9.3.1 MIRS-PLSR based prediction of soil respiration at standardized

temperature and moisture

Soil respiration measured under standardized soil temperature (25◦C) and

moisture (45% of maximum water capacity), SR25,45, was predictable with R2 =

0.83 by MIRS-PLSR in a general model, which included the complete sample set

(Figure 9.1a, Table 9.2). Splitting the data set into submodels of separate land

use types revealed no considerable improvement of RPD or R2 (9.1b-d, Table

9.2).

It is obvious that the predictability of SR25,45, did not originate from a di-

rect correlation between the MIRS spectra and soil respiration. Actually, no

respiration takes place in the dried samples during the MIRS measurement. Soil

respiration was linked to the MIRS spectra through surrogate correlations, i.e.,

through correlation of SR25,45 to SOC content, SOM quality or other soil param-

eters that are reflected in the infrared spectra and which control SR. The driving

surrogate parameter was likely the SOC content, first, because it directly affected

soil respiration (here: R2 = 0.59, p<0.01 for the relation between SOC and SR),
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and second, because it is known to be accurately predictable by MIRS (here: R2

= 0.95, RPD = 4.36, see also Bornemann et al., 2010; Reeves, 2010; Zimmermann

et al., 2007). Indeed, SR25,45 was correlated to similar wavenumbers of the MIRS

spectra as the SOC content (Fig. 9.2). Also Chang et al. (2001) reported for a

near infrared range that spectral predictors of SR were similar to those of SOC.

At a first glance, such a surrogate correlation questions the need for MIRS-

PLSR to predict spatial patterns of SR because SOC contents can be measured

with similar or even less efforts of time and costs by elemental analysis. How-

ever, linear regressions between SOC contents and SR25,45 explained only 59% of

data variability, while MIRS-PLSR based predictions of SR25,45 were more accu-

rate (R2 = 0.83). Consequently, other surrogate parameters than SOC content

contributed to the MIRS-based prediction of SR. Indeed, when normalizing SR

to SOC contents (SR25,45/SOC), the cross validation revealed that MIRS cap-

tured at least parts of the SOC degradability, especially in grasslands and forests

(Table 9.2). This suggests that MIRS did not only account for quantitative

but also for qualitative properties of SOC, as already discussed by Bornemann

et al. (2010) and Ludwig et al. (2008). Indeed, soils with high SR25,45 revealed

high absorptions in spectral regions typically assigned to aliphatic C-H stretches

(Fig. 9.2, Fig. 9.3, 2925 cm−1 and 2850 cm−1, Rumpel et al., 2001), which were

probably associated with fresh and labile C (Margenot et al., 2015). Positive cor-

relations between absorption and SR25,45 were further found between 1100 cm−1

and 1200 cm−1, associated with the C-O stretch of polysaccharides (Fig. 9.2,

Fig. 9.3, Rumpel et al., 2001), at 1660 cm-1 (carbonyl-C; Rumpel et al., 2001),

as well as at 1722 cm-1 (C=O stretching of COOH; Rumpel et al., 2001). Not all

components in organic matter promote respiration. Indeed, negative correlations

to SOC and SR25,45 appeared, for instance, in the region between 1250 cm−1 and

1615 cm−1, which Rumpel et al. (2001) assigned to aromatic species. The latter

are usually less prone to decomposition Zech et al. (1992). Hence, it is likely that

both the quantity of SOC and the composition of soil organic matter affected the

MIRS spectra and the prediction of SR25,45.

9.3.2 MIRS-PLSR based prediction of Q10 values

The MIRS-PLSR based prediction of Q10 values was not successful for the

entire data set (R2 = 0.43; Fig. 9.4a, Table 9.2). Several studies reported that

the predictive power can be enhanced by splitting the data set into subsets to

reduce the heterogeneity within the data set (Bornemann et al., 2010; Linker

et al., 2006). Thus, we divided the data set according to land use types and

calibrated separate submodels. Within the cropland and the grassland submodel,

Q10 values were predictable with R2 = 0.72 and R2 = 0.75, respectively (Fig. 9.4,

Table, Table 9.2). The Q10 value of forest soils was not predictable by MIRS-
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Figure 9.1: Comparison between measured and predicted soil respiration (SR) rates at
25°C and 45% of water holding capacity based on leave-one-out cross vali-
dation. a) general model, b) cropland submodel, c) grassland submodel, d)
forest submodel.

PLSR (R2 = 0.03, Fig. 9.4d, Table 9.2).

The root mean square error of cross validation (RMSECV) of the cropland

and grassland submodels was always lower than the RMSECV derived from the

general model for the respective cropland and grassland samples (supplementary

information: Table S1). Hence, the comparatively poor accuracy of the general

model did not solely result from the poor predictability of forest soils. Even the

cropland and grassland soils, which were successfully predicted by the respective

submodel, were less accurately predicted by the general model (Fig. 9.4a). In

line with Meyer et al. (under review) and Zheng et al. (2009), regulating factors

of Q10 values varied among land use types. Hence, the MIRS-based prediction

of Q10 values might rely on different surrogate correlations within each land use

type. This might complicate the accurate prediction of Q10 values in a general

model. Thus, we recommend using land use specific submodels for MIRS-PLSR

based predictions of Q10 values.

Q10 was correlated to the same spectral regions that were indicative for SOC

degradability (i.e., the SOC-normalized SR, SR25,45/SOC), but inversely. Spec-
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Figure 9.2: Correlation between absorption at each wavenumber and SOC, SR25,45,
Q10, and SOC-degradability for the general dataset and the individual sub-
sets. The correlation between absorption and soil parameter is zero when
the solid line matches the dashed line. Correlations are positive for val-
ues above the dashed line and negative below the line. SOC = soil organic
carbon, SR25,45 = soil respiration measured at 25◦C and 45% of water
holding capacity, Q10 is the temperature sensitivity, i.e., the factor for the
increase in soil respiration by a 10◦C rise of temperature, SOC-degr = SOC
degradability as derived from the SOC normalized soil respiration rate, i.e.,
SR25,45/SOC.

Figure 9.3: Baseline-corrected MIRS spectra of three grassland soils with different
SR25,45 rates of 0.97 µg CO2 h−1 g soil-1 (black line), 5.86 µg CO2 h−1 g
soil-1 (blue line), and 10.25 µg CO2 h−1 g soil-1 (red line).
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Table 9.2: Prediction accuracy for SR25,45, Q10 values, and C-degradability (i.e.,
SR25,45/SOC, SOC normalized soil respiration) based on the different sub-
models. anumber of samples, bR2 = coefficient of determination, cRMSECV
= Root Mean Squared Error of cross-validation, dRPD = residual predictive
deviation

Parameter Model na
Spectral

preprocessing
R2b RMSECVc RPDd Rank

SR25,45

General 124 First derivative 0.83 1.2 2.45 6

Crop 29 No preprocessing 0.83 0.565 2.45 9

Grass 30
Multiplicative

scattering correction
0.84 0.951 2.52 5

Forest 63 Second derivative 0.87 1.08 2.8 7

Q10

General 124 No preprocessing 0.43 0.234 1.32 10

Crop 29 Second derivative 0.72 0.135 1.91 10

Grass 30 Straight line subtraction 0.75 0.111 2.0 10

Forest 63 Straight line subtraction 0.03 0.244 1 1

C-degradability

(SR25,45/SOC)

General 123 Second derivative 0.48 0.529 1.38 8

Crop 30 Second derivative 0.07 0.394 1.04 9

Grass 30 Vector normalization (SNV) 0.74 0.24 1.96 4

Forest 62 Straight line subtraction 0.68 0.242 1.77 8

tral regions that correlated positively with SOC degradability correlated neg-

atively with the Q10 value and vice versa. This observation is in line with the

C-quality-temperature hypothesis (Bosatta and Agren, 1999; Conant et al., 2008;

Lefèvre et al., 2014). According to this hypothesis, SOC that is easily degradable

is less sensitive to temperature changes than recalcitrant SOC. Only in forest

soils, no spectral region was correlated with the Q10 value, thus supporting pre-

vious indications that Q10 variability in forest soils could not be assigned to any

measured physicochemical soil properties or to C-degradability (Meyer et al.,

under review).

Altogether, our results showed that MIRS-PLSR is potentially suitable to

predict Q10 values but that its applicability is limited to cropland soils and

grassland soils. The models could be used to derive an approximation of Q10

values but should not be used to replace conventional respiration measurements

when highly resolved data are required.

9.3.3 Simultaneous prediction of soil respiration across various levels

of soil moisture and temperature by Random Forest modeling

Although the predictability of SR at a reference temperature (e.g., 25◦C) and

of Q10 values allows calculating SR at any other temperature based on equation

9.1, the above presented results were only valid for a single soil moisture level

(i.e., here 45% of WHC). Although the prediction of SR25 was also possible for

other soil moisture levels (supplementary information: Table S2), quite a lot of

separate MIRS-PLSR models would be required. Further, also the Q10 value is
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Figure 9.4: Comparison between measured and predicted Q10 values based on leave-one-
out cross validation. a) general model, b) cropland submodel, c) grassland
submodel, d) forest submodel.

generally assumed to vary across soil moisture levels (e.g., Craine and Gelderman,

2011; Luan et al., 2013; Meyer et al., under review). While the above presented

models might be adequate for certain purposes, i.e., to study spatial patterns of

SR or Q10 at a single soil moisture level, a model that allows for the simultaneous

prediction of SR at any temperature and soil moisture level would be of great

help to estimate SR under various weather conditions.

Thus, we tested if SR at any given temperature and soil moisture level can

be simultaneously predicted by a Random Forest model. Here, besides the MIRS

spectra, also temperature, soil moisture, and land use were used as predictor

variables of SR. By introducing land use as predictor variable, the Random Forest

model might consider that different surrogate correlations, i.e., specific spectral

regions, are required for each land use type. This was needed to account for the

temperature sensitivity of SR (section 9.3.2). Due to the addition of land use to

the predictor variables, no land use specific submodels were required.

The Random Forest model allowed to predict SR at any given soil moisture

level and temperature with an R2 of 0.73 (Fig. 9.5). The SR of croplands, grass-

lands, and forests was well represented by the general model (Fig 9.6). The
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most important variable for the model performance was temperature, followed

by moisture, and land use (Fig 9.7). Further, five different wavenumbers turned

out to be important for model calibration: 1672 cm−1, 586 cm−1, 3998 cm−1,

and 1840 cm−1, and 1838 cm−1. These importance rankings were supported

by simple correlation analyses where the concerning wavenumbers showed high

positive or negative correlations with SR (Fig 9.2).

In summary, our results revealed that the inclusion of MIRS into SR estimates

indirectly adds information on SOC content, SOC-degradability, and temperature

sensitivity to the predictor variables. Hence, we assume that the MIRS based pre-

diction has a large advantage over approaches that predict SR solely on the basis

of temperature and soil moisture (e.g., Bowden et al., 1998; Keith et al., 1997).

With respect to the consideration of several surrogate parameters, the large range

of considered soils, the fast and inexpensive measurement, and the strict valida-

tion method (see section 9.2.8), we are convinced that the MIRS-based Random

Forest model has a large potential regarding the range of applicability and the

accuracy to predict SR for unknown samples.
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Figure 9.5: Comparison between measured and predicted soil respiration rates based on
leave-one-sampling-point-out cross-validation. Measured respiration rates
from five temperatures and four soil moisture levels per sample were in-
cluded. For an easy visual interpretation, the data are presented via
hexagon binning where the numbers of data points, which are located in
each hexagon, are depicted by color.
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Figure 9.6: Comparison between measured and predicted soil respiration rates based on
leave-one-sampling-point-out cross-validation for each land use type sepa-
rately. a) cropland soils within the general model, b) results for grassland
soils within the general model, c) results for forest soils within the gen-
eral model. Note that results were derived from the general model to show
the differences in model performance for each separate land use type. No
submodels were calculated. For an easy visual interpretation, the data are
presented via hexagon binning where the numbers of data points, which are
located in each hexagon, are depicted by color.
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Figure 9.7: Scaled variable importance as revealed by the Random Forest algorithm.
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soil respiration estimate. WN = wavenumber.
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9.4 Conclusion

In this study, we showed that MIRS combined with sophisticated statistical

methods represents a promising tool for the spatiotemporal prediction of soil res-

piration. The MIRS models should not replace conventional lab analyses when

high accuracy data are required, however, they could be used in studies where

lab analyses are not feasible (e.g., for large data sets), and they appear useful in

replacing simple pedotransfer functions that rely solely on, e.g., SOC contents.

The developed Random Forest model offers a new possibility for a high through-

put estimate of SR patterns across the landscape and for various temperatures

and soil moisture levels at least within the Rur catchment. An extension of the

database to soils from other regions is now required.
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10 Regional-scale controls on the spatial activity of

rockfalls (Turtmann valley, Swiss Alps) – A mul-

tivariate modelling approach

Karoline Messenzehl, Hanna Meyer, Jan-Christoph Otto, Thomas Hoffmann, Richard Dikau

Abstract

In mountain geosystems, rockfalls are among the most effective sediment transfer

processes, reflected in the regional-scale distribution of talus slopes. However,

the understanding of the key controlling factors seems to decrease with increas-

ing spatial scale, due to emergent and complex system behaviour and not least to

recent methodological shortcomings in rockfall modelling research. In this study,

we aim (i) to develop a new approach to identify major regional-scale rockfall

controls and (ii) to quantify the relative importance of these controls. Using a

talus slope inventory in the Turtmann Valley (Swiss Alps), we applied for the

first time the decision-tree based random forest algorithm (RF) in combination

with a principal component logistic regression (PCLR) to evaluate the spatial

distribution of rockfall activity. This study presents new insights into the discus-

sion on whether periglacial rockfall events are controlled more by topo-climatic,

cryospheric, paraglacial or/and rock mechanical properties.

(i) Both models explain the spatial rockfall pattern very well, given the high

areas under the Receiver Operating Characteristic (ROC) curves of > 0.83.

Highest accuracy was obtained by the RF, correctly predicting 88% of the

rockfall source areas. The RF appears to have a great potential in geomor-

phic research involving multicollinear data.

(ii) The regional permafrost distribution, coupled to the bedrock curvature and

valley topography, was detected to be the primary rockfall control. Rock-

fall source areas cluster within a low-radiation elevation belt (2900-3300 m

a.s.l,) consistent with a permafrost probability of > 90%. The second most

important factor is the time since deglaciation, reflected by the high abun-

dance of rockfalls along recently deglaciated (< 100 years), north-facing

slopes. However, our findings also indicate a strong rock mechanical con-

trol on the paraglacial rockfall activity, declining either exponentially or

linearly since deglaciation.

The study demonstrates the benefit of combined statistical approaches for

predicting rockfall activity in deglaciated, permafrost-affected mountain valleys

and highlights the complex interplay between rock mechanical, paraglacial and
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topo-climatic controls at the regional scale.

Keywords Rockfall; Logistic regression model; Random Forests algorithm; Rock

mechanical properties; Paraglacial; Permafrost
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10.1 Introduction

Rockfalls from steep rock slopes are frequent in cold mountain environments

(Rapp, 1960; Whalley, 1984), where they represent a considerable natural hazard

(Hungr et al., 1999; Ravanel and Deline, 2015). From a geomorphological perspec-

tive, detailed knowledge of the key factors controlling rockfalls is important as

rockfalls efficiently contribute to bedrock denudation (Heim, 1932; Selby, 1982a;

Krautblatter et al., 2012), accumulate massive talus deposits at the footslopes

(Caine, 1974; Messenzehl et al., 2014) and play a major role in the sediment flux

in mountain geosystems (Jäckli, 1957; Hoffmann et al., 2013; Heckmann et al.,

2016). The spatial occurrence of rockfalls, i.e. covering debris falls (<10 m3),

boulder falls (10-102 m3) and block falls (102-104 m3) (nomenclature after Kraut-

blatter et al. (2012), is best indicated by the presence of talus slopes (Hales and

Roering, 2005; Sass, 2005c; Moore et al., 2009) integrating a long-term average

of rockfall history over longer time scales such as the Holocene (Krautblatter and

Dikau, 2007). However, the heterogeneous spatial distribution of talus landforms

within mountain landscapes as well as their varying volumes and material prop-

erties (Gerber, 1974; Schrott and Hoffmann, 2003; Sass, 2010) reflect a complex

interplay of numerous causative factors, collectively defining the sensitivity of

rockwalls to fail at different spatial and temporal process scales (Fig. 10.1). At

small scales, the balance between shear stresses and shearing resistance of the

rock mass (Terzaghi, 1962) is determined by the highly spatio-temporal variable

interplay between mechanical, thermal and hydrological bedrock characteristics

(Hoek and Brown, 1997; Wyllie and Mah, 2004) as well as rock breakdown pro-

cesses (e.g. Dixon and Thorn (2005); Gunzburger et al. (2005); Matsuoka and

Murton (2008); Hall and Thorn (2014). Rockfalls are particularly found to cor-

relate directly with a low intact rock strength (Selby, 1980; Vehling et al., 2016),

an unfavourable joint orientation in relation to slope surface (Cruden and Hu,

1994; Moore et al., 2009) and a high joint density (Sass, 2005b; Loye et al., 2012).

Sheeting joints parallel to the slope surface are often associated to stress relax-

ation after glacial unloading of rock slopes during paraglacial conditions (Brun-

ner and Scheidegger, 1973; Augustinus, 1992). Although the synergy of multiple

weathering processes is increasingly acknowledged (Hall, 2006; Hall et al., 2012;

Viles, 2013), daily freeze-thaw cycles (Matsouka, 1994; Sass, 1998) and seasonal

or multi-annual segregation ice growth are supposed to be the prime destabilis-

ing agents in cold environments (Hallet et al., 1991; Matsuoka and Sakai, 1999;

Murton et al., 2006). The efficiency of freeze-thaw action significantly depends

on bedrock moisture (Coutard and Francou, 1989; Prick, 1997) and the thermal

behaviour of permafrost (Allen et al., 2009; Krautblatter et al., 2013). Like-

wise, the specific bedrock roughness and morphometry, caused e.g. by convex

overhangs, can lead to spatially variable, but persistent stress fields (Gerber and
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Scheidegger, 1969).

With increasing scale, the spatio-temporal variability of most rockfall controls

generally decreases pre-disposing the rock slope to fail (Crozier, 1989). Key fac-

tors seem to be primary geology and topo-climate (Fig. 10.1) considering that

instabilities predominantly occur on cold, shaded slopes, steeper than 40° (Dor-

ren and Seijmonsbergen, 2003; Wichmann et al., 2009). These sites are often

congruent with an altitudinal belt of low solar radiation (Noetzli et al., 2003;

Fischer et al., 2012), where frost cracking over the active permafrost layer might

be highly effective (Gruber, 2005; Hales and Roering, 2009). Over geological time

scales, the lithological and tectonic settings cause an inherent preconditioning of

rockwalls for failures (Cruden and Hu, 1998; Coe and Harp, 2007). A particular

bedrock pre-disposition is linked to the impact of glaciation during LGM due to

slope oversteepening as well as subsequent paraglacial adjustment processes in-

cluding slope debuttressing, stress release, permafrost degradation and isostatic

rebound (Ballantyne, 2002; McColl, 2012; Leith et al., 2014).

Despite our knowledge on the process scale of rockfall causative factors (Fig.

10.1), their relative importance within their complex interplay is insufficiently

understood. A major challenge is that the relative roles of rockfall controls prob-

ably changes depending on scale. According to Harrison (2001) and Phillips

(1988, 2003) it must be supposed that the local-scale causes for failure of individ-

ual rock slopes likely contrast with those being causative at the regional scale of

mountain catchments due to emergent system behaviour and increasing system

complexity (and often non-linearity) with increasing spatial scale (Fig. 10.2B, C-

D). Harrison (2001) even assumes that at each scale, new, often unknown system

properties and causalities emerge (“?” in Fig. 10.2D) being insensitive to changes

at lower levels of this hierarchical structure (see also de Boer, 1992; Church, 1996).

However, compared to the slope scale, the understanding of bedrock destabilising

factors at regional scales is still very limited as shown by the recent debate on

whether rockfall activity is dominated either by topo-climatic forcing (Tricart

and Cailleux, 1972; Büdel, 1977; Hales and Roering, 2005), paraglacial adjust-

ment (Cossart et al., 2014; Feuillet et al., 2014) or rock mechanical properties

(Duarte and Marquinez, 2002; Fischer et al., 2006).

To some extent, this limited systemic knowledge may be due to methodologi-

cal shortcomings. While most work focuses on local rock instabilities, few studies

have examined regional-scale rockfall controls so far (e.g. Duarte and Marquinez,

2002; Hales and Roering, 2005; Frattini et al., 2008; Michoud et al., 2012). We

argue that the appropriate research design to identify key rockfall controls is dic-

tated by the specific scale of interest. While reductionist, process-based field sur-

veys are appropriate to study local parameters (Krautblatter and Moore, 2014),

the complex and emergent behaviour of destabilising factors at a larger scale
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might be best understood by abductive approaches (Peirce, 1902) using e.g. in-

ventories of talus slopes (e.g. Moore et al., 2009; Tanarro and Muñoz, 2012). Here,

GIS-based multiple logistic regressions provide a powerful statistical method that

has been successfully applied in the mapping of permafrost (Janke, 2005) and pat-

terned grounds (Miska and Jan, 2005), soil erosion (Vanwalleghem et al., 2008)

and extensively of landslide susceptibility (e.g. Guzzetti et al., 1999; Ohlmacher

and Davis, 2003; Vanacker et al., 2003; Bai et al., 2010; Borgomeo et al., 2014).

More recently, machine learning algorithms such as random forests (Breiman,

2001a), mainly known from ecological studies (Cutler et al., 2007) and climate

modelling (Meyer et al., 2016b; Kühnlein et al., 2014b) are receiving increased

attention in landslide studies (Brenning, 2005; Stumpf and Kerle, 2011; Vorpahl

et al., 2012; Catani et al., 2013). However, since knowledge of deep-seated gravita-

tional mass movements cannot be automatically transferred to rockfall processes,

adequate approaches are needed specifically for rockfall research.

To address the recent systemic and methodical shortcomings, we investigate

the spatial rockfall activity in the Turtmann Valley (Swiss Alps). Our objectives

are (i) to develop an appropriate approach to identify major factors controlling

the regional-scale occurrence of rockfall processes and (ii) to evaluate the relative

importance of rock mechanical, paraglacial and topo-climatic influences within

this complex interplay. Using an inventory of 220 talus slopes, we combine a

classical logistic regression model based on principal components and a novel

random forests classification to examine the relative causality between the slopes’

rockfall susceptibly and ten potential destabilising parameters.

Figure 10.1: Process-scale of potential rockfall controls with respect their temporal and
spatial variability. So far, limited knowledge exists on the relative im-
portance of topo-climatic, morphometric, paraglacial and rock mechanical
factors for the regional-scale rockfall activity.
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10.2 Characteristics of the study area

The Turtmann Valley is located in the Valais Alps (Switzerland) between the

Matter Valley and the Anniviers Valley (Fig. 10.2), covering a catchment area of

110 km2 at altitudes ranging from 620 m to 4200 m above sea level (a.s.l.) (Otto

et al., 2009). The 15 km long valley is a typical Pleistocene glacial trough with the

Turtmann Glacier at the valley head. While the rock slopes of the trunk valley

are mainly affected by deep-seated gravitation processes, rockfalls predominate in

the 14 strongly W-E-oriented hanging valleys, lying on either side of the trough

shoulders at 2300-2600 m a.s.l.

The lithology of the hanging valleys is dominated by metamorphic rocks

(penninic Siviez-Mischabel nappe) consisting of Palaeozoic micashists and parag-

neisses (ca. 72%), which form most of the bedrock in the northern and eastern

hanging valleys located in the NE (Labhart, 2009). Thin layers of amphibo-

lite (0.20%), quarzites (0.53%) and apatite (6.23%) are incorporated. As result

of the tectonic folding, the metamorphic rocks generally strike in a south-west

direction with a dip of 20-30° (Bearth, 1980). Overlying the crystalline rocks,

mesozoic dolomites, limestones and marbles with clay layers Barrhorn series and

Frilihorn series) occur in the western (Meidtälli) and south-eastern hanging val-

leys (Pipjitälli) (Labhart, 2009). Due to the inner alpine location, the climatic

situation of the study area is characterised by dry continental conditions with

mean annual precipitation of ca. 600-900 mm at 2000 m a.s.l. (Gärtner-Roer

et al., 2013) and a snow line at ca. 3450 m (Escher, 1970). The 0°C isotherm of

the mean annual air temperature might be at ca. 2550 m a.s.l. (van Tatenhove

and Dikau, 1990). According to a local permafrost model (Nyenhuis et al., 2005),

37 km2 or 33% of the catchment area is very likely affected by permafrost (>

60% probability), with a lower limit ranging from 2500 m a.s.l. (N-orientations)

to 3000 m a.s.l. (S-orientations).

The ice surface of the Late-Glacial maximum (LGM) is supposed to have

reached up to 2600 m a.s.l. in the main valley, rising towards the cirques of

the hanging valleys and the Bishorn peak (4058 m) (Kelly et al., 2004). At ca.

24-21 kyrs BP, rock slopes were likely ice covered by local hanging glaciers and

only the peaks were ice-free nunataks. After ca. 18 kyrs BP, deglaciation started

in the main trough and subsequently in the hanging valleys (Kelly et al., 2004;

Schlüchter, 2004), successively exposing the slopes above the trough shoulders.

However, no data on the timing of glacier recession in the study area exist. With

respect to the Late Glacial advance, the Younger Dryas glacier (ca. 12-8 kyrs)

probably did not affect the rock faces of the hanging valleys (Ivy-Ochs et al.,

2009) indicated by the well-preserved Egesen (Younger Dryas) moraines within

the hanging valleys at ca. 2600 m (Otto and Dikau, 2004). Today, the few glaciers
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still existing in some of the hanging valleys are affected by a significant recession

trend due to atmospheric warming in the last decades.

Rockfall events of small (< 10 m3) and medium magnitude (10-104 m3)

(Messenzehl and Draebing, 2015) are some of the most active processes in the

hanging valleys leading to a postglacial denudation rate of around 0.7-2.2 mm/a

(Otto et al., 2009). A total number of 220 active talus slopes (including sheets

and cones) accounts for ca. 8.7-12.3% of the tributaries’ total sediment vol-

ume (Otto et al., 2009), representing major sources for rock glaciers and debris

flows in the sediment cascade. Sediment output from the tributaries to the main

drainage system is largely disconnected due to the bedrock trough shoulders and

geomorphic buffers such as moraine landforms (compare with Messenzehl et al.,

2014).

Figure 10.2: Study area. A total of 220 Talus slopes (mapped in blue) are deposited in
the 14 hanging valleys of the Turtmann Valley, southern Swiss Alps (A).
It is supposed that the relative role of regional-scale rockfall controls (X1,
X2, X3, ?) (B) contrasts to destabilising factors (X1, X2, X3) at the local
scale (C, D) due to emergent and complex behaviour of geosystems with
increasing spatial scale.

10.3 Modelling approach

10.3.1 Data selection and pre-processing

10.3.1.1 Response variable

An inventory of 220 talus slopes (Otto et al., 2009) was used to deduce ab-

ductively the rockfall activity of the associated rock slope. Since rockfalls pre-

dominantly occur in the hanging valleys, the trunk valley was excluded from
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further investigations. The presently absent or negligible vegetation cover on

talus deposits indicates active rockfalls. Rockfall source areas in bedrock were

automatically extracted from a 1 m HRSC-Digital Elevation Model (DEM, Otto

et al., 2007) using the hydrological algorithm of the D8 flow routing in SAGA

GIS (Martz and Garbrecht, 1992). The talus slopes served as sinks to determine

their contributing areas. Our approach is in accordance with Frattini et al. (2008)

and Marquínez et al. (2003) similarly using inventories of talus slopes to deduce

associated grid cells of rockfall source area polygons. To derive rockfall initia-

tion zones exclusively on bedrock, we furthermore intersected the contributing

areas with the bedrock outcrop derived from a digital geological map 1:25000

(© Swiss Topo, based on Bearth, 1980). To correct the planimetric area of the

rockfall source areas for the actual surface area, each raster cell was multiplied

by the cosine of the slope gradient. For subsequent modelling, source areas were

transformed into a binary raster grid (1 = presence of rockfall source area, 0

= no rockfall source area) and used as dependent response variable. A ground

truthing based on field observations (e.g. fresh rockfall detachment zones, or

freshly weathered bedrock) and interpretation of HRSC-aerial images (ground

resolution 50cm) suggests reasonable results of the automatic mapping.

10.3.1.2 Predictor variables

Based on systemic process understanding and data availability, ten variables

were considered to be potentially causative for the spatial rockfall distribution

(Table 10.1). Topographic and morphometric parameters including elevation,

slope gradient (Fig. 10.3A), aspect, profile curvature and surface roughness (Fig.

10.3B) were derived from the 1 m DTM using ArcGIS (ESRI, 2006). Considering

climatic and cryospheric variables (Fig. 10.3C,D), the potential annual sum of

solar radiation in watt hours per square meter (WH/m2) was modelled for ev-

ery pixel using a hemispherical viewshed algorithm provided in ArcGIS (Fu and

Rich, 2002). A layer of permafrost probability was derived from the empirical-

statistical model PSIM (Permafrost Simulation Indication Model) by Nyenhuis

(2006). Here, a local inventory of active and relict rock glaciers is related to

potential direct solar radiation and mean annual air temperature (represented

by altitude) (Nyenhuis et al., 2005). In contrast with other permafrost models,

shadowing effects due to relief and solar variations are considered.

Rock mechanical characteristics including lithology and overall joint orien-

tation were extracted from the digital geological vector map at 1:25000 scale

(© Swiss Topo, based on Bearth, 1980). Six lithological classes (Fig. 10.3E) were

identified: 1) marble and limestone, 2) paragneiss and micaschist, 3) amphibolite,

3) apatite, 4) quartzite and 5) basalt. Quaternary deposits are not included. Ad-

ditionally, joint orientation (dip and dip direction) was extracted for those rock
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Table 10.1: Overview on response and predictor variables with respect to geomorphic
type, data source, variable scale, decoding scheme (classes with rockfall
density RD) and their implication for slope (in)stability based on a selection
of related rockfall and rockwall instability studies.
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faces, where geotechnical information was available, and evaluated in relation to

the bedrock’s specific slope gradients following Selby (1980) and Cruden and Hu

(1994). The following classes are used:

1. Steep joint dipping into the slope (> 30°)

2. Moderate joint dipping into the slope (30°-horizontal)

3. Horizontal joint layering

4. Moderate joint dipping out of the slope (< 30°)

5. Overdip slope (> 30°)

To consider paraglacial rock slope adjustment after the LGM we assume that

rockfall activity is highest immediately (or with a short time lag) after deglacia-

tion and is declining (exponentially or linearly) with time (e.g. Curry and Morris,

2004). Due to absent data on glacial retreat stages in the study area, we applied

the ergodic reasoning or space-for-time-substitution (Paine, 1985; Pickett, 1989):

The time elapsed since deglaciation of rock slopes was approximated by their

relative distance from the cirque assuming a gradual retreat of LGM ice from

the trough shoulders (Kelly et al., 2004; Ivy-Ochs et al., 2009). For each hang-

ing valley, the relative distance of rockwalls to the cirque was calculated by the

normalised Euclidean distance (Fig. 10.3F) ranging from 1 (outlet = deglaciated

since ca. 12-18 kyrs BP) to 0 (cirque = recently deglaciated since < 100 yrs).

Additionally, to consider ice thinning during deglaciation, which is considerably

accelerated on steep relief and retarded on flat terrain, a topographic factor was

incorporated in the Euclidian distance calculation. Therefore, the horizontal sur-

face distance to the cirque was weighted by the slope angle at each cell of the

1m DEM. For modelling purposes, all non-metric predictors were converted to

metric, except slope gradient, which was recalculated to radians. Non-metric

variables were decoded (Table 10.1, Fig. 10.5) using the rockfall densities (RD),

as proposed by Bai et al. (2010):

RD =
Bi

Ai
∑N

i=1
Bi

Ai

(10.1)

where Ai is the area of the ith class of the specific variable, Bi is the total

rockfall source area of the ith class, and N is the number of variable classes.

Contrary to dummy variables, this approach keeps the original number of pre-

dictors. To evaluate the spatial characteristics of rockwalls contributing to talus

landforms, the density percentage of the rockfall source areas was calculated for

each predictor variable.
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Figure 10.3: Selection of predictor variables representative for topography (A: Slope
gradient), morphometry (B: Surface roughness), cryosphere and climate
(C: Permafrost probability modelled by Nyenhuis 2006, D: Annual sum of
incoming solar radiation), rock mechanical properties (D: Lithology) and
paraglacial adjustment (F: Relative time since deglaciation).

10.3.2 Validation methodology

To avoid overfitting during modelling, we split the total dataset into a train-

ing data set containing 20% of the pixels, and a validation set containing the

remaining 80% of the pixels of the 1 m DTM. Data splitting was done by strat-

ified random sampling to obtain the same distribution of the response variable

in both subsets. To validate and compare both model approaches, we estimated
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three different validation measures: The accuracy (overall rate of correct classi-

fication), the Probability of Detection POD (fraction of observed rockfall source

areas that is predicted correctly) and the Probability of False Detection POFD

(fraction of observed absent source areas that is predicted falsely as rockfall source

areas). The values of validation measures range between 0 and 1, with POD = 1

and POFD = 0 indicating perfect score (Wilks, 2006). Additionally, a Receiver

Operating Characteristic curve (ROC curve) and the specific area under the curve

(AUC) serve to visualise the accuracy and prediction power of the model over the

complete range. Here, the sensitivity or POD (true-positive fraction) is plotted

against the specificity or POFD (false-positive fraction) (Bradley, 1997).

10.3.3 Principal component analysis and logistic regression modelling

When using the multiple logistic regression (LR), our focus is not on the spatial

prediction of rockfall probability or susceptibility based on a number of indepen-

dent predictor variables, but instead on ranking the predictors with respect to

their relative importance for the binary dependent response (i.e. presence/ab-

sence of rockfall initiation zones). Our algorithm of the principal component lo-

gistic regression (PCLR) model was computed using R software packages, based

on eight main steps (Fig. 10.4).

Using a logit transformation, the natural log odds (logit) was calculated, being

the ratio of the probability of rockfalls (= presence of rockfall source areas) to

that of absence. The LR represents a generalised linear regression and can be

written as (Atkinson et al., 1998):

Y = logit(pi) = log
pi

1 − pi
= β0 + β1X1 + β2X2 + ... + βnXn (10.2)

where Y is the dependent variable, pi is the rockfall probability (0 to 1), βi

(i=1,2,3. . . n) is the coefficient of the model, n is the number of independent

predictors Xi (i=1,2,3. . . n).

To identify multicollinearity, the Tolerance (TOL) and the Variation Inflation

Factors (VIF) were calculated. Variables with VIF > 2 and TOL < 0.4 might

be highly dependent on other predictors (Allison, 2001) and are usually excluded

in most regression analyses. The inter-correlation between the permafrost dis-

tribution and the time since deglaciation is rather small. This is also supported

by their contrasting spatial distribution of these variables shown in Figure 10.3C

and 10.3F. In contrast, we detected a moderate inter-correlation between the per-

mafrost probability, slope and aspect (Table 10.2). To solve this problem without

a loss of original input data, we used a reduced set of uncorrelated PCs represent-
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ing linear combinations of the ten original standardised data with a maximum

possible variance (Escabias et al., 2005; Aguilera et al., 2006).

To select only those principal components (PCs) with statistically significant

contribution to rockfall activity a forward stepwise method was applied using

maximum likelihood ratio (−2lnL) tests together with the Akaike Information

Criterion (AIC) value. Here, PCs were selected based on their predictive ability

and not on the largest variance (Aguilera et al., 2006). Starting with the null-

model (intercept only), PCs were successively added until further additions did

not result in a lower −2lnL and AIC value. Using the Wald X2 statistics, the

predictors’ coefficients were estimated to be statistically significant, if the tested

null hypothesis (H0: the estimated coefficient is 0) could be rejected at a p

= 0.001 significance level (Kleinbaum et al., 1998). The association between the

predicted probability and the observed responses (goodness-of-fit) was tested over

the training dataset using the X2 value (based on -2lnL) of the Hosmer-Lemeshow

test, the -2lnL and the AIC value (Hosmer and Lemeshow, 2005).

For validation of the fitted logistic regression model we used a contingency

table using the validation data set based on a cut-off value of 0.509. This thresh-

old was determined by finding the best trade-off between sensitivity (Probability

of Detection) and specificity (1- Probability of False Detection) of the predicted

probabilities, i.e. the trade-off between failing to detect rockfall against the costs

of raising false alarms. The strength of association between response and each pre-

dictor was determined by means of the Odds ratios (OR) of the varimax-rotated

PCs (Kaiser, 1958) with respect to the loadings of the original standardised pre-

dictors. The OR is the exponential of the regression coefficient (eβi) associated

with a one-unit increase in Xi. If a coefficient is positive, then OR is > 1 and

thus, rockfalls are more likely to occur. In turn, the likelihood of rockfalls de-

creases with negative coefficients and OR < 1. In case of no or weak causal link

between predictors and response, OR is ≈ 1 (Atkinson et al., 1998).

Figure 10.4: Modelling approach of the multiple logistic regression using uncorrelated
principal components (PC) instead of the original, intercorrelated predic-
tor variables X.
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Table 10.2: Diagnostics statistics of multicollinearity between independent predictors
using the Tolerance (TOL) and the Variation Inflation Factors (VIF). VIF
of > 2 and TOL of < 0.4 point to variable intercorrelation.

Predictor

variables
VIF TOL

Elevation 1.95 0.51

Slope 4.96 0.20

Aspect 4.24 0.31

Curvature 1.01 0.99

Roughness 1.42 0.71

Solar

Radiation sum
2.96 0.30

Permafrost

probability
6.16 0.16

Lithology 1.17 0.85

Joints 1.10 0.90

Deglaciation 1.94 0.51

10.3.4 Random forest model

Machine learning algorithms such as the random forest algorithm of Breiman

(2001a) are known as being able to deal with complex interacting as well as

highly correlated predictor variables. The RF model is based on the concept

of classification trees. Tree-based models consist of a series of nested decision

rules for the predictors that determine the response. Random forest repeatedly

builds trees from random samples of the training data. Each tree is treated as

a separate model of the ensemble. The majority class of all trees is taken as

final estimate of the model. To overcome correlation between trees, a certain

number of predictors (commonly abbreviated as “MTRY” in the random forest

literature) are randomly selected at each split of a tree. The best predictor from

the random subset is used at the respective split to partition the data. MTRY is

a parameter, which must be adapted to the respective model data. We used the

R implementation of the random forest algorithm (Liaw and Wiener, 2002) to

classify the rockfall source areas based on the set of predictor variables. Following

the suggestion of Kuhn and Johnson (2013a), MTRY was tuned between 2 and

the number of predictors. The training was performed using a stratified 10 fold

cross-validation. Therefore, models were fitted by repeatedly leaving one of the

folds out. The performance of each model was determined by predicting on the

respective withheld fold. The ROC from the withheld iterations was averaged to

the overall performance for the respective value of MTRY. The model resulting

from the best set of tuning parameters was used as the final model for prediction
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on the test data. Variable importance was further calculated as described in Liaw

and Wiener (2002), using the mean decrease in GINI index. The GINI index is

a criterion of impurity of a node in the RF model (Breiman, 2001a). At every

split of a node, one of the randomly chosen variables is used to form the split,

which results in a decrease in the GINI index. Thus, the mean decrease in GINI

index over all trees in the forests indicates how much the given predictor variable

contributes to the impurity of nodes in the model. The higher the decrease in

GINI index, the higher the purity of the final RF model, and thus the more

important is the predictor variable.

10.4 Results

10.4.1 Spatial characteristics of rockfall source areas (rockfall density

statistics)

The rockfall density percentage (RD %) of active initiation zones with re-

spect to each predictor variable is shown in Figure 10.5. Around 11% of the

total bedrock area in the hanging valleys represents active rockfall source areas

contributing to active talus landforms. The rockfall source zones predominate

on NNE-NNW-exposed slopes (41% RD, Fig. 10.5C) with slope gradients > 40°

(93% RD, Fig. 10.5B). The dominance of north-facing initiation zones is inde-

pendent of the morphometric configuration of the study area, given the relatively

uniform orientation of the total bedrock area across the hanging valleys. Half

of the active rockfall source areas receive very low incoming solar radiation of

less than 14300 WH/m2 per year (Fig. 10.5D). The majority of rockfalls occur

in the upper half of the hanging valleys (Fig. 10.5J), although bedrock slopes

dominate in the middle basin at 2500-2800 m a.s.l. About 74% of the rockfall ini-

tiation zones are primarily concentrated within an elevation belt at 2900-3300 m

a.s.l. (Fig. 10.5A). This is consistent to the lower boundary of the modelled per-

mafrost distribution. Particularly, 57% of the unstable rockwalls correlate with a

90-100% permafrost probability (Fig. 10.5E). Considering the micro-topography,

active rockfall source areas are equally concave and convex and 70% are charac-

terised by very rough bedrock surfaces (Fig. 10.5F, G). Despite the dominance of

paragneiss and micashist in the study area, only 14% of the active rock slopes can

be found there (Fig. 10.5H). Instead, failures mostly occur in amphibolite (25%

RD) and limestone (20% RD), contrasting to their small relative catchment areas

(0.2% amphibolite, 12% limestone). Finally, half of the rockfall initiation zones

lie at anaclinal slopes with moderately and steeply in-dipping joints, while 36%

are linked to cataclinal slopes with out-dipping joints (Fig. 10.5I).
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(A) (B) (C) (D)(A)

(E) (F) (G) (H)

(I) (J)

Figure 10.5: Rockfall densities (RD in %) of predictor variables including topographic
(A-C), climatic and cryospheric (D-E), morphometric (F-G), rock me-
chanical (H-I) and paraglacial (J) properties.

10.4.2 Principal components and geomorphic meaning

The first eight varimax-rotated principal components account for around 98%

of the total variability of the original, standardised predictor dataset (Table 10.3).

Most of the variance is explained by PC1 (20%) and PC3 (18%), respectively,

while the contribution of PC9 and PC10 is < 1%. PC1, PC3 and PC9 represent

topo-climatic characteristics. The first component is strongly related to steep

slope gradients (loading of 0.95) and a high probability of permafrost (loading of

0.85). PC3 is highly associated with convex S-exposed slopes and high annual

solar radiation sums, but negatively correlated with permafrost occurrence. PC2

denotes paraglacial adjustment given the high loading of the time since deglacia-

tion. Likewise, PC8 is strongly correlated with elevation and, to minor extent,

with the time since deglaciation. The bedrock morphometry is represented both

in PC5 and PC7, with a high positive loading of curvature (0.98 in PC5) and

roughness (0.93 in PC7). PC4 describes rock mechanical properties, given the

very high loading of in-dipping joints. The type of lithology is characterised by

PC6, strongly associated with amphibolite and limestone rocks. Finally, PC9

summarises N-facing, low-radiation slopes, whereas PC10 stands for permafrost
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occurrence; but the predictors’ loadings are very low (< 0.26), respectively.

10.4.3 PCLR model and importance of PCs

In the stepwise logistic regression procedure (stepwise model I), PC4, PC9

and PC10 were excluded, since their elimination lead to a significant reduction

(p=0.001) of -2lnL and AIC. This decrease of significance was greater compared to

the full model including these three PCs (Table 10.4). To evaluate the goodness-

of-fit when integrating rock mechanical properties (PC4), we additionally tested

a stepwise model II.

Both stepwise models seem to perform very well as a significant decrease of

-2lnL and AIC was obtained in each stepwise procedure in comparison with the

full model (containing all PCs) and the null-model with intercept only. Addi-

tionally, the Wald X2 statistics indicate an acceptable model performance of the

stepwise models at a significance larger than 0.001. However, the incorporation

of PC4 does not result in a distinctly better model fitting, indicating that the

joint orientation might not be necessarily causative for the spatial rockfall pat-

tern. This is also demonstrated by the AUC value of stepwise model II, which

is 1% lower compared to stepwise model I. Consequently, we decided to exclude

PC4 from the final regression. Therefore, the best LR model for predicting the

spatial pattern of rockfalls includes seven PCs (based on Eq 2):

Logit(p) = log(p/1 − p) = 0.23 + 1.08PC1(”Topo − climate”)+

0.26PC2(”Paraglacialadjustment”) − 0.89PC3(”Topo − climate”)+

0.11PC5(”Bedrockmorphometry”) + 0.29PC6(”Lithology”)+

0.28PC7(”Bedrockmorphometry”) + 0.38PC8(”Paraglacialadjustment”)

(10.3)

The Wald X2 statistics reveal that all coefficients are statistically significant

at p < 0.001. Comparing the ORs of the PCs (Table 10.4), PC1 was detected to

be most strongly associated with the spatial rockfall activity, directly followed by

PC3. One-unit increase of these topo-climatic PCs therefore leads to a 2.94 times

higher or 0.41 lower rockfall likelihood, respectively. The third most important

control is PC8, increasing the odds of rockfalls by 1.47 times. The ORs of PC2,

PC6 and PC7 range between 1.34 and 1.29 indicating a positive, but compara-

tively moderate impact on the spatial rockfall pattern. Finally, the OR of PC5

is relative close to 1, indicating a weak power to explain the response variable.
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Table 10.3: Varimax-rotated principal components of original standardised predictor
variables. Geomorphic meaning of PCs is based on strength of factor load-
ing of original predictors. PC1, PC2, PC3, PC5, PC6 and PC7 were se-
lected to be significantly causative with the response variable in a stepwise
regression modelling based on the -2LnL and AIC value.
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Table 10.4: Test for goodness-of-fit using the -2log likelihood ratio tests (-2LnL), Akaike
Information Criterion (AIC), X2 and area under the ROC curve (AUC).

Model -2LnL AIC Χ2 Pr(> X2|) AUC

Null model (intercept only) 25811 0.50

Full model (with all PCs) 19258 19275 19257 < 0.0001 0.80

Stepwise model I PC1. PC2. PC3.
PC5. PC6. PC7. PC8

19247 19265 19247 < 0.0001 0.83

Stepwise model II PC1. PC2. PC3.
PC4. PC5. PC6. PC7. PC8

19247 19266 19247 < 0.0001 0.82

Table 10.5: Coefficient statistics: β = logistic regression coefficient of PC. S.E. (β) =
standard error on β. Wald Χ2, P (>| Χ2|), odds ratio = eβi with a S.E. of
±1.96 and a 95% confidence interval (C.I.). The variable importance was
ranked from I (most important) to VII (less important) based on the odds
ratio.

Variable β
S.E.

(β)

Wald

Χ2

Pr(>|

Χ2|)
OR

95%

C.I.

Variable

importance –

ranking (I-VII)

(Intercept) 0.23 0.02 13.00 <0.0001

PC1 1.08 0.02 50.40 <0.0001 2.94 2.82 - 3.07 I

PC2 0.26 0.02 14.11 <0.0001 1.29 1.25 - 1.34 VI

PC3 -0.89 0.02 -47.79 <0.0001 0.41 0.40 - 0.43 II

PC5 0.11 0.02 6.09 <0.0001 1.12 1.08 - 1.16 VII

PC6 0.29 0.02 15.57 <0.0001 1.34 1.29 - 1.39 IV

PC7 0.28 0.02 13.97 <0.0001 1.32 1.27 - 1.38 V

PC8 0.38 0.02 21.38 <0.0001 1.47 1.42 - 1.52 III
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10.4.4 Random forest model and variable importance

The tuning of the random forest model revealed an optimal MTRY value of

8. The variable importance indicated by the GINI decrease denotes the regional

distribution of permafrost as the most important predictor (Fig. 10.6). Further,

the time since deglaciation and the elevation are shown to have considerable

influence on the classification result. Furthermore, the sum of solar radiation,

the slope gradient, bedrock roughness and slope aspect are linked to a medium

relative variable importance. The two rock mechanical predictors including joint

orientation and lithology, followed by curvature, were ranked as least important

for the spatial distribution of rockfall source areas.

Figure 10.6: Variable importance quantified by means of the random forest mode using
the mean decrease in GINI index. The higher the decrease in GINI index,
the more important is the variable for the spatial activity of rockfalls.

10.4.5 Validation and evaluation of model performances

To validate the two models with respect to each other we estimated the same

validation measures using the same validation data set (Table 10.6). For the

PCLR, the overall rate of correct classification is estimated as 75.52%, which is

considered to be very acceptable. While 73.71% of the rockfall initiation zones are

correctly predicted (POD), the POFD is 22.48%. A comparatively better accu-

racy is estimated for the RF as 88.40% of the positive and negative observations

are correctly predicted. Likewise, the RF results with 88.40% in a comparatively

higher POD and only 11.60% is false alarm (POFD). The validation by means

of the ROC curves (Fig. 10.7) reveals for both models a very good performance

given their high AUC values > 0.80 (Swets, 1988). However, the AUC value of

the RF model (AUC = 0.95) is slightly higher compared to the PCLR (AUC =
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0.83), reflecting a slightly better performance of the machine learning algorithm.

Table 10.6: Contingency table for (A) the principal component logistic regression model
and (B) the random forest model. Three verification measures were esti-
mated: Accuracy, Probability of Detection (POD) and Probability of False
Detection (POFD).

(A) PCLR Observed

Yes (1) No (0) Total

Predicted

Yes (1) 33.71 12.11 45.82

No (0) 12.36 41.76 54.12

Total 46.07 53.87 99.94

Accuracy = (33.71 + 41.76) / 99.94; POD = 33.71/46.07; POFD = 41.76/53.87

(B) RF Observed

Yes (1) No (0) Total

Predicted

Yes (1) 40.78 6.25 47.03

No (0) 5.35 47.62 52.97

Total 46.13 53.87 100

Accuracy = (40.78 + 47.62) /100; POD = 40.78/46.13; POFD = 47.62/53.87

Figure 10.7: Receiver Operating Characteristic (ROC) curves and values of the corre-
sponding areas under the curve (AUC) of the random forest and logistic
regression model.
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10.5 Discussion

10.5.1 Evaluation of the methodological approach

Given the large areas under the ROC curves of 0.83 and 0.95 (Fig. 10.7), re-

spectively, the logistic regression and the random forest classification have proven

to be very effective techniques to explain the spatial rockfall pattern in the Turt-

mann Valley. Nevertheless, there are some systemic uncertainties and limitations

underlying our approach. Admittedly, using an inventory of presently vegetation-

free talus slopes as proxy to infer potential rockfall initiation zones and their

controlling factors is only valid under the assumption that recent talus slope de-

position very likely resulted from the same conditions, which have been causative

in the past (Varnes, 1984; Carrara et al., 1999). This abductive reasoning might

be true regarding large-scale, relatively static tectonic, lithological and topo-

graphic settings; but obviously, weathering history (Viles, 2013), climatic and

cryospheric conditions (Gruber and Haeberli, 2007), bedrock morphometry and

rock mechanical properties (Verleysdonk et al., 2011) highly evolved since the

LGM (Fig. 10.1), all integrated in the evolution of talus slopes. However, the

changing relative contribution of rockfall controls over time remains difficult to

quantify (Church, 1996; Guzzetti et al., 1999) and we must argue actualistically

and often narratively. Similarly, it is important to note that the spatial occur-

rence of rockfalls crucially depends on the point of observation time. Rock slopes,

which we identified as being recently inactive, were likely affected by rockfalls in

previous times, e.g. when the permafrost boundary was lower than today. To

overcome this, our approach implements an ergodic reasoning to use the spa-

tial pattern of active/inactive rockwalls for the temporal shift in rockfall activity

since LGM. Further, the detection of rockfall source areas using the hydrological

GIS approach is linked to some restrictions, as falling of rock fragments from

steep slopes cannot be simply equated by the water-driven flow paths. However,

Duarte and Marquinez (2002) found a good agreement between a similar auto-

matic method and a manual mapping of detachment zones, implying that our

approach might be applicable at larger scales. Alternatively, it would have been

possible to use the approach proposed by Heckmann et al. (2016), who delineated

potential rockfall source areas by combining their slope angle distribution derived

from a high resolution DEM (Loye et al., 2009) with a field-based geomorpholog-

ical map.

Additionally, the pre-selection of predictors certainly depends on data avail-

ability, raster resolution and technical restrictions typical for spatial modelling

(Carrara et al., 1999). For instance, we compensated the missing data on timing

of deglaciation by the relative Euclidean distance to the cirques. This ergodic

reasoning has been successfully applied for studying hillslope evolution (Carson
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and Petley, 1970; Brunsden and Kesel, 1973; Obanawa et al., 2009), river sys-

tem changes (Fryirs et al., 2012) and vegetation succession (Cammeraat et al.,

2005). Further, the calculation of solar radiation by means of the hemispherical

viewshed GIS algorithm (Fu and Rich, 2002) might be rather idealised, as a dis-

turbed solar transmission through atmosphere and topographic shadowing effects

are not taken into account (Allen et al., 2009). The permafrost validation of the

PSIM by means of a local rock glacier inventory revealed a good agreement of

ca. 87% , which was even larger when using classical methods like ROGMOD

or PERMAMAP (Nyenhuis et al., 2005). However, the rock glacier based mod-

elling probably underestimates the subsurface temperatures of steep rock slopes

and the lower limit of permafrost is probably higher than in more gentle ter-

rain (Magnin et al., 2015), given the specific conductive and advective thermal

fields inside the anisotropic rock mass (Gruber, 2005; Noetzli and Gruber, 2009).

Likewise, despite their recognised relevance for slope instability, bedrock mois-

ture (Sass, 2004, 2005a), snow cover (Draebing et al., 2014), biological influences

(Chen et al., 2000; Hall et al., 2005) or discontinuities at a cm-dm scale result-

ing from thermal fatigue (Hall and Thorn, 2014) and stress release (Augustinus,

1995) cannot be portrayed at the regional scale. Besides methodical limitations,

variable selection also arises from a prior systemic knowledge on rockfall mecha-

nisms, leading to the risk filtering out any factors being underestimated in their

efficiency or unknown so far (Hall, 2006).

Finally, with respect to our sampling strategy (20%-80% sample splitting on

pixel basis), it is to note that the cross validation error metrics might tend to be

somewhat overoptimistic. Assuming that the neighbouring pixels in the vicinity

of the rockfall initiation zones have similar properties, the samples are not com-

pletely independent. To overcome this issue, it might be an option to consider

stricter cross validation methods in upcoming studies. However, since the main

aim of this study is not to predict the spatial distribution of rockfall activity,

but to quantify the relative importance of various controlling factors, the cross

validation does not change the general outcome of this study.

Taking into account these uncertainties, our proposed modelling approach is

promising to evaluate the regional-scale causality between rockfalls and poten-

tial key drivers. Instead of avoiding multicollinearity of data, which is often

ambiguous or intuition driven by the researcher’s pre-existing hypotheses, far

more importance should be given to its evaluation (cf. Graham, 2003), as multi-

collinearity is typical in complex non-linear geomorphic systems. Using PCs as

covariates in the logistic regression allowed keeping all original predictors in the

regression and preventing a substantial loss of explanatory power, as reflected

very well by the high POF (75%) and low POFD (22%) of our final LR model

(Table 10.6). Furthermore, while most (landslide susceptibility) studies treat the

relative predictor importance as “by-product” of the logistic regression modelling,
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our PCLR algorithm (Fig. 10.4) has proven to be a powerful tool to identify char-

acteristic synergetic combinations of different rockfall controls with respect to the

strength and direction of their association. The PCs’ varying predictor loadings

(Table 10.3) efficiently contribute to a better understanding of whether rockfalls

are more affected by rock mechanical, paraglacial or topo-climatic characteristics.

Admittedly, the geomorphic interpretation of the association between response

and predictors is less straightforward and needs a profound systemic knowledge.

To complement the PCLR model and to compensate some constraints in inter-

pretation we applied a second modelling, the decision-tree based random forest

algorithm, which is one of the most precise machine learning algorithms. To

the authors’ knowledge, we are the first to use the RF model for rockfall anal-

yses. Compared to the LR, all validation indices (Table 10.6, Fig. 10.7) imply

an overall better performance and higher accuracy of the RF when explaining

the spatial rockfall pattern in our study area. With respect to the computation

time, it is to note that logistic regression training and prediction took 17 seconds

on one core while the RF modelling took 15 minutes even on 4 cores. However,

the computational complexity of the tree-based classification is compensated by

the relatively rapid quantification and interpretation of the predictors’ relative

importance (Fig. 10.8). While the decision-tree based model works more like a

“black-box”, the PCLR requires a conceptual understanding of the geomorphic

system to name and identify the principle components. The RF approach is also

highly attractive since it accepts the multicollinearity in our dataset without us-

ing PCs, and allows mixing of categorical and metric variables without decoding

(Catani et al., 2013). Our study demonstrates therefore the great potential of

the RF algorithm for future applications in rockfall research.

Given the coherent results of both models, we conclude that the classical logis-

tic regression can perform comparably with the novel, but often time-consuming

and technically challenging machine learning approaches (sensu Brenning, 2005;

Vorpahl et al., 2012). However, to achieve reliable results we favour the appli-

cation of multiple models relying on different degree of systemic knowledge on

the geomorphic system. Here, by combining a random forest black-box approach

with a strongly knowledge- and theory-based logistic regression of principal com-

ponents we hope to avoid filtering out anything that we do not expect or do not

want to see (Hall, 2006) as well as to argue purely driven by statistics.

10.5.2 Regional-scale controls on rockfall activity

10.5.2.1 The predisposing effect of rock mechanical characteristics

The influence of structural and lithological properties on the regional-scale

rockfall activity is poorly studied and largely underestimated, hampered by the
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prevailing idea of environmental forcing or due to the methodical challenge of spa-

tial extrapolation of geotechnical data. However, the growing availability of high-

resolution DEMs and digital geological maps as well as the improvements in GIS

and image analyses technology promise considerable advances for regionalisation

of structural bedrock characteristics, even in steep mountain terrain (Jaboyedoff

et al., 2007; Günther et al., 2012; Matasci et al., 2015). In the hanging valleys of

the Turtmann Valley, the lithological and structural control is reflected very well

in our results. Despite the dominance of metamorphic rocks, amphibolite and

limestone are found to be most sensitive to rockfalls (Fig. 10.5H). These find-

ings may seem surprising as their high compressive strength (Selby, 1980; Wyllie

and Mah, 2004) and low joint density (Sass, 2005b) would suggest a relatively

low erodibility. In the Cantabria Mountains, e.g., Duarte and Marquinez (2002)

showed that siliciclastic rocks with a high density of open joints are more affected

by rockfalls than limestone of lower joint densities. However, as stated by Fischer

(2010), it is often exactly the small-scale transitions between different lithologi-

cal units that effectively promote failure due to the contrasting hydraulic regimes

and stress-strength conditions (Evans and Hungr, 1993).

We furthermore found a relatively strong relationship between rockfall scars

and in-dipping joints (Fig. 10.5H,I). This also contrasts to common rock me-

chanical studies (e.g. Selby (1982b); Moore et al. (2009), identifying cataclinal

slopes with surface-parallel joints as more sensitive for instability due to the pre-

existence of sliding planes (Cruden and Hu, 1998). However, failure mechanisms

in our study site differ from those in other studies. Resulting from the high

compressive strength (e.g. amphibolite) and in-dipping, widely spaced joints,

detachment mostly occurs through toppling processes of large blocks, as being

reflected in the large and cubic blocks on talus slopes (Fig. 10.8A). In contrast,

highly weathered paragneiss coupled with cataclinal bedding and high joint densi-

ties is linked with surficial flaking off, which is only effective enough to accumulate

block slopes of platy, small-size debris, as observable on the southern valley flanks

(Fig. 10.8B).

Compared to topo-climatic and paraglacial variables, the relative contribution

of rock mechanical properties to the regional-scale rockfall pattern in the Turt-

mann Valley was minor. Although the existence of amphibolite and limestone

rocks can increase the susceptibility for bedrock failure by a factor of 1.34 times

(Table 10.5), this is low relative to the other predictors’ impact in the PCLR

model. Similar findings were obtained by the RF model, relating joint orien-

tation, lithology and curvature (leading to local stress fields) to the lowest ex-

planatory power (Fig. 10.6). However, although our modelling might reveal that

rock mechanical properties are currently not the most effective rockfall driver at

regional scale, lithology and joint orientation certainly have a major predisposing

control, as also shown for catchments in the Eastern Italian Alps (Frattini et al.,
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2008) and Norway (Böhme et al., 2014). Below, we will further evaluate how

the relative contribution of paraglacial and environmental factors is significantly

preconditioned by the rockwalls’ mechanical properties.

Figure 10.8: Typical examples for active talus slope deposition along north-exposed
rockwalls (A) and mainly inactive, vegetated rockfall deposits along south-
exposed rock slopes (mainly outcrops) (B). At north-facing, probably
permafrost-affected rockwalls, high compressive strength of amphibolite
(and limestone) and in-dipping joint bedding might temporary increase
the rock slope stability. However, if rock breakdown e.g. by frost cracking
occurs, toppling processes of large block sizes (10-104m3) are supposed to
be the major failure mechanism, reflected by the large block sizes ( 3m in b-
axis) and cubic forms of the talus slope material. At sun-faced slopes, low
compressive strength of paragneiss rocks and cataclinal bedding in combi-
nation with frequent thermal, but dry cycles mostly result in flaking off of
near-surface bedrock (cm-mm). As results, talus slopes are mainly made
of small-sized ( 80cm in b.axis) and platy rock material. The lichen cover
might reflect the inactivity of rockwall today, however, it is also to note
that it might be caused by the warmer climate conditions at the south-
exposed slopes.

10.5.2.2 Paraglacial adjustment processes as system inherent controls

The obvious dominance of rock slope failures in deglaciated mountain geosys-

tems is often causally linked to the disappearance of glaciers (Bovis, 1990; Cossart,

2008; Ballantyne and Stone, 2013). Former glaciation and subsequent deglacia-

tion is assumed to have conditioned mountain rock slopes, rapidly adjusting to

a nonglacial equilibrium through enhanced rockfall events (Church and Ryder,

1972; Ballantyne, 2002). However, compared to non-glacial factors, the specific

role of paraglacial bedrock adjustment for both local- and regional-scale rockfall

activity is still subject to major uncertainties (McColl, 2012). Our analyses give

strong evidence for a paraglacial forcing on rockwalls in the Turtmann Valley. In

the RF model, the time since deglaciation is the second most important predic-

tor (Fig. 10.6). A similar explanatory power was detected in the PCLR model,

where PC8 (paraglacial adjustment) is the covariate with the third highest odds

ratio (Table 10.5). With increasing time elapsed since deglaciation and increas-

ing elevation, failure susceptibility of bedrock can increase up to 1.29 (PC2) and
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1.47 times (PC8), which is comparable to findings from Great Britain (Hinchliffe

and Ballantyne, 1999; Curry and Morris, 2004) and Svalbard (André, 1997). The

paraglacial bedrock adjustment is reflected very well in the characteristic rockfall

pattern showing a significant overrepresentation in the upper basins (Fig. 10.5J),

where rock slopes have been deglaciated during the last <100 years. In turn,

rock faces near the trough shoulders, where deglaciation started earlier ca. 18-12

kyrs ago, might have already worked off the paraglacial signal, given the recent

rockfall inactivity there.

With respect to the timing of paraglacial rock slope adjustment, the regional-

scale activity of rockfalls, shown in Figure 10.5J, appears to confirm the exhaus-

tion model proposed by Cruden and Hu (1998), assuming a rockfall peak im-

mediately after deglaciation and a fast decline (Fig. 10.9, curve A). While most

large-scale paraglacial studies ignore or avoid possible rock mechanical influences

(Ballantyne and Stone, 2013; Ballantyne et al., 2014), our data reveal that the

timing and intensity of paraglacial rockfall events might depend on the specific

tectonic and geological settings, i.e. on the general SW-dipping of the metamor-

phic rocks. At a slope scale, the comparatively lower rockfall susceptibility of

recently deglaciated south-facing rockwalls (Fig. 10.5C) could imply that cata-

clinal slopes with low compressive strength (e.g. weathered paragneiss) favour

a very rapid paraglacial response due to the prompt initiation of pre-existing

shear planes. As soon as the weathered rocks are eroded, the slopes may im-

mediately adjust to a non-glacial strength equilibrium (Fig. 10.9, curve C). In

contrast, it is reasonable to assume that along north-exposed rockwalls, whose

stability is temporally increased due to high internal strength of amphibolite and

anaclinal bedding opposite to the general SW-oriented tectonic rock layering,

rockfalls may start delayed, rather weaker (Fig. 10.9, curve B) after deglaciation.

As consequence, paraglacial rockfall activity likely diminished more linearly, sup-

porting Cruden and Hu’s (Cruden and Hu, 1998) idea of a constant frequency

(steady state) model. Today, the process interplay responsible for paraglacial

adjustment is still disputed and shows a significant time- and scale-dependence

(McColl, 2012). At the scale of individual rock slopes, our modelling analyses

do not allow further conclusions on whether glacial unloading of rockwalls and

post-glacial debuttressing resulted in relaxation of internal stresses (Evans and

Clague, 1994; Augustinus, 1995) and in propagation of stress-release joints par-

allel to the former glacier contact zone (Lewis, 1954; Bovis, 1990; Hencher et al.,

2011). Yet at larger scales, the obvious higher rockfall activity detected at nearly

vertical slopes (> 60°, Fig. 10.5B) appears to support the hypothesis that glacial

over-steepening relative to the internal rock mass strength is a major paraglacial

driver in our study area (Augustinus, 1992; Leith et al., 2014). Furthermore,

a glacio-isostatic rebound might be plausible for landslides clustering over large

geographic areas, as calculated by Feuillet et al. (2014) and Cossart et al. (2014)
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for northern Iceland, but can likely be precluded here. A post-glacial uplift of

hanging valleys is probably not variable enough to produce the heterogeneous

rockfall pattern or is likely overlain by the large-scale uplift of the Rhone valley

(0.2-1.6 mm/a Gudmundsson, 1994; Schlunegger and Hinderer, 2001). Instead,

paraglacial rockwall adjustment appears to be strongly related to warming and

thawing of permafrost, given the obvious dominance of rockfall scars within a

low-solar elevation belt between 2900-3300 m (Fig. 10.5A, D), consistent with the

regional permafrost distribution (Nyenhuis, 2006). In findings from the Southern

Alps of New Zealand (Davies et al., 2001; Hales and Roering, 2007; Allen et al.,

2009), glacier retreat during LGM was probably accompanied by a gradual rise

of the lower permafrost level and, concurrently, of the frost cracking window;

even though this may not be necessarily true for S-facing slopes. According to

calculations by Hales and Roering (2009), a temperature drop of 4 °C, consistent

with possible climatic conditions during LGM in the New Zealand Alps, would

lead to 500 m lowering of the zone, where warming and thawing of permafrost

effectively promote changes in internal rock shear strength and water pressure

(Krautblatter et al., 2013). This could explain the former rockfall activity of

the vegetated hillslopes near the trough shoulders (Fig 10.5J, 10.8B). Therefore,

when evaluating the causality between climate change, permafrost degradation

and rockfalls, the rock mass’ memory effect must be considered, as slope insta-

bility is often a delayed response to paraglacial forcing on rock mechanical and

thermal systems (Krautblatter and Moore, 2014).

Figure 10.9: Possible models for the timing of paraglacial rockfall activity in the Turt-
mann Valley referring to Ballantyne and Stone (2013), p. 151. Depending
on the spatial scale (regional scale vs. individual slope scale) and rock me-
chanical settings with respect to slope aspect, paraglacial bedrock instability
may evolve rapidly or more linearly from glacial to non-glacial conditions.
For explanation, see text.
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10.5.2.3 Topo-climatic forcing on permafrost rockwalls

For the last two decades, a significant correlation of warm periods and in-

tensified episodes of rock slope failures is found in the European Alps (Ravanel

and Deline, 2015) and in the New Zealand Alps (Allen and Huggel, 2013). This

trend is often associated with warming and thawing of bedrock permafrost, due

to its high sensitivity to past and ongoing atmospheric warming (Gruber and

Haeberli, 2007; Huggel et al., 2012). During the 20th century, the mean annual

temperature of mid-latitude Alpine settings has increased by more than 1 °C,

especially since the Little Ice Age. For 2055, a warming of 2-3 °C (B1 global en-

vironmental scenario) or 3-4 °C (A1FI global economic scenario) is projected in

comparison with the recorded 20th century average (Nogués-Bravo et al., 2007).

In the Turtmann Valley, the regional permafrost distribution was detected to be

the most important factor controlling the spatial rockfall activity, indicated by

the RF model (Fig. 10.6) as well as by the high ODs of PC1 and PC3 in the PCLR

(Table 10.5). More than two thirds of rockfall source areas lie within a uniform

altitudinal belt at ca. 2900-3300 m a.s.l., immediately above the predicted lower

permafrost boundary (Fig. 10.5). In this zone, frozen bedrock plays a decisive

role for slope stability, because changes of its thermal and hydrostatic state can

significantly promote rockfalls (Krautblatter et al., 2013). Seasonal and multi-

annual freezing and thawing can lead to intense bedrock fracturing (Matsuoka

and Murton, 2008), warming of subsurface temperatures may reduce the shear

strength of ice-bonded discontinuities (Davies et al., 2001) and water seepage

from melting permafrost bodies can increase hydrostatic pressures (Gruber and

Haeberli, 2007; Krautblatter and Hauck, 2007). Our findings are consistent with

studies from the European Alps (Sass, 2005b; Ravanel and Deline, 2011; Fischer

et al., 2012), observing a similar altitudinal clustering of rockfall scars in a zonal

window, where freeze-thaw cycles are highly effective. Assuming the existence

of permafrost in our study area, it might be reasonable to infer that seasonal

ice segregation in near-surface permafrost is one of the primary rock breakdown

mechanisms in the hanging valleys. The bidirectional freezing progress over a

period of several months and penetrates to depth of several meters (Hallet et al.,

1991; Murton et al., 2006). This slow formation of segregation ice results in

progressive fracture of the upper permafrost layer and the base of the active

layer promoting rockfalls of low frequency, but of block sizes of decimeters to

several meters in diameter. Even though data on frost cycles are missing in our

study area, our assumption seems to be supported by field observations of the

talus material along the permafrost-affected rock slopes (Fig. 10.8A). The obvi-

ous dominance of large block sizes might reflect the activity of large magnitude

toppling events, which needs to be prepared by annual or decadal frost cycles

with meter-scale freezing (Matsuoka and Murton, 2008). In contrast, rock frag-

ments resulting from high-frequency diurnal frost cycles affecting the outermost
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decimeters of bedrock tend to be much smaller and are found primarily near the

apex of the talus slopes. Following Hales and Roering (2007, 2009), the regional-

sale cracking intensity of segregation ice is likely highest in a rock temperature

window between -3 and -8 °C, provided that water is available in the system, e.g.

from the surface or from the active layer of permafrost. However, recent field

studies of frost cracking inferred from acoustic emissions in natural Alpine rock-

walls reveal slightly different temperature ranges. For instance, Amitrano et al.

(2012) reported a rising of rock damage between 0 and -5°C (granitic gneisses),

while Girard et al. (2013) found frost cracking events occurring over the full range

of temperatures from 0 down to −15°C (crystalline rock). These field findings

reveal that transferring the theoretical and laboratory-based frost cracking win-

dow concept (Walder and Hallet, 1985) to natural conditions is not trivial due

to the mechanical and hydrological heterogeneity of bedrock. This is particularly

the case when trying to upscale the frost cracking to larger spatial scales, where

the relative importance of bedrock characteristics is difficult to evaluate or is

simply underestimated. However, based on the datasets presented in this study,

we cannot quantify the role of seasonal ice segregation opposite to other weath-

ering processes such as daily frost action of the bedrock near-surface or thermal

fatigue. To test our initial hypothesis that ice segregation is a major key driver

for rockfall events, field data of bedrock temperature are needed in upcoming

research to evaluate the penetration depth and timing of freeze-thaw cycles at

the regional scale. Furthermore, the PCs of the LR model provide insights into

the strength and direction of the interaction between bedrock permafrost and

other factors governing rockfall activity. For instance, the factor loadings in PC3

(Table 10.5) support the notion that permafrost degradation through lateral heat

fluxes is efficiently accelerated along convex topography, which is well exposed to

high incoming solar radiation (Ravanel and Deline, 2011). However, the relative

contribution of micro-scale bedrock roughness and curvature for the large-scale

rockfall pattern in the Turtmann Valley was classified to be small (Fig. 10.6),

contrary to the important role of overall valley topography. Permafrost-related

rockfalls seem to be promoted most by steep terrain (up to 2.94 times, Table 10.5),

linked to the higher shear stresses (Wyllie and Mah, 2004) and to the shorter pen-

etration distance of the warming signal into the interior of the rock mass (Noetzli

and Gruber, 2009). The critical slope threshold for failure of permafrost-affected

bedrock was found to be > 40° (Fig. 10.5B), typical for Alpine rockfall events

(Noetzli et al., 2003). Furthermore, our results expose an aspect-driven rockfall

activity. South-facing slopes show a decrease in rockfall activity. These slopes are

characterised by higher solar radiation input and increased surface temperatures

that increase the permafrost limit significantly compared to north-facing slopes

(Table 10.3, PC3). Between N- and S-orientations, significant differences in mean

annual rock surface temperature of up to 6 °C and in moisture supply are likely,

as found by Coutard and Francou (1989) and Sass (2005a). The consequences for
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frost weathering intensity (Hales and Roering, 2007) and resulting rockfall size

and shape (Matsuoka, 2001; Hall and Thorn, 2011) are observable in the hanging

valleys (Fig. 10.8). Although temperature fluctuations around 0 °C are probably

highest at S-slopes, these dry thermal cycles might be only effective to weaken

the outermost decimeter of bedrock, leading to the flaking off of small rock frag-

ments (Hall and André, 2001; Prick, 2003). In contrast, seasonal freezing might

advance much more slowly, but deeper along north-facing rockwalls up to several

meters, significantly enhanced by the bidirectional moisture supply (Sass, 2005b;

Murton et al., 2006; Matsuoka and Murton, 2008). Consequently, rockfalls pre-

dominantly are expected to occur as large-magnitude, seasonal toppling events

(Fig. 10.8A). Our study gives therefore evidence that the dependence of rockfall

activity on aspect is probably not exclusively climatic, but rock mechanically pre-

defined. Along north-facing slopes, in-dipping joints may favor moisture retention

within the bedrock and allow subsurface advective heat fluxes to penetrate much

faster and deeper through running melt water (Hasler et al., 2011a,b). Besides

predefining the block size and shape, the joint orientation with respect to aspect

might significantly control the development of thaw corridors in permafrost and

the efficiency of freeze-thaw cycles (Gruber and Haeberli, 2007). Therefore, our

modeling results reveal that the influence of permafrost on rock slope stability

can never be studied decoupled from other interacting factors, as its thermal and

mechanical behaviour is considerably governed by the overall valley topography

as well as small-scale morphometric and rock mechanical properties.

10.6 Perspectives

Coming back to Harrison (2001) stating that the relative role of rockfall con-

trols can change with increasing scale due to emergent and complex system be-

haviour, leads us to the questions: "Would the findings of this study have been

significantly different at the local scale?" And moreover, "would the key rockfall

controls identified in our study area contrast with other mountain environments"?

To examine these questions further research is needed in future. As each level

requires its own scientific explanation, we cannot simply upscale local-scale knowl-

edge and, in turn, we cannot down-scale the regional-scale knowledge obtained

from this study to smaller phenomena. Thus, we hereby appeal to enlarge the

research activities at each geomorphic scale. There is a need for both deductive

studies to improve the mechanistic understanding of slope stability with respect

to climate change and research at larger geomorphic scales; even if the latter may

be associated to more narrative and abductive reasoning. A final goal must be an

upscaling causation linking the local-scale rockfall controls to regional-scale con-

ditions. Considering that the regional-scale importance of paraglacial and rock

mechanical factors has been probably underestimated far too long, there is a par-
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ticular need to consider more intensely those parameters in future geomorphic

research. Here, we specifically aim to stress the great potential of the random

forest algorithm for novel applications in studying complex, collinear geomorphic

system behavior. Ideally, the classification results need to be tested against a

method, which is not so much a black-box like the RF and which gives additional

information on the strength of association between the interacting factors, such

as a classical logistic regression using principal components. To overcome some

sources of uncertainties, forthcoming work will comprise the validation of the

lower permafrost boundary adjusted to the steep terrain and bedrock anisotropy

by local field surveys. Similarly, local data of bedrock temperature are needed

for more insight into the regional-scale intensity of frost cracking and its effective

depth for rock breakdown. As a future step, it is desirable to test both our meth-

ods and the corresponding predictor variables in other mountain valleys where

permafrost degradation and glacier retreat is dominant. Particularly in environ-

ments with vulnerable settlements and tourist infrastructure, using the approach

developed in our study allows a relatively simple and time-efficient prediction of

rockwalls most vulnerable to rockfall initiation. This in turn can be used as a key

basis of information for regional hazard mitigation and sediment management in

cold mountain regions that face ongoing atmospheric warming.

10.7 Conclusion

Rockfalls are among the most hazardous natural hazards and represent a first-

order geomorphic agent in the sediment cascade of cold-mountain geosystems.

Detailed knowledge on the critical factors controlling rockfalls is important for

geomorphologists, engineers and decision makers. While most effort is obtained

locally, the relative importance of potential rockfall controls at regional scales is

still poorly understood. To bring further insight into the debate whether regional-

scale rockfall activity is driven by (a) topo-climatic, (b) paraglacial (c) or rock

mechanical factors, we designed a new spatial modelling approach using an in-

ventory of 220 talus slopes in the Turtmann Valley (Swiss Alps). In this study,

the classification-tree based random forest algorithm by Breiman (2001a) was ap-

plied for the first time for a rockfall-related purpose and combined with a classical

logistic regression model using principal components. Major findings are:

(a) The regional permafrost distribution was identified as the major control on

the spatial rockfall activity. The clustering of rockfall source areas within a

low-radiation altitudinal belt at 2900-3300 m a.s.l., consistent to the mod-

elled permafrost probability of > 90%, suggests that seasonal ice segregation

growth in the near-surface permafrost might be one of the key rock break-

down mechanism. However, the relative contribution of permafrost strongly
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depends on a complex interaction with small-scale bedrock morphometry

and overall valley topography. Permafrost-affected rockfalls were found to

be linked to convex, steep terrain (> 40°) and north-facing valley flanks,

promoting surficial moisture supply and subsurface lateral heat fluxes.

(b) The paraglacial adjustment of rock slopes to the LGM glaciation and sub-

sequent deglaciation was modelled to be the second most critical variable.

Using ergodic reasoning, we detected an increasing rockfall probability with

decreasing time since bedrock deglaciation. Besides glacially induced slope

oversteepening relative to the specific rock mass strength, the gradual al-

titudinal rise of the frost cracking window during postglacial permafrost

degradation is supposed to be the major large-scale paraglacial driver

(c) The relative importance of rock mechanical properties for the regional-

scale rockfall pattern was shown to be subdued compared to topo-climatic

and paraglacial factors. Nevertheless, we proposed different hypothetical

models, where the timing and intensity of paraglacial rockwall adjustment

might evolve either exponentially or more linearly after LGM, dependent on

the rock mass strength and the tectonically-derived dip direction of joints.

Therefore, our study emphasises that periglacial rockfalls cannot be mono-

causally explained as they result from a complex synergetic interplay of

topo-climatic, paraglacial and rock mechanical factors at different spatial

and temporal scales. When evaluating bedrock instabilities with respect to

past and recent deglaciation and permafrost degradation, our study demon-

strates that it is never only the influence of changing climatic conditions,

but rather the dependence on the topography and the structural geology

of mountain valleys as well as the rock mass’ memory effect on paraglacial

forcing.
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11 Improving performance of spatio-temporal machine

learning models using forward feature selection

and target-oriented validation

Hanna Meyer, Christoph Reudenbach, Tomislav Hengl, Marwan Katurji, Thomas Nauss

Abstract

Importance of target-oriented validation strategies for spatio-temporal predic-

tion models is illustrated using two case studies: (1) modelling of air tem-

perature (Tair) in Antarctica, and (2) modelling of volumetric water content

(VW) for the R.J. Cook Agronomy Farm, USA. Performance of a random k-fold

cross-validation (CV) was compared to three target-oriented strategies: Leave-

Location-Out (LLO), Leave-Time-Out (LTO), and Leave-Location-and-Time-Out

(LLTO) CV. Results indicate that considerable differences between random k-fold

(R2 = 0.9 for Tair and 0.92 for VW) and target-oriented CV (LLO R2 = 0.24 for

Tair and 0.49 for VW) exist, highlighting the need for target-oriented validation

to avoid an overoptimistic view on models. Differences between random k-fold

and target-oriented CV indicate spatial over-fitting caused by misleading vari-

ables. To decrease over-fitting, a forward feature selection in conjunction with

target-oriented CV is proposed. It decreased over-fitting and simultaneously im-

proved target-oriented performances (LLO CV R2 = 0.47 for Tair and 0.55 for

VW).

keywords Cross-validation; Feature selection; Over-fitting, Random Forest; Spatio-

temporal; Target-oriented validation
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11.1 Introduction

Machine learning algorithms are well established in environmental sciences

(Lary et al., 2016; Kanevski et al., 2009) and find application in a variety of fields

as for example mapping of land cover (Ludwig et al., 2016; Gislason et al., 2006),

vegetation characteristics (Lehnert et al., 2015b; Verrelst et al., 2012) and soil

properties (Gasch et al., 2015; Ließ et al., 2016) as well as in geomorphological

(Messenzehl et al., 2017; Micheletti et al., 2014) or climatological (Kühnlein et al.,

2014b; Hong et al., 2004; Meyer et al., 2016a; Appelhans et al., 2015) studies.

Most of the applications focus on static spatial predictions and are not aiming at

estimating a certain variable simultaneously in space and time. However, though

machine learning algorithms are still rarely applied in spatio-temporal models,

the number of applications is increasing (Gokaraju et al., 2011; Gasch et al., 2015;

Appelhans et al., 2015; Meyer et al., 2016b; Ho et al., 2014; Jing et al., 2016; Ke

et al., 2016; Lary et al., 2014).

Machine learning algorithms in space-time applications learn from spatio-

temporal observations to predict a certain variable for unknown locations and

for an unknown point in time (within a defined model domain) allowing a mon-

itoring of the environmental variable. The term “prediction”, in this context,

should not to be confused with “forecasting” as most of the models are not aim-

ing at predicting into the future but rather focus on predicting in past or present

times as well as in space. In contrast to model-based geostatistics (Diggle and

Ribeiro, 2007) as for example (co-)kriging, where one needs sufficiently distributed

information on the variable at question for each interpolation time-step, spatio-

temporal prediction models link a set of independent variables to the response

(i.e. the variable in question) and only use those independent variables for the

subsequent spatio-temporal prediction application. A typical example of spatio-

temporal prediction models in environmental science might be the estimation of

soil properties as done by Gasch et al. (2015). In this example, soil properties

(volumetric water content, soil temperature and bulk electrical conductivity) are

predicted in space and time on the basis of a machine learning model which

is developed from a variety of spatial, temporal and spatio-temporal predictor

variables as well as “ground truth” observations taken from data loggers.

Studies by Gasch et al. (2015) and Meyer et al. (2016a) have shown that the es-

timated performance of such models highly depends on the validation strategy: in

both cases high differences between the performance estimated by a random test

subset of the total dataset and the performance estimated by a Leave-Location-

Out (LLO) Cross-Validation (CV) have been reported. LLO CV means that

models are repeatedly trained by leaving the data from one location or a group

of locations (i.e. climate stations, data loggers) out and using the respective held
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back data for model validation. The differences between a random subset val-

idation (lower error estimates) and LLO CV (higher error estimates) strongly

suggest spatial over-fitting as the models can very well predict on subsets of the

time series of the locations used for training, but fail in the prediction of unknown

locations. The prediction on unknown locations, however, is in most cases the

major task of such models. The LLO CV error must therefore be considered as

the decisive performance indicator of spatial as well as spatio-temporal models.

Similarly, spatio-temporal models have a risk of temporal over-fitting which needs

to be assessed by Leave-Time-Out (LTO) CV (Gudmundsson and Seneviratne,

2015). However, it is these “target-oriented” validation strategies that focus on

the model performance in the context of unknown space or unknown time steps

that are not yet fully prevailed in literature. This is especially a problem as case

studies ignoring the spatio-temoral dependence in the data have to be considered

too optimistic (Roberts et al., 2017). Even though LLO and LTO CV are used in

some studies on spatial and spatio-temporal models (Ho et al., 2014; Gudmunds-

son and Seneviratne, 2015; Ruß and Brenning, 2010; Meyer et al., 2017c; Brenning

et al., 2012; Micheletti et al., 2014), random k-fold CV, where the dataset is ran-

domly partitioned into folds, is still considered common practice (Ke et al., 2016;

Messenzehl et al., 2017; Ließ et al., 2016; Ludwig et al., 2016).

How to address spatial or spatio-temporal over-fitting in view to improved

model selections? Over-fitting in machine learning models (when applied to spa-

tial data) most likely happens due to poor representation of spatio-temporal

sampling in predictor variable spaces. Hence, carefully selecting and interpreting

predictor variables is a logical remedy for improving performance of spatial mod-

els. Many spatio-temporal prediction studies use auxiliary predictor variables

which describe the properties of the location (e.g. elevation, slope, soil type, spa-

tial coordinates). These variables vary in space but not in time which means that

each station has a unique combination of static variables. We hypothesize hence

that:

1. These temporally static variables are prone to over-fitting. Combinations

of unique properties for each location are quasi comparable to a unique ID

of the locations which is then used as predictor. Using such variables, the

model is able to fit general characteristics of the individual time series.

2. Variables that lead to over-fitting can be automatically identified and re-

moved using a feature selection method that accounts for the target-oriented

performance.

3. Excluding misleading variables from the models does not only decrease

over-fitting but also leads to improved target-oriented model performances.

Feature selection is an intuitive solution to reduce the number of variables to
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the most important ones. However, the commonly used method for feature selec-

tion, Recursive Feature Elimination (RFE) (see e.g. Brungard et al., 2015; Meyer

et al., 2017b,c; Ghosh and Joshi, 2014; Stevens et al., 2013, in the field of en-

vironmental mapping), relies on variable importance scores which are calculated

using solely the training subset (Kuhn and Johnson, 2013a). If a variable leads

to considerable over-fitting, it has a high importance in the models. Therefore,

this variable will be selected as important variable in the RFE process and is not

removed regardless of a resulting high LLO CV error. Alternative approaches for

detecting the over-fitting variables are hence required.

We consider two published case studies to demonstrate the effect of different

validation strategies, the risk of spatial or spatio-temporal over-fitting as well as

the potential of feature selection algorithms to minimize the degree of over-fitting.

To estimate the degree of over-fitting, we compare the results of a random k-fold

CV with the results of the target-oriented validation strategies LLO, LTO and

Leave-Location-and-Time-out (LLTO) CV. We then compare the RFE method

with a newly proposed forward feature selection (FFS) method that works in con-

junction with target-oriented performance to identify and remove variables that

lead to over-fitting. We implement all steps of data analysis and modeling in the R

environment for statistical programming (R Core Team, 2016). Most of the analy-

sis is based on the caret package (Kuhn, 2016b) that implements a wrapper to the

Random Forest algorithm being used and provides functionality for data splitting

and CV. All newly produced R functions and modeling steps are fully documented

in https://github.com/environmentalinformatics-marburg/CAST

11.2 Case studies and description of the datasets

11.2.1 Case Study I: modelling air temperature in Antarctica

The first case study follows the approach of Meyer et al. (2016a) to spatio-

temporally predict Tair in Antarctica based on LST data from the Moderate Res-

olution Imaging Spectroradiometer (MODIS) and auxiliary predictor variables.

The dataset as it was used in the present study consists of 30666 hourly air tem-

perature measurements from 32 weather stations distributed over Antarctica for

the year 2013. The Tair values range from -78.40◦C to 5.76◦C with an average of

-27.64◦C and a standard deviation of 17.26◦C.

Beside of MODIS based LST as a spatio-temporal predictor variable, several

auxiliary spatial predictor variables were used that basically describe the terrain.

In addition, a number of predictor variables that remain spatially constant but

vary in time were used as temporal predictor variables. See Tab. 11.1 for the

full list of predictors used in this study and Meyer et al. (2016a) for further

https://github.com/environmentalinformatics-marburg/CAST
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information on the dataset.

11.2.2 Case Study II: modelling volumetric water content of the "Cook-

farm", USA

The second case study bases on the dataset applied in Gasch et al. (2015)

to predict soil properties in 3D+time and can be freely accessed from the GSIF

package in R. The research site of this case study is the R.J. Cook Agronomy Farm

which is a 37 ha sized long-term agroecosystem research site in the Palouse region

in the USA and operated by the Washington State University. The final dataset as

prepared for this study consists of daily VW measurements from the years 2011

to 2013 taken by 5TE sensors (Decagon Devices, Inc., Pullman, Washington)

initially installed in five depth (0.3, 0.6, 0.9, 1.2, and 1.5 m) at 42 locations

within the study site. In this study we only focus on two dimensions plus time

and limited the dataset to the depth of 0.3 m. The dataset then contained 33397

training samples. VW ranged from 0.093 m3/m3 to 0.613 m3/m3 with an average

of 0.265 m3/m3 and a standard deviation of 0.076 m3/m3.

The covariables available from the research dataset that were used in this

study as potential predictors to predict VW are a number of spatially continu-

ous variables describing the terrain. Further, temporal variables as for example

climate properties measured from the nearest meteorological station were used.

See Tab. 11.1 for the full list of predictors used in this study and Gasch et al.

(2015) for further information on the dataset.

11.3 Methods

11.3.1 Random Forest algorithm

Random Forest (Breiman, 2001a) was chosen as machine learning algorithm

because it is a widely used algorithm, able to deal with both, numeric and categor-

ical predictor variables, and because of its robustness to hyperparameter tuning

(Kuhn and Johnson, 2013a). Random Forest bases on the concept of regression

and classification trees, i.e. a series of nested decision rules for the predictors that

determine the response. It repeatedly builds trees from random samples of the

training data with each tree is a separate model of the ensemble. The estimations

of all trees are finally averaged to produce the final estimate (Breiman, 2001a).

To overcome correlation between trees, only a subset of predictors (mtry) is ran-

domly selected at each split. The best predictor from the random subset is used

at the respective split to partition the data. mtry is considered as a hyperparam-

eter that needs to be tuned for a respective dataset in order to obtain an optimal



11.3 Methods 211

Table 11.1: Predictor variables used within the two case studies with their dimension
and resolution (res.). LST — Land Surface Temperature as measured by
MODIS, Sensor - either MODIS Terra or Aqua, Ice — Ice covered ground
or not, DEM - Digital elevation model, TWI — SAGA wetness index,
NDRE.M — Normalized Difference Red Edge Index (mean), NDRE.sd -
Normalized Difference Red Edge Index (s.d.), Bt — Occurrence of Bt hori-
zon, BLD — Bulk density of soil, PHI — Soil pH, Precip_cum — Cumu-
lative precipitation in mm, MaxT_wrcc - Maximum measured temperature,
MinT_wrcc — Minimum measured temperature, Crop — Crop type. See
also Meyer et al. (2016a) and Gasch et al. (2015) for further description.

Case Study Predictor Dimension Spatial res. Temporal res.

Tair

Antarctica

LST 2D+t 1km instantaneous

DEM 2D 1 km -

Aspect 2D 1 km -

Slope 2D 1 km -

Skyview 2D 1 km -

Ice 2D 1 km -

Sensor (2D+t) (1 km) (instantaneous)

Season t - 3 months

Time t - hour

VW

Cookfarm

DEM 2D 10 m -

TWI 2D 10 m -

NDRE.M 2D 10 m -

NDRE.Sd 2D 10 m -

Bt 2D 10 m -

BLD 2D 10 m -

PHI 2D 10 m -

Precip_cum t - 1 day

MaxT_wrcc t - 1 day

MinT_wrcc t - 1 day

Cdayt t - 1 day

Crop 2D+t 10 m 1 year

trade-off between under- and over-fitting of the data. For a further description of

Random Forest, see Breiman (2001a); James et al. (2013) and Kuhn and Johnson

(2013a).

In this study, the Random Forest implementation of the randomForest package

(Liaw and Wiener, 2002) in R was applied and accessed via the caret package

(Kuhn, 2016b). Throughout the study, each Random Forest model consisted

of 500 trees after no increase of performance could be observed using a higher

number of trees. mtry was tuned for each value between two and the respective



212 11 Improving the performance of spatio-temporal models

number of predictor variables.

11.3.2 Validation strategies

To test the model performance on random subsets of the total datasets, a

commonly used random 10-fold CV was used. Therefore, the data was split into

10 equally sized folds. Data splitting was done by stratified random sampling

that ensures that the distribution of the response variable in each fold equals

the distribution of the entire dataset. Models were then repeatedly trained by

using the data of all except one fold and testing the model performance using

the held-back data. In order to quantify the performance of the models using

“target-oriented” validation strategies, the performance in view to the following

criteria was tested (Fig. 11.1).

1. predict on unknown locations, tested by Leave-Location-Out Cross-Validation

(LLO CV)

2. predict on unknown points in time, tested by Leave-Time-Out Cross-Validation

(LTO CV)

3. predict on unknown locations and unknown points in time, tested by Leave-

Time-and-Location-Out Cross-Validation (LLTO CV)

Therefore, the dataset was split into folds again, but this time each fold left

the data of complete locations (LLO) or time steps (LTO) or locations as well as

time steps (LLTO) out. For both case studies, the location of the data loggers

defined a location and the dataset was split into 10 folds with respect to these

locations. For LTO, the day of the year was used as splitting criterion for Tair

Antarctica. For VW Cookfarm, data from more than one year was available

allowing that individual months of each year could be left out for validation

(12 months x 3 years = 36 unique time steps). Again, the data was split into 10

folds by leaving complete time steps out.

For all target-oriented validation strategies, the procedure was comparable

to the random k-fold validation (which gives a biased estimate of prediction

performance): models were repeatedly trained by using the data of all except

one fold and testing the model performance for the held-back data. Over-fitting

of the model in space and time was then quantified by comparing the random

10-fold CV results with the target-oriented validation results.

11.3.3 Feature selection

With the aim to remove predictors that are counterproductive in view to

the target-oriented performance, we tested a RFE algorithm as well as a FFS
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Random 
k-fold CV
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Figure 11.1: Schematic overview of validation strategies considered in this study.
Leave-Location-Out (LLO), Leave-Time-Out (LTO) and Leave-Location-
and-Time-Out (LLTO) cross-validations (CV) were used as target-
oriented strategies. LLO and LLTO CV were used in conjunction with
recursive feature elimination (RFE) and forward feature selection (FFS)
to reduce spatial over-fitting and its impact.

algorithm that works in conjunction with target-oriented validation (Fig. 11.1).

We used LLO and LLTO CV as target-oriented validation strategies as the ability

of the model to predict on unknown locations was of upmost importance for both

case studies.

RFE relies on variable importance scores that are calculated during the initial

random forest model training. The algorithm successively removes the least im-

portant variables to find the best performing set (see Kuhn and Johnson, 2013a,

for further details). In this study, we used the RFE implementation from the

caret package (Kuhn, 2016b). As outlined above, we assume that RFE is not

a helpful approach to overcome spatio-temporal over-fitting as variables are not

ranked according to target-oriented performance. As an alternative approach, we

developed and implemented a FFS algorithm in R (Algorithm 1). The algorithm

first trains models (i.e. Random Forest) of all possible 2-variable combinations

of the total set of predictor variables. The best initial model in view to target-

oriented performance is kept. The number of predictor variables is then iteratively

increased. The improvement of the model is tested for each additional predictor

using target-oriented CV. The process stops when none of the remaining vari-

ables decreases the error of the currently best model. The algorithm therefore

fits a maximum of 2 ∗ (n − 1)2/2 models (e.g. 81 models when 10 predictors are

considered).
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for each resampling iteration do
Partition the data into training and test data;
Tune and train models using all possible 2-variable combinations;
Predict on test data and calculate model performance;

end
Keep the best performing 2-variable model (modelbest);
for each additional number of variables i, i=3...N do

for each remaining variable VR do
for each resampling iteration do

Partition the data into training and test data;
Tune and train models using the variables of modelbest and VR;
Predict on test data and calculate model performance

end

end
if mean(error of modeli) > mean(error of modelbest) then

break
end
Keep the best performing i-variable model (modelbest);

end
Algorithm 1: Pseudo-code description (similar to the ones from the caret
package) for the FFS algorithm. Resampling in this study bases either on LLO
or LLTO

11.4 Results and Discussions

11.4.1 Target-oriented validation

For both case studies, a random k-fold CV showed a high performance with

only low differences between observed and predicted values, indicating a nearly

"perfect fit" of the data (model Tair/VW01 in Tab. 11.2). However, in view to

unknown locations (LLO CV), the performance decreased considerably (models

Tair/VW02 compared to models Tair/VW01 in Tab. 11.2). This means that the

model was generally less able to predict beyond the location of the training data

compared to what might have been expected regarding the random k-fold CV

error. The ability of the Tair model to predict the outcome for an unknown

day within the temporal model domain of 2013 remained high (model Tair03 in

Tab. 11.2). Thus, in view to unknown locations and unknown days (model Tair04

in Tab. 11.2), the error was comparable to the LLO CV error. Uncertainties in

view to unknown locations were the major source of error. The temporal error

had more effect on the VW Cookfarm example where complete months were left

out for validation (model VW03 and VW04 in Tab. 11.2).

Since the differences between random k-fold CV and target-oriented CV are

noticeably high, the results highlight the need to perform CV in view to the

model target in order to draw meaningful conclusions. If the aim is to map

the response variable, one must consider LLO CV as decisive error indicator as
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the random CV error can lead to considerable misinterpretations of the model

performance. Especially when the model is to be applied on unknown years, the

potential of the model to predict beyond the years used for model training must

also be considered. In this case, LLTO CV can assess the error in both, space and

time, however, the number of validation data decreases as the overlap between

LLO and LTO is used. This causes the results to be less robust compared to a

separate view on LLO and LTO CV were more data are available for testing.

11.4.2 Detecting over-fitting

As the models performed well on random subsets of the entire datasets (ran-

dom k-fold CV) but had high errors when faced with unknown locations, spatial

over-fitting must be suspected for both case studies. The model could only lead to

high performances when information about a respective location went into model

training. Therefore, the model was over-fitting in space as only locations used

for training could reliably be predicted by the model. Subsequently, also LLTO

CV showed high errors, though temporal over-fitting only slightly contributed to

that error in case of the Tair Antarctica example. In this case study, over-fitting

in time was a minor issue, at least on the considered time scale (days). In the

case study of VW Cookfarm, the time scale used for data splitting was months of

the individual years. Considering these larger time scales that were left out, the

model performance decreased compared to the random k-fold CV performance

(R2 = 0.79 compared to 0.92, see VW03,01 in Tab. 11.2). Thus, temporal over-

fitting must be assumed in addition to spatial over-fitting as only months that

went into model training could reliably be predicted by the model.

11.4.3 Reducing over-fitting and improving model performances

To decrease the impact of over-fitting, RFE and the newly designed FFS were

compared. On the first sight, RFE reduced over-fitting in the Tair Antarctica

example, getting obvious in lower differences between random k-fold CV and

target-oriented CV (Fig. 11.2a, model Tair05 compared to Tair06 as well as Tair09

compared to Tair10 in Tab. 11.2). This pattern, however, could not be supported

by the VW Cookfarm example, where the differences between random k-fold

CV and target-oriented CV remained equally high (Fig. 11.2b, model VW05

compared to VW06 as well as VW09 compared to VW10 in Tab. 11.2). In fact,

this was the expected pattern as the variable importance ranking within the RFE

is based on internal importance estimates (Fig. 11.3) without consideration of the

importance in view to target-oriented errors.

The explanation for the effect shown in the Tair example lies in the ranking

of the variables (Fig. 11.3a): Among the most important variables were appar-



216 11 Improving the performance of spatio-temporal models

Table 11.2: Regression statistics between observed and predicted values of air temper-
ature (Tair) and volumetric water content (VW) based on cross-validation
(CV). Models were validated using random k-fold or using target-oriented
Leave-Location-Out (LLO), Leave-Time-Out (LTO) and Leave-Location-
and-Time-Out (LLTO) CV. Recursive feature elimination (RFE) and the
newly proposed forward feature selection (FFS) were tested. Performance
measures are mean error (ME), mean absolute error (MAE), root-mean-
square-error (RMSE) and coefficient of determination (R2). Bold numbers
indicate the decisive objective error estimates after misleading variables
were removed by FFS. Compare target-oriented CV without feature selection
to random k-fold CV to estimate over-fitting. Compare LLO and LLTO
CV using RFE or FFS to estimate the increase of performance compared
to LLO and LLTO CV without feature selection. Note that the random CV
performance is only provided for comparison but cannot be regarded as a
meaningful measure.

Model CV Feature Select. ME MAE RMSE R2

Tair01 random none 0.016 4.155 5.556 0.899

Tair02 LLO none 0.068 12.178 15.850 0.244

Tair03 LTO none 0.017 4.244 5.665 0.894

Tair04 LLTO none 0.236 12.164 15.807 0.246

Tair05 LLO RFE 0.011 10.353 13.647 0.400

Tair06 random variables of Tair05 0.025 9.113 12.021 0.519

Tair07 LLO FFS 0.072 9.756 12.564 0.474

Tair08 random variables of Tair07 0.000 8.602 11.157 0.583

Tair09 LLTO RFE 0.405 10.251 13.416 0.413

Tair10 random variables of Tair09 0.025 9.113 12.021 0.519

Tair11 LLTO FFS 0.253 9.658 12.387 0.485

Tair12 random variables of Tair11 -0.001 8.601 11.156 0.583

V W01 random none 0.00 0.016 0.023 0.919

V W02 LLO none -0.002 0.041 0.054 0.488

V W03 LTO none -0.001 0.024 0.035 0.794

V W04 LLTO none -0.007 0.040 0.050 0.500

V W05 LLO RFE -0.002 0.041 0.055 0.475

V W06 random variables of V W05 0.000 0.014 0.021 0.931

V W07 LLO FFS 0.000 0.037 0.051 0.552

V W08 random variables of V W07 0.000 0.036 0.049 0.580

V W09 LLTO RFE -0.007 0.040 0.050 0.502

V W10 random variables of V W09 0.00 0.015 0.022 0.926

V W11 LLTO FFS -0.004 0.039 0.051 0.499

V W12 random variables of V W11 0.00 0.036 0.049 0.580
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ently those that do not lead to an over-fitting. Only the top three variables were

selected by the RFE ("season", "time" and "LST", see Tab. 11.1 for explanation)

that could in this example lead to a reduced effect of over-fitting. Including just

one additional variable (in this case "aspect" as this was the variable rated as

next important, see Fig. 11.3) was recognised as counterproductive by the RFE.

However, the example of VW Cookfarm demonstrates that this pattern is rather

chance than a systematic ability of the RFE design to remove over-fitting vari-

ables. In the VW Cookfarm example the variables that were ranked as important

led to over-fitting so that the RFE could not decrease this problem by removing

least important variables. Over-fitting in this example is generated because the

variables were not ranked according to their target-oriented importance within

the models. In fact, the RFE algorithm kept all except three variables thus it

yielded the best performance using nearly the full set of predictors which, how-

ever, could not remove over-fitting.

The FFS algorithm, in contrast, could reliably reduce the differences between

random k-fold CV and LLO as well as LLTO CV in both case studies: when

the respective less-variable model was validated with random k-fold CV, the

differences to the LLO as well as LLTO CV error decreased (Fig. 11.2, model

VW/Tair07,11 compared to VW/Tair10,12 in Tab. 11.2). This shows that remov-

ing misleading variables decreased the problem of spatial over-fitting. In the case

study of Tair Antarctica, it suggested the combination of "season", "ice", "LST",

"sensor", "aspect" as necessary variables and rated all others as counterproduc-

tive. For VW Cookfarm, the variables "Precip_cum", "cdayt", "MaxT_wrcc",

"MinT_wrcc", "Crop" were suggested to yield optimal results in view to LLO as

well as LLTO CV.

The variables that were rated as counterproductive and have been removed

during FFS were mainly spatially continuous but temporally constant variables.

Especially in the case study of Tair Antarctica, such variables formed a dis-

tinct "pointer" on the individual logger locations, as each logger location featured

unique combinations of the spatial variables (i.e. unique combinations of slope,

aspect, altitude). Therefore, these variables are, in combination, comparable to

an "ID" for the loggers that was then used as predictor. ID-like predictors enable

the algorithms to access individual characteristics of the time series of the loggers

which in turn leads to a misinterpretation of such variables: these variables are

associated with logger-specific patterns that cover the true underlaying relations

between these predictors and the response. This suspicion is supported by a high

internal importance of such variables within the models (Fig. 11.3) especially in

the VW Cookfarm example (e.g. NDRE.M+BLD+PHI) but a removal of these

variables during the FFS. Under these considerations, the behaviour of the RFE

to reduce the impact of over-fitting in the Tair Antarctica example becomes un-

derstandable: as the top ranked variables "season", "time" and "LST" are not
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prone to spatial over-fitting, the RFE could yield best results using only these

three variables. If an over-fitting variable was amongst the top two variables,

over-fitting could not have been resolved and the differences between random k-

fold and target-oriented CV errors stayed high as in the VW Cookfarm example.

Removing counterproductive variables using FFS did not only lead to reduced

over-fitting but also to improved target-oriented performances (Fig. 11.2, 11.4,

Tab. 11.2). This is especially obvious for the Tair Antarctica data where the LLO

CV R2 increased from 0.24 to 0.47 (model Tair07 compared to Tair02 in Tab. 11.2,

Fig. 11.2a, Fig. 11.4a). The patterns for LLTO CV were the same (model Tair11

compared to Tair04 in tab 11.2, Fig. 11.4a). Also in the VW Cookfarm example

FFS led to an increased LLO performance, though the effect was less strong com-

pared to the Tair Antarctica data (Fig. 11.4b). The LLO CV R2 increased from

0.49 to 0.55 (model VW02 compared to VW07 in Tab. 11.2) using only the se-

lected variables. For the LLTO CV error, the FFS did not resulted in an improved

model performance (model VW04 compared to VW11 in Tab. 11.2, Fig. 11.4b)

though over-fitting could be significantly removed (Fig. 11.2b). Obviously remov-

ing misinterpreted variables could not improve the performance which suggests

that the potential of the variables to predict beyond the training locations and

months is depleted. However, this model is now more robust as only a small

subset of the initial variables are used and over-fitting could be reduced.

Though FFS is time consuming, it is able to automatically detect and remove

variables that are counterproductive in view to the target. The computation

time can be decreased by thorough pre-selection of potential predictors in view

to their effect in space and time to avoid ID-like pointers on individual locations

or time steps. Considering the potential of FFS as shown in this study to remove

counterproductive variables in view to a target-oriented performance, it is likely

that the algorithm is able to improve a variety of published models beside of

the two case studies (Meyer et al., 2016a; Gasch et al., 2015). As an example,

Langella et al. (2010); Shi et al. (2015) and Janatian et al. (2017) used latitude

and longitude as predictors which are prone to create an ID of the locations used

for training.

The focus of this study was on spatio-temporal models, however, most of the

findings apply for purely spatial models as well. This is supported by the studies

of e.g. Micheletti et al. (2014) and Roberts et al. (2017) who left spatial units out

for validation and yielded less optimistic results compared to a random k-fold CV,

thus spatial over-fitting is indicated. Also Li et al. (2011) included latitude and

longitude as predictors in a purely spatial model and observed linear features

in the resulting map. If such models are validated with random k-fold CV, a

statistically good fit is feigned but spatial over-fitting occurs as a consequence of

the misinterpretation of certain variables. In such applications, the proposed FFS
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in conjunction with target-oriented validation (in this case leave-spatial-unit-out

CV) can improve the model results and will produce more robust results.
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Figure 11.2: Differences in the Leave-Location-Out (LLO) cross-validation (CV) per-
formance of a) the air temperature (Tair) estimations and b) the volu-
metric water content (VW) estimations using different feature selection
strategies. The effect of a Recursive feature elimination (RFE) and the
newly proposed forward feature selection (FFS) are compared. The vari-
ables selected by RFE for the case study of Tair Antarctica were "sea-
son", "time", "LST". FFS selected "month", "ice", "LST", "season",
"sensor". For the case study of VW Cookfarm all potential predictors
except "Bt", "TWI", "MinT_wrcc" were selected by the RFE. FFS se-
lected "MaxT_wrcc", "cdayt", "Precip_cum", "Crop", "MinT_wrcc". See
Tab. 11.1 for further explanations on the variables.
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Figure 11.3: Relative scaled importance of the predictor variables within the Random
Forest models for the case study of (a) Tair Antarctica and (b) VW Cook-
farm. See Tab. 11.1 for further explanations on the variables
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Figure 11.4: Differences in the Leave-Location-Out (LLO) and Leave-Location-and-
Time-Out (LLTO) cross-validation (CV) performance using no feature
selection, a recursive feature elimination (RFE) and the newly proposed
forward feature selection (FFS) of the a) air temperature (Tair) Antarc-
tica models and b) the volumetric water content (VW) Cookfarm models.
Performance is indicated using the mean absolute error (MAE) divided
by the standard deviation (sd) of the mean, and the proportion of varia-
tion unexplained (1 - R2). Colors indicate the different feature selection
strategies. The shape indicates the CV method being used. Performance
increases from the upper right corner towards the lower left corner. It
is shown that models using no feature selection generally have the lowest
performance and models using FFS have the highest performance.
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11.5 Conclusions

This study aimed at demonstrating the effect of target-oriented validation and

at finding a solution to detect and reduce spatial over-fitting. For this we used

two previously published case studies. We discovered high differences between

random k-fold and target-oriented CV: the random k-fold CV R2 of the Tair

Antarctica study was 0.90, contrasting to a LLO R2 of 0.24 and the random

k-fold CV R2 of the VW Cookfarm study was 0.92 compared to a LLO CV R2

of 0.49. This shows that errors estimated with a standard random k-fold CV

can considerably deviate from target-oriented error estimates which highlights

the clear need for target-oriented validation to avoid an overoptimistic view on

results.

We further hypothesized that the observed patterns of spatio-temporal over-

fitting are caused by temporally constant predictors (e.g. elevation, slope, . . .)

that act in conjunction with each other like an ID. This occurs when locations

used for model training have unique spatial properties. It appears that the mod-

els of both case studies were able to learn general characteristics of the time series

of the individual locations. The models were then very well able to predict sub-

sets of the time series (low random k-fold CV error), but then failed to predict

beyond the training locations (high LL(T)O CV error). To automatically detect

and remove variables that lead to over-fitting, we proposed using the FFS algo-

rithm in conjunction with target-oriented validation. By removing the misleading

predictors, the FFS was able to automatically reduce spatio-temporal over-fitting

which was reflected in similar errors for random k-fold CV and target-oriented

CV. After refitting the models using the FFS procedure, the LLO CV R2 was

0.47 for Tair Antarctica and 0.55 for VW Cookfarm, hence the proposed method

could improve the target-oriented model performance.

Though predicting environmental variables in space and time remains chal-

lenging, validation strategies suggested in this article allow assessing model errors

objectively and allow identifying over-fitting. Despite the general opinion that

Random Forests are insensitive to over-fitting, unfavorable combinations of pre-

dictors and/or distribution of the training data in space and time can lead to se-

rious over-fitting effects. In this study, variables that has caused that over-fitting

were removed from the models and the model performance has immediately im-

proved. However, certain variables might be misleading but still contain valuable

information. How to minimize the over-fitting effect of such variables but still

use them in the spatial prediction, remains to be solved. With an increasing

application of machine learning for spatio-temporal predictions, further studies

and procedures for preventing over-fitting in machine learning applications will

hence be increasingly important.
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12 Conclusions

The individual chapters contain various contributions to an enhanced under-

standing of machine learning for environmental geography, and for advancing the

respective scientific field. Thus, each chapter includes particular methodologi-

cal challenges and/or new developments as well as new scientific findings which

was possible only by the combined development of methodological and scientific

knowledge. The in-depth study of machine learning applications in different the-

matic fields as outlined in this thesis, allowed drawing conclusions and delineate

important consequences for its applicability in environmental geography. In this

concluding chapter, the main methodological and scientific outcomes in general

will be emphasized with special focus on the challenges and opportunities of ma-

chine learning in view to spatio-temporal data.

12.1 Significance of the developed products

Within this thesis, several scientifically relevant products have been developed

based on the utilization of machine learning. Special focus in the thesis was on

the monitoring of rainfall dynamics (chapters 2, 3, 4). Since rainfall is a difficult

parameter to assess, its retrieval required methodological pre-studies before a

model could successfully generate a monitoring product for southern Africa that

was representative for areas with low densities of climate stations. In this con-

text, a set of most adequate machine learning algorithms was tested to identify the

best performing algorithm (chapter 2). However, since no significant differences

between the tested algorithms could be found, the first important finding was

that an optimization of the rainfall retrieval must rely on the choice of optimal

predictor variables rather than on the choice of the machine learning algorithm.

Consequently, more in-depth scientific considerations on potential predictors for

rainfall were the objectives of the subsequent study (chapter 3). The findings

from both studies provide an improved methodological framework that allowed

estimating rainfall for areas with a low density of climate stations, such as south-

ern Africa (chapter 4). Though monitoring of rainfall remains highly challenging

and the newly derived spatio-temporal rainfall product is still afflicted with un-

certainties, the product outperforms a sophisticated global rainfall product which

emphasizes the great potential of the methods applied in this study. The newly

developed monitoring product is of high relevance for farmers in southern Africa

who vitally depend on rainfall. It is also most important for applied science since

rainfall represents a key parameter for ecological and hydrological studies.

Also the new air temperature monitoring product for Antarctica, which was

developed in this study (chapter 5), is an important baseline product for ongoing
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research. With the high resolution spatio-temporal air temperatures of entire

Antarctica it provides for the first time a reliable temperature product with an

objective error estimation (see section 12.4) under challenging regional conditions.

The result can be considered a breakthrough for highly heterogeneous areas, such

as the Mc Murdo Dry Valleys, where sub-regional environmental processes are

extensively studied but high resolution air temperature datasets were missing.

In view to biogeographical applications, this thesis considered different spa-

tial and spectral scales to move beyond point measurements towards larger scale

mapping or monitoring. Chapter 6 tested the significance of hyperspectral point

measurements in order to get proxies of pasture degradation for the Tibetan

Plateau. In this context, it could be shown that multispectral information was

sufficient to estimate vegetation cover and biomass and hyperspectral data could

not improve the estimations. This is an important finding as it facilitates work

since more multispectral satellite data are available and its analysis far less com-

plex compared to hyperspectral data. Spectral resolution as well as spatial scale

was also relevant in chapter 7 where high spatial resolution Google Earth RGB

images of South African Savannas were classified into woody and non woody vege-

tation. The classified images form a database of new ground truth data that serve

as a baseline for a planned larger scale spatio-temporal monitoring of bush en-

croachment. Starting from very high resolution is important as the vegetation in

the savannas appears patchy and lower resolution satellite pixels therefore contain

mixed signals of different vegetation. Creating spatially explicit high resolution

ground truth data allows accounting for local variability but transferability to

larger scales.

So far, a variety of studies was presented where environmental characteristics

were either modelled in 2D (chapters 6, 7) or 2D+time (chapters 2, 3, 4, 5).

Chapter 8 extends the modelled dimensionality at the example of soil properties

(moisture, temperature, electrical conductivity) by considering the depth as an

additional dimension. This chapter represents the so far first study of a 3D+time

model in environmental science. The results of this chapter are therefore not

only important as a baseline to understand spatio-temporal processes in soils

but are especially valuable from a methodological perspective as they form a

framework for 3D+time modelling of the environment. Chapter 9 also deals

with modelling of soil properties, specifically soil respiraton. As soil respiration

is an important factor in carbon dynamics, knowlege about its spatio-temporal

patterns are important in view to assess the release of carbon from the soils

e.g. under different land use management practices. This study is focussing

the applied aspects of the newly developed methodological framework as derived

from chapters 2-8. A model was to be developed that allows estimating soil

respiration under different soil moisture and temperature conditions based on

mid infrared spectroscopy. The developed model allows avoiding complicated and
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time consuming laboratory work in order to assess soil respiration. Therefore,

the model itself is the valuable outcome as it allows scientists to estimate soil

respiration from MIRS data solely.

Machine learning, however, cannot only be used to create spatio-temporal

estimates of the environment, but it further gives important information about

the explanatory power of its drivers. Though machine learning is considered as

a "black-box" and exact relationships between the predictors and the response

cannot be retrieved, chapter 10 shows at the example of rockfall modelling that

nevertheless machine learning still has great potential for contributing to the

understanding of the driving forces of environmental processes.

12.2 Opportunities of machine learning in geography

With the ongoing popularity of data-driven approaches, it is sometimes crit-

icized that data-driven data analysis is the "death" of knowledge-based science

(Mazzocchi, 2015; Anderson, 2008). However, as a result of the in-depth study of

the applicability of machine learning in different fields of environmental geogra-

phy, this thesis emphasizes that data-driven science presents greater opportunity

rather than a risk. Comprehensive data-driven science is not, as feared, ac-

companied by a loss of understanding of underlying environmental processes. In

contrast, it could be shown that it is crucial to have a considerable understanding

of ecosystems and processes combined with strong methodological knowledge to

solve complex problems. In this context, data-driven science along with machine

learning offers opportunities that simply cannot be achieved using traditional

methods. Machine learning allows the inclusion of large numbers of predictors

with the possibilities to include different types of variables as numeric, ordinal or

nominal predictors. This is an advantage where common approaches in respective

fields (e.g. partial least squares regression, chapter 9) or stepwise logistic regres-

sion, chapter 10) failed as incorporating non numeric information is challenging.

However, the most important advantage of machine learning is not the option

to include various types of variables but that no a priori assumption about the

relationships between variables is required. This allows integrating a wide range

of data with completely different relationships. This becomes especially impor-

tant when large numbers of variables are used (e.g. chapters 3, 6) and individual

relationships are difficult to asses due to the volume of data. Considering these

characteristics, it is not surprising that machine learning algorithms have been

shown to be superior compared to traditional methods (chapters 5, 8, 10). In

view to the ongoing trend from small, towards big geographic data (Miller and

Goodchild, 2015), machine learning must therefore be considered as highly rel-

evant for geography offering great opportunities in view of modelling complex
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systems.

12.3 Challenges of machine learning in geography

In the previous section it has been indicated that machine learning offers great

flexibility and low restrictions for model development. Admittedly, this freedom

comes with a risk that makes the mentioned critical attitude towards data-driven

science understandable. Algorithms that can handle all kinds of variables and ar-

bitrary relationships that are learned by the algorithm itself naturally go in hand

with the risk of a "blind" model application without a critical confrontation with

the environmental system or the method itself. This is especially problematic as

current software developments allow machine learning to be applied by virtually

everyone. Non comprehensively applied machine learning algorithms lead to con-

siderable misinterpretation of the results (see chapters 5, 11) and don’t advance,

but rather harm, the scientific fields. Therefore, the opportunities of machine

learning can only be exploited if the methods are applied with care.

There are several characteristics of geographic data (see chapter 1) that create

challenges that need to be considered in view of a comprehensive application of

machine learning. Some of them, for example handling unbalanced data, can

be resolved through a thinking beyond the "standard application" and will be

summarized in section 12.5. However, some challenges that were addressed in

this thesis, are more challenging, requiring very thoughtful consideration and

will certainly still be challenges for ongoing research.

Scale dependency makes machine learning applications challenging in geogra-

phy, especially in remote sensing applications. It is optimal if the ground truth

data can be sampled on the same spatial resolution as the predictors (e.g. by

classifying high resolution images as a reference, see chapter 7). Remote sensing-

based predictor variables usually don’t share the same spatial scale as ground

truth data that are sampled at small spatial extents in the field (e.g. chapters 4,

5, 6). This bears the risk that the ground truths reflect local characteristics but

the predictors reflect the general signal of a larger area. Therefore, studies must

act on the assumption that the reference data are representative for the entire

pixel of the predictor variables. Field work or the selection of available ground

truth data must consequently be in view to the spatial resolution of the predictor

variables.

Certainly, the major challenge of machine learning in spatial or spatio-temporal

applications, is the consideration of spatial and temporal dependencies in the

data. This point is extensively addressed in chapter 11 and will be summarized

in the following (section 12.4).
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12.4 Accounting for space-time dependencies

The problem of incorporating space-time dependencies in machine learning

applications was identified as the major challenge which bears high risks for con-

siderable misinterpretations. Chapter 11 picked up on the issues associated with

space-time dependency, firstly mentioned in chapter 5.

A key characteristic of geographic data is their spatial and/or temporal auto-

correlation (chapter 1), thus, geographic data are dependent in space and time.

Spatio-temporal autocorrelation becomes obvious considering the example of air

temperature measurements by climate stations discussed in chapter 5: measured

air temperature from a climate station is highly temporally autocorrelated as the

temperature measured now is related to the temperature measured an hour ago.

Similarly, the data are autocorrelated in space as a neighbouring station is likely

to feature a similar air temperature. When air temperature is modelled using

machine learning, random k-fold CV is the most commonly used model tuning

and validation strategy. However, this validation strategy answers the question

of how well the model performs on a random subset of the data. This makes

only sense if the data are independent from each other, but it is not meaningful

for geographic data with spatial and temporal dependencies. As soon as there

is a dependency, a random subset validation will generate overoptimistic results

as dependent data are used for model training as well as validation (e.g. same

day or same location). Therefore, random k-fold CV can only be considered as

a meaningful strategy if the samples are independent from each other and does

not answer our questions. What we want to know in our example is how well

the model performs for an unknown location or for an unknown point in time

(both within a spatio-temporally defined model domain) in order to assess the

model’s ability to be applied in larger spatial or temporal contexts. Therefore,

we need target-oriented validation strategies that address exactly these questions

by applying LLO, LTO or even LLTO CV strategies rather than a random k-fold

CV (chapter 11). Though this seems to be obvious, it is not yet common prac-

tice in geographic machine learning applications and need to be enforced in view

to objective model validations and comparisons. The need of a target-oriented

validation is particularly obvious for space-time data that are affected by both,

spatial and temporal autocorrelation. However, it is also important for spatial

mapping without a temporal component to account for the spatial dependencies

(chapter 6).

Though the target-oriented validation strategies allow for objective error as-

sessment, it became obvious (firstly mentioned in chapter 8) that the error esti-

mates are often considerably lower when validated with random k-fold CV com-

pared to target-oriented validation. This pattern could firstly be attributed to
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spatial over-fitting in chapter 5. It could be shown that spatio-temporal de-

pendencies caused certain variables to be misinterpreted by the algorithm. To

identify and remove misleading information, standard methods (e.g. recursive

feature selection) are not appropriate as they are not designed to work in con-

junction with target-oriented validation. Therefore, a new feature selection was

developed in this thesis (chapters 5, 11) that allowed for an identification of mis-

leading variables. The optimized method could reduce over-fitting and led to

improved statistical model performances. It therefore allows for a more realistic

model which can be applied on larger spatio-temporal scales.

12.5 Practical consequences

As stated, one needs to think beyond the "standard way" of machine learning

in order to take practical advantage for the spatial environmental sciences. From

the experience gained in this thesis, the following section summarizes some gen-

eral methodological consequences that could be delineated and that need to be

considered in order to obtain meaningful results.

The first important finding is the need to account for unbalanced data in

classification models (chapters 2, 3, 4, 7, 10) as the ratio between two response

classes has considerable influence on the outcome. The first consequence was

the utilization of a validation measure that is unaffected by class imbalances.

Accuracy is one of the standard measures being used for validating classification

models, but is not suitable for unbalanced data as the simple prediction of the

majority class can lead to high accuracy (interpreted as perfect results) even

though no delineation between the classes occurred. In this context, metrics that

consider hits and misses per class are required. The Kappa index could be more

appropriate and applicable for more than two-class problems, however, for two-

class problems as applied in this thesis, ROC is the measure of choice as it is even

independent of the probability threshold applied to delineate two classes. Even

though ROC can provide an objective idea of the model’s ability to delineate the

classes, it does not solve the problem that algorithms tend to over-predict the

majority class. The traditional approach to do this is by over- or under-sampling

(see e.g. Kühnlein, 2014, at the example of rainfall retrievals). However, this

thesis could show an objective, easy to operationalize and robust approach based

on probability threshold tuning (see detailed description in chapter 2). The ROC-

based distance to a perfect model as an alternative performance measure, allows

identifying optimal probability thresholds for delineating two classes. When this

measure is incorporated into model tuning, it is possible to fix the threshold in a

robust way. This is especially important when the datasets are smaller (chapter

4 compared to chapter 2) as model performances of small datasets are more
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sensitive to data splitting.

The size of a dataset is generally decisive for its vulnerability to data splitting

and cross-validation strategies. For large datasets, a cross-validation is sufficient

in order to get robust performance estimates as the variance in the fold-dependent

performances are rather small (chapter 4). Small datasets have a higher variabil-

ity according to data splitting and therefore CV needs to be repeated in order to

get robust error estimates (chapter 6). It is certainly advisable for large datasets

to leave complete parts of the data out (e.g. the data of an entire year as in

chapter 4), which is usually not possible for small datasets (chapter 6). Also

large space-time datasets which have a large number of data points in total, but

sampled from a limited number of sampling locations are advised to rely on CV

to get robust error estimates without "wasting" sampling locations for validation

(chapters 5, 9).

It might be conspicuous in this thesis, that Random Forest was most frequently

used as machine learning algorithm (chapters 6, 7, 8, 9, 10). In the course of the

thesis, I often came across the question of why a certain algorithm was used.

In the case of Random Forest, there are several reasons. Firstly, the underlying

concept of regression or decision trees allows the inclusion of all types of variables

without the need for normalisation procedures. If data need to be normalised,

this becomes problematic when the model is later applied to new data as scaling

requires the new data to be handled in consideration of scaling parameters of

the input data. Though this is possible (chapters 2 - 4), it might generate a po-

tential error source as it requires a constant awareness of this process. A second

advantage of Random Forest is the robustness in view to a tuning of the hyperpa-

rameters. In contrast to many other well-known algorithms, Random Forest only

features one tuning parameter (mtry) that is comparably insensitive, especially

when only a small number of predictor variables is used. However, Random For-

est is not necessarily the optimal algorithm for each dataset. Therefore, during a

machine learning application it is always a question of which algorithm to use. In

this thesis, two chapters extensively compare machine learning algorithms to find

the optimal algorithm for different applications (chapters 2 and 5). As expected,

the findings show that there is not a unique solution as the optimal algorithm is

dependent on the dataset. However, especially the large rainfall dataset (chap-

ter 2) showed robust results independently of the algorithm being used. In this

context it was computation time that was decisive for choosing neural networks

as the algorithm that was finally applied. The smaller and more variable air

temperature dataset (chapter 5) showed a greater vulnerability to the choice of

the algorithm. This highlights the need for testing different algorithms especially

when the dataset is small. Finally, when choosing the algorithm, one must also

consider the aim of the study. If not only the prediction is in the foreground but

also an explicit understanding of the relative importance of the driving forces, an
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algorithm must be chosen that can, despite the black-box concept, provide com-

parably reliable estimates of the importances (see Random Forest for identifying

drivers of Rockfall, chapter 10).

Finally, I would like to highlight once again the necessity of the target-oriented

validation strategy that is the superior pre-condition for a successful model ap-

plication (chapter 11, section 12.4). A geographic machine learning application

(especially if it is spatio-temporal) must include an appropriate validation strat-

egy and a test for over-fitting variables.

12.6 Outlook

Miller and Goodchild (2015) describe data-driven geography being "evolu-

tionary" rather than "revolutionary". Under this perspective it is understandable

that applications of machine learning in geography still require ongoing refining

on their way becoming a mature tool for environmental geography. Today, ma-

chine learning applications flood environmental science and its application is seen

as being a great innovation in geography. However, it has to be clearly stated

that for the next phase of successful evolution, one must step back from the idea

of an uncontested tool and focus on its essential elements to make substantial

contributions to environmental sciences. Applications must focus on objective

studies of reliability and might consider the most simple method rather than the

most complex one. New software implementation and refinements are needed

that are not only focussing on making machine learning easy to use but more

importantly help to get grip on objective modelling and validation strategies.

This is especially important in view to spatial and spatio-temporal data as this

is a field with special requirements. While this is an appeal to pause and care-

fully refine and adjust existing machine learning strategies to geographic data,

the evolution of machine learning in geography did certainly not yet reach its

climax. Especially for large geographic data, deep learning applications might be

able to make further sense of unstructured data thus might have high potential

especially for remote sensing.

12.7 Concluding remarks

This thesis showed the opportunities of machine learning for various appli-

cations in a wide range of environmental geography. It was emphasized that

machine learning offers great opportunities yet challenges arise from the charac-

teristics of geographic data. In order to produce valuable results, high expertise

of the methods as well as of the scientific fields is the precondition to advance
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the field of environmental geography using machine learning. In this context, a

variety of environmental monitoring products was developed in this thesis that

provide important baselines for the analysis of spatio-temporal processes. From

a methodological perspective, the thesis raises, for the first time, the awareness

of spatial or spatio-temporal over-fitting in geographic machine learning appli-

cations and the significant consequences on the outcome. In view to a solution,

the thesis showed how a newly designed forward feature selection in conjunction

with target-oriented validation strategies can be used to detect and avoid this

problem and lead to objective and significant results. This thesis is also an ap-

peal to think beyond the "standard way" of machine learning as the comparably

easy accessibility of these methods nowadays leads to the risk of "blind" model

applications. Environmental modelling is not simply about creating a map, but

we must consider objective, target-oriented and robust modelling and validation

strategies. Only when this is considered, machine learning provides a powerful

tool to create scientifically valuable results for environmental geography.
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