14 research outputs found

    An Approach to Generating Arguments over DL-Lite Ontologies

    Get PDF
    Argumentation frameworks for ontology reasoning and management have received extensive interests in the field of artificial intelligence in recent years. As one of the most popular argumentation frameworks, Besnard and Hunter's framework is built on arguments in form of where Phi is consistent and minimal for entailing phi. However, the problem about generating arguments over ontologies is still open. This paper presents an approach to generating arguments over DL-Lite ontologies by searching support paths in focal graphs. Moreover, theoretical results and examples are provided to ensure the correctness of this approach. Finally, we show this approach has the same complexity as propositional revision

    Kiel Declarative Programming Days 2013

    Get PDF
    This report contains the papers presented at the Kiel Declarative Programming Days 2013, held in Kiel (Germany) during September 11-13, 2013. The Kiel Declarative Programming Days 2013 unified the following events: * 20th International Conference on Applications of Declarative Programming and Knowledge Management (INAP 2013) * 22nd International Workshop on Functional and (Constraint) Logic Programming (WFLP 2013) * 27th Workshop on Logic Programming (WLP 2013) All these events are centered around declarative programming, an advanced paradigm for the modeling and solving of complex problems. These specification and implementation methods attracted increasing attention over the last decades, e.g., in the domains of databases and natural language processing, for modeling and processing combinatorial problems, and for high-level programming of complex, in particular, knowledge-based systems

    Ontology merging using belief revision and defeasible logic programming

    Get PDF
    We combine argumentation, belief revision and description logic ontologies for extending the -ontologies framework to show how to merge two ontologies in which the union of the strict terminologies could lead to inconsistency. To solve this problem, we revisit a procedure presented by Falappa et al. in which part of the o ending terminologies are turned defeasible by using a kernel revision operator.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Computational Complexity of Strong Admissibility for Abstract Dialectical Frameworks

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria used to settle the acceptance of arguments arecalled semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. Recently, the notion of strong admissibility has been introduced for ADFs. In the current work we study the computational complexityof the following reasoning tasks under strong admissibility semantics. We address 1. the credulous/skeptical decision problem; 2. the verification problem; 3. the strong justification problem; and 4. the problem of finding a smallest witness of strong justification of a queried argument

    Epistemic evaluation in the context of pursuit and in the argumentative approach to methodology

    Get PDF

    Proceedings of the 11th Workshop on Nonmonotonic Reasoning

    Get PDF
    These are the proceedings of the 11th Nonmonotonic Reasoning Workshop. The aim of this series is to bring together active researchers in the broad area of nonmonotonic reasoning, including belief revision, reasoning about actions, planning, logic programming, argumentation, causality, probabilistic and possibilistic approaches to KR, and other related topics. As part of the program of the 11th workshop, we have assessed the status of the field and discussed issues such as: Significant recent achievements in the theory and automation of NMR; Critical short and long term goals for NMR; Emerging new research directions in NMR; Practical applications of NMR; Significance of NMR to knowledge representation and AI in general

    A formal approach to modelling and verification of context-aware systems

    Get PDF
    The evolution of smart devices and software technologies has expanded the domain of computing from workplaces to other areas of our everyday life. This trend has been rapidly advancing towards ubiquitous computing environments, where smart devices play an important role in acting intelligently on behalf of the users. One of the sub fields of the ubiquitous computing is context-aware systems. In context-aware systems research, ontology and agent-based technology have emerged as a new paradigm for conceptualizing, designing, and implementing sophisticated software systems. These systems exhibit complex adaptive behaviors, run in highly decentralized environment and can naturally be implemented as agent-based systems. Usually context-aware systems run on tiny resource-bounded devices including smart phones and sensor nodes and hence face various challenges. The lack of formal frameworks in existing research presents a clear challenge to model and verify such systems. This thesis addresses some of these issues by developing formal logical frameworks for modelling and verifying rule-based context-aware multi-agent systems. Two logical frameworks LOCRS and LDROCS have been developed by extending CTL* with belief and communication modalities, which allow us to describe a set of rule-based context-aware reasoning agents with bound on time, memory and communication. The key idea underlying the logical approach of context-aware systems is to define a formal logic that axiomatizes the set of transition systems, and it is then used to state various qualitative and quantitative properties of the systems. The set of rules which are used to model a desired system is derived from OWL 2 RL ontologies. While LOCRS is based on monotonic reasoning where beliefs of an agent cannot be revised based on some contradictory evidence, the LDROCS logic handles inconsistent context information using non-monotonic reasoning. The modelling and verification of a healthcare case study is illustrated using Protégé IDE and Maude LTL model checker
    corecore