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ABSTRACT 

Sagebrush steppe ecosystems are endangered landscapes, threated by the annual 

grass-fire cycle where invasion by annual grasses drives larger fires and larger fires drive 

invasion. Despite extensive input of resources by land management agencies, restoration 

of these ecosystems is notoriously variable and difficult to predict. Understanding and 

accounting for variation is key to effectively allocating limited resources and having 

success in restoring burned sagebrush landscapes. I utilized Bayesian modeling to assess 

how variation in weather, seed dispersal, and topography/slope/landscape position affects 

understanding of post-fire sagebrush-steppe recovery and how we can best incorporate 

sources of variation into models predicting where plant communities will most 

successfully recover.  

We first asked how weather conditions directly after fire (in the first 4 years) 

during important phenological windows or during the antecedent five-years affected 

long-term vegetation trajectories and how inclusion of weather metrics affected the 

transferability of vegetation abundance models from one site to another. We found that 

annual grasses, perennial grasses, and sagebrush all responded differently to post-fire 

weather, with grasses more limited by post-fire precipitation and sagebrush more limited 

by post-fire temperatures. However, while including weather variables improved model 

transferability from one site to another for perennial and annual grass abundance (not for 

sagebrush), the chosen weather metrics did not matter.  
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Next, we aimed to assess how sagebrush seed dispersal varies across large 

landscapes, such as megafires. We conducted a vertical seed trapping experiment and 

terminal velocity measurements in the lab and combined the data to parameterize a 

hierarchical Bayesian model that incorporated both an empirical and mechanistic 

component. We determined that seed dispersal is highly variable, even at a small scale. 

Our seed rain projections suggest that seed dispersal from natural recovery may pose 

severe seed limitations for large burned areas, although natural dispersal is likely to be 

extremely variable. Our novel data fusion approach to seed dispersal modeling has 

generalizable applications to estimating seed dispersal at larger scales for other species of 

concern.  

Finally, we asked how accuracy and precision of fractional vegetation cover 

estimates derived from several different satellite-derived products varied with plant cover 

type, scale, time, and topography in post-fire systems. We found that all gridded map 

products tested tended to overestimate very low cover and underestimate very high cover, 

although some products are more accurate than others. We also found that field-derived 

models of vegetation tend to agree more with satellite-derived models of vegetation at 

larger scale and less at a smaller scale. Finally, we found that annual herbaceous cover 

tends to be overestimated in higher elevation, more topographically diverse areas, 

whereas perennial herbaceous cover tends to be underestimated in these areas.  

Together these analyses provide a means by which to better understand variability 

and the reliability of post-fire vegetation recovery models. Incorporation of the sources of 

variability we have identified here will help refine future models of recovery, whether 

they are based on data sources from the field, lab, or remote-sensing. 
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INTRODUCTION 

Sagebrush steppe ecosystems are endangered landscapes; half of the original 

extent of sagebrush steppe has been lost to the annual grass-fire cycle. Invasive grasses 

senesce early in the season and form a continuous bed of dry plant matter that carries fire 

easily. They are then the first plants to reestablish after fire. Breaking the annual grass-

fire cycle requires establishment of native perennial vegetation to outcompete the annual 

grasses. The Bureau of Land Management alone spends millions of dollars every year on 

restoration such as seeding and herbicide treatments aimed at reestablishing native 

perennial vegetation. However, past studies have found mixed results regarding the 

efficacy of these treatments. Mixed results indicate a high degree of variability in post-

fire vegetation responses across sagebrush-steppe landscapes.  

In recent decades, wildfires in the Western United States have increased in size 

and severity and it is no longer uncommon to observe megafires burning hundreds of 

thousands of acres. It is becomingly increasingly unfeasible to conduct land management 

treatments on every part of burned landscapes that need treatment. Therefore, managers 

are having to choose where and when to allocate limited restoration resources. These 

choices require understanding and being able to predict the variability in post-fire 

vegetation recovery across the landscape, a task which has historically been very difficult 

to do. My research sought to address this need and identify different sources of landscape 

variation in post-fire sagebrush-steppe vegetation dynamics to improve predictive models 

of recovery. I have specifically focused on comparing alterative model structures with 
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different variation components to determine which ones can best explain and predict 

post-fire plant dynamics in a generalizable way.  

Sagebrush steppe ecosystems exist in a harsh climatic zone and variable weather 

patterns are a known driver of initial post-fire vegetation recovery. Therefore, in the first 

chapter, we focus on how initial weather patterns following fire affect the abundance of 

different functional groups (annual grass, perennial grass, and sagebrush) and if initial 

weather patterns better explained longer-term trajectories than more recent weather. We 

also asked how incorporation of weather metrics improved model transferability from 

one site to another. We found that annual and perennial grass abundances were best 

explained by initial precipitation patterns after fire, while sagebrush was more affected by 

initial temperature extremes. However, while including weather metrics slightly 

improved model transferability for grass cover types, the choice of weather metric 

derived from coarse-scale gridded data did not matter. This suggests that while weather is 

an important driver of vegetation abundances post-fire, further improving predictive 

models that include weather may require more spatially and temporally refined metrics.  

Seed availability is yet another source of variability in post-fire plant 

establishment. Land managers allocate extensive resources to seeding large swaths of the 

landscape with sagebrush seeds under the assumption that sagebrush is seed limited after 

fire. However, previously little has been known or understood about sagebrush seed 

dispersal. Therefore, in the second chapter, we utilized field and lab data to build models 

of sagebrush seed dispersal, ask what scale dispersal variation was most evident at, and 

estimate dispersal across the landscape. We were able to determine both the typical 

maximum dispersal distance of sagebrush seeds and estimate density of sagebrush seed 
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rain near seed sources. Although we found dispersal to be extremely variable, even at a 

microscale, we found that natural dispersal would generally produce insufficient seed 

density compared with aerial seeding rates.  

Finally, in the third chapter, we looked to the sources of vegetation data that most 

managers have readily available to them to understand post-fire recovery patterns; 

satellite-derived maps of fractional plant cover. We asked how the accuracy and precision 

of these maps varied across time, spatial scale, plant cover type, and topography. These 

products are becoming widely used in land management planning, but guidance for 

application and understanding where they may be more or less reliable has been lacking. 

We found that satellite-derived fractional plant cover was more reliable at mid-range 

abundances and less reliable at low or high abundances and that it was very unreliable for 

shrub cover within the first few years after fire. We found that agreement precision 

between field-based plant cover models and satellite-derived models generally increased 

with the scale of application. Additionally, annual herbaceous cover was more likely to 

be overpredicted in higher elevation, more topographically heterogenous areas, whereas 

perennial herbaceous cover was more likely to be underpredicted in these areas. Our 

results suggest that satellite-derived data may be most applicable for understanding larger 

scale trends across an entire burned areas but less reliable when applied at smaller scales.  

Together these analyses provide a means by which to better understand variability 

and the reliability of post-fire vegetation recovery models. Incorporation of the sources of 

variability we have identified here will help refine future models of recovery, whether 

they are based on data sources from the field, lab, or remote-sensing. Future research to 

further refine predictive models of post-fire sagebrush-steppe recovery could focus on 1) 



4 

 

incorporating microscale weather into vegetation abundance trend and seed dispersal 

models, since we focused on coarse-scale weather metrics, 2) understanding sources of 

variation in sagebrush seed production, particularly over time, and 3) assess accuracy and 

precision of satellite-derived vegetation cover maps across burned areas of different ages. 
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CHAPTER ONE: WEATHER AFFECTS POST-FIRE RECOVERY OF SAGEBRUSH-

STEPPE COMMUNITIES AND MODEL TRANSFERABILITY AMONG SITES 

This article has undergone full peer review and has been published. Please see: 
https://doi.org/10.1016/j.ecolind.2022.108935 (Applestein, Caughlin, and Germino 
2021).  

 

Abstract 

Altered climate, including weather extremes, can cause major shifts in vegetative 

recovery after disturbances. Predictive models that can identify the separate and 

combined temporal effects of disturbance and weather on plant communities and that are 

transferable among sites are needed to guide vulnerability assessments and management 

interventions. We asked how functional group abundance responded to time since fire 

and antecedent weather, if long-term vegetation trajectories were better explained by 

initial post-fire weather conditions or by general five-year antecedent weather, and if 

weather effects helped predict post-fire vegetation abundances at a new site. We 

parameterized models using a 30-yr vegetation monitoring dataset from burned and 

unburned areas of the Orchard Training Area (OCTC) of southern Idaho, USA, and 

monthly PRISM data, and assessed model transferability on an independent dataset from 

the well-sampled Soda wildfire area along the Idaho/Oregon border. Sagebrush density 

increased with lower mean air temperature of the coldest month and slightly increased 

with higher mean air temperature of the hottest month, and with higher maximum 

January–June precipitation. Perennial grass cover increased in relation to higher 
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precipitation, measured annually in the first four years after fire and/or in September–

November the year of fire. Annual grass increased in relation to higher March–May 

precipitation in the year after fire, but not with September–November precipitation in the 

year of fire. Initial post-fire weather conditions explained 1% more variation in sagebrush 

density than recent antecedent 5-yr weather did but did not explain additional variation in 

perennial or annual grass cover. Inclusion of weather variables increased transferability 

of models for predicting perennial and annual grass cover from the OCTC to the Soda 

wildfire regardless of the time period in which weather was considered. In contrast, 

inclusion of weather variables did not affect transferability of the forecasts of post-fire 

sagebrush density from the OCTC to the Soda site. Although model transferability may 

be improved by including weather covariates when predicting post-fire vegetation 

recovery, predictions may be surprisingly unaffected by the temporal windows in which 

coarse-scale gridded weather data are considered. 

Introduction 

Changing global patterns of precipitation and temperature are impacting 

vegetation dynamics by modifying habitat suitability and disturbance regimes (Cramer et 

al. 2001, Griffiths et al. 2015, Kim et al. 2018). Hotter and drier conditions in the western 

United State are expected to increase the frequency, severity, and size of wildfires 

(McKenzie et al. 2004, Abatzoglou and Kolden 2011). Fire has the potential to spur much 

more rapid rates of change in species composition than altered weather patterns alone 

(Dale et al. 2001, McKenzie et al. 2004). In many ecosystems, fire disturbances 

combined with weather conditions are affecting recovery of key foundational native 

species (Keeley et al. 2005, Nelson et al. 2014, Meng et al. 2015). Understanding how 
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initial post-fire recovery and recruitment will affect long-term trajectories of certain 

functional groups, in light of weather patterns, is critical to understanding how the 

combination of weather and fire influence the vegetative composition of ecosystems 

(Keane et al. 2013). 

Parameterizing weather in explanatory or predictive models can be particularly 

challenging because there are a myriad of weather variables which can be aggregated 

over any time frame. In many ecosystems, post-disturbance recruitment occurs 

episodically during periods of favorable weather conditions (Enright et al. 2015). 

Favorable weather conditions for recruitment may not be known a priori, and major 

community composition changes in response to weather variability can lag behind 

extreme events, only realized after cumulative seasons of weather conditions deviating 

from average (Ogle and Reynolds 2004, Wu et al. 2015). Vegetative community structure 

at any point in time will reflect past weather events (Anderson and Inouye 2001, Ogle et 

al. 2015, Wilson et al. 2017). Forecasting future vegetation responses to climate change 

will require quantifying the relative importance of short-term vs. longer-term weather 

effects for shaping plant communities. 

Sagebrush steppe occupies a vast, sparsely populated, ~500,000 km2 area of 

western North America that includes high variability in climate, soils, disturbances, and 

other factors affecting plant communities (Chambers et al. 2014, McIver and Brunson 

2014). Most field-based information about vegetation responses to climate and other 

drivers in sagebrush steppe has come from a relatively small number of locations and 

areas compared to this vast domain (Nelson et al. 2014, Shinneman and McIlroy 2016). 

Thus, knowing the generalizability of plant community and environment relationships is 
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critical for science and management applications in sagebrush steppe (McIver and 

Brunson 2014). Plant-environment models trained using site-specific data can be tested 

for generalizability by assessing accuracy of predictions made at different sites (Wenger 

and Olden 2012). Such tests are a priority need in ecology (Houlahan et al. 2017, Dietze 

et al. 2018). Developing ecological forecasts for restoration science will also enable 

transfer of knowledge from highly studied sites to sites in need of land management 

(Brudvig et al. 2017). 

Sagebrush-steppe ecosystems provide an excellent focal system in which to 

consider the interplay of disturbance and climate variability. Weather at specific time 

periods after fire is critically important in determining whether a plant community is 

invaded by exotic annual grass vs. re-established with sagebrush or perennial grass 

(Lesica et al. 2007, Hardegree et al. 2012, Nelson et al. 2014). After burning of sagebrush 

steppe, exotic annual grasses compete with perennial native species for soil water or other 

soil resources (Melgoza et al. 1990, DiCristina and Germino 2006). Furthermore, 

sagebrush establishment after fire can be highly episodic, and both winter and spring 

precipitation are important for new seedling establishment (Nelson et al. 2014, Houlahan 

et al. 2017, Shriver et al. 2019). Although establishment the year directly after fire is 

important, sagebrush may take advantage of high precipitation for several years after fire 

occurrence (Lesica et al. 2007, Nelson et al. 2014). Following establishment, most 

sagebrush seedling mortality occurs in the first year (Donovan and Ehleringer 1991, 

Owens and Norton 1992), with a previous study finding that minimum spring 

temperatures can be a limiting factor of sagebrush survival (Brabec et al. 2017). There is 

also evidence that sagebrush communities display a lagged response to weather: Both 
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Anderson and Inouye (2001) and Pilliod et al. (2017) found that precipitation three or 

four years earlier was positively correlated with sagebrush or native herbaceous cover. 

These observations suggest that consideration of time lags could improve analyses of 

vegetation-water relationships. 

We analyzed the relative importance of weather patterns on cover of exotic annual 

and perennial grasses and density of sagebrush as they varied annually over a nearly 30-

yr observation period on a large landscape where multiple fires had occurred. We sought 

to determine how annual and perennial grass cover and sagebrush density responded to 

time since fire and antecedent weather using a model comparison approach that included 

tests of model fit, as well as transferability. Our questions were as follows: 

1. How do the dominant sagebrush-steppe functional groups (perennial grass, 

annual grass, and sagebrush) respond to time since fire and antecedent 

weather conditions—either during specific post-fire windows or during a 

general antecedent 5-yr period? 

2. Do post-fire weather conditions during specific recruitment windows leave a 

lasting impact on long-term vegetation trajectories or is functional group 

dominance more a product of recent weather, regardless of post-fire 

conditions? 

3. Does consideration of post-fire weather or recent 5-yr weather help predict 

post-fire outcomes at a new site? 
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Materials and Methods 

Sites 

Data used to parameterize models were collected between 1989 and 2017 from 

monitoring plots spread across approximately 108,000 ha on the Orchard Combat 

Training Center (OCTC) located in the Morley Nelson Snake River Birds of Prey 

National Conservation Area in Southwestern Idaho (Fig. 1.1). Approximately half of the 

plots burned at least once between 1957 and 2014. We only included data records where 

monitoring occurred in consecutive years because our analysis was on year-to-year 

change. The dominant sagebrush type in this system is Wyoming big sagebrush 

(Artemisia tridentata ssp. wyomingensis). Bluebunch wheatgrass (Psuedoroegneria 

spicata) and Sandberg's bluegrass (Poa secunda) were the dominant bunchgrass species. 

According to land manager records, only 6% of plots had recorded seedlings of any type 

(primarily big sagebrush or shadscale, Atriplex sp.), and only two plots have seedlings 

recorded within 5 yr of fire. Elevation ranges from 862 and 1066 m (U.S. Geological 

Survey's Digital Elevation Model, 30-m pixel). Average annual precipitation (between 

1989 and 2017) ranged from 199 to 307 mm, and average monthly temperature was 

between 10°C and 12°C (PRISM 2017). A total of 6478 plot-year entries were included 

in analysis. 

Data for model transferability tests came from the Soda wildfire (burned in 2015) 

for monitoring done 2016–2018 and only 2017 and 2018 data were used to incorporate 

the previous year's density or cover data as a model input. The eastern edge of the Soda 

wildfire site is approximately 25 km from the OCTC across the Snake River (Fig. 1.1). 

Areas that were seeded by managers with sagebrush were excluded from this analysis 
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because removing these areas from this analysis primarily left lower elevation areas that 

were more comparable in elevation and other site conditions to the OCTC.  

 
Figure 1.1 Location of the Orchard Combat Training Center (OCTC) and Soda 

Wildfire plots. 

The location of the OCTC, where data for model parameterization were collected, and 

Soda wildfire, where data for model validation were collected, are shown relative to 

elevation (panel A; darker shades are lower elevation based on the USGS digital 

elevation model).  The distribution of sampling plots and fire histories are shown for 

OCTC in panel B and the Soda fire area in panel C. 
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The dominant sagebrush type in this system is Wyoming big sagebrush with some 

low sagebrush (A. arbuscula). Low sagebrush were excluded from analysis. Bluebunch 

wheatgrass and Sandberg's bluegrass were the dominant bunchgrass species. Among the 

plots included in the test dataset, about 5% and 7% were drill seeded or aerially seeded 

with perennial grass, respectively. The total number of plot-year entries included was 

698. Elevation for the test plots selected on the Soda wildfire ranged from 747 to 1692 m 

(U.S. Geological Survey's Digital Elevation Model, 30-m pixel). Average annual 

precipitation (between 2016 and 2018) ranged from 238 to 473 mm, and average monthly 

temperature was between 8°C and 11°C (PRISM 2017). 

Data collection 

At the OCTC, cover data for perennial and annual grasses were derived from line 

point intercept monitoring (LPI). Density of sagebrush (plants/m2) came from belt 

transects ranging from 100 to 1400 m2. 

At the Soda wildfire, cover data for perennial and annual grasses were derived 

from grid-point intercept (GPI) from overhead photographs (Applestein et al. 2018). We 

quantified sagebrush density using a frequency-density method. First, we counted 

individuals in a 1-m2 quadrat, and if three individuals were not found, we moved 

outwards in circular plots with radiuses of 5.5, 9, 13, and 18 m until we found at least 

three individuals within the incremental area. Then, we completed counting all the 

individual plants in that radius to determine density. Density was calculated as the 

number of individuals over the area searched (to obtain plants/m2). 
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Calculation of climate and landscape variables 

 For OCTC and Soda data, we calculated the following from 800-m resolution 

PRISM data from 1957 to 2018 by plot: monthly precipitation, mean daily temperature 

by month, maximum daily temperature by month, and minimum daily temperature by 

month. Time since fire was derived by extracting the date of the last fire on record from 

the Land Treatment Digital Library database in the Great Basin (Pilliod and Welty 2013). 

If there was no record of the last fire, we assumed that the last fire was more than 100 yr 

prior and coded this as such in the input data. 

Annual and perennial grass cover were treated as continuous variables, and 

sagebrush density was treated as an ordinal variable. We transformed exotic annual grass 

and perennial grass cover as suggested by Smithson and Verkuilen (2006) to remove 0 

and 1 values, which cannot be fit with a beta-distribution. The transformation is given as 

𝑦𝑦𝑛𝑛 =
𝑦𝑦′(𝑛𝑛 − 1) + 0.5

𝑛𝑛  

where n is the sample size, y′ is the original data point, and yn is the transformed data 

point. We then modeled transformed grass cover values with a beta-distributed random 

variable using a logit link function. Density of sagebrush (number/m2) was binned into 

one of five possible categories: 0, <0.5, 0.5–1, 1–5, and >5 plants/m2 and modeled via 

ordinal regression (using the cumulative distribution with logit link). We chose to bin 

sagebrush density rather than model it directly because exact counts are more likely to be 

site-specific, whereas density bins are likely to be more generalizable across different 

sites. A previous assessment comparing plant cover measured as a continuous vs. ordinal 

variable found that using ordinal categories did not result in a significant loss of 

information (Irvine et al. 2019). 
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Model parameterization 

We compared models of vegetative functional group density or cover as predicted 

by (1) no weather or fire effects (landscape effects only), (2) landscape and fire effects 

only (time since fire), (3) landscape and antecedent weather effects (with or without time 

since fire). We parameterized antecedent weather variability in two ways. First, we built a 

model that included weather variables selected a priori during specific time windows in 

the first several years after fire with the assumption that weather during these time 

periods would have lasting impacts on functional group density or cover. Secondly, we 

built models that included weather variables within the most recent five years, allowing 

the data to determine important time windows. 

Cover of the target functional groups were estimated using Bayesian generalized 

linear models (GLMs) fit in STAN (a no-U-turn sampler) via the brms package in R 

(Bürkner 2017, R Core Team 2017). We also explored fitting generalized additive models 

(GAMs), which do not make assumptions about the linearity of response curves, but 

GAM model errors were higher than the GLM errors so we report on the GLMs here for 

the final analysis. To better interpret covariate effects and facilitate model convergence, 

we standardized covariates (but not response variables) using the scale package in R, 

which subtracts the mean from each value and divides by the standard deviation. 

Additional covariates (elevation, percent sand, percent clay) were incorporated into all 

models because they are known to affect the habitat suitability of a site for sagebrush 

(Schlaepfer et al. 2012, Nelson et al. 2014). These covariates were not strongly correlated 

with each other (Appendix A: Table A1). All models included an autoregressive term 

(density or cover from the previous time step). Model convergence was assessed by rhat 



15 

 

values and visual checks of the posterior predictive distributions (calculation given by 

Brooks and Gelman 1998). 

We set uninformative priors for the models from the brms package. These were as 

follows: normal(0,1) for all parameters except for the beta dispersion parameter, Φ, for 

which gamma(0.01,0.01) was used. 

The models are as follows 

𝐴𝐴𝑝𝑝𝑝𝑝 ∼ Beta(μ𝑝𝑝
a, Φa) 

where Apt is the observed annual grass cover at year t and plot p, μ𝑝𝑝
a is the overall mean 

annual grass cover in year t, Φa is the annual grass dispersion parameter.  

𝑃𝑃𝑝𝑝𝑝𝑝 ∼ Beta(μ𝑝𝑝
p, Φp) 

where Ppt is the observed perennial grass cover at year t and plot p, μ𝑝𝑝
p is the overall mean 

perennial grass cover in year t, Φp is the perennial grass dispersion parameter. 

𝑞𝑞𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑃𝑃{𝑆𝑆𝑝𝑝𝑝𝑝 > 𝑘𝑘|𝑋𝑋𝑝𝑝𝑝𝑝} = � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

5

𝑝𝑝+1

 

where Spt is the observed sagebrush density category and k = 1, …, 5, which corresponds 

to S = 0, 0 < S < 0.5, 0.5 < S < 1, 1 < S < 5, and S > 5, respectively. qpt is the probability 

that a plot p during year t has a sagebrush density greater than that defined by k, pptk is the 

probability that a plot has a sagebrush density in category k, given Xpt covariates at 

plot p and year t. This parameterization reflects a cumulative logistic regression where 

the calculation of the probability of a given density category takes into consideration the 

probability of any of the other density categories occurring.  

μ𝑝𝑝
a, μ𝑝𝑝

p, and qpt (annual grass cover, perennial grass cover, and sagebrush density 

category, respectively) are calculated using different covariates for each model, where 
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superscript a denotes annual grass cover covariates, superscript p denotes perennial grass 

cover covariates, and superscript s denotes sagebrush density covariates. Apt−1 stands for 

annual grass cover at plot p one year before time t, Ppt−1 stands for perennial grass cover 

at plot p one year before time t, and Spt−1 stands for sagebrush density category at 

plot p one year before time t. All models include terms β0, β1, β2, and β3, which are 

coefficients for elevation (elev), percent sand (sand), percent clay (clay), and the previous 

year's cover/density, respectively. 

Model 0: null model 

The null model served as a baseline with which to compare the time since fire and 

weather effects models with the null hypothesis that neither weather conditions nor time-

since-fire covariates improve predictions of post-fire vegetative outcomes. The null 

model considered the year-to-year change in sagebrush, annual grass, and perennial grass 

cover with fixed landscape covariates (elevation, percent sand, percent clay) but no fire 

or weather variables. μ𝑝𝑝
a, μ𝑝𝑝

p, and qpt (annual grass cover, perennial grass cover, and 

sagebrush density category) are calculated as such: 

logit(μ𝑝𝑝
a) = 𝑎𝑎a + β0a × Elev + β1a × Sand + β2a × Clay + β3a × 𝐴𝐴𝑝𝑝𝑝𝑝−1 

logit(μ𝑝𝑝
p) = 𝑎𝑎p + β0p × Elev + β1p × Sand + β2p × Clay + β3p × 𝑃𝑃𝑝𝑝𝑝𝑝−1 

logit(𝑞𝑞𝑝𝑝𝑝𝑝) = 𝑎𝑎s + β0s × Elev + β1s × Sand + β2s × Clay + β3s × 𝑆𝑆𝑝𝑝𝑝𝑝−1. 

Model 2: time since fire and post-fire weather events 

The second model tested how time since fire and weather covariates in the first 

several years after fire would affect post-fire vegetation recovery. We hypothesized that 

pre-selected weather variables during specific time windows in the first several years 

after fire would have lasting impacts on functional group density or cover. We only 
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included plots that burned from 1900 to 2016 for this analysis (n = 5374). A previous 

analysis of weather variable effects on vegetation at the OCTC found no relationship 

between temperature and cheatgrass or native herbaceous cover (Pilliod et al. 2017), so 

we did not include temperature variables for the annual or perennial grass cover models. 

The two climate variables used for testing annual grass cover were fall and spring 

precipitation the year following fire since Bradley et al. (2016) identified these variables 

as directly affecting annual grass growth and biomass. Native perennial grass cover, 

specifically bluebunch wheatgrass and Sandberg's bluegrass, is positively correlated with 

higher fall and total annual precipitation (Anderson and Inouye 2001, Adler et al. 2009). 

Consequently, we tested fall and total annual precipitation on the year-to-year variation in 

perennial grass cover. Furthermore, because Anderson and Inouye (2001) identified a 

four-year lag for precipitation effects on total perennial grass cover, we included average 

annual precipitation for the first four years following fire. 

We selected climate variables for sagebrush based on factors known to be 

important specifically for seedling recruitment and initial survival; these included average 

winter/spring precipitation (Shriver et al. 2019), maximum precipitation January–June, 

spring temperature (Brabec et al. 2017), mean temperature of the coldest month, and 

mean temperature of the hottest month. All of these variables were assessed during the 

first four years after the fire. μ𝑝𝑝
a, μ𝑝𝑝

p, and qpt (annual grass cover, perennial grass cover, 

and sagebrush density category) are calculated as such: 

logit(μ𝑝𝑝
a) = 𝑎𝑎a + β0a × Elev + β1a × Sand + β2a × Clay + β3a × 𝐴𝐴𝑝𝑝𝑝𝑝−1 + β4a × Yrs

+ β5a × MMPYr1 + β6a × SNPYr0 
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logit(μ𝑝𝑝
p) = 𝑎𝑎p + β0p × Elev + β1p × Sand + β2p × Clay + β3p × 𝑃𝑃𝑝𝑝𝑝𝑝−1 + β4p × Yrs

+ β6p × SNPYr0 + β7p × APYr14 

logit(𝑞𝑞𝑝𝑝𝑝𝑝) = 𝑎𝑎s + β0s × Elev + β1s × Sand + β2s × Clay + β3s × 𝑆𝑆𝑝𝑝𝑝𝑝−1 + β4s × Yrs

+ β8s × JAP14 + β9s × JJP14 + β10s × MJT14 + β11s × MnCMn14

+ β12s × MxHMn1 

 

where β5 is the coefficient for March–May precipitation in the first year after fire 

(MMPYr1), β6 is the coefficient for September–November precipitation in the year of 

fire SNPYr0, β7 is the coefficient for annual precipitation years one through four after 

fire APYr14, β8 is the coefficient for mean January–April precipitation years one through 

four after fire (JAP14), β9 is the coefficient for the maximum January–June precipitation 

years one through four after fire JJP14, β10 is the coefficient for the mean March–June 

precipitation in years one through four after fire (MJT14), β11 is the coefficient for the 

mean temperature of the coldest month in years one through four after fire (McCMn14), 

and β12 is the coefficient for the mean temperature of the hottest month in years one 

through four after fire (MxHMn14). 

Model 3: recent five-year weather using random forests to weigh the importance of 

weather during antecedent months 

The third model used a moving window approach to assess how antecedent 

weather at certain times of the year affects density or cover of sagebrush, annual grasses, 

and perennial grasses with no hypothesis concerning what times of year would have the 

most impact (Fig. 1.2). We allowed the data to inform which weather windows affected 

functional group density or cover.  
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Figure 1.2 Conceptual example of analysis used to fit Models 3 and 4.  

Only temperature is shown as an example on the diagram, although precipitation was also 

included.   
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Our approach is conceptually similar to the ecological memory models fit by Ogle et al. 

(2015), but with weather weights calculated via random forest importance instead of from 

a fitted Dirichlet distribution. Deriving monthly weather weights from this distribution 

makes the assumption that there is a point in time in the past that is most important for 

predicting current plant responses and that the importance of weather events before or 

after this point declines along a specified parametric curve. We anticipated that there 

might be multiple spikes of importance during times of the year that were particularly 

important to plant growth and that using a method with sufficient flexibility to represent 

these spikes would help to determine certain periods of time that had the most impact on 

current plant density or cover. 

Random forests 

To determine how to weigh specific time periods of past weather, we fit random 

forests to predict the response variables (annual grass, perennial grass, and sagebrush 

density) from summed monthly precipitation and average monthly temperature combined 

across different time period lengths. A similar technique to identify temporal lags and 

time period lengths has previously been used for looking at climate effects in a remote 

sensing context (Lamberty et al. 2012). Random forests were trained using the caret 

package in R using the parRF model. 

In the first step, we fit random forests with monthly precipitation and monthly 

average temperature as the independent variables aggregated over 1-, 2-, 3-, 4-, 5-, 6-, or 

12-month time periods. In each iteration, all five years of previous weather data were 

included but the window length determined the level of temporal aggregation (for 

instance, the random forest with 1-month windows included a variable for each month in 
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the five-year time period, whereas the random forest with 6-month windows included an 

averaged variable for each overlapping 6-month time period). The random forest with the 

lowest out-of-bag (OOB) root mean square error (RMSE) was selected (for all three 

functional groups, it was the 1-month time period random forest). OOB is the prediction 

error on average of each sample predicted by those trees which did not use the sample for 

training. In the second step, importance values for each of these 1-month time periods 

were then calculated using the varImp function in the caret package (Kuhn 2012). 

Monthly weights were calculated scaled based on variable importance values from the 

random forest with all weights summing to 1. In the final step, cumulative five-year 

average temperature and monthly precipitation were calculated using monthly weights. A 

conceptual example of this method is shown in Fig. 1.2. To facilitate model-fitting in 

random forest models, we considered sagebrush density as a continuous response variable 

for this step. 

Full GLM model using monthly weights derived from random forest 

We assigned proportional weights to each window relative to the importance of 

each window from the random forest with all weights equaling 1 (this was done 

separately for each functional group). μ𝑝𝑝
a, μ𝑝𝑝

p, and qpt (annual grass cover, perennial grass 

cover, and sagebrush density category) in the final model are thus defined as: 

pt-1

1 1 1 1

logit(μ ) β0 Elev+β1 *Sand+β2 *Clay+β3 * β13 *

ppt *wp β14 * tmp*wt *β15 *int( ppt *wp , tmp*wt )

a a a a a a a
t

n n n n
a a a a a a
i i i i

i i i i

a A

= = = =

= + ∗ +

+∑ ∑ ∑ ∑
 

pt-1

1 1 1 1

logit(μ ) β0 Elev+β1 *Sand+β2 *Clay+β3 * β13 *

ppt *wp β14 * tmp*wt *β15 *int( ppt *wp , tmp*wt )

p p p p p p p
t

n n n n
p p p p p p
i i i i

i i i i

a P

= = = =

= + ∗ +

+∑ ∑ ∑ ∑
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pt pt-1

1 1 1 1

logit( ) β0 Elev+β1 *Sand+β2 *Clay+β3 * β13 *

ppt *wp β14 * tmp*wt *β15 *int( ppt *wp , tmp*wt )

s s s s s s

n n n n
s s s s s s
i i i i

i i i i

q a S

= = = =

= + ∗ +

+∑ ∑ ∑ ∑
   

where wpi is the month-specific and functional group-specific precipitation 

weight and wti is the month-specific and functional group-specific temperature weight. 

β13 is the coefficient of the weighted sum of precipitation (∑ ppt𝑛𝑛
𝑖𝑖=1 ), β14 is the 

coefficient of the weighted sum of temperature (∑ tmp𝑛𝑛
𝑖𝑖=1 ) and β15 is the coefficient of 

an interaction term between precipitation and mean monthly temperature (int). 

Model 4: time since fire and recent five-year weather using random forests to weigh the 

importance of weather during antecedent months 

Model 4 was the same as model 3, but with an added term for time since fire (β4 

× Yrs) for each functional group, in order to test if including timing of fire as a covariate 

(but not specifically post-fire weather conditions) improved predictions of post-fire 

outcomes in a recent weather model. 

Model fit and significance of effect sizes 

We assessed model fit using leave-one-out (loo) cross-validation from the brms 

package (Bürkner 2017). For annual and perennial grass cover, we evaluated model fit 

using RMSE (root mean squared error), NRMSE (normalized root mean squared error), 

and squared bias. RMSE is calculated as 

RMSE = [
� (𝑃𝑃𝑖𝑖 − 𝐴𝐴𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 ]0.5 

where n is the sample size, Pi is the predicted value, and Ai is the actual value 

(Willmott 1981). NRMSE is calculated by dividing the RMSE by the range of the 

observed response variable. For sagebrush density, probability predictions were made for 

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3446#ecs23446-bib-0063
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each density category and the category with the highest probability was taken to be the 

density prediction. From these predictions, we calculated a confusion matrix and 

evaluated model fit using overall accuracy, and Cohen's kappa (referred to just as kappa 

hereafter) using the caret package in R (Kuhn 2012). Kappa is calculated as 

kappa =
𝑃𝑃o − 𝑃𝑃e

1 − 𝑃𝑃e
 

where Pe is the chance of proportional agreement between the predicted and 

actual data and Po is the actual proportional agreement between the predicted and actual 

data for categorical variables (Cohen 1960). 

To determine the significance of effect sizes, we used the bayestestR package to 

calculate the probability of direction (pd, or maximum probability of effect; Makowski et 

al. 2019). The pd is correlated with frequentist P values where pd values of 0.95, 0.975, 

0.995, and 0.9995 are approximately equivalent to two-sided P values of 0.1, 0.05, 0.01, 

and 0.001, respectively. For the purposes of this analysis, we define a significant effect 

size as one with a pd of 0.975 or greater. 

Model transferability 

We calculated predictions of each model for the 2017 and 2018 Soda wildfire data 

and then calculated error metrics as described above in the previous section. Comparing 

the transferability of each model allowed us to assess our last question of whether post-

fire weather or recent antecedent 5-yr weather helped predict post-fire outcomes. 
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Results 

Vegetation responses to time since fire and antecedent weather 

Model 1: time since fire 

Annual grass cover increased by a small amount (1.5% over 100 yr, pd = 1, Table 

1.1) and perennial grass cover did not change with time since fire (pd = 0.73, Table 1.2). 

Sagebrush density was more likely to increase with time since fire (13% more likely to 

have density higher than 0 plants/m2 over 100 yr, pd = 1, Table 1.3). However, including 

time since fire did not improve fit (model 0 vs. model 1 comparison between NRMSE, 

Table 1.4). 

Model 2: time since fire and historical post-fire weather events 

Annual grass cover increased by 3.7% as March–May precipitation in the year 

after fire increased from 31.2 to 146 mm (pd = 1, Fig. 1.3A, Table 1.1), but not 

significantly with September–November precipitation in the year of fire (pd = 0.91, Table 

1.1). Perennial grass cover increased by 14% as mean annual precipitation increased from 

160.1 to 415.7 mm in the first four years after fire (pd = 1, Fig. 1.3C, Table 1.2) and 

increased by 2.6% as September–November precipitation in the year of fire increased 

from 20.9 to 152.7 mm (pd = 1, Table 1.2, Fig. 1.3B). 

In the OCTC data, sagebrush density was negatively related to mean temperature 

of the coldest month (34% higher probability of no sagebrush present at 1°C vs -5.4°C, 

pd = 1, Figure 1.4B, Table 1.3) and slightly positively related to mean temperature of the 

hottest month in the first four years after fire (34% higher probability of sagebrush 

density >0 at 27.01°C, pd = 0.99, Table 1.3, Figure 1.4C). There was a 30% higher 

probability of sagebrush density >0 as maximum January-June precipitation in the first 
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four years after fire increased from 77.2 mm to 325.3 mm (pd = 0.99, Table 1.3, Figure 

1.4A).  

Table 1.1 Modelled marginal responses of annual grass cover to spatial or 
temporal predictors 
Estimates are the median of the posterior probability distribution, “l-95% CI” stands for 
the lower 95% credible interval and the “U-95% CI” standards for the upper 95% 
credible interval. “pd” is the probability of direction (the Bayesian equivalent of a 
frequentist p-value, where 0.975 is equivalent to 0.05 p-value). “Estimate of change in 
cover” is the amount of change in cover of the functional group predicted between the 
maximum and minimum covariate value. Positive values mean an increase in cover and 
negative values mean a decrease in. Significant pd-values (≥0.975) are italicized. 

Covariate 
Minimum 
Covariate 
value 

Maximum 
Covariate 
estimate 

Estimate 
of Change 
in Cover 

l-95% 
CI 

u-95% 
CI pd 

  Model 0: Null model 

Prior year's annual grass 
cover (%) 0 98 70.11 68.06 72.07 1.00 

% Clay 7.5 37.5 71.48 68.73 73.89 0.86 

% Sand 11.4 67.3 72.7 70 75.2 0.99 

Elevation (m) 862.7 1065.6 72.1 69.6 74.4 0.98 

  Model 1: Time Since Fire 

Prior year's annual grass 
cover (%) 0 98 71.98 69.98 73.85 1.00 

% Clay 7.5 37.5 2.68 2.1 3.33 0.94 

% Sand 11.4 67.3 3.27 2.39 4.21 0.99 

Elevation (m) 862.68 1065.58 2.55 2.25 2.89 0.95 

Time since fire (years) 1 100 1.5 1.54 1.45 1.00 

  Model 2: Post-fire weather effects 

Prior year's annual grass 
cover (%) 0 98 73.04 70.44 75.4 1.00 
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% Clay 7.5 37.5 4.55 3.66 5.52 0.85 

% Sand 11.4 67.3 6 4.8 7.33 1.00 

Elevation (m) 862.68 1065.58 3.73 3.21 4.31 0.55 

Time since fire (years) 1 100 4.33 4.03 4.62 0.99 

March-May ppt (year after 
fire) 31.2 145.7 3.66 3.39 3.94 1.00 

Sep-Nov ppt (year of fire) 20.9 152.7 4.54 3.82 5.34 0.91 

  Model 3: Recent five-year weather 

Prior year's annual grass 
cover (%) 0 0.98 78.34 76.21 80.26 1.00 

% Clay 7.5 37.5 8.64 7.41 9.97 0.94 

% Sand 11.4 67.3 12.07 10.24 14.18 0.99 

Elevation (m) 862.68 1065.58 3.34 2.8 3.85 0.95 

Weighted Mean Temp 9.71 11.78 2.54 1.47 4.02 1.00 

Weighted Mean Precip 13.79 32.35 9.01 8.2 9.9 

1.00 

 
 

  Model 4: Time since fire + recent five-year weather 

Covariate 
Minimum 
Covariate 
value 

Maximum 
Covariate 
estimate 

Estimate 
of Change 
in Cover 

l-95% 
CI 

u-95% 
CI pd 

Prior year's annual grass 
cover (%) 0 98 78.45 76.25 80.36 1.00 

% Clay 7.5 37.5 8.95 7.67 10.27 0.51 

% Sand 11.4 7.3 12.26 10.47 14.3 1.00 

Elevation (m) 862.68 1065.58 3.15 2.69 3.69 1.00 

Time since fire (years) 1 100 10.15 9.26 11.05 1.00 
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Weighted mean temp 9.71 11.78 2.63 1.5 3.97 1.00 

Weighted mean precip 13.79 32.35 8.92 8.1 9.73 1.00 
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Table 1.2 Modelled marginal responses of perennial grass cover to spatial or 
temporal predictors across the range of each predictor. 
Estimates are the median of the posterior probability distribution, “l-95% CI” stands for 
the lower 95% credible interval and the “U-95% CI” standards for the upper 95% 
credible interval. “pd” is the probability of direction (the Bayesian equivalent of a 
frequentist p-value, where 0.975 is equivalent to 0.05 p-value). “Estimate of change in 
cover” is the amount of change in cover of the functional group predicted between the 
maximum and minimum covariate value. Positive values mean an increase in cover and 
negative values mean a decrease in. Significant pd-values (≥0.975) are italicized. 

Covariate 
Minimum 
Covariate 
value 

Maximum 
Covariate 
estimate 

Estimate 
of Change 
in Cover 

l-95% 
CI 

u-95% 
CI pd 

  Model 0: Null model 

Prior year's perennial 
grass cover (%) 0 83 64.44 62.14 66.59 1.00 

% Clay 7.5 37.5 -1.7 -2.08 -1.29 0.99 

% Sand 11.4 67.3 1.3 0.33 2.38 0.96 

Elevation (m) 862.68 1065.58 14.22 13.11 15.38 1.00 

  Model 1: Time Since Fire 

Prior year's perennial 
grass cover (%) 0 83 64.16 61.85 66.31 1.00 

% Clay 7.5 37.5 -1.89 -2.19 -1.59 0.99 

% Sand 11.4 67.3 1.08 0.25 2.01 0.96 

Elevation (m) 862.68 1065.58 14.15 13.06 15.27 1.00 

Time since fire (years) 1 100 -0.19 -0.07 -0.31 0.73 

  Model 2: Post-fire weather effects 

Prior year's perennial 
grass cover (%) 0 83 58.38 55.55 61.12 1.00 

% Clay 7.5 37.5 -1.68 -2.09 -1.24 0.98 

% Sand 11.4 67.3 1.8 0.81 2.89 0.99 

Elevation (m) 862.68 1065.58 6.25 5.42 7.19 1.00 
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Time since fire (years) 1 100 -1.63 -1.5 -1.76 1.00 

Average annual precip (4 
years post-fire) 160.1 415.7 14.38 13.09 15.74 1.00 

Sep-Nov ppt (year of fire) 20.9 152.7 2.63 2.02 3.31 1.00 

  Model 3: Recent five-year weather 

Prior year's perennial 
grass cover (%) 0 83 63.96 61.57 66.19 1.00 

% Clay 7.5 37.5 -2.12 -2.47 -1.73 0.99 

% Sand 11.4 67.3 0.83 -0.14 1.81 0.96 

Elevation (m) 862.68 1065.58 12.84 11.71 14.16 1.00 

Weighted Mean Temp 9.61 11.76 7.99 7.22 8.73 1.00 

Weighted Mean Precip 13.53 31.57 10.68 9.82 11.54 1.00 

       

  Model 4: Time since fire + recent five-year weather 

Covariate 
Minimum 
Covariate 
value 

Maximum 
Covariate 
estimate 

Estimate 
of Change 
in Cover 

l-95% 
CI 

u-95% 
CI pd 

Prior year's perennial 
grass cover (%) 0 83 63.84 61.53 66.11 1.00 

% Clay 7.5 37.5 -2.16 -2.54 -1.77 1.00 

% Sand 11.4 67.3 0.78 -0.17 1.77 0.86 

Elevation (m) 862.68 1065.58 13.02 11.77 14.28 1.00 

Time since fire (years) 1 100 -0.35 -0.2 -0.47 0.87 

Weighted mean temp 9.61 11.76 7.99 7.24 8.85 1.00 

Weighted mean precip 13.53 31.57 10.84 9.98 11.75 1.00 
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Table 1.3 Modelled marginal responses of sagebrush abundance to spatial or 
temporal predictors across the range of each predictor. 
Estimates are the median of the posterior probability distribution, “l-95% CI” stands for 
the lower 95% credible interval and the “U-95% CI” standards for the upper 95% 
credible interval. “pd” is the probability of direction (the Bayesian equivalent of a 
frequentist p-value, where 0.975 is equivalent to 0.05 p-value). The change in the 
probability of occurrence of each density category predicted between the maximum and 
minimum covariate values is given. Positive values mean an increase in density and 
negative values mean a decrease in density. Significant pd-values (≥0.975) are italicized. 

  Mini
mum 
Covar
iate 
value 

Maxi
mum 
Covar
iate 
value 

Cat 1 
(0 
plants
/m2) 

Cat 2 
(<0.5 
plants
/m2) 

Cat 3 
(>0.5-
1 
plants
/m2) 

Cat 4 
(1-5 
plants
/m2) 

Cat 5 
(>5 
plants
/m2) 

pd 

  Model 0: Null model     

Prior year's 
Sagebrush Category 1 5 93% -7% 0% 66% 34% 1.00 

% Clay 7.5 37.5 -9% 8% 1% 0% 0% 0.94 

% Sand 11.4 67.3 1% -1% 0% 0% 0% 0.59 

Elevation  862.6
8 

1065.
58 -17% 15% 2% 0% 0% 1.00 

  Model 1: Time Since Fire 

Prior year's 
Sagebrush Category 1 5 93% -7% 0% 69% 31% 1.00 

% Clay 7.5 37.5 -12% 11% 1% 0% 0% 0.99 

% Sand 11.4 67.3 -2% 2% 0% 0% 0% 0.68 

Elevation (m) 862.6
8 

1065.
58 -16% 14% 2% 0% 0% 1.00 

Time since fire 
(years) 1 100 -13% 12% 1% 0% 0% 1.00 

  Model 2: Post-fire weather effects 

Prior year's 
Sagebrush Category 1 5 -94% -6% 0% 75% 25% 1.00 
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% Clay 7.5 37.5 -11% 10% 1% 0% 0% 0.95 

% Sand 11.4 67.3 -6% 5% 0% 0% 0% 0.84 

Elevation (m) 862.6
8 

1065.
58 -20% 19% 1% 0% 0% 0.99 

Time since fire 
(years) 1 100 -23% 21% 1% 0% 0% 1.00 

Max Jan-Jun ppt (4 
years post-fire) 77.2 325.3 -30% 28% 1% 0% 0% 0.99 

  Mini
mum 
Covar
iate 
value 

Maxi
mum 
Covar
iate 
value 

Cat 1 
(0 
plants
/m2) 

Cat 2 
(<0.5 
plants
/m2) 

Cat 3 
(>0.5-
1 
plants
/m2) 

Cat 4 
(1-5 
plants
/m2) 

Cat 5 
(>5 
plants
/m2) 

pd 

Mean temp coldest 
month (4 years post-
fire) 

-5.4 1 34% -32% -2% 0% 0% 1.00 

Mean temp hottest 
month (4 years post-
fire) 

21.8 27.01 -34% 31% 2% 0% 0% 0.99 

Mean Jan-April 
precip (4 years post-
fire) 

58.95 180.1 16% -15% -1% 0% 0% 0.92 

Mean March-June 
temp (4 years post-
fire) 

10.46 14.12 -2% 2% 0% 0% 0% 0.59 

Model 3: Recent five-year weather 

Prior year's 
Sagebrush Category 1 5 -93% -7% 0% 68% 32% 1.00 

% Clay 7.5 37.5 -6% 5% 1% 0% 0% 1.00 

% Sand 11.4 67.3 -1% 1% 0% 0% 0% 0.56 

Elevation (m) 862.6
8 

1065.
58 -7% 6% 1% 0% 0% 0.88 
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Weighted mean 
temp 9.25 11.29 11% -10% -1% 0% 0% 0.96 

Weighted mean 
precip 13.43 32.14 -17% 15% 2% 0% 0% 1.00 

  Model 4: Time since fire + recent five-year weather 

Prior year's 
sagebrush category 1 5 -93% -7% 0% 72% 28% 1.00 

% Clay 7.5 37.5 -9% 8% 1% 0% 0% 0.96 

% Sand 11.4 67.3 -4% 4% 0% 0% 0% 0.81 

Elevation  862.6
8 

1065.
58 -5% 5% 0% 0% 0% 0.82 

Time since fire 
(years) 1 100 -14% 13% 1% 0% 0% 1.00 

Weighted mean 
temp 9.25 11.29 9% -8% -1% 0% 0% 0.93 

Weighted mean 
precip 13.43 32.14 -20% 18% 2% 0% 0% 1.00 
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Table 1.4 Model fit metrics. 
Error for grass cover values and accuracy of sagebrush density class (from by leave-one-
out cross validation on the OCTC data set) for each generalized additive model. For 
annual and perennial grass cover, root mean squared error (RMSE) and normalized root 
mean squared error (NMSE), calculated by dividing the RMSE by the range of the 
observed response variable, as given. For sagebrush density class, overall accuracy, 
kappa and p-values are given. 

  Sagebrush Density 
Class 

Perennial Grass 
Cover 

Annual Grass 
Cover 

  

Overal
l 
Accur
acy 

Kap
pa 

P-
value 

RM
SE 

NRM
SE 

Bia
s 

RM
SE 

NRM
SE 

Bia
s 

Model 0: Null 
model 90% 0.83 <0.00

01 0.12 14% 0.0
04 0.14 15% 0.0

01 

Model 1: Time 
Since Fire 90% 0.83 <0.00

01 0.12 14% 0.0
04 0.14 15% 0.0

01 

Model 2: Post-fire 
weather events 91% 0.84 <0.00

01 0.12 14% 0.0
03 0.14 14% 0 

Model 3: Recent 
five-year weather 90% 0.83 <0.00

01 0.12 13% 0.0
04 0.14 14% 0.0

01 

Model 4: Time 
since fire + recent 
five-year weather 

90% 0.83 <0.00
01 0.12 13% 0.0

04 0.14 14% 0.0
01 
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Figure 1.3 Marginal effects from Model 2 of three post-fire weather covariates 

on annual grass cover and perennial grass cover.  

Precipitation (“precip”) is given in millimeters (mm). The center line shows the median 

of the posterior probability distribution, the shaded ribbons show the 95% credible 

interval.  
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Figure 1.4 Marginal effects from Model 2 of post-fire weather covariates on the 

probability of a plot having sagebrush density in a certain category.  

Sagebrush density category is given as number of sagebrush per m2. “Precip” stands for 

precipitation and is measured in millimeters (mm). “Temp” stands temperature and is 

measured in degrees celcius (ᵒC). 
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Model 3: Recent five-year weather using random forests to weigh the importance 

of different months 

All three functional groups showed increases in cover or density with increased 

precipitation weighted by month over the five years preceding each observation (Figure 

1.5A,1.5B,1.5C, Tables 1-3). Both annual and perennial grass cover increased by 2.5% 

and 8% respectively as prior 5-year mean temperature weighted by increased by from 

~9.6°C to 11.8°C (pd = 1 for both, Tables 1.1 and 1.2). Sagebrush density was not 

significantly affected by mean temperature weighed by month (pd = 0.96, Table 1.3).  

Model 4: Time since fire and recent five-year weather using random forests to 

weigh the importance of different months 

Adding a term to model 3 to incorporate time since fire did not result in any 

appreciable changes to the effect sizes of weighted averages of precipitation and 

temperature on functional group density or cover. 

Do post-fire weather conditions or recent five-year weather better explain functional 

group abundances? Model fit 

The models which included weather had very similar accuracy to the null no-

weather model, which underscores the importance of considering and comparing 

hypothesis-driven models with null effect models when trying to predict future vegetation 

composition dynamics (Harvey et al. 1983). With a one exception, functional group 

abundances overall were no better explained by post-fire weather conditions during 

specific intervals than they were by recent five-year antecedent weather (Tables 1.4 and 

1.5). Model 2 (post-fire weather events) was 1% more accurate at predicting sagebrush 

density class than the other models. The models that included weather at all (either post-
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fire or recent 5-year weather) were better at predicting perennial grass cover by 1% (as 

measured by a decrease in NRMSE) over the models which did not include weather 

(models 0 and 1) and the five-year recent weather (3-4) were 1% better at predicting 

annual grass compared to the others (Table 1.4). 

Does consideration of post-fire weather or recent weather help predict post-fire outcomes 

at a new site? Model transferability. 

No model emerged as most transferable over all of the three plant functional 

groups, indicating no consistent landscape, disturbance, or weather drivers in post-fire 

abundances across all functional groups. Instead, transferability varied among the plant 

types. The models that included weather (2-4) were better at predicting perennial grass 

(by 7-10% decrease in NRMSE) and annual grass (by 1-4% decrease in NRMSE) cover 

on the Soda wildfire than the models which did not include weather (models 0 and 1) 

(Table 1.5). The differences in model transferability between the two different weather 

parameterizations (model 2: post-fire weather events and model 3: five-year weather) 

when predicting perennial or annual grass cover were minimal: 1% error for perennial 

grass, 2% error for annual grass (Table 1.5). No model was more transferable than any 

other for predicting sagebrush density. 



38 

Figure 1.5  Marginal effects of average monthly precipitation in the most recent 
five years weighted by random-forest derived importances (from Model 3).  

Effects are shown on sagebrush density category (top), annual grass cover (“% AG 

Cover” - middle), and perennial grass cover (“% PG Cover” - bottom). Precipitation is 

given in millimeters (mm). The center line shows the median of the posterior probability 

distribution, the shaded ribbons show the 95% credible intervals. 
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Discussion 

We sought to assess how time-since-fire and antecedent weather affected long-

term functional group abundances, and how sensitive within-site and across-site 

predictions of abundance were to weather during specific post-fire windows or in general 

antecedent five-year period. We found mostly positive relationships between post-fire 

precipitation and abundance of all functional groups, and mixed effects of temperature. 

Post-fire weather in specific time periods critical for recruitment did not explain long-

term vegetation trajectories better than did recent five-year weather conditions, although 

incorporating weather during either time period improved perennial and annual grass 

cover predictions at a new site. 

Vegetation responses 

Post-fire precipitation is a key factor directing plant community development 

following fire disturbances (Shryock et al. 2015, Young et al. 2019, McIlroy and 

Shinneman 2020). Indeed, we found that post-fire precipitation had significant positive 

effects on abundances of all three functional groups. As expected, sagebrush density 

increased with maximum Jan-June precipitation in the first four years after fire (post-fire 

weather model, Model 2) and with precipitation in the preceding 5 years (recent five-year 

weather models), which may be indicative of drought thresholds on seedling 

establishment, such as the threshold of -2.5 MPa in mean soil-water availability in the 

March after fire found by O’Conner et al. (2020). A previous study found a relationship 

between fall precipitation and cheatgrass (the most common annual grass species in the 

Western US) outside of a specific post-fire context (Bradley et al. 2016). We found that 

annual grass cover increased with precipitation in the spring of the year after fire but not 
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with fall precipitation in the year of fire (post-fire weather model). This may reflect the 

fact that fire usually reduces the annual grass seedbank (Pyke 1994), and thus propagule 

arrival to a burned site could be delayed. There was a positive effect of post-fire fall 

precipitation on perennial grass cover, which indicates a different life cycle strategy 

between annual and perennial species. Perennial grasses can frequently resprout after fire 

(Wright 1985) and can immediately take advantage of available soil moisture. Indeed, 

perennial grass cover increased with precipitation during all of the time periods analyzed. 

This finding is consistent with previous research that has indicated that precipitation is 

strongly related to germination and cover of perennial grasses (Pilliod et al. 2017, James 

et al. 2019). Furthermore, Adler et al. (2009) found that survival of several common 

perennial bunchgrass species was 90% or higher after 3-4 years, so both seedlings and 

resprouts that emerge during critical post-fire time periods are likely to subsist long after 

fire. 

Freezing temperatures during critical growing periods can reduce sagebrush 

seedling establishment and survival (Brabec et al. 2017). However contrary to Brabec et 

al. (2017), we observed an increase in sagebrush density in relation with lower mean 

temperature of the coldest month and higher mean temperatures in the hottest month in 

the first four years after fire. The OCTC has a relatively warm climate for sagebrush and 

low winter temperatures may be less of a selective factor here than in colder climates 

(Lazarus et al. 2019). The lack of an effect of mean monthly temperature (from the five-

year weather model) on sagebrush density is consistent with the findings of Brabec et al. 

(2017) and Kleinhesselink and Adler (2018), who suggest that temperature extremes are 

more often the limiting factor for establishment. However, weather effects on sagebrush 
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seedling establishment and early survival may not translate into long-term effects on 

population dynamics because of size-structure effects (Shriver et al. 2019) and negative 

density dependence (Chu and Adler 2015) and because susceptibly to minimum 

temperature appears to decrease as plants age (Germino et al. 2019).  

We modeled year-to-year change in grass cover or sagebrush density class, and 

incremental change each year was generally small. In particular, shifts from one 

sagebrush density class to another may occur more slowly than the temporal resolution 

and focus of our models, ultimately diminishing change detection. This finding is in 

agreement with Anderson and Holte (1981), who reported negligible change in shrub 

density in relatively undisturbed sagebrush steppe over a 9-year period of time, even as 

precipitation varied year-to-year. Sagebrush cover in that study did increase with 

precipitation, suggesting that established plants may display greater response to weather 

variability (i.e. growth or shedding of biomass) without concomitant changes in 

recruitment or mortality. 

Explanatory factors for post-fire vegetation recovery: how does weather fit in? 

 Our coarse-scale consideration of weather provided only marginal gains in 

explaining long-term vegetation trajectories, nor did it reveal that weather during specific 

post-fire recruitment periods had a lasting impact relative to the effects of antecedent 

weather at any time before or after fire. Variation in vegetation over time can frequently 

be partly accounted for by temporal autocorrelation. For instance, in remote sensing 

vegetation cover trend analysis, normalized difference vegetation index (NDVI) in prior 

months or years can be used to better predict future NDVI (i.e. Fernández-Manso et al. 

2011, Adeyeri et al. 2017). The fact that our null model that only incorporated landscape 
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variables performed nearly as well as our models that included weather suggests that a 

significant amount of variation in future vegetative trajectories can be explained by 

knowing past abundances.  

Generalizing weather effects on post-fire vegetation recovery across sites 

There has been a recent call in ecology to develop and apply iterative forecasting 

approaches in predicting ecosystem responses to disturbance and changing climate, 

especially near-term forecasting (Dietze et al. 2018). Our findings suggest that although 

including weather covariates may improve transferability of predictions of post-fire 

vegetation recovery for some functional groups, predictions may not be sensitive to the 

choice of weather variables when the weather data is spatially and temporarily coarse. 

We used PRISM data for this study, which is the most readily available and frequently 

used weather data set but also has a coarse spatial scale of 250 m pixel sizes and is 

available only in monthly increments (PRISM 2017). Previous studies have shown that 

microsite vegetative structure and topographic position can change the suitability for 

perennial seedling establishment in semi-arid ecosystems (Franzese et al. 2009, Boyd and 

Davies 2010), which means that local conditions may moderate larger scale weather 

effects. Furthermore, soil moisture thresholds for plant establishment or survival can 

occur on the scale of days, rather than months, as shown for sagebrush (O’Connor et al. 

2020). The choice of weather variable parametrization may increase in importance as 

data becomes more fine-scale, both temporally and spatially.  

The approach we used illustrates how ecological forecasting can be applied to 

restoration ecology, including leveraging data from highly studied sites to inform 

predictions at sites with limited data. These sorts of studies can help fill in the gap for 
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management-applicable predictions on a useful temporal and spatial scale; many 

ecological forecasts currently rely on long-term simulations at regional scales (Pouyat et 

al. 2010, Dietze et al. 2018), despite a land manager need for near-term predictions at a 

local scale (Dilling and Lemos 2011). Our analysis found that weather effects (either 

post-fire or recent antecedent) were more important for predicting post-fire perennial and 

annual grass cover at a new site than they were for explaining variability at a single site.  

Our analysis did not directly address weather effects on specific post-fire demographic 

stages. Future analyses could consider other population dynamics which may affect 

longer term outcomes, such as size structure or negative density dependence (Chu and 

Adler 2015, Shriver et al. 2019). Furthermore, we only present two ways of considering 

the temporal dynamics of weather variability (ie post-fire weather during the growing 

season or recent antecedent five-year weather) here but acknowledge that other temporal 

windows or weather variables (such as soil-water deficit, temperature extremes) could be 

considered. 

Conclusions 

 While we consistently found some effects of precipitation on vegetation recovery, 

the temporal dynamics of weather variation in relation to time since fire were not 

important for predicting annual or perennial grass cover or sagebrush density at a new 

site, at least for the models we tested that relied on coarse-scale weather data. Coarse-

scale seasonal weather forecasts may provide some utility for predicting whether 

precipitation will be sufficient for successful vegetation recovery after fire. However, 

developing models with finer-scale weather data (ie daily, such as in O’Connor et al. 

2020) will be an important next step for leveraging our methods to forecast vegetation 
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dynamics. Land managers often have to make decisions on post-fire management 

treatments without site-specific knowledge of the subject plant communities, and model 

predictions is one of the only ways the information can be obtained. We have shown a 

method of transferring information at one area affected by historic fires to predict 

outcomes at another burned area, and our basic approach could be adopted for similar 

applications made elsewhere. The information gained could be useful for helping to 

predict both post-fire restoration outcomes, or other applications such as fire vulnerability 

based on fuel predictions. Long-term monitoring in particular can provide important 

information about weather variability for transferring quantitative forecasts from well-

studied sites to new sites.  
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CHAPTER TWO: POST-FIRE SEED DISPERSAL OF A WIND-DISPERSED SHRUB 

DECLINED WITH DISTANCE TO SEED SOURCE, YET HAD HIGH LEVELS OF 

UNEXPLAINED VARIATION 

This article has undergone full peer review and has been published. Please see: 
https://doi.org/10.1093/aobpla/plac045 (Applestein, Caughlin, and Germino 2022).  
 

Abstract 

Plant-population recovery across large disturbance areas is often seed-limited. An 

understanding of seed-dispersal patterns is fundamental for determining natural-

regeneration potential. However, forecasting seed dispersal rates across heterogeneous 

landscapes remains a challenge. Our objectives were to determine (1) the landscape 

patterning of post-disturbance seed dispersal, and underlying sources of variation and the 

scale at which they operate, and (2) how the natural seed dispersal patterns relate to a 

seed augmentation strategy. Vertical seed-trapping experiments were replicated across 

two years and five burned and/or managed landscapes in sagebrush steppe. Multi-scale 

sampling and hierarchical Bayesian models were used to determine the scale of spatial 

variation in seed dispersal. We then integrated an empirical and mechanistic dispersal 

kernel for wind-dispersed species to project rates of seed dispersal and compared natural 

seed arrival to typical post-fire aerial seeding rates. Seeds were captured across the range 

of tested dispersal distances, up to a maximum distance of 26 m from seed-source plants, 

although dispersal to the furthest traps was variable. Seed dispersal was better explained 

by transect heterogeneity than by patch or site heterogeneity (transects were nested within 
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patch within site). The number of seeds captured varied from a modelled mean of ~13 m-2 

adjacent to patches of seed-producing plants, to nearly none at 10 m from patches, 

standardized over a 49-day period. Maximum seed-dispersal distances on average were 

estimated to be 16-m according to a novel modelling approach using a “latent” dispersal 

distance based on seed trapping heights.  Surprisingly, statistical representation of wind 

did not improve model fit and seed rain was not related to the large variation in total 

available seed of adjacent patches. The models predicted severe seed limitations were 

likely on typical burned areas, especially compared to the mean 95 to 250 seeds m-2 that 

previous literature suggested were required to generate sagebrush recovery.  More 

broadly, our Bayesian data fusion approach could be applied to other cases that require 

quantitative estimates of long-distance seed dispersal across heterogeneous landscapes. 

Introduction 

Seed dispersal sets the spatial template for patterns of plant population recovery 

across disturbed landscapes (Leland Russell and Roy 2008; Caughlin et al. 2016; Snell et 

al. 2019; Gill et al. 2020). Seedling recruitment after disturbance is often related to 

proximity to seed sources (Webber et al. 2010; Leirfallom et al. 2015).  Seed source 

patches in disturbed areas drive recolonization, including expansion of remnant islands as 

new recruits establish around existing reproductive plants (Corbin and Holl 2012). To 

predict how and where plant populations will reestablish after disturbance, we need to 

understand the sources of heterogeneity in seed dispersal events (Ozinga et al. 2005; 

Clark et al. 1999; Caughlin et al. 2014; San-José et al. 2019).  

Small-scale spatial heterogeneity in post-disturbance seed dispersal can be a 

major determinant of plant population recovery (DiVittorio et al. 2007). Understanding 
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this heterogeneity through spatially explicit seed-dispersal predictions can inform spatial 

prioritization of limited restoration resources and thus cost-effectiveness of restoration 

(Neeson et al. 2015; Jones et al. 2018; Strassburg et al. 2020). Many past seed trapping 

experiments needed to make these sorts of dispersal predictions have focused on 

intensive trapping at short distances from seed sources (Greene and Calogeropoulos 

2002). Longer distance travel of seeds across landscapes is rare and difficult to detect via 

experimental methods, however, is hypothesized to have an oversized impact on plant 

colonization (Clark et al. 1998, Cain et al. 2002). For instance, a prior study on dispersal 

of an invasive plant using seed traps found that mean dispersal distance was only 0.26 m, 

an insufficient distance to explain the continental-scale of ongoing range expansion; 

models demonstrated that only one-in-a-million seeds moving kilometers further than the 

mean was sufficient to replicate the observed distribution of the plant (Neubert and 

Caswell 2000). These infrequent, but critically important, long-distance dispersal events 

challenge field-based methods for quantifying dispersal distance.  

Previous researchers have modeled how seed density decreases with distance 

from remnant seed sources in many disturbed landscapes, including heath lands, tropical 

forests, and subalpine forests (Hammill et al. 1998; Holl 1999; Gill et al. 2020). These 

models can help answer questions about whether or not seeds will arrive at certain 

landscape locations and where to prioritize direct seeding for restoration (Peeler and 

Smithwick 2020). However, variability in seed dispersal during succession contributes to 

model uncertainty (e.g. Shive et al. 2018) and disentangling the sources of variability will 

be necessary to operationalize models for restoration decision support.  



49 

 

Direct seeding (“active restoration”) of desired species is common practice on 

disturbed landscapes to increase the pace of natural regeneration and ensure that 

propagules of desired species arrive before or at least concurrently with invasive species 

(Palma and Laurance 2015). However, when disturbed landscapes are not seed limited, 

supplemental seedings can be ineffective at increasing the rate of vegetative recovery or 

even suppress natural regeneration (Schoennagel and Waller 1999; James and Svejcar 

2010; Peppin et al. 2010).  

Wind is a common agent of seed dispersal across many different ecosystems and 

taxa (Nathan et al. 2011; Sullivan et al. 2018).  Wind strength and direction varies 

seasonally and the timing of major wind events in relationship to the timing of seed 

ripening can have significant effects on dispersal distances (Heydel et al. 2015). 

Furthermore, seed functional traits, landscape characteristics, and weather can all affect 

wind-driven dispersal of seed across landscapes. Seeds with specific wind dispersal 

mechanisms, such as a pappus or wings, have a higher propensity towards long-distance 

or widespread seed dispersal (Ozinga et al. 2005; Dauer et al. 2007; Tamme et al. 2014). 

Small seed mass can also contribute to longer wind dispersal distances (Hoppes 1988; 

Tamme et al. 2014). Additionally, wind energy for seed dispersal can be both constrained 

and/or modified by landscape characteristics including canopy density and structure 

(Nathan et al. 2009), which can be particularly heterogeneous in disturbed areas.  

Sagebrush-steppe provides an excellent system for studying how wind-driven 

seed dispersal from remnant patches varies across scales because these ecosystems are 

experiencing unprecedented habitat disruption from megafires (Miller et al. 2011) and 

tens of millions of dollars are spent each year on burned area rehabilitation, particularly 
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purchasing of sagebrush seed (as a representative example, the US Bureau of Land 

Management allocated $20 million USD to burned area rehabilitation in Fiscal Year 

2018). Sagebrush is considered a keystone species in these ecosystems, as the shrub 

supports subsequent recovery of many wildlife and plant species (Beck et al. 2012). 

Investment in aerial seeding of sagebrush assumes that sagebrush regeneration is 

primarily limited by seed availability owing to short longevity of the sagebrush seed bank 

(Wijayratne and Pyke 2012). The capacity for unburned remnants or edges to provide 

seed is relatively unknown and implicitly assumed to be negligible. While several studies 

have examined post-fire regeneration of big sagebrush, these studies have not specifically 

addressed the impact of unburned remnant patches (or newly created patches) within a 

larger burn context (DiCristina and Germino 2006; Lesica et al. 2007; Ziegenhagen and 

Miller 2009; Nelson et al. 2014). Young and Evans (1989) and Welch and Nelson (1995) 

asserted that seed dispersal distances of sagebrush stands are < 1-2 m from the maternal 

plant (Young and Evans 1989; Welch and Nelson 1995). Despite this, seedling 

recruitment can occur several hundred meters from remnant adults into burned areas and 

on unseeded landscapes (Mueggler 1956; Nelson et al. 2014).  

Our questions in this study were:  

1) How far do sagebrush seeds disperse and how variable is sagebrush seed 

dispersal?  

2) Which landscape scales best explain variation in seed dispersal (trap, transect, 

patch, site)? Do wind direction metrics help explain variation in seed 

dispersal? 
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3) How does seed dispersal from seed source patches compare with aerial 

seeding rates? 

Methods 

We conducted a seed trapping study around sagebrush patches during the winters 

of 2018/2019 and 2019/2020. Our vertical wind traps were designed to catch seeds at any 

height in the wind from the ground to approximately the height of release (i.e., the height 

of flowers on seed-source plants). Big sagebrush flowers in the fall (typically November, 

depending on the elevation and weather) and seeds mature and release in early to mid-

winter. Seeds weigh 0.25 mg or less and are approximately 1.5 mm in diameter (Jacobs et 

al. 2011). Seed traps were arrayed on two transects per patch of sagebrush plants that 

were adjacent to (or surrounded by) areas with no sagebrush and instead were dominated 

by grasses. Multiple patches (and thus, transects) were evaluated in each of six sites. 

Three of the sites were sampled in the first year of the study and the three other sites were 

sampled in the second year. We evaluated seed dispersal under and away from sagebrush 

patches. 

 We used vertical seed traps as opposed to ground traps for several reasons. First, 

sagebrush seed dispersal occurs during the winter when snow cover may be present. Our 

small ground traps directly beneath the canopy were fairly sheltered from snow but any 

ground traps set outside of the canopy would have accumulated snow and been non-

functional. Secondly, we anticipated that seed density would be very low and that we would 

therefore need a large trap area to capture seeds. Creating greater surface area for vertical 

traps was more feasible than for ground traps. We account for our trap design using a novel 

modeling approach with a latent ground distance term (see below). 
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Sites 

Study sites for the first year of trapping were the Soda Wildfire (113 kHa, burned 

2015), Alkie Wildfire (814 ha burned 2018), and the Botanical Garden in Boise (at a 

planted sagebrush patch in a disturbed area otherwise dominated by grasses). Study sites 

for the second year of trapping were the Soda Wildfire, the Pony Wildfire (60 kHa, 

burned 2013), and Table Rock fire (1 kHa, burned 2016) (Fig. 2.1). The two trapping 

locations on the Soda Wildfire were at different locations on the fire (Year 1 location in 

the southeast, Year 2 location in the central west) and thus were considered separate sites. 

The seed trap size, dates of trapping, and site summary information, including sample 

sizes, are given in Table 2.1.  

Patches (n = 22) were selected by reconnaissance at each site based on the 

following criteria: there had to be at least 5 individual reproductive plants in each patch, 

slopes in and around the patches had to be less than twenty degrees, and patches had to be 

isolated enough from other patches so that no other seed-bearing sagebrush plants in the 

surrounding area could be any closer to the traps than the individuals in the patch. In a 

few cases, all flower stalks were clipped from single individual sagebrush that were 

located outside of a patch to satisfy these criteria. Patches could either be unburned 

remnants or created from planting seedlings or aerial seeding.  

Most sites were dominated by Artemisia tridentata ssp. wyomingensis, although 

the dominant subspecies at the Pony wildfire site was A. tridentata ssp. xericensis. The 

surrounding vegetation for the sites during the first year was exotic annual grasses at the 

Soda site, a mixture of perennial and annual grasses at the Botanical Garden, and the 

Alkie site was freshly burned and had no vegetative cover. The surrounding vegetation 
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for sites during the second year was mixed low sagebrush (Artemisia arbuscula) and low-

statured grasses at the second Soda fire site, exotic annual grasses at Table Rock, and 

mixed low sagebrush and low-statured grasses at the Pony site.  

Seed traps 

During the first winter, traps (n = 79) were located under canopy, 2 m, 4 m, 7 m, 

10 m, and 13 m from the patch. Since seeds were found at all distances in the first year, 

we increased the distance of the farthest traps in the second year. During the second 

winter, traps (n = 275) were located, under canopy, 2 m, 4 m, 6 m, 10 m, 14 m, 18 m, 22 

m, and 26 m from the patch. Traps were arranged along two transects per patch (except 

for the one patch at the Botanical Gardens, for which there were four transects) with 

angles chosen based on the following criteria: first, all transects had to be isolated enough 

so that no reproductive individuals were any closer to the traps than the plants in the 

patch. Given this requirement, the first angle was aligned as close as possible against the 

prevailing wind direction at the site and the second angle was aligned as close as possible 

towards the prevailing wind direction at the site (these wind directions were taken from 

prior year weather station data – actual wind directions during trapping season were not 

always as expected). Trap distances were measured from the base of the individual 

reproductive individual sagebrush plant where each transect began (termed “base 

individual plant” below).  
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Table 2.1 Number and sizes of seed-collection traps, their spatial deployment 
and trapping dates by year. 
Alkie was excluded due to seed crop failure and no seeds trapped. The total number of 
vertical patches and traps excludes those lost to animals or weather. 

  Year 1 Year 2 

Vertical trap size (cm) 50 x 91 rectangle  50 x 76 rectangle 

Under-crown trap size (cm) 

25.4-radius pan 
(with 2.5 center 
hole) 

10 x 10 square 

Trap distances (m) 2, 4, 7, 10, 13 2, 4, 6, 10, 14, 18, 
22, 26 

Sites 
Soda, Botanical 
Garden, Alkie 

Soda, Table Rock, 
Pony 

Number of patches 4 15 

Total number of vertical traps 36 237 

Total number of under-crown 
traps 6 30 

Dates of Collection 

Soda 

24 November 
2018 to 21 
December 2018 

Round 1: 22 
November 2019 to 
17 December 2019; 
Round 2: 17 
December 2019 to 
10 January 2020 

Botanical Garden 

4 December 2018 
to 22 December 
2018 

- 

Alkie 

26 November 
2018 to 3 January 
2019 

- 



55 

 

Table Rock 

- 

Round 1: 22 
November 2019 to 
14 December 2019; 
Round 2: 14 
December 2019 to 6 
January 2020 

Pony 

- 

Round 1: 23 
November 2019 to 
18 December 2019; 
Round 2: 18 
December 2019 to 7 
January 2020 

 

  



56 

 

 
Figure 2.1 Locations of fires (black outlines) and trapping sites (red dots) for 

dispersal study.  

Shown as an inset map on western United States and 2011 sagebrush cover (%) from the 

National Land Cover Database (NLCD) (Rigge et al. 2020).  

 

Vertical traps were constructed from two 5x5 cm wooden stakes that were either 

1.23 m tall (Year 1) or 0.91 m tall (Year 2). The stakes were set 50 cm apart with 0.55 oz 

white AgFabric (Wellco Industries, Corona, CA) stapled between the stakes (Appendix 

B, Fig. B.1). The AgFrabic was then sprayed with Tanglefoot (Scotts Miracle Gro, Grand 

Rapids, MI) to provide a persistently adhesive surface. Under-crown traps were circular 

cake bundt pans (25.4 cm radius with 2.5 cm center hole) filled with marbles to prevent 

seeds from blowing out (Year 1) or square 10x10 cm frames with sprayed AgFabric 

stapled on (Year 2) and were set directly under the crown of the base individual plant. 
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Some vertical traps failed because of weather or animal interference (including all traps 

at three of the six patches at Pony) and these were excluded from analysis, resulting in 

some missing data values. Excluding Alkie and failed traps, the total sample size was 5 

sites, 19 patches, 40 transects, and 309 traps.  

Patch characteristics 

 At each patch, we recorded the following information for ten individual plants (or 

all plants if the patch was composed of fewer than 10 plants): number of flowering stalks, 

and average length of flowering stalks (of 3 representative stalks). If there were more 

than 10 individual plants in the patch, the first two plants measured were the base 

individual plants for the transects, then the three tallest plants in the patch, then five 

additional representative plants. If there were fewer than 50 plants in a patch, the number 

of reproductive and non-reproductive plants were counted directly. If there were more 

than 50 plants in a patch, we estimated number of individuals by counting the number of 

plants in randomly distributed subplots (the number of which were proportional to the 

size of the patch) and scaling this number up to the patch size. We also visually estimated 

surrounding vegetation canopy height in bins outside of the patch (<30cm, 30-50cm, 50-

75cm, >75cm), which was used to parameterize the WALD wind model. 

Estimating maximum seed production 

We estimated maximum seed production per individual by multiplying number of 

stems by the average stem length by 8.2 (mean number of flower heads per 1-cm stalk 

length) by 3.7 (mean flowers per head). The mean number of flower heads and mean 

flowers per head were taken from Winward and Tisdale (1977) morphological 
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measurements on A. tridentata wyomingensis. Seed production was estimated during the 

same season as trapping (upon trap deployment). 

Terminal velocity 

 We collected samples of sagebrush seeds from reproductive plants at each site in 

areas outside of the patches for assessment of terminal velocity (3 inflorescences each from 

3 plants). We followed the protocol for Sullivan et al. (2018) to measure terminal velocity 

by dropping seeds down a measurement tube containing two arrays of LED lights and 

sensors to estimate the speed of seed falls. We conducted 7 trial drops of pooled sagebrush 

seeds using either 500 or 1000 seeds per drop. Terminal velocity measurements ranged 

from 0.19 to 2.11 m/s. We selected the median terminal velocity of 0.41 m/s for use in our 

models.  

Data Analysis 

 Our modeling approach was composed to two parts. The first part involved fitting 

simplified negative binomial regressions to determine which sources of landscape 

variance best explained trapped seed density. The second part involved combining an 

empirical 2dt dispersal model (Clark et al. 1999) with a mechanistic WALD wind model 

(Katul et al. 2005) to estimate latent ground distance for seeds caught above the ground 

(described below). Fitting models to quantify the influence of scale in a generalized linear 

model framework (negative binomial regression) enabled us to leverage a well-

understood statistical approach to test covariate importance and develop random effect 

structures (Warneke et al. 2022) for our field data.  

How far do sagebrush seeds disperse and how variable is sagebrush seed dispersal?  
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We calculated the seed density (“seeddens”) for each trap by dividing the number 

of seeds caught by trap area and a standardized term for the number of days deployed 

(stdays). The standardized day term (stdays) was calculated for each trap as the number 

of days deployed over the maximum number of days any trap was deployed (n = 49). 

After calculating the seed density for each trap, we calculated the relative standard error 

(RSE) of seed density for each trap distance across sites, years, and patches. RSE is 

calculated as the standard error over the mean seed density for each distance. Typically, 

effects with a RSE >20% are considered highly variable in ecology (McCune and Grace 

2002).  

Which landscape scales best explain variation in trap seed density?  

We fit negative binomial regressions using the R package brms (Burkner 2017) of 

trap seed density as a function of capture height, capture distance, and total available 

seed. The overall model is described as follows: 

Nseeds ~ negbin(𝜇𝜇, 𝜙𝜙)   (1) 

where the number of seeds (Nseeds) is a random variable drawn from a negative binomial 

distribution, with mean μ and overdispersion parameter ϕ. 

Log(𝜇𝜇) =  𝛾𝛾0 +  𝛾𝛾1 ∗ ht + γ2 ∗ dist + γ3 ∗ ht ∗ dist + γ4 ∗

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 +  log (𝑠𝑠𝑠𝑠𝑓𝑓𝑎𝑎𝑦𝑦𝑠𝑠) + log(𝐴𝐴𝑃𝑃𝑓𝑓𝑎𝑎)  

    

(2) 

In Equation 2, γ0, γ1, γ3, and γ4 are fitted parameters. ht is the capture 

height, dist is the capture distance, and fecund is the total available seed in the 

patch. An interaction term between ht and dist is included. The total available seed  

term is described as:   
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𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 = seedsp ∗ nrem (3) 

where seedsp is the average maximum seed production per plant and nrem is the 

number of reproductive plants per patch. The trap area (Area) and stdays term function as 

offsets (Hilbe 2011), constant terms that scale the mean based on sampling effort. 

 To determine how trapped seed density varied across different landscape scales, 

we fit different versions of the basic model, allowing γ0, γ1, γ2, and γ3 to vary by group 

levels as follows: 

1) No landscape effects 

2) Site only 

3) Site x Patch 

4) Patch only 

5) Patch x Transect 

6) Transect only 

7) Site x Patch x Transect 

No site was monitored across both years (the location of the trapping at Soda in year 

2 was in a completely separate part of the fire) so “Site” actually refers to a site-year 

effect. Total available seed, distance, and trapped height were all centered around 0 and 

scaled by 1 standard deviation to improve convergence. We calculated the leave-one-out 

cross validation metric using the loo package to compare models with different variations 

in slope. Model convergence was assessed by assuring all �̂�𝑃 values were no greater than 

1.05 and visual inspection of chain mixing (Monnahan et al. 2017). Priors are given in 

Appendix B, Table B.2.  
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Do wind direction metrics help explain variation in seed dispersal? 

 We considered if wind direction could help explain variation in seed dispersal. 

We reviewed wind data from the closest NOAA weather station to each site and 

determined the dominant wind directions of gusts greater than or equal to 32 km per hour 

during the trapping time (Table 2.2). Assuming that traps set at angles 180 degrees from 

the dominant wind direction (i.e. facing the wind) would be most likely to collect seeds, 

we recorded the smallest absolute difference between the transect angle and the direction 

the dominant wind gusts were blowing towards. The wind orientation was then scaled 

(for each value, we subtracted the mean and multiplied the standard deviation) and given 

as the variable windorient. This wind effect was described by a new parameter, γ5, which 

we added as an additional effect to the best-fitting landscape model. The updated 

equation 2 for the model with wind effect is then: 

 

log(𝜇𝜇) =  𝛾𝛾0 +  𝛾𝛾1 ∗ ht + γ2 ∗ dist + γ3 ∗ ht ∗ dist + γ4 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 +  𝛾𝛾5 ∗

𝑤𝑤𝑤𝑤𝑛𝑛𝑓𝑓𝑤𝑤𝑃𝑃𝑤𝑤𝑓𝑓𝑛𝑛𝑠𝑠 +  log (𝑠𝑠𝑠𝑠𝑓𝑓𝑎𝑎𝑦𝑦𝑠𝑠) + log(𝐴𝐴𝑃𝑃𝑓𝑓𝑎𝑎)                               (4) 

We also considered wind direction as a binary variable with traps either facing 

towards (within 45 degrees facing a dominant wind direction) or away from the wind as 

variable windbinary. In this model, the wind effect (windface) was described by the 

parameter, γ6. 

log(𝜇𝜇) =  𝛾𝛾0 +  𝛾𝛾1 ∗ ht + γ2 ∗ dist + γ3 ∗ ht ∗ dist + γ4 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 +  𝛾𝛾6 ∗

𝑤𝑤𝑤𝑤𝑛𝑛𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓 +  log (𝑠𝑠𝑠𝑠𝑓𝑓𝑎𝑎𝑦𝑦𝑠𝑠) + log(𝐴𝐴𝑃𝑃𝑓𝑓𝑎𝑎)                                      (5) 
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How does seed dispersal from remnant patches compare with aerial seeding rates? 

We combined a 2dt empirical dispersal kernel (Clark et al. 1999) with a 

mechanistic WALD dispersal kernel (Katul et al. 2005). The 2dt kernel is a bivariate 

model used to describe decreasing seed or recruit density as distance from the seed source 

increases and fit using empirical data, while the WALD kernel is a mechanistic model 

describing the expected movement of a seed in the wind given an understanding of wind 

movement and seed properties. Our resulting fusion model was used to simulate 

landscape-scale dispersal of sagebrush seeds. The 2dt kernel was chosen over other 

dispersal kernels through an initial exploration looking at capture distance (BIC and AIC 

kernel comparisons are given in Appendix 2). Similar to other studies of long-distance 

dispersal, the maximum distance of seed traps was limited by logistical constraints. 

Fusing lab-based estimates of wind dispersal via the WALD model with our 2dt dispersal 

model, informed by field data, enabled us to develop dispersal predictions that made full 

use of our vertical trap design. In this study, the WALD parameters were set (i.e. we did 

not propagate uncertainty in wind speed, canopy density, or terminal velocity).  
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The overall model is described as follows: 

Nseeds ~ negbin(𝜇𝜇, 𝜙𝜙2)  (6) 

 

𝜇𝜇 = Area ∗ 𝑓𝑓𝑤𝑤𝑠𝑠𝑝𝑝 ∗ (𝑓𝑓 ∗
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓

1000 ) ∗ stdays 
 (7) 

 

𝑓𝑓𝑤𝑤𝑠𝑠𝑝𝑝 = 𝑎𝑎𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝(
1

𝜋𝜋𝑏𝑏𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 ∗ �1 +
𝑓𝑓𝑤𝑤𝑠𝑠𝑠𝑠𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔𝑛𝑛𝑔𝑔

2

𝑏𝑏𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝
�

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+1)   (8) 

atransect and btransect are fitted parameters that determine the shape of the 2dt kernel 

allowed to vary by transect where; 

𝑎𝑎𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 = 𝑎𝑎 +  𝜔𝜔𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 ∗ 𝜈𝜈1                                                                     (9) 

𝑏𝑏𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 = 𝑏𝑏 +  𝛿𝛿𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 ∗  𝜈𝜈2                                                                     (10) 

a and b are the global parameters for the 2dt kernel, ωtransect and δtransect are the 

deviation of each transect from a and b respectively, and ν1 and ν2 are the transect-level 

variance for the a and b parameters. 

f is a fitted parameter describing the effect of total available seed on seed density. 

Total available seed was divided by 1,000 to scale it for model convergence. Distground is 

the estimated latent ground distance of a seed caught at a certain height on a trap (i.e. the 

distance we expected a seed to travel to the ground based on its captured height at a 

certain distance). Distground was set at the trap distance (disttrap) for seeds caught below 

20cm in height (we assumed the additional distance these seeds would travel would be 

negligible). For seeds caught 20cm above the ground or higher: 

  



64 

 

 𝑓𝑓𝑤𝑤𝑠𝑠𝑠𝑠𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔𝑛𝑛𝑔𝑔 = 𝑓𝑓𝑤𝑤𝑠𝑠𝑠𝑠trap + distwald                                                                  (11) 

𝑓𝑓𝑤𝑤𝑠𝑠𝑠𝑠𝑤𝑤𝑡𝑡𝑤𝑤𝑔𝑔  ~ 𝑊𝑊𝑎𝑎𝑊𝑊𝑓𝑓(𝜌𝜌, 𝜆𝜆)                                                                         (12) 

 where ρ and λ are parameters calculated from wind speed, vegetation canopy 

height, canopy density, and terminal velocity. Katul et al. (2005) and Sullivan et al. 

(2018) describe the calculation of these parameters, including validation with post-

dispersal data on spatial patterns of seedling recruitment.  

 𝜌𝜌 =  (ℎ𝑝𝑝
𝜎𝜎

)2                                                                                                      (13)              

 where ht is the height of seed capture. σis a parameter calculated as: 

 𝜎𝜎2 = 𝑘𝑘𝑓𝑓(2 𝜎𝜎𝑤𝑤
𝑈𝑈

)                                                                                         (14) 

 where k is a scaling coefficient set between 0.3 and 0.4 to describe canopy 

density. We set k at 0.38 for sparse, heterogeneous canopies typical of post-fire systems. 

c is the canopy height surrounding the patch based on our visual estimates from the field 

at each specific patch. We set σw (a measure of boundary conditions) to half of U based 

on Sullivan et al. (2018). U is the average daily maximum wind speed during the time 

periods in which the traps were deployed taken from the closest NOAA or RAWS 

weather station. 

 𝜆𝜆 =  ℎ𝑝𝑝𝑈𝑈
𝑉𝑉

                                                                                                        (15) 

where V is the terminal velocity of sagebrush seeds. Priors are given in Appendix 2, 

Table 2.  

After fitting the combined empirical mechanistic model, we created a forward version 

in R that sampled from the posterior distributions of our parameters and ran 10000 

simulations to estimate seed dispersal at distances between zero and 100 meters.   
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Table 2.2 Dominant wind direction for gusts > 32 km h−1 (given in degrees) 
during the trapping dates at the NOAA weather station closest to the site. 
Alkie was excluded due to seed crop failure and no seeds trapped. 

Site and year Dominant wind direction 
(°) for gusts > 32 km h−1 NOAA weather station 

Soda Year 1 200, 250–270 Rome 

Botanical Garden Year 1 120–140, 160–170 Boise Airport 

Soda Year 2 220–240, 160–170 Rome 

Table Rock Year 2 120–140 Boise Airport 

Pony Year 2 100–130, 290–310 Mountain Home 
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Results 

How far do sagebrush seeds disperse, and how variable is sagebrush seed dispersal?  

 No seeds were caught on vertical seed traps at the Alkie fire, despite extending 

the trapping time several weeks past the initial ~3-week observation period. Seeds on 

patch plants appeared not to develop at the Alkie site, and thus it was excluded from 

analysis. At the other sites, 31% of traps captured seeds. Two seeds were detected on 

each on two of the traps at the maximum distance of 26 m from the seed-source patches. 

Relative standard errors (RSE) of seed density for each trap distance across sites and 

years were large, ranging from 24% to 77% (Fig. 2.2). RSE tended to increase with 

distance of traps from seed-source patches (R2 = 0.47), indicating that dispersal became 

more variable the farther the distance from the patch.  

Which landscape scales best explain variation in seed dispersal (trap, transect, patch, 

site)? Do wind direction metrics help explain variation in seed dispersal? 

The total number of available seeds produced by the sagebrush present in each 

patch varied across years and sites, with the greatest mean total observed at the Table 

Rock Fire in year 2 (Fig. 2.3). However, available seed abundances did not relate to the 

number of seeds caught per trap, nor were there consistent relationships of available 

seeds to abundance of seeds captured by seed traps in each patch (90% credible interval 

for total available seed [-0.14, 0.66]) (Fig. 2.4). On average, the most seeds per trap were 

caught at the lowest elevation site, the Botanical Garden in year 1.  

Model performance increased as the landscape scale of variance decreased with 

best model performance at the transect level, the finest spatial scale in this study (Table 

2.3). Models incorporating multiple levels of variance did not perform better than models 
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with single lower levels of variance. This indicates that the primary source of spatial 

variability in seed rain occurred at a small-scale level (different sides of patches) rather 

than either at the scale of 1) the five sites across two years or 2) patch level.  

As expected, distance had the strongest effect on trapped seed density (Fig. 2.4). 

Estimated seed density decreased from a mean of ~ 13 seeds m-2 [90% credible interval 

0-66] to < 1 seeds m-2 [90% credible interval: 0-4] as distance increased from 0 to 10 m 

from the source, holding all other predictors constant. Neither total available seed nor 

height had a consistent effect on trapped seed density (90% credible intervals crossed 

zero) (Fig. 2.4). However, there was a positive interaction between trap distance and 

trapped height on seed density, with more seeds caught at higher heights at distances near 

the source (Fig. 2.5). For example, at a distance of ~0.3 m, more than 160 seeds m-2 were 

predicted to be trapped at 65 cm height, as opposed to 11 or <1 seeds m-2 at 40 and 15 cm 

height, respectively.  

The random intercept varied more between transects than did the slope of 

distance, height, or the interaction between distance and height (Fig. 2.4). This indicates 

that the effects of distance and height on seed density were less variable between 

transects than overall seed density differences. Including either continuous or a binary 

metric of wind direction did not improve model performance (Table 2.3).   
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Figure 2.2 Relationship of mean trap abundance (bottom panel) and variability 
(RSE, top panel) of the density of seeds captured (per 0.05 m2 of vertical trap area) 

relative to the distance of seed traps from seed source patch.  

Seed density is standardized by the number of days in each collection interval period 

shown as the mean per trap ± the standard error (bottom). Alkie was excluded due to seed 

crop failure and no seeds trapped. 
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Figure 2.3 Box plots of the estimated total available seeds per patch (fecundity x 
number of reproductive plants) across sites (top) and number of seeds across traps 

of all distances caught per 0.05 m2 trap area standardized by 49 days deployed 
(bottom).  

The graphs do not include under-crown traps. The unit of measure for the top graph is a 

patch (n = 19) and the unit of measure for the bottom graph is a trap (seed counts 

aggregated across heights, n = 273). Alkie was excluded due to seed crop failure and no 

seeds trapped. 
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Figure 2.4 Posterior distributions intervals for parameters of the landscape 

negative binomial seed density model with intercepts and slopes varied by transect.  

The center blue circle of each distribution shows the median, the dark blue bars show the 

50% credible interval, and the thin blue lines show the 90% credible interval. Predictors 

were scaled prior to analysis so that parameter values represent relative effect size of each 

predictor on trapped seed density. A) Global parameters, B) Varying intercepts by 

transect, C) Varying slope of the height parameter by transect, D) Varying slope of the 

distance parameter by transect, and E) Varying slope of the height:distance parameter by 

transect. 
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Figure 2.5 Mean number of trapped seeds per m2 area predicted from the 

landscape model with slope varied by transect, showing the interacting effects of 
trapped height and trapped distance on seed density.  

The shaded ribbons show the 90% credible intervals. 
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Table 2.3 Comparison of leave-one-out information criteria between different 
landscape models. 

Model loo IC 

Model 1: No landscape variation 1927.1 

Model 2: Site only 1803.7 

Model 3: Site × Patch 1795.5 

Model 4: Patch only 1780.1 

Model 5: Patch × Transect 1770 

Model 6: Transect 1756.1 

Model 7: Site × Patch × Transect 1766.3 

Wind Model 1: Wind Angle with 
Transect 

1760.7 

Wind Model 2: Binary Wind with 
Transect 

1766.7 
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How does seed dispersal from remnant patches compare with aerial seeding rates? 

Seed dispersal predicted for a median transect with a fecundity of 30,000 

seeds/individual and a patch size of 25 individuals (750,000 total available seed) would 

decrease to 0 seeds m-2 capture area at a distance of ~16 m distance from the patch, based 

on the median of 10000 simulations (Fig. 2.6). However, in the top 5% of simulations, 

there were still 48 seeds m-2 at 100 m distance and in the lower 5% of simulations, there 

was no dispersal at any distance. These seed dispersal simulations were highly variable. 

For example, the 90% quantiles for modeled seed dispersal to 5 m from patches ranged 

from 0 seeds m-2 to >100,000 seeds, and the median value was 12 seeds m-2. For 

comparison, on the Soda wildfire, the aerial sagebrush seeding rate was between 

approximately 95 and 250 aerial pure live seeds m-2. 
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Figure 2.6 Simulated median seed dispersal (seeds m-2) estimated using the seed 
dispersal model with transect-level variation in dispersal kernel (1000 simulations).  

Based on global parameters for the p and u parameters of the 2dt kernel, and assuming an 

average of 30,000 seeds per reproductive plant, and 25 individuals per patch. The grey 

ribbon shows the 90% quantiles of the simulations. 

Discussion 

Seed availability is an important component of restoration and rehabilitation of 

disturbed areas, particularly for foundational species like sagebrush that can only 

reestablish from short-lived seeds. Insufficient seeding could cause missed recovery 

opportunities, while unnecessary seeding of areas with adequate natural seed could waste 

resources and carry unnecessary collateral ecological risks (e.g. potential introduction of 
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maladapted genotypes, Seaborn et al. 2021). Therefore, there is a pressing ecological 

need to develop better methods of predicting natural seed dispersal across disturbed 

landscapes. Our study presents a rare attempt to quantify seed dispersal at management-

relevant scales by integrating both empirical and mechanistic modeling. Although our 

seed dispersal predictions indicated a high degree of uncertainty, they revealed that seed 

dispersal from unburned remnant sagebrush or actively created sagebrush patches is a 

major source of variability in natural post-fire regeneration of sagebrush. Even areas very 

close to these patches may experience limited seed dispersal. 

Landscape variability 

Although we found a measurable amount of seed dispersal from sagebrush 

patches, there was a high degree of variability in dispersal between transects, even when 

total available seed and patch size were accounted for. Differences in canopy heights and 

plant densities can strongly affect wind movement and wind-transported seeds (Nuttle 

and Haefner 2005; Bohrer et al. 2008). These previous studies from forested studies show 

that strong bursts of vertical wind (influenced by the structure of the canopy) are 

particularly important to long-distance seed dispersal. In comparison to forests, recently 

burned sagebrush-steppe ecosystems have minimal canopy structure, and wind movement 

near the ground is less likely to be strongly affected by remaining vegetation (Driese and 

Reiners 1997). Furthermore, although we found clear evidence that sagebrush seeds are 

dispersed by wind, they lack a true wind-dispersal mechanism (such as a pappus; in spite 

of being in the Asteraceae family) that would allow them to remain aloft in vertical wind 

lifts for extended transport. The predictive strength of models that account for variability 

at different directions from the patch has implications for theoretical and applied research 
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on seed dispersal, where isotropy (equal probability of dispersal in all directions) is often 

assumed (van Putten et al. 2012). 

Sagebrush steppe often occurs in topographically complex areas, and even though 

our sampling areas were relatively flat, airflow patterns caused by the surrounding hills 

could have contributed to the high variability in seed dispersal we observed across 

different transects. The greater variation in seed dispersal at the transect level than at the 

site or patch level, combined with the lack of explanatory power of coarse (“average”) 

wind-direction metrics suggests that transect identity may have been a proxy for canopy 

structure, topography and stronger and unaccounted-for wind variability within sites. Due 

to the difficulty in controlling for these factors in the field, the question of how 

topography and vegetative structure influences seed dispersal could be addressed in 

follow-on investigation using mechanistic modeling (Nathan et al. 2009). 

Height of seed release is another factor that can contribute to differences in 

dispersal distances (Thomson et al. 2011, Schupp et al. 2019). In canopies with variable 

heights of plant crowns (as was the case in our patches), assessing maternal plant height 

effects on dispersal can be difficult because plants may not contribute equally to seed 

dispersal, and tracing seeds to specific source plants requires genetic analysis via DNA 

microsatellites (Ashley 2010). However, the effect of sagebrush height on dispersal 

distance could be addressed in an experimental context by trapping around individual 

plants of different heights.  In many semiarid landscapes, mound-like features are created 

by mammals, insects, or geomorphic processes, such as the very common “mima 

mounds” of sagebrush steppe that host relatively tall and fecund plants elevated above the 
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surrounding sagebrush population (Hill et al. 2005).  These microtopographic effects 

would be important considerations in modeling height of seed release. 

Phenology is another important factor in determining seed dispersal by wind. 

Some tree species with specific wind dispersal mechanisms synchronize seed ripening 

and release with meteorological conditions that promote long-distance seed dispersal 

(Heydel et al. 2015). Although species in open vegetative habitats, including many 

Asteraceae species, do not display such targeted release patterns (Tackenberg et al. 

2015), the timing of seed ripening and release can still have an impact on dispersal 

distances. In our second year of trapping, initial seed development was delayed, possibly 

due to above-average rain in October. A significant wind event occurred at Table Rock in 

mid-November during our first three weeks of trapping yet there were few seeds 

collected in traps. Seeds did not appear fully developed or easy to remove from the 

inflorescences at that time, and appreciable seed capture was not detected until later in 

December. An improved understanding of how seed development coincides with major 

wind events may help elucidate differences in patch and site seed dispersal.  

Estimating landscape scale dispersal distance  

Predicting seed dispersal becomes more difficult as distance from the maternal 

plant increases (Bullock and Clark 2000; Fig. 2.2) but can be particularly critical to 

vegetative recovery in disturbed systems when seed sources are limited (Hammill et al. 

1998; Urza and Sibold 2017; Borchert et al. 2003). We attempted to address this problem 

by utilizing vertical traps, measuring height of seed capture, and integrating a mechanistic 

wind dispersal model into our empirical dispersal kernel to simulate latent ground 

distance a seed would travel. Our approach allowed us to estimate a range of dispersal 
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distances without actually placing traps at locations where seed dispersal was expected to 

be so rare that we were unlikely to detect it. We believe this approach could be further 

refined and used to estimate landscape-scale wind dispersal of other species of restoration 

or conservation concern. The key point is that height of seed capture can be used as a 

proxy by which to estimate dispersal distance, if certain properties of the seed and system 

are known (seed terminal velocity, average wind velocity, canopy density). We used a 

modestly parameterized approximation of a WALD dispersal kernel in this study and 

incorporating microsite-specific wind measurements and site-specific terminal velocity 

metrics could further improve predictions (Sullivan et al. 2018).   

On the Soda wildfire, widespread aerial sagebrush seeding of a rate between ~95-

250 aerial pure live seeds m-2 (not applied at the time of our study) generally overcame 

seed limitations to allow for significant seedling establishment in the first year after fire 

(Germino et al. 2018). Establishment was strongly limited by topographic features, 

absence of “fertile islands” (high organic-content areas where sagebrush existed pre-fire 

and burned), and dominance of exotic annual or perennial grasses (Germino et al. 2018). 

While our seed dispersal models show that it is possible that remnant sagebrush islands 

could generate as much seed as aerial seeding in some rare instances close to the patch, it 

is highly unlikely that this seed dispersal would reach the microsites needed for 

significant population re-establishment. 

One further consideration is the potential role of negative density dependence 

inside and near remnant sagebrush patches (Zaiats et al. 2020). Given that the majority of 

sagebrush seeds fall within a few meters of the mother plant, many of the seeds will be 

establishing with the zone of influence of not only the mother plant but possibly other 
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individuals in the patch. Strong negative density dependence is likely to further negate 

the seed contribution of remnant sagebrush patches to landscape scale sagebrush 

regeneration.  

Conclusions  

Developing quantitative models for spatial prioritization of restoration efforts is a 

major research objective with immediate applicability to land management. Small scale 

and near-term forecasting of vegetative regeneration is an integral part of making 

decisions about where and when to actively manage landscapes (Dietze et al. 2018). In 

this study, we demonstrated how empirical and mechanistic dispersal models can be 

integrated to predict post-fire seed dispersal from undisturbed seed sources and that large 

burned areas in sagebrush-steppe likely receive little or no natural sagebrush-seed 

deposition across most of their area. These results can be utilized in predictions of post-

fire regeneration for determining which areas of the landscape to actively manage.  

Data Availability 

Data will be released with publication of this paper to the Forest Service Research 

Data Archive and can be accessed here: 
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available here: https://zenodo.org/badge/latestdoi/537824506 
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CHAPTER THREE: HOW DO ACCURACY AND MODEL AGREEMENT VARY 

WITH VERSIONING, SCALE, AND LANDSCAPE HETEROGENEITY FOR 

SATELLITE-DERIVED VEGETATION MAPS IN SAGEBRUSH STEPPE?  

This article has undergone full peer review and has been published. Please see: 
https://doi.org/10.1016/j.ecolind.2022.108935 (Applestein and Germino 2022). 
 
 

Abstract 

Maps of the distribution and abundance of dominant plants derived from satellite 

data are essential for ecological research and management, particularly in the vast 

semiarid shrub-steppe. Appropriate application of these maps requires an understanding 

of model accuracy and precision, and how it might vary across space, time, and different 

vegetation types.For a 113 k Ha burn area, we compared modeled maps of different 

vegetation cover types created from satellite data to ‘benchmark” models based on 

intensive field sampling (~1500-2000 plots resampled annually for 5 years) for three new 

satellite-derived models: USDA Rangeland Analysis Platform (RAP), the USGS 

Rangeland Condition Monitoring Assessment and Projection (RCMAP), and USGS 

fractional estimate of exotic annual grass cover (USGS-fractional-EAG). We assessed 

out-of-sample point accuracy and asked if and how accuracy changed each year due to 

vegetation shifts, new images, and model improvements (i.e. model versions). We also 

assessed how map agreement between satellite-based and field-based models changed 

with scale of application, topography, and time since fire. 
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Accuracy and map agreement varied considerably among the vegetation types and 

across time and space (r2 ranging from 0 to 0.54), and some of the variability was 

predictable. All models tended to over- or underestimate cover when field-measured 

cover was relatively low or high, respectively, i.e. a “false moderating effect”. Accuracy 

was greater and improved with newer versions of RAP (+ 0.05 to 0.29 r2) compared to 

RCMAP and USGS fractional model estimates, and in some cases was greater than field-

based models. Variability in map agreement tended to decrease with larger areas sampled 

(particularly in areas > 12km), and this scale dependency was more evident in RAP and 

USGS-fractional-EAG models. Creating a “fair” basis for comparison of spatial models 

of low-statured semiarid vegetation derived from satellite compared to field data is not 

trivial because scaling the field data to the scale of large satellite pixels (or downscaling 

satellite-based models to field scale) requires modeling and associated model uncertainty. 

Accuracy can vary considerably and understanding the variation can help guide 

application of the models to the appropriate time, place, and variables. 

Introduction 

Maps of plant abundance are fundamental to terrestrial ecology and management, 

such as evaluating vegetation responses to disturbance, weather, or management (e.g. 

Elmore et al. 2003, Costello and Kenworthy 2011, Bradley et al. 2018). The spatial 

models used to generate maps of the distribution and abundance of plant types can be 

created by 1) collecting field-data at point locations and interpolating values across 

landscapes (e.g. Mkrtchyan 2004), 2) using field-data to train predictive models of cover 

based on environmental covariates (e.g. McNellie et al. 2021), 3) modeling plant cover 

based on spectral reflectance measured with remote sensing, often from satellites (e.g. Yu 
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et al. 2014, Boswell et al. 2017), or 4) some combination of these methods (e.g. Miller 

2005, Wilson et al. 2011, Xu et al. 2018, Barnard et al. 2019).  

Knowing the reliability of satellite-based vegetation models is essential for their 

appropriate application in land management and science, and estimating the underlying 

error requires comparison to field-based estimates of vegetation (Ludwig et al. 2007). 

However, field-based plant inventory cannot match the complete landscape coverage 

provided by remote sensing, and ground-based monitoring is often insufficient to create 

accurate maps of species or functional group abundance that are comparable to those 

generated from remote sensing, considering their commonly large pixel sizes (e.g. 30 m; 

Lechner et al. 2012, Valley 2016, Bradley et al. 2018). Creating a fair basis for 

comparison of field- to satellite-based vegetation models thus requires either downscaling 

satellite data from large pixels to field points, and/or using interpolative modeling to 

upscale field point data to the pixel, or pixel-cluster level (Ludwig et al. 2007, Wilson et 

al. 2011, Barnard et al. 2019). Both upscaling and downscaling introduce model 

assumptions and error to the accuracy assessments (Dark & Brom 2007, Lechner et al. 

2012). Accuracy of vegetation models and maps is also expected to vary with the scale of 

model application, typically negatively (Ludwig et al. 2007), and among vegetation types 

and contexts. In many systems, we still lack an understanding of how scale and landscape 

heterogeneity affect agreement between field data and satellite-derived data.  

Vegetation maps derived from models based on satellite data are particularly 

valuable in the vast semiarid rangeland landscapes that cover a substantial portion of the 

terrestrial earth, where field-based data tend to be scarcest. Stressors such as climate 

change, altered wildfire regimes, and exotic plant invasions can entail rapid vegetation 
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changes over large areas that transgress jurisdictional or ecological boundaries (e.g. 

Beever et al. 2019). Semiarid landscapes seem to be suited to remote sensing, partly 

because aridity confers less complications of cloud cover for remote-sensing data capture 

(Hansen and Loveland 2012). However, there are also challenges to employing remote 

sensing classification techniques on semiarid rangelands. Low canopy cover results in 

increased noise from bare soil and discriminating between different functional groups or 

species can be challenging because of similar spectral properties of the vegetation (Smith 

et al. 1994, Mansour et al. 2012, Smith et al. 2019). These challenges can be particularly 

prominent during early post-fire successional stages, which happens to be a context 

where rapid assessment of large areas possible with satellite-based vegetation models is 

particularly needed (Applestein & Germino 2021). Moreover, high dominance of 

temperature and moisture on variability in plant growth in dry environments means that 

even subtle topographic or edaphic differences can cause important spatial variation in 

species’ abundances (Passey et al. 1982, Mitchell et al. 2017). The temporal overlap of 

suitable moisture and temperature needed for growth each year can be narrow, causing 

the green and remotely sensible presence of herbaceous or deciduous leaves to happen 

quickly, often a month or few weeks (Svoray et al. 2013).  Thus, the relatively high 

frequency of data capture made simultaneously over large areas by satellite sensors such 

as Landsat make them indispensable tools for assessing broadscale vegetation patterns in 

semiarid settings.  

Three new satellite-derived products for mapping functional group cover back in 

time are now available for western United States rangelands and related semiarid 

landscapes. They include the USDA Rangeland Analysis Platform (RAP) cover for 
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annual herbaceous, perennial herbaceous, shrubs, trees, and bareground (Allred et al. 

2021), USGS Rangeland Condition Monitoring Assessment and Projection (RCMAP) 

time-series for annual herbaceous, bare ground, herbaceous, litter, non-sagebrush shrub, 

perennial herbaceous, sagebrush and shrub (Rigge et al. 2021), and a USGS-produced 

fractional estimate of exotic annual grass cover (Devendra et al. 2021). RAP and 

RCMAP are novel in their large-scale coverage, temporal completeness (30+ years), 

dispersed ground truthing, and scaling relevant to management applications. The USGS-

produced fractional estimates address a different need; they are produced as real-time 

data for immediate land management action. These products have been increasingly used 

for land management applications, despite limited assessments of scale of applicability.  

We capitalized on an intensively field-sampled landscape that offered a rare 

opportunity to attain high-accuracy upscaling for comparison to satellite-derived 

vegetation maps for understanding changes in accuracy and map agreement across time, 

scales, and landscape heterogeneity.  

We asked: 

1) How does accuracy compare between field-based and satellite-derived map 

models, does accuracy change over time?  

2) How does map agreement between our field-based and each satellite-derived 

map model product change with the scale of aggregation (scaling up)?  

3) How does map agreement between satellite-derived and field-based model 

maps relate to spatial co-variates (e.g., topography of pastures) and time (e.g. 

time-since-fire disturbance)? 
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We expected that out-of-sample point accuracy would be higher for field-based 

than satellite-derived map models. We expected agreement between field-based and 

satellite-derived maps to increase with: 1) larger scale of aggregation (larger sample 

area), 2) more time since fire, and 3) with less topographic heterogeneity of focal areas. 

Moreover, we anticipated that modeling versioning changes, which are typical and 

ongoing for many or most modeling efforts, would lead to greater accuracy. 

Materials and Methods  

Field data collection  

The study landscape was 113,000 ha of sagebrush steppe that burned in the 2015 

Soda Wildfire in Idaho and Oregon USA, which was a nearly unpopulated rangeland 

setting with considerable topographic variation including mountains, basins, plateaus, and 

canyons (Fig. 1).  The Boise District Bureau of Land Management (BLM) conducted 

several imazapic herbicide applications, aerial seeding of grasses, sagebrush, and forbs, 

and drill seeding of perennial bunchgrasses between 2015 and 2018 to stabilize the soil, 

improve sage-grouse habitat, reduce risk of invasion by exotic annual grasses, and 

increase resilience to future fires. Some areas were treated multiple times. Training data 

collection occurred between mid-April and October in 2016 and between late-April and 

mid-August in 2017-2020. Plot location coordinates were generated via a stratified-

random method at 1 plot per 54.5 ha or denser and were moved if they overlapped roads, 

had >20% trail area within an 18-m radius, or fell within 0.40 km of water troughs or 

ponds.  Plot locations were recorded using a Juniper Mesa 3 tablet (typical accuracy ~ 

3m). In 2016, to quantify the percent cover of each species, we took aerial photographs of 

6-m2 of rectangular areas around the plot center captured from nadir at 2-m height (with 
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Nikon Coolpix AW130, 16 megapixel). We then analyzed species cover using the grid-

point intercept (GPI) software, Samplepoint (v 1.43, Booth et al. 2006), via visual 

interpretation based on a list of species collected in the field. Training data collection was 

similar in 2017-2020, however, in order to adjust for parallax distortion on plants as they 

grew taller each year since fire, we took two overhead photographs instead of one (the 

second photograph at 5.5m directly south of the first) and cropped each photograph to a 

3m2 area. We used 100 points/image for the single photo analysis in 2016 and 49 

points/image for a total of 98 points per plot for the double photo analysis in 2017-2020. 

We then aggregated species cover into functional group (annual herbaceous, perennial 

herbaceous, and shrub) cover for the purpose of analysis. 

Two additional, independent test datasets collected between 2016-2020 were 

available to assess accuracy of our maps and compare them with satellite-based products 

(see Germino et al. 2018, other datasets unpublished). Test data were composed of 

samples using the same Samplepoint-GPI described above. The first set of data was 

collected for a study to assess sagebrush seed source effects and was composed of plots 

that were well-distributed across the fire from 2016-2018 (n = 418 for 2016, n = 513 for 

2017, and n = 450 for 2018), and the second set of data was collected to assessment 

treatment layering effects in 2020 (n = 141) (Fig. 1). Test data in 2016 was collected 

during peak phenological conditions (in the same weeks as the satellite imagery and 

field-training data set), whereas test data collected in 2017-2020 was collected primarily 

in August, weeks after peak phenological conditions but when cover is readily identified 

and similar to peak season. We excluded one test plot from 2016 that was composed of 

>80% shrub cover (all other plots had <20% shrub cover).  
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Figure 3.1 a. Location of study area shown on the continental United States with 

a red box. b. Location of training points (repeatedly sampled) with 2016 annual 
herbaceous cover. c. Locations of test points with 2016 perennial grass cover.   

Annual and perennial herbaceous cover displayed in tiles b and c were derived 

using empirical Bayesian kriging regression (EBK). 

Mapping functional groups  

Empirical Bayesian kriging (EBK) regression is a geostatistical fusion method 

which combines ordinary least squares regression (OLS) with kriging; explanatory 

landscape variables are used to predict the dependent variable mean, while the error is 

modeled with a semivariogram describing the strength of the correlation between 

locations of different distances (Krivoruchko and Gribov 2019). This combination 

approach can make more accurate predictions than either regression or kriging 

individually. For each functional group and year, we conducted an EBK regression in 

ArcGIS Pro at 31.5 m pixel resolution with the following covariates used as predictors: 

mean annual precipitation (800m pixels, monthly PRISM data), heatload (calculated from 
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USGS Elevation DEMs, 31.5m pixels), number of herbicide treatments (derived from 

vector data and set at 10m pixels), and number of drill treatments (derived from vector 

data and set at 10m pixels). The resolution of the EBK regression was set to match the 

heatload data raster grid and was chosen because it was similar to the 30m pixel size of 

RAP, RCMAP, and USGS-produced fractional estimate data (as opposed to the scale of 

800m PRISM data). In the EBK routine in ArcGIS Pro, predictor variables are 

transformed into their principal components prior to the least-squares regression. The 

dependent variable was log empirically transformed (with a constant – 0.01 added to all 

values to remove zeros), the semivariogram model type was K-Bessel, the minimum 

neighbors was set at 5 and the maximum neighbors was set at 15. The resulting maps 

were constrained to be between 0 and 100 percent cover.  

Accuracy 

We extracted the pixel value of the test plot location from each field-based and 

satellite-derived map model product and calculated r2 values between the field data and 

singular pixel value.   

Scaling effects on map agreement between field-based and satellite-derived models 

We evaluated how satellite-to-field modeled map agreement varied at different 

scales, specifically for 1000 randomly centered samples ranging in circular area from 0.2-

44 km2, specifically using 15 different radii ranging from 0.25-3.75 km, located entirely 

within the boundary of Soda Fire, using ArcMap 10.1. The 3.75 km cutoff was chosen as 

the largest size area that would allow five non-overlapping samples to fit within the fire 

boundary. The pool of samples was then filtered to eliminate same-size samples that 

overlapped. Next, we used the zonal.stats function in the SpatialEco package to calculate 
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the mean functional group cover in each sample area for both our field-based and the 

satellite-derived map models. We then calculated the average difference, standard 

deviation, and relative standard error between the field-based and remote-sensing maps 

for each polygon size.  

Landscape variability effects on map agreement 

To assess how landscape variability affected agreement between maps, we 

assessed functional group cover at the pasture level (n=101, mean = 1457 ha, stdev = 

1562 ha), a spatial scale widely applicable to management decisions across western 

United States rangelands. A previous study on the same area found that the mean and SD 

of elevation and slope and pasture size were important sources of heterogeneity among 

pastures, and thus they were used as our “landscape variables” (Applestein et al. 2017). 

We calculated the difference in mean cover and the mean and SD of the landscape 

variables between the satellite- and field-based maps, for each pasture within the Soda 

wildfire using the zonal.stats function in R. Linear mixed models were used to determine 

the significance of the satellite-to-field model map differences to the landscape variables 

for sampling year and cover type. We included time since fire as an additional variable to 

assess map agreement over time. Pasture identity was included as a random intercept 

effect to account for resampling and thus avoid pseudoreplication (repeated polygons 

each year). 
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Results 

Accuracy assessment: comparison of map model estimates to test field data 

The patterns in accuracy of models relative to field test data were generally 

similar among the years (Fig. 2 compared to Appendix C), so we focus here on the 

variability in modeled compared to plot-scale field test data in 2016. Slopes of the 

relationships of cover determined in the field with satellite-derived or field-derived model 

estimates of cover (x and y, respectively) were typically much smaller than one, and had 

positive intercepts. This indicated that vegetation cover was generally overestimated by 

the models, especially the satellite-derived models, relative to field data when cover was 

low, and conversely under-estimated by the models when cover was high (Fig 2). Shrub 

cover was extremely sparse and patchy, especially in 2016, and was not well represented 

by any models, including the field-based maps (Fig 2). After then, from 2017-2020, r2 

tended to be greatest for the RAP estimates compared to field plots, except for perennial 

herbaceous cover in 2018 (i.e., in 8 of 9 comparisons for annual or perennial herbs or 

bareground; Table 1, Appendix C Fig. C.1-C.3). Field-based maps were nearly always 

more accurate than RCMAP and the USGS fractional cover estimates, often by 2x or 

more, for all plant types except shrubs (2017-2020) and bareground in 2020 (Table 1). 

Model accuracy was much lower in the reduced sample set of 2020 compared with 2016-

2018 (Table 1).  

Version 2 of RAP was more accurate than the version 1 map at predicting test 

data cover for all functional groups and years, except shrubs in 2018 (Fig. 3). 

Specifically, increases in r2 among the RAP versions ranged from 0.05 for bareground in 

2016 and 2017, to 0.29 for annual herbaceous cover in 2018. Version 2 of RCMAP had 
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greater accuracy than version 1 for bareground in 2016 (increase in r2 =0.003) and 

perennial herb and shrub cover in 2017 (increases in r2 of 0.13 and 0.03, respectively; Fig. 

3). Otherwise, there were no other accuracy improvements and several reductions in 

accuracy, for other functional groups in other years.   

 
Figure 3.2 Relationship of satellite- or field-derived modeled vegetation cover (Y) 

to test field data (X) in 2016.   

Models included the Rangeland Analysis Platform (RAP, a through d), Rangeland 

Condition Monitoring Assessment and Projection (RCMAP, e through h), a field-based 

benchmark map (i through l & n), or the USGS fractional cover estimate (m). The 

diagonal dashed line on each plot shows the one-to-one correspondence (perfect 

accuracy) and the blue line shows the linear regression line fit for each functional group. 
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Table 3.1 Out-of-sample R2 values for the comparison of cover estimates from 
spatial models to field test data that were set aside a priori and thus not used to 
parameterize the models. 
RAP is Rangeland Analysis Platform, and RCMAP is Rangeland Condition Monitoring 
Assessment and Projection. 

Spatial model type,  Cover type Year 

    Data source   2016 2017 2018 2020 

Field-based,      

Empirical Bayesian Kriging 
Regression   Annual Herbaceous 0.52 0.24 0.30 0.03 

 Perennial Herbaceous 0.49 0.38 0.32 0.03 

 Bareground 0.53 0.30 0.30 0.04 

 Shrub 0.20 0.02 0.00 0.00 

 Exotic Annual Grass 0.53 0.24 0.29 - 

Satellite-based,      

   RAP (Version 2) Annual Herbaceous 0.36 0.31 0.54 0.26 

 Perennial Herbaceous 0.18 0.46 0.23 0.16 

 Bareground 0.20 0.42 0.40 0.29 

 Shrub 0.08 0.03 0.02 0.02 

   RCMAP (Version 2) Annual Herbaceous 0.12 0.01 0.12 0.10 

 Perennial Herbaceous 0.03 0.16 0.05 0.00 

 Bareground 0.00 0.01 0.16 0.19 

 Shrub 0.01 0.05 0.00 0.03 

   Fractional Estimate USGS Exotic Annual Grass 0.16 0.08 0.19 - 

 Annual Herbaceous - - - 0.00 
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Figure 3.3 Differences in r2 values for vegetation cover between the original and 
updated versions of Rangeland Analysis Platform (RAP) or Rangeland Condition 

Monitoring Assessment and Projection (RCMAP) in 2016 (a and d), 2017 (b and e), 
and 2018 (c and f).  

Blue and red indicate an improvement or reduction in accuracy. “Ann Herb” is annual 

herbaceous cover, “Per Herb” is perennial herbaceous cover.  

Map agreement between field-based and satellite-derived models at different scales 

Standard deviations and especially relative standard errors (RSE) of the difference 

between satellite- and field-derived model estimates became closer to zero with increased 

size of polygons (and, thus, number of pixels) for which the comparisons were made, 

especially in the RAP and USGS fractional cover estimates of annual grasses (Figs. 4-6). 

Variability (given by standard deviations and RSE) in differences between RCMAP and 

field-based maps did not consistently decrease with greater scale and was extremely high 

at some scales, particularly in 2016. These high RSE values resulted in many cases from 
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mean cover differences being close to zero (numerator) but having high variability 

between samples (denominator).  

In many combinations of year and cover type, RSE decreased most as the sample 

radii increased to ~2-3 km (Fig. 4-6). Exceptions included RAP estimates of annual 

herbaceous cover in 2018 and all RCMAP estimates in 2016 except shrub cover (Figs. 4, 

5). RAP estimates of plant cover were ~5-10 percentage points (i.e. difference between 

percentages) greater compared to field-based model maps, whereas estimates of 

bareground progressively ranged from 20 (in 2016) to 5 percentage points (in 2020) 

lower than field-based model maps (Fig. 4). RCMAP estimates of plant cover were 

initially (in 2016) on average very similar to field-based estimates of herb cover and bare 

soil and ~6 percentage points different for shrubs, but the differences increased in 

subsequent years to ~12 percentage points greater for annual herbs, shrubs, and bare soil, 

and ~15 percentage points less for perennial herbs (Fig. 5). USGS-fractional-EAG 

estimates of annual grasses or herbs were 10-15 percentage points greater than field 

model estimates (Fig. 6). 
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Figure 3.4 Mean ± 1 SD difference in vegetation cover as Rangeland Analysis 

Platform (RAP) cover minus field-based modelled cover (black), and relative 
standard error (red)., across a gradient of sample-area sizes.  

Each row of panels is a functional group, from top-to-bottom: annual herbaceous (Ann 

Herb), perennial herbaceous (Per Herb), bareground, and shrubs. Each column is a 

sampling year, from 2016 to 2020.   
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Figure 3.5 Mean ± 1 SD difference in vegetation cover as Rangeland Condition 

Monitoring Assessment and Projection (RCMAP) cover minus field-based modelled 
cover (black), and relative standard error (red), across a gradient of sample-area.  

Each row of panels is a functional group, from top-to-bottom: annual herbaceous (Ann 

Herb), perennial herbaceous (Per Herb), bareground, and shrubs. Each column is a 

sampling year, from 2016 to 2020. Bareground RSE in 2016 for sample areas with 0.25 

km radiuses was >20,000% owing to a mean difference near zero but high variation (not 

shown). 
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Figure 3.6 Mean ± 1 SD difference in exotic annual grass cover (or annual 

herbaceous in 2020) as the USGS fractional cover minus field-based modelled cover 
(black), and relative standard error (red), across a gradient of sample-area sizes.  

Landscape heterogeneity and map agreement 

Whether and how pasture-level cover differences between the satellite- and field-

based models related to landscape variables depended on the identity of plant type and 

satellite-based model (Figs. 7-9). There was not enough variance in RCMAP shrub cover 

map differences to fit a landscape heterogeneity model. Marginal pseudo-r2 values 

(variance described by fixed effects only) for the linear mixed models describing the 
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difference between RAP and field-based map vegetation cover were 0.065, 0.101, 0.364, 

and 0.375 for annual herbaceous, perennial herbaceous, bareground, and shrub cover, 

respectively. Marginal pseudo-r2 values for the linear mixed models describing the 

difference between RCMAP and field-based map vegetation cover were 0.40, 0.35, and 

0.40 for annual herbaceous, perennial herbaceous, and bareground, respectively. The 

marginal pseudo-r2 value for the linear mixed models describing the difference between 

USGS fractional cover estimates and field-based map vegetation cover was 0.16 for 

exotic annual grass cover (annual herbaceous in 2020). 

 
Figure 3.7 Linear-mixed modelled relationships of differences in cover as the 

Rangeland Analysis Platform (RAP) cover minus field-based modeled cover (Y) to 
landscape variables (X), using pastures as the unit of analysis.  
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Variables for each pasture included mean and standard deviation (stdev) of elevation or 

slope, pasture size and year. Lines are average marginal effects and shaded ribbons are 

95% confidence intervals.  

 
Figure 3.8 Linear-mixed modelled relationships of differences in cover as 

Rangeland Condition Monitoring Assessment and Projection (RCMAP) cover 
minus field-based modelled cover (Y) landscape variables (X), using pastures as the 

unit of analysis.  

Variables for each pasture included mean and standard deviation (stdev) of elevation or 

slope, pasture size and year. Lines are average marginal effects and shaded ribbons are 

95% confidence intervals. Relationships for shrubs are not shown because there was not 

enough variance in shrub cover differences to assess landscape variability effects on 

model agreement.  
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Figure 3.9 Linear-mixed modelled relationships of differences in exotic annual 
grass (annual herbs for 2020) cover as USGS fractional cover minus field-based 

modelled cover (Y) to landscape variables (X), using pastures as the unit of analysis.  

Variables for each pasture included mean and standard deviation (stdev) of elevation or 

slope, pasture size and year. Lines are average marginal effects and shaded ribbons are 

95% confidence intervals.  

Model differences for annual herbs were positively related to elevation for all 

models, increasing from 2 to 10 percentage points for RAP (p = 0.02) and from 4 to 25 

percentage points for USGS fractional estimates (p = 0.003) as elevation increased from 

750 to 1800 m elevation (Figs. 7, 9), whereas the differences changed strongly in sign 

and magnitude from -18 to +24 percentage points across these elevations for RCMAP (p 

<0.001, Fig. 8). Model differences in annual herb cover showed inconsistent responses to 

increased standard deviation in elevation, with RAP and RCMAP predicting slight 

increases in annual herb cover as standard deviations increased (<10% change as standard 
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deviations increased from 0 to 200 m) and USGS fractional estimates predicting strong 

decreases in exotic annual grass cover (~20% as standard deviations increased from 0 to 

200 m). Slope (average and standard deviation) had no effect on annual herb cover map 

differences for RAP and RCMAP (p>0.05) but slope standard deviation was positively 

related to annual herb differences for USGS fractional estimates; differences increased 

and changed sign from -9 to 40 percentage points as standard deviation of slope increased 

from 0 to 12 degrees (p = 0.003, Fig. 9). Pasture size was not related to annual herb cover 

differences (p > 0.05 for all comparisons).  

Model differences for perennial herbs were negatively related to average elevation 

and elevation standard deviation and sometimes changed sign across elevational ranges. 

Model differences decreased from 13 to 5 percentage points for RAP (p < 0.001) and 

from 4 to -24 percentage points for RCMAP (p < 0.001) as elevation increased from 750 

to 1800 m and from 11 to 3 percentage points for RAP (p = 0.05) and from -9 to -18 

percentage points for RCMAP (p = 0.03) as standard deviation in elevation increased 

from 0 to 230 m. Model differences for perennial herb cover decreased with increasing 

slope variability: from 14 to 3 percentage points for RAP (p = 0.04) and from 0 to 22 

percentage points for RCMAP (p < 0.0001) as standard deviation in slope increased from 

0 to 12 degrees (Fig. 7,8). Perennial herb model differences were unrelated to average 

slope for RAP (p = 0.09) but increased from -20 to -2 percentage points as slope 

increased from 0 to 20 degrees from RCMAP (p = 0.002). Model differences for 

perennial herbs increased with larger pasture size, from 8 to 15 percentage points for 

RAP (p = 0.04) and from -13 to near parity (< -1 percentage point) for RCMAP (p = 

0.005) as pasture size increased from 0 to 100 km2 (Fig. 7,8).  
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Model differences in bareground cover were negatively related to average 

elevation but not with standard deviation in elevation. Model differences decreased from 

-12 to -16 percentage points for RAP (p = 0.05) and from 15 to near parity (< -1 

percentage point) for RCMAP (p = 0.05) as elevation increased from 750 to 1800 m (Fig. 

7 and 8). Model differences for RAP increased from -19 to -10 percentage points as slope 

standard deviation increased from 0 to 12 degrees, but there were no other relationships 

found between slope and bareground model differences (p > 0.05 for all other 

comparisons). Model differences of bareground cover for RAP decreased with larger 

pasture area from -13 to -22 percentage points (p = 0.003) and from 8 to 1 percentage 

point for RCMAP (p=0.06) as pasture size increased from 0 to 100 km2 (Fig. 7,8).  

 Model differences in shrub cover for RAP increased from 4 to 9 percentage 

points as average elevation increased from 750 m to 1800 m (p < 0.001) and decreased 

from 8 to 3 percentage points as elevation standard deviation increased from 0 to 230 m 

(p < 0.001) (Fig 7) and decreased estimated for RAP shrub cover by 2.3% (p < 0.001) per 

100 m increase in standard deviation in elevation (Fig. 7 and 8). Model difference in 

shrub cover for RAP increased from 4 to 9 percentage points as average slope increased 

from 0 to 20 degrees (p = 0.002) but slope standard deviation had no effect on shrub 

cover differences (p = 0.17) (Fig. 7). Model differences in shrub cover for RAP also 

increased from 6 to 9 percentage points as pasture size increased from 0 to 100 km2 (p = 

0.04) (Fig. 7).   

RAP map agreement for perennial herbaceous cover did not change over time (p 

= 0.40). RAP map estimate differences with field-based maps for bareground and annual 

herbaceous cover progressively became closer to zero over the five years of analysis. For 
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bareground, RAP estimates increased compared with field-based maps from -20% to 8 

percentage points between 2016 and 2020 (p < 0.001) and for annual herbaceous cover 

RAP estimates decreased 8 to 4 percentage point during these years (p < 0.001, Fig. 7). 

Shrub cover overestimation by RAP maps increased from 6 to 8 percentage points 

between 2016 and 2020 (p < 0.001, Fig. 7). RCMAP map estimate differences with field-

based maps diverged from zero for all functional groups over the five years of analysis.  

RCMAP map differences for annual herbaceous cover increased from near parity to 8 

percentage points in 2020, for perennial herbaceous from -8 to 14 percentage points, and 

for bareground from 1 to 13 percentage points between 2016 and 2020 (p < 0.001 for all 

comparisons, Fig. 8). USGS fractional estimate differences showed a slight trend towards 

parity over time with cover differences decreasing from 18 to 15 percentage points 

between 2016 and 2020 (p = 0.004).  

Discussion 

Our study addressed key questions for applying spatial vegetation models derived 

from satellite data to ecological and land-management problems with a focus on the most 

basic and commonly used parameter, plant-cover. Our analysis revealed that determining 

accuracy of spatial vegetation models derived from satellite data such as Landsat is not 

trivial, because field data must be upscaled in order to create a fair comparison of the data 

sources, and, thus, error is introduced into the benchmark needed for estimating 

vegetation model accuracy. We found that both accuracy and model agreement between 

satellite-derived maps and benchmark field-based maps was highly variable and varied 

with plant cover type, model versioning, scale, and topographic heterogeneity. Thus, 

accuracy and model agreement are dynamic and contextual to the user’s application in 
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ways that cannot be satisfied with a singular estimation of error or accuracy of a spatial 

vegetation model. 

Accuracy 

Only up to about half of the variance in our benchmark model of vegetation cover 

derived from the intensive field sampling could be accounted for in our test assessment of 

its accuracy, meaning there was considerable imperfection in the benchmark data we 

used to evaluate the satellite-derived models. In some cases, RAP ver. 2 had greater 

accuracy than field-based models. Ground observers can detect fine-scale characteristics 

unobservable to a satellite, but variation between observers can add additional uncertainty 

to field data (e.g. Spanhove et al. 2012). Furthermore, in highly heterogeneous areas, a 

6m2 area may not be representative of a 900m2 area (when comparing field to pixel data) 

and vice versa. A prior study in burned and treated sagebrush steppe indicated that 

between 6 and 9 3m2 GPI quadrats were generally sufficient to represent a 1 ha area 

(Pilliod and Arkle 2013), so we might expect 2 GPI quadrats to represent a 0.09 ha area 

(the area of a 30m pixel) reasonably well on average. However, future studies could 

compare more GPI quadrats per pixel to assess whether there is a threshold number of 

subsamples needed to obtain greater concordance. All maps predicted annual or perennial 

herb cover or bare ground cover with much greater accuracy than shrub cover. Annual 

herbs typically have rapid initial colonization of burned and other disturbed areas, and 

many perennial bunchgrasses (comprising the dominant component of the perennial 

herbaceous community) can resprout quickly, but shrubs such as big sagebrush cannot 

resprout and shrubs that can resprout are slower to regenerate (Davies et al. 2012). As a 

result, shrub recovery is typically very patchy (Germino et al. 2018), which often requires 
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high-resolution aerial or satellite imagery to capture (e.g. 1 m2, Sant et al. 2014, Rasanen 

& Virtanen 2019). Consider that a 2x3 m photo area with two individual shrubs could 

contain > 70% shrub cover, while a 30 x 30 m pixel could almost never have more than 

5% in a recently burned area and most often will have <1%. RAP and RCMAP classify 

cover in terms of whole percentage points but at the landscape level, big sagebrush (the 

dominant shrub) cover may be <1% for several years post-fire (Porensky et al. 2018, 

Applestein & Germino 2021). Also, a large range of seedling densities can occur in pixels 

that have cover ranging from 0-1%, and the differences could determine long-term 

population extirpation or sustained growth (Shriver et al. 2019). Thus, remote-sensing 

map products display spatial coarseness relative to the grain of shrub patchiness and the 

establishment processes relevant to postburn recovery across the landscape.  

All maps, including the field-based maps (to a lesser extent), suffered from a 

“false moderating effect” (Applestein & Germino 2021) in which cover was 

overestimated where field-estimates of cover were low, and underestimated where cover 

was relatively high. This effect is attributable to the “modifiable areal unit problem” 

(MAUP) because data from point locations deviating significantly from the surrounding 

neighborhood are less evident as the data are aggregated with neighboring locations 

(Fotheringham & Wong 1991, Dark & Brom 2007). For land management 

considerations, the consequences of overestimation of low abundances are often much 

greater than underestimation of high abundances. Decisions related to land management 

are frequently triggered by lower-end thresholds; for instance, application of an herbicide 

where exotic plants are beginning to invade, or additional seeding if a desirable 

functional group has low cover (Pyke et al. 2002, Briske et al. 2006). Therefore, more 
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intensive field monitoring may be needed in situations where low cover of a functional 

group is expected and knowing that cover with a high degree of precision is needed for 

management decisions. Indeed, a previous analysis of sample size on the Soda wildfire 

showed that when cover of exotic annual grass or perennial bunchgrass was low, more 

samples were needed to reduce variance to an acceptable level of precision for each 

respective cover type (Applestein et al. 2018).  

Map agreement across scale 

Our point accuracy assessments were a conservative estimate of accuracy because 

our test data was much finer scale than our map data. Therefore, we also assessed map 

agreement between satellite and field-derived maps as both were scaled-up to larger and 

larger units. Sagebrush-steppe rangelands, particularly burned areas, are examples of 

ecosystems where small differences in landform (and thus resulting microclimates) can 

result in important differences in species composition across a landscape (Passey et al. 

1982, Mitchell et al. 2017). Theoretically, when plant abundances are aggregated over 

increasingly larger spatial scales, we would expect the influence of microsite to decline 

and thus, more agreement between different methods of mapping (satellite-derived or 

field-based models). Such a pattern would suggest that functional group cover can be 

considered a “type I” metric as defined by Wu (et al. 2002): a metric that has a 

predictable response to changing scale (as opposed to a staircase like or erratic response).  

Variance in map agreement generally decreased with greater aggregation of pixels 

(larger scale), but some idiosyncrasies in scaling relationships were evident. Differences 

between RCMAP and field-based maps in the first year after fire (2016) showed 

seemingly random “spikes” in sample error at a variety of different scales and RCMAP 
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overestimation of shrub cover increased in later years (2019 and 2020). This finding 

extends the analysis of a smaller study focused on sagebrush cover assessment of a 

version 1 of RCMAP, where commission error was much more frequent several years 

after fire than it was initially (Applestein & Germino 2021). It suggests that as vegetation 

recovers post-fire, RCMAP may misclassify other functional groups as shrub or 

sagebrush cover. Overall, RAP and the USGS fractional estimates showed more 

consistent and predictable scaling effects when compared with field-based maps than did 

RCMAP.  

Map agreement across heterogeneous landscapes  

Topographic heterogeneity (in elevation and slope) can introduce additional noise 

into remote-sensing measurements, as well as shape plant community distributions 

(Myneni et al. 1995, Jin et al. 2008). We therefore asked if topographic metrics could 

help us explain variance in differences between field-based and remotely sensed maps. 

We did find some consistent trends where the remote-sensing maps tended to estimate 

annual herbaceous cover as higher and perennial herbaceous cover as lower with greater 

topographic heterogeneity (higher elevation and more variation in elevation and slope 

across a pasture) when compared with field-based maps. This suggests that in higher 

elevation and more topographically diverse areas of the landscape additional field plots 

may be needed for monitoring annual herbaceous cover, while more plots may be needed 

in lower elevation, less topographically diverse areas when monitoring perennial 

herbaceous cover. This finding largely agrees with a previous study considering field 

sample size for annual and perennial grasses (Applestein et al. 2018).  

Conclusions 
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For some vegetation cover variables and certain models, satellite-derived maps 

can have an accuracy that rivals field-based maps in post-fire landscapes. However, care 

and supplementary field data are recommended when greater precision is needed, such as 

determining whether to undertake a management action based on threshold cover of 

vegetation or when high or low amounts of the vegetation are involved (e.g., incipient 

invasions).  Rather than reliance on either satellite or field data, combining them may 

help overcome their tradeoffs and may most efficiently result in the most accurate maps 

(Barnard et al. 2019). Applications of spatial models of vegetation are best guided by 

error estimates, and the data presented here suggest that the tendency of accuracy or error 

to be communicated with a singular term (e.g. 6% accurate) will often be inadequate. 

Maps of model uncertainty are sometimes provided with spatial models of vegetation, 

which are useful, but they do not necessarily capture the error associated with match to 

ground conditions. We propose that providing a suite of accuracy estimates for 

representative functional group and environmental contexts with each model will provide 

end users with a starting point from which to gauge how model or map error relates to 

their application. 

Acknowledgements 

Funding was provided by the Bureau of Land Management, USGS Climate 

Adaptation Science Centers, and the Joint Fire Science Program. The Soda Wildfire 

monitoring technician crew collected field data under the co-leadership of Matt Fisk, in 

collaboration with the Boise and Vale District BLM Offices. No conflict of interest has 

been declared. Any use of trade, firm, or product names is for descriptive purposes only 

and does not imply endorsement by the U.S. Government. 



110 

 

REFERENCES 

Abatzoglou, J.T., and C.A. Kolden. 2011. Climate change in Western US deserts: 

Potential for increased wildfire and invasive annual grasses. Rangeland Ecology 

and Management 64(5): 471-478.  

Adeyeri, O.E., F.O. Akinluyi, and K.A. Ishola. 2017. Spatio-temporal trend of vegetation 

cover over Abuja using Landsat datasets. International Journal Environmental 

Research 3(3) 3084-3100. 

Adler, P.B., J. HilleRisLambers, and J.M. Levine. 2009. Weak effect of climate 

variability on coexistence in a sagebrush-steppe community. Ecology 90(12): 

3303-3312. 

Allred, B.W., Bestelmeyer, B.T., Boyd, C.S., Brown, C., Davies, K.W., Duniway, M.C., 

Ellsworth, L.M., T.A. Erickson, S.D. Fuhlendorf, T.V. Griffiths, V. Jansen, M.O. 

Jones, J. Karl, A. Knight, J.D. Maestas, J.J. Maynard, S.E. McCord, D.E. Naugle, 

H.D. Starns, D. Twidwell and D.R. Uden. 2021. Improving Landsat predictions of 

rangeland fractional cover with multitask learning and uncertainty. Methods in 

Ecology and Evolution, 12(5): 841-849. https://doi.org/10.1111/2041-210X.13564 

Anderson, J.E., and R.S. Inouye. 2001. Landscape‐scale changes in plant species 

abundance and biodiversity of a sagebrush-steppe over 45 years. Ecological 

Monographs 71(4): 531-556. 

Anderson, J.E., and K.E. Holte. 1981. Vegetation development over 25 years without 

grazing on sagebrush-dominated rangeland in southeastern Idaho. Rangeland 

Ecology and Management 34(1):25-29. 

Applestein, C., M.J. Germino, D.S. Pilliod, M.R. Fisk, and R.S. Arkle. 2018. Appropriate 

sample sizes for monitoring burned pastures in sagebrush-steppe: how many plots 

are enough, and can one size fit all? Rangeland Ecology and Management 71(6): 

721-726.  



111 

 

Applestein, C. and M.J. Germino. 2021. Detecting shrub recovery in sagebrush steppe: 

comparing Landsat-derived maps with field data on historical wildfires. Fire 

Ecology, 17(1): 1-1. https://doi.org/10.1186/s42408-021-00091-7 

Ashley, M.V. 2010. Plant parentage, pollination, and dispersal: how DNA microsatellites 

have altered the landscape. CRC Crit Rev Plant Sci 29(3):148-61. 

https://doi.org/10.1080/07352689.2010.481167 

Barnard, D.M, M.J. Germino, D.S. Pilliod, R.S. Arkle, C. Applestein, B.E. Davidson, and 

M.R.  Fisk. 2019. Cannot see the random forest for the decision trees: selecting 

predictive models for restoration ecology. Restoration Ecology, 27(5): 1053-1063. 

https://doi.org/10.1111/rec.12938 

Beck, J.L., J.W. Connelly, and C.L. Wambolt. 2012. Consequences of treating Wyoming 

big sagebrush to enhance wildlife habitats. Rangeland Ecology and Management 

65(5):444-55. https://doi.org/10.2111/REM-D-10-00123.1 

Beever E.A., D. Simberloff, S.L. Crowley, R. Al‐Chokhachy, H.A. Jackson, S.L. 

Petersen. 2019. Social–ecological mismatches create conservation challenges in 

introduced species management. Frontiers in Ecology and the Environment 

17(2):117-125. https://doi.org/10.1002/fee.2000 

Bohrer, G., G.G. Katul, R. Nathan, R.L. Walko, and R. Avissar. 2008. Effects of canopy 

heterogeneity, seed abscission and inertia on wind-driven dispersal kernels of tree 

seeds. Journal of Ecology 96(4): 569-580. https://doi.org/10.1111/j.1365-

2745.2008.01368.x 

Booth, D.T., S.E. Cox, and R.D. Berryman. 2006. Point sampling digital imagery with 

‘SamplePoint’. Environmental Monitoring and Assessment, 123(1): 97-108. 

https://doi.org/10.1007/s10661-005-9164-7 

Boswell, A., S. Petersen, B. Roundy, R. Jensen, D. Summers, and A. Hulet. 2017. 

Rangeland monitoring using remote sensing: comparison of cover estimates from 

field measurements and image analysis. AIMS Environmental Science, 4(1): 1-6. 

https://doi.org/10.3934/environsci.2017.1.1 



112 

 

Borchert, M., M. Johnson, D. S. Schreiner, and S.B. Vander Wall. 2003. Early postfire 

seed dispersal, seedling establishment and seedling mortality of Pinus coulteri (D. 

Don) in central coastal California, USA. Plant Ecology 168(2):207–20. 

https://doi.org/10.1023/A:1024447811238 

Boyd, C.S., and K.W. Davies. 2010. Shrub microsite influences post-fire perennial grass 

establishment. Rangeland Ecology and Management 63(2):248-252. 

Brabec, M.M., M.J. Germino, and B.A. Richardson. 2017. Climate adaption and post‐fire 

restoration of a foundational perennial in cold desert: insights from intraspecific 

variation in response to weather. Journal Applied Ecology 54(1): 293-302. 

Bradley, B.A., J.M. Allen, M.W. O’Neill, R.D. Wallace, C.T. Bargeron, J.A. Richburg, 

and K. Stinson. 2018. Invasive species risk assessments need more consistent 

spatial abundance data. Ecosphere, 9(7): e02302. 

https://doi.org/10.1002/ecs2.2302 

Bradley, B.A., C.A. Curtis, and J.C. Chambers. 2016. Bromus response to climate and 

projected changes with climate change. Pages 257-274 in M.J. Germino, J.C. 

Chambers, C.S. Brown, editors. Exotic brome-grasses in arid and semiarid 

ecosystems of the western. Springer International Publishing, Cham, Switzerland. 

Briske, D.D., S.D. Fuhlendorf, and F.E. Smeins. 2006. A unified framework for 

assessment and application of ecological thresholds. Rangeland Ecology & 

Management, 59(3): 225-236. https://doi.org/10.2111/05-115R.1 

Brooks, S.P., and A. Gelman. 1998. General methods for monitoring convergence of 

iterative simulations. Journal of Computational and Graphical Statistics 7(4):434-

455. 

Brudvig, L.A., R.S. Barak, J.T. Bauer, T.T. Caughlin, D.C. Laughlin, L. Larios, J.W. 

Matthews, K.L. Stuble, N.E. Turley, and C.R. Zirbel. 2017. Interpreting variation 

to advance predictive restoration science. Journal of Applied Ecology 54(4): 

1018-1027. 

Bullock, J.M., and R.T. Clarke. 2000. Long distance seed dispersal by wind: Measuring 

and modelling the tail of the curve. Oecologia 124: 506-521. 



113 

 

Bürkner, P.C. 2017. brms: An R package for Bayesian multilevel models using Stan. 

Journal of Statistical Software 80(1): 1-28. 

Cain, M.L., B.G. Milligan, and A.E. Strand. 2002. Long‐distance seed dispersal in plant 

populations. American Journal of Botany 87(9):1217-27. 

https://doi.org/10.2307/2656714 

Caughlin, T.T., J.M. Ferguson, J.W. Lichstein, S. Bunyavejchewin, and D.J. Levey. 

2014. The importance of long-distance seed dispersal for the demography and 

distribution of a canopy tree species. Ecology 95(954): 952–62. 

https://doi.org/10.1890/13-0580.1 

Caughlin, T.T., S. Elliott, and J.W. Lichstein. 2016. When does seed limitation matter for 

scaling up reforestation from patches to landscapes? Ecological Applications 

26(8):2439-50. https://doi.org/10.1002/eap.1410 

Chambers, J.C., R.F. Miller, D.I. Board, D.A. Pyke, B.A. Roundy, J.B. Grace, E.W. 

Schupp, and R.J. Tausch. 2014. Resilience and resistance of sagebrush 

ecosystems: implications for state and transition models and management 

treatments. Rangeland Ecology and Management 67(5): 440-454. 

Chu, C., and P.B. Adler. 2015. Large niche differences emerge at the recruitment stage to 

stabilize grassland coexistence. Ecological Monographs 85(3):373-392. 

Clark, J.S., C. Fastie, G. Hurtt, S.T. Jackson, C. Johnson, G. A. King, M. Lewis, J. 

Lynch, S. Pacala, and C. Prentice, and E.W. Schupp. 1998. Reid's paradox of 

rapid plant migration: dispersal theory and interpretation of paleoecological 

records. BioScience 48(1):13-24. 

Clark, J.S., M. Silman, R. Kern, E. Macklin, and J. HilleRisLambers. 1999. Seed 

dispersal near and far: patterns across temperate and tropical forests. Ecology 

80(5):1475–94. https://doi.org/10.1890/0012-

9658(1999)080[1475:SDNAFP]2.0.CO;2 

Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and 

Psychological Measures 20: 37-46 



114 

 

Corbin, J.D., and K.D. Holl. 2012. Applied nucleation as a forest restoration strategy. 

Forest Ecology and Management 265: 37-46. 

https://doi.org/10.1016/j.foreco.2011.10.013 

Costello, C.T. and W.J. Kenworthy. 2011. Twelve-year mapping and change analysis of 

eelgrass (Zostera marina) areal abundance in Massachusetts (USA) identifies 

statewide declines. Estuaries and Coasts, 34(2): 232-242. 

https://doi.org/10.1007/s12237-010-9371-5 

Cramer, W., A. Bondeau, F.I. Woodward, I.C. Prentice, R.A. Betts, V. Brovkin, P.M. 

Cox, V. Fisher, J.A. Foley, A.D. Friend, C. Kucharik, M.R. Lomas, N. 

Ramankutty, S. Sitch, D. Smith, A. White, and C. Young-Molling. 2001. Global 

response of terrestrial ecosystem structure and function to CO2 and climate 

change: Results from six dynamic global vegetation models. Global Change 

Biology 7(4):357-373. 

Dale, V.H., L.A. Joyce, S. McNulty, R.P. Neilson, M.P. Ayres, M.D. Flannigan, P.J. 

Hanson, L.C. Irland, A.E. Lugo, C.J. Peterson, and D. Simberloff. 2001. Climate 

change and forest disturbances: climate change can affect forests by altering the 

frequency, intensity, duration, and timing of fire, drought, introduced species, 

insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. 

BioScience 51(9): 723-734. 

Dark, S.J. and D. Bram. 2007. The modifiable areal unit problem (MAUP) in physical 

geography. Progress in Physical Geography, 31(5): 471-479. 

https://doi.org/10.1177/0309133307083294 

Dauer, J.T., D.A. Mortensen, and M.J. Vangessel. 2007. Temporal and spatial dynamics 

of long-distance Conyza canadensis seed dispersal. Journal of Applied Ecology 

44:105–14. https://doi.org/10.1111/j.1365-2664.2006.01256.x 

Davies, G.M., J.D. Bakker, E. Dettweiler-Robinson, P.W. Dunwiddie, S.A. Hall, J. 

Downs, and J. Evans. 2012. Trajectories of change in sagebrush steppe vegetation 

communities in relation to multiple wildfires. Ecological Applications 22(5): 562-

577. https://doi.org/10.1890/10-2089.1 



115 

 

Devendra, D., N.J. Pastick, S. Parajuli, and B.K. Wylie. 2021. Fractional estimates of 

exotic annual grass cover in dryland ecosystems of western United States (2016 – 

2019): U.S. Geological Survey data release, https://doi.org/10.5066/P9XT1BV2. 

DiCristina, K., and M. Germino. 2006. Correlation of neighborhood relationships, carbon 

assimilation, and water status of sagebrush seedlings establishing after fire. 

Western American Naturalist 66(4): 441-450. 

Dietze, M.C., A. Fox, L.M. Beck-Johnson, J.L. Betancourt, M.B. Hooten, C.S. Jarnevich, 

T.H. Keitt, M.A. Kenney, C.M. Laney, L.G. Larsen, and H.W. Loescher. 2018. 

Iterative near-term ecological forecasting: Needs, opportunities, and challenges. 

Proceedings of the National Academy of Science of the United States of America 

115(7): 1424-1432. 

Dilling, L., and M.C. Lemos. 2011. Creating usable science: Opportunities and 

constraints for climate knowledge use and their implications for science policy. 

Global Environmental Change 21(2):680-689. 

DiVittorio, C.T., J.D. Corbin, and C.M. D'Antonio. 2007. Spatial and temporal patterns 

of seed dispersal: an important determinant of grassland invasion. Ecological 

Applications 17(2):311-6. https://doi.org/10.1890/06-0610 

Donovan, L.A., and J.R. Ehleringer. 1991. Ecophysiological differences among juvenile 

and reproductive plants of several woody species. Oecologia 86:594-597. 

Driese, K.L., and W.A. Reiners. 1997. Aerodynamic roughness parameters for semi-arid 

natural shrub communities of Wyoming, USA. Agricultural Forest Meteorology 

88:1-4. https://doi.org/10.1016/S0168-1923(97)00055-5 

Elmore, A.J., J.F. Mustard, and S.J. Manning. 2003. Regional patterns of plant 

community response to changes in water: Owens Valley, California. Ecological 

Applications 13 (2), 443–460. https://doi.org/10.1890/1051-

0761(2003)013[0443:RPOPCR]2.0.CO;2  



116 

 

Enright, N.J., J.B. Fontaine, D.M. Bowman, R.A. Bradstock, and R.J. Williams. 2015. 

Interval squeeze: altered fire regimes and demographic responses interact to 

threaten woody species persistence as climate changes. Frontiers in Ecology and 

Environment 13(5):265-272. 

Franzese, J., L. Ghermandi, and B. Donaldo. 2009. Post‐fire shrub recruitment in a semi‐

arid grassland: the role of microsites. Journal of Vegetative Science 20(2):251-

259. 

Fernández-Manso, A., C. Quintano, and O. Fernández-Manso. 2011. Forecast of NDVI in 

coniferous areas using temporal ARIMA analysis and climatic data at a regional 

scale. International Journal of Remote Sensing 32(6):1595-1617. 

Fotheringham, A.S., and D.W. Wong. 1991. The modifiable areal unit problem in 

multivariate statistical analysis. Environmental Planning 23(7): 1025–1044. 

https://doi.org/10.1068/a231025 

Germino, M.J., D.M. Barnard, B.E. Davidson, R.S. Arkle, D.S. Pilliod, M.R. Fisk, and C. 

Applestein. 2018. Thresholds and hotspots for shrub restoration following a 

heterogeneous megafire. Landscape Ecology 33(7):1177–1194. 

https://doi.org/10.1007/s10980-018-0662-8 

Germino, M.J., A.M. Moser, and A.R. Sands. 2019. Adaptive variation, including local 

adaptation, requires decades to become evident in common gardens. Ecological 

Applications 29(2).  

Gill, N.S., T.J. Hoecker, and M.G. Turner MG. 2020. The propagule doesn’t fall far from 

the tree, especially after short-interval, high-severity fire. Ecology 102(1); 

e03194. https://doi.org/10.1002/ecy.3194 

Greene, D.F., and C. Calogeropoulos. 2002. Measuring and modelling seed dispersal of 

terrestrial plants. In Bullock JM, Kenward RE, Hails RS (eds). Dispersal ecology: 

the 42nd symposium of the British Ecological Society, Blackwell Science Ltd, 

Berlin, Germany, pp 3-23. 

Griffiths, J.I., P.H. Warren, and D.Z. Childs. 2015. Multiple environmental changes 

interact to modify species dynamics and invasion rates. Oikos 124(4): 458-68. 



117 

 

Hammill, K.A., R.A. Bradstock, and W. Allaway. 1998. Post-fire seed dispersal and 

species re-establishment in proteaceous heath. Australian Journal Botany 

46(4):407–219. https://doi.org/10.1071/BT96116 

Hansen, M.C., and T.R. Loveland. 2012. A review of large area monitoring of land cover 

change using Landsat data. Remote Sensing of the Environment 122: 66–74. 

https://doi.org/10.1016/j.rse.2011.08.024. 

Hardegree, S.P., J.M. Schneider, and C.A. Moffet. 2012. Weather variability and adaptive 

management for rangeland restoration. Rangelands 34(6): 53-57. 

Harvey, P.H., R.K. Colwell, J.W. Silvertown, and R.M. May. 1983. Null models in 

ecology. Annual Review of Ecology, Evolution, and Systematics 14(1): 189-211. 

Heydel F., S. Cunze, M. Bernhardt‐Römermann, and O. Tackenberg. 2015. Seasonal 

synchronization of seed release phenology promotes long‐distance seed dispersal 

by wind for tree species with medium wind dispersal potential. Journal of 

Vegetation Science 26(6):1090-1101. https://doi.org/10.1111/jvs.12305  

Hilbe, J.M. 2011. Negative binomial regression. Cambridge University Press, New York. 

Hill, J.P., C.J. Willson, and W.K. Smith. 2005. Enhanced photosynthesis and flower 

production in a sagebrush morphotype associated with animal burrows. Plant 

Ecology 177(1):1-12. https://doi.org/10.1007/s11258-005-2233-8 

Holl, K.D. 1999. Factors Limiting Tropical Rain Forest Regeneration in Abandoned 

Pasture: Seed Rain, Seed Germination, Microclimate, and soil. Biotropica 

31(2);229-242. https://doi.org/10.1111/j.1744-7429.1999.tb00135.x 

Hoppes, W.G. 1988. Seedfall pattern of several species of bird-dispersed plants in an 

Illinois woodland. Ecology 69(2): 320-329. https://doi.org/10.2307/1940430 

Houlahan, J.E., S.T. McKinney, T.M. Anderson, and B.J. McGill. 2017. The priority of 

prediction in ecological understanding. Oikos 126(1):1-7. 

Irvine, K.M., W.J. Wright, E.K. Shanahan, and T.J. Rodhouse. 2019. Cohesive 

framework for modeling plant cover class data. Methods in Ecology and 

Evolution 10(10): 1749-1760. 



118 

 

James, J.J., R.L. Sheley, E.A. Leger, P.B. Adler, S.P. Hardegree, E.S. Gornish, and M.J. 

Rinella. 2019. Increased soil temperature and decreased precipitation during early 

life stages constrain grass seedling recruitment in cold desert restoration. Journal 

of Applied Ecology 56(12): 2609-2619. 

Jacobs, J., J.D. Scianna, and S.R. Winslow. 2011. Big sagebrush establishment: US 

Department of Agriculture Natural Resources Conservation Service. Plant 

Materials Technical Note MT–68. 

James, J.J., and T. Svejcar. 2010. Limitations to postfire seedling establishment: the role 

of seeding technology, water availability, and invasive plant abundance. 

Rangeland Ecology and Management 63(4):491–495. 

https://doi.org/10.2111/REM-D-09-00124.1 

Jin, X.M., Y.K. Zhang, M.E. Schaepman, J.G. Clevers, Z. Su, J. Cheng, J. Jiang, J. van 

Genderen. 2008. Impact of elevation and aspect on the spatial distribution of 

vegetation in the Qilian mountain area with remote sensing data. In: XXIth ISPRS 

Congress, Beijing, 3 July 2008 - 11 July 2008. International Society of 

Photogrammetry Remote Sensing: 1385–1390. https://doi.org/10.5167/uzh-77426 

Jones, H.P., P. C. Jones, E.B. Barbier, R.C. Blackburn, J.M.R. Benayas, K.D. Holl, M. 

McCrackin, P. Meli, D. Montoya, D.M. Mateos. 2018. Restoration and repair of 

Earth’s damaged ecosystems. Proceedings of the Royal Society B 285: 2-8. 

https://doi.org/10.1098/rspb.2017.2577 

Katul, G.G., A. Porporato, R. Nathan, M. Siqueira, M.B. Soons, D. Poggi, H.S. Horn, and 

S.A. Levin. 2005. Mechanistic analytical models for long-distance seed dispersal 

by wind. American Naturalist 166(3):368-81. https://doi.org/10.1086/432589 

Keane, R.E., G.J. Cary, M.D. Flannigan, R.A. Parsons, I.D. Davies, K.J. King, C. Li, 

R.A. Bradstock, and M. Gill. 2013. Exploring the role of fire, succession, climate, 

and weather on landscape dynamics using comparative modeling. Ecological 

Modeling 266: 172-86. 



119 

 

Keeley, J.E., C.J. Fotheringham, and M. Baer‐Keeley. 2005. Factors affecting plant 

diversity during post‐fire recovery and succession of mediterranean‐climate 

shrublands in California, USA. Diversity and Distributions 11(6):525-537. 

Kim, J.B., B.K. Kerns B.K., R.J. Drapek, G.S. Pitts, and J.E. Halofsky. 2018. Simulating 

vegetation response to climate change in the Blue Mountains with MC2 dynamic 

global vegetation model. Climate Services 10: 20-32 

Kleinhesselink, A.R., and P.B. Adler. 2018. The response of big sagebrush (Artemisia 

tridentata) to interannual climate variation changes across its 

range. Ecology 99(5): 1139-1149. 

Krivoruchko, K. and A. Gribov. 2019. Evaluation of empirical Bayesian kriging. Spatial 

Statistics 32: 100368. https://doi.org/10.1016/j.spasta.2019.100368. 

Kuhn, M. 2012. Variable importance using the caret package. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.168.1655&rep=rep1&t

ype=pdf. 

Lamberty, B.B., A.G. Bunn, and A.M. Thomson. 2012. Multi-year lags between forest 

browning and soil respiration at high northern latitudes. PLoS ONE 7(11): 

e50441. 

Lazarus, B.E., M.J. Germino, and B.A. Richardson. 2019. Freezing resistance, safety 

margins, and survival vary among big sagebrush populations across the western 

United States. American Journal of Botany 106(7):922-934. 

Lechner, A.M., Langford, W.T., Jones, S.D., Bekessy, S.A., Gordon, A., 2012. 

Investigating species–environment relationships at multiple scales: Differentiating 

between intrinsic scale and the modifiable areal unit problem. Ecological 

Complexity 11: 91–102. https://doi.org/10.1016/j.ecocom.2012.04.002 

Leirfallom, S.B., R.E. Keane, D.F. Tomback, and S.Z. Dobrowski. 2015. The effects of 

seed source health on whitebark pine (Pinus albicaulis) regeneration density after 

wildfire. Canadian Journal of Forest Research 45(11):1597–606. 

https://doi.org/10.1139/cjfr-2015-0043 



120 

 

Lesica, P., S.V. Cooper, and G. Kudray. 2007. Recovery of big sagebrush following fire 

in southwest Montana. Rangeland Ecology and Management 60(3), 261-269. 

Ludwig, J.A., G.N. Bastin, J.F. Wallace, T.R. McVicar. 2007. Assessing landscape health 

by scaling with remote sensing: when is it not enough? Landscape Ecology 

22(2):163–169. https://doi.org/10.1007/s10980-006-9038-6. 

Makowski, D., M.S. Ben-Shachar, S.A. Chen, and D. Lüdecke. 2019. Indices of effect 

existence and significance in the Bayesian framework. Frontiers in Psychology 

10:2767. https://doi.org/10.3389/fpsyg.2019.02767 

Mansour, K., O. Mutanga, T. Everson. 2012. Remote sensing based indicators of 

vegetation species for assessing rangeland degradation: opportunities and 

challenges. African Journal of Agricultural Research 7(22): 3261–3270. 

https://doi.org/10.5897/AJAR11.2316. 

McIlroy, S.K. and D.J. Shinneman 2020. Post-fire aspen (Populus tremuloides) 

regeneration varies in response to winter precipitation across a regional climate 

gradient. Forest Ecology and Management 455: 117681. 

McIver, J., and M. Brunson. 2014. Multisite evaluation of alternative sagebrush-steppe 

restoration treatments: the SageSTEP project. Rangeland Ecology and 

Management 67(5): 435-440. 

McKenzie, D., Z.E. Gedalof, D.L. Peterson, and P. Mote. 2004. Climatic change, 

wildfire, and conservation. Conservation Biology 18(4): 890-902. 

McNellie, M.J., I. Oliver, S. Ferrier, G. Newell, G. Manion, P. Griffioen, M. White, T. 

Koen, M. Somerville, and P. Gibbons. 2021. Extending vegetation site data and 

ensemble models to predict patterns of foliage cover and species richness for plant 

functional groups. Landscape Ecology 36(5): 1391–1407. 

https://doi.org/10.1007/s10980-021-01221-x. 

Melgoza, G., R.S. Nowak, and R.J. Tausch. 1990. Soil water exploitation after fire: 

competition between Bromus tectorum (cheatgrass) and two native species. 

Oecologia 83:7–13. 



121 

 

Meng, R., P.E. Dennison, C. Huang, M.A. Moritz, and C. D'Antonio. 2015. Effects of 

fire severity and post-fire climate on short-term vegetation recovery of mixed-

conifer and red fir forests in the Sierra Nevada Mountains of California. Remote 

Sensing of the Environment 171: 311-325. 

McCune, B., and J.B. Grace. 2002. Analysis of ecological communities. MjM Software, 

Gleneden Beach, OR, USA 304 p 

Miller, J.. 2005. Incorporating spatial dependence in predictive vegetation models: 

residual interpolation methods. Professional Geography 57(2): 169–184. 

https://doi.org/10.1111/j.0033-0124.2005.00470.x. 

Miller, R.F., S.T. Knick, D.A. Pyke, C.W. Meinke, S.E. Hanser, M.J. Wisdom, and A.L. 

Hild. 2011. Characteristics of sagebrush habitats and limitations to long-term 

conservation. Greater sage-grouse: ecology and conservation of a landscape 

species and its habitats. Studies Avian in Biology 38:145-84. 

Mkrtchyan, A. 2004. Spatial interpolation of field data on plant abundance. In Natural 

Forests in the Temperate Zone of Europe-Values and Utilisation. In: Proceedings 

of International Conference 2003 Oct, pp. 13–17. 

Mitchell, R.M., J.D. Bakker, J.B. Vincent, and G.M. Davies. 2017. Relative importance 

of abiotic, biotic, and disturbance drivers of plant community structure in the 

sagebrush steppe. Ecological Applications 27(3): 756–768. 

https://doi.org/10.1002/eap.1479. 

Monnahan, C.C., J.T. Thorson, and T.A. Branch. 2017. Faster estimation of Bayesian 

models in ecology using Hamiltonian Monte Carlo. Methods in Ecology and 

Evolution 8(3):339-48. https://doi.org/10.1111/2041-210X.12681 

Mueggler, W. 1956. Is sagebrush seed residual in the soil of burns or is it wind- borne? 

Res. Note 35 Intermountain for. and Range Exp, pp.9. Upper Snake River Exp. 

Range, U.S.Sheep Exp. Sta., Dubois, Idaho 

  



122 

 

Myneni, R.B., S. Maggion, J. Iaquinta, J.L. Privette, N. Gobron, B. Pinty, D.S. Kimes, 

M.M. Verstraete, and D.L. Williams. 1995. Optical remote sensing of vegetation: 

modeling, caveats, and algorithms. Remote Sensing of the Environment 51(1): 

169–188. https://doi.org/10.1016/0034-4257(94)00073-V. 

Nathan, R., H.S. Horn, J. Chave, and S.A. Levin. 2009. Mechanistic models for tree seed 

dispersal by wind in dense forests and open landscapes. In Seed dispersal and 

frugivory: ecology, evolution and conservation. Levey, D.J., W.R. Silva, M. 

Galetti (eds). CABI New York pp 69-82. 

Nathan, R., G.G. Katul, G. Bohrer, A. Kuparinen, M.B. Soons, S.E. Thompson, A. 

Trakhtenbrot, H.A. Horn. 2011. Mechanistic models of seed dispersal by wind. 

Theoretical Ecology 4:113–32. https://doi.org/10.1007/s12080-011-0115-3 

Neeson, T.M., M.C. Ferris, M.W. Diebel, P.J. Doran, J.R.O. Hanley, and P.B. Mcintyre. 

2015. Enhancing ecosystem restoration efficiency through spatial and temporal 

coordination. PNAS 112(19); 6236-5241. 

https://doi.org/10.1073/pnas.1423812112 

Nelson, Z.J., P.J. Weisberg, and S.G. Kitchen. 2014. Influence of climate and 

environment on post-fire recovery of mountain big sagebrush. International 

Journal of Wildland Fire 23(1): 131-142. 

Neubert, M.G., and H. Caswell. 2000. Demography and dispersal: calculation and 

sensitivity analysis of invasion speed for structured populations. Ecology 

81(6):1613-28. https://doi.org/10.1890/0012-

9658(2000)081[1613:DADCAS]2.0.CO;2 

Nuttle, T., and J.W. Haefner. 2017. Seed Dispersal in Heterogeneous Environments: 

Bridging the Gap between Mechanistic Dispersal and Forest Dynamics Models. 

American Naturalist 165(3); 336-349. 

O’Connor, R.C., M.J. Germino, D.M. Barnard, C.M. Andrews, J.B. Bradford, D.S. 

Pilliod, R.S. Arkle, and R.K. Shriver. 2020. Small-scale water deficits after 

wildfires create long-lasting ecological impacts. Environmental Research 

Letters 15(4): 044001. 



123 

 

Ogle, K., and J.F. Reynolds. 2004. Plant responses to precipitation in desert ecosystems: 

integrating functional types, pulses, thresholds, and delays. Oecologia 141(2): 

282-294. 

Ogle, K., J.J. Barber, G.A. Barron‐Gafford, L.P. Bentley, J.M. Young, T.E. Huxman, 

M.E. Loik, and D.T. Tissue. 2015. Quantifying ecological memory in plant and 

ecosystem processes. Ecological Letters 18(3): 221-235. 

Owens, M.K, and B.E. Norton. 1992. Interactions of grazing and plant protection on 

basin big sagebrush (Artemisia tridentata ssp. tridentata) seedling survival. 

Rangeland Ecology and Management 45(3):257-262. 

Ozinga, W.A., J.H. Schaminée, R.M. Bekker, S. Bonn, P. Poschlod, O. Tackenberg, J. 

Bakker, and J.M. Groenendael. 2005. Predictability of plant species composition 

from environmental conditions is constrained by dispersal limitation. Oikos 

108(3):555-61. https://doi.org/10.1111/j.0030-1299.2005.13632.x 

Palma, A.C., and S.G. Laurance. 2015. A review of the use of direct seeding and seedling 

plantings in restoration: what do we know and where should we go? Applied 

Vegetation Science 18(4):561-8. https://doi.org/10.1111/avsc.12173 

Passey, H.B., V.K. Hugie, E.W. Williams, D.E. Ball. 1982. Relationships between soil, 

plant community, and climate on rangelands of the Intermountain West. United 

States Department of Agriculture Economic Research Service Technical Bulletin 

53:1689–1699. 

Peeler, J.L., and E.A.H. Smithwick. 2020. Seed source pattern and terrain have scale-

dependent effects on post-fire tree recovery. Landscape Ecology 35, 1945–1959. 

https://doi.org/10.1007/s10980-020-01071-z 

Peppin, D., P.Z. Fulé, C. Hull, J.L. Beyers, and M.E. Hunter. 2010. Post-wildfire seeding 

in forests of the western United States: An evidence-based review. Forest Ecology 

and Management 260:573–86. https://doi.org/10.1016/j.foreco.2010.06.004 

Pilliod, D.S., and R.S. Arkle. 2013. Performance of quantitative vegetation sampling 

methods across gradients of cover in Great Basin plant communities. Rangeland 

Ecology and Management 66(6): 634–647. 



124 

 

Pilliod, D.S., and J.L. Welty. 2013. Land treatment digital library: US Geological Survey 

Data Series 806. http://pubs.er.usgs.gov/publication/DS806 

Pilliod, D.S., J.L. Welty, and R.S. Arkle. 2017. Refining the cheatgrass–fire cycle in the 

Great Basin: Precipitation timing and fine fuel composition predict wildfire 

trends. Ecology and Evolution 7(19): 8126-8151. 

Porensky, L.M., J.D. Derner, and D.W. Pellatz. 2018. Plant community responses to 

historical wildfire in a shrubland–grassland ecotone reveal hybrid disturbance 

response. Ecosphere 9(8): e02363. https://doi.org/10.1002/ecs2.2363. 

Pouyat, R.V., K.C. Weathers, R. Hauber, G.M. Lovett, A. Bartuska, L. Christenson, J.L. 

Davis, S.E. Findlay, H. Menninger, E. Rosi-Marshall, and P. Stine. 2010. The role 

of federal agencies in the application of scientific knowledge. Frontiers in 

Ecology and Environment 8(6):322-328. 

PRISM Climate Group. 2017. PRISM Climate Data. http://prism.oregonstate.edu 

Pyke, D.A. 1994. Ecological significance of seed banks with special reference to alien 

annuals. Proceedings – ecology and management of annual rangelands. 197-201. 

INT-GTR-313. USDA Forest Service, Ogden, UT, USA. 

Pyke, D.A., J.E. Herrick, P. Shaver, and M. Pellant. 2002. Rangeland health attributes 

and indicators for qualitative assessment. Journal of Rangeland Management 

55(6): 584–597. https://doi.org/10.2307/4004002. 

Rasanen, A., and T. Virtanen, 2019. Data and resolution requirements in mapping 

vegetation in spatially heterogeneous landscapes. Remote Sensing of the 

Environment 230(1): 111207 https://doi.org/10.1016/j.rse.2019.05.026 

R Core Team. 2017. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. https://www.R-

project.org/ 

Rigge, M., C. Homer, L. Cleeves, D.K. Meyer, B. Bunde, H. Shi, G. Xian, S. Schell, M. 

Bobo. 2020. Quantifying Western US Rangelands as fractional components with 

multi-resolution remote sensing and in situ data. Remote Sensing 12(3):412. 

https://doi.org/10.3390/rs12030412 



125 

 

Rigge, M., C. Homer, H. Shi, D. Meyer, B. Bunde, B. Granneman, K. Postma, P. 

Danielson, A. Case, and G. Xian. 2021. Trends in rangelands fractional 

components across the western US from 1985–2018. Remote Sensing, 13: 813. 

https://doi.org/10.3390/rs13040813. 

Russell L.F. and A. Roy. 2008. Spatial variation in seed limitation of plant species 

richness and population sizes in floodplain tallgrass prairie. Oecologia 158:569-

578.  

San-José, M., V. Arroyo-Rodríguez, P. Jordano, J.A. Meave, and M. Martínez-Ramos. 

2019. The scale of landscape effect on seed dispersal depends on both response 

variables and landscape predictor. Landscape Ecology 34, 1069–1080. 

https://doi.org/10.1007/s10980-019-00821-y 

Sant, E.D., G.E. Simonds, R.D. Ramsey, and R.T. Larsen. 2014. Assessment of 

sagebrush cover using remote sensing at multiple spatial and temporal scales. 

Ecological Indicators 1(43): 297–305. 

https://doi.org/10.1016/j.ecolind.2014.03.014 

Schlaepfer, D.R., W.K. Lauenroth, and J.B. Bradford. 2012. Ecohydrological niche of 

sagebrush ecosystems. Ecohydrology 5(4): 453-66. 

Schoennagel, T.L., and D.M. Waller. 1999. Understory responses to fire and artificial 

seeding in an eastern Cascades Abies grandis forest, USA. Canadian Journal of 

Forest Research 29(9):1393-401. 

Schupp, E.W., R. Zwolak, and L.R. Jones, and R.S. Snell, N.G. Beckman, C. Aslan, B.R. 

Cavazos, E. Effiom, E.C. Fricke, F. Montaño-Centellas, and J. Poulsen. 2019. 

Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are 

diverse and pervasive. AoB Plants 11(6):plz067. 

https://doi.org/10.1093/aobpla/plz067 

Seaborn, T., K.R. Andrews, C.V. Applestein, T.M. Breech, M.J. Garrett, A. Zaiats, and 

T.T. Caughlin. 2021. Integrating genomics in population models to forecast 

translocation success. Restoration Ecology 29(4):e13395. 

https://doi.org/10.1111/rec.13395 



126 

 

Shinneman, D.J. and S.K. McIlroy. 2016. Identifying key climate and environmental 

factors affecting rates of post-fire big sagebrush (Artemisia tridentata) recovery in 

the northern Columbia Basin, USA. International Journal of Wildland Fire 25(9): 

933-945. 

Shive, K.L., H.K. Preisler, K.R. Welch, and H.D. Safford, R.J. Butz, K.L. O'Hara, S.L. 

Stephens. 2018. From the stand scale to the landscape scale: predicting the spatial 

patterns of forest regeneration after disturbance. Ecological Applications 

28(6):1626-1639. 

Shriver, R.K., C.A. Andrews, R.A. Arkle, D.M. Barnard, M.C. Duniway, M.J. Germino, 

D.S. Pilliod, D.A. Pyke, J.L. Welty, and J.B. Bradford. 2019. Transient population 

dynamics impede restoration and may promote ecosystem transformation after 

disturbance. Ecological Letters 22(9): 1357-1366. 

Shryock, D.F., T.C. Esque, and F.C. Chen. 2015. Topography and climate are more 

important drivers of long‐term, post‐fire vegetation assembly than time‐since‐fire 

in the Sonoran Desert, US. Journal of Vegetative Science 26(6): 1134-1147. 

Smith, M.O., J.B. Adams, and D.E. Sabol. 1994. Mapping Sparse Vegetation Canopies In 

Imaging Spectrometry—A Tool for Environmental Observations 1994. Springer, 

Dordrecht, pp. 221–235. 

Smith, W.K., M.P. Dannenberg, D. Yan, S. Herrmann, M.L. Barnes, G.A. Barron-

Gafford, J.A. Biederman, S. Ferrenberg, A.M. Fox, A. Hudson, and J.F. Knowles. 

2019. Remote sensing of dryland ecosystem structure and function: Progress, 

challenges, and opportunities. Remote Sensing of the Environment 233: 111401. 

https://doi.org/10.1016/j.rse.2019.111401. 

Smithson, M., and J. Verkuilen. 2006. A better lemon squeezer? Maximum-likelihood 

regression with beta-distributed dependent variables. Psychological Methods 

11(1), 54.  



127 

 

Snell, R.S., N.G. Beckman, E. Fricke, B.A. Loiselle, C.S. Carvalho, L.R. Jones, N.I. 

Lichti, N. Lustenhouwer, S.J. Schreiber, C. Strickland, and L.L. Sullivan. 2019. 

Consequences of intraspecific variation in seed dispersal for plant demography, 

communities, evolution and global change. AoB Plants 11(4):plz016. 

https://doi.org/10.1093/aobpla/plz016 

Spanhove, T., J.V. Borre, S. Delalieux, B. Haest, and D. Paelinckx. 2012. Can remote 

sensing estimate fine-scale quality indicators of natural habitats? Ecological 

Indicators 1(18): 403–412. https://doi.org/10.1016/j.ecolind.2012.01.025 

Strassburg, B.B.N., A. Iribarrem, H.L. Beyer, C.L. Cordeiro, R. Crouzeilles, C.C. 

Jakovac, A.B. Junqueira, E. Lacerda, A.E. Latawiec, A. Balmford, T.M. Brookes, 

S.H.M. Butchart, R.L. Chazdon, K.H. Erb, P. Brancalion, G. Buchanan, D. 

Cooper, S. Diaz, P.F. Donald, V. Kapos , D. Leclere, L. Miles, M. Obersteiner, C. 

Plutzar, D. Alberto de M. Scaramuza, F.R Scarano, and P. Visconti. 2020. Global 

priority areas for ecosystem restoration. Nature 586:724–9. 

https://doi.org/10.1038/s41586-020-2784-9 

Sullivan, L.L., A.T. Clark, D. Tilman, and A.K. Shaw. 2018. Mechanistically derived 

dispersal kernels explain species‐level patterns of recruitment and succession. 

Ecology 99(11): 2415-2420. https://doi.org/10.1002/ecy.2498 

Svoray, T., A. Perevolotsky, and P.M. Atkinson. 2013. Ecological sustainability in 

rangelands: the contribution of remote sensing. International Journal of Remote 

Sensing 34(17): 6216–6242. https://doi.org/10.1080/01431161.2013.793867 

Tackenberg, O., F. Heydel, S. Cunze, and M. Bernhardt-Romermann. 2015. Seasonal 

synchronization of seed release phenology promotes long-distance seed dispersal 

by wind for tree species with medium wind dispersal potential. Journal of 

Vegetation Science 26(6):1090–101. https://doi.org/10.1111/jvs.12305 

Tamme, R, L. Götzenberger, M. Zobel, J.M. Bullock, D.A. Hooftman, A. Kaasik, and M. 

Pärtel. 2014. Predicting species' maximum dispersal distances from simple plant 

traits. Ecology 95(2):505-13. https://doi.org/10.1890/13-1000.1 



128 

 

Thomson, F.J., A.T. Moles, T.D. Auld, and R.T. Kingsford. 2011. Seed dispersal distance 

is more strongly correlated with plant height than with seed mass. Journal of 

Ecology 99(6): 1299–307. https://doi.org/10.1111/j.1365-2745.2011.01867.x 

Urza, A.K., and J.S. Sibold. 2017. Climate and seed availability initiate alternate post-fire 

trajectories in a lower subalpine forest. Journal of Vegetation Science 28(1):43–

56. https://doi.org/10.1111/jvs.12465 

Valley, R.D. 2016. Case Study. Spatial and temporal variation of aquatic plant 

abundance: Quantifying change. Journal of Aquatic Plant Management 54: 95–

101. 

van Putten, B., M.D. Visser, H.C. Muller‐Landau, and P.A. Jansen. 2012. Distorted‐

distance models for directional dispersal: a general framework with application to 

a wind‐dispersed tree. Methods in Ecology and Evolution 3(4):642-52. 

https://doi.org/10.1111/j.2041-210X.2012.00208.x 

Warneke, C.R., T.T. Caughlin, E.I. Damschen, N.M. Haddad, D.J. Levey, and L.A. 

Brudvig. 2022. Habitat fragmentation alters the distance of abiotic seed dispersal 

through edge effects and direction of dispersal. Ecology 103(2). 

https://doi.org/10.1002/ecy.3586 

Webber, B.L., B.A. Norton, and I.E. Woodrow. 2010. Disturbance affects spatial 

patterning and stand structure of a tropical rainforest tree. Australian Ecology 35; 

423–34. https://doi.org/10.1111/j.1442-9993.2009.02054.x 

Welch, B.L., and D.L. Nelson. 1995. Black Stem Rust Reduces Big Sagebrush Seed 

Production. Journal of Range Management 48(5): 398–401. 

Wenger, S.J., and J.D. Olden. 2012. Assessing transferability of ecological models: an 

underappreciated aspect of statistical validation. Methods in Ecology and 

Evolution 3(2): 260-267. 

Wijayratne, U.C., and D.A. Pyke. 2012. Burial increases seed longevity of two Artemisia 

tridentata (Asteraceae) subspecies. American Journal of Botany 99(3):438-47. 

https://doi.org/10.3732/ajb.1000477 

Willmott, C.J. 1981. On the validation of models. Physical Geography 2(2):184-194. 



129 

 

Wilson, A.M., J.A. Silander, A. Gelfand, and J.H. Glenn. 2011. Scaling up: Linking field 

data and remote sensing with a hierarchical model. International Journal of 

Geographical Information in Science 25(3): 509–521. 

https://doi.org/10.1080/13658816.2010.522779.  

Wilson, C.H., T.T. Caughlin., S.W. Rifai, E.H. Boughton, M.C. Mack, and S.L. Flory. 

2017. Multi‐decadal time series of remotely sensed vegetation improves 

prediction of soil carbon in a subtropical grassland. Ecological Applications 

27(5), 1646-1656. 

Winward, A.H., and E.W. Tisdale. 1977. Taxonomy of the artemisia tridentata complex 

in Idaho. Bull number 19. 

Wright, H.A. 1985. Effects of fire on grasses and forbs in sagebrush-grass communities. 

Pages 12-21 in Rangeland Fire Effects; A Symposium, Boise, ID, USA. 

Wu, D., X. Zhao, S. Liang, T. Zhou, K. Huang, B. Tang, and W. Zhao. 2015. Time‐lag 

effects of global vegetation responses to climate change. Global Change Biology 

21(9): 3520-3531. 

Wu, J., W. Shen, W. Sun, and P.T. Tueller. 2002. Empirical patterns of the effects of 

changing scale on landscape metrics. Landscape Ecology 17(8): 761–782. 

https://doi.org/10.1023/A:1022995922992 

Xu, M., C.G. Lacey, and S.D. Armstrong. 2018. The feasibility of satellite remote 

sensing and spatial interpolation to estimate cover crop biomass and nitrogen 

uptake in a small watershed. Journal of Soil and Water Conservation 73(6): 682–

692. https://doi.org/10.2489/jswc.73.6.682.  

Young, D.J., C.M. Werner, K.R. Welch, T.P. Young, H.D. Safford, and A.M. Latimer. 

2019. Post‐fire forest regeneration shows limited climate tracking and potential 

for drought‐induced type conversion. Ecology 100(2): e02571 

Young, J.A., and R.A. Evans. 1989. Dispersal and germination of big sagebrush 

(Artemisia tridentata) seeds. Weed Science 37: 201-206.  



130 

 

Yu, L., L. Liang, J. Wang, Y. Zhao, Q.U. Cheng, L. Hu, S. Liu, L. Yu, X. Wang, P. Zhu, 

X. Li, Y. Xu, C. Li, W. Fu, X. Li, W. Li, C. Liu, N.A. Cong, H. Zhang, F. Sun, X. 

Bi, Q. Xin, D. Li, D. Yan, Z. Zhu, M.F. Goodchild, and Gong, P., 2014. Meta-

discoveries from a synthesis of satellite-based land-cover mapping research. 

International Journal of Remote Sensing 35(13): 4573–4588 

Zaiats, A., B.E. Lazarus, M.J. Germino, M.D. Serpe, B.A. Richardson, S. Buerki, T.T. 

Caughlin. 2020. Intraspecific variation in surface water uptake in a perennial 

desert shrub. Functional Ecology 34(6): 1170-1179. https://doi.org/10.1111/1365-

2435.13546 

Ziegenhagen, L.L., and R.F. Miller. 2009. Postfire recovery of two shrubs in the interiors 

of large burns in the Intermountain West, USA. Western North American 

Naturalist 69(2): 195-205. https://doi.org/10.3398/064.069.0208 

 



131 
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Supplementary Material for Chapter One 
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Table A.1 Pearson’s correlation between covariates (row x column are the two 
variables and the value is the correlation). 

  
Percent 
Sand 

Percent 
Clay Elevation 

Percent 
Sand - -0.27 -0.14 

Percent 
Clay -0.27 - 0.17 

Elevation -0.14 0.17 - 
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APPENDIX B 

Supplementary Material for Chapter Two 
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Figure B.1 A photo of seed traps set up along transects at the Soda wildfire. 
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Table B.1 Comparisons of different dispersal kernel fits using distance-only (no 
height) fit using maximum likelihood. 

Fit Source AIC BIC 

Gaussian Clark et al. (1999) 1334.45 1345.75 

Ribbens Ribbens et al. (1994) 1355.87 1367.18 

Negative 
exponential 

Greene and Calogeropoulos 
(2002), Bullock and Clarke (2000) 

1279.39 1290.7 

2Dt Clark et al. (1999) 1201.55 1216.62 

Inverse power Bullock and Clarke (2000) 1205.63 1220.703 
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Table B.2 Priors on parameter values for the landscape model. 

Parameter Description  Prior 

γ0 Intercept  student_t(3, −2, 
10) 

γ1 Effect of height on trapped seed density  normal(0, 1) 

γ2 Effect of distance on trapped seed density  normal(0, 1) 

γ3 Height × distance interaction effect on seed density  normal(0, 1) 

γ4 Effect of total available seed on trapped seed 
density 

 normal(0, 1) 

ϕ1 Dispersion parameter for negative exponential  exponential(1) 

sd_transect A set of variance parameters describing transect-
level variance height and distance parameters 
(γ1, γ2, γ3) 

 student_t(3, 0, 
10 
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Table B.3 Priors on parameter values for the empirical 2Dt and mechanistic 
WALD integrated model. 

Priors on ω, δ, ν1 and ν2 were set weighted more strongly towards 0 with the assumption 
that transects would not display extremely different dispersal kernels. 

Parameter Description Prior Constraint 

A Global parameter governing 2Dt 
kernel 

half-normal(0, 
1) 

a ≥ 0 

B Global parameter governing 2Dt 
kernel 

half-normal(0, 
1) 

b ≥ 0 

F Total available seed effect half-normal(0, 
1) 

None 

ϕ2 Dispersion parameter for negative 
exponential 

exponential(1) ∅ > 0 

ω Deviation between a and each 
transect 

normal(0, 0.5) None 

δ Deviation between b and each 
transect 

normal(0, 0.5) None 

ν1 Transect-level variance for 
the a parameter 

exponential(4) ν1 > 0 

ν2 Transect-level variance for 
the b parameter 

exponential(4) ν2 > 0 

distwald Latent distance travelled between the 
trap and the ground 

wald(ρ, λ) 0 ≥ distwald ≥ 
50 
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APPENDIX C 

Supplementary Material for Chapter Three 
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Figure C.1 Relationship of satellite- or field-derived modeled vegetation cover (Y) 

to test field data (X) in 2017. 

Models included the Rangeland Analysis Platform (RAP, a through d), Rangeland 

Condition Monitoring Assessment and Projection (RCMAP, e through h), a field-based 

benchmark map (i through l & n), or the USGS fractional cover estimate (m). The 

diagonal dashed line on each plot shows the one-to-one correspondence (perfect 

accuracy) and the blue line shows the linear regression line fit for each functional group. 
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Figure C.2 Relationship of satellite- or field-derived modeled vegetation cover (Y) 
to test field data (X) in 2018.  

Models included the Rangeland Analysis Platform (RAP, a through d), Rangeland 

Condition Monitoring Assessment and Projection (RCMAP, e through h), a field-based 

benchmark map (i through l & n), or the USGS fractional cover estimate (m). The 

diagonal dashed line on each plot shows the one-to-one correspondence (perfect 

accuracy) and the blue line shows the linear regression line fit for each functional group. 
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Figure C.3 Relationship of satellite- or field-derived modeled vegetation cover (Y) 

to test field data (X) in 2020.  

Models included the Rangeland Analysis Platform (RAP, a through d), Rangeland 

Condition Monitoring Assessment and Projection (RCMAP, e through h), a field-based 

benchmark map (i through l & n), or the USGS fractional cover estimate (m). The 

diagonal dashed line on each plot shows the one-to-one correspondence (perfect 

accuracy) and the blue line shows the linear regression line fit for each functional group. 
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