
A FORMAL APPROACH TO MODELLING AND

VERIFICATION OF CONTEXT-AWARE SYSTEMS

A THESIS SUBMITTED TO THE UNIVERSITY OF NOTTINGHAM FOR

THE DEGREE OF

DOCTOR OF PHILOSOPHY

DECEMBER 2016

HAFIZ MAHFOOZ UL HAQUE

MSC. IT, MBA (SPECIALIZATION IN MIS)

SCHOOL OF COMPUTER SCIENCE

THE UNIVERSITY OF NOTTINGHAM

MALAYSIA CAMPUS

i

Abstract
The evolution of smart devices and software technologies has expanded the domain

of computing from workplaces to other areas of our everyday life. This trend has been

rapidly advancing towards ubiquitous computing environments, where smart devices play

an important role in acting intelligently on behalf of the users. One of the subfields of

the ubiquitous computing is context-aware systems. In context-aware systems research,

ontology and agent-based technology have emerged as a new paradigm for conceptual-

izing, designing, and implementing sophisticated software systems. These systems ex-

hibit complex adaptive behaviors, run in highly decentralized environment and can nat-

urally be implemented as agent-based systems. Usually context-aware systems run on

tiny resource-bounded devices including smart phones and sensor nodes and hence face

various challenges. The lack of formal frameworks in existing research presents a clear

challenge to model and verify such systems. This thesis addresses some of these issues

by developing formal logical frameworks for modelling and verifying rule-based context-

aware multi-agent systems. Two logical frameworks LOCRS and LDROCS have been de-

veloped by extending CTL∗ with belief and communication modalities, which allow us

to describe a set of rule-based context-aware reasoning agents with bound on time, mem-

ory and communication. The key idea underlying the logical approach of context-aware

systems is to define a formal logic that axiomatizes the set of transition systems, and it

is then used to state various qualitative and quantitative properties of the systems. The

set of rules which are used to model a desired system is derived from OWL 2 RL ontolo-

gies. While LOCRS is based on monotonic reasoning where beliefs of an agent cannot

be revised based on some contradictory evidence, the LDROCS logic handles inconsistent

context information using non-monotonic reasoning. The modelling and verification of a

healthcare case study is illustrated using Protégé IDE and Maude LTL model checker.

ii

Acknowledgements
In the name of Allah, the Beneficent, the Merciful. All praise belongs to Allah, Lord

of the worlds. And may blessings and peace be on Sayyidina Muhammad, the last of

the Prophets, and his family and companions - all of them. I praise and Thanks Allah

SubHanahu Wata’Ala for His countless and unbreakable showers of blessings upon me

at every moment of time in my life. I got strengths, passion, inspiration and prudence

just because of His very special kindness and blessings upon me which has enabled me to

complete my PhD thesis today. Thanks Allah Almighty for everything.

My heartfelt gratitude goes to my respected supervisor Dr. Abdur Rakib for his excel-

lent supervision, kind advices, suggestions, motivations and support. I am deeply indebted

to him for his kind assistance during my PhD journey. Since the beginning of my PhD, he

has always been taking interest in my research with full enthusiasms and dedications. I

would like to thank Dr. Christopher Kroadnight for his assistance and suggestions. Many

thanks goes to my colleagues in Computer Science research lab for their kind, love and

support.

I am very much grateful to my honorable parents for their love, kind support, advices

and great encouragement. Indeed my parents are unmatched, impeccable teachers and

sagacious guardian and mentors who instilled many qualities in me which made my life

fertile and enjoyable. I can never forget their worries and humble prayers. Truly, I have no

words to thank them except prayers. May Allah Almighty bless them with uncountable

showers of blessings here and hereafter. I would like to say a very special and heartfelt

thanks to my wife for her support, patience, understanding and love during PhD journey.

A special thanks goes to my sister and brothers for their prayers, moral and emotional

support. Many thanks goes my respected elders and friends for their prayers and kinds.

Finally, a lot of love and prayers for my beloved kids and nephews.

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 The notion of Context . 2

1.2 Context-aware System . 3

1.2.1 Context-aware Multi-agent Systems 6

1.2.2 Resources Constraints in Context-aware Systems 8

1.2.3 Resource-bounded Context-aware Agents 8

1.3 Motivation . 9

1.4 Problem Statements . 10

1.5 Methodology . 11

1.6 Thesis Outline . 13

1.7 Conclusion . 14

2 Logical Formalisms for Multi-agent systems 15

2.1 Chapter Objectives . 15

2.2 Introduction . 15

2.3 Modal Logic . 17

2.3.1 Syntax of Modal Logic . 18

2.3.2 Semantics of Modal Logic . 19

iii

CONTENTS iv

2.4 Temporal logic . 20

2.4.1 Linear Temporal Logic (LTL) 21

2.4.1.1 Syntax . 21

2.4.1.2 Semantics . 21

2.4.2 Computational Tree Logic (CTL) 22

2.4.2.1 Syntax . 23

2.4.2.2 Semantics . 23

2.4.3 Full Computation Tree Logic (CTL*) 24

2.4.3.1 State Formula . 24

2.4.3.2 Path Formula . 25

2.4.4 Some Standard System Properties 26

2.4.5 Analysis of Temporal Logics . 27

2.5 Model Checking . 27

2.5.1 Maude LTL Model Checker . 28

2.6 Conclusion . 31

3 Formalisms for Context-aware MAS 32

3.1 Chapter Objectives . 32

3.2 Reasoning Formalisms for the Semantic Web 32

3.3 Description Logic . 34

3.3.1 DL Knowledge Base . 36

3.4 The Semantic Web . 38

3.4.1 Web Ontology Language (OWL) 41

3.4.2 OWL 2.0 . 42

3.4.2.1 Why to Choose OWL 2 RL 43

3.4.3 Why OWL is Not Enough? . 44

3.4.4 Semantic Web Rule Language (SWRL) 44

3.4.4.1 DL Safe Rule in SWRL 47

CONTENTS v

3.5 Rule-based System . 48

3.5.1 Components of Rule-based System 49

3.5.2 Multi-agent Rule-based System 50

3.6 Formal Approaches for Distributed MAS 51

3.6.1 Ontology-Based Context-aware Systems 52

3.7 Monotonic Vs Non-monotonic Reasoning 53

3.8 Defeasible Reasoning . 55

3.8.1 Defeasible Logic . 56

3.9 Defeasible Reasoning based Distributed Systems 58

3.9.1 Defeasible Reasoning based Frameworks for the Semantic Web . 58

3.9.2 Integration of Description Logics with Defeasible Reasoning . . . 60

3.9.3 Integrating Rules and Ontologies using DeLP 61

3.9.4 Defeasible Reasoning based Multi-context Systems 62

3.9.5 Discussion . 63

3.10 Conclusion . 63

4 The Logic LOCRS 65

4.1 Chapter Objectives . 65

4.2 Motivation for the Logic LOCRS . 65

4.3 Formal Approaches to Resource-bounded Multi-agent System 67

4.4 Description Logic Based Reasoning . 68

4.4.1 Context Modelling . 69

4.5 LOCRS - A Logic for Context-aware Systems 72

4.5.1 The Language of LOCRS . 74

4.5.2 Communication Bound . 75

4.5.3 Memory Bound . 75

4.5.4 Syntax . 76

4.5.5 Semantics . 77

CONTENTS vi

4.5.6 Axiomatization . 82

4.6 Soundness Proof . 84

4.7 Completeness Proof . 87

4.8 LOCRS Proofs of Correctness . 90

4.8.1 The satisfiability Problem of L(nM , nC) 92

4.8.1.1 The Canonical Model of M(nM , nC) 92

4.8.2 Bisimulation . 95

4.8.3 Soundness Proofs in the Canonical Model Mc 98

4.8.4 Completeness Proofs in the Canonical Model Mc 100

4.9 Encoding and Verification of LOCRS Model 102

4.10 Conclusion . 103

5 The Logic LDROCS 104

5.1 Chapter Objectives . 104

5.2 Motivation for the Logic LDROCS . 104

5.3 Preliminaries . 105

5.3.1 Non-monotonic Rule-based System 105

5.3.2 Defeasible Reasoning . 106

5.3.3 Semantic Context Retrieval for LDROCS 108

5.3.4 Semantic Context Modelling . 109

5.4 Context-aware Systems as Multi-agent Defeasible Reasoning Systems . . 110

5.5 The Logic LDROCS . 111

5.5.1 Communication Bound . 113

5.5.2 Memory Bound and Inconsistent Memory Manipulation 113

5.5.3 Syntax . 114

5.5.4 Semantics . 115

5.5.5 Axiomatization . 120

5.6 Correctness Proof . 122

CONTENTS vii

5.6.1 Soundness Proof . 122

5.6.2 Completeness Proof . 123

5.7 A Simple Health-care Example . 125

5.7.1 Verifying System Properties . 128

5.8 Conclusion . 131

6 Ontology-based System Modelling and Verification 132

6.1 Chapter Objectives . 132

6.2 Motivation . 132

6.3 Translation of an ontology into a set of Rules 133

6.3.1 Translating Ontology Axioms into DL Knowledge-base 133

6.3.2 Translating DL Knowledge-base into Defeasible Logic Program-

ming (DeLP) . 134

6.3.3 Translating Strict and Defeasible Terminologies to Horn-clause

Rules . 135

6.4 Onto-HCR Translator . 137

6.4.1 OWL API . 138

6.4.1.1 OWL API Design . 138

6.4.1.2 Ontology Management 140

6.4.2 The Onto-HCR’s Main Features 141

6.5 A Smart Environment: Case Study . 144

6.5.1 Smart Environment Agents’ Functions 145

6.6 Encoding and verification of LDROCS model 148

6.6.1 Maude Encoding . 151

6.6.2 Specifying and Verifying the System 152

6.7 Conclusion . 157

7 Conclusion and Future Work 158

7.1 Summary . 158

CONTENTS viii

7.2 Future Work . 160

7.2.1 Extending Logic LDROCS Using Multi-Context System (MCS) . . 160

7.2.2 Contextualizing Ontologies . 163

7.2.3 Distributed Semantic Knowledge Translator (D-Onto-HCR) . . . 164

7.2.4 Potential Application Framework using Context-aware Resource-

bounded Devices . 167

7.3 Conclusion . 167

A A set of rules for Smart Environment Case Study 192

A.1 Patient Care Agent . 192

A.2 Blood Pressure Agent . 196

A.3 Diabetes Tester . 197

A.4 Body Temperature . 198

A.5 Pulse Monitor . 199

A.6 Ambulance Agent . 200

A.7 Emergency Monitoring Agent . 200

A.8 OnCall Agent . 201

A.9 GPS Sensor . 201

A.10 Telephone Agent . 202

A.11 Caregiver Agent . 202

A.12 Image Sensor . 202

A.13 Motion Detector . 203

A.14 Gas Detector . 203

A.15 Glass Break Sensor . 204

A.16 Smoke Sensor . 204

A.17 Relative Sensor . 204

A.18 Light Sensor . 205

A.19 Occupancy sensor . 205

CONTENTS ix

A.20 Aircon Sensor . 205

A.21 Temperature Level Sensor . 206

B The Onto-HCR Translated Rules 208

List of Figures

3.1 OWL Family Tree . 39

3.2 Structure of Rule-based System . 50

4.1 A Fragment of the Epileptic Patients’ Monitoring Ontology 69

4.2 Example SWRL Rules . 70

4.3 Two Agent’s Communication . 73

4.4 Bisimilar Model Forth condition . 96

5.1 Semantic Context Retrieval for LDROCS 108

5.2 A fragment of Home-care Patient’s Monitoring System 126

5.3 Individualized Patient Ontology . 126

5.4 Some SWRL Rules . 127

6.1 OWL API Model . 139

6.2 Onto-HCR Flow Chart . 141

6.3 Main Menu . 141

6.4 Some of the TBox Axioms . 142

6.5 Some of the ABox Concepts Axioms . 142

6.6 Some of the ABox Property Axioms . 142

6.7 Some of the Horn-clause Rules . 143

6.8 Context-aware Agents and their Possible Interactions 149

6.9 A Fragment of the Smart Environment Ontology 149

6.10 Idividualized Smart Environment Ontology 150

x

LIST OF FIGURES xi

6.11 Some Rules of the Smart Environment Ontology 150

7.1 Multi-context awareness in the working memory of agent i 162

7.2 Class hierarchy of Smart Environment Ontologies 164

7.3 Distributed Semantic Knowledge Translation Process 165

7.4 D-Onto-HCR Output . 166

List of Tables

3.1 Description Logic Constructors . 38

3.2 Corresponding Terminologies of FOL, DL and OWL 40

3.3 OWL 2 RL Axioms . 43

4.1 Horn-Clause Rules for the Epileptic Patients’ Monitoring Context-aware

System . 70

5.1 Example Rules for a homecare patients’ monitoring context-aware system 127

5.2 One Possible Run (Reasoning) of the System (Continued on Table 5.3) . . 129

5.3 One Possible Run (Reasoning) of the System 130

6.1 Translating OWL 2 RL Axioms into DL Knowledge-base 133

6.2 Mapping from DL Axioms to Strict and Defeasible Terminologies 136

6.3 Mapping from Strict and Defeasible Terminologies into Rules 137

6.4 Smart Environment Agent’s Description 148

6.5 Experimental Results of the First System 154

6.6 Experimental results of the Second System 155

6.7 Experimental results of the Third System 156

xii

List of Abbreviations

GPS Global Positioning System

ABLS Active Badge Location System

MAS Multi-agent systems

PDA Personal Digital Assistant

CoBrA Context Broker Architecture

LTL Linear Time Temporal Logic

OWL Web Ontology Language

OWL API . . . OWL Application Programming Interface

OWL 2 RL . . OWL 2 Rule language

SWRL Semantic web rule language

CTL Computational Tree Logic

CTL* Full Computational Tree Logic

DL Description Logic

DL-SHOIN . . Language of description logic

DL-SROIQ . . One of the most expressive description logic language

JADE Java Agent Development Framework

HCR Horn clause rules

FOL First Order Logic

xiii

LIST OF TABLES xiv

PTL Propositional Temporal Logic

BNF Backus Naur Form

RBS Rule-based System

AI Artificial Intelligence

ML Modal Logic

KB Knowledge Base

ALC Attributive language with complements

ALB Attributive language with Boolean algebras on concepts and roles

OWL 2 DL . . OWL 2 description language

OWL 2 QL . . OWL 2 query language

TBox Terminological Box

ABox Assertional Box

RBox Relational Box

RIA Role Inclusion Axioms

RDF Resource Description Framework

RDFS Resource Description Framework Schema

DAML DARPA Agent Markup Language

OIL Ontology Inference Layer

URI Universal Resource Identifier

W3C World Wide Web consortium

URL Uniform Resource Locator

URN Universal resource Name

DLP Description Logic Program

NaF Negation as Failure

LIST OF TABLES xv

DDL Description Defeasible logic

DeLP Defeasible Logic Programming

GCI General Concept Inclusions

MCS Maximal Consistent Set

CM Canonical Model

XML Extensible Markup Language

EBNF Extended Backus-Naur Form

MP Modus Ponens

Onto-HCR . . Tool Name

LP Logic program

IRI International Resource Identifier

Java IDE . . . Java Integrated Development Environment

JAR Java Archive

LOCRS A logic for ontology driven context-aware resource-bounded systems

LDROCS A logic for defeasible reasoning based ontology driven context-aware

systems

OSPC Smart Patient Care Ontology

OSHO Smart Home Care Ontology

OSHP Smart Hospital Ontology

DLSPC Smart Patient Care DL Knowledge base

DLSHO Smart Home Care DL Knowledge base

DLSHP Smart Hospital DL Knowledge base

Chapter 1

Introduction

Since the last decade, interests and demands for computing devices and smart applications

have been expeditiously increasing. With their remarkable progression, these devices are

becoming more sophisticated, optimized, complex, and smart. This trend is dynamically

progressing towards ubiquitous computing. In this arena, numerous devices are impecca-

bly integrated via portable or embedded devices by providing readily available services to

facilitate users at anytime and anywhere. In ubiquitous computing environment, users ex-

change information using smart devices which made human life much easier, comfortable,

and secure but device dependent. Everyday users spend much time and efforts on these

devices to produce their desired objectives, however sometimes it becomes burdensome

and monotonous. Context-aware computing is one of the most emerging and innovative

paradigms to address these issues. It is a component of ubiquitous computing which aims

to provide invisible computing environment to assist users in such a way that they can

employ services whenever and wherever needed. More so, context-aware computing af-

fords freedom from the bondage of traditional computing systems. In contrast with the

traditional computing paradigm, context-aware computing environment is adaptive and

highly dynamic in nature. These systems interact with human users; exhibit complex

adaptive behaviours; and run on a highly decentralized environment. Context-aware sys-

tems facilitate computing devices to understand their context (situation or information)

1

CHAPTER 1. INTRODUCTION 2

and act on behalf of users. This significantly improves the user’s productivity with the

use of lesser effort. More so, services in ubiquitous environment is essentially required to

become context-aware. This characteristic permits the adaptation in accordance with the

rapid changes in the environment [Weiser, 1999, Zhang et al., 2005, LIRIS, 2010].

The aim of this research is to study logical frameworks for modelling, reasoning about,

and verifying context-aware systems. The rest of this chapter is devoted for introducing

the context-aware systems, motivation of developing such formalisms for context-aware

systems, problem statements, methodology and research contributions. The structure of

the thesis is outlined at the end of this chapter.

1.1 The notion of Context

In general, the term context has two dictionary meanings. Firstly, context means a word

or a phrase or a text - used before or after a particular phrase and has fixed meanings. Sec-

ondly, context means a specific situation within which something happens or some events

take place, and an action is taken accordingly. The first meaning is associated to linguis-

tics whereas the second meaning is by some means closer to the definition of context in

the world of computer science [Chen and Tolia, 2001]. Literature highlighted many defi-

nitions of context in different areas of computer science including ubiquitous computing

[Chen and Tolia, 2001, Agre, 2001, Schilit et al., 1994], Sensor networks [Schmidt et al.,

1999, Priyantha et al., 2000], Nomadic computing [Kindberg and Barton, 2001], Infor-

mation retrieval [Castro and Muntz, 1999] and Artificial intelligence in different views

[Schilit et al., 1994, Pascoe, 1998, Schmidt et al., 1999, Abowd et al., 1999, Strang et al.,

2003]. Schilit and Theimer [Schilit and Theimer, 1994] define context as location, iden-

tities of people nearby, objects and changes made on these objects. In [Brown et al.,

1997], context is defined as a location, identities, time, season, temperature etc. Ryan et

al. [Ryan et al., 1999] define context in terms of user’s location, identity, environment,

and time. Context can also be represented in terms of atomic facts to express a certain

CHAPTER 1. INTRODUCTION 3

situation. In context-aware computing, the meaning of context does not change; however,

their interpretation may vary or be modified [Chen and Tolia, 2001]. Dey et al. define

context as “Context is any information that can be used to characterize the situation of

an entity. An entity is a person, place, or object that is considered relevant to the interac-

tion between a user and an application, including the user and applications themselves”

[Abowd et al., 1999]. The notion behind is the awareness of context in context-aware

systems. Hence, the context is relevant to a user and application. In due course, it reflects

the relationship among them. In this thesis, we consider the above definition of context to

grasp the intelligent behavior of context-aware systems. Context-aware systems acquire

contextual information from various corresponding context-aware devices, evaluate it ac-

cording to the specific criteria and then perform reasoning to achieve the desired goals.

1.2 Context-aware System

We, human beings, are blessed with the ability of context-awareness. With this, we of-

ten exploit contexts (ideas/messages) in our daily lives. These are effectively exchanged

based on current situations without explicitly knowing the contextual information. Sev-

eral situations reflect- the very fact that the core notion of the context directly affects the

human intelligent behavior. With the rapid inventions in today’s modern world, com-

puting devices are increasingly becoming more intelligent and smart. The evolution has

been advancing towards the new generation of the systems under the name of context-

awareness. Context sensing is one of the basic features of context awareness. Due to

the intelligent behavior of today’s computing devices, context-awareness has simulated

on these devices to reinforce their capability to acquire, exchange, process information,

and adapt their behavior. For example, GPS (Global Positioning System) is a contex-

tual sensing device. This calculates the longitude and latitude and then convey message

representing the accurate location of the user with the annotated values or via a map. In-

CHAPTER 1. INTRODUCTION 4

dubitably, context-awareness has compelling uses for retrieving information from certain

domains.

The research community has commonly agreed [Abowd et al., 1999] that the first research

was done on context-aware computing in 1992 at Olivetti research Ltd, England [Want

et al., 1992] in which Want et al. have developed Active Badge Location System (ABLS).

This kind of badge is intended for their staff members to track their locations. On the other

hand, these badges provide information about the current location of the cardholder to

central hub thru signal transmission system using a network of sensors. Later in 1994, the

concept of context-aware applications was first introduced by Schilit and Theimer [Schilit

and Theimer, 1994] to adapt its behavior according to user’s locations, nearby people

and objects, as well as, changes made on these objects. Soon after, numerous attempts

have been made on context-aware systems in different aspects. In context-aware system,

the term context-aware has several meanings such as adaptive [Brown, 1996], reactive

[Cooperstock et al., 1995], situated [Hull et al., 1997], responsive [Elrod et al., 1993],

environment-based [Fickas et al., 1997] and context-sensitive [Rekimoto et al., 1998].

According to [Schilit and Theimer, 1994, Ryan et al., 1999], context-aware computing is

defined as the ability of computing devices to detect and sense, interpret and respond to

different aspects of users environment and devices themselves. In [Schilit and Theimer,

1994, Brown et al., 1997, Dey and Abowd, 2000, Dey et al., 1998], researchers have

shown that context-aware applications exhibit dynamic changes. This ability enables the

adaptation of behavior based on the situation of users and applications.

In recent years, rapid advances in the field of context-aware computing has significantly

impacted on pervasive environment. In context-aware computing, context-awareness is

the key requirement for developing context-aware systems. More so, context-aware sys-

tems can be easily trained to familiarize their operations in current context without explicit

user interference. Also, context-aware applications are typically designed for the mobile

users who use smart devices with embedded sensors. These embedded sensors could be

CHAPTER 1. INTRODUCTION 5

used to sense and acquire environmental contextual (low-level) data that have different

interpretations according to nature of context-aware applications. For context adaptation,

rather than providing only the contextual data from sensors, applications adapt their be-

havior based on the current contextual information.

In [Schilit et al., 1994], Schilit et al. have proposed two orthogonal dimensions for

context-aware systems: manual and automatic. They have defined in both aspects whether

the task is acquired and executed manually or automatically. In the first dimension, ap-

plications that obtain information manually based on available contexts for the user are

known as proximate selection strategy. This technique is known as contextual command

applications. This is owing to the fact that these applications normally execute commands

manually based on available contexts for the users. The second dimension is the automatic

contextual reconfiguration. These applications acquire information based on the available

contexts for their users automatically. It is known as system level technique which pro-

duces the automatic binding to available resources based on current contexts. In this

technique, whenever correct combination of contexts exists, this service automatically

execute the context triggering actions which are based on simple if-then rules. Pascoe

[Pascoe, 1998] has proposed the context adaptation feature which provides the ability to

execute or update the service automatically based on current contexts. This feature is akin

to context triggering actions.

Due to the rapid escalation of context-aware systems, the essential demand has increased

for developing formal context models. This is to facilitate context representation in a

variety of different heterogeneous systems [Esposito et al., 2008, Dey et al., 2001]. Con-

textual information usage is in the diversified fields with the embedded computing sys-

tems. Context sensing infrastructure, on the other hand, is intended to environment such

as meeting rooms, class rooms, and home based applications. The most ambitious use

of context-aware applications is to provide health care or general support services to el-

derly people within their home and facilitate them with the assisted living environment.

CHAPTER 1. INTRODUCTION 6

Various context-aware systems are developed to retain the independence of elderly people

while safeguarding their emergency situations. Furthermore, these systems can quickly

detect the emergency situations occurring with elderly people [Helal et al., 2003, Stan-

ford, 2002, Intille et al., 2002, Bikakis et al., 2010, Leijdekkers and Gay, 2006]. Another

importance of contextual information is its ability to automate the monitoring and con-

trol of environmental situations such as temperature setting and lighting [Lesser et al.,

1999, Mozer, 1999] and remote operations of meeting rooms and class rooms [Bikakis

and Antoniou, 2010].

The research presented, in this thesis, introduces a different vision of context-aware resource-

bounded rule-based reasoning agents based on following automatic contextual reconfigu-

ration technique in which context-aware agents perform rule-based reasoning for context

triggering actions.

1.2.1 Context-aware Multi-agent Systems

The last two decades rapidly demonstrate the growth in the field of intelligent agents and

agent-based reasoning. An intelligent agent is defined as a software system that perceives

its environment and takes actions to perform specifically assigned tasks. Generally, multi-

agents systems refer to software agents, in which, these agents are programed to solve

specific problems. However, the agents in a multi-agent system could also be robots.

Multi-agent systems are useful tools for modelling and solving large and complex prob-

lems. On the other hand, in ubiquitous computing, various heterogeneous computational

entities (such as devices, services, applications and agents) perform certain tasks together

to transform physical spaces into smart and interactive environment. Agent based ap-

proach is preferred among others because it performs two distinctive tasks. They sense

the environment and reason on the current context in order to achieve the desired goal.

“We humans are inherently context-aware agents.”[Chen and Tolia, 2001]

CHAPTER 1. INTRODUCTION 7

Literature has revealed several context-aware systems from agents perspectives [Chen

and Tolia, 2001, Kwon and Sadeh, 2004, Kwon et al., 2005, Chen et al., 2003, Fu and

Fu, 2015]. In Context-aware computing, intelligent agents are designed in such a way

that they anticipate the users’ needs and act on their behalf. The behaviour of traditional

agents is fixed based on certain set of environmental situations whereas the behavior of

context-aware agents is dynamic which adapt changes based on the situation. More so,

context-aware agents are software agents that are designed to model context-aware appli-

cations. These agents are designed and implemented in such a way that they have context-

aware capabilities to function correctly and effectively based on sufficient knowledge and

reasoning resources, which enable them to acquire information, reason about and adapt

their behavior accordingly. For developing context-aware systems, the design and archi-

tecture of context-aware agents should be well-established to specify context-awareness

features.

Context-aware multi-agent system paradigm is a suitable approach for the dynamic mod-

ular software design and for unpredictable environment. It provides well-established

frameworks to specify, analyze, and implement complex software systems. Likewise,

it enables them to act intelligently on behalf of the users. Context-aware agents possess

decision-making capabilities that are realistic for highly dynamic environment [Koch and

Rahwan, 2004]. Like traditional context-aware systems, context-aware multi-agent sys-

tems are designed in such a way that each agent in the system acquires certain contexts

by performing inference or from other agents and then adapts its behaviour accordingly.

Most of the traditional context-aware systems perform reasoning based on sensors’ infor-

mation. These systems have sophisticated sensing capabilities. In contrast, the design of

context-aware multi-agent systems has the capability of accessing and reasoning ontolog-

ical knowledge [Chen and Tolia, 2001].

CHAPTER 1. INTRODUCTION 8

1.2.2 Resources Constraints in Context-aware Systems

In the past few decades, various context-aware systems have been developed, however

their functions remain primitive. This is because these systems are often more complex

and costly due to their capability of context sensing and context reasoning [Strang et al.,

2003, Want et al., 1992, Helal et al., 2003]. In context-aware pervasive computing envi-

ronments, users usually have different mobile and smart devices to collect, process, and

interpret information. Many context-aware systems often run on tiny resource-bounded

devices and in highly dynamic environments. These context-aware devices such as smart

phones, mobile phones, PDAs, GPS system, and different wireless sensor nodes, usu-

ally operate under strict resource constraints. Many challenges might arise when these

context-aware devices communicate among themselves with the limited computational

and communication resources. In this regard, we listed some constraints that often arise

in context-aware systems.

• Information Storage Constraints: The memory space of storing and reasoning con-

textual information is often limited on most of the mobile devices. These devices

are usually not privileged to store all contexts due to limited storage space.

• Communication Constraints: Context-aware devices often acquire contextual infor-

mation from other smart devices. These devices communicate among themselves

in a highly dynamic environment which causes quick reduction in battery energy

level. However, most of the smart devices are not specifically designed to support

this feature.

• Time Constraints: Mobile devices often have limited computational power. Its si-

multaneous execution of many programs make this process slower.

1.2.3 Resource-bounded Context-aware Agents

In the preceding section, we have discussed certain resource constraints of context-aware

smart devices. Here, we list three basic resources that are required for agents in a multi-

CHAPTER 1. INTRODUCTION 9

agent context-aware systems to achieve goals.

• Time: It determines number of computational steps. It examines how many in-

ference steps a system needs to perform, in parallel, to infer specific contextual

information.

• Space: It determines the amount of memory required to store the initial and derived

contexts. The size of the memory determines the number of cells in the memory

to store arbitrary contexts. In order to solve a particular problem, it is important to

know how much memory is required by an agent to store arbitrary contexts.

• Communication: It determines how many messages agents need to exchange in

order to solve a given problem.

1.3 Motivation

Recent developments in the field of context-aware systems lead to a renewed interest in

probing different approaches to modelling contextual information and reasoning context-

aware systems [Bettini et al., 2010, Henricksen et al., 2002, Chen et al., 2003, Strang and

Linnhoff-Popien, 2004]. The bulk of recent research in context-aware systems has focused

towards various context modelling approaches such as logic-based modelling, ontology-

based modelling, object-oriented modelling, key-value modelling, graphical modelling

and Markup scheme modelling [Baldauf et al., 2007]. The ontology based context mod-

elling is preferred among others due to its reasoning capability, simplicity, flexibility and

extensibility, genericity, and expressiveness. Ontology based approach is considered as

one of the most promising approaches in a ubiquitous computing environment. In the

literature, some approaches have been proposed for ontology-driven context-aware sys-

tems, contextual reasoning, and context-aware learning service by using specific archi-

tecture and considering home health monitoring as an example system [Esposito et al.,

2008, Hong and Cho, 2008]. In this thesis, we follow similar approaches for context

CHAPTER 1. INTRODUCTION 10

modelling proposed by [Esposito et al., 2008, Chen et al., 2003] .

The Context Broker ArchitectureCoBrA [Chen et al., 2003] allows distributed agents in a

context-aware environment to have an access control to use their contextual information.

The authors have described inference engine for reasoning with information expressed

using the ontology. In [Ejigu et al., 2007], a context-aware system model facilitates the

use of context-based reasoning by using ontology. This provides contexts, rules with

their semantics. This model is designed for pervasive computing environment for re-

usability and dynamicity due to resource limitation such as space and time which are

crucial issues. Researchers have proposed various techniques for developing smart and

reliable applications of context-aware systems [Zhang et al., 2005, Esposito et al., 2008,

Nabih et al., 2011]. Agent based approach is one of them. In recent years, an ontology-

based approach [Rakib and Faruqui, 2013] has been presented for the representation and

verification of resource-bounded (time and communication) context-aware systems. This

model is encoded with the Maude specification and properties of the system are verified

using Maude LTL model checker.

To the best of our knowledge, none of the existing approaches provide a systematic log-

ical framework for modelling and reasoning about context-aware systems with resource-

bounds such as computational (time and memory) and communication resources. Thus,

there is a need to develop a formal logical framework for context-aware resource-bounded

(including memory, time, and communication) rule-based multi-agent system with their

formal specification to model and reason smarter application domains.

1.4 Problem Statements

Considering today’s modern world complex application domains, successful building of

context-aware applications involves many challenging issues, including distributed prob-

lem solving, adaptability and autonomous behaviors. In fact, context-aware applications

CHAPTER 1. INTRODUCTION 11

are often based on tiny smart devices which operate under strict resource constraints.

These systems become even more challenging in case of context-aware multi-agent sys-

tems when agents acquire context, reason about and exchange contextual information

with limited computational and communication resources. Much effort has been made

to provide solutions by integrating ontology with context-aware systems [Esposito et al.,

2008, Chen et al., 2003, Rakib and Faruqui, 2013]. However, the focus on ontology

driven context-aware logical frameworks with resource-bounds is still lacking. Based on

the relevant literature discussed in Section 1.3, no systematic logical-framework has been

proposed yet for resource-bounded context-aware systems.

This thesis aims to propose logical-frameworks for ontology driven resource-bounded

context-aware multi-agent systems and verify interesting properties of the system. These

frameworks use rule-based reasoning to reason contextual information using monotonic

as well as non-monotonic reasoning based formalisms. The core emphasis is given in the

distributed problem-solving for the systems of communicating context-aware rule-based

agents and specify bounds (time, memory and communication) to achieve the desired

goals. The key idea underlying the logical approach of context-aware systems is to define

a formal logic that axiomatises the set of transition systems, and it is then used to state

various qualitative and quantitative properties of the systems. For example, a qualitative

property could be “Can an agent have inconsistent beliefs (contradictory contexts in its

working memory)”, and quantitative properties could be “an agent will always derive

context ϕ in t time steps while exchanging fewer than n messages” or “every request of

an agent i will be responded by agent j in t time steps”, among others.

1.5 Methodology

An outline of the concrete methodology is given below:

1. We use ontology-based approach to represent contexts and rule-based reasoning to

CHAPTER 1. INTRODUCTION 12

infer implicit contexts from given a set of explicit contexts. We model a context-

aware system as multi-agent system, where agents are reasoning agents and they

reason over a knowledge-base using first order Horn-clause rules.

2. We develop a logical model, LOCRS , based on the previous work by [Alechina et al.,

2006, Rakib et al., 2012, Alechina et al., 2009a, Alechina et al., 2009c] consider-

ing temporal epistemic and description logics. We interpret beliefs syntactically as

formulas. The language of the logic contains a syntactic belief operator, temporal

modalities to describe the transition system, and other modalities similar to those

introduced in [Alechina et al., 2009a, Alechina et al., 2009c].

3. We improved LOCRS model using non-monotonic reasoning strategy. We present

a logic LDROCS for context-aware non-monotonic reasoning agents. This work

is based on [Gómez et al., 2007, Grosof et al., 2003] where context-aware agents

use defeasible reasoning to reason with inconsistent information. We follow similar

approach proposed by [Gómez et al., 2007, Grosof et al., 2003] while constructing a

set of strict and defeasible rules from an ontology but our purpose and application of

those rules are quite different. We use those rules to build a context-aware system

as a multi-agent non-monotonic rule-based agents and use a distributed problem

solving approach to see whether agents can infer certain contexts while they are

resource-bounded.

4. We develop an OWL API based translation tool, Onto-HCR, which extracts OWL

2 RL and SWRL rules from an ontology and translate them into first order Horn-

clause rules format.

5. We build a multi-agent rule-based context-aware system whose rules are derived

from the ontology of a smart space scenario, which is adopted from [Bikakis et al.,

2010, Leijdekkers and Gay, 2006, Nabih et al., 2011]. Then we show how we can

encode and verify interesting properties of the systems using Model checking tech-

niques, including non-conflicting contextual properties to see for example, when

CHAPTER 1. INTRODUCTION 13

there is an emergency situation for a patient then the system should not produce

non-emergency situation at the same time.

1.6 Thesis Outline

This thesis is organized into seven chapters and the rest of the thesis is organized as

follows:

Chapter 2 focuses on reviewing some basic logics with the intention of giving emphasis

to the significance of how this literature can be compliant in putting forward and develop-

ing resource-bounded context-aware systems. We briefly summarize modal logic which is

used to express many aspects of agents such as states, actions, and time. We then describe

the linear and branching time temporal logics in order to understand model checking and

verifying properties of the system. These logics are considered to be more appropriate

for specifying, reasoning, and verifying multi-agent system. A brief overview of model

checking and the foundation of Maude LTL model checker is given at the end of this

chapter.

Chapter 3 presents the reasoning formalisms for the semantic web focusing on descrip-

tion logics with ontology languages and rule-based reasoning. We discuss the non-monotonic

reasoning based formalisms, particularly, the defeasible reasoning which is used to rea-

son inconsistent and incomplete information. We also have surveyed literature on mono-

tonic as well as non-monotonic reasoning based logical formalisms including rule-based

reasoning and the semantic web technologies. We also investigate the significance of

rule-based approach for modelling ontology driven context-aware systems in this chapter.

Chapter 4 presents a formal logical framework for ontology-driven resource-bounded

context-aware rule-based agents based on temporal epistemic description logic. We also

CHAPTER 1. INTRODUCTION 14

prove the correctness of LOCRS axiomatization such as soundness and completeness, va-

lidity and satisfiability and resource-bounded properties of the system.

Chapter 5 introduces the logic LDROCS which is the extended version of the logic dis-

cussed in the previous chapter. This work is based on non-monotonic reasoning formal-

ism where agent’s belief can be revised based on contrary evidence. We verify resource-

bounded properties including non-conflicting contextual properties and illustrate the use

of LDROCS framework using a simple health care case study.

Chapter 6 provides an appropriate translation process from ontology axioms to DL knowledge-

base and then DL knowledge-base to defeasible logic programming. We present an OWL

API based translator, Onto-HCR, for the logical frameworks and construct a comprehen-

sive case study to model context-aware resource-bounded non-monotonic reasoning based

system and verify its resource-bounded as well as non-monotonic properties. Finally, we

demonstrate the scalability of the system by considering three facets of the system using

model checking technique.

Chapter 7 provides the summary of the thesis and propose some of the possible future

directions to extend this work as future work.

1.7 Conclusion

This chapter introduced the core notion of contexts and context-aware systems, and high-

lighted the state-of-the art of context-modeling and reasoning approaches. It also dis-

cussed motivation of the work presented in this thesis, followed by the problem statement

and research objectives. Finally, outline of the rest of the thesis is described.

Chapter 2

Logical Formalisms for Multi-agent

systems

2.1 Chapter Objectives

• To introduce the basic formalism of modal logics.

• To describe the linear and branching time temporal logics in order to understand

model checking and verifying properties of the systems.

• To present a brief overview of model checking and Maude LTL model checking

technique.

2.2 Introduction

In computer science, the aim of the logic is to develop a language that models a situation,

in which, it can reason formally to realize the desired objective. A logical formalism has

a language or a system of patterns continually behind a particular logic model with for-

mal practices of reasoning and communication. Reasoning is a process of using existing

knowledge or observations to make predictions or draw conclusions. Owing to basic tech-

niques of logical formalisms, formal methods were born. Nowadays, formal methods are

15

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 16

extensively explored by researchers. These are used in the industry with their specification

languages, theorem proving, and model checking [Huth and Ryan, 2004].

This chapter provides a brief survey of basic logical formalisms. The logics discussed in

this chapter are very suitable to modelling and reasoning in real life application scenarios.

From the time when these formalisms were born, they have still retained their grandeur

due to versatile nature of modelling and reasoning multi-agent systems. These provide

distinctive vantage for researchers with extensive interdisciplinary interests. Rather than

just discussing only the influential language design of these logics with their powerful rea-

soning capabilities, these logics have incorporated various formalisms in other diversified

fields [Alechina et al., 2009b, Huth and Ryan, 2004].

Before we introduce these formalisms, let us identify the essential drive of writing lit-

erature. We begin with the fundamental logics which provide very concise overview of

propositional logic and first order logic in order to understand the modal logics, particu-

larly comprehensive treatment of linear time and branching time temporal logics. These

formalisms have greatly influenced the work presented in this thesis. Further, we have re-

viewed the literature on these logics for better understanding towards their interconnection

with logical frameworks proposed in this thesis.

Propositional Logic is a formal language, which is often used in behavior analysis of

computing systems. This is based on mathematical modelling that can be used to perform

reasoning about the truthfulness or falsehood of logical expressions. The core idea of

propositional logic is to develop a language to model the situation in a manner where

reasoning can be performed formally to express properties of a system. It is based on

propositions and propositional formulas, which are written in a propositional language. Its

language includes the letters and logical connectives in terms of expressions or arguments,

which is formally called propositional formulas. For example; the propositional clauses

“It is hot” and “The sun is shining” can be represented using some propositional variables

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 17

p and q. Where the variable p can represent the first clause and q can be used to represent

the second clause. In propositional logic, these clauses can be represented using logical

connectives such as p ∧ q, among others, which means It is hot and The sun is shining.

In general, propositional logic is a useful tool for modelling and reasoning in diverse

application domains, especially in digital circuits. Most importantly, propositional logic

is decidable. However, this logic may not be a suitable approach for modelling real life

complex systems. In addition, propositional logic deals with simple declarative sentences.

It has only Boolean values that may be either true or false and no quantifier variables are

used in this logic, such as ∃, ∀ [Huth and Ryan, 2004, Hedman, 2004].

First order logic (FOL) provides flexible and compact representation of knowledge. It

consists of objects, properties, relations, and functions. Its domain of variables is very

large and infinite. It can be distinguished from propositional logic in terms of its quanti-

fiers. It is also known as symbolized reasoning since each sentence is splitted into subjects

and predicates. FOL, on the other hand, is an extension of propositional logic. Addition-

ally, it covers the predicates which may be either true or false. First order logic is more

precise for representing predicate logic formulas and much more complex than propo-

sitional logic. In FOL, two sorts of things are considered to represent predicate logic

formulas. Firstly, object represents the class with their individuals, for example, A(x)

and B(x, y). Secondly, it shows the truth value. The downside of FOL is the fact that it

is not decidable. However, the Description Logic is a subset of FOL which is decidable

(discussed in Chapter 3). Thus, the first order logic formulas in the form of A(x) and

B(x, y) can be directly translated into description logic concepts and roles respectively

[Smullyan, 1995].

2.3 Modal Logic

At the outset, modal logic was introduced as a branch of logic in early 20th century. Since

that time it was applied in different academic disciplines to analyze philosophical notions

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 18

and disputes. The core notion of modal logic is to study the truthfulness of a system.

It is an extended version of propositional and first order predicate logic which includes

modal operators in addition to other logical connectives to form complex formulas for

modelling and reasoning. The basic language of modal logic is defined using a set of

propositional variables with the modal operators. The propositional variables are usually

denoted by letters p, q, r and so on. The modal operators, also known as modalities, are

represented by � (necessity) and ♦ (possibility). These operators are often read as: � p :

it is necessary that p and ♦ p : is is possible that p.

Applications of modal logic are characterized by many aspects of agent-based systems.

This logic is considered to be one of the most widely used formal approaches to specify,

reason about and verify multi-agent systems. It is also a compatible and versatile for-

malism for multi-agent systems to express various aspects of agents like beliefs, actions

with their effects, and time. In a multi-agent system, an agent has a belief about certain

facts that it believes to be true about the environment. The concept of belief was initially

proposed by Hintikka (1962) [Hintikka, 1962] who describes the agent’s belief as a set of

possible worlds. There are two usual operators which describe the agent’s belief [Huth

and Ryan, 2004, Nga, 2011, Rakib, 2011].

1. The Ki operator arises from epistemic modality which is read as ‘‘agent i knows

that”. Epistemic logic deals with the certainty of the formulas or sentences.

2. The Bi operator arises from doxastic logic which is read as “agent i believes that”.

The truth of the formula p is expressed in terms of agent’s belief as B p in multi-

agent system. More specifically, we say agent i believes a fact p, which is repre-

sented as: Bi p .

2.3.1 Syntax of Modal Logic

Formulas of basic modal logic are defined with traditional logical operators such as nega-

tion, disjunction and conjunction with modalities ♦ and �. Let P be a finite set of propo-

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 19

sitional variables. The syntax is given as:

φ ::= p | ¬ φ | ♦ φ | � φ | φ1 ∨ φ2 | φ1 ∧ φ2

where p ∈ P . Other logical operators are given as: > ≡ φ1 ∨ ¬φ2 where > represents

true, ⊥ ≡ ¬ > where ⊥ represents false, φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2), φ1→ φ2 ≡ ¬φ1 ∨ φ2,

φ1↔ φ2 ≡ (φ1→ φ2) ∧ (φ2→ φ1) and ♦ φ ≡ ¬�¬φ.

2.3.2 Semantics of Modal Logic

The semantics of Modal Logic are represented by Kripke model. Kripke model has the

form M = (S,R, V) where

• S is a non-empty set of states or possible worlds.

• The accessibility relation R ⊆ S × S, which is a binary relation on S.

• V : P ×R is a truth assignment function that may either be true or false.

The truth of the formula in a model M = (S,R, V) and s ∈ S is defined inductively as

follows:

• M, s |= p iff V (p, s) is true.

• M, s |= ¬φ iff M, s 2 φ

• M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

• M, s |= φ1→ φ2 iff M, s 2 φ1 or M, s |= φ2

• M, s |= �φ iff for all s′ ∈ S such that R(s, s′), so M, s′ |= φ.

A formula φ is satisfiable iff there exists a model M and state s of M such that φ is at

state s, M, s |= φ. A formula φ is valid in a model M iff φ is true in any possible world s′

of M . So we write it as: M |= φ.

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 20

Here, we have briefly surveyed the core notion of Modal logics. We refer the interested

readers to [Huth and Ryan, 2004, Benthem, 2010, Blackburn et al., 2002] for more de-

tailed description of modal logics.

2.4 Temporal logic

In concurrent reactive systems, correctness not only validates the correct input and output

of the computational system, but also objectively monitors the execution of the system.

Temporal logic is explicitly developed to treat these aspects and to monitor infinite behav-

ior of reactive systems. In this section, we describe temporal aspects of formal methods

to model and specify multi-agent systems and verify their correctness properties. We elu-

cidate how multi-agent systems are typically modelled and how reasoning using temporal

logics is achieved. Temporal logics have played vital role in formal verification wherever

needed to state the specification requirements for hardware and software systems. It rep-

resents the set of rules for reasoning in terms of time and the time domain is expressed

in terms of state. A present time corresponds to current state and next moment of time

corresponds to the immediate next state. Alternatively, system behavior is observed in

terms of discrete time points such as 0, 1, 2, . . . , n. Transition corresponds to the progres-

sions from current time step to the next time step with specific action. Temporal logic is

applicable due to its behavioral aspects of hardware and software in terms of time. Rea-

soning in the temporal logic is much easier with the translation into the predicate calculus

because relationship among time is implicit [Baier et al., 2008].

Temporal logic has introduced some additional operators that represent the time variable

and reflect their relationships. In essence, temporal logic is an extension of propositional

logic. It is also known as propositional temporal logic (PTL). With the set of temporal

operators, these enable the definition of formulas with the accessibility relation. When

defining temporal properties, some temporal operators are needed to model the system in

terms of time. These operators include F , G, X and U . The first three operators are

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 21

unary whereas the last one is binary [Wolper, 1983].

Literature has exposed several temporal logics including branching time and linear time

temporal logics [Baier et al., 2008, Huth and Ryan, 2004, Pnueli, 1977]; each having their

own temporal operators. In linear time temporal logic, there is a single successor state at

each moment of time whereas in branching time temporal logic, time is split into different

alternative paths. In the following section, we provide a brief overview of Linear temporal

logic (LTL), Computational tree logic (CTL), and Full computational tree logic (CTL*).

2.4.1 Linear Temporal Logic (LTL)

Linear Temporal Logic has been proposed as a formal verification tool by Amir Pnueli

[Pnueli, 1977]. LTL models time as a sequence of states and the future state is seen as a

path in LTL. Accordingly, there are different future paths from where any path is taken

as an actual path. There are many LTL model checking tools available, including [Eker

et al., 2003, Barnat et al., 2006], which use LTL as a property specification language.

2.4.1.1 Syntax

The syntax of LTL is defined by considering a set of propositional variables (P), logical

operators, and temporal operators. The set of LTL formulas is formally defined induc-

tively over propositional variables as follows:

φ :: = >| p | (¬φ) | (φ ∨ ψ)| (φ ∧ ψ) | (φ→ ψ) | Xφ | Fφ| Gφ | φUψ

The connectives F,X,R,G, U are known as temporal connectives where X (next) , F

(eventually) , G (globally) and U (Until).

2.4.1.2 Semantics

We interpret temporal formulas in a linear model of time. The structure is formally rep-

resented by M = (S,→, L) where S is a set of states and L is a labeling function. The

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 22

semantics of a LTL formula is provided by the satisfaction relation (|=). M , π |= φ means

the path π in M satisfies the formula φ. π expresses the paths as s0 → s1 → s2 → . . .

→ sn and πi = si → . . .→ sn is a sub path of π starting at si. The semantics is defined

by induction on the structure of φ, is given as:

• (M , π) |= >

• (M , π) |= p iff p ∈ L(s0)

• (M , π) |=¬φ iff (M , π) 2 φ

• (M , π) |=φ∨ψ iff (M , π) |=φ or (M , π) |=ψ

• (M , π) |=φ∧ψ iff (M , π) |=φ and (M , π) |=ψ

• (M , π) |= φ→ ψ iff (M , π) 2 φ or (M , π) |= ψ

• (M , π) |= Xψ iff (M , π1) |= ψ (Next step must be true)

• (M , π) |= φUψ iff there exist i ≥ 0 such that (M , πi) |=ψ and for all j < i, (M , πj)

|= φ

Other additional temporal operators can be expressed in terms of the above formulas [Huth

and Ryan, 2004, Artale, a, Artale, b].

2.4.2 Computational Tree Logic (CTL)

CTL is a branching time temporal logic. Like LTL, it is also used in formal methods

to verify correctness properties of a system by model checking tools. Each state may

have an accessibility relation with the immediate next state by a transition which reflects

the system behavior in terms of time. CTL is more expressive than LTL and permits

quantification over path [Huth and Ryan, 2004].

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 23

2.4.2.1 Syntax

The syntax of CTL is defined by considering a set of propositional variables (P), logical

operators, and temporal operators. The set of CTL formulas is formally defined induc-

tively over propositional variables as follows:

φ :: = >| p | (¬φ) | (φ1 ∧ φ2) | (φ1 ∨ φ2) | (φ1 → φ2) | (φ1 ↔ φ2) | EXφ | EGφ | EFφ

where p ∈ P . In CTL, each temporal connective is a pair of symbols. The first symbol in

a pair is one of theE andA. E means along at least one path, andAmeans along all paths.

The second symbol in the pair is X (next), F (eventually), G (globally) and U (Until).

The symbols X , F , G and U cannot appear without an E or an A. These are used with

logical operators in the same way as with other logics, these operators are: ¬,∧,∨,⇒,⇔

2.4.2.2 Semantics

CTL formulas and their interpretations are represented over transition system. A transition

system is a triple M = (S,→, L) where S is the set of states,→ ⊆ S × S is a transition

relation and L is labeling function. The relation of semantic entailment (M, s |= φ) , for

a given state s ∈ S and a formula φ, is defined by structural induction on φ.

1. (M, s) |= >

2. (M, s) |= p iff p ∈ L(s)

3. (M, s) |=¬φ iff (M, s) 2 φ

4. (M, s) |=(φ1 ∧ φ2) iff (M, s) |=φ1 and (M, s) |=φ2

5. (M, s) |=(φ1 ∨ φ2) iff (M, s) |=φ1 or (M, s) |=φ2

6. (M, s) |=(φ1 → φ2) iff (M, s) 2 φ1 or (M, s) |=φ2

7. (M, s) |=EXφ iff for some s1, such that s→ s1, we have (M, s1) |=φ. Thus φ is in

some next states.

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 24

8. (M, s) |=EGφ iff there is a path s1→ s2 → · · · where s1= s and for all si along the

path such that (M, si) |=φ.

9. (M, s) |=EFφ iff there is a path s1→ s2 → · · · where s1= s and for some si along

the path such that (M, si) |=φ.

2.4.3 Full Computation Tree Logic (CTL*)

CTL* is considered as a superset of CTL and LTL. CTL* is a powerful temporal logic

which combines both the linear time and branching time temporal operators including

state formulas with path quantifiers. It is much more expressive than CTL and LTL and

freely combines the path quantifiers with temporal operators. CTL* temporal operators

(F,X,G,U) are associated with unique path quantifier (E,A) [Huth and Ryan, 2004].

2.4.3.1 State Formula

CTL* have the same operators used in CTL. CTL* syntax is defined using propositional

variables (P), logical operators, and temporal operators. The formulas of CTL* is for-

mally defined as follows:

φ ::= > | p |(¬φ) | (φ1 ∧ φ2) | A(φ) | E(φ) | AFφ | EFφ | AGφ | EGφ | A(φ1Uφ2) |

E(φ1Uφ2)

where p ∈ P and φ is any path formula.

Kripke structure is used to define the semantics of CTL*. Two types of formulas used in

CTL* are state formulas and path formulas. State formulas are interpreted with respect to

states whereas path formulas are interpreted over paths.

A transition system is a triple M = (S,→, L) where S is the set of states, → is a tran-

sition relation and L is labeling function. If a state s satisfies a formula φ, then it can be

represented in a model at a state s, (M, s |= φ), given as:

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 25

• (M, s) |= > ∧ (M, s) 2 ⊥

• (M, s) |= p iff p ∈ L(s)

• (M, s) |= ¬φ iff (M, s) 2 φ

• (M, s) |= φ1 ∧ φ2 iff (M, s) |= φ1 and (M, s) |= φ2

• (M, s) |= φ1 ∨ φ2 iff (M, s) |= φ1 or (M, s) |= φ2

• (M, s) |= φ1 → φ2 iff (M, s) 2 φ1 or (M, s) |= φ2

• (M, s) |= φ1 ⇔ φ2 iff {(M, s) |= φ1 and (M, s) |= φ2} or {¬(M, s) |= φ1 and

¬(M, s) |= φ2}

• (M, s) |=Aφ iff φ is a path formula, and for all paths π starting from s s.t. (M,π) |=

φ.

• (M, s) |= Eφ iff φ is a path formula, and there is a path π starting in s s.t. (M, s)

|= φ

2.4.3.2 Path Formula

φ :: = p | (¬φ) | (φ1 ∧ φ2) | (φ1 ∨ φ2) | (φ1 → φ2) | (φ1 ↔ φ2) | (φ1Uφ2) | Gφ | Fφ | Xφ

The semantics of CTL* Path formulas are defined as follows:

• (M , π) |= p iff (M, s0) |= p

• (M , π) |= ¬φ iff (M,π) 2 φ

• (M , π) |= φ1 ∧ φ2 iff (M , π) |=φ1 and (M , π) |=φ2

• (M , π) |= φ1 ∨ φ2 iff (M , π)|=φ1 or (M , π) |=φ2

• (M , π) |= φ1 → φ2 iff (M , π) 2φ1 or (M , π) |=φ2

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 26

• (M , π) |= φ1 ⇔ φ2 iff {(M , π |=φ1) ∧ (M , π |=φ2)} ∨ {¬(M , π |= φ1) ∧ ¬ (M ,

π |=φ2)}

• (M , π) |= X φ iff (M , π1) |= φ

• (M , π) |= F φ iff there exist n ≥ 0 such that (M , πn) |= φ

• (M , π) |= G φ iff for all n ≥ 0 such that (M , πn) |= φ

• (M , π) |= φ1Uφ2 iff there exist n≥ 0 such that (M , πn) |= φ2 and for all 0≤ k < n.

so, (M , πk) |= φ1

2.4.4 Some Standard System Properties

There are various system properties that can be expressed using temporal logics. Some

of the generic properties are provided in this section [Alpern and Schneider, 1985, Rakib,

2011].

• Safety property describes “bad thing” that does not happen during the execution.

According to safety property: “something bad will never happen”. It can be ex-

pressed as non-reachability of a state satisfying ϕ, e,g.; the property AG¬ϕ

• Liveness property specifies about a “good thing” happens during the execution or we

can say that “something good will eventually happen” which means that eventually

some formula ϕ holds for finite number of steps. e,g.; EFϕ

• Guarantee of Service states that if one process sends a request, it must have to be

responded by other process. For example, if a request having a formula (e.g.; ϕ).

Then, it must eventually be responded by a formula (e.g.; ψ). This can be expressed

in temporal notation as: AG(φ→ AFψ).

• Mutually exclusion occur when two processes execute concurrently at the same crit-

ical section. Then, it is prescribed as “bad thing”.

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 27

• Precedence is defined by until operation which states that a formula ϕ satisfies all

preceding states until ψ will eventually happen.

2.4.5 Analysis of Temporal Logics

Three temporal logics discussed above are different in terms of expressive powers, quanti-

fiers, structures and behavior of the systems. Linear Time Temporal Logic (LTL) is more

straight forward to use and have the individual paths (Path formulas). Computational Tree

Logic (CTL) has the ability to quantify paths. Its formulas likeAF p seems hard to under-

stand. CTL restricts in two ways as compared to CTL*. It disallows boolean combination

of path formulas and nesting of path modalities such as F,X,G. CTL* is more expressive

than CTL and LTL but computationally it is much more expensive. CTL* is very useful

for developing and checking correctness of complex reactive system.

2.5 Model Checking

“Model checking is an automated technique that, given a finite-state model of a system

and a formal property, systematically checks whether this property holds for (a given state

in) that model”[Baier et al., 2008]. Model checking is a technique to verify the correct-

ness properties of a finite state system. In model checking, system checks whether the

model meets the given specification or not. There are two types of specification: system

specification and property specification. System specification analyzes the concurrent

transition system to be formalized. In property specification, properties of the system are

model checked [Baier et al., 2008, Eker et al., 2003]. Model checking is based on tem-

poral logics in which properties are typically written using the temporal logic formulas.

Literature has revealed considerable amount of work on model checking multi-agent sys-

tems considering temporal aspects of the system [Bordini et al., 2003, Wooldridge et al.,

2002, Van der Hoek and Wooldridge, 2002] in general, and with resource-bounded in

particular [Albore et al., 2006, Alechina et al., 2007, Rakib et al., 2012].

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 28

In the literature, a significant number of model checking tools are available to model,

specify and verify the correctness properties of the systems. Some of the model checking

tools that are most commonly used for verification of multi-agent systems such as MCK

[Gammie and van der Meyden, 2004], MCMAS [Lomuscio et al., 2009], MOCHA [Alur

et al., 1998], SPIN [Holzmann, 1997] and Maude LTL Model Checker [Eker et al., 2003]

etc. Among others, we choose Maude LTL Model Checker due to its modular structuring

mechanism. In addition, Maude performs model checking on finite state model and has

the ability to check the systems whose states invloves algebric data types. In this section,

we briefly introduce the basic foundation of Maude LTL model checker. However, in

Chapter 6, we describe how to perform automated analysis of context-aware multi-agent

system (a LDROCS model) and verify interesting properties of the system using the Maude

LTL model checker.

2.5.1 Maude LTL Model Checker

This section presents the core foundation of Maude and Maude LTL model checking[Clavel

et al., 2007, Eker et al., 2003]. Maude supports rewriting logic computation and deals with

the concurrent computations. In Maude, systems are developed (modelled) using equa-

tional and rewriting logic. Maude is not only a modelling tool but also a high-performance

programming language that models the system to specify the actions within the systems.

It is simple, concrete and a powerful language that has the ability to present the system

behavior. It supports both the equational and re-writing specification language and pro-

gramming for multi-domain applications.

Maude has a modular structure to represent the basic units of specification as well as

programming. In Maude, a module can be defined as a collection of sorts and a set of

operations on these sorts. Sort is a category for values, which is declared in the module

with the keyword sort followed by sort name and period at the end. Multiple sorts can

be defined using the keyword sorts. Subsort is a subcategory of sort. It is like a subset

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 29

relation with sort which is used to define more specified group that belongs to the sort. It

is declared using the keyword subsort.

A term can be a constant, variable, or an application of the operator that list the arguments

of the term. However, a ground term is quite different from a normal term for it does not

contain variables but only has constants and operators. Maude variable is used to define

dynamic value for the sort. In Maude, a variable canot be a constant. Maude variables are

declared using the keywords var or vars. var is used to define a single variable whereas

vars is used for multiple variables. Variable are the placeholders for terms.

In Maude, an operator is considered as a function or constructor to process data. Maude

operators understand both the prefix or mixfix notations. Prefix operations are widely

used by many programming languages whereas mixfix operations used in Maude. Maude

operation is declared using keyword op followed by name, followed by colon(:), and

followed by list of sorts, followed by an arrow (->), followed by sort for results and a

period at the end.

In Maude, equations are used to describe the static part of the system. The dynamic part

of the system, i.e., rewriting rule is one of the most powerful feature of Maude for the

concurrent transitions that take place in the structure of the to/from states. Two types of

equations are used in Maude: unconditional equations and conditional equations. Uncon-

ditional equations can be represented as:

eq [<LabelName>]:<Term-1>=<Term-2> [<OptionalStatementAttributes>] .

Conditional equation has some conditions with the equations, which is of the form:

ceq [<LabelName>]:<Term-1> = <Term-2>

if <EqCond-1> ∧ . . .∧ <EqCond-k> [<OptionalStatementAttributes>] .

Unconditional rules can be defined using the following syntax:

rl [<LabelName>] : <Term-1> => <Term-2> .

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 30

Conditional rules can be defined using the following syntax:

crl [<LabelName>]:<Term-1> => <Term-2>

if <RuleCond-1> ∧ . . .∧ <RuleCond-k> .

In Maude, modules can be classified as functional modules, system modules and object-

oriented modules. In this thesis, we discuss functional module and system module. These

modules are declared with the key terms as follows:

fmod <ModuleName> is

...

endfm

mod <ModuleName> is

...

endm

Functional module begins with the keyword fmod and ends with keywords endfm. How-

ever, system module’s structure is different, it starts with a mod keyword and end with

endm. The <ModuleName> represents the name of the module and ‘...’ represents the

body of the module. More specifically, it represents all the declarations and statements

within its scope. Moreover, the body of a functional module defines operations and data

types through the use of the equational theory. Whereas the body of a system module’s

task is to specify a rewrite theory that contains the equational theory and rewrite rules.

Maude requires a system specification and a property specification to verify properties us-

ing model checking tools. In Maude, system specification is defined by rewrite theory and

property specification is specified by LTL formulas. In Maude, a module can be imported

into another module based certain circumstances. For example, if a module A imports

another module B. In that case, the module A does not need to re-define its declarations.

CHAPTER 2. LOGICAL FORMALISMS FOR . . . 31

In Maude, rewrite theory represents the system dynamics which has concurrent transi-

tions. In Maude rewriting system, the system explores properties non-deterministically

using concurrent transitions of the distributed systems. Maude chooses arbitrarily the suit-

able rewrite rule that would be applied from left to right of the equation. The data types

can be defined through its algebraic equations and the dynamic behavior of the system is

specified by rewritable rules. A rewrite theory is more likely to become non-deterministic

and could exhibit different behaviors.

Maude LTL model checker has the ability to check the systems whose states involve

arbitrary algebraic data types. Due to that reason, we have chosen Maude LTL Model

checker. However, there is one assumption - the set of states accessible from a given

initial state is finite.

2.6 Conclusion

In this chapter, we have mainly focused on reviewing some basic logics with the intention

of giving emphasis to the significance of how this literature can be compliant in putting

forward and developing resource-bounded context-aware systems. Propositional logic

was developed as a formal language, which has the capability to manipulate and reason

using inference rules. However, it is often not suitable for modelling real life example sys-

tems. This logic does not have quantification. Thus, it is very difficult to express the large

domains concisely. To begin with, first order logic has quantifiers which are naturally

more expressive than propositional logic. Secondly, modal logic is used to express many

aspects of agents such as mental states, actions, and time. This logic is considered to be

more appropriate for specifying, reasoning, and verifying multi-agent system. Temporal

logic is used for reasoning about concurrent programs of multi-agent systems and is very

useful for formal verification of hardware and software requirements. At the end of this

chapter, we have presented the basic foundation of Maude LTL model checker, which will

be used to verify formally properties of context-aware systems discussed in this thesis.

Chapter 3

Formalisms for Context-aware MAS

3.1 Chapter Objectives

• To present the basic formalisms of description logics (DLs) and explain why DL-

based ontologies are important in the semantic web.

• To introduce the web ontology languages (OWL), with their data type formalisms,

and Semantic web rule language (SWRL).

• To investigate the significance of rule-based approach for modelling ontology driven

context-aware systems.

• To discuss the non-monotonic reasoning based formalisms, particularly, the defea-

sible reasoning.

3.2 Reasoning Formalisms for the Semantic Web

In this chapter, we introduce the core notions and notations of the reasoning formalisms

employed in this thesis. Reasoning is denoted as the process of thinking in a logical way

in order to draw inference or conclusion. When reasoning is performed, it draws infer-

ence, which may be either monotonic or non-monotonic. More so, this chapter provides a

32

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 33

comprehensive review of both kinds of reasoning formalisms, focusing on two important

aspects of the research problems. The first aspect introduces the reasoning formalisms for

the semantic web, in this part, we discuss two different but contingent areas of knowl-

edge representation formalisms. First area focuses on description logics (DLs), which

are widely used and best suited for ontology languages and have variety of applications.

The core inspiration of DLs is to develop a well-suited integrated computational services

to model the domain using ontology. Description logic based ontology has a significant

impact in the semantic web owing its expressivity and powerful DL reasoning.

The second area is concerned with web ontology languages (OWLs), which are the formal

representation of a conceptualization for a specific domain that defines certain concept-

s/classes and their relationship. There are two versions of ontology languages known as

OWL (OWL 1) and OWL 2, each having their own sub-languages. In Section 3.4.4, we

discuss semantic web rule language (SWRL) which was proposed to overcome the lim-

itations of OWL 2 by defining the semantic relations among individuals and it enhances

the expressive power of OWL. In this thesis, we explicitly address the semantic context

modelling approach by combining of OWL 2 RL with SWRL.

In Section 3.5, we present rule-based reasoning formalisms following semantic web tech-

nologies and then describe the formal approaches for distributed multi-agent system in the

proceeding section. In Section 3.7, we provide a brief comparison between monotonic

and non-monotonic reasoning techniques. Thereafter, we proceed to defeasible reason-

ing which is one of the most successful area in non-monotonic reasoning. Section 3.9

briefly surveyed some ontology driven defeasible reasoning based formalisms which in-

clude rule-based reasoning techniques for modelling and reasoning. Finally, we provide

the conclusion in the last section.

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 34

3.3 Description Logic

Description Logics (DLs) are a family of formal knowledge representation languages

which is specifically designed to express terminological knowledge of a particular do-

main in a well-structured and organized manner and are best suited for expressing and

reasoning with regards to knowledge in a given application domain. The advances in the

development of description logic languages has gained significant popularity due to their

expressivity and computational complexity in knowledge representation formalisms such

as the semantic web, ontology-driven data access, biomedical informatics, etc [Tsarkov

and Horrocks, 2006, Hustadt et al., 2004, Botoeva, 2014]. DLs model individuals, atomic

concepts and roles. It also defines their relationships. It is used for formal reasoning on

atomic concepts of a particular application domain. In the proceeding Subsection 3.3.1,

we discuss the DL knowledge which is the basic building block of description languages.

Description logic is a fragment of First Order Logic which is exclusively designed to for-

malize logic-based systems with semantic networks. In the past years, much more infor-

mation was made available on description logics. DLs, on the other hand, have been ap-

plied in different areas of computer science like in ontology modelling for semantic web,

knowledge representation and data integration [Baader, 2003, Grosof et al., 2003]. Ac-

cordingly, first order logic is the best suited framework for analyzing first order definable

logic; hence, the mapping between description logic and FOL is straightforward. Then,

the mapping from DLs and modal logic to first order logic joined them using powerful

technique proposed in the field of automated reasoning. The DL language is considered

to be a sub-language of the universal terminological logic. The universal terminological

logic has been studied in 1987 by Patel-Schneider [Patel-Schneider, 1987]. There are

many supersets of operators available in most description logic languages, which can be

found in the literature [Hustadt et al., 2004].

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 35

Literature has revealed variety of sub logics of DLs [Baader et al., 2003, Baader and

Nutt, 2003, Calvanese and De Giacomo, 2003]. For instance, Attributive language with

complements(ALC) [Schmidt-Schauß and Smolka, 1991, Rudolph, 2011] is one of the

initial versions of DL. This is limited to top and bottom concept, concept complement,

concept intersection and existential quantifiers. However, the core modelling features

of ALC have been enriched by its expressive formalism to specify and query knowledge.

The features such as RBox axioms, the universal role, cardinality constraints, role inverse,

self-concepts and nominal-concepts are not supported by ALC. Later in 2000, Hustadt et

al. [Hustadt and Schmidt, 2000] have focused on a decidable description logic ALB

which is an abbreviation of attributive language with Boolean algebras on concepts and

roles. It extends ALC with the top role, role union, role intersection, role complement,

role inverse, range restriction, and domain restriction. ALCH or SH is the extension of

[Schmidt-Schauß and Smolka, 1991] which additionally allows simple role inclusion such

as role chain axioms (R v S).

Horrocks et al. [Horrocks et al., 2006] have proposed description logic SROIQ based

on ontology language OWL 2 DL and is considered as one of the most expressive for-

malisms where inferencing is decidable. It has three primary elements termed as concept

names, role names, and individual names. The basic building blocks of DL SROIQ are

RBox (shows the inter-dependencies between the roles), TBox (introduces terminology

or vocabulary of an application domain) and ABox (contains information that applies to

individuals). In DL SROIQ, concepts C,D ∈ C are said to be equivalent, represented as

C ≡ D, if both concepts C and D are having the same extension for the interpretation I ,

for example; CI ≡ DI . The set of all concepts is represented by C in the knowledge-base

(KB). Concept equivalence is expressed in the form of axiom entailment, for example,

C ≡ D means a knowledge base has both similar axioms D v C and C v D. i.e KB

|= C v D, KB |= D v C. Concept equivalence C ≡ D can be expressed as TBox axiom

in the knowledge base. In a similar fashion, two knowledge bases are equivalent if the

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 36

interpretation of first knowledge base exactly matches with the second knowledge base

axioms.

Description logics express formal logic based semantics. Semantics of concept identifies

Description Logics, including DL SROIQ, as DL is semantically based on first order

predicate logic. More specifically, some DL interpretation has the same structure as FOL

interpretation. But technically speaking, DL syntactic structure is different from FOL and

most DL axioms are not FOL formulas. DL atomic concepts and roles can be mapped

to unary and binary predicates respectively. Any predicate logic formula in FOL C(x)

can be mapped by DL concept C where C is the class name and x is a variable. In DLs,

concepts are the set of individuals presented by letters C,D. Roles are represented by

binary relation between individuals R and a , b are individuals for the concepts or roles.

Concept assertion and role assertions are represented by C(a) and R(a, b) respectively.

The DL axioms can be translated to equivalent FOL formulas. [Baader, 2003, Horrocks

et al., 2006]

• An atomic concept C can be translated to C(x)

• An atomic role R can be translated to R(a, b)

• Constructor intersection is translated to logical conjunctions

• Union is translated to disjunction

• Negation is translated to Negation

3.3.1 DL Knowledge Base

DL knowledge base has a finite set of terminological and assertional sentences having

three essential components:

1. TBox (Terminological Box) presents the terminology of an application domain.

TBox defines the concepts, it specifies concept hierarchies which shows how atomic

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 37

concepts and atomic roles are interrelated. TBox outlines the controlled vocabulary

in the form of classes and properties. The basic form of declaration in TBox con-

cepts and roles are given as follows:

• Concept Inclusion: C v D

• Role Inclusion: (R v S).

• Concept Equivalence: C ≡ D

• Role Equivalence: (R ≡ S).

2. ABox (Assertional Box) is an assertional component that describes facts associated

with concepts and roles in the knowledge base. ABox contains assertion on named

individuals in terms of vocabulary. ABox has extensional knowledge about the

domain of interest called membership assertion. A fact is an instance of a particular

concept or role. For example, the facts a, b are assigned to concept C or roles R.

Consequently, there are two types of assertions in ABox.

• Concept assertions: C(a) means a belong to C. For example; Person(Alan)

shows that Alan is a member of Person class.

• Roles Assertions: R(a, b) where a is connected to b using the role R. For

example; hasFever(Alan,High) means Alan has High fever. This prop-

erty correlates two different concepts (Patient and Fever) in order to to ex-

press its meaning. The property hasFever defines the relationship between

Patient and Fever class andAlan is an instance of a Patient class andHigh

is an instance of a Fever class.

3. RBox (Relational Box) reveals the inter-dependencies between the roles (r, s).

RBox includes a set of statements which describe the characteristics of roles such

as symmetry, transitivity and reflexivity. The characteristics of RBox are expressed

as a union of finite set of roles with the role hierarchy.

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 38

Concept Symbol Concept Terms Role Symbol Role Terms
> Top R u S Role conjunction
⊥ Bottom R t S Role disjunction

C uD Concept conjunction ¬R Role complement
C tD Concept disjunction R ⊆ S Role inclusion
¬C Concept complement R = S Role equivalence
∀R.C Universal restriction R ◦ S Roles composition
∃R.T Existential restriction id(C) Identity role on C

(Limited quantifier)
∃R.C Existential Restriction

Table 3.1: Description Logic Constructors

All DLs are based on the vocabulary consisting individuals, concepts and roles. The

syntax of description logic languages allows users to construct the complex descriptions

of DLs vocabulary. It also checks the satisfiability and consistency to establish the correct

and meaningful knowledge base. Table [3.1] illustrates the constructors of description

logic. Semantics deal with the meanings and interpretations. The knowledge base is

interpreted in case of non-empty set of a domain. By considering a specific domain,

concepts can be interpreted with the set of individuals. In a similar approach, roles are

interpreted with the set of ordered pairs of individuals. In DLs, interpretation is normally

denoted by I and a non-empty set is represented by4 (also known as domain). Concept

symbols are mapped to subset of the domain 4 and role symbols to subsets 4 × 4.

Interpretation function I extends to complex concepts and roles. Suppose KB be the

knowledge base consisting of a set of concepts and roles, so 4 I satisfies KB which is

written as: 4 I |= KB. This states that 4 I satisfies every sentence in KB. So, KB |= α

states that KB entails α if α is satisfied in the knowledge base KB.

3.4 The Semantic Web

The project discussed in this thesis aims to apply the semantic web technologies such as

OWL 2 RL ontology and SWRL to construct the domain model knowledge base. For this

purpose, we begin with the definition of semantic web and proceed with how it is vital

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 39

for our project. The semantic web concept was initially proposed by Tim Burners Lee

[Daconta et al., 2004] with the intention of sharing knowledge and the semantics of the

data beyond the scope of applications and WWW. The formal definition of the semantic

web is given as:

“The Semantic Web is not a separate Web but an extension of the current one, in which

information is given well-defined meaning, better enabling computers and people to work

in cooperation” [Berners-Lee et al., 2001].

Figure 3.1: OWL Family Tree

The semantic web is a set of standards that can be used for RDF (resource description

framework) data model, RDF schema, query language such as SPARQL and web on-

tology language (OWL) to store vocabularies and ontologies. RDF is the foundation of

the semantic network, its syntax allows one to show concepts (classes) and properties

(roles). RDF knowledge base contains triple (subject, predicate and object) which can be

mapped to corresponding description logic axioms. For example, subject and object can

be mapped to corresponding concept or individual whereas predicates to role. RDFS is

an extension of RDF having sub-class and sub-property relationship [Gruber, , Faruqui,

2012]. The DARPA Agent Markup Language (DAML) is the next generation of RDF

developed for frame-based knowledge representation and object-oriented languages. Ini-

tially, OIL (Ontology Inference Layer) was introduced to integrate the semantic web based

core elements from frame languages, description logics, XML and RDF. OIL is based on

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 40

DL SHIQ. Soon later in 2002, a new language was developed by joint venture of DAML

and OIL, named as DAML+OIL. Basically, Description Logic based model is technically

influenced by its formal semantics. In DAML+OIL, description logic inferred language

constructors have been preserved but their frame structure was totally changed for the in-

tegration of RDF syntax [Hendler and McGuinness, 2000, Fensel et al., 2001, Horrocks

et al., 2002]. The OWL family tree [Bechhofer, 2007] is shown in Figure 3.1, which

depicts how OWL has developed from the semantic web technologies.

FOL Description Logic OWL
Unary predicate Concept name Class name
Formula with one free variable Concept Class
Binary predicate Role name Object property name
Formula with two free variables Role Object property
Theory Knowledge base Ontology
Sentence Axiom Axiom
Signature Vocabulary/signature Vocabulary

Table 3.2: Corresponding Terminologies of FOL, DL and OWL

The design of OWL (Web Ontology Language) was influenced by DAML+OIL, DL, RDF

and RDFS. The OWL (Web ontology language) depends on description logic languages

which provides extra sort of additional logical information, for example; ontology ver-

sioning and annotations. OWL has a support for developing and reasoning ontology with

their data types. DLs knowledge base satisfiability can be checked by using the reasoning

tools in the OWL. Thus DL and OWL have a very strong association for modelling logical

frameworks and verifying those using reasoning tools. Description Logic knowledge base

translation into OWL is straightforward. In addition, DLs axioms can be translated to FOL

corresponding axioms. Table 3.2 illustrates the summary of corresponding terminologies

used in FOL, DLs and OWL which is extracted from [Rudolph, 2011]. More specifi-

cally, some essential components are required to translate DL SROIQ knowledge base

into OWL. First, Preamble contains the definition of the namespace. Second, declaration

of the used concept and role names should be according to the class and object proper-

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 41

ties respectively. Third, OWL axioms should be from the DL knowledge base [Rudolph,

2011].

The best practice for accessing and sharing knowledge is to use RDF data model, OWL

ontologies with their unique identity known as URI (universal resource identifier) to as-

sign unique name to each individual. The semantics of data usually defines the meaning of

the data, for this purpose, W3C (World Wide Web consortium) lets the web ontology lan-

guage (OWL) to store meaningful data with their URIs. In the semantic web, every single

source or content of the source has a unique identifier. The most common identifiers are

URLs, URNs and URIs. The first one is the URL (uniform resource locator) which is used

to identify specific set of resource. For example; http://www.nottingham.edu.my. Second,

URN (Universal resource Name) can be accessed using unique id numbers. Third, URI

(universal resource identifier) is a superset of the URLs and the URNs which includes

both identifiers. URI can be used to access all contents of the resources and URL is itself

a subset of URI.

3.4.1 Web Ontology Language (OWL)

OWL (also known as OWL 1.0) is a computation logic based on formal language for rep-

resenting ontologies. OWL 1.0 is based on description logic language SHION that pro-

vides the syntax and the semantics to represent ontologies. OWL Ontology includes a set

of axioms that provides logical assertion about three core elements: classes, object, data

properties and individuals. OWL 1 has three sub-languages [Van Harmelen and McGuin-

ness, 2004]. First, OWL Lite provides concept hierarchies and property restrictions. It

corresponds to SHIF that provides support to those users who essentially require simple

constraints and classification hierarchy. Second, OWL DL provides supports for the users

who require utmost expressiveness, computational completeness and decidability. Third,

OWL Full is specifically designed for the users who require utmost expressiveness with

RDF syntactic freedom but it does not have computational guarantees. OWL full permits

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 42

ontologies to extend the meanings of the RDF and/or OWL predefined vocabularies.

3.4.2 OWL 2.0

OWL 2.0, an extended version of OWL 1.0, formally describes the ontology languages

with their defined meanings for the semantic web. It is based on description logic language

SROIQ to represent ontologies. Accordingly, OWL 2 is more expressive than OWL 1, and

yet it has intractably combined the computational and data complexities while performing

the reasoning problems. OWL 2 ontologies specify classes, properties, individuals, and

data values. The core purpose of OWL 2 is to capture knowledge and model the language

for specific domains about the human knowledge. In OWL 2, ontology consists of a set of

statements (classes and properties with their defined relationship) and a set of rules. These

statements are called axioms in OWL 2 [Hitzler et al., 2009]. There are different profiles

in OWL 2, each profile has certain restrictions according to the scenario for ontology

structures and reasoning tasks.

• OWL 2 EL is useful for those applications employing ontologies which consists of

numerous classes and properties. It is typically intended for the applications that

use ontologies with large volume of TBoxes.

• OWL 2 QL is specifically designed for applications that utilize big amount of in-

stance data in which query answering is a crucial reasoning task. It is suitable for

developing ontologies with large size of ABoxes.

• OWL 2 RL reasoning systems permits rule-based reasoning. It has a higher expres-

sivity as compared to OWL 2 EL and OWL 2 QL. It requires scalable reasoning with

less expressive power and can be implemented using rule-based reasoning engine.

OWL 2 RL is designed to accommodate both OWL 2 and RDF applications. OWL

2 applications deal with the maximum expressiveness of the language of efficiency

while RDF (S) applications require additional expressiveness for OWL 2.

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 43

Property axioms define many relations about properties. These properties can be transi-

tive, symmetric and asymmetric

3.4.2.1 Why to Choose OWL 2 RL

OWL 2 RL Axioms Assertion Axiom DL Axioms
ClassAssertions C(a)
ObjectPropertyAssertion P (a, b)
DataPropertyAssertion P (a, b)
SubClassOf C v D
EquivalentClassOf C ≡ D
OWL 2 RL Object Property Axiom
SubObjectPropertyOf P v Q
ObjectPropertyChain P oQ v R
EquivalentObjectPropertyOf P ≡ Q
InverseObjectPropertyOf P = Q−

ObjectPropertyDomain T v ∀P−.C
ObjectPropertyRange T v ∀P.C
SymmetricObjectProperty P = P−

TransitiveObjectProperty (P oP v P)
OWL 2 RL Class Expression
ObjectUnionOf C1 t C2 v D or C v D1 tD2

ObjectIntersectionOf C1 u C2 v D or C v D1 uD2

OWL 2 RL Class Expression
(Property Restriction)
ObjectAllValuesFrom C v ∀P.D
ObjectSomeValuesFrom ∃P.C v D

Table 3.3: OWL 2 RL Axioms

We have decided to use OWL 2 RL based ontology to model domains for our logical

frameworks because, in this thesis, context-aware agents use rule-based reasoning tech-

niques. OWL 2 RL ontology can be used to define the contextual knowledge in terms of

concepts and roles. On the other hand, SWRL rules can be used to define more complex

rules using OWL concepts and roles. Hence, both OWL 2 RL and SWRL rules are inte-

grated in the form of knowledge base which is used by context-aware agents. In fact, OWL

2 RL profile is specifically designed to implement rule-based reasoning systems. A set of

OWL 2 RL ontology axioms can be translated into a set of Horn-clause rules [O’Connor

and Das, 2012, Grosof et al., 2003]. OWL 2 RL profile depends upon scalable reasoning

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 44

systems deprived of losing the expressive power which can be implemented using rule-

based reasoning engine. Table 3.3 shows OWL 2 RL axioms with their corresponding

mapping to description logic axioms.

3.4.3 Why OWL is Not Enough?

OWL 1 is not able to express the chain relations such as

hasDoctor(?x, ?y), EmployeeOf(?y, ?z)→ DiagosedAt(?x, ?z)

We can express this relation using property chains in OWL 2 [Krötzsch et al., 2011]. How-

ever, complex rules cannot be expressible in OWL 2 [Vilasrao and Bhaskar, 2012]. For

example, Person(?p), BloodSugarLevel(?bsl), hasBloodSugarLevelBeforeMeal

(?p, ?bsl), greaterThan(?bsl, ‘126)→ hasDBCategory(?p, ‘EstablishedDiabetes).

We need to write complex rules using SWRL to address this kinds of issue. Moreover,

OWL 2 is a declarative language which describes the state of affairs in a logical way.

In addition, DL-safe rules have been introduced which are implemented using reasoner.

Reasoning tools can be used to derive information about the state of affairs.

3.4.4 Semantic Web Rule Language (SWRL)

SWRL is essentially based on OWL rule languages which stipulates the power to write

down Horn like rules in terms of OWL concepts and roles. It has a sound reasoning

capability with the OWL. As OWL languages are not always able to express all kinds

of relations, however, this can be done using SWRL. In ontology, OWL 2 RL rules can

be written using class with the sub-class relationship and property with the sub-property

relationship. The combination of OWL 2 RL and SWRL provides better expressive power

as compared to OWL 2. Protégé ontology editor [Protégé, 2011] has a built-in feature

that supports SWRL rules and therefore the reasoners like Hermit [Motik et al., 2009],

Pellet [Sirin et al., 2007], Fact++ [Tsarkov and Horrocks, 2006], RacerPro [Haarslev and

Möller, 2001], Kaon2 [Motik and Studer, 2005] etc. also support SWRL rules. These

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 45

rules enhance the expressivity of the OWL ontology languages. SWRL rules encompass

class atoms, object property and data property atoms. Class Atoms consist of OWL named

class or class expression having a single argument while the properties consist of OWL

object property or data valued property with two arguments where data values may be of

different data types.

SWRL rules are of the form of antecedent-consequent pair in which antecedents are some-

times in the form of conjunctive pairs. The antecedents of the rule refer to the body

whereas consequent refers to the head of the rule. The formulation of the rules with the

implication is given as:

atom1, atom2, . . . , atomn → atom.

where the left side of the arrow (→) represents the body, whereas the right side represents

the head. The consequent (head) of the rule will be true whenever all atoms (classes and/or

properties) are true in the antecedent (body) of the rule. Rules with conjunctive atoms in

the consequences are reconstructed into multiple rules. Each reconstructed rule must have

an atomic consequent after segregation. These rules have the reasoning capability to infer

OWL individuals with regard to OWL classes and properties [connor et al, 2005].

In [Horrocks et al., 2004, Kuba, 2012], different SWRL declarations (atom types) are

given for representing class and property atoms. Class atoms consist of OWL named

classes with a single argument (Person(?p)). Individual property contains OWL ob-

ject property with two arguments (hasBrother(?x, ?y)), data valued property allows

OWL data property with two arguments (hasBrotherName(?x, “Alan”)) where data

values may be of different data types. Different individual atoms are expressed as “dif-

ferentFrom” with two arguments. For instance, let us say x is different from y, so it is

represented as differentFrom(?x, ?y). The same individual atoms are represented using

“sameAs” clause having two arguments. For this, let us consider x is similar to y, so it

is represented as sameAs(?x, ?y). Data Range contains individual, property variable of

particular type, for example; xsd : int(?x). Sometime data range express one of the re-

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 46

lationship like {3,4,5}(?x). Built-Ins is a very useful feature to write down customized

individuals for SWRL rules. Built-ins can be used in the antecedent of the rule with its

namespace qualifier. It accepts one or more parameters and evaluate as true if parameters

satisfy the predicate.

SWRL rule does not support Negation as Failure (NaF); however, classical negation is

supported for writing SWRL rules. For example, the rule

¬Person(?x)→ ¬Human(?x)

is not possible in the ontology. Protégé ontology editor [Protégé, 2011] does not allow to

write this rule but it can be written in the following way:

(not(Person))(?x)→ nonHuman(?x)

or (not(Person))(?x)→ (not(Human))(?x)

If OWL classes are disjoint then rules can be safely concluded, for example, Man and

Woman are two disjoint classes. SWRL rules support only positive conjunctive atoms and

does not support disjunction of atoms.

The semantics of SWRL are OWL DL based which does not have a direct support for

reasoning about classes and properties. SWRL built-in features are compatible with OWL

classes, object and data properties that allow to write complex rules. SWRL built-in fea-

tures also provide support for RDF and RDFS ontologies, which can be converted into

OWL ontology and their constructs can be mapped to their corresponding OWL con-

structs.

SWRL supports monotonic inference only. SWRL rules can not be used to modify ex-

isting knowledge in the ontology. Non-monotonicity may occur in case if modifications

made on SWRL rules. SWRL rules can not be used to revise the existing information

from ontology. For example,

Person(?p), BodyTemperature(?temp), hasBodyTemperature(?p, ?temp),

greaterThan(?temp, ‘99)→ hasFever(?p, ‘Y es).

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 47

The result will add value to “Yes” only if fever is above “99” otherwise false.

3.4.4.1 DL Safe Rule in SWRL

The essential drive of the DL Safe rule is decidability. DL-Safe rules are restricted subset

of SWRL rules in which decidability is gained from the set of rules. Decidability is

guaranteed only for the class and property atoms in ontology. Alternately saying, the

set of all variables in DL Safe rules is considered with those individuals only which are

known in the ontology. SWRL rules do not stand alone, these rules work together with the

OWL ontology axioms while the reasoning is performed. In the following, we provide a

simple SWRL rule to show how a SWRL rule can be transformed in a functional syntax,

i.e., DL safe rule.

Person(?p), PatientIdentification(?pid), hasPatientID(?p, ?pid)

→ Patient(?p).

Prefix(var :=< urn : swrl# >)

Declaration(Class(: Patient))

SubClassOf(: Patient : Person)

DLSafeRule(

Body(

ClassAtom(: Person V ariable(var : p))

ClassAtom(: PatientIdentification V ariable(var : pid))

ObjectPropertyAtom(: hasPatientID(var : p) V ariable(var : pid))

)

Head(

ClassAtom(: Patient V ariable(var : p))

)

)

The core purpose of reviewing literature on OWL 2 RL and SWRL is to realize their

significance in modelling domains of human knowledge and develop rules according to

the case study. In Chapter 6, we present a tool which extracts these rules from an ontology

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 48

(OWL 2 RL and SWRL) and then translate them into a set of plain text Horn-clause rules.

In the next section, we describe rule-based system and how rule-based reasoning works

considering context-aware reasoning agents.

3.5 Rule-based System

Rule-based system is an automated reasoning technique which captures and refines human

expertise. It automatically performs reasoning for problem solving [Hayes-Roth, 1985].

A bulk of research on rule-based systems has been considered for decades in different

areas of computer science. These have played very influential roles in various areas of

computing systems including semantic web [Yang et al., 2003, Shadbolt et al., 2006],

sensor networks [Dressler et al., 2009, Terfloth et al., 2006], context-aware systems [Hong

et al., 2009, Perera et al., 2014], and business process modelling [Lu and Sadiq, 2007]

etc. In general, rule-based systems capture data, analyze data based on the available

information and then perform reasoning to produce the desired goals. A rule-based system

is actually an inference based technique that has flexible and dynamic implementation

mechanism to solve more realistic and complex problems. However, this system is now

becoming much more challenging in AI, predominantly in distributed systems, where

systems exchange information among components (e.g., agents in our case) via messages.

Literature highlighted several rule-based agents’ frameworks; for example, [Alechina

et al., 2006, Jago, 2009, Daniele et al., 2007, Alechina et al., 2009a]. On the semantic web,

applications of rule-based systems are used for ontology based reasoning [Qin et al., 2007,

Rakib et al., 2012], more specifically, OWL 2 Rule Language (OWL 2 RL) [Ter Horst,

2005], Semantic web rule language (SWRL) [Horrocks et al., 2004], and combination

of Rule ML and Web Ontology Language (OWL). These kinds of reasoning enhance the

expressive power for underlying ontology languages. Rule-based system has also played

vital roles for modelling business domains [Grosof and Poon, 2003, Friedman, 2003]. For

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 49

example, business rules define all legal constraints for the business domains. In other

areas of AI, rule-based system is used to monitor the behaviour of expert systems.

3.5.1 Components of Rule-based System

Rule based system has four components:

1. Rule-base (Knowledge Base): specifies particular type of knowledge bases of the

domain in terms of rules where knowledge is encoded into IF-Then rule form.

2. Temporary Working Memory: stores the facts used by inference engine. A fact may

be a sensor reading for context-aware rule-based systems.

3. An Inference Engine: performs reasoning to derive new information and/or takes

appropriate actions based on the input and rule base. Match-resolve-act has the

following phases:

• Match: It is the first phase in which facts on the left hand side of the rule (or

conditions, i.e IF) are matched with the contents of the working memory. If

facts on the left hand side of the rules are matched then conflict set is gener-

ated. This constitutes an instantiation of the rules. In this phase, one rule may

have more than one instantiations. Conflict set is generated for the set of all

rule instantiations in the memory.

• Conflict Resolution: In this phase, conflict resolution strategy selects a single

instance or a subset of conflict set for execution from the conflicting set. The

set of all instantiations are chosen for the execution in case when reasoning

strategy is not applied.

• Act: After choosing the single or multiple instantiation(s) from the conflict

set, the rule will be executed to infer new information. These actions (newly

derived information) are added to the working memory or this can be over-

written (as in our case where memory is bounded). This phase will move to

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 50

Figure 3.2: Structure of Rule-based System

the first phase of match-resolve-act cycle and continues until and unless no

more rules are matched.

4. User Interface: This provides a platform through which input/output signals are

sent and received. User interface is optional part of the reasoning process, but it is

recommended.

3.5.2 Multi-agent Rule-based System

Rule-based system has gained significant attention in multi-agent systems due to its great

degree of abstraction to specify behavior of agents. In multi-agent reasoning systems,

agents use different reasoning techniques such as Resolution based reasoning [Robinson,

1965]; Modus Ponens and conjunction introductions [Walter Sinnott-Armstrong, 1986];

and rule-based reasoning [Hayes-Roth, 1985] etc. In rule-based multi-agent system, each

agent has a unique name and its own program which perform reasoning on the same prin-

ciple of rule-based system. Rule-based agents have a program consisting of a knowledge

base and a working memory. Knowledge base consists of a set of rules whereas working

memory contains the set of facts used by rules. The generic representation of a rule is

given as:

IF <Statements to be evaluated>→ THEN <Actions>

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 51

where the left hand side of the arrow contains the set of conditions to be evaluated. When

these conditions are matched, the rule will be executed to generate THEN (consequent)

part. We follow the similar approach for context-aware rule-based agents in this thesis.

Rule-based multi-agent systems may have hundreds of rules to model the domain of com-

plex case scenarios. When the size of the domain is very large and complex, there is a

need to apply some reasoning strategies. For example, some strategies are needed to be

applied only on the applicable rules in order to avoid putting on all matching rules in-

stances. In MAS rule-based system, each rule is given a rule priority in accordance to

its significance in the system. For example, the most important rule is given the highest

priority.

There are several benefits for adopting rule-based approaches with the formal methods

[Jago, 2006] to establish properties of the resulting systems with respect to:

• Correctness: This is a measure to check whether a rule-based agent would be able

to produce the correct output against all legal inputs or not.

• Response Time: This calculates the computational time steps taken by a rule-based

agent to generate any output.

• Termination: This determines whether a rule-based agent would be able to produce

an output at all or not.

3.6 Formal Approaches for Distributed MAS

This section emphasizes how basic logics are interlinked with ontology languages in

order to design logical frameworks. We also discuss the ontology-based context-aware

frameworks incorporating resource-bounds.

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 52

3.6.1 Ontology-Based Context-aware Systems

Recent developments in the field of context-aware systems have heightened the signifi-

cance of smart environment applications using different smart (resource-limited) devices.

Literature [Esposito et al., 2008, Wang et al., 2004b, Rakib and Faruqui, 2013, Ejigu et al.,

2007] reveals a large volume of context-aware systems which are based on ontology due

to its formal knowledge representation structure. According to [Ejigu et al., 2007], an

ontology-based generic context management (GCoMM) model was presented to facili-

tate context reasoning by providing ontology based structure for context instances, rules

including their semantics. The contexts and their semantics are expressed using upper

and lower level ontology in the GCoMM model. It is semantically a rich model that sup-

ports collaborative reasoning for multi-domain context-aware applications. Their rules

are either derived or defined using ontology compatible rule languages according to the

requirements of the application domains. In this case, resource limitation is a key issue.

Esposito et al. proposed an ontology-based context-aware computing framework [Espos-

ito et al., 2008] with its prototypal implementation by considering a home care case study.

This framework is based on ontology which facilitates contexts codification to support

agents’ reasoning and communication. This system combines its multi-agent behavior

and synchronization of heterogeneous technologies such as ontologies, multi agents, and

rule-based inference engines. In this system, ontology provides contextual information

(vocabulary) to agents to perform rule based reasoning. This enables them to infer results

which can be exchanged based on agents interoperability. This framework has been im-

plemented using a simple home care scenario using coordinated operations and efficient

interoperability of ontology driven knowledge base, agents with their rule-based reason-

ing.

Wang et al. [Wang et al., 2004b] have presented an ontology based formal context model

with the intention of handling critical matters including context representation, logic-

based contextual reasoning and knowledge sharing. In the model of logic based contextual

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 53

reasoning, the detailed investigations have been performed on the feasibility of contextual

reasoning in pervasive computing environments. In a pervasive computing environment,

this prototype quantitatively assesses the feasibility of logic-based context reasoning for

critical applications where limitation of computational resources are carefully monitored.

3.7 Monotonic Vs Non-monotonic Reasoning

Monotonic reasoning is a well-known reasoning technique that is used in various tra-

ditional logics and applications. It is known as static knowledge that entails monotonic

reasoning based on open world assumptions and takes surety of propagation of truths.

The general truth of statements such as factual or ontological knowledge does not change

when new information is added. In monotonic reasoning system, there is no need to

check inconsistencies because previously known information can never become invalid

after adding the new information. Monotonic reasoning does not deal with inconsistent

and incomplete information. Most suitable examples of monotonic reasoning are the tra-

ditional systems with predicate logics [Nute, 2003, McDermott and Doyle, 1980].

Monotonic Logics lack the phenomenon of acquiring new information with the replace-

ment of former knowledge whereas non-monotonic reasoning provides a concrete solution

to resolve this issue. Accordingly, non-monotonic reasoning is based on commonsense

reasoning. It connotes that humans often draw some conclusions based on partially known

information and then retract or revise conclusion based on the availability of correct and

complete information. In non-monotonic reasoning, the recently derived conclusion may

also be revised based on the contrary evidence from the rules of inference. It is also known

as dynamic knowledge which is more flexible and inconsistency tolerant non-monotonic

reasoning. In this regard, it is more suitable for deriving conclusions. In a highly dynamic

environment, knowledge is frequently updated with every possible change in the current

situation.

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 54

Recently, there has been increasing interests in developing non-monotonic reasoning based

formalisms [Grosof et al., 2003, Antoniou, 2002, Nute, 2003] to deal with inconsistent

and incomplete information. Due to incomplete information, conclusion is drawn based

on some assumption that is supported by classical predicate logic. Conflicts among rules

are resolved implicitly or explicitly based on the availability of priority information. Non-

monotonic rule systems can be used to prioritize information based on contradictory in-

formation and is widely used in ontology languages. This kind of reasoning is very close

to human because human reasoning is usually non-monotonic. A person often changes his

mind and rejects his/her own decisions based on new evidence, even though, these deci-

sions were justified by his own at some previous time. On the other hand, medical diagno-

sis is an excellent example of non-monotonic reasoning system where expert decisions or

inferences are quickly taken to draw defeasible inferences. More so, non-monotonic log-

ics are very useful in these systems to deal with inconsistent and incomplete information

in a declarative way.

Literature has revealed several non-monotonic reasoning techniques [Grosof, 1997, An-

toniou et al., 1999b, Reiter, 1980, Kakas et al., 1992, Paul, 1993, McDermott and Doyle,

1980, McCarthy, 1987] to deal with defeasible conclusion. In 1980, Default logic was

proposed by Raymond Reiter [Reiter, 1980] to formalize reasoning where possible hy-

pothesis are true by default. It describes the process of jumping to conclusion based on

certain assumptions. Default logic expresses the known facts when conclusion is true by

default in the absence of conflicting information in which rules are modelled and priority

relation is defined among them. Another well-known non-monotonic reasoning formal-

ism is Courteous logic [Grosof, 1997, Antoniou et al., 1999b] which not only deals with

classical negation, but also considers prioritized conflict handling by comparing the set

of rules. The specific feature of courteous logic is its atom dependency graph which is

acyclic. Unlike defeasible logic, courteous logic program does not distinguish between

strict conclusions and defeasible conclusions; however, this program may use Negation as

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 55

Failure (NaF). Abductive logic [Kakas et al., 1992, Paul, 1993] is based on non-monotonic

reasoning formalism in which derivation models explanations of the known facts which

are not necessarily true. More precisely, Abductive reasoning generates the casual ex-

planation of the known facts which are incorrect. Applications of Abductive reasoning

could be suitable for model-based scenarios; for example, medical diagnosis. This logic

is normally used to interpret ambiguous statements. Another non-monotonic reasoning

approach is the autoepistemic logic, introduced by Moore [Moore, 1985, Creignou et al.,

2012]. This is an extension of propositional logic by a unary modal operator L which

states that its argument is believed. It was proposed to overcome difficulties of other for-

malisms such as non-monotonic modal logic [McDermott and Doyle, 1980], default logic

[Reiter, 1980] and circumscription [McCarthy, 1987]. The abstract idea of autoepistemic

logic is its consistent belief sets from the set of premises which is known as stable expan-

sions defined by consequences of the premises and beliefs. Belief revision is also one of

non-monotonic reasoning techniques to revise its belief based on one new contradictory

belief to avoid inconsistency [Alechina et al., 2008].

3.8 Defeasible Reasoning

In recent years, defeasible reasoning has been considered as one of the most successful

sub-area in non-monotonic reasoning to deal with inconsistent and incomplete informa-

tion due to low computational complexity and its focus on implementability [Antoniou,

2002]. Defeasible reasoning is a simplistic rule-based technique used to reason partial and

conflicting information. This is a rule-based approach without Negation as Failure (NaF).

Rules consist of first order atoms (facts) which are interpreted defeasibly. Accordingly,

priorities can be used to resolve conflicts among rules based on the knowledge. Defeasible

rules are prioritized and can be defeated by contrary evidence. In defeasible reasoning,

sceptical approach does not allow contradictory conclusion to be drawn.

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 56

3.8.1 Defeasible Logic

Defeasible Logic is one of the most promising and fine-grained non-monotonic reasoning

formalisms to deal with the inconsistent and incomplete information. Defeasible logic was

originally introduced by Nute [Nute, 2003] to address certain aspects of reasoning with the

particular concerns to improve its computational efficiency without considering Negation

as Failure. It is a simple but efficient rule-based reasoning technique that derives plausible

conclusions from conflicting knowledge while preserving low computational complexity

[Maher, 2001, Lam, 2012, Maher et al., 2001]. Defeasible logic provides greater flexibil-

ity in terms of its expression of information. The core purpose of using defeasible logic is

to produce plausible conclusions by modelling a situation where conflicting rules appear

concurrently. This logic deals with potential conflicts among knowledge items and has

classical negations contrary to usual logic programming system. Potential conflicts are

resolved by superiority relation. Defeasible logic is known as sceptical non-monotonic

formalism which supports both kinds of reasoning monotonic as well as non-monotonic.

There are five essential components in the defeasible logic. We briefly define these com-

ponents in this section, however their examples with illustrations are given in Chapter 5.

1. Facts are indisputable and undeniable statements. For example; a fact ‘Alan is a

Person’ is formally written as Person(Alan).

2. Strict Rules are very similar to the rules used by classical logics which state that

whenever premises of the rule are indisputable then the conclusion is obvious. The

conclusion (newly derived fact) is straightforward and unquestionable. These rules

can never be defeated. These rules are of the form: P1, P2, . . . , Pn → P

3. Defeasible Rules are the rules that can be defeated by contradictory conclusion.

These rules are of the form: P1, P2, . . . , Pn ⇒ P

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 57

4. Defeaters are the rules that can be used to prevent the derivation of contradictory

conclusion. These rules are designed not to draw conclusion but to block conclu-

sion. In other words, defeater rules defeat defeasible rules based on conflicting

information. These rules are of the form: P1, P2, . . . , Pn P .

5. Superiority Relation (�) is a very good feature of defeasible logic having binary

relation between rules to determine the strength of rules and then prioritizes superior

rule to be fired. Superiority relation resolves conflicts among rules by prioritizing

rules when more than one rules instances are concurrently fired to draw conclusion.

Superiority relation cannot be used for strict rules. Strict rules are always superior

to defeasible rules.

In recent years, Defeasible logic has gained significant attention in non-monotonic rea-

soning community theoretically as well as practically. In theoretical aspects, literature

has revealed several studies including proof theoretic [Maher, 2002], proof theory [Anto-

niou et al., 2001], argumentation semantics [Governatori et al., 2004], including temporal

aspects such as temporal defeasible reasoning [Augusto and Simari, 2001, Governatori

et al., 2007] and Normative position [Governatori et al., 2005]. The applications that

delve with defeasible logic has various domains, including, semantic web [Kravari et al.,

2010, Bassiliades et al., 2004, Governatori and Pham Hoang, 2005, Antoniou and Bikakis,

2007], modelling business rules [Antoniou et al., 1999a], agent modelling and negotiation

[Dumas et al., 2002, Governatori and Rotolo, 2004, Dastani et al., 2005], legal reasoning

[Grosof et al., 1999], modelling of contracts [Governatori, 2005]. In this thesis, we con-

sider defeasible logic to develop the logical framework LDROCS based on semantic web

technologies (OWL 2 RL and SWRL) following rule-based technique [Esposito et al.,

2008, Daniele et al., 2007, Gómez et al., 2007] for context-aware non-monotonic reason-

ing agents.

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 58

3.9 Defeasible Reasoning based Distributed Systems

As mentioned earlier, defeasible reasoning is one of the most prominent and successful

sub-area in non-monotonic reasoning to reason conflicting information using rule-based

reasoning. Due to its simple and flexible nature, defeasible logic has attracted signifi-

cant interest of the research community towards various domains, particularly in knowl-

edge representation and their reasoning in multi-agent systems. In this section, we briefly

survey some ontology driven defeasible reasoning based formalisms which include rule-

based reasoning technique.

3.9.1 Defeasible Reasoning based Frameworks for the Semantic Web

Recent developments in the field of non-monotonic reasoning led to a renewed interest

in the semantic web. The idea of defeasible reasoning based techniques for the semantic

web applications was initially proposed by Antonis Bikakis and Grigoris Antoniou. Af-

terward, research in this area got acceleration towards different domains including med-

ical, business, brokering systems etc [Antoniou and Bikakis, 2007, Skylogiannis et al.,

2007, Antoniou et al., 2005]. However, ontology is one of the essential components of the

semantic web. This is owing to the fact that mostly semantic web based approaches are

based on ontology due to its knowledge representation using OWL and RDF formats. In

2005, Antoniou et al. [Antoniou et al., 2005] have proposed semantic-based e-brokering

system that allows the service requesters (agents) and service providers (agents) to match

their interests against their offers congregated by a broker agent. This system uses seman-

tic web RDF standards to represent the set of offerings, and a deductive logical language

is used to present the requesters’ requirements and their preferences. The ultimate goal

is to identify suitable services to satisfy users’ requirements and choose the best service

from user preferences. Authors have selected defeasible logic to represent requesters’ re-

quirements and preferences due to its expressiveness. Defeasible rules specify priorities to

show user preferences from most appropriate offerings. The service requesters’ require-

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 59

ments are expressed in the logical language using rules and priorities. The set of offerings

are represented in RDF statements to be shown in web resources. RDF statements are

transformed to logical facts and rules using RDF translator. The rule translator translates

the rules (submitted by requester) into Prolog rules that compete with the semantics of

defeasible logic. JADE 1 is a Java based open source middle-ware framework which

has been used to develop this system.

An automated agent negotiation system [Skylogiannis et al., 2007] is designed to cap-

ture the behavior of parties (sender and receiver agents) involved in the negotiation. Its

main behavior is to automate negotiation process in e-commerce system. Accordingly,

an automated negotiation system is a process in which two or more agents communicate

with each other and then finally they agree on one acceptable decision. This system uses

JADE agent framework and is based on an executable formal approach. Declarative ne-

gotiation strategy is one of the most distinctive features to be expressed in a declarative

rule language (defeasible logic). Defeasible logic has been considered as one of the most

promising solutions for brokering preferences modelling and negotiation strategies. These

negotiation strategies are applied using a system DR-DEVICE. As stated in [Bassiliades

et al., 2004], DR-DEVICE is an implemented defeasible reasoning system for reasoning

on the web. This kind of reasoning is very useful for ontology integration where conflicts

among rules are derived on the semantic web. On the other hand, defeasible logic rules are

used to reason RDF data over multiple web sources. The system interface is compatible

with RuleML. This is based on CLIP production rules system [Bassiliades and Vlahavas,

2003]. Defeasible knowledge has been translated into a set of deductive rules with the

aggregate and derived attributes. This system has two major components: rule translator

and RDF translator. The rule translator takes rules from the system (user) and then trans-

lates them into CLIPS production rule system. Defeasible logic rules are first translated

into a set of deductive rules and then further translated CLIPS production rules.

1http://jade.cselt.it/

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 60

Antoniou et al. [Antoniou and Bikakis, 2007] have proposed a defeasible reasoning based

declarative system for the semantic web. This system is very flexible in a sense that it

is compatible with semantic web standards such as RDFS, OWL, RuleML and Prolog.

The implemented system is prolog based and can reason with both monotonic as well as

non-monotonic rules while ontological knowledge domain is built in OWL or RDFS for-

mat. Defeasible reasoning technique has chosen to resolve conflicts among rules. In this

framework, defeasible knowledge can be transformed into logic programs with declara-

tive semantics. DR-Prolog supports both monotonic as well as non-monotonic rules to

deal with inconsistencies. However, this model can be extended with agent-based system.

3.9.2 Integration of Description Logics with Defeasible Reasoning

Defeasible reasoning is simple and efficient. It makes sense to integrate defeasible rea-

soning with description logic as both share focus on efficiency. The two core reasons of

integrating description logics with defeasible reasoning are:

• Enhanced reasoning capabilities can be represented in much broader ontological

knowledge.

• Rule-based system defines ontology-based applications using vocabulary expressed

in description logic.

The incorporation of defeasible reasoning on the top of description logic acquired consid-

erable attention in non-monotonic reasoning paradigms. Antoniou [Antoniou, 2002] has

presented a framework for the integration of description logic with defeasible reasoning.

In this system, Horn rules are conjoined with description logic which is a subset of pred-

icate logic, but non-monotonic rules are not subset of predicate logic. The ontological

knowledge is defined in description logic languages, and concepts and roles predicates

are used in the antecedents of the rules but not in the head. Proof theory method has

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 61

been defined to deduce certain properties using defeasible reasoning. Although defeasi-

ble reasoning with description logic are interweaved to define the proof theory, their focus

are limited to show rule system on the top of ontology. The above finding is consistent

with the study mentioned in [Wang et al., 2004a] in which Wang et al. have proposed

Description Defeasible logic (DDL). Accordingly, the combination of Description logics

with the defeasible logic allows rules to be constructed on the top of ontologies. This

framework includes description defeasible logic rules (ddl-rules) which represent the set

of rules while a knowledge base represents the proof theory in description logics. These

rules are prioritized based on superiority relation and defeasible rules. Defeasible rules,

on the other hand, are used to defeat contrary evidence. The defeasible logic theory con-

tains queries to represent DL knowledge base. This approach is flexible enough to build

rules on the top of ontologies and vice versa in certain situations. The distinctive feature

is that DDL is tractable like most of the description logic languages.

3.9.3 Integrating Rules and Ontologies using DeLP

In this section, we discuss how and why we combine rules with ontologies. The conjunc-

tion of rule languages and ontology driven knowledge has strongly influenced on various

application domains in different aspects in the semantic web. Both ontology driven knowl-

edge and rules are conjoined to produce desired results in a knowledge based form that

can be used for different application domains and their applications.

Gómez et al. [Gómez et al., 2010] have proposed Defeasible Logic Programming (DeLP)

for reasoning with inconsistent ontologies by integrating rules and ontologies which are

suitable for extending currents standard SWRL for representing rules on the top of the

ontologies. This framework characterizes the behavior incorporating classical literals and

negated literals in rules. The ontologies and rules are interpreted as DeLP that allow rules

to reason on the top of a set of possibly inconsistent ontology. Description logic reasoner

cannot perform reasoning with inconsistent ontology, for example, RACER [Haarslev and

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 62

Möller, 2001]. The DL reasoner is unable to extract useful consequences from inconsis-

tent ontology definition. The inconsistent ontological knowledge can be used to perform

reasoning not with the traditional reasoners, but with other reasoning techniques such as

rule-based. With this, there is a need to translate ontology axioms into their corresponding

DL axioms as subset of DLs. In the long run, it can be translated to their equivalent subset

of Horn-logic. Defeasible logic programming is based on logic programming that has the

capability of dealing with possibly inconsistent ontology definition which is codified as a

set of Horn-clause rules.

3.9.4 Defeasible Reasoning based Multi-context Systems

Multi-context system encompasses several contexts which are interlinked with bridge

rules to allow adding knowledge into a context depending on knowledge in other con-

texts. Multi-context system has applications in various areas, such as argumentation, data

integration, or multi-agent systems. In [Bikakis et al., 2008], Bikakis et al. have presented

a distributed approach for reasoning in ambient computing environment. Knowledge rep-

resentation model based on the Multi-context system paradigm uses two kinds of rules as

peer rules for local contextual knowledge and mapping rules (defeasible rules) through

which ambient agents exchange information. Non-monotonic features were included in

Multi-context system to resolve potential inconsistencies of distributed contextual knowl-

edge. In this framework, mapping rules are modelled as defeasible rules that use context

information to defeat contradictory information based on the fixed priorities for resolving

conflicts. Four different conflict resolution strategies were used through which ambient

agents exchange context in order to evaluate the quality of the imported context infor-

mation. These strategies have been implemented for distributed reasoning algorithms to

evaluate query in Multi-context system.

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 63

3.9.5 Discussion

Literature has revealed significant applications in practice and various researchers have

proposed different approaches of defining a knowledge base as a pair of ontology and a

set of rules including works by [Eiter et al., 2011, Levy and Rousset, 1998, Motik et al.,

2005, Rosati, 2006]. However, the approaches proposed by [Gómez et al., 2007, Grosof

et al., 2003] have mostly influenced the work presented in this thesis Chapter 5. In [Grosof

et al., 2003] Grosof et al. have shown that the ontology based modelling techniques can be

improved by using the concepts of logic programming. In their work, they have noticed

certain constraints while translating DL axioms into a set of rules. A similar approach pro-

posed by [Gómez et al., 2007] who show that a subset of DL languages can be effectively

mapped into a set of strict and defeasible rules. Although we follow a similar approach

proposed by [Gómez et al., 2007, Grosof et al., 2003], discussed in Chapter 6, while con-

structing a set of strict and defeasible rules from an ontology. Our purpose and application

of those rules are quite different. We use those rules to build a context-aware system as

multi-agent non-monotonic rule-based agents and use a distributed problem solving ap-

proach to see whether agents can infer certain contexts while they are resource-bounded.

3.10 Conclusion

The literature reviewed in this chapter is mainly focused on the reasoning formalisms

for the semantic web. We have reviewed literatures on description logics, web ontology

languages (OWL) and SWRL. Description logic has been considered as one of the most

expressive formal languages having capability to perform reasoning about knowledge in

an application domain. Description logic is based on ontology languages that are often

used for context representation and reasoning. It is very suitable for modelling real life

example systems. We have focused on ontology and SWRL because the work presented

in this thesis is based on ontology-driven rule-based reasoning agents where rules are de-

CHAPTER 3. FORMALISMS FOR CONTEXT-AWARE MAS 64

rived from OWL 2 RL and SWRL. We also have discussed rule-based reasoning systems

and multi-agent rule-based systems. The logical formalisms discussed in this thesis re-

quire rule-based reasoning technique to achieve the desired goals due to its simple and

efficient reasoning mechanism. For non-monotonic reasoning, we have considered defea-

sible reasoning owing to its efficient reasoning capability; low computational complexity,

and its focus on implementability. Defeasible reasoning is used to reason inconsistent

and incomplete information. We have surveyed literature on monotonic as well as non-

monotonic reasoning based logical formalisms including rule-based reasoning and the

semantic web technologies. In doing so, we realized their efficacy towards context-aware

systems. The ultimate purpose of considering this literature is to craft a comparative study

that showcases the relevant and significant information regarding context-aware logical

frameworks.

Chapter 4

The Logic LOCRS

4.1 Chapter Objectives

• To investigate a formal approach to context modelling and reasoning techniques.

• To develop a formal logical frameworkLOCRS for ontology-driven resource-bounded

context-aware rule-based agents based on temporal epistemic description logic.

• To prove the correctness of LOCRS axiomatization such as soundness and complete-

ness, validity and satisfiability and show how to express resource-bounded proper-

ties of the systems using LOCRS .

4.2 Motivation for the Logic LOCRS

The aim of this research is to develop a logical framework for modelling and reason-

ing about resource-bounded context-aware rule-based multi-agent systems. According

to a survey [Rakib, 2012], various logical frameworks have been developed for mod-

elling and verification of multi-agent systems. However, such frameworks may not be

very suitable to model context-aware applications. This is because, most of those existing

frameworks consider propositional logic as a simple knowledge representation language

which is often not suitable for modelling real life complex systems. For example, propo-

65

CHAPTER 4. THE LOGIC LOCRS 66

sitional logic cannot directly talk about properties of individuals or relations between

individuals. Much research in pervasive computing has been focused on incorporation

of context-awareness features into pervasive applications by adapting the semantic web

technology (see e.g.,[Wang et al., 2004b, Esposito et al., 2008, Rakib and Faruqui, 2013]),

where description logic (DL)-based ontology languages are often used for context repre-

sentation and reasoning. DL is a decidable fragment of first order logic (FOL). In [Rakib

and Faruqui, 2013], it has been shown how context-aware systems can be modelled as

resource-bounded rule-based systems using ontologies. In that paper, the resources re-

quired by the agents to solve a given problem were considered the time and communica-

tion bandwidth, but not the space requirements for reasoning. Since context-aware sys-

tems often run on resource limited devices, memory requirements is an important factor

for their reasoning.

In this chapter, we propose a logical framework based on the earlier work of Alechina

et al. [Alechina et al., 2009a, Alechina et al., 2009c, Alechina et al., 2006], and the re-

sulting logic LOCRS allows us to describe a set of ontology-driven rule-based reasoning

agents with bound on time, memory, and communication. In addition to the incorpora-

tion of space (memory) requirements for reasoning in [Alechina et al., 2009a], LOCRS

also uses first order Horn-clause rules derived from OWL 2 RL ontologies. While the

frameworks presented in [Alechina et al., 2009a, Alechina et al., 2009c] provide a useful

basis for experimentation with both the logical representation and verification of hetero-

geneous agents, it has become clear that a more expressive logical language is required if

these frameworks are to be used for real world context-aware agents. Though the logic

developed by [Alechina et al., 2006] is based on FOL, memory bounds have not been

imposed in that framework. The proposed framework allows us to determine how much

time (measured as rule-firing cycles) are required to generate certain contexts, how many

messages must be exchanged between agents, and how much space (memory) is required

for an agent for the reasoning. We provide an axiomatization of the logic and prove it is

CHAPTER 4. THE LOGIC LOCRS 67

sound and complete.

4.3 Formal Approaches to Resource-bounded Multi-agent

System

As LOCRS is an extension of existing logics [Alechina et al., 2006, Alechina et al., 2009a,

Alechina et al., 2009c], so it is worth discussing the relevant literature to show the nov-

elty of the proposed LOCRS framework. In [Alechina et al., 2006], it is shown how to

establish the correctness and time bounds for multi-agent systems considering distributed

rule-based reasoning. The authors have emphasized on the beliefs of rule-based agents

and shown how communicating agents adapt their behaviour over time using rule-based

reasoning by developing a sound and complete modal logic. In that system, rule-based

agents typically fire multiple rules to solve a particular problem. A simple case study has

shown for specifying temporal properties in multi-agent systems using model checking

techniques to verify properties of agents in a precise and realistic way. This system pro-

vides the quality of service guarantees, for example, each query is answered within n time

steps (a step determines how a system moves from one state to the next considering a set

of actions). However, memory and communication bound have not been considered in

that framework.

In [Alechina et al., 2009a], a framework has presented for automated verification of time

and communication requirements in the system of distributed rule based reasoning agents.

This framework, LCRB, determines the number of rule-firing cycles; the number of mes-

sages exchanged among agents and the trade-offs between the communications and time

in order to solve a particular problem. This framework has extended CTL∗ with belief

and communication modalities to represent the bounds on the communication by fixing

the number of messages exchanged between agents. Each agent contains belief opera-

tors and communication modalities to provide sound and complete axiomatization of the

CHAPTER 4. THE LOGIC LOCRS 68

system. The logical model was verified using Mocha [Alur et al., 1998] model checker

considering a typical example system. However, memory bounds has not been considered

in that framework. Later in [Alechina et al., 2009c], Alechina et al. have proposed a

logical framework based on temporal epistemic logic (BMCL) by incorporating memory

bounds in addition to time and communication bounds. In that framework, distributed

reasoners (agents) use resolution-based reasoning technique to solve a particular prob-

lem considering resource-bounds while the tradeoffs among these resources are carefully

monitored. Although this framework has primarily considered the resource-bounds (time,

memory and communication) in order to solve the problem, however primary focus is

given on resolution-based reasoning technique with different set of actions and proposi-

tional inference rules.

In contrast to previous work discussed above, the extended framework presented in this

chapter uses first order Horn clause rules derived from ontologies and allows rule-based

reasoning considering time, memory and communication bounds in systems of context-

aware reasoning agents.

4.4 Description Logic Based Reasoning

We have already discussed the essential concepts of description logics in Chapter 3. In

this section we provide a very brief overview of description logic based reasoning to suit-

ably implement the context modelling technique for context-aware rule-based reasoning

agents. A DL knowledge base (KB) has two components: the Terminology Box (TBox)

T and the Assertion Box (ABox) A. The TBox introduces the terminology of a domain,

while the ABox contains assertions about individuals in terms of this vocabulary. The

TBox is a finite set of general concept inclusions (GCI) and role inclusions. A GCI is of

the form C v D where C, D are DL-concepts and a role inclusion is of the form R v S

where R, S are DL-roles. We may use C ≡ D (concept equivalence) as an abbreviation

for the two GCI s C v D and D v C and R ≡ S (role equivalence) as an abbreviation

CHAPTER 4. THE LOGIC LOCRS 69

for R v S and S v R. The ABox is a finite set of concept assertions in the form of C(a)

and role assertions in the form of R(a, b), where a and b represent the individual names

which are instances of the given role.

4.4.1 Context Modelling

In LOCRS , we represent context as either C(a) or R(a, b). For context modelling we use

OWL 2 RL, a profile of the new standardization OWL 2, which is based on the descrip-

tion logic program (DLP) [Grosof et al., 2003]. We choose OWL 2 RL for the design

and development of rule-based systems because it is more expressive than the RDFS and

suitable. Furthermore, we express more complex rule-based concepts using SWRL [Hor-

rocks et al., 2004] which allow us to write rules using OWL concepts. In our framework,

a context-aware system composed of a set of rule-based agents, and firing of rules that

infer new facts may determine context changes and representing overall behaviour of the

system.

Figure 4.1: A Fragment of the Epileptic Patients’ Monitoring Ontology

To illustrate the idea of how we model contexts using ontologies, we model here a health

care domain considering an epilepsy scenario adapted from [Dockhorn Costa, 2007]. The

scenario is based on the monitoring of epileptic patients to detect epileptic seizures. An

epileptic alarm may activate several actions such as warning the patient about potential

CHAPTER 4. THE LOGIC LOCRS 70

Patient’s rule
Initial facts: Patient(’Tracy), isAlarming(’Tracy, ’Beep), hasGeolocation(’Tracy, ’DownTown)
Patient(?p),isAlarming(?p,?s)→ EpilepticAlarm(?p)
EpilepticAlarm(?p)→ hasHazardousActivity(?p, ’Yes)
hasHazardousActivity(?p, ’Yes)→ isAgreed(?p,’Yes)
hasHazardousActivity(?p, ’Yes)→ isAgreed(?p,’No)
EpilepticAlarm(?p), hasHazardousActivity(?p, ’Yes), hasGeoLocation(?p, ?location)→ hasNotifiedPatient(?p, ?location)
EpilepticAlarm(?p), hasHazardousActivity(?p, ’Yes), hasGeoLocation(?p, ?location), isAgreed(?p, ’Yes)→Tell(1, 2, hasNotified-
Planner(?p,?location))

Planner’s rules
Initial facts: isCareGiverOf(’Fiona,’Tracy), isCareGiverOnCall(’Fiona, ’OnCall)
Tell(1, 2, hasNotifiedPlanner(?p,?location))→ hasNotifiedPlanner(?p,?location)
hasNotifiedPlanner(?p,?location),lessThan(?location,’30), greaterThan(?location,0)→ situationWithinRange(?p,?location)
situationWithinRange(?p,?location),isCareGiverOf(?c,?p),isCareGiverOnCall(?c,?stat)→ Ask(2,3, hasCareStatus(?c, ’stat))
Tell(3,2,hasCarStatus(?c,’onCall))→ hasCarStatus(?c,’onCall)
hasCarStatus(?c,’onCall), hasNotifiedPlanner(?p,?location)→ AcceptRequest(?c, ?p)
Tell(3,2,hasCarStatus(?c, ’Busy))→ hasCareStatus(?c, ’Busy)
hasNotifiedPlanner(?p,?location)→ Tell(2, 5, hasNotifiedPlanner(?p,?location))

CareGiver’s rules
Initial facts:
Ask(2,3, hasCareStatus(?c, ?stat))→ hasCareStatus(?c, ?stat)
hasCareStatus(?c, ?stat)→ Tell(3,2,hasCarStatus(?c, ’OnCall))
hasCareStatus(?c, ?stat)→ Tell(3,2,hasCarStatus(?c, ’Busy))
hasCareStatus(?c, ?stat)→ Tell(3,2,hasCarStatus(?c, ’NotOnCall))
hasCareStatus(?c, ?stat)→ Tell(3,2,hasCarStatus(?c, ’EmergencyOnly))

HealthProfessional’s rules
Initial facts: isHealthProfesional(’John, ’Tracy)
Tell(2, 5, hasNotifiedPlanner(?p,?location))→ hasNotifiedPlanner(?p,?location)
hasNotifiedPlanner(?p,?location), isHealthProfesional(?prof, ?p)→ logEpilepticAlarm(?prof,?p)

Table 4.1: Horn-Clause Rules for the Epileptic Patients’ Monitoring Context-aware Sys-
tem

danger, informing patient’s caregivers to take appropriate actions, and sending SMS mes-

sages to patient’s relatives who are currently near to the patient, among others.

Figure 4.2: Example SWRL Rules

“The goal of the the epileptic patients’ monitoring context-aware system is to detect the

seizures, and to react in the following ways: (a) notify the epileptic patient of an up-

coming seizure; and (b) notify his/her nearby caregivers of an upcoming seizure of the

patient by showing a map with the location of the patient. The caregivers who receive

CHAPTER 4. THE LOGIC LOCRS 71

the notification for help should be (i) assigned as one of the caregivers of that partic-

ular patient; (ii) available for helping; and (iii) physically close to the patient. Upon a

notification for help, caregivers may either accept or reject the request for helping the

epileptic patient. When a particular caregiver accepts to help, the other caregivers who

had received the notification for help are informed that a certain caregiver has already

accepted to help that patient”[Dockhorn Costa, 2007].

Using Protégé [Protégé, 2011], we build an OWL 2 RL ontology to model the scenario

and introduce the vocabulary, concepts and their relationships to represent the domain.

This is to represent the static behavior of the system. A fragment of this ontology is

depicted in Fig 4.1. The dynamic aspect of the system is captured using SWRL rules. A

snapshot of some SWRL rules is given in Fig 4.2. In order to build context-aware systems

as rule-based agents, we translate OWL 2 RL ontology into a set of Horn-clause rules.

The combination of these translated rules with the user defined SWRL rules, which are

already in the Horn-clause format, provide foundational knowledge to design the desired

distributed rule-based agents. Protégé editor does not allow us to write communication

rules with Ask and Tell. Therefore, these rules are written using annotations which are

also translated into Horn-clause rules. There are four agents in this system: (1) Patient,

(2) Planner, (3) CareGiver and (4) HealthProfesional. The set of translated rules with

the initial facts are distributed to agents as shown in Table 4.1 for the epileptic patients’

monitoring context-aware system. Some interesting resource-bounded properties of the

above system includes:

G(B1EpilepticAlarm(′Tracy)
→ X nB1Tell(1 , 2 , hasNotifiedPlanner(′Tracy ,′DownTown))

∧(msg1
=m) ∧ (nM (1) ≥ l))

the above property specifies that whenever there is an epileptic alarm for Tracy, agent 1

notifying agent 2 that "Tracy" has hazardous activity and she is located in "DownTown"

within n time steps, while exchanging m messages and space requirement for agent 1 is

at least l units, and

CHAPTER 4. THE LOGIC LOCRS 72

G(B2Tell(1 , 2 , hasNotifiedPlanner(′Tracy ,′DownTown))
→ X nB2AcceptRequest(′Fiona,′ Tracy) ∧ (msg2

=m) ∧ (nM (2) ≥ l))

which specifies that whenever agent 2 gets notified that "Tracy" has hazardous activity and

she is located in "DownTown" it believes that caregiver Fiona accepts the request within

n time steps, while exchanging m messages and space requirement for agent 2 is at least

l units.

4.5 LOCRS - A Logic for Context-aware Systems

A multi-agent context-aware system consists of nAg agents, where nAg ≥ 1. Each indi-

vidual agent is identified by a value in Ag = {1, . . . , nAg}, and we use variables i and

j over {1, ..., nAg} to refer to the agents. Each agent i ∈ Ag has a program, consisting

of ontology driven (OWL 2 RL and SWRL) Horn-clause rules and a working memory,

which contains contexts (ground atomic facts) obtained from ABox knowledge base rep-

resenting the initial state of the system. Rules are of the form of P1, P2, P3, . . . , Pn → P

where the antecedents P1, P2, P3, . . . , Pn and consequent P are context information. An-

tecedents of the rule are of the form of complex contexts (concepts and roles) which is

a conjunction of n contexts. For each agent i, the rule instances are matched against the

contents of the working memory to derive the consequent.

The resource-bounded context-aware system allows group of agents to cooperate with

each other to share contextual information and infer new facts which no single agent could

do alone. Thus sharing knowledge among agents is an efficient way of building context

aware systems. Agents utilize a centralized common ontology andAsk/Tell communica-

tion mechanism to develop a distributed model. Using communication mechanism, agents

exchange messages to derive contextual information. For this purpose, we need to model

communication between agents. We assume that agents have two special communication

primitives Ask(i, j, P) and Tell(i, j, P) in their language where i and j are agents and

P is an atomic context not containing an Ask or a Tell. Ask(i, j, P) stands for ’i asks j

CHAPTER 4. THE LOGIC LOCRS 73

about a context P ’ and Tell(i, j, P) means ’i tells j about a context P ’ and i 6= j. The

position in which these communication primitives may appear in a rule depends on which

agent’s program the rule belongs to. Communication rules may have an Ask or a Tell

with arguments (i, j, P) in the consequent, for example, P1, P2, P3, . . . Pn → Ask(i, j, P)

[Alechina et al., 2006].

Figure 4.3 illustrates the exchange of information between two agents i and j. The ex-

change of information between agents works like this: if an Ask(i, j, P) is in the working

memory of agent i, Ask(i, j, P) is not in the agent j’s working memory , and agent j has

not exceeded its communication bound then Ask(i, j, P) is added to the working memory

of agent j and its communication counter is incremented. This action may also overwrite

agent j’s memory due to memory bound (discussed in Section 4.5.3). We view the pro-

cess of producing new contexts from existing contexts as a sequence of states of an agent,

starting from an initial state. Similarly, when Tell(j, i, P) is in the working memory of

agent j, Tell(j, i, P) is not in the agent i’s working memory, and agent i has not exceeded

its communication bound then Tell(j, i, P) is added to the working memory of agent i and

its communication counter is incremented. Due to memory bound, an arbitrary context

will be overwritten if agent’s memory is full (discussed in Section 4.5.3).

Figure 4.3: Two Agent’s Communication

CHAPTER 4. THE LOGIC LOCRS 74

Apart from communication rules, all other rules are considered as deduction rules. A rule

of the form Tell(i, j, P) → P is called trust rule. No other occurrences of Ask and Tell

are allowed.

The important point about OWL 2 is that it is limited to unary and binary predicates and

it is function free. So using Protégé OWL editor, communication primitives are expressed

by constant symbols. These annotated symbols are translated appropriately when de-

signing the target system using Maude specification for system verification (discussed in

Chapter 6).

4.5.1 The Language of LOCRS

Now we define the internal language of LOCRS of each agent in the system. This logic

is an extension of the logic developed by [Alechina et al., 2009a]. To specify contextual

information more precisely, let C = {C1, C2, . . . , Cn} be a finite set of concept names, R

= {R1, R2, . . . , Rn} be the finite set of role names and A be the finite set of assertions.

For communication primitives, we define a set Q = {Ask(i, j, P), T ell(i, j, P)}, where

i, j ∈ Ag and P ∈ C ∪ R. Note that C and R are the concept and role names that appear

in A.

Let < = {r1, r2, . . . , rn} be a finite set of rules of the form P1, P2, . . . , Pn → P , where

n ≥ 0, Pi, P ∈ C ∪ R ∪ Q for all i ∈ {1, 2, . . . , n} and Pi 6= Pj for all i 6= j. For

convenience, we use the notation ant(r) for the set of antecedents of r and cons(r) for

the consequent of r, where r ∈ <. Let g : ℘(A)→ < be a substitution function that uses

a forward-chaining strategy to instantiate the rule-base. We denote by G(<) the set of all

the ground instances of the rules occurring in <, which is obtained using g. Thus G(<) is

finite. Let r̄ ∈ G(<) be one of the possible instances of a rule r ∈ <.

Note that C(a), R(a, b), Ask(i, j, C(a)), Ask(i, j, R(a, b)), Tell(i, j, C(a)), and

Tell(i, j, R(a, b)) are ground facts, for all C ∈ C, R ∈ R. The internal language L

CHAPTER 4. THE LOGIC LOCRS 75

includes all the ground facts and rules. Let us denote the set of all formulas by Ω which

is finite. In the modal language of L we have belief operator Bi for all i ∈ Ag.

4.5.2 Communication Bound

We assume that there is a bound on communication for each agent i which limits agent

i to at most nC(i) ∈ Z∗ messages. Each agent has a communication counter cp=n
i to

keep record of agent’s communication, which starts from 0 (cp=0
i) and is not allowed to

exceed the value nC(i). The value of communication counter increases for every single

communication for each agent.

For the communication bound, we define the following set:

CPi = {cp=n
i |n = {0, . . . , nC(i)}},

CP =
⋃
i∈Ag

CPi.

4.5.3 Memory Bound

We divide agent’s memory into two parts as rule memory (knowledge base) and working

memory. Rule memory holds the set of rules, whereas the facts are stored in the agent’s

working memory. Working memory of an agent i is divided into static memory (SM(i))

and dynamic memory (DM(i)). The static part SM(i) contains initial information to start

up the systems, for example, initial working memory facts. Thus its size is determined

by the number of initial facts. The dynamic part DM(i) of each agent i ∈ Ag is bounded

in size by nM(i) ∈ Z∗, where one unit of memory corresponds to the ability to store an

arbitrary context. The dynamic part DM(i) contains newly derived facts as the system

moves. Only formulas stored in DM(i) may get overwritten if it is full. The question

arises here why a context is overwritten arbitrarily and not in a sequential manner? As the

static segment of the memory contains the set of initial contexts (facts) to derive the rules,

so a context can be arbitrarily overwritten in the dynamic segment of the memory which

enhances the system’s efficiency. Apart from this, the system has concurrent transition

CHAPTER 4. THE LOGIC LOCRS 76

system by firing the set of rule instances, so it is very hard to figure out and overwrite a

context which has the least priority to be used. Note that unless otherwise stated, in the

rest of the thesis we shall assume that memory means DM(i).

4.5.4 Syntax

The syntax of LOCRS includes temporal operators of CTL∗ and is defined inductively as

follows:

• > (tautology) and start (a propositional variable which is only true at the initial

moment of time) are well-formed formulas (wff) of LOCRS ;

• cp=n
i (which states that the value of agent i’s communication counter is n) is a wff

of LOCRS for all n ∈ {0, . . . , nC(i)} and i ∈ Ag;

• BiC(a) (agent i believesC(a)),BiR(a, b) (agent i believesR(a, b)), andBir (agent

i believes r) are wffs of LOCRS for any C ∈ C, R ∈ R, r ∈ < and i ∈ Ag;

• BkAsk(i, j, C(a)),BkAsk(i, j, R(a, b)),BkTell(i, j, C(a)), andBkTell(i, j, R(a, b))

are wffs of LOCRS for any C ∈ C, R ∈ R, i, j ∈ Ag, k ∈ {i, j}, and i 6= j;

• If ϕ and ψ are wffs of LOCRS , then so are ¬ϕ and ϕ ∧ ψ;

• If ϕ and ψ are wffs of LOCRS , then so are Xϕ (in the next state ϕ), ϕUψ (ϕ holds

until ψ), Aϕ (on all paths ϕ).

Other classical abbreviations for ⊥, ∨,→ and↔, and temporal operations are defined as

usual which are given as:

• Fϕ ≡ >Uϕ; Fϕ means that ϕ will appear at some point in the future and >Uϕ

states that true appears in all states until ϕ appears on the state. Both are equivalent.

• Gϕ ≡ ¬F¬ϕ; where Gϕ states that ϕ appears globally or in other words, ¬ϕ will

never appear in future states.

CHAPTER 4. THE LOGIC LOCRS 77

• Eϕ ≡ ¬A¬ϕ where Eϕ means ϕ appears on some paths. In other words, we can

say that ¬ϕ will never appear on all paths.

4.5.5 Semantics

The semantics of LOCRS is defined by LOCRS transition system. The structure of the

transitions, to and from the states, is in ω-tree shape. The states corresponds to the work-

ing memory and record of communication counter. In the formal models of multi-agent

systems, agents fire multiple rule instances to achieve the desired goal state. Each agent

may derive new contexts whenever it has matching rules regardless of looking into other

agents’ activities whether they are firing rules or idle in the system. When an agent derives

a new context by firing a rule instance, then the system moves to the next state. In other

words, we can say that a transition corresponds to exactly one inferred context (by firing

a rule instance) or a transition corresponds to copying one context when communicating

with another agent. However in case, if an agent has no rule instance to fire or does not

communicate with any other agent then the system transits to next state with the same set

of contexts using idle rule.

Let (S, T) be a pair where S is a set of states and T is a binary relation on S that is total,

i.e., ∀s ∈ S , ∃s′ ∈ S such that sTs′ where s is the current state and s′ is the successor

state of the transition. The LOCRS transition system is based on ω-tree structures, which

contains finite number of branches. A branch of (S, T) is an ω-sequence (s0, s1, . . .) such

that s0 is the root and siTsi+1 for all i ≥ 0. We denoteB(S, T) to be the set of all branches

of (S, T). For a branch π ∈ B(S, T), πi denotes the element si of π and π≤i is the prefix

(s0, s1, . . . , si) of π. A LOCRS transition system M is defined as M = (S, T, V) where

• (S, T) is a ω-tree frame

• V : S × Ag → ℘(Ω ∪ CP); we define the belief part of the assignment

V B(s, i) = V (s, i) \ CP

and the communication counter part V C(s, i) = V (s, i) ∩ CP .

CHAPTER 4. THE LOGIC LOCRS 78

We further define V M(s, i) = {α|α ∈ DM(i)}.

V satisfies the following conditions:

1. |V c(s, i)| = 1 for all s ∈ S and i ∈ Ag.

2. If sTs′ and cp=n
i ∈ V (s, i) and cp=m

i ∈ V (s′, i) then n ≤ m.

• We say that a rule r : P1, P2, . . . , Pn → P is applicable in a state s of an agent

i if ant(r̄) ∈ V (s, i) and cons(r̄) /∈ V (s, i). The following conditions on the

assignments V (s, i), for all i ∈ Ag, and transition relation T holds in all models:

1. For all i ∈ Ag, s, s′ ∈ S, and r ∈ <, r ∈ V (s, i) iff r ∈ V (s′, i). This

describes that agent’s program does not change, i.e., rules are niether added

nor deleted during execution.

2. For all s, s′ ∈ S, sTs′ holds iff for all i ∈ Ag, V (s′, i) = V (s, i) ∪ {cons(r̄)}

∪ {Ask(j, i, C(a))} ∪ {Tell(j, i, C(a)} ∪ {Ask(j, i, R(a, b))} ∪ {Tell(j, i, R(a, b)}.

This describes that each agent i fires a single applicable rule instance of a rule

r, or updates its state by interacting with other agents, otherwise its state does

not change.

The truth of a LOCRS formula at a point n of a path π ∈ B(S, T) is defined inductively as

follows:

• M, π, n |= >

• M, π, n |= start iff n = 0,

• M, π, n |= Biα iff α ∈ V (πn, i).

• M, π, n |= cp=m
i iff cp=m

i ∈ V (πn, i).

• M, π, n |= ¬ϕ iff M, π, n 2 ϕ.

• M, π, n |= ϕ ∨ ψ iff M, π, n |= ϕ or M, π, n |= ψ.

CHAPTER 4. THE LOGIC LOCRS 79

• M, π, n |= ϕ ∧ ψ iff M, π, n |= ϕ and M, π, n |= ψ.

• M, π, n |= Xϕ iff M, π, n+ 1 |= ϕ.

• M, π, n |= ϕUψ iff ∃m ≥ n such that ∀k ∈ [n,m) M, π, k |= ϕ and M, π,m |= ψ

• M, π, n |= Aϕ iff ∀π′ ∈ B(S, T) such that π′≤n = π≤n M, π′, n |= ϕ

We now describe conditions on the models. The transition relation T corresponds to the

agent’s executing actions 〈act1, act2, . . . , actnAg〉, where acti is a possible action of an

agent i in a given state s. The set of actions that each agent i can perform are as follows:

• Rulei,r,β: An agent i fires a matching rule instance r̄ and adds consequent cons(r̄)

to its working memory and remove arbitrary context β in case if the memory is full.

If memory of agent i is not full then newly derived context will be placed into an

empty cell of its memory.

• Copyi,α,β: An agent i copies a context α from other agent j’s working memory and

removes β from its own working memory if the memory is full, where α is of the

form Ask(j, i, P) or Tell(j, i, P). Copy action is triggered by firing communication

rule instances.

• Idlei: For idle action, agent i moves to the next states and leaves its configuration

unchanged.

We denote arbitrary context by β which gets overwritten if it is in the agent’s dynamic

memory (DM(i)). If agent’s memory is full |V (s, i)| = nM(i) then we require that β has

to be in V M(s, i). All actions are not possible to be performed in any given state, e.g.;

there may not be any matching rule instances. When the counter value reaches to nC(i),

then i cannot perform further copy actions. Let us denote the set of all possible actions by

agent i in a given state s by Ti(s) and its definition is given below:

Definition 4.1. Available Actions

CHAPTER 4. THE LOGIC LOCRS 80

An agent i moves from state s to s′ by performing acti. The set of actions that each agent

i can perform are:

1. Rulei,r,β ∈ Ti(s) iff r ∈ V (s, i), ant(r̄) ⊆ V (s, i), cons(r̄) /∈ V (s, i), β ∈ Ω or if

|V M(s, i)| = nM(i) then β ∈ V M(s, i);

Agent i firing a rule instance r̄ and adding cons(r̄) to its working memory and

removing β,

2. Copyi,α,β ∈ Ti(s) iff there exists j 6= i such that α ∈ V (s, j), α /∈ V (s, i), cp=n
i ∈

V (s, i) for some n < nC(i), α is of the form Ask(j, i, P) or Tell(j, i, P), and β as

before;

Agent i copying α from other agent’s memory and removing β, where α is either

Ask(j, i, P) or Tell(j, i, P) and its communication counter has not exceeded the

communication bound.

3. Idlei is always in Ti(s).

Agent i does nothing but moves to the next state.

Definition 4.2. Effects of Action

For each i ∈ Ag, the result of performing an action acti in state s ∈ S is defined if acti

∈ Ti(s) and has the following effect on the assignment of formulas to i in the successor

state s′ ∈ S:

1. if acti is Rulei,r,β: V (s′, i) = V (s, i) \ {β} ∪ {cons(r̄)};

2. if acti is Copyi,α,β: cp=m
i ∈ V (s, i) for some m < nC(i): V (s′, i) = V (s, i) \

{β, cp=m
i } ∪ {α, cp=m+1

i };

3. if acti is Idlei: V (s′, i) = V (s, i).

Now, the definition of the set of models corresponding to a system of rule-based rea-

soners is given below:

CHAPTER 4. THE LOGIC LOCRS 81

Definition 4.3. M(nM , nC) is the set of models (S, T, V) which satisfies the following

conditions:

1. cp=0
i ∈ V (s0, i) where s0 ∈ S is the root of (S, T) for all i ∈ Ag;

2. ∀s ∈ S and a tuple of actions 〈act1, act2, . . . , actnAg〉, if acti ∈ Ti(s),∀i ∈ Ag,

then ∃s′ ∈ S such that sTs′ and s′ satisfies the effects of acti, ∀i ∈ Ag;

3. ∀s, s′ ∈ S and sTs′ iff for some tuple of actions 〈act1, act2, . . . , actnAg〉, acti ∈

Ti(s) and the assignment in s′ satisfies the effects of acti, ∀i ∈ Ag;

4. The bound on each agent’s memory and communication is set by the following

constraint on the mapping V : |V M(s, i)| ≤ nM(i) , and cp=n
i ≤ nC(i) for all

s ∈ S, and i ∈ Ag.

The definition 4.3 describes the set of conditions for the class M(nM , nC) to model

context-aware rule-based reasoning agents using LOCRS transition system. The first con-

dition sets the communication counter value to 0 at the initial state s0 of agent i. Note

that the bound nC(i) on each agent i’s communication ability (no branch contains more

than nC(i) Copy actions by agent i) follows from the fact that Copyi is only enabled if i

has performed fewer than nC(i) copy actions in the past. Second and third conditions de-

scribe the transition relation according to their corresponding actions. The last condition

sets the memory and communication bounds for all agents in the system. Below are some

abbreviations which will be used in the axiomatization:

• ByRulei(P,m) = ¬BiP∧ cp=m
i ∧

∨
r∈<∧cons(r̄))=P (Bir ∧

∧
Q∈ant(r̄) BiQ).

This formula describes the state before the agent comes to believe formula P by the

Rule transition, m is the value of i’s communication counter, P and Q are ground

atomic formulas.

• ByCopyi(α,m) = ¬Biα ∧ Bjα ∧ cp=m−1
i , where α is of the form Ask(j, i, P) or

Tell(j, i, P), i, j ∈ Ag and i 6= j.

CHAPTER 4. THE LOGIC LOCRS 82

This formula describes the state before the agent comes to believe formula α by the

Copy action (by firing communication rule instance), m is the value of i’s commu-

nication counter, and α is the formula copied from other agent’s memory.

4.5.6 Axiomatization

Now we introduce the axiomatization system.

A1. All axioms and inference rules of CTL* [Reynolds, 2001].

A2
∧

α∈DM (i)

Biα → ¬Biβ for all DM(i) ⊆ Ω such that |DM(i)| = nM(i) and β /∈

DM(i).

This axiom describes that, in a given state, each agent can store maximally at most

nM(i) formulas in its memory,

A3.
∨

n=0,...,nC(i)

cpi=n.

This axiom says the value of the communication counter in the agent i’s memory

is n which should be between 0 and nC(i). This corresponds to the Copy action

performed by agent i.

A4. cp=n
i →¬ cpi=m for any m 6= n.

The value of the communication counter n must be unique. It may change due to

Copy action, otherwise its value remains the same as in the previous state.

A5 Bir ∧
∧

P∈ant(r̄)
BiP ∧ cp=n

i ∧ ¬Bicons(r̄)→ EX(Bicons(r̄) ∧ cp=n
i), i ∈ Ag.

This axiom describes that a transition is always possible in a state whenever agent i

believes on the consequent of the rule cons(r̄) in its working memory and agent i’s

communication counter does not change.

A6 cp=m
i ∧¬Biα∧Bjα→ EX(Biα∧ cp=m+1

i) where α is of the form Ask(j, i, P) or

Tell(j, i, P), i, j ∈ Ag, j 6= i, m < nC(i).

CHAPTER 4. THE LOGIC LOCRS 83

This axiom describes transitions made by Copy with communication counter in-

creased. So, the successor state extends their predecessors by adding one new

belief which include a newly copied context with communication counter value

incremented by 1.

A7 EX(Biα∧Biβ)→ Biα∨Biβ, where α and β are not of the form Ask(j, i, P) and

Tell(j, i, P).

This axiom says that at most one new belief is added in the next state and α 6= β.

So, either α or β appear in the memory.

A8 Biα→ AXBiα for any α ∈ SM(i) ∪ <.

This axiom states that an agent i ∈ Ag always believes formulas residing in its static

memory and its rules.

A9 EX(Biα ∧ cp=m
i)→ Biα ∨ByRulei(α,m) ∨ByCopyi(α,m) for any α ∈ ∪ Ω.

This axiom says that a new belief can only be added by one of the valid reasoning

actions.

A10a. start→ cp=0
i , for all i ∈ Ag.

At the start state, the agent has not performed any Copy actions.

A10b. ¬EXstart.

This axiom states that a propositional variable start holds only at the root of the

tree.

A11. Bir where r ∈ < for all i ∈ Ag.

This axiom tells agent i believes its own set of rules.

A12. ¬Bir where r /∈ < for all i ∈ Ag.

This axiom tells agent i only believes its rules.

CHAPTER 4. THE LOGIC LOCRS 84

A13 ϕ→ EXϕ, where ϕ does not contain start.

This axiom describes an Idle transition by all the agents.

A14
∧
i∈Ag

EX(
∧
α∈Γi

Biα ∧ cp=mi
i)→ EX

∧
i∈Ag

(
∧
α∈Γi

Biα ∧ cp=mi
i) for any Γi ⊆ Ω.

This axiom describes that if each agent i can separately reach a state where it be-

lieves formulas in Γi, then all agents together can reach a state where for each i,

agent i believes formulas in Γi.

Let us now define the logic obtained from the above axiomatisation system.

Definition 4.4. L(nM , nC) is the logic defined by the axiomatisation A1− A14.

Theorem 4.1. L(nM , nC) is sound and complete with respect to M(nM , nC).

4.6 Soundness Proof

The proof of soundness is standard. In this section, soundness of the L(nM , nM) is proved

by showing the validity of all axioms in M(nM , nC). The LOCRS actions preserve the

validity of all axioms. For any given L-formula ϕ and the set of formulas Ω, we can say

that if Ω `M ϕ then Ω |=M ϕ. These proofs are given below:

• The proofs for axioms and rules included in A1 are given in [Reynolds, 2001].

• Axiom A2 assures that at a state, each agent can store maximally at most nM(i)

formulas in its memory.

Let M = (S, T, V) ∈M(nM , nC), π ∈ B(S, T) and n ≥ 0. We assume M, π, n |=∧
α∈DM (i)

Biα, where α ∈ V (πn, i) and β /∈ V (πn, i), for any πn(= s) ∈ S, and

|DM(i)| = nM(i). As the memory is full at this moment, so the current state of

agent i does not allow any additional formula β to be added. The formula β can

only be replaced with α if one of the applicable actions either Rulei,r,β or Copyi,α,β

is performed. According to the definition of M(nM , nC), ∃s′ ∈ S such that πn

CHAPTER 4. THE LOGIC LOCRS 85

T s′ and V (s′, i) = V (πn, i) \ {α } ∪ {β}. Therefore, it is obvious then that

M, π, n |=
∧

α∈DM (i)

Biα→ ¬Biβ.

• Axioms A3 and A4 force the existence of a unique communication counter for each

agent to record the number of copies it has performed so far. More specifically, A3

assures that at least one counter value exists for any agent and A4 guaranties that

only one of them is present.

For the given communication counter formula cp=n
i , we assume M, π, n |= cp=n

i ,

where cp=n
i ∈ V (πn, i), then M, π, n 2 cp=m

i for any n 6= m. Agent i can not have

duplicate copies of communication counter.

• In the following, we provide the proof for A5.

Let M = (S, T, V) ∈ M(nM , nC), π ∈ B(S, T) and n ≥ 0. We assume that

M, π, n |= Bir∧
∧

P∈ant(r̄)
BiP∧cp=m

i ∧¬Bicons(r̄), for some r ∈ < and |V M(s, i)|≤

nM(i). Then P ∈ V (πn, i) for all P ∈ ant(r̄), and cons(r̄) /∈ V (πn, i). This means

that the action performed by agent i is Rulei,r,β . According to the definition of

M(nM , nC), ∃s′ ∈ S such that πn T s′ and V (s′, i) = V (πn, i) \ {β } ∪ {cons(r̄)}.

Let π′ be a branch in B(S, T) such that π′≤n = π≤n and π′n+1 = s′. Then, we have

M,π′, n + 1 |= Bi cons(r̄) ∧ cpi=m. Therefore, it is obvious then that M,π, n |=

EX(Bi cons(r̄) ∧ cpi=m).

• Axiom A6 is valid by copy action.

Let M = (S, T, V) ∈ M(nM , nC), π ∈ B(S, T) and n ≥ 0. We assume that

M, π, n |= cp=m
i ∧¬Biα∧Bjα, and |V M(s, i)| ≤ nM(i). Then cp=m

i ∈ V (πn, i), α

/∈ V (πn, i), and α ∈ V (πn, j) for i, j ∈ Ag, i 6= j, and m < nC(i). This means that

the action performed by agent i is Copyi,α,β . According to the definition of M(nM ,

nC), ∃s′ ∈ S such that πn T s′ and V (s′, i) = V (πn, i) \{β, cp=m
i } ∪ {α , cpi=m+1}.

Let π′ be a branch in B(S, T) such that π′≤n = π≤n and π′n+1 = s′. Then we have

M,π′, n+ 1 |= Bi α ∧ cpi=m+1. Therefore, it is obvious that M,π, n |= EX(Bi α ∧

CHAPTER 4. THE LOGIC LOCRS 86

cpi
=m+1).

• In A7: At most one new formula is added to some future states, i.e, V (s′, i) =

V (s, i) ∪ {α} ∪ {β}. For the proof, we assume that M, π, n |= EX(Biα ∧ Biβ)

where α, β ∈ Ω and α, β /∈ V (πn, i) for any i ∈ Ag. This means that the action

performed by agent i is Rulei,r,γ . According to the definition of M(nM , nC), there

exists a s′ ∈ S such that πn T s′ and V (s′, i) = V (πn, i) \ γ ∪ {α} ∪ {β} where

γ is an arbitrary context. Let π′ be a branch in B(S, T) such that π′≤n = π≤n and

π′n+1 = s′. Then we have either M,π, n+ 1 |= Bi α or M,π, n+ 1 |= Bi β.

• Axiom A8 states that the formula α is always valid for any agent i ∈ Ag. For this

axiom, α is considered as an initial fact which is permanently stored in the static

memory. So, an agent i ∈ Ag always believes the formula Biα in the static memory

segment of all future states. The formulas in the static memory do not change during

the execution of the system and the same for its rules.

• Axiom A9 is valid by one of the valid reasoning actions. For the given model

M = (S, T, V) ∈ M(nM , nC), we assume that M, π, n |= EX(Biα ∧ cp=m
i), for

any α ∈ Ω and cp=m
i ∈ V (πn, i) where |V M(s, i)| ≤ nM(i) and for all i ∈ Ag. This

means a new belief is added by one of the valid reasoning actions performed by

agent i. According to the definition of M(nM , nC), there exists a s′ ∈ S such that

πn T s
′ and V (s′, i) = V (πn, i) \ β ∪ {α} ∪ ByRulei(α,m) ∪ ByCopyi(α,m).

• A10a is valid since the start appears at the root state of each agent i ∈ Ag and the

value of the communication counter is 0, cp=0
i because no copy action is performed.

• A10b is also valid because start only appears at the root of the tree.

• A11 is valid and states that agent i believes on the rule at state s : V (πn, i) = Bir

where r ∈ < and rules are neither added nor deleted during the execution of the

system.

CHAPTER 4. THE LOGIC LOCRS 87

• A12 is valid and states that agent i believes only its own rule at state s : V (πn, i) =

¬Bir where r /∈ <. In our model, agents do not exchange rules.

• Axiom A13 is valid for the action Idle. Let us say if a formula ϕ ∈ V (πn, i), then

there exists s′ ∈ S such that πn T s′ and V (s′, i) = V (πn, i).

• Axiom A14 is valid, if the set of actions performed by agent i to reach the goal state

where agent i believes formulas in Γi, then all agents can simultaneously reach the

goal state where for each agent i, agent i believes formulas in Γi.

4.7 Completeness Proof

Now we demonstrate the completeness proof of the axiomatization. Completeness can be

shown by constructing a tree model for a consistent formula ϕ. This is constructed as in

the completeness proof introduced in [Reynolds, 2001]. Then we use the axioms to show

that this model is in M(nM , nC).

Since the initial state of all agents does not restrict the set of formulas they may derive in

the future, for simplicity we conjunctively add to ϕ a tautology that contains all the po-

tentially necessary formulas and message counters, in order to have enough sub-formulas

for the construction. We construct a model M = (S, T, V) for

ϕ′ = ϕ
∧
α∈Ω

(XBiα ∨ ¬XBiα) ∧
∧

n∈{0,...nC(i)},i∈Ag

(Xcp=n
i ∨ ¬Xcp=n

i)

We then prove that M is in M(nM , nC) such that it satisfies all those properties mentioned

in definition 4.3.

• Axiom A2 assures that |V M(s, i)| ≤ nM(i) and each agent i can maximally store at

most nM(i) formulas, i.e., α ∈ DM(i) and β /∈ DM(i). We need to prove that for

all s ∈ S, acti ∈ Ti(s) and i ∈ Ag, there exists a s′ ∈ S such that s T s′ and V (s′, i)

is the resultant state of V (s, i) after i has performed action acti. Let us consider the

case when acti is either Rulei,r,β or Copyi,α,β . As DM(i) = nM(i), when action

CHAPTER 4. THE LOGIC LOCRS 88

acti is performed, then one of the α is replaced. Therefore, V (s′, i) = V (s, i) \ {β

} ∪ {α}.

• Axiom A3 shows the presence of the communication counter value cp=m
i ∈ V (s, i)

where m ∈ {0, . . . , nC(i)} for any i ∈ Ag.

• Axiom A4 assures the existence of a unique value at a state s of M, cp=m
i ∈ V (s, i).

• For the proof of axiom 5, we need to prove that for all s ∈ S, acti ∈ Ti(s) and

i ∈ Ag, there exists a s′ ∈ S such that s T s′ and V (s′, i) is the resultant state

of V (s, i) after i has performed action acti. Let us consider the case when acti

is Rulei,r,β ∈ Ti(s) for some r ∈ <. Since the rule Rulei,r,β is applicable at s,

ant(r̄) ⊆ V (s, i) and cons(r̄) /∈ V (s, i). Therefore, there exist a MCS1 (Maximal

Consistent Set) χ such that χ ⊇ V (s, i), and
∧

P∈ant(r̄)
BiP ∧ cp=m

i ∧ ¬Bicons(r̄)

∈ χ, for some m ∈ {0, ..., nC(i)} and |V M(s, i)| ≤ nM(i). By Axiom A5 and

MP (Modus Ponens), EX(Bicons(r̄) ∧ cp=m
i) ∈ χ. Therefore, according to the

construction, ∃s′ ∈ S such that s T s′, V (s′, i) ⊆ χ′ for some χ′, and Bicons(r̄) ∧

cp=m
i ∈ χ′. Therefore, V (s′, i) = V (s, i) \ {β} ∪ {cons(r̄)}.

• For the proof of axiom A6, we need to prove that for all s ∈ S, acti ∈ Ti(s) and

i ∈ Ag, there exists a s′ ∈ S such that s T s′ and V (s′, i) is the resultant state

of V (s, i) after i has performed action acti. Let us consider the case when acti

is Copyi,α,β ∈ Ti(s) for some α ∈ Ω. Since the rule Copyi,α,β is applicable at s,

α /∈ V (s, i) while α ∈ V (s, j) for j ∈ Ag and i 6= j. Therefore, there exists a MCS

(Maximal Consistent Set) χ such that χ ⊇ V (s, i), and cp=m
i ∧¬Biα∧Bjα ∈ χ, for

some m ∈ {0, ..., nC(i)} and |V M(s, i)| ≤ nM(i). By Axiom A6 and MP (Modus

Ponens), EX(Biα ∧ cp=m+1
i) ∈ χ. Therefore, according to the construction, ∃s′ ∈

S such that s T s′, V (s′, i) ⊆ χ′ for some χ′, and Biα ∧ cp=m+1
i ∈ χ′. Therefore,

V (s′, i) = V (s, i) \ {β} ∪ {α} ∪ {cp=m+1
i }.

1Definition 4.9

CHAPTER 4. THE LOGIC LOCRS 89

• Axiom A7 states that at most one new formula can be added. we need to prove that

for all s ∈ S, acti ∈ Ti(s) and i ∈ Ag, there exists a s′ ∈ S such that s T s′ and

V (s′, i) is the resultant state of V (s, i) after i has performed action acti. By axioms

A7, V (s′, i) is different from V (s, i) by at most one formula added and possibly

a formula is removed. Let us consider the case when acti is Rulei,r,γ ∈ Ti(s) for

some r ∈ <. Since the rule Rulei,r,γ is applicable at s, therefore V (s′, i) = V (s, i)

\ {γ}∪{α}∪{β}. If no formula is added or removed, we consider acti to be Idlei.

• For the axiom A8, a formula α ∈ Ω is considered as an initial fact which is perma-

nently stored in the static memory which means α ∈ V (s, i), there exists s′ ∈ S

such that s T s′ and V (s′, i) is the resultant state of V (s, i). Similarly, the rules of

an agent i always resides in the static memory which can never be deleted.

• Let us now consider the case where a formula α is added by one of the valid rea-

soning actions. By axiom A9, if cp=m
i ∈ V (s, i) for some m ∈ {0, ..., nC(i)} then

either cp=m
i or cp=m+1

i ∈ V (s′, i). If cp=m
i ∈ V (s′, i) then set acti to be Rulei,r,β

for some r ∈ V (s, i) , α = cons(r̄) /∈ V (s, i). If cp=m+1
i ∈ V (s′, i), then set acti

to be Copyi,α,β . Otherwise acti to be Idlei.

• For A10, we say at the root s0 of (S, T), the construction of the model implies that

there exists a maximally consistent set (MCS) χ0 such that χ0 ⊇ V (s0, i) and start

∈ χ0. Therefore, it is trivial that cp=0
i ∈ V (s0, i).

• A11 and A12 are already defined by agent’s beliefs. For any rule r ∈ <, i ∈ Ag and

s, s′ ∈ S, we say r ∈ V (s, i) iff r ∈ V (s′, i). In our model, agents do not exchange

rules as messages.

• A13 is similar to A5 but with idle action transition. In the model, we say for all

s ∈ S, acti ∈ Ti(s) and i ∈ Ag, there exists a state s′ ∈ S such that s T s′

and V (s′, i) is the resultant state of V (s, i) after i has performed action acti. Let

us consider the case when acti is Idlei. Since the rule is applicable, therefore

CHAPTER 4. THE LOGIC LOCRS 90

V (s′, i) = V (s, i).

• For the axiom A14, we can show that for any tuple of actions 〈act1, act2, . . . , actnAg〉,

acti ∈ Ti(s) is applicable at s ∈ S, for all i ∈ Ag, then there exists a s′ ∈ S such

that V (s′, i) is the resultant state of V (s, i) after performing acti at s by agent i, for

all i ∈ Ag.

4.8 LOCRS Proofs of Correctness

In this section, we describe the satisfiability problem for the model to prove that this model

is decidable by formulas of language in M(nm, nC).

Definition 4.5. Satisfiability of LOCRS formulas

We say that a formula ϕ ∈ Ω of the language L is satisfied in a model M = (S, T, V)

if and only if M, s |= ϕ for some state s (= πn) ∈ S. For a given class of models C, a

formula ϕ is said to be valid in C, written as C |= ϕ if M |= ϕ for some M ∈ C.

Definition 4.6. Global Satisfiability of LOCRS formulas

A formula ϕ ∈ Ω of L is said to be globally satisfied in a model M = (S, T, V),

M |= ϕ if M, s |= ϕ, ∀s ∈ S.

Definition 4.7. Validity of LOCRS formulas

A formula ϕ ∈ Ω is said to be valid in a model M if and only if it is true for all s ∈ S

in the model.

Definition 4.8. LOCRS Model Equivalence

For the two given models M = (S, T, V) and M′ = (S ′, T ′, V ′), we say they are

modally equivalent for any s ∈ S and s′ ∈ S ′ if and only if { ϕ | M, s |= ϕ } ≡ {

ψ |M′, s′ |= ψ }.

For a given logic LOCRS , we need to prove completeness proofs with respect to some

classes to show that every consistent set of formulas can be satisfied in a suitable model.

CHAPTER 4. THE LOGIC LOCRS 91

To build the satisfying model for the completeness proof, we first need to define Maximal

consistent set of formulas for the model and to build canonical model which is syntacti-

cally constructed from maximally consistent set.

Definition 4.9. Maximal Consistent Set (MCS)

We say that a set of formulas Ω is a maximal consistent set with respect to a languageL

of LOCRS if and only if Ω is L-consistent, and it becomes L-inconsistent for any superset

of Ω. If Ω is a maximal L-consistent set of formulas then we say it is a LMCS .

There are two reasons for the use of maximal consistent set in the completeness proofs.

• First, every state s in the model M is associated with a set of formulas, formally

written as {α | M, s |= α}. The set of formulas is represented by LMCS , which

means if a formula α is true in the model M then α belongs to LMCS .

• Second, if a state s is related to the next state s′ in the model M then we clearly say

that the set of formulas included in the MCS associated with s and s′ is coherently

related.

Based on the second observation, models give rise to accumulation of coherently related

MCSs. Now we list some properties of maximal consistent set LMCS .

Proposition 4.2. We say if LOCRS is a logic and Ω is a LMCS then:

1. ϕ ∈ Ω iff Ω `M ϕ.

2. ϕ ∨ ψ ∈ Ω iff ϕ ∈ Ω or ψ ∈ Ω.

3. ϕ ∧ ψ ∈ Ω iff ϕ ∈ Ω and ψ ∈ Ω.

4. ϕ→ ψ ∈ Ω iff ϕ ∈ Ω, then ψ ∈ Ω.

Lemma 4.1. Lindenbaum Lemma: For every L-consistent set Ω there is a maximally

consistent superset Ω+.

CHAPTER 4. THE LOGIC LOCRS 92

Proof: Enumerate all formulas ϕ1, ϕ2, . . . of the language L and define an ascending

chain of sets of formulas Ω0 ⊆ Ω′ ⊆ . . . ⊆ Ωn ⊆ . . . such that

Ω0 = Ω

Ωm+1 =


Ωm ∪ {ϕk} if ϕk is L-consistent with Ωm

Ωm,otherwise

Let Ω+ =
⋃
m ∈ N Ωm, then Ω+ is both maximal in L and L-consistent.

Suppose, Ω+ is not L-consistent. Then, ∃ i ≥ 1 (this is because we assume Ω0(i = 0)

is L-consistent) such that Ωi is L-inconsistent. Thus Ωi−1 must be inconsistent and hence

each Ωj(j < i) isL-inconsistent. This contradicts the fact that Ω(= Ω0) isL-inconsistent.

Next let us suppose that Ω+ is not maximal. Then ∃ Ω′ ⊃ Ω+ such that Ω′ is L-consistent.

Therefore, Ω′ ⊇ Ω+ ∪ {ϕk} for some formula ϕk. Since ϕk is L-consistent with Ω+, and

Ωn+1 = Ωn ∪ {ϕk}. Hence Ω′ does not exist.

4.8.1 The satisfiability Problem of L(nM , nC)

In this section, we describe the satisfiability of formulas of L(nM , nC) in the class M(nM , nC).

The satisfiability of formulas is determined by a model M to see whether it is decidable

in M(nM , nC). We also prove the satisfiability of formulas in the canonical model which

is satisfied in M(nM , nC).

4.8.1.1 The Canonical Model of M(nM , nC)

We say that M = (S, T, V) is an arbitrary model in M(nm, nC). At a given state s ∈ S, V

is a mapping which identifies the state of the internal memory and the record of commu-

nication counter for each agent in the system. In addition, the definition of M(nM , nC)

determines paths starting form s. For a given different model M′ = (S ′, T ′, V ′) of

M(nm, nC) if there is a state s′ which is the replica of s, i.e., V (s, i) is the same as

V ′(s′, i) for all i ∈ Ag. Then the set of paths in M′ starting from s′ is same as the set of

CHAPTER 4. THE LOGIC LOCRS 93

paths starting from s in M if we don’t differentiate states with the same value of V and

V ′. This property of models in M(nM , nC) allows us to consider a canonical model in the

class M(nM , nC) which includes all models.

Definition 4.10. A canonical model Mc = (Sc, T c, V c) is a triple which is constructed

syntactically from maximal consistent sets.

• Sc = {Ω ∪ CP} where Ω is the set of all LMCS and CP =
⋃
i∈Ag

CPi

• T c is a canonical relation; for all states sc, s′c ∈ Sc, sc T c s′c if and only if there are

acti ∈ T ci (s) for all i ∈ Ag.

• V c(sc, i) = { Bi Γ ∪ cp=n
i } where ∀ sc ∈ Sc, Γ ∈ Ω and for all i ∈ Ag. V c is called

canonical valuation.

Lemma 4.2. Canonical Model(CM) is a model of the class M(nM , nC).

Proof. The conditions given in the model M(nM , nC) follows the definition of canoni-

cal model. We explain the following to complete the proof.

V c(sc, i) = {Bi Γ∪ cp=m
i }; where Γ ∈ L, Γ ⊆ Ω and |Γ| ≤ V c(sc, i) for any sc ∈ Sc,

i ∈ Ag and for some m ∈ {0, . . . , nC(i)}.

Now we prove the existence lemma in which states are coherently related to define the

required accessibility relations. Existence lemma ensures the success of the construction

by defining the required coherently related MCSs.

Lemma 4.3. Existence Lemma: Let Mc = (Sc, T c, V c) be a canonical model for the logic

LOCRS . For any formula ϕ ∈ Ω and any state sc ∈ Sc, if Fϕ ∈ V c(sc, i) then there is a

state s′c ∈ Sc such that sc T c s′c and ϕ ∈ V c(s′c, i) , for any i ∈ Ag.

Proof: We assume Fϕ ∈ V c(sc, i), we need to construct a state s′c such that sc T c s′c

and ϕ ∈ V c(s′c, i). For this, let ∆ = {ϕ} ∪ {ψ | Fψ ∈ V c(sc, i)} then ∆ is consistent.

Suppose ∆ is inconsistent, then there are ψ1, . . . , ψn ∈ ∆ such that ψ1 ∧ . . .∧ ψn `M ¬ϕ

CHAPTER 4. THE LOGIC LOCRS 94

and it follows thatG(ψ1∧ . . .∧ψn) `M G¬ϕ. The formulaG(ψ1∧ . . .∧ψn) is represented

by deduction theorem as Gψ1 ∧ . . . ∧ Gψn. Hence, by propositional calculus, it follows

`M (Gψ1∧. . .∧Gψn)→ G¬ϕ. NowGψ1∧. . .∧Gψn ∈ V c(sc, i) and V c(sc, i) is aLMCS .

Then G¬ϕ ∈ V c(sc, i), it follows that ¬Fϕ ∈ V c(sc, i) because ¬Fϕ ≡ G¬ϕ. But this

contradicts our assumption as Fϕ ∈ V c(sc, i). Hence ∆ is consistent. By lindenbaum

lemma, ∆ can be extended to a LMCS ∆+ with ϕ ∈ ∆+ and {ψ |Gψ ∈ V c(sc, i)} ⊆ ∆+.

So, by construction ϕ ∈ V c(s′c, i) and hence sc T c s′c.

Now we prove the truth lemma which states that any formula ϕ belongs to a LMCS is

equivalent to the formula ϕ which is true in some model M.

Lemma 4.4. Truth Lemma: Let Mc = (Sc, T c, V c) be a canonical model for the logic

LOCRS . For any formula ϕ ∈ Ω, Mc, sc |= ϕ if and only if ϕ ∈ V c(sc, i) where sc ∈ Sc

and for any i ∈ Ag.

Proof: The proof is given by structural induction on the complexity of ϕ and the

definition of V c provides the base case. Since V c(sc, i) is consistent and maximal while

boolean cases are trivial. We assume Mc, sc |= EX ψ if and only if there exists a state

s′c such that sc T c s′c and Mc, s′c |= ψ. So ψ ∈ V c(s′c, i) by the induction hypothesis

and EXψ ∈ V c(sc, i) by the definition of T c. Now for the reverse direction, the existence

lemma guarantees that EXψ ∈ V c(sc, i) which implies the existence of a state s′c ∈ Sc

such that sc T c s′c and ψ ∈ V c(s′c, i). By hypothesis Mc, s′c |= ψ and hence Mc, sc |=

EXψ.

Lemma 4.5. Let Mc = (Sc, T c, V c) be a canonical model for the logic LOCRS . For any

formula ϕ ∈ Ω, for all states sc, s′c ∈ Sc and for all i ∈ Ag if sc T c s′c and ϕ ∈ V c(s′c, i)

but ϕ /∈ V c(sc, i) then

(i) V c(s′c, i) = V c(sc, i) ∪ {ϕ} and

(ii) ϕ must be a literal.

Proof: We assume sc T c s′c, ϕ ∈ V c(s′c, i) and ϕ /∈ V c(sc, i). As the set of initial contexts

CHAPTER 4. THE LOGIC LOCRS 95

for each agent i, `M Biϕ → AXBiϕ and V c(sc, i) ⊆ V c(s′c, i). We further assume that

axiom A8 entails ψ ∈ V c(sc, i) based on case (i) where for any ψ ∈ V c(s′c, i) and ψ 6= ϕ.

For case (ii), if ϕ is not a literal then it must be some rule r ∈ <. This is the only case for

the given axioms A11 and A12, if r ∈ < then ϕ ∈ V (sc, i) contrary to hypothesis.

4.8.2 Bisimulation

Bisimulation is a symmetric simulation for two transition systems. It presents equivalence

relations on the structure which satisfy the same formulas and captures state equivalences

and process equivalences [Stirling, 2012, Blackburn et al., 2002]. In other words, we

say that two different finite structures are bisimilar if and only if they satisfy the set of

formulas. In the logic LOCRS , the model M and Mc do not distinguish bisimilar structure.

We say that M = (S, T, V) and Mc = (Sc, T c, V c) are models of the form of ω-tree

structure in the LOCRS . A non-empty binary relation Z ⊆ S x Sc is called bisimulation

between M and Mc, when following conditions are satisfied.

• Invariance: If Z(s, sc) then both s and sc are identical satisfying the same set of

formulas. In other words, we say that two states have the same valuation: V (s, i) =

V c(sc, i)

• Forth Condition: If Z(s, sc) and s T s′ in M, then there exists a state s′c in Mc such

that sc T c s′c and Z(s′, s′c).

• Back Condition: If Z(s, sc) and sc T c s′c in Mc, then there exists a state s′ in M

such that s T s′ and Z(s′, s′c)

For any formula ϕ ∈ Ω of L, M, s |= ϕ if and only if Mc, sc |= ϕ.

Lemma 4.6. A formula is said to be satisfiable in M(nM , nC) if and only if it is satisfied

in the canonical model (CM).

Proof: Let α be a formula and M = (S, T, V) is a model in M(nm, nC). Let V (s, i) =

Γi , where Γi contains the set of formulas at state s of agent i including a communication

CHAPTER 4. THE LOGIC LOCRS 96

Figure 4.4: Bisimilar Model Forth condition

counter cp=m
i , for all i ∈ Ag and any s ∈ S. If s corresponds to sc then we define sc as

V c(sc, i) = Γci ∈ Sc. To prove this in canonical model, we inductively define the structure

of the formula α for any s of M, we have M, s |= α if and only if Mc, sc |= α.

• If α = BiC(a) then we have

– M, s |= Bi C(a) iff C(a) ∈ V (s, i) = Γi which corresponds in CM as

V c(sc, i)

iff C(a) ∈ V c(sc, i)

iff Mc, sc |= Bi C(a)

The set of all ground facts given in Section 4.5.1 are defined in the similar fashion.

• If α = cp=m
i

– M, s |= cp=m
i iff cp=m

i ∈ V (s, i) which corresponds in CM as V c(sc, i)

iff cp=m
i ∈ V c(sc, i)

iff Mc, sc |= cp=m
i

CHAPTER 4. THE LOGIC LOCRS 97

• If α = ¬ϕ

– M, s |= ¬ϕ iff M, s 2 ϕ

iff Mc, sc 2 ϕ by induction hypothesis 2

iff Mc, sc |= ¬ϕ

• If α = ϕ ∨ ψ

– M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

iff Mc, sc |= ϕ or Mc, sc |= ψ by induction hypothesis

iff Mc, sc |= ϕ ∨ ψ

• If α = ϕ ∧ ψ

– M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

iff Mc, sc |= ϕ and Mc, sc |= ψ by induction hypothesis

iff Mc, sc |= ϕ ∧ ψ

• If α = ϕ U ψ

– M, s |= ϕUψ iff ∃m ≥ n such that for all k ∈ [n,m) M, sk |= ϕ and

M, sm |= ψ

iff ∃m ≥ n such that for all k ∈ [n,m) Mc, sck |= ϕ and

Mc, scm |= ψ by induction hypothesis

iff Mc, sc |= ϕUψ

• If α = EX ϕ

– M, s |= EXϕ iff there exists s′ ∈ S such that s T s′ and M, s′ |= ϕ

iff ∃s′c ∈ Sc such that sc T s′c, and Mc, s′c |= ϕ by induction

hypothesis

iff Mc, s′c |= EXϕ

2For induction hypothesis, we say that the base case is s0 ∈ S and the induction step states: If s ∈ S
then s′ ∈ S.

CHAPTER 4. THE LOGIC LOCRS 98

• If α = AX ϕ

– M, s |= AX ϕ iff for any path (s0, s1, . . .) starting from s (i.e., s0 = s),

∃k ≥ 0 such that M, sk |= ϕ

iff Mc, sck |= ϕ by induction hypothesis

iff Mc, sc |= AX ϕ

4.8.3 Soundness Proofs in the Canonical Model Mc

In this section, we provide the soundness proofs to show the validity of axioms in the

canonical model. As given in lemma 4.6, a formula ϕ is said to be satisfiable in the model

M(nM , nC) if and only if it is satisfied in the canonical model Mc(nM , nC). Similarly, we

say a formula ϕ is valid in the model M(nM , nC) if and only if it is valid on Mc(nM , nC).

These proofs are given below:

• For the axiom A2 in canonical model Mc, let φ =
∧

α∈DM (i)

Biα → ¬Biβ where

i ∈ Ag and α ∈ Ω and DM(i) ⊆ Ω such that |DM(i)| = nM(i). Let sc ∈ Sc

be an arbitrary state and there exists β ∈ Ω such that β /∈ V c(sc, i). Then, we

have that Mc, sc 2 Biβ, which implies that Mc, sc |=
∧

α∈DM (i)

Biα. Therefore,

Mc, sc |=
∧

α∈DM (i)

Biα → ¬Biβ. Hence, `Mc

∧
α∈DM (i)

Biα → ¬Biβ. Thus φ is a

formula in any state sc of Mc and it is valid.

• Let cp=m
i be a communication counter formula and sc is an arbitrary state in Sc

such that cp=m
i ∈ V c(sc, i) for some m ∈ {0, . . . , nC(i)}, then Mc, sc |= cp=m

i .

This means the formula is true at any state sc of Mc. Hence, `Mc

∨
l=0,...,nC(i)

cp=m
i is

valid in Mc.

• For the axiom A4 in CM, we assume cp=n
i → ¬cp=m

i be a formula and sc is an

arbitrary state in Sc, m 6= n and for all i ∈ Ag. If Mc, sc |= cp=n
i then cp=n

i ∈

V c(sc, i). As a result, cp=m
i /∈ V c(sc, i) which means Mc, sc 2 cp=m

i where sc ∈ Sc.

CHAPTER 4. THE LOGIC LOCRS 99

Therefore, Mc, sc |= cp=n
i → ¬cp=m

i . So we say that this axiom is true in any state

sc of Mc. Hence, `Mc cp=n
i → ¬cp=m

i is valid in Mc.

• For the axiom A5 in CM, we assume Mc, sc |= Bir ∧
∧

P∈ant(r̄)
BiP ∧ cp=m

i ∧

¬Bicons(r̄) where sc (= πcn) ∈ Sc and |V c(sc, i)| ≤ nM(i). If the action is Rulei,r,β

then by axiom A5 and according to the definition of T c in Mc, there exists a state

s′c ∈ Sc such that sc T c s′c and V c(s′c, i) = V c(sc, i) \ {β } ∪ {cons(r̄)}. Then

we have Mc,s′c |= Bi cons(r̄) ∧ cpi=m. Therefore, we say that this axiom is true

in any state sc of Mc. Hence, `Mc Bir ∧
∧

P∈ant(r̄)
BiP ∧ cp=m

i ∧ ¬Bicons(r̄) →

EX(Bicons(r̄) ∧ cp=m
i) is valid in Mc.

• Let us say that sc(=πcn) is an arbitrary state in Sc, we assume Mc, sc |= cp=m
i ∧

¬Biα ∧ Bjα and |V c(sc, i)| ≤ nM(i). If the action is Copyi,α,β then by axiom A6

and according to the definition of T c in Mc, there exists a state s′c ∈ Sc such that sc

T c s′c and V c(s′c, i) = V c(sc, i) \ {β, cp=m
i } ∪ {α ∪ cpi=m+1} where β∈ Γ. Then

we have Mc,s′c |= Bi α ∧ cpi=m+1. Therefore, this axiom is true in any state sc of

Mc. Hence, `Mc cp=m
i ∧ ¬Biα ∧Bjα→ Biα ∧ cp=m+1

i which is valid in Mc.

• For the axiom A7 in the canonical model, let us say Mc, sc |= EX(Biα ∧ Biβ)

where α /∈ V c(sc, i), β /∈ V c(sc, i) for any i ∈ Ag, and |V c(sc, i)| ≤ nM(i). If the

action is Rulei,r,γ then by axiom A7 and according to the definition of T c in Mc,

there exists a state s′c ∈ Sc such that sc T c s′c and V c(s′c, i) = V c(sc, i) \ {γ} ∪

{α} ∪ {β} where α, β ∈ Ω. Then we have that Mc,s′c |= Bi α or Mc,s′c |= Bi β.

Therefore, this axiom is true in any state sc of Mc. Hence, `Mc EX(Biα∧Biβ)→

Biα ∨Biβ is valid in Mc.

• For the axiom A8 in CM, Let us say Mc, sc |= Biα where α ∈ V c(sc, i). By the

definition of T c in Mc, if there is a state s′c ∈ Sc such that sc T c s′c and V c(s′c, i) =

V c(sc, i). Then we have Mc,s′c |= Biα. Therefore, this axiom is true in any state sc

of Mc. Hence, `Mc Biα→ AXBiα which is valid in Mc.

CHAPTER 4. THE LOGIC LOCRS 100

• Let us suppose Mc, sc |= EX(Biα ∧ cp=m
i) where for any α ∈ Ω, EX(Biα ∧

cp=m
i) ∈ V c(sc, i), |V c(sc, i)| ≤ nM(i) and for all i ∈ Ag. By axiom A9 and

according to the definition of T c in Mc, there exists a state s′c ∈ Sc such that sc T c

s′c. In this case, the formula α can be added by one of the valid reasoning actions.

Then V c(s′c, i) = V c(sc, i)∪ {α} ∪ByRulei(α,m)∪ByCopyi(α,m). Therefore,

we say that this axiom is true in any state sc of Mc. Hence, `Mc EX(Biα∧cp=m
i)→

α ∨ByRulei(α,m) ∨ByCopyi(α,m) is valid in Mc.

• For the axioms A11 in canonical model, agent i believes the rule r ∈ < at state

sc ∈ Sc where Bir ∈ V c(sc, i).

• For the axioms A12 in canonical model, agent i believes only on its own rule at

state sc ∈ Sc where r /∈ < and ¬Bir ∈ V c(sc, i).

• For the axiom A13 in CM, we assume Mc, sc |= ϕ where sc(=πcn) ∈ Sc, ϕ ∈

V c(sc, i). If the action is Idle then by axiom A13 and according to the definition of

T c in Mc, there exists a state s′c ∈ Sc such that sc T c s′c and V c(s′c, i) = V c(sc, i).

Then we have Mc,s′c |= EXϕ. Therefore, we say that this axiom is true in any state

sc of Mc. Hence, `Mc ϕ→ EXϕ is valid in Mc.

• We show the validity of axiom A14 in Mc for any tuple of actions 〈act1, act2, . . . , actnAg〉,

let us say sc ∈ Sc, acti ∈ T ci (s) is applicable at sc, for all i ∈ Ag, then ∃s′c ∈ Sc

such that V c(s′c, i) is the resultant state of V c(sc, i).

4.8.4 Completeness Proofs in the Canonical Model Mc

Theorem 4.3. A logic LOCRS is complete with respect to M(nM , nC) if for any formula

ϕ ∈ Ω and any set of formulas Ω ∈ L, if Ω |=M ϕ then Ω `M ϕ.

Proof. We first see if Ω is L-inconsistent then its outcome becomes trivial. We consider

the case when Ω is L-consistent. Then we expand Ω to a LMCS Ω+ using Lindenbaum

lemma, as Ω+ is maximal in L and L-consistent. We construct a canonical model Mc =

CHAPTER 4. THE LOGIC LOCRS 101

(Sc, T c, V c) and using truth lemma, it follows that Mc,Ω+ |=M Ω. It shows that canonical

model Mc is satisfied iff the model M is satisfied.

According to the lemma 4.6, we say a formula ϕ is satisfiable in the model M(nM , nC)

is also satisfiable in the canonical model, which shows the satisfiability of any consistent

set of formulas in CM.

• Let us say α is a formula of the form Biα where α ∈ Ω for all i ∈ Ag. If α ∈

DM(i) and β /∈ DM(i), then Biα is one of the formulas in V c(sc, i). Therefore,∧
α∈DM (i)

Biα ∈ V c(sc, i). Hence, `Mc

∧
α∈DM (i)

Biα→ ¬Biβ

• We assume cp=m
i is a primitive formula where i ∈ Ag and m ∈ {0, . . . , nC(i)}.

If cp=m
i ∈ V c(sc, i) then cp=m

i is one of the formulas in Γci , as Γci ⊆ V c(sc, i).

So according to propositional tautologies, we say that `Mc Γci → cp=m
i . On the

contrary, we say if cp=m
i /∈ V c(sc, i) then cp=n

i is one of the formulas in Γci for

some m 6= n. Therefore, by axiom A4 and propositional tautologies, we have

`Mc Γci → ¬cp=m
i .

• For the axiom A5 in CM, let us consider the case when acti is Rulei,r,β ∈ T ci (s) for

some r ∈ <. By axiom A5 and the truth lemma, we say that the rule Rulei,r,β is

applicable at sc,Bir∧
∧

P∈ant(r̄)
BiP∧cp=m

i ⊆ V c(sc, i) whereasBicons(r̄)∧cp=m
i /∈

V c(sc, i) and i ∈ Ag. So, by the existence lemma which guarantees a successor state

s′c such that sc T c s′c and then Bicons(r̄) ∧ cp=m
i ∈ V c(s′c, i). So by lemma 4.5,

V c(s′c, i) = V c(sc, i)\β ∪ {cons(r̄)}.

• Let us consider cp=m
i ∧ ¬Biα ∧ Bjα → Biα ∧ cp=m+1

i where acti is Copyi,α,β ∈

T ci (s) for some α ∈ Ω. By axiom A6 and the truth lemma, we say that the rule

Copyi,α,β is applicable at sc, α /∈ V (sc, i) while α ∈ V (sc, j), i 6= j and i, j ∈ Ag.

So, the existence lemma guarantees a successor state s′c such that α ∧ cp=m+1
i ∈

V c(s′c, i). Therefore by lemma 4.5, V c(s′c, i) = V c(sc, i)\{β} ∪ {α} ∪ {cp=m+1
i }.

CHAPTER 4. THE LOGIC LOCRS 102

• Now consider the case of axiom A7 and by the truth lemma, we say that EX(Biα∧

Biβ) ∈ V c(sc, i). Since the rule Rulei,r,γ is applicable at sc and the existence

lemma guarantees a successor state s′c such that sc T c s′c. Then V c(s′c, i) =

V c(sc, i)\γ ∪ {α} ∪ {β}.

• Let us suppose sc T c s′c for all sc, s′c ∈ Sc in Mc. Then, by the definition of T c, we

say if {Biα|AXBiα ∈ V c(sc, i)} ⊆ V c(s′c, i) then V c(s′c, i) = V c(sc, i) for any

i ∈ Ag.

• We assume sc T c s′c for all sc, s′c ∈ Sc in Mc. By the axiom A9 and the truth

lemma, we say either one of the valid reasoning action is applicable at V c(sc, i).

Let us consider the case when the action Rulei,r,β is applicable at sc, ant(r̄) ⊆

V c(sc, i) whereas cons(r̄) /∈ V c(sc, i) and i ∈ Ag. And if the action Copyi,α,β is

applicable at sc, α /∈ V (sc, i) while α ∈ V (sc, j). Then, by the existence lemma

which guarantees the successor state s′c. Therefore, either α ∧ cp=m
i ∈ V c(s′c, i) or

α ∧ cp=m+1
i ∈ V c(s′c, i). Therefore by lemma 4.5, V c(s′c, i) = V c(sc, i)\β ∪ {α}.

For the action Idle, V c(s′c, i) = V c(sc, i).

• For axiom A13, we assume sc T c s′c for all sc, s′c ∈ Sc in Mc. Then, by the

definition of T c, we say if {ϕ|EXϕ ∈ V c(sc, i)} ⊆ V c(s′c, i) then V c(s′c, i) =

V c(sc, i) for any i ∈ Ag.

• For axiom A14, we say that for any tuple of actions 〈act1, act2, . . . , actnAg〉, if the

action acti ∈ T ci (s) is applicable at V c(sc, i) ∈ Sc and ∃s′c ∈ Sc such that sc T c s′c

then V c(s′c, i) is the resultant state of V c(sc, i) after performing acti at sc by agent

i, and for all i ∈ Ag.

4.9 Encoding and Verification of LOCRS Model

In [Rakib et al., 2014], we have shown how to encode and verify some system properties

using Maude LTL model checker. We present and discuss Maude encoding and verifica-

CHAPTER 4. THE LOGIC LOCRS 103

tion in Chapter 6. We chose the Maude LTL model checker because it can model check

systems whose states involve arbitrary algebraic data types. The only assumption is that

the set of states reachable from a given initial state is finite. Rule variables can be rep-

resented directly in the Maude encoding, without having to generate all ground instances

resulting from possible variable substitutions.

4.10 Conclusion

In this chapter, we have presented a formal logical framework, which is an extension

of the frameworks developed by [Alechina et al., 2006, Alechina et al., 2009a, Alechina

et al., 2009c] for modelling and verifying context-aware multi-agent systems. Where

agents reason using ontology-driven first order Horn-clause rules. We considered space

requirement for reasoning in addition to the time and communication resources. We ex-

tend CTL∗ with belief and communication modalities, and the resulting logic LOCRS

allows us to describe a set of rule-based reasoning agents with bound on time, memory

and communication. The key idea underlying the logical approach LOCRS of context-

aware systems is to define a formal logic that axiomatizes the set of transition systems,

and it is then used to state various qualitative and quantitative properties of the systems.

For example, a qualitative property could be “Can an agent derives the context ϕ eventu-

ally”, and quantitative properties could be “an agent will always derive the context ϕ in n

time steps while exchanging fewer than m messages” or “every request of an agent i will

be responded by agent j in n time steps”, among others.

In the next chapter, we would like to present a framework that will allow us to design

context-aware agents considering non-monotonic reasoning. The logic developed in this

chapter is based on monotonic reasoning where beliefs of an agent cannot be revised based

on some contradictory evidence. We extend this logic considering defeasible reasoning

which is a simple rule-based technique used to reason with incomplete and inconsistent

information.

Chapter 5

The Logic LDROCS

5.1 Chapter Objectives

• To develop a non-monotonic reasoning based logical frameworkLDROCS for resource-

bounded context-aware rule-based agents.

• To prove the correctness of axiomatizations such as soundness and completeness.

• To express resource-bounded properties including non-conflicting contextual prop-

erties to be verified for the desired system.

• To illustrate the use of LDROCS framework using a simple health care case study.

5.2 Motivation for the Logic LDROCS

In this chapter, we introduce the logic LDROCS which is an extended version of the logic

LOCRS presented in the previous chapter. The logic LOCRS is based on monotonic in-

ference where agent’s belief cannot be revised based on some contrary evidence. The

logic LDROCS is based on non-monotonic reasoning formalism, which handles inconsis-

tent context information using non-monotonic reasoning. In the logic LDROCS , we choose

defeasible reasoning which is simple and efficient rule-based reasoning technique to re-

104

CHAPTER 5. THE LOGIC LDROCS 105

solve conflicting context in the memory of non-monotonic reasoning based context-aware

agents. Using defeasible reasoning, we develop the rules selection strategy to prioritize

rules in order to suitably model the system. In this formalism, the set of actions pre-

formed by non-monotonic reasoning agents is based on rules where non-monotonicity

is carefully monitored for each action. In a similar fashion, axiomatization of the logic

LDROCS which include the set of actions triggered by the set of rules might have dif-

ferent interpretation as compared to the logic discussed in the previous chapter due to

defeasible rules. To model the ontology-driven non-monotonic context-aware multi-agent

system, we construct a simple health care domain in the ontology. We use OWL 2 RL

ontologies and Semantic Web Rule Language (SWRL) for context-modelling and rules

that enables the construction of a formal system. Using the case study, we verified the

number of interesting resource-bounded as well as conflicting contextual properties of the

system. We extend the temporal logic CTL∗ with belief and communication modalities,

and the resulting logic LDROCS allows us to describe a set of rule-based non-monotonic

context-aware agents with bounds on computational (time and space) and communication

resources. We provide an axiomatization of the logic and prove it is sound and complete.

5.3 Preliminaries

5.3.1 Non-monotonic Rule-based System

The work presented in Chapter 4 is about resource-bounded context-aware rule-based

reasoning, where agents are monotonic reasoners. However, non-monotonic reasoning is

more practical and plays vital role in many areas of Artificial Intelligence. In practice,

everyday tasks are based on non-monotonic reasoning. There are many non-monotonic

reasoning techniques exist in rule-based systems [Antoniou, 2002]. We discuss defeasible

reasoning technique in this chapter. We have already discussed monotonic as well as non-

monotonic reasoning systems in Chapter 3. Now we briefly present a simple example

of an online shopping scenario illustrating the comparison between monotonic and non-

CHAPTER 5. THE LOGIC LDROCS 106

monotonic reasoning [Antoniou, 2002].

Monotonic Reasoning : Once we prove something is true, it is true forever. For example,

an online shopping vendor gives a special discount to those customers who have a birthday

today. The rules are:

• R1: If a customer has a birthday, then a special discount is given.

• R2: If the customer does not have a birthday, then a special discount is not given.

But what happens if a customer has a birthday today but he/she refuses to disclose it.

Non-monotonic Reasoning : Once we prove something is true, it can be negated based

on contrary evidence. The important point is to add new information based on contrary

evidence.

• R1: If a customer has a birthday, then a special discount is given.

• R2′: If the birthday is not known of a customer, then a special discount is not given.

This solves the problem, but the premise of rule R2′ is not within the expressive power of

predicate logic. Due to that reason, there is a need for a new kind of rule system to resolve

inconsistencies which is discussed in the following section.

5.3.2 Defeasible Reasoning

As we have discussed earlier in Chapter 3, defeasible reasoning has been considered as

one of the most successful sub-areas in non-monotonic reasoning to deal with inconsis-

tent and incomplete information due to low computational complexity and its focus on

implementability [Antoniou, 2002]. It is a simple rule-based reasoning technique that has

been used to reason with incomplete and inconsistent information [Antoniou et al., 2001].

A defeasible theory consists of basic components known as knowledge base [Lam, 2012].

CHAPTER 5. THE LOGIC LDROCS 107

A defeasible logic theory consists of a collection of rules that reason over a set of facts

to reach a set of defeasible conclusions. It also supports priorities among rules to resolve

conflicts. More formally, a defeasible theory D is a triple (<,F ,�) where < is a finite

set of rules, F is a finite set of facts, and � is a superiority relation on <. The superiority

relation � is often defined on rules with complementary heads and its transitive closure

is irreflexive, i.e., the relation � is acyclic. Rules are defined over literals, where a literal

is either a first-order atomic formula P or its negation ¬P . For example, given a literal

l, the complement ∼l of l is defined to be P if l is of the form ¬P , and ¬P if l is of

the form P . In the rules, we assume variables are preceded by a question mark (?) and

constants are preceded by a single quote (‘). In D there are three kinds of rules those are

often represented using different arrows.

Strict rules: If premises of the rule are true then so is the conclusion. An example of

a strict rule can be “A person who has a patient identification number is a patient" which

can be written as r1: Person(?p), PatientID(?pid), hasPatientID(?p, ?pid)→ Patient(?p).

Defeasible rules can be defeated by contrary evidence. An example rule can be r2:

Patient(?p), hasFever(?p, ’High) ⇒ hasSituation(?p, ’Emergency). This rule states that

if the patient has a high fever then there are provable reasons to declare an emergency

situation for him, unless there is other evidence that provides reasons to believe the con-

trary. For example, a defeasible rule r3: Patient(?p), hasFever(?p, ’High), hasConscious-

ness(?p, ’Yes) ⇒ ∼ hasSituation(?p, ’Emergency). We can observe that the defeasible

rule r3 is more specific (we assume that r3 is superior to r2 i.e., r3 � r2) and it could

override the rule r2. That is a defeasible rule is used to represent tentative information

that may be used if nothing could be placed against it.

Defeater rules don’t support inferences directly, however, they can be used to block

the derivation of inconsistent conclusions. Their only use is to prevent conclusions. For

example, r4: Patient(?p), hasFever(?p, ’High), hasDBCategory(?p, ’EstablishedDiabetes

 hasSituation(?p, ’Emergency).

As usual a rule can have multiple (ground) instances. For example, Person(’Mary), Pa-

CHAPTER 5. THE LOGIC LDROCS 108

tientID(’P001), hasPatientID(’Mary, ’P001)→ Patient(’Mary) could be one possible in-

stance of the rule r1. In the above rules, suppose the superiority relation� among the rules

are defined as follows r1� r4, r4� r3, r3� r2 and the current set of facts (contexts) are

Person(’Mary), PatientID(’P001), hasPatientID(’Mary, ’P001), hasFever(’Mary, ’High),

hasConsciousness(’Mary, ’Yes) then by matching and firing those rules a defeasible con-

clusion ∼ hasSituation(’Mary, ’Emergency) can be inferred.

5.3.3 Semantic Context Retrieval for LDROCS

Figure 5.1: Semantic Context Retrieval for LDROCS

Defeasible logic is an expressive formal language suitable for integrating defeasible rea-

soning with description logic based ontology because both share a focus on efficiency.

The main reason behind the integration is its enhanced reasoning capability and express-

ability of the ontology based system. The detailed discussion has given in Chapter 3.

Figure 5.1 shows the logic flow for the LDROCS which has synergistic effect in order to

solve complex real life problem domains. The logic LDROCS uses defeasible reasoning

rule system which are modelled using description logic based ontology. The knowledge

CHAPTER 5. THE LOGIC LDROCS 109

base construction mechanism is discussed in Chapter 6, which describes the step-by-step

process of how a knowledge-base is effectively constructed from an ontological domain

in terms of a set of Horn-clause rules.

5.3.4 Semantic Context Modelling

Description logic and ontology have been discussed in Chapter 3. We also provided a

comprehensive note on context modelling in the previous chapter. For modelling the sys-

tem, we have considered a smart space health care monitoring system where OWL con-

cepts and roles capture the relevant information from the domain and represent the desired

scenario using a set of logical statements [Esposito et al., 2008]. We model context-aware

systems using OWL 2 RL ontologies (and SWRL) and extract rules from an ontology

following a similar approach proposed by [Gómez et al., 2007] to design our rule-based

non-monotonic context-aware agents. We developed a translator that takes as input an

OWL 2 RL ontology in the OWL/XML format (an output file of the Protégé [Protégé,

2011] editor) and translates it to a set of plain text rules. We use the OWL API [Horridge

and Bechhofer, 2009] to parse the ontology and extract the set of axioms and facts. The

design of the OWL API is directly based on the OWL 2 Structural Specification and it

treats an ontology as a set of axioms and facts which are read using the visitor design pat-

tern. We also extract the set of SWRL rules using the OWL API which are already in the

Horn-clause rule format. First, atoms with corresponding arguments associated with the

head and the body of a rule are identified and we then generate a plain text Horn-clause

rule for each SWRL rule using these atoms. Abox axioms are already in Horn-clause

formats as well and they are simply rules with empty bodies.

CHAPTER 5. THE LOGIC LDROCS 110

5.4 Context-aware Systems as Multi-agent Defeasible Rea-

soning Systems

Based on the literature discussed in the previous sections, we incorporate defeasible rea-

soning on top of the ontology. We model a context-aware system as a multi-agent defeasi-

ble reasoning system which consists of nAg(≥ 1) individual agents Ag = {1, 2,, nAg}.

Each agent i ∈ Ag is represented by a triple (<,F ,�), where F is a finite set of facts

contained in the working memory, < = (<s,<d) is a finite set of strict and defeasible

rules representing the knowledge base, and � is a superiority relation on <. Rules are of

the form P1, P2, . . . , Pn ↪→ P (derived from OWL 2 RL and SWRL with possible user

annotation), and a working memory contains ground atomic facts (contexts) taken from

ABox representing the initial state of the system.

Without loss of generality, in the rest of this logic we assume ↪→ as either→ or⇒. In a

rule instance, the antecedents P1, P2, . . . , Pn and the consequent P are context informa-

tion. The antecedents of a rule instance form a complex context which is a conjunction of

n contexts. We say that two contexts are contradictory iff they are complementary with

respect to ∼, for example, hasSituation(’Mary, ’Emergency) and

∼hasSituation(’Mary,’Emergency) are contradictory contexts. The important point to note

that in our model, the set of facts transformed from the ABox needs to be consistent, i.e.,

if it contains pair of contradictory contexts then they can be detected and removed. We

assume that the set <s of strict rules is non-contradictory which is used to represent non-

defeasible contextual information, however, the set <d of defeasible rules is contradictory

and hence the set < which is <s ∪ <d may also be contradictory.

Conflicting contexts may be resolved using the superiority relation � among rules. An

agent i can fire the instance of strict rules to infer new non-contradictory contexts, while

a defeasible context P can be inferred if there is a rule instance whose consequence is P

and there does not exist a stronger rule instance whose consequence is ∼ P . Since the

CHAPTER 5. THE LOGIC LDROCS 111

translated rules from the ontology are not prioritized. We assume that the rule priorities

are fixed by the system designers depending on the intended applications. We further

assume that the rule priorities are static. So, the rule firing constraint does not change

during the reasoning process. In addition, there are different categories of conflicting

rules based on the system specification. Each agent in the system has a reasoning strategy

(or conflict resolution strategy) to determine the order in which rules are applied. In case if

the rules priority is same and no conflicting rule matches then the random rule is selected

to be fired. The concept of communication among agents is similar to LOCRS discussed

in Chapter 4

5.5 The Logic LDROCS

We now introduce the logic LDROCS in this section. Our approach is based on the work

of [Gómez et al., 2007] who show that a subset of DL languages can be effectively mapped

into a set of strict and defeasible rules. Intuitively the set of translated rules corresponds to

the ABox joined with TBox axioms of an OWL 2 RL ontology. In addition, as mentioned

in Chapter 3, we express more complex rule-based concepts using SWRL which allow us

to write rules using OWL concepts.

We define the internal language L of each agent in the system. Let the set of agents be

Ag = {1, 2,, nAg}, C = {C1, C2, . . . Cl} be a finite set of concepts,R = {R1, R2, . . . , Rm}

be a finite set of roles. We also define a set Q = {Ask(i, j, P), T ell(i, j, P)}, where

i, j ∈ Ag and P ∈ C ∪ R. Let <s be a finite set of strict rules and <d be a finite set of

defeasible rules. Let < = <s ∪ <d = {r1, r2, . . . , rn} be a finite set of rules of the form

P1, P2, . . . , Pt ↪→ P , where t ≥ 0, Pi, P ∈ C ∪ R ∪ Q for all i ∈ {1, 2, . . . , t},Pi 6= Pj

for all i 6= j, and ↪→ as either→ or⇒. More specifically, Pi and P are OWL atoms of

the following form: Ci(x) and Rj(y, z). Where Ci ∈ C, and x is either a variable, an

individual or a data value. Rj ∈ R, when it is an object property y, z are either variables,

individuals or data values, however, y is variable or individual and z is a data value when

CHAPTER 5. THE LOGIC LDROCS 112

Rj is a datatype property .
Rule ::= Atoms ’↪→’ Atom | ∼ Atom
Atoms ::= Atom {, Atom}∗
Atom ::= standardAtom | commmunicationAtom
standardAtom ::= description’(’i-object ’)’

| individualvaluedProperty’(’i-object ’,’ i-object ’)’
| datavaluedProperty’(’i-object ’,’ d-object ’)’
| sameIndividuals’(’i-object ’,’ i-object ’)’
| differentIndividuals’(’i-object ’,’ i-object ’)’
| dataRange’(’ d-object ’)’
| builtIn’(’ builtinId ’,’ {d-object}∗ ’)’

communicationAtom ::= ’Ask(’ i ’,’ j ’,’ standardAtom ’)’
| ’Tell(’ i ’,’ j ’,’ standardAtom ’)’

i ::= 1 | 2 | ... | nAg
j ::= 1 | 2 | ... | nAg
builtinID ::= URIreference
i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral
i-variable ::= ’I-variable(’URIreference’)’
d-variable ::= ’D-variable(’URIreference’)’

Listing 5.1: Abstract syntax of rules

The Listing 5.1 specifies the abstract syntax of rules using a BNF (Backus-Naur Form).

In this notation, the terminals are quoted, the non-terminals are not quoted, alternatives are

separated by vertical bars, and components that can occur zero or more times are enclosed

braces followed by a superscript asterisk symbol ({. . .}∗). A class atom represented by

description(i-object) in the BNF consists of an OWL 2-named class and a sin-

gle argument representing an OWL 2 individual, for example an atom Patient(p)

holds if p is an instance of the class description Patient. Likewise an individual object

property atom represented by individualvaluedProperty(i-object,i-object)

consists of an OWL 2 object property and two arguments representing OWL 2 individuals,

for example substituting an individual object property atom, we say that hasFever(‘Mary,

‘High) holds if Mary has fever as High by a property hasFever. In the same fashion,

a data property atom represented by datavaluedProperty(i-object,d-object)

consists two arguments representing OWL 2 individuals as object value and data value.

For example by sbtituting a data property atom, hasSituation(‘Mary, ‘Emergency)

holds if Mary has situation as Emergency by a property hasSituation and so on.

For convenience, we use the notation ant(r) for the set of antecedents of r and cons(r)

for the consequent of r, where r ∈ <. We fix a finite set of variables X and a finite set

CHAPTER 5. THE LOGIC LDROCS 113

of constants D and assume δ is some substitution function from the set of variables of a

rule into D. We denote by G(<) the set of all the ground instances of the rules occur-

ring in <, which is obtained using δ (more formal definition is given in Definition 5.2).

Thus G(<) is finite. Let r̄ ∈ G(<) be one of the possible instances of a rule r ∈ <.

C(a), R(a, b), Ask(i, j, C(a)), Ask(i, j, R(a, b)), Tell(i, j, C(a)), and Tell(i, j, R(a, b))

are ground atoms, for all C ∈ C, R ∈ R. The internal language L includes all the ground

atoms and rules. Let us denote the set of all formulas (rules and ground atoms) by Ω

which is finite. In the language L we have belief operator Bi for all i ∈ Ag. The meaning

of belief operator reflects the purpose for which it is designed, for example; we say that

Biα is true if the formula α is in agent i’s memory.

5.5.1 Communication Bound

We assume that there is a bound on communication for each agent i which limits agent i

to at most nC(i) ∈ Z∗ messages. Each agent has a communication counter, cp=n
i , which

starts at 0 (cp=0
i) and is not allowed to exceed the value nC(i).

For the communication bound, we define the following set:

CPi = {cp=n
i |n = {0, . . . , nC(i)}},

CP =
⋃
i∈Ag

CPi.

5.5.2 Memory Bound and Inconsistent Memory Manipulation

To solve a particular problem, the space (memory cells) available for any given proof

is bounded by the size of agent’s memory. We divide agent’s memory into two parts as

rule memory (knowledge base) and working memory. Rule memory holds set of rules,

whereas the facts are stored in the agent’s working memory. Working memory of an

agent i is divided into static memory (SM(i)) and dynamic memory (DM(i)). The DM(i)

of each agent i ∈ Ag is bounded in size by nM(i) ∈ Z∗, where one unit of memory

corresponds to the ability to store an arbitrary context. The static part contains initial

CHAPTER 5. THE LOGIC LDROCS 114

information to start up the systems, e.g., initial working memory facts, thus its size is

determined by the number of initial facts. The dynamic part contains newly derived facts

as the system moves. The size of dynamic memory is determined by the maximal number

of formulas that must be simultaneously held in the memory. Only facts stored in DM(i)

may get overwritten, and this happens if an agent’s memory is full or a contradictory

context arrives in the memory (even if the memory is not full). Whenever newly derived

context arrives in the memory, it is compared with the existing contexts to see if any

conflict arises. If so then the corresponding contradictory context will be replaced with

the newly derived context, otherwise an arbitrary context will be removed if the memory is

full. Note that unless otherwise stated, in the rest of this chapter we assume that memory

means DM(i).

5.5.3 Syntax

The syntax ofLDROCS includes the temporal operators ofCTL∗ and is defined inductively

as follows:

• > (tautology) and start (a propositional variable which is only true at the initial

moment of time) are well-formed formulas (wffs) of LDROCS ;

• cp=n
i (which states that the value of agent i’s communication counter is n) is a wff

of LDROCS for all n ∈ {0, . . . , nC(i)} and i ∈ Ag;

• BiC(a) (agent i believesC(a)),BiR(a, b) (agent i believesR(a, b)), andBir (agent

i believes r) are wffs of LDROCS for any C ∈ C, R ∈ R, r ∈ < and i ∈ Ag;

• BkAsk(i, j, C(a)), BkAsk(i, j, R(a, b)), BkTell(i, j, C(a)), and BkTell(i, j, R(

a, b)) are wffs of LDROCS for any C ∈ C, R ∈ R, i, j ∈ Ag, k ∈ {i, j}, and i 6= j;

• If ϕ and ψ are wffs of LDROCS , then so are ¬ϕ and ϕ ∧ ψ;

• If ϕ and ψ are wffs of LDROCS , then so are Xϕ (in the next state ϕ), ϕUψ (ϕ holds

until ψ), Aϕ (on all paths ϕ).

CHAPTER 5. THE LOGIC LDROCS 115

Other classical abbreviations for ⊥, ∨,→ and↔, and temporal operations: Fϕ ≡ >Uϕ

(at some point in the future ϕ) and Gϕ ≡ ¬F¬ϕ (at all points in the future ϕ), and

Eϕ ≡ ¬A¬ϕ (on some path ϕ) are defined as usual.

We define priority relation between rules as follows.

Definition 5.1 (Rule priority). Let pri : < → N≥0 be a function that assigns each rule

a non-negative integer. We define a partial order � on < such that for any two rules

r, r′ ∈ < we say that r � r′ (rule r has priority over r′) iff pri(r) ≥ pri(r′), where ≥ is

the standard greater-than-or-equal relation on the set of non-negative integers N≥0.

5.5.4 Semantics

The semantics of LDROCS is defined by LDROCS transition systems which essentially

corresponds to the ω-tree structure. The state of each agent corresponds to contents of the

working memory and the record of communication counter. Let (S, T) be a pair where S

is a set and T is a binary relation on S that is total, i.e., ∀s ∈ S · ∃s′ ∈ S · sTs′. (S, T) is

a ω-tree frame iff the following conditions are satisfied.

1. S is a non-empty set and T is total;

2. Let < be the strict transitive closure of T , namely {(s, s′) ∈ S × S | ∃n ≥ 0, s0 =

s1, . . . , sn = s′ ∈ S such that siTsi+1∀i = 0, . . . , n− 1};

3. For all s ∈ S, the past {s′ ∈ S | s′ < s} is linearly ordered by <;

4. There is a smallest element called the root, which is denoted by s0;

5. Each maximal linearly <- ordered subset of S is order-isomorphic to the natural

numbers.

A branch of (S, T) is an ω-sequence (s0, s1, . . .) such that s0 is the root and siTsi+1

for all i ≥ 0. We denote B(S, T) to be the set of all branches of (S, T). For a branch

CHAPTER 5. THE LOGIC LDROCS 116

π ∈ B(S, T), πi denotes the element si of π and π≤i is the prefix (s0, s1, . . . , si) of π. A

LDROCS transition system M is defined as M = (S, T, V) where

• (S, T) is a ω-tree frame

• V : S × Ag → ℘(Ω ∪ CP); we define the belief part of the assignment V B(s, i) =

V (s, i) \ CP and the communication counter part V C(s, i) = V (s, i) ∩ CP . We

further define V M(s, i) = {α|α ∈ V B(s, i) ∩ DM(i)} which represents the set of

facts stored in the dynamic memory of agent i at state s. V satisfies the following

conditions:

1. |V C(s, i)| = 1 for all s ∈ S and i ∈ Ag.

2. If sTs′ and cp=n
i ∈ V (s, i) and cp=m

i ∈ V (s′, i) then n ≤ m.

• we say that a rule r : P1, P2, . . . , Pn ↪→ P is applicable in a state s of an agent

i if ant(r̄) ∈ V (s, i) and cons(r̄) /∈ V (s, i). The following conditions on the

assignments V (s, i), for all i ∈ Ag, and transition relation T hold in all models:

1. for all i ∈ Ag, s, s′ ∈ S, and r ∈ <, r ∈ V (s, i) iff r ∈ V (s′, i). This describes

that agent’s program does not change.

2. for all s, s′ ∈ S, sTs′ holds iff for all i ∈ Ag, V (s′, i) = V (s, i) \ {β} ∪

{cons(r̄)} ∪ {Ask(j, i, C(a))} ∪ {Tell(j, i, C(a)} ∪ {Ask(j, i, R(a, b))} ∪

{Tell(j, i, R(a, b)}. This describes that each agent i fires a single applicable

rule instance of a rule r, or updates its state by interacting with other agents,

otherwise its state does not change. Where β may be an arbitrary context or

a contradictory context which can be replaced depending on the status of the

memory and the newly derived or communicated context.

The truth of a LDROCS formula at a point n of a path π ∈ B(S, T) is defined inductively

as follows:

• M, π, n |= >,

CHAPTER 5. THE LOGIC LDROCS 117

• M, π, n |= start iff n = 0,

• M, π, n |= Biα iff α ∈ V (πn, i),

• M, π, n |= cp=m
i iff cp=m

i ∈ V (πn, i),

• M, π, n |= ¬ϕ iff M, π, n 6|= ϕ,

• M, π, n |= ϕ ∧ ψ iff M, π, n |= ϕ and M, π, n |= ψ,

• M, π, n |= Xϕ iff M, π, n+ 1 |= ϕ,

• M, π, n |= ϕUψ iff ∃m ≥ n such that ∀k ∈ [n,m) M, π, k |= ϕ and M, π,m |= ψ,

• M, π, n |= Aϕ iff ∀π′ ∈ B(S, T) such that π′≤n = π≤n, M, π′, n |= ϕ.

We now describe conditions on the models. The transition relation T corresponds to

the agent’s executing actions 〈act1, act2, . . . , actnAg
〉 where acti is a possible action of an

agent i in a given state s. The set of actions that each agent i can perform are:

• Rulei,r,β: Agent i firing a selected matching rule instance r̄ of r and adding cons(r̄)

to its working memory and removing β,

• Copyi,α,β: Agent i copying α from other agent’s memory and removing β, where α

is of the form Ask(j, i, P) or Tell(j, i, P),

• Idlei: agent i does nothing but moves to the next state.

Intuitively, β may be an arbitrary context which gets overwritten if it is in the agent’s

dynamic memory DM(i) or it is a specific context that contradicts with the newly derived

context. If agent’s memory is full |V M(s, i)| = nM(i) then we require that β has to be

in V M(s, i). When the counter value reaches to nC(i), i cannot perform copy action any

more. Furthermore, not all actions are possible in a given state. For example, there may

not be any matching rule instance. Note also that only selected matching rule instances

can be fired. That is one rule instance may be selected from the conflict set that has

CHAPTER 5. THE LOGIC LDROCS 118

the highest priority. If there are multiple rule instances with the same priority, the rule

instance to be executed is selected non-deterministically. More formally, we define rule

selection strategy as follows:

Definition 5.2 (Rule selection strategy). For every state s, agent i, and r ∈ V (s, i), we

say that the rule r matches at state s iff ant(r̄) ⊆ V (s, i) and cons(r̄) /∈ V (s, i). Let

δ : S × Ag → G(<) be a function that generates matching rule instances of the agent i

at state s and <mat ⊆ G(<) denotes the set of all matching rule instances of the agent

i at state s. A set <sel is said to be selected rule instances if (i) <sel ⊆ <mat; and (ii)

∀r̄ ∈ <sel @r̄′ ∈ <sel such that pri(r′) � pri(r).

Now let us denote the set of all possible actions by agent i in a given state s by Ti(s) and

its definition is given below:

Definition 5.3 (Available actions). For every state s and agent i,

1. Rulei,r,β ∈ Ti(s) iff r̄ ∈ <sel, β is a contradictory context (with respect to cons(r̄)

i.e., if β is α then cons(r̄) is∼ α and vice versa) or β ∈ Ω or if |V M(s, i)| = nM(i)

then β ∈ V M(s, i);

2. Copyi,α,β ∈ Ti(s) iff there exists j 6= i such that α ∈ V (s, j), α /∈ V (s, i), cp=m
i ∈

V (s, i) for some m < nC(i), α is of the form Ask(j, i, P) or Tell(j, i, P), and β as

before;

3. Idlei is always in Ti(s).

Definition 5.4 (Effect of actions). For each i ∈ Ag, the result of performing an action acti

in a state s ∈ S is defined if acti ∈ Ti(s) and has the following effect on the assignment

of formulas to i in the successor state s′ ∈ S:

1. if acti is Rulei,r,β: V (s′, i) = V (s, i) \ {β} ∪ {cons(r̄)};

2. if acti is Copyi,α,β: cp=m
i ∈ V (s, i) for some m ≤ nC(i): V (s′, i) = V (s, i) \

{β, cp=m
i } ∪ {α, cp=m+1

i };

CHAPTER 5. THE LOGIC LDROCS 119

3. if acti is Idlei: V (s′, i) = V (s, i).

Now, the definition of the set of models corresponding to a system of rule-based reasoners

is given below:

Definition 5.5. M(nM , nC) is the set of models (S, T, V) which satisfies the following

conditions:

1. cp=0
i ∈ V (s0, i) where s0 ∈ S is the root of (S, T), ∀i ∈ Ag;

2. ∀s ∈ S and a tuple of actions 〈act1, act2, . . . , actnAg
〉, if acti ∈ Ti(s),∀i ∈ Ag,

then ∃s′ ∈ S such that sTs′ and s′ satisfies the effects of acti, ∀i ∈ Ag;

3. ∀s, s′ ∈ S, sTs′ iff for some tuple of actions 〈act1, act2, . . . , actnAg
〉, acti ∈ Ti(s)

and the assignment in s′ satisfies the effects of acti, ∀i ∈ Ag;

4. The bound on each agent’s memory is set by the following constraint on the map-

ping V : |V M(s, i)| ≤ nM(i), and cp=n
i ≤ nC(i) ∀s ∈ S,i ∈ Ag.

Note that the bound nC(i) on each agent i’s communication ability (no branch contains

more than nC(i) Copy actions by agent i) follows from the fact that Copyi is only enabled

if i has performed fewer than nC(i) copy actions in the past. Below are some abbreviations

which will be used in the axiomatization:

• ByRulei(P,m) = ¬BiP ∧ cp=m
i ∧

∨
r̄∈<sel∧cons(r̄))=P (Bir ∧

∧
Q∈ant(r̄) BiQ). This

formula describes a state s where it may make a Rule transition and believe context

P in the next state,m is the value of i’s communication counter, P andQ are ground

atomic formulas.

• ByCopyi(α,m) = ¬Biα ∧ Bjα ∧ cp=m−1
i , where α is of the form Ask(j, i, P) or

Tell(j, i, P), i, j ∈ Ag and i 6= j.

CHAPTER 5. THE LOGIC LDROCS 120

5.5.5 Axiomatization

Now we introduce the axiomatization system.

A1 All axioms and inference rules of CTL∗ [Reynolds, 2001].

A2
∧

α∈DM (i)

Biα → ¬Biβ for all DM(i) ⊆ Ω such that |DM(i)| = nM(i) and β /∈

DM(i).

This axiom describes that, in a given state, each agent can store maximally at most

nM(i) formulas in its memory,

A3
∨

n=0,...,nC(i)

cp=n
i , n is value of the communication counter of an agent i correspond-

ing to its Copy actions.

A4 cp=n
i → ¬cp=m

i for any m 6= n, which states that at any given time the value of the

copy counter of agent i is unique.

A5 Biα→ ¬Bi ∼ α for any α ∈ SM(i) ∪DM(i) ⊆ Ω,

This axiom states that agent does not believe contradictory contexts,

A6 Bir∧
∧

r̄∈<sel∧P∈ant(r̄)
BiP ∧cp=n

i ∧¬Bicons(r̄)→ EX(Bicons(r̄)∧cp=n
i), i ∈ Ag.

This axiom describes that if a rule matches and is selected for execution, its conse-

quent belongs to some successor state.

A7 cp=m
i ∧¬Biα∧Bjα→ EX(Biα∧ cp=m+1

i) where α is of the form Ask(j, i, P) or

Tell(j, i, P), i, j ∈ Ag, j 6= i, m < nC(i).

This axiom describes transitions made by Copy with communication counter in-

creased.

A8 EX(Biα∧Biβ)→ Biα∨Biβ, where α and β are not of the form Ask(j, i, P) and

Tell(j, i, P).

This axiom says that at most one new belief is added in the next state.

CHAPTER 5. THE LOGIC LDROCS 121

A9 Biα→ AXBiα for any α ∈ SM(i) ∪ <.

This axiom states that an agent i ∈ Ag always believes formulas residing in its static

memory and its rules.

A10 EX(Biα ∧ cp=m
i)→ Biα ∨ByRulei(α,m) ∨ByCopyi(α,m) for any α ∈ Ω.

This axiom says that a new belief can only be added by one of the valid reasoning

actions.

A11(a) start→ cp=0
i for all i ∈ Ag.

At the start state, the agent has not performed any Copy actions.

A11(b) ¬EX start.

start holds only at the root of the tree.

A12 Bir where r ∈ < and i ∈ Ag.

This axiom tells agent i believes its rules.

A13 ¬Bir where r /∈ < and i ∈ Ag.

This axiom tells agent i only believes its rules.

A14 ϕ→ EXϕ, where ϕ does not contain start.

This axiom describes an Idle transition by all the agents.

A15
∧
i∈Ag

EX(
∧
α∈Γi

Biα ∧ cp=mi
i)→ EX

∧
i∈Ag

(
∧
α∈Γi

Biα ∧ cp=mi
i) for any Γi ⊆ Ω.

This axiom describes that if each agent i can separately reach a state where it be-

lieves formulas in Γi, then all agents together can reach a state where for each i,

agent i believes formulas in Γi.

Let us now define the logic obtained from the above axiomatisation system.

Definition 5.6. L(nM , nC) is the logic defined by the axiomatisation.

CHAPTER 5. THE LOGIC LDROCS 122

5.6 Correctness Proof

Theorem 5.1. L(nM , nC) is sound and complete with respect to M(nM , nC).

5.6.1 Soundness Proof

As the logic LDROCS is an extension of the LOCRS , it has similar set of correctness proofs

as given in Chapter 4. But LDROCS has some additional axioms due to non-monotonic

reasoning system. In this section we provide the soundness proofs of those axioms only

while other proofs are briefly described. The proofs for axioms and rules included in A1

are given in [Reynolds, 2001]. Axiom A2 assures that at a state, each agent can store

maximally at most nM(i) formulas in its memory. Axioms A3 and A4 force the presence

of a unique counter for each agent to record the number of copies it has performed so

far. In particular, A3 makes sure that at least a counter is available for any agent and A4

guaranties that only one of them is present. In the following, we provide the proof for A5,

A6 and A7.

Axiom A5 assures that an agent does not believe on contradictory contexts. Let M =

(S, T, V) ∈ M(nM , nC), π ∈ B(S, T) and n ≥ 0. We assume that if M, π, n |= Biα

where α ∈ V (πn, i), V (πn, i) = SM(i) ∪DM(i), and |V M(s, i)| ≤ nM(i). Then ∼ α can

not reside at the current state of agent i because the applicable actions of 1 (definition 5.3)

ensure that either α or ∼ α has to be present in the memory. That is, ∼ α /∈ V (πn, i).

Therefore, M, π, n 2 ¬Bi ∼ α.

The proof for axiom A6 is given as: Let M = (S, T, V) ∈ M(nM , nC), π ∈ B(S, T)

and n ≥ 0. We assume that M, π, n |= Bir ∧
∧

r̄∈<sel∧P∈ant(r̄)
BiP ∧ cp=m

i ∧ ¬Bicons(r̄),

for some r ∈ < such that r̄ ∈ <sel, and |V M(s, i)| ≤ nM(i). Then P ∈ V (πn, i) for all

P ∈ ant(r̄), and cons(r̄) /∈ V (πn, i). This means that the action performed by agent i

is Rulei,r,β . According to the definition of M(nM , nC), ∃s′ ∈ S such that πn T s′ and

V (s′, i) = V (πn, i)\{β}∪{cons(r̄)}. Let π′ be a branch inB(S, T) such that π′≤n = π≤n

CHAPTER 5. THE LOGIC LDROCS 123

and π′n+1 = s′. Then we have M, π′, n+ 1 |= Bicons(r̄) ∧ cp=m
i . Therefore, it is obvious

that M, π, n |= EX(Bicons(r̄) ∧ cp=m
i).

Axiom A7 is valid by copy action. Let M = (S, T, V) ∈ M(nM , nC), π ∈ B(S, T) and

n ≥ 0. We assume that M, π, n |= cp=m
i ∧ ¬Biα ∧ Bjα, and |V M(s, i)| ≤ nM(i). Then

cp=m
i ∈ V (πn, i), α /∈ V (πn, i), and α ∈ V (πn, j), for i, j ∈ Ag, i 6= j, and m < nC(i).

This means that the action performed by agent i is Copyi,α,β . According to the definition

of M(nM , nC), ∃s′ ∈ S · πnTs′ and V (s′, i) = V (πn, i) \ {β, cp=m
i } ∪ {α, cp=m+1

i }.

Let π′ be a branch in B(S, T) such that π′≤n = π≤n and π′n+1 = s′. Then we have

M, π′, n+1 |= Biα∧cp=m+1
i . Therefore, it is obvious that M, π, n |= EX(Biα∧cp=m+1

i).

5.6.2 Completeness Proof

In completeness, reasoning derives all true statements, which means every true formula

is provable. Completeness asserts the existence of rules that allow to deduce every conse-

quence from any set of formula in the logic. For example; Ω |= ϕ if and only if Ω ` ϕ.

(If Ω models ϕ then we can also derive ϕ from a set of formulas Ω).

Completeness can be shown by constructing a tree model for a consistent formula ϕ. This

is constructed as in the completeness proof introduced in [Reynolds, 2001]. Then we

use the axioms to show that this model is in M(nM , nC). Since the initial state of all

agents does not restrict the set of formulas they may derive in the future, for simplicity

we conjunctively add to ϕ a tautology that contains all the potentially necessary formulas

and message counters, in order to have enough sub-formulas for the construction. We

construct a model M = (S, T, V) for

ϕ′ = ϕ ∧
∧
α∈Ω

(XBiα ∨ ¬XBiα) ∧
∧

n∈{0...nC(i)},i∈Ag

(Xcp=n
i ∨ ¬Xcp=n

i)

CHAPTER 5. THE LOGIC LDROCS 124

We then prove that M is in M(nM , nC) by showing that it satisfies all properties listed

in Definition 5.5. Axioms A3 and A4 show that for any i ∈ Ag, there exists a unique

n ∈ {0 . . . nC} such that at a state s of M, cp=n
i ∈ V (s, i).

For axiom A5, we need to prove that for all s ∈ S, acti ∈ Ti(s) and i ∈ Ag, there exists

a s′ ∈ S such that s T s′ and V (s′, i) is the resultant state of V (s, i). Axiom A5 assures

that |V M(s, i)| ≤ nM(i) and the state of agent i can not store conflicting context in the

memory. Hence by axioms A5, V (s′, i) might be different from V (s, i) by overwriting

the conflicting context.

We then need to prove that ∀s ∈ S, acti ∈ Ti(s), and i ∈ Ag, ∃s′ ∈ S such that s T s′

and V (s′, i) is the result of V (s, i) after i has performed action acti. Let us consider

the case when acti is Rulei,r,β ∈ Ti(s) for some r ∈ < such that r̄ ∈ <sel. Since

Rulei,r,β is applicable at s, ant(r̄) ⊆ V (s, i), cons(r̄) /∈ V (s, i). Therefore there exists

a MCS χ such that χ ⊇ V (s, i), and
∧

r̄∈<sel∧P∈ant(r̄)
BiP ∧ cp=m

i ∧ ¬Bicons(r̄) ∈ χ,

for some m ∈ {0, . . . , nC} and |V M(s, i)| ≤ nM(i). By axiom A6 and Modus Ponens

(MP), EX(Bicons(r̄) ∧ cp=m
i) ∈ χ. Therefore, according to the construction, ∃s′ ∈ S

such that s T s′, V (s′, i) ⊆ χ′ for some χ′, and Bicons(r̄) ∧ cp=m
i ∈ χ′. Therefore

V (s′, i) = V (s, i) \ {β} ∪ {cons(r̄)}.

For the proof of axiom A7, we need to prove that ∀s ∈ S, acti ∈ Ti(s), and i ∈ Ag,

∃s′ ∈ S · sTs′ and V (s′, i) is the result of V (s, i) after i has performed action acti. Let us

consider the case when acti is Copyi,α,β ∈ Ti(s) for some r ∈ < such that r̄ ∈ <sel. Since

the ruleCopyi,α,β is applicable at s, α /∈ V (s, i) while α ∈ V (s, j). Therefore, there exists

a MCS (Maximal Consistent Set) χ such that χ ⊇ V (s, i), and cp=m
i ∧ ¬Biα ∧Bjα ∈ χ,

for some m ∈ {0, ..., nC(i)} and |V M(s, i)| ≤ nM(i). By axiom A7 and MP (Modus

Ponens),EX(Biα∧cp=m+1
i) ∈ χ. Therefore, according to construction, ∃s′ ∈ S such that

s T s′, V (s′, i) ⊆ χ′ for some χ′, and Biα ∧ cp=m+1
i ∈ χ′. Therefore, V (s′, i) = V (s, i) \

{β} ∪ {α} ∪ {cp=m+1
i }.

CHAPTER 5. THE LOGIC LDROCS 125

Now we prove that ∀s, s′ ∈ S · sTs′, ∃ a tuple of actions 〈act1, act2, . . . , actnAg
〉 and

V (s′, i) is the result of V (s, i) when agent i performs acti for all i ∈ Ag. By axioms A8

and A2, V (s′, i) is different from V (s, i) by at most one formula added and possibly a

formula is removed. If no formula is added or removed, we consider acti to be Idlei.

Let us now consider the case where a formula α is added. By axiom A10, if cp=m
i ∈

V (s, i) for some m ∈ {0, . . . , nC} then either cp=m
i or cpm+1

i ∈ V (s′, i). If cp=m
i ∈

V (s′, i) then set acti to be Rulei,r,β for some r ∈ V (s, i) such that r̄ ∈ <sel, α =

cons(r̄) /∈ V (s, i). If cp=m+1
i ∈ V (s′, i) then set acti to be Copyi,α,β . Thus, we proved the

existence of the tuple 〈act1, act2, . . . , actnAg
〉 for sTs′. Therefore, M is in M(nM , nC).

At the root s0 of (S, T), the construction of the model implies that there exists a maximally

consistent set (MCS) χ0 such that χ0 ⊇ V (s0, i) and start ∈ χ0. Therefore, by axiom

A11, it is trivial that cp=0
i ∈ V (s0, i).

For the Idlei ∈ Ti(s) actions, the proof is similar by using MP and axiom A14. Then,

using axiom A15 we can show that, for any tuple of actions 〈act1, act2, . . . , actnAg
〉,

acti ∈ Ti(s) is applicable at s ∈ S ∀i ∈ Ag, then ∃s′ ∈ S such that V (s′, i) is the

result of V (s, i) after performing acti at s by agent i, ∀i ∈ Ag.

5.7 A Simple Health-care Example

To illustrate the use of the proposed framework, let us consider a simple health-care exam-

ple system consisting of four agents. This system monitors the patient’s fever and blood

sugar level. Patient care agent receives information from Fever Detector agent and Dia-

betes Tester agent after certain intervals of time and take appropriate actions. Patient care

agent communicate Emergency monitoring agent in case of emergency situation for the

patient. We build the ontology for this example system. A fragment of the context mod-

elling ontology of the system is depicted in Fig. 5.2. Figure 5.3 shows an individualised

CHAPTER 5. THE LOGIC LDROCS 126

Figure 5.2: A fragment of Home-care Patient’s Monitoring System

Figure 5.3: Individualized Patient Ontology

CHAPTER 5. THE LOGIC LDROCS 127

Figure 5.4: Some SWRL Rules

Agent 1: Patient care
Initial facts: Person(’Mary),PatientID(’P001), hasPatientID(’Mary, ’P001), hasConsciousness(’Mary, ’Yes)
R11: Person(?p), hasPatientID(?p, ?pid), PatientID(?pid)→ Patient(?p)
R12: Tell(2,1, hasFever(?p, ’High))→ hasFever(?p, ’High)
R13: Tell(3,1, hasDBCategory(?p, ’EstablishedDiabetes))→ hasDBCategory(?p, ’EstablishedDiabetes)
R14: Patient(?p), hasFever(?p, ’High), hasConsciousness(?p, ’Yes)⇒∼ hasSituation(?p, ’Emergency)
R15: Patient(?p), hasFever(?p, ’High), hasDBCategory(?p, ’EstablishedDiabetes)
⇒ hasSituation(?p, ’Emergency)
R16: Patient(?p), hasSituation(?p, ’Emergency)→ Tell(1,4, hasSituation(?p, ’Emergency))
Rule Priority: R15 � R14
Agent 2: Fever detector
Initial facts: Person(’Mary),BodyTemperature(’102), hasBodyTemperature(’Mary,’102),
greaterThanOrEqual(’102, ’101), lessThanOrEqual (’102, ’103)
R21: Person(?p), BodyTemperature(?temp), hasBodyTemperature(?p,?temp),
greaterThanOrEqual(?temp, ’101),
lessThanOrEqual (?temp, ’103)→ hasFever(?p, ’High)
R22: hasFever(?p, ’High)→ Tell(2,1, hasFever(?p, ’High))
Agent 3: Diabetes tester
Initial facts: Person(’Mary), BloodSugarLevel(’130), hasBloodSugarLevelBeforeMeal(’Mary,’130),
greaterThan(’130,’126)
R31: Person(?p), BloodSugarLevel(?bsl), hasBloodSugarLevelBeforeMeal(?p, ?bsl),
greaterThan(?bsl,’126)→ hasDBCategory(?p, ’EstablishedDiabetes)
R32: hasDBCategory(?p, ’EstablishedDiabetes)→ Tell(3,1,hasDBCategory(?p,’EstablishedDiabetes))
Agent 4: Emergency
Initial facts:
R41: Tell(1,4, hasSituation(?p, ’Emergency))→ hasSituation(?p, ’Emergency)

Table 5.1: Example Rules for a homecare patients’ monitoring context-aware system

patient ontology and Figure 5.4 depicts some SWRL rules. The set of translated rules and

initial working memory facts that are distributed to the agents are shown in Table 5.1, and

the goal is to infer the formula B4 hasSituation(′Mary,′Emergency) which states that

agent 4 believes that the patient Mary has Emergency situation. The reasoning process

includes resolving contradictory contextual information.

CHAPTER 5. THE LOGIC LDROCS 128

5.7.1 Verifying System Properties

To verify resource-bounded as well as non-conflicting context properties, one possible

run of the system is shown in table 5.2 and 5.3. In the table a newly inferred context at

a particular step is shown in blue text. For example, antecedents of rule R11 of agent 1

match the contents of the memory configuration and infers new context Patient(′Mary)

at step 1. A context which gets overwritten in the next state is shown in red text, and

a context which is inferred in the current state and gets overwritten in the next state is

shown in magenta text. In the memory configuration, left side of the red vertical bar

| represents SM(i) and its right side represents DM(i) for each agent i. It shows that

the size of DM(1) is 3 units and the size of DM(i) is 1 unit for all 2 ≤ i ≤ 4. We

can observe that the resource requirements for the system to derive the goal formula

B4 hasSituation(′Mary,′Emergency) are 3 messages that need to be exchanged by

agent 1 and 1 message that needs to be exchanged by each of the other three agents and

10 time steps. One may also observe that, if we reduce the dynamic memory size for agent

1 by 1, then the system will not be able to achieve the desired goal.

We can prove that X10B4 hasSituation(′Mary,′Emergency) (i.e., from the start state,

agent 4 believes hasSituation(′Mary,′Emergency) in 10 time steps), where X10 is the

concatenation of ten LTL next operators X .

This is a very simple case; however, if we model a more realistic scenario and increase

the problem size, the verification task would be hard to do by hand. Therefore it is more

convenient to use an automatic method to verify them, for example using model checking

techniques. In Chapter 6, we show how a LDROCS model can be encoded using a standard

model checker such as for example the Maude LTL model checker [Eker et al., 2003] and

its interesting properties can be verified.

CHAPTER 5. THE LOGIC LDROCS 129

Pa
tie

nt
ca

re
Fe

ve
rd

et
ec

to
r

D
ia

be
te

s
te

st
er

E
m

er
ge

nc
y

#S
te

ps
M

em
or

y
C

on
fig

.1
A

ct
io

n1
#

M
sg

1
M

em
or

y
C

on
fig

.2
A

ct
io

n2
#M

sg
2

M
em

or
y

C
on

fig
.3

A
ct

io
n3

#M
sg

3
M

em
or

y
C

on
fig

.4
A

ct
io

n4
#M

sg
4

0
{P
er
so
n

(′
M
a
ry

),
−

0
{P
er
so
n

(′
M
a
ry

),
−

0
{P
er
so
n

(′
M
a
ry

),
−

0
{|
−
}

−
0

P
a
ti
en
tI
D

(′
P

00
1)
,

B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|−
,−
,−
}

le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

|−
}

|−
}

1
{P
er
so
n

(′
M
a
ry

),
R
u
le

0
{P
er
so
n

(′
M
a
ry

),
R
u
le

0
{P
er
so
n

(′
M
a
ry

),
R
u
le

0
{|
−
}

I
d
le

0
P
a
ti
en
tI
D

(′
P

00
1)
,

(R
11

)
B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

(R
21

)
B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

(R
31

)
h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
−
,−
}

le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

|h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

)}
|h
a
sD

B
C
a
te
g
or
y
(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

2
{P
er
so
n

(′
M
a
ry

),
I
d
le

0
{P
er
so
n

(′
M
a
ry

),
R
u
le

1
{P
er
so
n

(′
M
a
ry

),
R
u
le

1
{|
−
}

I
d
le

0
P
a
ti
en
tI
D

(′
P

00
1)
,

B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

(R
22

)
B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

(R
32

)
h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
−
,−
}

le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

|T
el
l(

2,
1,
h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

)}
|T
el
l(

3,
1,
h
a
sD

B
C
a
te
g
or
y
(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

3
{P
er
so
n

(′
M
a
ry

),
C
op
y

1
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{|
−
}

I
d
le

0
P
a
ti
en
tI
D

(′
P

00
1)
,

B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

Te
ll(

2,
1,

ha
sF

ev
er

(’
M

ar
y,

’H
ig

h)
,-}

|T
el
l(

2,
1,
h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

)}
|T
el
l(

3,
1,
h
a
sD

B
C
a
te
g
or
y
(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

4
{P
er
so
n

(′
M
a
ry

),
C
op
y

2
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{|
−
}

I
d
le

0
P
a
ti
en
tI
D

(′
P

00
1)
,

B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

Te
ll(

2,
1,

ha
sF

ev
er

(’
M

ar
y,

’H
ig

h)
,

|T
el
l(

2,
1,
h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

)}
|T
el
l(

3,
1,
h
a
sD

B
C
a
te
g
or
y
(

Te
ll(

3,
1,

ha
sD

B
C

at
eg

or
y(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

5
{P
er
so
n

(′
M
a
ry

),
R
u
le

2
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{|
−
}

I
d
le

0
P
a
ti
en
tI
D

(′
P

00
1)
,

(R
12

)
B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

ha
sF

ev
er

(’
M

ar
y,

’H
ig

h)
,

|T
el
l(

2,
1,
h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

))
}

|T
el
l(

3,
1,
h
a
sD

B
C
a
te
g
or
y
(

Te
ll(

3,
1,

ha
sD

B
C

at
eg

or
y(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

Ta
bl

e
5.

2:
O

ne
Po

ss
ib

le
R

un
(R

ea
so

ni
ng

)o
ft

he
Sy

st
em

(C
on

tin
ue

d
on

Ta
bl

e
5.

3)

CHAPTER 5. THE LOGIC LDROCS 130

Pa
tie

nt
ca

re
Fe

ve
rd

et
ec

to
r

D
ia

be
te

s
te

st
er

E
m

er
ge

nc
y

#S
te

ps
M

em
or

y
C

on
fig

.1
A

ct
io

n1
#

M
sg

1
M

em
or

y
C

on
fig

.2
A

ct
io

n2
#M

sg
2

M
em

or
y

C
on

fig
.3

A
ct

io
n3

#M
sg

3
M

em
or

y
C

on
fig

.4
A

ct
io

n4
#M

sg
4

6
{P
er
so
n

(′
M
a
ry

),
R
u
le

2
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{|
−
}

I
d
le

0
P
a
ti
en
tI
D

(′
P

00
1)
,

(R
13

)
B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

ha
sF

ev
er

(’
M

ar
y,

’H
ig

h)
,

|T
el
l(

2,
1,
h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

))
}

|T
el
l(

3,
1,
h
a
sD

B
C
a
te
g
or
y
(

ha
sD

B
C

at
eg

or
y(

’M
ar

y,
’E

st
ab

lis
he

dD
ia

be
te

s)
}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

7
{P
er
so
n

(′
M
a
ry

),
R
u
le

2
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{|
−
}

I
d
le

0
P
a
ti
en
tI
D

(′
P

00
1)
,

(R
15
�

R
14

B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

R
es

ol
vi

ng
h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
co

nfl
ic

tin
g

g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
co

nt
ex

t)
le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

ha
sS

itu
at

io
n(

’M
ar

y,
’E

m
er

ge
nc

y)
,

|T
el
l(

2,
1,
h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

))
}

|T
el
l(

3,
1,
h
a
sD

B
C
a
te
g
or
y
(

ha
sD

B
C

at
eg

or
y(

’M
ar

y,
’E

st
ab

lis
he

dD
ia

be
te

s)
}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

8
{P
er
so
n

(′
M
a
ry

),
R
u
le

3
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{|
−
}

I
d
le

0
P
a
ti
en
tI
D

(′
P

00
1)
,

(R
16

)
B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

ha
sS

itu
at

io
n(

’M
ar

y,
’E

m
er

ge
nc

y)
,

|T
el
l(

2,
1,
h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

))
}

|T
el
l(

3,
1,
h
a
sD

B
C
a
te
g
or
y
(

Te
ll(

1,
4,

ha
sS

itu
at

io
n(

’M
ar

y,
’E

m
er

ge
nc

y)
)}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

9
{P
er
so
n

(′
M
a
ry

),
I
d
le

3
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{|
T
el
l(

1,
4,
h
a
sS
it
u
a
ti
on

(
C
op
y

1
P
a
ti
en
tI
D

(′
P

00
1)
,

B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

′ M
a
ry
,′
E
m
er
g
en
cy

))
}

h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

ha
sS

itu
at

io
n(

’M
ar

y,
’E

m
er

ge
nc

y)
,

|T
el
l(

2,
1,
h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

))
}

|T
el
l(

3,
1,
h
a
sD

B
C
a
te
g
or
y
(

Te
ll(

1,
4,

ha
sS

itu
at

io
n(

’M
ar

y,
’E

m
er

ge
nc

y)
)}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

10
{P
er
so
n

(′
M
a
ry

),
I
d
le

3
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{P
er
so
n

(′
M
a
ry

),
I
d
le

1
{|
h
a
sS
it
u
a
ti
on

(
I
n
f
er

1
P
a
ti
en
tI
D

(′
P

00
1)
,

B
od
y
T
em

pe
ra
tu
re

(′
10

2)
,

B
lo
od
S
u
g
a
rL
ev
el

(′
13

0)
,

′ M
a
ry
,′
E
m
er
g
en
cy

)}
(R

41
)

h
a
sP
a
ti
en
tI
D

(′
M
a
ry
,′
P

00
1)
,

h
a
sB
od
y
T
em

pe
ra
tu
re

(′
M
a
ry
,′

10
2)
,

h
a
sB
lo
od
S
u
g
a
rL
ev
el
B
ef
or
eM

ea
l

h
a
sC
on
sc
io
u
sn
es
s(
′ M

a
ry
,′
Y
es

)
g
re
a
te
rT
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
1)
,

(′
M
a
ry
,′

13
0)
,

|P
a
ti
en
t(
′ M

a
ry

),
le
ss
T
h
a
n
O
rE
qu
a
l(
′ 1

02
,′

10
3)

g
re
a
te
rT
h
a
n

(′
13

0,
′ 1

26
)

ha
sS

itu
at

io
n(

’M
ar

y,
’E

m
er

ge
nc

y)
,

|T
el
l(

2,
1,
h
a
sF
ev
er

(′
M
a
ry
,′
H
ig
h

))
}

|T
el
l(

3,
1,
h
a
sD

B
C
a
te
g
or
y
(

Te
ll(

1,
4,

ha
sS

itu
at

io
n(

’M
ar

y,
’E

m
er

ge
nc

y)
)}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

Ta
bl

e
5.

3:
O

ne
Po

ss
ib

le
R

un
(R

ea
so

ni
ng

)o
ft

he
Sy

st
em

CHAPTER 5. THE LOGIC LDROCS 131

5.8 Conclusion

In this chapter, we proposed a logical framework for modelling context-aware systems

as multi-agent non-monotonic rule-based agents, and the resulting logic LDROCS allows

us to describe a set of ontology-driven rule-based non-monotonic reasoning agents with

bounds on time, memory, and communication. Agents use defeasible reasoning technique

to reason with inconsistent information. The proposed framework allows us to determine

how much time (measured as rule-firing cycles) are required to generate certain contexts,

how many messages must be exchanged among agents, and how much space (memory) is

required for an agent for the reasoning.

In the next chapter, we discuss how ontological knowledge can be translated into Horn-

clause rules. We present an OWL-API based Onto-HCR translator whose task is to extract

the ontology axioms and then translate them into a plain text of Horn-clause rules. We also

show how to encode a LDROCS model considering a smart environment case study and

verify its interesting resource-bounded properties as well as non-conflicting contextual

properties automatically.

Chapter 6

Ontology-based System Modelling and

Verification

6.1 Chapter Objectives

• To model context-aware systems based on ontologies.

• To translate ontologies to a set of Horn-clause rules.

• To verify an example system using Maude LTL model checker.

6.2 Motivation

Following the theoretical logical frameworks discussed in the previous chapters, we have

realized the significance and need to look at practical aspects of the system. In this chapter,

we initially describe how ontological knowledge can be translated into Horn-clause rules.

For experiment purposes, we develop a tool Onto-HCR to translate ontology axioms into

Horn-clause rules. To practically model the system, we develop a smart environment case

study whose rules are derived from an ontology. For this purpose, the smart environment

case study has been developed using Protégé [Protégé, 2011] ontology editor. To verify

the correctness of the system, we describe how a LDROCS model can be encoded using the

132

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 133

Maude LTL model checker [Eker et al., 2003] and its interesting properties can be verified

automatically.

6.3 Translation of an ontology into a set of Rules

This section describes the theoretical approach of how ontologies can be translated into a

set of Horn-clause rules. In the literature, several studies have focused on the translation of

ontology axioms to description logic (DL) and DL knowledge-base to Defeasible Logic

Programming (DeLP) [Faruqui, 2012, Grosof et al., 2003, Gómez et al., 2006, Gómez

et al., 2007]. Our approach is driven by insight understanding the DL ontology and the

mapping between DL ontology and DeLP. In the following sections, we discuss the step-

by-step process of how ontological knowledge can be translated into Horn-clause rules

format including non-monotonic rules.

6.3.1 Translating Ontology Axioms into DL Knowledge-base

OWL 2 RL Axioms DL Syntax Horn-Clause Rules
SubClassOf C v D C(a)→ D(a)
EquivalentClassOf C ≡ D {C(a)→ D(a) , C(a)← D(a)}
SubObjectPropertyOf R v S R(a, b)→ S(a, b)
ObjectPropertyChain R ◦ S v S {R(a, b) ∧ S(b, c)} → T (a, c)
EquivalentObjectPropertyOf R ≡ S {R(a, b)→ S(a, b) , R(a, b)← S(a, b)}
InverseObjectPropertyOf R ≡ S− {R(a, b)→ S(b, a) , R(a, b)← S(b, a)}
ObjectPropertyDomain > v ∀R−.C R(a, b)→ C(a)
ObjectPropertyRange > v ∀R.C R(a, b)→ C(b)
SymmetricObjectProperty R ≡ R− R(a, b)→ R(b, a)
TransitiveObjectProperty R ◦R v R {R(a, b) ∧R(b, c)} → R(a, c)
ObjectUnionOf C1 t C2 v D {C1(a)→ D(a), C2(a)→ D(a)}
ObjectIntersectionOf C1 u C2 v D C1(a) ∧ C2(a)→ D(a)
ObjectAllValuesFrom C v ∀R.D C(a) ∧R(a, b)→ D(b)
ObjectSomeValuesFrom ∃R.C v D R(a, b) ∧ C(b)→ D(a)

Table 6.1: Translating OWL 2 RL Axioms into DL Knowledge-base

As we have already discussed in Chapter 3, DL is a decidable fragment of First Order logic

(FOL). Logic program (LP) is also closely related to Horn fragment of FOL but neither

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 134

included by nor includes FOL [Baral and Gelfond, 1994]. For example, disjunction can

be expressible in FOL but is not expressible in LP. On the other hand, logic programming

has several expressible features which are used in rule-based applications but not express-

ible in FOL. Negation as Failure (NaF) could be one of the examples of LP expressing a

kind of logical non-monotonicity. Description Logic Program (DLP) is an intermediate

Knowledge representation to establish the correlation between DL and Logic program-

ming. DLP is considered as a subset of DL as LP includes non-monotonicity which can

be viewed as ontology sub-language. The question arises here why we need DLP. Be-

cause we need to model the domain in OWL 2 RL ontology for our logical frameworks

and OWL 2 RL design was influenced by DLP [Grosof et al., 2003]. This is certainly

an interesting scenario, as DL is based on ontology and is a subset of FOL. So, ontol-

ogy (OWL 2 RL) axioms can be mapped to their corresponding DL axioms and then DL

axioms can be directly translated into Horn-clause rules. Table 6.1 shows the translation

from OWL 2 RL axioms to DL axioms which is then translated to a set of Horn-clause

rules. These rules are used to develop context-aware agents. Here we show how to trans-

late DL axioms into a set of non-monotonic Horn-clause rules for the logical framework

LDROCS . The Onto-HCR translator, given in Section 6.4.2, extracts these OWL 2 RL ax-

ioms from an ontology and then translate them into a set of plain text Horn-clause rules.

6.3.2 Translating DL Knowledge-base into Defeasible Logic Program-

ming (DeLP)

In this section, we provide the translation from DL knowledge-base to DeLP. DeLP is a

language which combines LP with defeasible argumentation for knowledge representa-

tion and reasoning to decide between contradictory conclusions based on certain evidence

[García and Simari, 2004]. DL ontology knowledge-base can be translated into an equiv-

alent defeasible logic program. The reason behind particular logic model of the system

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 135

is inconsistent ontologies. The traditional reasoners such as Pellet [Sirin et al., 2007],

Racer [Haarslev and Möller, 2001], etc. issue error message due to inconsistent ontology

while performing reasoning and halt further processing. We followed similar approach

proposed by [Gómez et al., 2010, Gómez et al., 2007]. So, DL classes and properties can

be translated to their corresponding DeLP axioms. As mentioned in [Gómez et al., 2010],

DL sentences can be mapped to DeLP strict and defeasible rules.

We define a set of strict and defeasible rules which are derived from an OWL 2 RL ontol-

ogy O by P = (Rs,Rd). The elements of Rs are of the form P1, P2, . . . , Pn → P and

elements ofRd are of the form P1, P2, . . . , Pn ⇒ P . A DL knowledge baseKB = (T ,A)

has two components, where T represents terminology box (TBox) andA represents asser-

tion box (ABox). For each set of strict and defeasible rules, TBox T is further segregated

into two disjoint sets, namely a strict terminology Ts and a defeasible terminology Td.

Intuitively, the set of strict rules Rs in P corresponds to the ABox A joined with Ts in

KB. In the same way, the set of defeasible rules Rd corresponds to the ABox A joined

with Td in KB. Mapping From DL axioms to strict and defeasible terminologies is given

in Table 6.2. For Table 6.2, some rules are extracted from smart environment example

scenario given in Section 6.5

6.3.3 Translating Strict and Defeasible Terminologies to Horn-clause

Rules

We use translation functions to translate strict and defeasible terminologies into a set of

rules. Let fs : Ts ∪ A → Rs be a translation function that translates a set of strict TBox

axioms into strict rules, and fd : Td ∪ A → Rd be a translation function that translates a

set of defeasible TBox axioms into defeasible rules. Table 6.3 shows the translation from

strict and defeasible rule terminologies into a set of Horn-clause rules.

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 136

DL Knowledge Base (KB)

Strict Rules Terminology (TBox) Ts
Rule1 : Person u ∃hasPatientID .PatientID v Patient
Rule2 : Ambulance u ∃hasAmbulanceCallFor .Ambulance v isRescuedBy .Ambulance
Rule3 : ∃hasSituation.Emergency u ∃hasGPSLocation.GPS v hasWarningSignAt .GPS
Rule4 : Person u ∃hasSystolicBP .SystolicBP u ∃hasDiastolicBP .DiastolicBPu

∃hasSystolicBP . ≥ 160 u ∃hasDiastolicBP . ≥ 100 v hasBloodPressure.Stage2hypertention

Defeasible Rules Terminology (TBox) Td

Rule5 : Patient u ∃hasBloodPressure.Normal v ∼ hasSituation.Emergency
Rule6 : Patient u ∃hasBloodPressure.Stage2hypertention v hasSituation.Emergency
Rule7 : Patient u ∃hasFever .Normal u ∃hasDBCategory .Type2Diabetes v hasSituation.OnCall
Rule8 : Person uMotionDetector v hasOccupancy .Yes

Communication Rules
Rule9 : Patient u ∃hasSituation.Emergency v Tell1To7hasSituation.Emergency
Rule10 : ∃Tell10To6hasAmbulanceCallFor .GPS v hasAmbulanceCallFor .GPS
Rule11 : ∃Tell1To7hasSituation.Emergency v hasSituation.Emergency
Rule12 : ∃Tell9To7hasGPSLocation.GPS v hasGPSLocation.GPS
Rule13 : ∃hasWarningSignAt(?p, ?loc) v Tell7To10hasWarningSignAt .GPS

Assertional Box (ABox): A
Philip : Person
P001 : PatientID
Philip : Patient
KajangTownV an3 : Ambulance
Y es : MotionDetector
165 : SystolicBP
105 : DiastolicBP
〈Philip, P001〉 : hasPatientID
〈Philip,KFCKajangTown〉 : hasAmbulanceCallFor
〈Philip,KajangTownV an3〉 : isRescuedBy
〈Philip, Emergency〉 : hasSituation
〈Philip,KFCKajangTown〉 : hasGPSLocation
〈Philip,KFCKajangTown〉 : hasWarningSignAt
〈Philip, 165〉 : hasSystolicBP
〈Philip, 105〉 : hasDiastolicBP
〈165, 160〉 : greaterThan
〈105, 100〉 : greaterThan
〈Philip,OnCall〉 : hasSituation
〈Philip,KFCKajangTown〉 : hasAlarmFor
〈Philip,KFCKajangTown〉 : hasGPSLocation
〈Philip,Normal〉 : hasBloodPressure
〈Philip, Emergency〉 :∼ hasSituation
〈Philip, Stage2hypertention〉 : hasBloodPressure
〈Philip,Normal〉 : hasFever
〈Philip, Type2Diabetes〉 : hasDBCategory
〈Philip, Y es〉 : hasOccupancy

Table 6.2: Mapping from DL Axioms to Strict and Defeasible Terminologies

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 137

Translating strict and defeasible terminologies to Rules
Translation from TBox axioms Ts to Strict Rules

Rule1 : Person(?p), hasPatientID(?p, ?pid),PatientID(?pid)→ Patient(?p)
Rule2 : Ambulance(?amb), hasAmbulanceCallFor(?p, ?loc)→ isRescuedBy(?p, ?amb)
Rule3 : hasSituation(?p, “Emergency”), hasGPSLocation(?p, ?loc)→ hasWarningSignAt(?p, ?loc)
Rule4 : Person(?p),SystolicBP(?sbp),DiastolicBP(?dbp), hasSystolicBP(?p, ?sbp),

hasDiastolicBP(?p, ?dbp), greaterThan(?sbp, 160), greaterThan(?dbp, 100)
→ hasBloodPressure(?p, “Stage2hypertention”)

Translation from TBox axioms Td to Defeasible Rules

Rule5 : Patient(?p), hasBloodPressure(?p, “Normal”)⇒∼ hasSituation(?p, “Emergency”)
Rule6 : Patient(?p), hasBloodPressure(?p, “Stage2hypertention”)⇒ hasSituation(?p, “Emergency”)
Rule7 : Patient(?p), hasFever(?p, “Normal”), hasDBCategory(?p, “Type2Diabetes”)

⇒ hasSituation(?p, “OnCall”)
Rule8 : Person(?p),MotionDetector(‘Yes)⇒ hasOccupancy(?p, “Yes”)

Communication Rules

Rule9 : Patient(?p), hasSituation(?p, “Emergency”)→ Tell(1 , 7 , hasSituation(?p, “Emergency”))
Rule10 : Tell(10 , 6 , hasAmbulanceCallFor(?p, ?loc))→ hasAmbulanceCallFor(?p, ?loc)
Rule11 : Tell(1 , 7 , hasSituation(?p, “Emergency”))→ hasSituation(?p, “Emergency”)
Rule12 : Tell(9 , 7 , hasGPSLocation(?p, ?loc))→ hasGPSLocation(?p, ?loc)
Rule13 : hasWarningSignAt(?p, ?loc)→ Tell(7 , 10 , hasWarningSignAt(?p, ?loc))

Table 6.3: Mapping from Strict and Defeasible Terminologies into Rules

Based on the work presented by [Gómez et al., 2010, Gómez et al., 2007, Grosof et al.,

2003], a subset of description logic languages can be effectively mapped to Horn-clause

logics and DL axioms correspond to first order rules which can be transformed into Horn

clause rules. These rules are of the form of conjunctive concepts and roles which can be

directly expressed in the body of the DeLP rules.

6.4 Onto-HCR Translator

We developed a translator to translate ontology axioms into Horn-clause rules. This

translation process is automated which uses Java-based translator and uses OWL API

based framework. We shortly survey some preliminary concepts first and then discuss

the Onto-HCR translator’s functionalities in order to understand the clear picture of the

system.

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 138

6.4.1 OWL API

The OWL API is a high level application programming interface (API) that supports

the creation and manipulation of OWL ontologies. OWL API was initially introduced in

2003 [Bechhofer et al., 2003] and then later significant changes have been made in or-

der to ensure the correct design patterns suitable with the OWL 2 specifications. Since

its initial development, it has been used in various development projects such as Pro-

tégé 4 [Knublauch et al., 2004], Pellet reasoner [Sirin et al., 2007], NeOn Toolkit [Haase

et al., 2008] and OntoTrack [Liebig and Noppens, 2004] etc. The flexible design pattern

of OWL API allows third parties to develop or customize alternative implementations

for their components. It is a Java based application programming interface for loading,

saving, parsing and serializing ontologies in many different syntaxes (defined in W3C

specifications), for example, OWL/XML, RDF/XML, functional syntax, Manchester syn-

tax, KRSS, Turtle syntax, etc. OWL API has a set of interfaces for probing, manipulating

and reasoning with OWL ontologies. The main features of OWL API are axiom-centric

abstraction, reasoner interfaces, validations for different OWL 2 profiles and first class

change support. The OWL API has very close association with the OWL 2 structural

specification. The reference implementation of OWL API encompassess validators for all

three OWL 2 profiles [Horridge and Bechhofer, 2009, Horridge and Bechhofer, 2011].

6.4.1.1 OWL API Design

The design of the OWL API corresponds to the OWL 2 Structural Specification and this

dynamic design model allows developers to provide flexible implementations for major

components of the system. The recent developments in OWL API design has effectively

filled the gap and meet the needs for OWL ontology based applications, reasoners and

editors. As we see in Figure 6.1 which is taken from [Horridge and Bechhofer, 2009],

the ontology is viewed as a set of axioms and annotation. In OWL API, the names and

hierarchies for the axioms, class expressions and entities correspond to the OWL structural

specification. Indeed, there is a proximal one to one translation between OWL API model

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 139

Figure 6.1: OWL API Model

interfaces and the OWL 2 Structural Specification, implying that this becomes easier to

correlate the high level OWL 2 specification with the design of the API [Horridge and

Bechhofer, 2009].

OWL API’s model has a number of interfaces and classes to represent the ontology ax-

ioms, for example, OWLAxioms. These are read-only interfaces to access OWLAxioms.

Some of the major interfaces are listed below:

• OWLOntology provides access to the axioms which are contained in the ontology.

• OWLOntologyManager is an instance of OWLOntology interface, which acts as

a key role for creating, loading, saving and changing ontologies. Each instance

of an ontology has a unique identity in a particular ontology manager. Without

ontology manager, the ontology can not be created or loaded. Any change made to

the ontology is only done by the ontology manager.

• IRI (International Resource Identifier) loads the ontology from the web using its

unique identity. OWLEntities such as class names, data and object properties and

named individuals can be identified with an IRI.

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 140

• OWLAnnotation are used in different types of annotation axioms to bind annota-

tions to their subjects. It extends OWLObject to represent annotated axioms.

• OWL Axiom is a public interface that extends the OWLObject to represent entities

and their corresponding relationships.

6.4.1.2 Ontology Management

The OWLOntology interface is a central point to access axioms efficiently from ontolo-

gies. Diverse usage of the OWLOntology interface produce distinctive storage structure in

the ontologies. The OWLOntologyManager is an instance of OWLOntology interface that

acts as central hub for creating, loading, saving and updating ontologies via its manager.

Each instance of an ontology is created and manipulated by its own particular OWLOntol-

ogymanager. This kind of system design provides a centralized mechanism for the client

applications to be monitored and controlled by one central access point [Horridge and

Bechhofer, 2009].

A key advantage of conjoining OWL 2 structural specification with OWL API is its free

syntax style which means that there is no obligation to any specific syntax. By default,

RDF/XML is the only one syntax supported in OWL implementation. However, there

are several other syntaxes which are optimized for different purposes. For example,

OWL/XML syntax allows ontologies to store in plain XML format, Turtle syntax specifies

RDF serialization while Manchester syntax postulate the human readable serialization for

OWL ontologies. OWL API does not have a direct support for reading and writing ontolo-

gies in different syntaxes. The uses of parser and renderer in the reference implementation

of OWL API make this task easier to customize ontologies in different syntaxes. When a

specific parser is selected, ontologies are loaded and saved back in the same format from

which it is parsed. The OWL API has a programming interface to manage ontology pro-

files. The ontology profiles validation and its imports closure are performed by OWL API

validation frameworks. Reasoning for these profile could be executed by a rule engine.

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 141

6.4.2 The Onto-HCR’s Main Features

Figure 6.2: Onto-HCR Flow Chart

Figure 6.3: Main Menu

We developed a Java-based translator using OWL API version 3.4.10. We chose Eclipse

development framework to translate ontology axioms (which are extracted from the pub-

lished ontology) into a set of plain Horn-clause rules. Each ontology has an ontology IRI

(International Resource Identifier) to identify ontology and their classes, properties and

individuals. We consider ontology IRI to access the elements from the ontology. The

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 142

Figure 6.4: Some of the TBox Axioms

Figure 6.5: Some of the ABox Concepts Axioms

Figure 6.6: Some of the ABox Property Axioms

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 143

Figure 6.7: Some of the Horn-clause Rules

Onto-HCR’s main menu is shown in Figure 6.3 in which system prompts the user to input

ontology. After executing several operations, the system produces TBox axioms from the

ontology, some of them are shown in Figure 6.4. Figures 6.5 and 6.6 depict the extracted

ABox axioms including classes and properties. Some of the OWL 2 RL and SWRL rules

are shown in Horn-clause rule format in Figure 6.7. The smart environment ontology

translated rules are given in appenix B. The main functions of Onto-HCR Translator are

listed below:

• System prompts users to choose the ontology from the published source.

• Load the ontology file (in RDF/XML or OWL/XML format) as an input.

• Extract the set of logical axioms from the ontology, which can either be TBox axiom

or ABox axiom.

• We use OWL parser to parse the ontology into OWL API objects which then extracts

the set of TBox and ABox axioms.

• The set of TBox and ABox axioms are in the form of OWL 2 RL rules.

• We translate these set of axioms into a plain set of text in Horn-clause rules format.

• DL safe rule axioms are in the form of SWRL rules which are already in the form

of Horn-clause rules.

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 144

• We also extract DL Safe rules (which are defined in Functional Syntax format) from

ontology and then translate them into plain Horn-clause rule format.

These set of Horn-clause rules, translated from ontology using OWL API, are suitable to

implement rule based reasoning strategy in context-aware multi-agent system.

6.5 A Smart Environment: Case Study

The main purpose of building this example system is to illustrate the use of the logical

model LDROCS by focusing on automated analysis and formal verification using model

checking techniques. We build the model for multi-agent non-monotonic context-aware

system whose rules are derived from a smart environment domain ontology. We construct

OWL 2 RL ontology domain of the given scenario using Protégé ontology editor to cap-

ture the static behavior of the the system while dynamic aspects of the system is depicted

by SWRL rules. The example scenario is adopted from [Bikakis et al., 2010, Leijdekkers

and Gay, 2006, Nabih et al., 2011], which is further extended based on the system users’

requirements. This example system aims to facilitate residents in an intelligent home care

environment that address residents’ needs based on the current contexts. The aim is to

create an automated assisted living environment for needy people to live a safe life and

provide ease, comfort and security to them. This system provides the intelligent smart

home environment where it is assumed that different sensing devices are installed to mon-

itor the current situation of the person and the home. An agent, perhaps representing a

particular device, could be implemented using simple rule-based technique.

In this system design, we consider a number of intelligent context-aware agents to mon-

itor the current status of a person and the home environment. For example, a number

of essential health care devices are considered to monitor a patient’s vital information,

which update status based on the current contexts. The bio-sensor agents are of the sort

of bracelet(s) which is/are attached to the patient. These agents gets patient’s current

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 145

senses such as blood pressure, blood sugar level, body temperature and pulse rate and

notify Patient care (controller) agent after certain intervals of time. Whenever patient care

agent receives most recently generated contexts from other agents, it immediately takes

appropriate decision for the patient whether to declare an emergency situation or inform

to the caregiver. The main inspiration is that each agent keeps the most recent values in

the memory by overwriting conflicting context if it exists in the memory.

This smart home environment also considers some security agents to monitor unautho-

rized person’s movement or prohibited activities at home. Figure 6.9 shows partial view

of the ontology, and Figure 6.8 depicts smart space context-aware agents and their pos-

sible interactions. However, the complete set of rules are given in appendix A which are

encoded using Maude LTL model checker in order to verify some interesting properties

of this system.

The agents in Figure 6.8 are designed using the translated Horn-clause rules of the ontol-

ogy. In this case study, we have considered 21 agents to model the smart home system by

providing the basic health and safety needs for the residents. However, this case study can

be extended by increasing the number of agents to provide additional health and safety

features including self-indulgent facilities. Table 6.4 shows the list of agents and the

number of rules for each agent and the second last column of the table shows agent’s

interaction to/from other agents.

6.5.1 Smart Environment Agents’ Functions

The description of agent’s tasks are given below:

1. Patient Care Agent(PC): is a centralized agent which receives patient’s vital infor-

mation from other agents after certain interval of time and decides about the current

situation of the patient. If there is an emergency situation, it notifies emergency

monitoring agent to take appropriate action. In case of a less emergency situation,

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 146

it informs to the caregiver to facilitate patients according to their need.

2. Blood Pressure Agent (BP): Sends updated Blood Pressure value to the Patient

Care agent after certain intervals of time. Blood Pressure range and and types se-

lected for the case study is standard which can be found online1.

3. Diabetes Tester (DB): Checks blood sugar level before meal, two hours after meal

or at specified timings and sends current blood sugar value to the patient care agent.

4. Body Temperature (BT): Sends updated body temperature values to the patient

care agent.

5. Pulse Rate Monitor (PM): Continuously monitors the pulse rate of the patient and

sends updates to the patient care agent to take certain action in case of abnormalities.

6. Ambulance Agent (NA): Immediately notifies ambulance staff to move to the GPS

located point.

7. Emergency Monitoring Agent (EM): This agent is informed by patient care agent

in case of an emergency situation and at the same time this agent receives the GPS

location of the patient and then notifies the Telephone agent to call an ambulance at

GPS located coordinates point.

8. OnCall Agent (OC): Upon receiving a request from the patient care agent and

the GPS agent, this agent will automatically call the patient’s caregiver or a nurse

according to current situation of the patient.

9. GPS sensor (GS): Mostly patients and elderly people stay at home. GPS sensor

will be useful to detect the exact location of the person when he/she is outdoor

and sends GPS coordinates for every movement to the OnCall, Emergency and

Telephone agents when activated.

1http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/in-depth/bloodpressure/art-
20050982

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 147

10. Telephone Agent (TA): This agent may be activated upon receiving updates from

the GPS sensor and Emergency monitoring agent and then automatically sends a

call message with GPS coordinates to the ambulance agent.

11. Motion Detector (MD): Has synchronization with the Image sensor agent and iden-

tifies the movement of authorized persons. It will raise burglar alarm in case of an

unauthorized movement and notifies to the OnCall agent to call the caregiver of the

patient.

12. Temperature Level Sensor (TL): Checks the temperature of rooms, kitchen, cor-

ridor, etc and sends message to the Aircon sensor agent to increase or decrease

temperature automatically.

13. Gas Detector (GD): If this agent detects gas leakage, then it will activate burglar

alarm automatically and will send immediate notification to the Telephone agent to

call the Caregiver to take appropriate action.

14. Glass Break Sensor (GS): Ensures the safety of all windows. It notifies the OnCall

agent in case of glass breaking.

15. Light Sensor (LS): This agent may be activated to turn on/off light based on per-

son’s occupancy. Light sensor switches on the light whenever it receives message

of person’s availability from occupancy sensor.

16. Smoke Sensor (SS): It may alarm in case if smoke is detected. It detects the possi-

bility of fire and fire status information is sent to OnCall agent to call caregiver.

17. Aircon Sensor (AC): Detects the person’s availability from the Occupancy sensor

agent and turn on or off air conditioner. It may also increase or decrease temperature

upon receiving request from the Temperature level sensor agent.

18. Occupancy Sensor (OS): Monitors the presence of persons and sends messages to

Light and Aircon sensor agents to act accordingly.

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 148

Seq. Agent Name Communicate To/From No.of Rules
1 Patient Care Agent 2,3,4,5,7,8 47
2 Blood Pressure Agent 1 10
3 Diabetes Tester Agent 1 10
4 Body Temperature Agent 1 10
5 Pulse Monitor Agent 1 5
6 Ambulance Agent 10 2
7 Emergency Monitoring Agent 1,9,10 14,15,16,17 4
8 OnCall Agent 1,11,13, 9
9 GPS Sensor Agent 7,8,10,11 3

10 Telephone Agent 6,7,9 3
11 Caregiver Agent 8,9 2
12 Image Sensor Agent 13 4
13 Motion Detector Agent 8,12,19 6
14 Gas Detector Agent 8 3
15 Glass Break Sensor Agent 8 3
16 Smoke Sensor Agent 8 3
17 Relative Agent 8 2
18 Light Sensor Agent 19 4
19 Occupancy Sensor Agent 13,18,20 7
20 Aircon Sensor Agent 19,21 7
21 Temperature Level Sensor Agent 20 5

Table 6.4: Smart Environment Agent’s Description

19. Image Sensor (IS): Identifies visitor and checks whether he/she is authorized per-

son or not and notify motion detector agent.

20. Caregiver Agent (NA): Informs caregiver immediately upon receiving message

from other agents.

21. Relative Agent (NA): Notifies patient relative in case of any need as it receives

message from other agents.

6.6 Encoding and verification of LDROCS model

In this section, we show how a LDROCS model (discussed in the previous chapter) can be

encoded using Maude LTL model checker and how its interesting resource-bounded as

well as conflicting properties can be verified automatically.

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 149

Figure 6.8: Context-aware Agents and their Possible Interactions

Figure 6.9: A Fragment of the Smart Environment Ontology

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 150

Figure 6.10: Idividualized Smart Environment Ontology

Figure 6.11: Some Rules of the Smart Environment Ontology

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 151

6.6.1 Maude Encoding

Maude has modular structuring mechanism and context-aware agents are encoded in

a modular fashion. The Maude language essentially includes the set of sorts and suborts

with the operations on these sorts. As we have discussed the types of modules in Maude in

Chapter 2, we have implemented the system using functional module and system module

because both the set of system and functional modules are required to specify the system.

We construct the generic functional module to define the set of sorts, subsorts, operations,

variables, equations and strategies. In the functional module, agents are programmed

using the set of rules which are represented by Maude equations. Each of these agents

has its own local state (or configuration) and the structural formation of all local states

(configurations) produce a global state (configurations) of the system.

In Maude, there is a number of library modules such as NAT, BOOL and QID etc. which

have significant role in order to implement the system. For example; NAT and BOOLmod-

ules are useful for defining natural and Boolean values. QID module, on the other hand, is

useful in defining the set of constant symbols (rule-based system’s constant terms). These

modules have been imported into the functional module. Maude variable is of the sort

QID which is used to define variable symbols (rule-based system’s variable terms). Both

constants and variables are subsorts of sort Term. Considering the case study, a context

is declared as an operator, for which its arguments are of the sort Term and returns the

element of sort Context. Hence, Context’s arguments usually include constants and

variables. All of these are of sort Term. Subsequently, the sort context is declared as a

subsort of WM (also known as working memory). In Maude, Agents’ rules are represented

using Maude equations, one equation for each rule. The inference engine is implemented

using a set of Maude rules.

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 152

6.6.2 Specifying and Verifying the System

We have considered three facets of the system while specifying and verifying its interest-

ing properties using the Maude LTL model checker. This is partly because to observe and

compare model checking performance and scalability.

The first system is modelled using five agents, namely 1, 2, 3, 4 and 5 which monitors the

residents’ (e.g., patient’s) vital information such as Pulse Rate, Body Temperature, Blood

Sugar Level etc. This system infers appropriate contexts based on the current contextual

information of the patient whether e.g., there is an emergency situation or not, among

others. In this system, the agents 2, 3, 4 and 5 are able to infer high-level contexts from

sensed low-level contexts using Horn-clause rules in their knowledge-bases. These agents

can classify current blood pressure, blood sugar, and pulse rate into different categories

based on their current measurement values. For example, agent 2’s knowledge-base con-

tains rules including the following:

Person(?p), SystolicBP(?sbp), DiastolicBP(?dbp), hasSystolicBP(?p, ?sbp), hasDias-

tolicBP(?p, ?dbp), greaterThan(?sbp,’120), lessThan(?sbp,’140), greaterThan(?dbp,’80),

lessThan(?dbp,’90)→ hasBloodPressure(?p, ’Prehypertension) ;

Person(?p), SystolicBP(?sbp), DiastolicBP(?dbp), hasSystolicBP(?p, ?sbp), hasDias-

tolicBP(?p, ?dbp), greaterThan(?sbp,’140), lessThan(?sbp,’160), greaterThan(?dbp,’90),

lessThan(?dbp,’100)→ hasBloodPressure(?p, ’Stage1hypertension) ;

hasBloodPressure(?p, ’Stage1hypertension)→ Tell(2,1, hasBloodPressure(?p, ’Stage1-

hypertension)) .

The first rule classifies that the person has blood pressure category Prehypertension if her

Systolic Blood Pressure is greater than 120 and Diastolic Blood Pressure is greater than

80. That is, agent 2 may infer high-level context hasBloodPressure(’Philip, ’Prehyper-

tension) when the rule matches with the agent’s working memory contexts, e.g., Per-

son(’Philip), SystolicBP(’134), DiastolicBP(’88), hasSystolicBP(’Philip, ’134), hasDias-

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 153

tolicBP(’Philip, ’88), greaterThan(’134,’120), lessThan(’134,’140), greaterThan(’88,’80),

lessThan(’88,’90), and so on. The third rule is a communication rule of agent 2 through

which it interacts with agent 1 and passes the context hasBloodPressure(’Philip, ’Prehy-

pertension) when it believes that Philip has Prehypertension at the moment. Similar to the

above, agent 2 and all other agents in the system have other deduction and communication

rules for other categories. It is important to note that the ontology driven rules do not

have priority and a system designer is responsible to provide appropriate rule priorities

while encoding the system into Maude.

In order to model the first scenario we have derived 105 Horn-clause rules from the smart

environment ontology and distributed them to the agents as working memory facts and

knowledge base rules. For example, the knowledge of agent 1 contains 45 rules, agent 2

is modelled using 10 rules, and so on. Whenever agent 1 receives most recently generated

contexts from other agents, it infers current status of a patient and declares whether the

patient has an emergency situation or not. The core inspiration is that each agent keeps

the most recently derived contexts in the memory by overwriting an existing context, and

this happens if agent’s memory is full or a contradictory context arrives in the memory

(even if the memory is not full). We verified a number of interesting resource-bounded

properties of the system including the following non-conflicting contextual properties to

see for example, when there is an emergency situation for a patient then the system should

not produce non-emergency situation at the same time.

Prop1.1 : F (B1hasSituation(′Philip,′ Emergency))

Prop1.2 : F (B1Not(hasSituation(′Philip,′ Emergency)))

Prop1.3 : G(B1 ∼ (hasSituation(′Philip,′ Emergency) ∧Not(hasSituation(′Philip,′ Emergency))))

The initial working memory facts (contexts) and rules are assigned to the agents in such

a way that the system can infer both hasSituation(’Philip,’Emergency)) and Not(hasSitua-

tion(’Philip,’Emergency))) contexts that are conflicting. The operator Bi used in the prop-

erties to state that agent i believes a context (in other words certain context appears in

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 154

Properties Number of Time required to
state explored verify properties

(milliseconds)
Prop1.1 172 30ms
Prop1.1 280 45ms
Prop1.2 2332 384ms

Table 6.5: Experimental Results of the First System

the agent i’s working memory); and as usual G stands for always (globally), F stands for

eventually (in the future), and X stands for next step. The truth of the first two properties

ensure that indeed both these contexts can be inferred in the future, while the truth of the

third property ensures that both of them never appear in the agent’s memory at the same

time. The above properties are verified as true and Maude reported the following results

after verifying these properties as shown in Table 6.5. While verifying these properties

minimum memory space required by agent 1 was 12 units and it exchanged 4 messages.

This second system that we consider for the verification is modelled using 11 agents,

namely, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, and to model this second scenario 133 Horn-

clause rules have been used. This system, in addition to inferring the residents’ health

status, interacts with various other agents to take appropriate actions. This enhances the

services and making system more complex. For example, agent 1 interacts with Emer-

gency monitoring agent and OnCall agent which in turn interacts with various other agents

to locate GPS coordinate points to call Ambulance via Telephone agents. Upon receiving

message from agent 10, ambulance could move to GPS located point to rescue patient.

In addition, Caregiver is also notified by OnCall agent about the emergency situation

with GPS coordinates point of the patient. We verified a number of interesting resource-

bounded properties of this system including those we considered above in the first system.

Prop2.1 : F (B1hasSituation(′Philip,′ Emergency))

Prop2.2 : F (B1Not(hasSituation(′Philip,′ Emergency)))

Prop2.3 : G(B1 ∼ (hasSituation(′Philip,′ Emergency) ∧Not(hasSituation(′Philip,′ Emergency))))

Prop2.4 : G(B8 (Tell(1 , 8 , hasSituation(′Philip,′Oncall))∧

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 155

Properties Number of Time required to
state explored verify properties

(milliseconds)
Prop2.1 282 60ms
Prop2.2 640 131ms
Prop2.3 4336 1084ms
Prop2.4 4336 1050ms

Table 6.6: Experimental results of the Second System

(Tell(9 , 8 , hasGPSLocation(′Philip,′KFCKajangTown))→
X nB8Tell(8 , 11 , hasAlarmFor(′Philip,′KFCKajangTown))

The fourth property above specifies that whenever agents 1 and 9 tell agent 8 that the

Philip has OnCall situation and his GPS location is at KFCKajangTown, within n time

steps agent 8 sending an alarming message to agent 11. All the above properties are

verified as true and Maude reported the following results after verifying these properties

as shown in Table 6.6. While verifying these properties minimum memory space required

by agent 1 was 14 and agent 8 by 8 units and the value of n was 4 (i.e., within 4 time

steps agent 8 sending an alarming message to agent 11). The messages that the agents

exchanged were: agent 1: 5, agent 2: 1, agent 3: 1, agent 4: 1, agent 5: 1, agent 6: 1,

agent 7: 3, agent 8: 3, agent 9: 2, agent 10: 2, and agent 11: 1.

The third system that we consider for the verification is modelled using all the 21 agents,

and to model this scenario 201 Horn-clause rules have been used. This system models very

complex scenarios and deals with a very high level of combinatorial aspects. It includes

some smart home sensor agents to provide ease, comfort, security and healthy life in the

smart home. In this system, the sensor agents (agents 12 − 21) monitor the basic safety

measures at home and inform to relatives of the patient for any kind of mishap occurrence

in the smart home. For example, burglar alarm will ring in case e.g., smoke is detected

by the Smoke sensor agent, and then OnCall agent immediately interact with the Relative

agent to take appropriate actions. This system also checks the existence of a person in

a room and automatically switch on/off the light and air-condition based on the current

contexts. So saving energy is the additional requirement of the system. However, by

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 156

Properties Number of Time required to
state explored verify properties

(milliseconds)
Prop3.1 379210 165461ms
Prop3.2 379210 164321ms

Table 6.7: Experimental results of the Third System

adding more agents the system designer can make the system much more complex. We

verified a number of interesting resource-bounded properties of this system including the

following:

Prop3.1 : G(B8 (Tell(1 , 8 , hasSituation(′Philip,′Oncall))∧
(Tell(9 , 8 , hasGPSLocation(′Philip,′KFCKajangTown))→
X nB8Tell(8 , 11 , hasAlarmFor(′Philip,′KFCKajangTown))

Prop3.2 : G(B11 (Tell(8 , 11 , hasAlarmFor(′Philip,′KFCKajangTown))
→ X nB11 logAlarm(′Alice,′ Philip))

The first property is same as Prop2.4 above, while second property above specifies that

whenever agent 8 tells agent 11 that Philip has alarming situation and his GPS location

is at KFCKajangTown, within n time steps Alice (caregiver agent 11) noticing this. Both

the above properties are verified as true and Maude reported the following results after

verifying these properties as shown in Table 6.7. The value of n in Prop3.2 is 2. How-

ever, when we assign a value to n which is less than 4 in Prop2.4 , and less than 2 in

Prop3.2 the properties are verified as false and the model checker returns counterexam-

ples. Similarly, when we assign a value to memory size (or message counter) which is

less than the minimal required value, properties are verified as false. This also ensures the

correctness of the encoding in that model checker does not return true for arbitrary values

of n, memory and message counters. Note that, verification of true formulas take longer

than verification of false formulas since a model checker will find a counterexample faster

than it takes to explore the whole model.

CHAPTER 6. ONTOLOGY-BASED SYSTEM MODELLING . . . 157

6.7 Conclusion

In summary, we have described how ontologies can be translated into Horn-clause rules.

To directly translate ontological knowledge into Horn-clause rules, we have listed the

main functions of the Onto-HCR tool developed for the translation process. We also

have described a comprehensive case study of a smart environment to model context-

aware resource-bounded non-monotonic reasoning based system and verify its resource-

bounded as well as non-monotonic properties using the Maude LTL model checker. The

scalability and expressiveness is evaluated using the above mentioned case study by con-

sidering three facets of the system. In the next chapter, we provide a concise summary of

the thesis and then discuss some possible directions for future work.

Chapter 7

Conclusion and Future Work

This thesis aims to develop logical frameworks for the representation and reasoning about

resource-bounded context-aware systems, which allow us to investigate, for example,

whether context-aware agents can infer certain contexts or they never infer conflicting

contexts while they are resource-bounded. This chapter is divided into two sections. We

briefly summarize the core contribution of this thesis in the first section, and in the second

section we provide a brief summary of key topics for some future works.

7.1 Summary

This research has introduced a new vision of context-aware systems considering today’s

modern world complex problem solving in a highly decentralized environment. As context-

aware systems are adaptive in nature and mostly run on smart devices. However, many

challenges might arise when these devices exchange information among themselves in

order to solve a problem with their limited computational and communication resources.

In this thesis, we have presented systematic formal logical frameworks for modelling and

verifying resource-bounded context-aware rule-based multi-agent systems. Where agents

reason using ontology-driven first order Horn clause rules. We have realized the signifi-

cance and needs of these formalisms based on the literature review. As this research work

158

CHAPTER 7. CONCLUSION AND FUTURE WORK 159

has incorporated many disciplines from the literature, so it is vital to have a brief survey

on each of them.

The literature review presented in Chapters 2, 3 has focused on reasoning formalisms for

the semantic web. We have mainly focused on ontology and SWRL because the work pre-

sented in this thesis is based on ontology-driven rule based reasoning agents where rules

are derived from OWL 2 RL and SWRL. We have reviewed literature on description log-

ics, web ontology languages (OWL) and SWRL. Description logic has been considered as

one of the most expressive formal languages having capability to perform reasoning about

knowledge in an application domain. Description logic is based on ontology languages

that are often used for context representation and reasoning. However, this logic may

not be applicable for non-monotonic rule-based reasoning systems. For non-monotonic

reasoning, we have considered defeasible reasoning owing to its efficient reasoning ca-

pability, low computational complexity, and its focus on implementability. Defeasible

reasoning is used to reason inconsistent and incomplete information. We have surveyed

literature on monotonic as well as non-monotonic reasoning based logical formalisms

including rule-based reasoning and the semantic web technologies. In doing so, we real-

ized their efficacy towards context-aware systems. The ultimate purpose of considering

this literature is to craft a comparative study that showcases the relevant and significant

information regarding context-aware logical frameworks.

In Chapter 4, we have presented a formal logical framework for modelling and verify-

ing context-aware multi-agent systems where agents reason using ontology-driven first

order Horn-clause rules. In this work, we considered space requirement for reasoning in

addition to the time and communication resources. We extended CTL* with belief and

communication modalities, and the resulting logic LOCRS allows us to describe a set of

rule-based reasoning agents with bound on time, memory and communication. We mod-

elled an ontology-based context-aware system and verified its resource-bounded proper-

ties. There is one drawback of this logic is that it is based on monotonic reasoning where

CHAPTER 7. CONCLUSION AND FUTURE WORK 160

beliefs of an agent cannot be revised based on some contradictory evidence.

In Chapter 5, we have proposed a logical framework for modelling context-aware systems

as multi-agent non-monotonic rule-based agents, and the resulting logic LDROCS allows

us to describe a set of ontology-driven rule-based non-monotonic reasoning agents with

bounds on time, memory, and communication. Agents use defeasible reasoning technique

to reason with inconsistent information. The proposed framework allows us to determine

how much time (measured as rule-firing cycles) are required to generate certain contexts,

how many messages must be exchanged among agents, and how much space (memory) is

required for an agent for the reasoning.

In Chapter 6, we have provided a suitable translation technique for translating onto-

logical knowledge into Horn-clause rules. We have also developed a tool, Onto-HCR,

which translates semantic knowledge into Horn-clause rules format. we have modelled

and developed a case study of a smart environment to model context-aware resource-

bounded non-monotonic reasoning system and verified its resource-bounded as well as

non-monotonic properties using the Maude LTL model checker. The scalability and ex-

pressiveness is evaluated by considering three facets of the system.

7.2 Future Work

The research work presented in this thesis can be extended in a number of ways which

could be addressed as future work.

7.2.1 Extending Logic LDROCS Using Multi-Context System (MCS)

One direction is to extend our work LDROCS with the incorporation of multi-context sys-

tem that will be used to model and state interesting properties of the distributed systems to

be verified in a highly decentralized environment. Most works on multi-context systems

stem from non-monotonic reasoning in Ambient Intelligence [Bikakis et al., 2008, Brewka

CHAPTER 7. CONCLUSION AND FUTURE WORK 161

et al., 2007, Benslimane et al., 2006]. To our knowledge, there have been no formal log-

ical frameworks which incorporate multi-context system with resource-bounded context-

aware multi-agent system. For this, we already have done some initial work. In this

section we briefly describe how we can extend the LDROCS with the incorporation of

multi-context systems. A multi-context system includes of a set of contexts and a set of

inference rules that allows information to flow among different contexts. In MCS, each

context is defined as a self-contained knowledge source which includes the set of axioms

and inference rules to model the system and perform reasoning. It is a very powerful

framework to integrate various distributed knowledge sources and to model the flow of

information among themselves.

Literature highlighted many definitions of multi-context systems [Eiter et al., 2014, Ghi-

dini and Giunchiglia, 2001, Brewka et al., 2007]. In [Brewka et al., 2007], Brewka et

al. define multi-context system as a number of people, agents and databases to describe

the available information from a set of contexts and inference rules and specify the infor-

mation flow among these contexts. In [Benslimane et al., 2006], Benslimane et al. have

described ontology as a context, which is itself an independent self-contained knowledge

source having a set of axioms and inference rules with its own reasoner to perform rea-

soning. We consider the later definition because context-aware agents need to acquire

information from different semantic knowledge sources which are interlinked using inter-

linking axioms (bridge rules) in order to achieve the desired goals.

In the proposed logical framework, non-monotonic context-aware agents will acquire con-

texts either from a single ontology or multiple ontologies based on the design of the sys-

tem. Ontological knowledge such as OWL 2 RL, SWRL and bridge rules will be written

based on the available information (acquired by the sensors/agents) stored in the ontol-

ogy. These rules will be static and set by the system designer at the design time of the

system. In this system, each agent will have a simple program to perform a specific task

and each agent in the system might acquire a set of specified contexts from one ontology

CHAPTER 7. CONCLUSION AND FUTURE WORK 162

Figure 7.1: Multi-context awareness in the working memory of agent i

or multiple ontologies to derive target information.

This system would enable context-aware agents to acquire contexts from distributed knowl-

edge sources and then perform reasoning using a set of strict, defeasible and bridge rules.

This system will be modelled as non-monotonic context-aware multi-agent system. We

provide conceptual mapping of the proposed model in Figure 7.1, which is illustrated

as follows. Agent 1’s working memory contains the contexts C1 and C2 which are in-

stances of smart home and smart hospital. The working memory of agent 2 has contexts

only from smart hospital ontology whereas the working memory of agent N includes

the instances of all contexts in the system. Each agent in the system will be represented

by a triple (<,F ,�), where F is a finite set of facts contained in the working memory,

< = (<s,<d,<br) is a finite set of strict, defeasible rules and bridge rules , and � is a

superiority relation on <. Strict rules (<s) are non-contradictory whereas defeasible rules

(<d) can be defeated based on contrary evidence. Bridge rules (<br) are non-contradictory

rules which represent the distributed knowledge base concepts. These rules are fired based

on their predefined priorities which is set by the system designer. This system will con-

CHAPTER 7. CONCLUSION AND FUTURE WORK 163

tinue to derive contextual information until the desired goal is achieved.

7.2.2 Contextualizing Ontologies

In this section, we aim to provide a concrete methodology of contextualizing ontologies

for the proposed logical framework discussed in the previous section. To model the system

for context-aware non-monotonic reasoning agents, we extract heterogeneous contextual

information from multiple ontologies with the intention of preserving the identity and

independence of each specialized domain ontology. Distributed description logic is a very

suitable modelling approach which syntactically and semantically inter-connect different

domain ontologies through semantic mappings and express the relationships among them

[Borgida and Serafini, 2003]. DDL is a set of DL knowledge bases in which each DL

Knowledge base axioms (TBox and ABox) is mapped from its corresponding ontology.

To model distributed domains for the proposed system, we develop three ontologies named

as Smart Patient Care System (OSPC), Smart Home (OSHO) and Smart Hospital (OSHP)

which have their corresponding DL knowledge bases as DLSPC , DLSHO and DLSHP re-

spectively. We already have discussed DL ontology mapping in our previous work [Rakib

and Haque, 2014]. Additionally, we construct the bridge rules (or inter-ontology axioms)

which are semantically mapped using distributed DL Knowledge base. Figure 7.2 depicts

the extracts of class hierarchies of three ontologies. Some of the bridge rules are given as:

OSPC : Patient v−→ OSHO : AuthorizedPerson. (1)

OSPC : Nurse v−→ OSHO : AuthorizedPerson. (2)

OSPC : Nurse v−→ OSHP : ParamedicalStaff. (3)

OSPC : CallAmbulance v−→ OSHP : AmbulatoryClinic. (4)

Bridge rules 1 and 2 show the relationship between OSPC and OSHO and rules 3 and 4

show the relationship betweenOSPC andOSHP . Rule 1 states that the patient from patient

care ontology is an authorized persons in the smart home. Rule 2 and 3 express that nurse

CHAPTER 7. CONCLUSION AND FUTURE WORK 164

from patient care ontology is authorized person in smart home and at the same time nurse

is a paramedical staff in the smart Hospital. These rules can also be represented in first

order form, for example; the first rule is re-written as

Patient(?p) 7→ AuthorizedPerson(?p) (1)

Figure 7.2: Class hierarchy of Smart Environment Ontologies

We model the system using OWL 2 RL ontologies (including bridge and SWRL rules) and

extract the set of rules from different ontologies to design non-monotonic context-aware

rule-based agents.

7.2.3 Distributed Semantic Knowledge Translator (D-Onto-HCR)

To extract the rules from different ontologies, we develop an initial verion of OWL-API

based translator, D-Onto-HCR ,which takes ontologies as input and then translates the

set of axioms (in OWL 2 RL and SWRL form) into a plain text of Horn-clause rules.

CHAPTER 7. CONCLUSION AND FUTURE WORK 165

Figure 7.3: Distributed Semantic Knowledge Translation Process

The design of the OWL API corresponds to the OWL 2 Structural Specification and this

dynamic design model allows developers to provide flexible implementations for major

components of the system. In OWL API, the names and hierarchies for the axioms, class

expressions and entities correspond to the OWL structural specification. Indeed, there

is a proximal one to one translation between OWL API model interfaces and the OWL

2 Structural Specification, implying that this becomes easier to correlate the high level

OWL 2 specification with the design of the OWL API [Horridge and Bechhofer, 2009].

To extract ontology axioms and facts, we use OWL-API [Horridge and Bechhofer, 2009]

to parse the ontology. Protégé [Protégé, 2011] ontology editor allows SWRL rules to

be written in Horn-clause rule format but practically these rules are written in functional

syntax which are in DL-Safe rule form. D-Onto-HCR translates DL-safe rules axioms into

Horn-clause rules format. Additionally, this translator extracts concepts and roles from

different ontologies and maps them correspondingly in the from of bridge rules which

are transformed in OWL 2 RL rule format. These rules are then translated into a set

CHAPTER 7. CONCLUSION AND FUTURE WORK 166

of plain Horn-clause rules format. Figure 7.3 shows the distributed semantic knowledge

translation process and the output generated from D-Onto-HCR is given in Figure 7.4.

Figure 7.4: D-Onto-HCR Output

The new tool D-Onto-HCR should have the following features:

• System should prompt users to choose the ontologies from the published source.

• Load the ontology files (in RDF/XML or OWL/XML format) as an input.

• Extract the set of logical axioms from the ontology, which can either be TBox axiom

or ABox axiom.

• We use OWL parser to parse the ontology into OWL API objects which then extracts

the set of TBox and ABox axioms.

• The set of TBox and ABox axioms are in the form of OWL 2 RL rules.

CHAPTER 7. CONCLUSION AND FUTURE WORK 167

• We translate these set of axioms into a set of plain text in Horn-clause rules format.

• DL safe rule axioms are in the form of SWRL rules which are already in the form

of Horn-clause rules.

• We also extract DL Safe rules (which are defined in Functional Syntax format) from

ontology and then translate them into plain Horn-clause rule format.

• The inter-ontology axioms are extracted from different ontologies and are trans-

formed as bridge rules.

These set of Horn-clause rules, translated from ontologies using OWL API, are suitable

to implement rule based context-aware multi-agent systems.

7.2.4 Potential Application Framework using Context-aware Resource-

bounded Devices

The frameworks presented in this thesis are not practically implemented yet, so another

possible direction is to implement these frameworks using Android platform. Application

systems can be developed using Android platform in which smartphones act as context-

aware agents. The potential application would be autonomous in a sense that the system

would act independently on behalf of the user. This application would be installed and

run on smartphones. It would acquire contextual information automatically from its spec-

ified domain, perform reasoning in order to derive the goal and then adapt its behavior

accordingly. This system would be very useful for safety critical domains such as disaster

recovery, emergency situations, elder care systems, traffic control system, among others.

7.3 Conclusion

This chapter has two core sections. In the first section, we have recapitulated the core

contribution of the thesis and has documented the relevant literature to figure out the

CHAPTER 7. CONCLUSION AND FUTURE WORK 168

significant gaps to be filled with this research work. In the second section, we discussed

briefly the future work which is intended to be undertaken as an extended work in a

number of ways. One possible direction is to extend the logical framework LDROCS with

the incorporation of multi-context systems. Another possible direction discussed, in this

chapter, is to model the system using distributed description logics considering multiple

ontologies. At the end of this chapter, we discussed the potential application framework

to be developed using context-aware resource-bounded devices.

Bibliography

[Abowd et al., 1999] Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., and

Steggles, P. (1999). Towards a better understanding of context and context-awareness.

In Handheld and ubiquitous computing, pages 304–307. Springer.

[Agre, 2001] Agre, P. E. (2001). Changing places: Contexts of awareness in computing.

Hum.-Comput. Interact., 16(2):177–192.

[Albore et al., 2006] Albore, A., Alechina, N., Bertoli, P., Ghidini, C., Logan, B., and

Serafini, L. (2006). Model-checking memory requirements of resource-bounded rea-

soners. In AAAI, volume 6, pages 213–218.

[Alechina et al., 2007] Alechina, N., Bertoli, P., Ghidini, C., Jago, M., Logan, B., and

Serafini, L. (2007). Model Checking and Artificial Intelligence: 4th Workshop,

MoChArt IV, Riva del Garda, Italy, August 29, 2006, Revised Selected and Invited Pa-

pers, chapter Verifying Space and Time Requirements for Resource-Bounded Agents,

pages 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Alechina et al., 2006] Alechina, N., Jago, M., and Logan, B. (2006). Modal logics for

communicating rule-based agents. In ECAI, volume 6, pages 322–326.

[Alechina et al., 2008] Alechina, N., Jago, M., and Logan, B. (2008). Preference-based

belief revision for rule-based agents. Synthese, 165(2):159–177.

[Alechina et al., 2009a] Alechina, N., Logan, B., Nga, N., and Rakib, A. (2009a). Ver-

ifying time and communication costs of rule-based reasoners. In Peled, D. and

169

BIBLIOGRAPHY 170

Wooldridge, M., editors, Model Checking and Artificial Intelligence, volume 5348 of

Lecture Notes in Computer Science, pages 1–14. Springer Berlin Heidelberg.

[Alechina et al., 2009b] Alechina, N., Logan, B., Nguyen, H. N., and Rakib, A. (2009b).

Reasoning about other agents beliefs under bounded resources. In Knowledge Repre-

sentation for Agents and Multi-Agent Systems, pages 1–15. Springer.

[Alechina et al., 2009c] Alechina, N., Logan, B., Nguyen, H. N., and Rakib, A. (2009c).

Verifying time, memory and communication bounds in systems of reasoning agents.

Synthese, 169(2):385–403.

[Alpern and Schneider, 1985] Alpern, B. and Schneider, F. B. (1985). Defining liveness.

Information Processing Letters, 21(4):181 – 185.

[Alur et al., 1998] Alur, R., Henzinger, T. A., Mang, F. Y. C., Qadeer, S., Rajamani,

S. K., and Tasiran, S. (1998). Computer Aided Verification: 10th International Con-

ference, CAV’98 Vancouver, BC, Canada, June 28 – July 2, 1998 Proceedings, chapter

MOCHA: Modularity in model checking, pages 521–525. Springer Berlin Heidelberg,

Berlin, Heidelberg.

[Antoniou, 2002] Antoniou, G. (2002). A nonmonotonic rule system using ontologies. In

RuleML. Proceedings of the First International Workshop on Rules and Rule Markup

Languages for the Semantic Web (RuleML 2002), volume 60 of CEUR Workshop

Proceedings.

[Antoniou and Bikakis, 2007] Antoniou, G. and Bikakis, A. (2007). Dr-prolog: A system

for defeasible reasoning with rules and ontologies on the semantic web. Knowledge and

Data Engineering, IEEE Transactions on, 19(2):233–245.

[Antoniou et al., 1999a] Antoniou, G., Billington, D., Governatori, G., and Maher, M. J.

(1999a). On the modeling and analysis of regulations. In Australian Conference Infor-

mation Systems, pages 20–29.

BIBLIOGRAPHY 171

[Antoniou et al., 2001] Antoniou, G., Billington, D., Governatori, G., and Maher, M. J.

(2001). Representation results for defeasible logic. ACM Transactions on Computa-

tional Logic, 2(2):255–287.

[Antoniou et al., 1999b] Antoniou, G., Maher, M. J., Billington, B., and Governatori, G.

(1999b). A comparison of sceptical naf-free logic programming approaches. In Logic

Programming and Nonmonotonic Reasoning, pages 347–356. Springer.

[Antoniou et al., 2005] Antoniou, G., Skylogiannis, T., Bikakis, A., and Bassiliades, N.

(2005). Dr-brokering-a defeasible logic-based system for semantic brokering. In e-

Technology, e-Commerce and e-Service, 2005. EEE’05. Proceedings. The 2005 IEEE

International Conference on, pages 414–417. IEEE.

[Artale, a] Artale, A. Formal methods: Linear temporal logic. http://www.inf.

unibz.it/~artale/. Accessed: 2016-07-04.

[Artale, b] Artale, A. Ltl: Linear-time logic. http://en.wikipedia.org/wiki/

Linear_temporal_logic. Accessed: 2016-05-04.

[Augusto and Simari, 2001] Augusto, J. C. and Simari, G. R. (2001). Temporal defeasi-

ble reasoning. Knowledge and information systems, 3(3):287–318.

[Baader, 2003] Baader, F. (2003). The description logic handbook: theory, implementa-

tion, and applications. Cambridge university press.

[Baader et al., 2003] Baader, F., Küsters, R., and Wolter, F. (2003). Extensions to descrip-

tion logics. In The description logic handbook, pages 219–261. Cambridge University

Press.

[Baader and Nutt, 2003] Baader, F. and Nutt, W. (2003). Basic description logics. In

Description logic handbook, pages 43–95.

[Baier et al., 2008] Baier, C., Katoen, J.-P., et al. (2008). Principles of model checking,

volume 26202649. MIT press Cambridge.

http://www.inf.unibz.it/~artale/
http://www.inf.unibz.it/~artale/
http://en.wikipedia.org/wiki/Linear_temporal_logic
http://en.wikipedia.org/wiki/Linear_temporal_logic

BIBLIOGRAPHY 172

[Baldauf et al., 2007] Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A survey on

context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing,

2(4):263–277.

[Baral and Gelfond, 1994] Baral, C. and Gelfond, M. (1994). Logic programming and

knowledge representation. The Journal of Logic Programming, 19:73–148.

[Barnat et al., 2006] Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., and Šimeček,

P. (2006). Computer Aided Verification: 18th International Conference, CAV 2006,

Seattle, WA, USA, August 17-20, 2006. Proceedings, chapter DiVinE – A Tool for Dis-

tributed Verification, pages 278–281. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Bassiliades et al., 2004] Bassiliades, N., Antoniou, G., and Vlahavas, I. (2004). A de-

feasible logic reasoner for the semantic web. In Rules and Rule Markup Languages for

the Semantic Web, pages 49–64. Springer.

[Bassiliades and Vlahavas, 2003] Bassiliades, N. and Vlahavas, I. P. (2003). Capturing

rdf descriptive semantics in an object oriented knowledge base system. In Proc. Inter-

national Word Wide Web Conference.

[Bechhofer, 2007] Bechhofer, S. (2007). Programming to the owl api: Introduc-

tion, university of manchester. http://owlapi.sourceforge.net/SKB-SemTech-OWLAPI-

6up.pdf. Accessed: 2015-12-15.

[Bechhofer et al., 2003] Bechhofer, S., Volz, R., and Lord, P. (2003). Cooking the seman-

tic web with the owl api. In The Semantic Web-ISWC 2003, pages 659–675. Springer.

[Benslimane et al., 2006] Benslimane, D., Arara, A., Falquet, G., Maamar, Z., Thiran, P.,

and Gargouri, F. (2006). Advances in Information Systems: 4th International Confer-

ence, ADVIS 2006, Izmir, Turkey, October 18-20,2006. Proceedings, chapter Contex-

tual Ontologies, pages 168–176. Springer Berlin Heidelberg, Berlin, Heidelberg.

BIBLIOGRAPHY 173

[Benthem, 2010] Benthem, J. V. (2010). Modal logic for open minds. CSLI lecture notes,

Center for the Study of Language and Information.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The

semantic web. pages 34–43.

[Bettini et al., 2010] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D.,

Ranganathan, A., and Riboni, D. (2010). A survey of context modelling and reasoning

techniques. Pervasive and Mobile Computing, 6(2):161 – 180. Context Modelling,

Reasoning and Management.

[Bikakis and Antoniou, 2010] Bikakis, A. and Antoniou, G. (2010). Defeasible contex-

tual reasoning with arguments in ambient intelligence. Knowledge and Data Engineer-

ing, IEEE Transactions on, 22(11):1492–1506.

[Bikakis et al., 2010] Bikakis, A., Antoniou, G., and Hasapis, P. (2010). Strategies for

contextual reasoning with conflicts in ambient intelligence. Knowledge and Informa-

tion Systems, 27(1):45–84.

[Bikakis et al., 2008] Bikakis, A., Antoniou, G., and Hassapis, P. (September 19, 2008).

Distributed defeasible reasoning in ambient intelligence. Preprint submitted to Data

and Knowledge Engineering.

[Blackburn et al., 2002] Blackburn, P., De Rijke, M., and Venema, Y. (2002). Modal

Logic: Graph. Darst, volume 53. Cambridge University Press.

[Bordini et al., 2003] Bordini, R. H., Fisher, M., Pardavila, C., Visser, W., and

Wooldridge, M. (2003). Computer Aided Verification: 15th International Conference,

CAV 2003, Boulder, CO, USA, July 8-12, 2003. Proceedings, chapter Model Check-

ing Multi-Agent Programs with CASP, pages 110–113. Springer Berlin Heidelberg,

Berlin, Heidelberg.

BIBLIOGRAPHY 174

[Borgida and Serafini, 2003] Borgida, A. and Serafini, L. (2003). Distributed description

logics: Assimilating information from peer sources. In Journal on Data Semantics I,

pages 153–184. Springer.

[Botoeva, 2014] Botoeva, E. (2014). Description logic knowledge base exchange. PhD

thesis, Ph. D. thesis, Free University of Bozen-Bolzano.

[Brewka et al., 2007] Brewka, G., Roelofsen, F., and Serafini, L. (2007). Contextual de-

fault reasoning. In IJCAI, pages 268–273.

[Brown, 1996] Brown, M. (1996). Supporting user mobility. In Mobile Communications,

IFIP The International Federation for Information Processing, pages 69–77. Springer

US.

[Brown et al., 1997] Brown, P., Bovey, J., and Chen, X. (1997). Context-aware appli-

cations: from the laboratory to the marketplace. Personal Communications, IEEE,

4(5):58–64.

[Calvanese and De Giacomo, 2003] Calvanese, D. and De Giacomo, G. (2003). Expres-

sive description logics. In The Description Logic Handbook, pages 178–218. Cam-

bridge University Press.

[Castro and Muntz, 1999] Castro, P. and Muntz, R. (1999). Using context to assist in

multimedia object retrieval. In First International Workshop on Multimedia Intelligent

Storage and Retrieval Management. Citeseer.

[Chen et al., 2003] Chen, H., FININ, T., and JOSHI, A. (2003). An ontology for

context-aware pervasive computing environments. The Knowledge Engineering Re-

view, 18:197–207.

[Chen and Tolia, 2001] Chen, H. and Tolia, S. (2001). Steps towards creating a context-

aware software agent system. Technical report, Hewlett Packard Labs, Palo Alto HPL-

2001.

BIBLIOGRAPHY 175

[Clavel et al., 2007] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet, N.,

Meseguer, J., and Talcott, C. (2007). All about maude, a high-performance logical

framework, volume 4350 of lecture notes in computer science.

[connor et al, 2005] connor et al, O. (2005). Writing rules for the semantic web using

swrl and jess. Protégé With Rules Workshop 2005, Madrid, Spain.

[Cooperstock et al., 1995] Cooperstock, J. R., Tanikoshi, K., Beirne, G., Narine, T., and

Buxton, W. A. S. (1995). Evolution of a reactive environment. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’95, pages 170–

177, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

[Creignou et al., 2012] Creignou, N., Meier, A., Vollmer, H., and Thomas, M. (2012).

The complexity of reasoning for fragments of autoepistemic logic. ACM Transactions

on Computational Logic (TOCL), 13(2):17.

[Daconta et al., 2004] Daconta, M. C., Smith, K. T., and Oerst, L. J. (2004). The se-

mantic web: a guide to the future of xml, web services, and knowledge management.

Computing Reviews, 45(12):778–779.

[Daniele et al., 2007] Daniele, L., Costa, P. D., and Pires, L. F. (2007). Towards a rule-

based approach for context-aware applications. In EUNICE, volume 4606 of Lecture

Notes in Computer Science, pages 33–43. Springer.

[Dastani et al., 2005] Dastani, M., Governatori, G., Rotolo, A., and Van Der Torre, L.

(2005). Programming cognitive agents in defeasible logic. In Logic for Programming,

Artificial Intelligence, and Reasoning, pages 621–636. Springer.

[Dey and Abowd, 2000] Dey, A. and Abowd, G. (2000). Cybreminder: A context-aware

system for supporting reminders. In Thomas, P. and Gellersen, H.-W., editors, Hand-

held and Ubiquitous Computing, volume 1927 of Lecture Notes in Computer Science,

pages 172–186. Springer Berlin Heidelberg.

BIBLIOGRAPHY 176

[Dey et al., 2001] Dey, A. K., Abowd, G. D., and Salber, D. (2001). A conceptual frame-

work and a toolkit for supporting the rapid prototyping of context-aware applications.

Human-computer interaction, 16(2):97–166.

[Dey et al., 1998] Dey, A. K., Abowd, G. D., and Wood, A. (1998). Cyberdesk: a frame-

work for providing self-integrating context-aware services. Knowledge-Based Systems,

11(1):3 – 13.

[Dockhorn Costa, 2007] Dockhorn Costa, P. (2007). Architectural support for context-

aware applications: from context models to services platforms. University of Twente.

[Dressler et al., 2009] Dressler, F., Dietrich, I., German, R., and Kruger, B. (2009). A

rule-based system for programming self-organized sensor and actor networks. Com-

puter Networks, 53(10):1737 – 1750. Autonomic and Self-Organising Systems.

[Dumas et al., 2002] Dumas, M., Governatori, G., Ter Hofstede, A. H., and Oaks, P.

(2002). A formal approach to negotiating agents development. Electronic commerce

research and applications, 1(2):193–207.

[Eiter et al., 2014] Eiter, T., Fink, M., Schuller, P., and Weinzierl, A. (2014). Finding

explanations of inconsistency in multi-context systems. Artificial Intelligence, 216:233

– 274.

[Eiter et al., 2011] Eiter, T., Ianni, G., Lukasiewicz, T., and Schindlauer, R. (2011). Well-

founded semantics for description logic programs in the semantic web. ACM Transac-

tions on Computational Logic (TOCL), 12(2):11.

[Ejigu et al., 2007] Ejigu, D., Scuturici, M., and Brunie, L. (2007). An ontology-based

approach to context modeling and reasoning in pervasive computing. In Pervasive

Computing and Communications Workshops, 2007. PerCom Workshops ’07. Fifth An-

nual IEEE International Conference on, pages 14–19.

BIBLIOGRAPHY 177

[Eker et al., 2003] Eker, S., Meseguer, J., and Sridharanarayanan, A. (2003). The maude

ltl model checker and its implementation. In Ball, T. and Rajamani, S., editors, Model

Checking Software, volume 2648 of Lecture Notes in Computer Science, pages 230–

234. Springer Berlin Heidelberg.

[Elrod et al., 1993] Elrod, S., Hall, G., Costanza, R., Dixon, M., and Des Rivières, J.

(1993). Responsive office environments. Commun. ACM, 36(7):84–85.

[Esposito et al., 2008] Esposito, A., Tarricone, L., Zappatore, M., Catarinucci, L.,

Colella, R., and DiBari, A. (2008). A framework for context-aware home-health mon-

itoring. In Sandnes, F., Zhang, Y., Rong, C., Yang, L., and Ma, J., editors, Ubiqui-

tous Intelligence and Computing, volume 5061 of Lecture Notes in Computer Science,

pages 119–130. Springer Berlin Heidelberg.

[Faruqui, 2012] Faruqui, M. R. U. (2012). Scalable reasoning over large ontologies. Mas-

ter’s thesis, Saint Francis Xavier University.

[Fensel et al., 2001] Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., and

Patel-Schneider, P. F. (2001). Oil: An ontology infrastructure for the semantic web.

Intelligent Systems, IEEE, 16(2):38–45.

[Fickas et al., 1997] Fickas, S., Kortuem, G., and Segall, Z. (1997). Software organi-

zation for dynamic and adaptable wearable systems. In Wearable Computers, 1997.

Digest of Papers., First International Symposium on, pages 56–63.

[Friedman, 2003] Friedman, E. (2003). Jess in Action: Rule-based Systems in Java. Man-

ning Publications Co., Greenwich, CT, USA.

[Fu and Fu, 2015] Fu, J. and Fu, Y. (2015). An adaptive multi-agent system for cost

collaborative management in supply chains. Engineering Applications of Artificial

Intelligence, 44:91 – 100.

BIBLIOGRAPHY 178

[Gammie and van der Meyden, 2004] Gammie, P. and van der Meyden, R. (2004). Com-

puter Aided Verification: 16th International Conference, CAV 2004, Boston, MA, USA,

July 13-17, 2004. Proceedings, chapter MCK: Model Checking the Logic of Knowl-

edge, pages 479–483. Springer Berlin Heidelberg, Berlin, Heidelberg.

[García and Simari, 2004] García, A. J. and Simari, G. R. (2004). Defeasible logic pro-

gramming: An argumentative approach. Theory and practice of logic programming,

4(1+ 2):95–138.

[Ghidini and Giunchiglia, 2001] Ghidini, C. and Giunchiglia, F. (2001). Local mod-

els semantics, or contextual reasoning=locality+compatibility. Artificial Intelligence,

127(2):221 – 259.

[Gómez et al., 2006] Gómez, S. A., Chesnevar, C. I., and Simari, G. R. (2006). An ap-

proach to handling inconsistent ontology definitions based on the translation of descrip-

tion logics into defeasible logic programming. In XII Congreso Argentino de Ciencias

de la Computación, pages 1185–1196.

[Gómez et al., 2007] Gómez, S. A., Chesñevar, C. I., and Simari, G. R. (2007). Inconsis-

tent ontology handling by translating description logics into defeasible logic program-

ming. Revista Iberoamericana de Inteligencia Artificial, 11(35):11–22.

[Gómez et al., 2010] Gómez, S. A., Chesnevar, C. I., and Simari, G. R. (2010). A defea-

sible logic programming approach to the integration of rules and ontologies. Journal

of Computer Science & Technology, 10:74–80.

[Governatori, 2005] Governatori, G. (2005). Representing business contracts in ruleml.

International Journal of Cooperative Information Systems, 14(02n03):181–216.

[Governatori et al., 2004] Governatori, G., Maher, M. J., Antoniou, G., and Billington,

D. (2004). Argumentation semantics for defeasible logic. Journal of Logic and Com-

putation, 14(5):675–702.

BIBLIOGRAPHY 179

[Governatori and Pham Hoang, 2005] Governatori, G. and Pham Hoang, D. (2005). Dr-

contract: an architecture for e-contracts in defeasible logic. In 2nd EDOC Workshop

on Contract Architectures and Languages (CoALA 2005), pages 1–9. IEEE.

[Governatori and Rotolo, 2004] Governatori, G. and Rotolo, A. (2004). Defeasible logic:

Agency, intention and obligation. In Deontic logic in computer science, pages 114–

128. Springer.

[Governatori et al., 2007] Governatori, G., Rotolo, A., Riveret, R., Palmirani, M., and

Sartor, G. (2007). Variants of temporal defeasible logics for modelling norm modifi-

cations. In Proceedings of the 11th international conference on Artificial intelligence

and law, pages 155–159. ACM.

[Governatori et al., 2005] Governatori, G., Rotolo, A., and Sartor, G. (2005). Tempo-

ralised normative positions in defeasible logic. In Proceedings of the 10th international

conference on Artificial intelligence and law, pages 25–34. ACM.

[Grosof, 1997] Grosof, B. N. (1997). Prioritized conflict handling for logic programs. In

ILPS, volume 97, pages 197–211.

[Grosof et al., 2003] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003). De-

scription logic programs: Combining logic programs with description logic. In Pro-

ceedings of the 12th International Conference on World Wide Web, WWW ’03, pages

48–57, New York, NY, USA. ACM.

[Grosof et al., 1999] Grosof, B. N., Labrou, Y., and Chan, H. Y. (1999). A declarative ap-

proach to business rules in contracts: courteous logic programs in xml. In Proceedings

of the 1st ACM conference on Electronic commerce, pages 68–77. ACM.

[Grosof and Poon, 2003] Grosof, B. N. and Poon, T. C. (2003). Sweetdeal: representing

agent contracts with exceptions using xml rules, ontologies, and process descriptions.

In Proceedings of the 12th international conference on World Wide Web, pages 340–

349. ACM.

BIBLIOGRAPHY 180

[Gruber,] Gruber, T. What is an ontology? http://www-ksl.stanford.edu/

kst/what-is-an-ontology.html. Accessed: 2016-02-04.

[Haarslev and Möller, 2001] Haarslev, V. and Möller, R. (2001). Racer system descrip-

tion. In Gor, R., Leitsch, A., and Nipkow, T., editors, Automated Reasoning, volume

2083 of Lecture Notes in Computer Science, pages 701–705. Springer Berlin Heidel-

berg.

[Haase et al., 2008] Haase, P., Lewen, H., Studer, R., Tran, D. T., Erdmann, M., d’Aquin,

M., and Motta, E. (2008). The neon ontology engineering toolkit. In Jeff Korn, editor,

WWW 2008 Developers Track.

[Hayes-Roth, 1985] Hayes-Roth, F. (1985). Rule-based systems. Commun. ACM,

28(9):921–932.

[Hedman, 2004] Hedman, S. (2004). A first course in logic: an introduction to model

theory, proof theory, computability, and complexity. Number 9. Oxford University

Press Oxford.

[Helal et al., 2003] Helal, S., Winkler, B., Lee, C., Kaddoura, Y., Ran, L., Giraldo, C.,

Kuchibhotla, S., and Mann, W. (2003). Enabling location-aware pervasive comput-

ing applications for the elderly. In Pervasive Computing and Communications, 2003.

(PerCom 2003). Proceedings of the First IEEE International Conference on, pages

531–536.

[Hendler and McGuinness, 2000] Hendler, J. and McGuinness, D. L. (2000). The darpa

agent markup language. IEEE Intelligent systems, 15(6):67–73.

[Henricksen et al., 2002] Henricksen, K., Indulska, J., and Rakotonirainy, A. (2002).

Modeling context information in pervasive computing systems. In Mattern, F. and

Naghshineh, M., editors, Pervasive Computing, volume 2414 of Lecture Notes in Com-

puter Science, pages 167–180. Springer Berlin Heidelberg.

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

BIBLIOGRAPHY 181

[Hintikka, 1962] Hintikka, J. (1962). Knowledge and Belief. Ithaca, N.Y.,Cornell Uni-

versity Press.

[Hitzler et al., 2009] Hitzler, P., Krötzsch, M., Parsia, B., and Rudolph, S. (2009). Owl 2

web ontology language primer. W3C recommendation, 27(1):80–85.

[Holzmann, 1997] Holzmann, G. J. (1997). The model checker spin. IEEE Transactions

on software engineering, 23(5):page 279.

[Hong et al., 2009] Hong, J., Suh, E.-H., Kim, J., and Kim, S. (2009). Context-aware

system for proactive personalized service based on context history. Expert Systems

with Applications, 36(4):7448 – 7457.

[Hong and Cho, 2008] Hong, M.-w. and Cho, D.-j. (2008). Ontology context model

for context-aware learning service in ubiquitous learning environments. International

Journal of Computers, 2(3):172–178.

[Horridge and Bechhofer, 2009] Horridge, M. and Bechhofer, S. (2009). The OWL API:

A java API for working with OWL 2 Ontologies. In 6th OWL Experienced and Direc-

tions Workshop (OWLED), volume 529, pages 49–58.

[Horridge and Bechhofer, 2011] Horridge, M. and Bechhofer, S. (2011). The owl api: A

java api for owl ontologies. Semantic Web, 2(1):11–21.

[Horrocks et al., 2002] Horrocks, I. et al. (2002). Daml+oil: a description logic for the

semantic web. IEEE Data Eng. Bull., 25(1):4–9.

[Horrocks et al., 2006] Horrocks, I., Kutz, O., and Sattler, U. (2006). The even more

irresistible sroiq. KR, 6:57–67.

[Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof,

B., and Dean, M. (2004). SWRL: A semantic web rule language combining OWL and

RuleML. W3C Member Submission.

BIBLIOGRAPHY 182

[Hull et al., 1997] Hull, R., Neaves, P., and Bedford-Roberts, J. (1997). Towards situ-

ated computing. In Wearable Computers, 1997. Digest of Papers., First International

Symposium on, pages 146–153.

[Hustadt and Schmidt, 2000] Hustadt, U. and Schmidt, R. A. (2000). Issues of decidabil-

ity for description logics in the framework of resolution. In Automated Deduction in

Classical and Non-Classical Logics, pages 191–205. Springer.

[Hustadt et al., 2004] Hustadt, U., Schmidt, R. A., and Georgieva, L. (2004). A survey of

decidable first-order fragments and description logics. Journal of Relational Methods

in Computer Science, 1:(3) 251–276.

[Huth and Ryan, 2004] Huth, M. and Ryan, M. (2004). Logic in Computer Science: Mod-

elling and reasoning about systems. Cambridge University Press.

[Intille et al., 2002] Intille, S. S., Larson, K., and Kukla, C. (2002). Just-in-time context-

sensitive questioning for preventative health care. In Proceedings of the AAAI 2002

Workshop on Automation as Caregiver: The Role of Intelligent Technology in Elder

Care, AAAI Technical Report WS-02-02. AAAI Press, Menlo Park, CA, 2002.

[Jago, 2006] Jago, M. (2006). Logics for resource-bounded agents. PhD thesis, Univer-

sity of Nottingham.

[Jago, 2009] Jago, M. (2009). Epistemic logic for rule-based agents. Journal of Logic,

Language and Information, 18(1):131–158.

[Kakas et al., 1992] Kakas, A. C., Kowalski, R. A., and Toni, F. (1992). Abductive logic

programming. Journal of logic and computation, 2(6):719–770.

[Kindberg and Barton, 2001] Kindberg, T. and Barton, J. (2001). A web-based nomadic

computing system. Computer Networks, 35(4):443 – 456. Pervasive Computing.

BIBLIOGRAPHY 183

[Knublauch et al., 2004] Knublauch, H., Fergerson, R. W., Noy, N. F., and Musen, M. A.

(2004). The protégé owl plugin: An open development environment for semantic web

applications. In The Semantic Web–ISWC 2004, pages 229–243. Springer.

[Koch and Rahwan, 2004] Koch, F. and Rahwan, I. (2004). Classification of agents-based

mobile assistants. In Proceedings of the AAMAS workshop on agents for ubiquitous

computing (UbiA-gents), New York, USA, Jul 2004.

[Kravari et al., 2010] Kravari, K., Kastori, G.-E., Bassiliades, N., and Governatori, G.

(2010). A contract agreement policy-based workflow methodology for agents interact-

ing in the semantic web. In Semantic Web Rules, pages 225–239. Springer.

[Krötzsch et al., 2011] Krötzsch, M., Maier, F., Krisnadhi, A., and Hitzler, P. (2011). A

better uncle for owl: Nominal schemas for integrating rules and ontologies. In Pro-

ceedings of the 20th international conference on World wide web, pages 645–654.

ACM.

[Kuba, 2012] Kuba, M. (2012). Owl 2 and swrl tutorial. From http://dior.ics.

muni.cz/~makub/owl/#ontology.htm. retrieved on 29 December, 2015.

[Kwon et al., 2005] Kwon, O., Choi, S., and Park, G. (2005). Nama: a context-aware

multi-agent based web service approach to proactive need identification for personal-

ized reminder systems. Expert Systems with Applications, 29(1):17 – 32.

[Kwon and Sadeh, 2004] Kwon, O. B. and Sadeh, N. (2004). Applying case-based rea-

soning and multi-agent intelligent system to context-aware comparative shopping. De-

cision Support Systems, 37(2):199 – 213.

[Lam, 2012] Lam, H. P. (2012). On the derivability of defeasible logic, school of informa-

tion technology and electrical engineering. The University of Queensland, Queensland.

[Leijdekkers and Gay, 2006] Leijdekkers, P. and Gay, V. (2006). Personal heart monitor-

ing system using smart phones to detect life threatening arrhythmias. In Computer-

http://dior.ics.muni.cz/~makub/owl/#ontology.htm
http://dior.ics.muni.cz/~makub/owl/#ontology.htm

BIBLIOGRAPHY 184

Based Medical Systems, 2006. CBMS 2006. 19th IEEE International Symposium on,

pages 157–164.

[Lesser et al., 1999] Lesser, V., Atighetchi, M., Benyo, B., Horling, B., Raja, A., Wagner,

T., and Xuan, P. (1999). The intelligent home testbed. environment, 2:15.

[Levy and Rousset, 1998] Levy, A. Y. and Rousset, M.-C. (1998). Combining horn rules

and description logics in CARIN. Artificial Intelligence, 104(1-2):165–209.

[Liebig and Noppens, 2004] Liebig, T. and Noppens, O. (2004). Ontotrack: Combining

browsing and editing with reasoning and explaining for owl lite ontologies. In Pro-

ceedings of the 3rd International Semantic Web Conference ISWC 2004. Hiroshima,

Japan, pages 8–11. Springer.

[LIRIS, 2010] LIRIS, L. B. R. (2010). A dynamic trust-based context-aware secure au-

thentication framework for pervasive computing environments. PhD thesis, Telecom &

Management SudParis (France).

[Lomuscio et al., 2009] Lomuscio, A., Qu, H., and Raimondi, F. (2009). Computer Aided

Verification: 21st International Conference, CAV 2009, Grenoble, France, June 26 -

July 2, 2009. Proceedings, chapter MCMAS: A Model Checker for the Verification of

Multi-Agent Systems, pages 682–688. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Lu and Sadiq, 2007] Lu, R. and Sadiq, S. (2007). A survey of comparative business

process modeling approaches. In Business information systems, pages 82–94. Springer.

[Maher, 2001] Maher, M. J. (2001). Propositional defeasible logic has linear complexity.

Theory and Practice of Logic Programming, 1(06):691–711.

[Maher, 2002] Maher, M. J. (2002). A model-theoretic semantics for defeasible logic.

Workshop on Paraconsistent Computational Logic, pages 67–80.

BIBLIOGRAPHY 185

[Maher et al., 2001] Maher, M. J., Rock, A., Antoniou, G., Billington, D., and Miller,

T. (2001). Efficient defeasible reasoning systems. International Journal on Artificial

Intelligence Tools, 10(04):483–501.

[McCarthy, 1987] McCarthy, J. (1987). Circumscription: a form of nonmonotonic rea-

soning. Artificial Intelligence, 13:27–39.

[McDermott and Doyle, 1980] McDermott, D. and Doyle, J. (1980). Non-monotonic

logic i. Artificial intelligence, 13(1):41–72.

[Moore, 1985] Moore, R. C. (1985). Semantical considerations on nonmonotonic logic.

Artificial intelligence, 25(1):75–94.

[Motik et al., 2005] Motik, B., Sattler, U., and Studer, R. (2005). Query answering for

OWL-DL with rules. Journal of Web Semantics: Science, Services and Agents on the

World Wide Web, 3:41–60.

[Motik et al., 2009] Motik, B., Shearer, R., and Horrocks, I. (2009). Hypertableau rea-

soning for description logics. Journal of Artificial Intelligence Research, 36(1):165–

228.

[Motik and Studer, 2005] Motik, B. and Studer, R. (2005). Kaon2-a scalable reasoning

tool for the semantic web. In Proceedings of the 2nd European Semantic Web Confer-

ence (ESWC’05), Heraklion, Greece, volume 17.

[Mozer, 1999] Mozer, M. (1999). An intelligent environment must be adaptive. Intelli-

gent Systems and their Applications, IEEE, 14(2):11–13.

[Nabih et al., 2011] Nabih, A. K., Gomaa, M. M., Osman, H. S., Aly, G. M., Azid, S. I.,

Kumar, S., Colace, F., De Santo, M., Abdullah, M., and Poh, L. M. (2011). Modeling,

simulation, and control of smart homes using petri nets. International Journal of Smart

Home, 5(3):1–14.

BIBLIOGRAPHY 186

[Nga, 2011] Nga, N. H. (2011). Reasoning about Resource-bounded Multi-agent Sys-

tems. PhD thesis, University Of Nottingham.

[Nute, 2003] Nute, D. (2003). Defeasible logic. In Web Knowledge Management and

Decision Support, pages 151–169. Springer.

[O’Connor and Das, 2012] O’Connor, M. J. and Das, A. (2012). A pair of owl 2 rl rea-

soners. In Pavel Klinov and Matthew Horridge, editors, OWLED, volume 849 of CEUR

Workshop Proceedings. CEUR-WS.org.

[Pascoe, 1998] Pascoe, J. (1998). Adding generic contextual capabilities to wearable

computers. In Wearable Computers, 1998. Digest of Papers. Second International

Symposium on, pages 92–99. IEEE.

[Patel-Schneider, 1987] Patel-Schneider, P. F. (1987). Decidable, logic-based knowledge

representation. PhD Thesis, Department of Computer Science, University of Toronto,

Toronto.

[Paul, 1993] Paul, G. (1993). Approaches to abductive reasoning: an overview. Artificial

intelligence review, 7(2):109–152.

[Perera et al., 2014] Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D.

(2014). Context aware computing for the internet of things: A survey. Communi-

cations Surveys Tutorials, IEEE, 16(1):414–454.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In Foundations of

Computer Science, 1977., 18th Annual Symposium on, pages 46–57.

[Priyantha et al., 2000] Priyantha, N. B., Chakraborty, A., and Balakrishnan, H. (2000).

The cricket location-support system. In Proceedings of the 6th Annual International

Conference on Mobile Computing and Networking, MobiCom ’00, pages 32–43, New

York, NY, USA. ACM.

BIBLIOGRAPHY 187

[Protégé, 2011] Protégé (2011). The Protégé ontology editor and knowledge-base frame-

work (Version 4.1). http://protege.stanford.edu/. Accessed: 2016-08-15.

[Qin et al., 2007] Qin, W., Shi, Y., and Suo, Y. (2007). Ontology-based context-aware

middleware for smart spaces. Tsinghua Science & Technology, 12(6):707–713.

[Rakib, 2011] Rakib, A. (2011). Verifying Requirements For Resource-Bounded Agents.

PhD thesis, University Of Nottingham.

[Rakib, 2012] Rakib, A. (2012). Formal approaches to modelling and verifying resource-

bounded agents-state of the art and future prospects. Journal of Information Technology

& Software Engineering, 2(4).

[Rakib and Faruqui, 2013] Rakib, A. and Faruqui, R. (2013). A formal approach to mod-

elling and verifying resource-bounded context-aware agents. In Vinh, P., Hung, N.,

Tung, N., and Suzuki, J., editors, Context-Aware Systems and Applications, volume

109 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, pages 86–96. Springer Berlin Heidelberg.

[Rakib et al., 2012] Rakib, A., Faruqui, R., and MacCaull, W. (2012). Verifying resource

requirements for ontology-driven rule-based agents. In Lukasiewicz, T. and Sali, A.,

editors, Foundations of Information and Knowledge Systems, volume 7153 of Lecture

Notes in Computer Science, pages 312–331. Springer Berlin Heidelberg.

[Rakib and Haque, 2014] Rakib, A. and Haque, H. (2014). A logic for context-aware

non-monotonic reasoning agents. In Gelbukh, A., Espinoza, F., and Galicia-Haro,

S., editors, Human-Inspired Computing and Its Applications, volume 8856 of Lecture

Notes in Computer Science, pages 453–471. Springer International Publishing.

[Rakib et al., 2014] Rakib, A., Ul Haque, H., and Faruqui, R. (2014). A temporal descrip-

tion logic for resource-bounded rule-based context-aware agents. In Vinh, P. C., Alagar,

V., Vassev, E., and Khare, A., editors, Context-Aware Systems and Applications, vol-

BIBLIOGRAPHY 188

ume 128 of Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, pages 3–14. Springer International Publishing.

[Reiter, 1980] Reiter, R. (1980). A logic for default reasoning. Artificial intelligence,

13(1):81–132.

[Rekimoto et al., 1998] Rekimoto, J., Ayatsuka, Y., and Hayashi, K. (1998). Augment-

able reality: situated communication through physical and digital spaces. In Wearable

Computers, 1998. Digest of Papers. Second International Symposium on, pages 68–75.

[Reynolds, 2001] Reynolds, M. (2001). An axiomatization of full computation tree logic.

Journal of Symbolic Logic, 66(3):1011–1057.

[Robinson, 1965] Robinson, J. A. (1965). A machine-oriented logic based on the resolu-

tion principle. J. ACM, 12(1):23–41.

[Rosati, 2006] Rosati, R. (2006). DL+log: Tight integration of description logics and

disjunctive datalog. In Proceedings, Tenth International Conference on Principles of

Knowledge Representation and Reasoning, pages 68–78. AAAI Press.

[Rudolph, 2011] Rudolph, S. (2011). Foundations of description logics. In Reasoning

Web. Semantic Technologies for the Web of Data, pages 76–136. Springer.

[Ryan et al., 1999] Ryan, N., Pascoe, J., and Morse, D. (1999). Enhanced reality field-

work: the context aware archaeological assistant. Bar International Series, 750:269–

274.

[Schilit et al., 1994] Schilit, B., Adams, N., and Want, R. (1994). Context-aware com-

puting applications. In Mobile Computing Systems and Applications, 1994. WMCSA

1994. First Workshop on, pages 85–90.

[Schilit and Theimer, 1994] Schilit, B. and Theimer, M. (1994). Disseminating active

map information to mobile hosts. Network, IEEE, 8(5):22–32.

BIBLIOGRAPHY 189

[Schmidt et al., 1999] Schmidt, A., Beigl, M., and Gellersen, H.-W. (1999). There is

more to context than location. Computers & Graphics, 23(6):893 – 901.

[Schmidt-Schauß and Smolka, 1991] Schmidt-Schauß, M. and Smolka, G. (1991). At-

tributive concept descriptions with complements. Artificial intelligence, 48(1):1–26.

[Shadbolt et al., 2006] Shadbolt, N., Hall, W., and Berners-Lee, T. (2006). The semantic

web revisited. IEEE Intelligent Systems 21(3), 21(3):96–101.

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. (2007).

Pellet: A practical owl-dl reasoner. Web Semantics: science, services and agents on

the World Wide Web, 5(2):51–53.

[Skylogiannis et al., 2007] Skylogiannis, T., Antoniou, G., Bassiliades, N., Governatori,

G., and Bikakis, A. (2007). Dr-negotiate–a system for automated agent negotiation

with defeasible logic-based strategies. Data & Knowledge Engineering, 63(2):362–

380.

[Smullyan, 1995] Smullyan, R. M. (1995). First-order logic. ISBN-13: 080-

0759683703, Dover Publications, Courier Corporation.

[Stanford, 2002] Stanford, V. (2002). Using pervasive computing to deliver elder care.

Pervasive Computing, IEEE, 1(1):10–13.

[Stirling, 2012] Stirling, C. (2012). Bisimulation and logic. Sangiorgi and Rutten [24,

Chapter 4], pages 173–196.

[Strang and Linnhoff-Popien, 2004] Strang, T. and Linnhoff-Popien, C. (2004). A con-

text modeling survey. In Workshop on Advanced Context Modelling, Reasoning and

Management as part of UbiComp 2004 - The Sixth International Conference on Ubiq-

uitous Computing, Nottingham/England, September.

BIBLIOGRAPHY 190

[Strang et al., 2003] Strang, T., Linnhoff-Popien, C., and Frank, K. (2003). Cool: A

context ontology language to enable contextual interoperability. In Distributed appli-

cations and interoperable systems, pages 236–247. Springer.

[Ter Horst, 2005] Ter Horst, H. J. (2005). Completeness, decidability and complexity of

entailment for rdf schema and a semantic extension involving the owl vocabulary. Web

Semantics: Science, Services and Agents on the World Wide Web, 3(2):79–115.

[Terfloth et al., 2006] Terfloth, K., Wittenburg, G., and Schiller, J. (2006). Facts - a rule-

based middleware architecture for wireless sensor networks. In Communication System

Software and Middleware, 2006. Comsware 2006. First International Conference on,

pages 1–8.

[Tsarkov and Horrocks, 2006] Tsarkov, D. and Horrocks, I. (2006). Fact++ description

logic reasoner: System description. In Furbach, U. and Shankar, N., editors, Auto-

mated Reasoning, volume 4130 of Lecture Notes in Computer Science, pages 292–297.

Springer Berlin Heidelberg.

[Van der Hoek and Wooldridge, 2002] Van der Hoek, W. and Wooldridge, M. (2002).

Model Checking Software: 9th International SPIN Workshop Grenoble, France, April

11–13, 2002 Proceedings, chapter Model Checking Knowledge and Time, pages 95–

111. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Van Harmelen and McGuinness, 2004] Van Harmelen, F. and McGuinness, D. L.

(2004). Owl web ontology language overview. World Wide Web Consortium (W3C)

Recommendation.

[Vilasrao and Bhaskar, 2012] Vilasrao, V. V. and Bhaskar, P. (2012). Mining web data

based on ontology and swrl. International Journal of Information and Education Tech-

nology, 2(5).

[Walter Sinnott-Armstrong, 1986] Walter Sinnott-Armstrong, James Moor, R. F. (1986).

A defense of modus ponens. The Journal of Philosophy, 83(5):296–300.

BIBLIOGRAPHY 191

[Wang et al., 2004a] Wang, K., Billington, D., Blee, J., and Antoniou, G. (2004a). Com-

bining Description Logic and Defeasible Logic for the Semantic Web, pages 170–181.

Springer Berlin Heidelberg, Berlin, Heidelberg.

[Wang et al., 2004b] Wang, X., Zhang, D. Q., Gu, T., and Pung, H. (2004b). Ontology

based context modeling and reasoning using owl. In Pervasive Computing and Com-

munications Workshops, 2004. Proceedings of the Second IEEE Annual Conference

on, pages 18–22.

[Want et al., 1992] Want, R., Hopper, A., Falcão, V., and Gibbons, J. (1992). The active

badge location system. ACM Trans. Inf. Syst., 10(1):91–102.

[Weiser, 1999] Weiser, M. (1999). The computer for the 21st century. ACM SIGMO-

BILE Mobile Computing and Communications Review– Special issue dedicated to

Mark Weiser, 3(3):3–11.

[Wolper, 1983] Wolper, P. (1983). Temporal logic can be more expressive. Information

and Control, 56(1 - 2):72 – 99.

[Wooldridge et al., 2002] Wooldridge, M., Fisher, M., Huget, M.-P., and Parsons, S.

(2002). Model checking multi-agent systems with mable. In Proceedings of the First

International Joint Conference on Autonomous Agents and Multiagent Systems: Part

2, AAMAS ’02, pages 952–959, New York, NY, USA. ACM.

[Yang et al., 2003] Yang, G., Kifer, M., and Zhao, C. (2003). F lora-2: A rule-based

knowledge representation and inference infrastructure for the semantic web. In On

The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, pages

671–688. Springer.

[Zhang et al., 2005] Zhang, D., Gu, T., and Wang, X. (2005). Enabling context-aware

smart home with semantic web technologies. International Journal of Human-friendly

Welfare Robotic Systems, 6(4):12–20.

Appendix A

A set of rules for Smart Environment

Case Study

A.1 Patient Care Agent

Initial Facts: Person(’Philip), hasPatientID(’Philip, ’P001), PatientID(’P001)

Rules:

1. < 1 : Person(?p), hasPatientID(?p, ?pid), PatientID(?pid)→ Patient(?p) >

2. < 2 : Patient(?p), hasBloodPressure(?p,′Normal)→

Not(hasSituation(?p,′Emergency)) >

3. < 2 : Patient(?p), hasBloodPressure(?p,′ Prehypertension)→

Not(hasSituation(?p,′Emergency)) >

4. < 4 : Patient(?p), hasBloodPressure(?p,′ Stage1hypertension)→

hasSituation(?p,′OnCall) >

5. < 5 : Patient(?p), hasBloodPressure(?p,′ Stage2hypertension)→

hasSituation(?p,′Emergency) >

192

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 193

6. < 5 : Patient(?p), hasBloodPressure(?p,′Hypotension)→

hasSituation(?p,′Emergency) >

7. < 2 : Patient(?p), hasDBCategory(?p,′Controlled)→

Not(hasSituation(?p,′Emergency)) >

8. < 2 : Patient(?p), hasDBCategory(?p,′EstablishedDiabetes)→

Not(hasSituation(?p,′Emergency)) >

9. < 4 : Patient(?p), hasDBCategory(?p,′ Type2Diabetes)→

hasSituation(?p,′OnCall) >

10. < 5 : Patient(?p), hasDBCategory(?p,′Hyperglycaemia)→

hasSituation(?p,′Emergency) >

11. < 5 : Patient(?p), hasDBCategory(?p,′Hypoglycaemia)→

hasSituation(?p,′Emergency) >

12. < 5 : Patient(?p), hasFever(?p,′Hypothermia)→ hasSituation(?p,′Emergency)

>

13. < 2 : Patient(?p), hasFever(?p,′Normal)→ Not(hasSituation(?p,′Emergency))

>

14. < 2 : Patient(?p), hasFever(?p,′High)→ Not(hasSituation(?p,′Emergency)) >

15. < 4 : Patient(?p), hasFever(?p,′Hyperthermia)→ hasSituation(?p,′OnCall) >

16. < 5 : Patient(?p), hasFever(?p,′Hyperpyrexia)→ hasSituation(?p,′Emergency)

>

17. < 5 : Patient(?p), hasPulseRate(?p,′Abnormal)→ hasSituation(?p,′Emergency)

>

18. < 2 : Patient(?p), hasPulseRate(?p,′Normal)→

Not(hasSituation(?p,′Emergency)) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 194

19. < 4 : Patient(?p), hasBloodPressure(?p,′ Stage1hypertension),

hasDBCategory(?p,′EstablishedDiabetes), hasFever(?p,′High)→

hasSituation(?p,′OnCall) >

20. < 3 : Patient(?p), hasBloodPressure(?p,′ Prehypertension),

hasDBCategory(?p,′Controlled), hasFever(?p,′Normal)→

Not(hasSituation(?p,′OnCall)) >

21. < 2 : Patient(?p), hasBloodPressure(?p,′ Prehypertension),

hasDBCategory(?p,′EstablishedDiabetes), hasFever(?p,′Normal)→

Not(hasSituation(?p,′Emergency)) >

22. < 5 : Patient(?p), hasFever(?p,′Hyperpyrexia),

hasDBCategory(?p,′EstablishedDiabetes)→ hasSituation(?p,′Emergency) >

23. < 4 : Patient(?p), hasFever(?p,′Normal),

hasDBCategory(?p,′ Type2Diabetes)→ hasSituation(?p,′OnCall) >

24. < 5 : Patient(?p), hasDBCategory(?p,′ Type2Diabetes), hasPulseRate(?p,′Abnormal)

→ hasSituation(?p,′Emergency) >

25. < 5 : Patient(?p), hasBloodPressure(?p,′ Prehypertension),

hasDBCategory(?p,′Hyperglycaemia), hasPulseRate(?p,′Abnormal)→

hasSituation(?p,′Emergency) >

26. < 5 : Patient(?p), hasFever(?p,′Hyperpyrexia), hasPulseRate(?p,′Abnormal)

→ hasSituation(?p,′Emergency) >

27. < 5 : Patient(?p), hasBloodPressure(?p,′ Stage2hypertension),

hasDBCategory(?p,′ Type2Diabetes)→ hasSituation(?p,′Emergency) >

28. < 5 : Patient(?p), hasBloodPressure(?p,′ Stage2hypertension),

hasDBCategory(?p,′Hyperglycaemia), hasFever(?p,′Hyperpyrexia),

hasPulseRate(?p,′Abnormal)→ hasSituation(?p,′Emergency) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 195

29. < 6 : TELL(2, 1, hasBloodPressure(?p,′Normal))→

hasBloodPressure(?p,′Normal) >

30. < 6 : TELL(2, 1, hasBloodPressure(?p,′ Prehypertension))→

hasBloodPressure(?p,′ Prehypertension) >

31. < 6 : TELL(2, 1, hasBloodPressure(?p,′ Stage1hypertension))→

hasBloodPressure(?p,′ Stage1hypertension) >

32. < 6 : TELL(2, 1, hasBloodPressure(?p,′ Stage2hypertension))→

hasBloodPressure(?p,′ Stage2hypertension) >

33. < 6 : TELL(2, 1, hasBloodPressure(?p,′Hypotension))→

hasBloodPressure(?p,′Hypotension) >

34. < 6 : TELL(3, 1, hasDBCategory(?p,′Controlled))→

hasDBCategory(?p,′Controlled) >

35. < 6 : TELL(3, 1, hasDBCategory(?p,′EstablishedDiabetes))→

hasDBCategory(?p,′EstablishedDiabetes) >

36. < 6 : TELL(3, 1, hasDBCategory(?p,′ Type2Diabetes))→

hasDBCategory(?p,′ Type2Diabetes) >

37. < 6 : TELL(3, 1, hasDBCategory(?p,′Hyperglycaemia))→

hasDBCategory(?p,′Hyperglycaemia) >

38. < 6 : TELL(3, 1, hasDBCategory(?p,′Hypoglycaemia))→

hasDBCategory(?p,′Hypoglycaemia) >

39. < 6 : TELL(4, 1, hasFever(?p,′Hypothermia))→ hasFever(?p,′Hypothermia)

>

40. < 6 : TELL(4, 1, hasFever(?p,′Normal))→ hasFever(?p,′Normal) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 196

41. < 6 : TELL(4, 1, hasFever(?p,′High))→ hasFever(?p,′High) >

42. < 6 : TELL(4, 1, hasFever(?p,′Hyperthermia))→ hasFever(?p,′Hyperthermia)

>

43. < 6 : TELL(4, 1, hasFever(?p,′Hyperpyrexia))→ hasFever(?p,′Hyperpyrexia)

>

44. < 6 : TELL(5, 1, hasPulseRate(?p,′Normal))→ hasPulseRate(?p,′Normal) >

45. < 6 : TELL(5, 1, hasPulseRate(?p,′Abnormal))→ hasPulseRate(?p,′Abnormal)

>

A.2 Blood Pressure Agent

Initial Facts: Person(’Philip) , SystolicBP(’134), DiastolicBP(’88),

hasSystolicBP(’Philip, ’134), hasDiastolicBP(’Philip, ’88), greaterThan(’134,’120),

lessThan(’134,’140), greaterThan(’88,’80), lessThan(’88,’90)

Rules:

1. < 1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp),

hasDiastolicBP (?p, ?dbp), greaterThan(?sbp,′ 90), lessThan(?sbp,′ 120),

greaterThan(?dbp,′ 60), lessThan(?dbp,′ 80)→ hasBloodPressure(?p,′Normal) >

2. < 1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp),

hasDiastolicBP (?p, ?dbp), greaterThan(?sbp,′ 120), lessThan(?sbp,′ 140),

greaterThan(?dbp,′ 80), lessThan(?dbp,′ 90)→

hasBloodPressure(?p,′ Prehypertension) >

3. < 1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp),

hasDiastolicBP (?p, ?dbp), greaterThan(?sbp,′ 140), lessThan(?sbp,′ 160),

greaterThan(?dbp,′ 90), lessThan(?dbp,′ 100)→

hasBloodPressure(?p,′ Stage1hypertension) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 197

4. < 1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp),

hasDiastolicBP (?p, ?dbp), greaterThan(?sbp,′ 160), greaterThan(?dbp,′ 100)

→ hasBloodPressure(?p,′ Stage2hypertension) >

5. < 1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp),

hasDiastolicBP (?p, ?dbp), lessThan(?sbp,′ 90), lessThan(?dbp,′ 60)

→ hasBloodPressure(?p,′Hypotension) >

6. < 2 : hasBloodPressure(?p,′Normal)→

TELL(2, 1, hasBloodPressure(?p,′Normal)) >

7. < 2 : hasBloodPressure(?p,′ Prehypertension)→

TELL(2, 1, hasBloodPressure(?p,′ Prehypertension)) >

8. < 2 : hasBloodPressure(?p,′ Stage1hypertension)→

TELL(2, 1, hasBloodPressure(?p,′ Stage1hypertension)) >

9. < 2 : hasBloodPressure(?p,′ Stage2hypertension)→

TELL(2, 1, hasBloodPressure(?p,′ Stage2hypertension)) >

10. < 2 : hasBloodPressure(?p,′Hypotension)→

TELL(2, 1, hasBloodPressure(?p,′Hypotension)) >

A.3 Diabetes Tester

Initial Facts: Person(’Philip), BloodSugarLevel(’256), hasBloodSugarLevelBeforeMeal

(’Philip,’256), greaterThan(’256,’200), lessThanOrEqual(’256,’300)

Rules:

1. < 1 : Person(?p), BloodSugarLevel(?bsl), hasBloodSugarLevelBeforeMeal(?p, ?bsl),

lessThan(?bsl,′ 130), greaterThan(?bsl,′ 80)→ hasDBCategory(?p,′Controlled) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 198

2. < 1 : Person(?p), BloodSugarLevel(?bsl), hasBloodSugarLevelBeforeMeal(?p, ?bsl),

lessThanOrEqual(?bsl,′ 200), greaterThan(?bsl,′ 130)→

hasDBCategory(?p,′EstablishedDiabetes) >

3. < 1 : Person(?p), BloodSugarLevel(?bsl), hasBloodSugarLevelBeforeMeal(?p, ?bsl),

lessThanOrEqual(?bsl,′ 300), greaterThan(?bsl,′ 200)→

hasDBCategory(?p,′ Type2Diabetes) >

4. < 1 : Person(?p), BloodSugarLevel(?bsl), hasBloodSugarLevelBeforeMeal(?p, ?bsl),

greaterThan(?bsl,′ 300)→ hasDBCategory(?p,′Hyperglycaemia) >

5. < 1 : Person(?p), BloodSugarLevel(?bsl), hasBloodSugarLevelBeforeMeal(?p, ?bsl),

lessThanOrEqual(?bsl,′ 60)→ hasDBCategory(?p,′Hypoglycaemia) >

6. < 2 : hasDBCategory(?p,′Controlled)→ TELL(3, 1, hasDBCategory(?p,′Controlled))

>

7. < 2 : hasDBCategory(?p,′EstablishedDiabetes)→

TELL(3, 1, hasDBCategory(?p,′EstablishedDiabetes)) >

8. < 2 : hasDBCategory(?p,′ Type2Diabetes)→

TELL(3, 1, hasDBCategory(?p,′ Type2Diabetes)) >

9. < 2 : hasDBCategory(?p,′Hyperglycaemia)→

TELL(3, 1, hasDBCategory(?p,′Hyperglycaemia)) >

10. < 2 : hasDBCategory(?p,′Hypoglycaemia)→

TELL(3, 1, hasDBCategory(?p,′Hypoglycaemia)) >

A.4 Body Temperature

Initial Facts: Person(’Philip), BodyTemperature(’104), hasBodyTemperature(’Philip,’104),

greaterThanOrEqual(’104, ’103)

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 199

Rules:

1. < 1 : Person(?p), BodyTemperature(?temp), hasBodyTemperature(?p, ?temp),

lessThan(?temp,′ 95)→ hasFever(?p,′Hypothermia) >

2. < 1 : Person(?p), BodyTemperature(?temp), hasBodyTemperature(?p, ?temp),

greaterThan(?temp,′ 95), lessThan(?temp,′ 99)→ hasFever(?p,′Normal) >

3. < 1 : Person(?p), BodyTemperature(?temp), hasBodyTemperature(?p, ?temp),

greaterThanOrEqual(?temp,′ 99), lessThan(?temp,′ 101)→ hasFever(?p,′High) >

4. < 1 : Person(?p), BodyTemperature(?temp), hasBodyTemperature(?p, ?temp),

greaterThanOrEqual(?temp,′ 101), lessThan(?temp,′ 103)→

hasFever(?p,′Hyperthermia) >

5. < 1 : Person(?p), BodyTemperature(?temp), hasBodyTemperature(?p, ?temp),

greaterThanOrEqual(?temp,′ 103)→ hasFever(?p,′Hyperpyrexia) >

6. < 2 : hasFever(?p,′Hypothermia)→ TELL(4, 1, hasFever(?p,′Hypothermia)) >

7. < 2 : hasFever(?p,′Normal)→ TELL(4, 1, hasFever(?p,′Normal)) >

8. < 2 : hasFever(?p,′High)→ TELL(4, 1, hasFever(?p,′High)) >

9. < 2 : hasFever(?p,′Hyperthermia)→ TELL(4, 1, hasFever(?p,′Hyperthermia)) >

10. < 2 : hasFever(?p,′Hyperpyrexia)→ TELL(4, 1, hasFever(?p,′Hyperpyrexia)) >

A.5 Pulse Monitor

Initial Facts: Person(’Philip), Pulse(’120), hasPulse(’Philip,’120), greaterThan(’120,’100)

Rules:

1. < 1 : Person(?p), Pulse(?pulse), hasPulse(?p, ?pulse), lessThan(?pulse,′ 100),

greaterThan(?pulse,′ 60)→ hasPulseRate(?p,′Normal) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 200

2. < 1 : Person(?p), Pulse(?pulse), hasPulse(?p, ?pulse), lessThan(?pulse,′ 60)

→ hasPulseRate(?p,′Abnormal) >

3. < 1 : Person(?p), Pulse(?pulse), hasPulse(?p, ?pulse), greaterThan(?pulse,′ 110)

→ hasPulseRate(?p,′Abnormal) >

4. < 2 : hasPulseRate(?p,′Normal)→ TELL(5, 1, hasPulseRate(?p,′Normal)) >

5. < 2 : hasPulseRate(?p,′Abnormal)→ TELL(5, 1, hasPulseRate(?p,′Abnormal)) >

A.6 Ambulance Agent

Initial Facts: Ambulance(’KajangTownVan3)

Rules:

1. < 2 : TELL(10, 6, hasAmbulanceCallFor(?p, ?loc))→ hasAmbulanceCallFor(?p, ?loc)

>

2. < 1 : Ambulance(?amb), hasAmbulanceCallFor(?p, ?loc)→ isRescuedBy(?p, ?amb)

>

A.7 Emergency Monitoring Agent

Initial Facts:

Rules:

1. < 4 : TELL(1, 7, hasSituation(?p,′Emergency))→ hasSituation(?p,′Emergency) >

2. < 3 : TELL(9, 7, hasGPSLocation(?p, ?loc))→ hasGPSLocation(?p, ?loc) >

3. < 2 : hasSituation(?p,′Emergency), hasGPSLocation(?p, ?loc)→

hasWarningSign(?p, ?loc) >

4. < 1 : hasWarningSign(?p, ?loc)→ TELL(7, 10, hasWarningSign(?p, ?loc)) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 201

A.8 OnCall Agent

Initial Facts:

Rules:

1. < 6 : TELL(1, 8, hasSituation(?p,′OnCall))→ hasSituation(?p,′OnCall) >

2. < 5 : TELL(9, 8, hasGPSLocation(?p, ?loc))→ hasGPSLocation(?p, ?loc) >

3. < 4 : hasSituation(?p,′OnCall), hasGPSLocation(?p, ?loc)→

hasAlarmFor(?p, ?loc) >

4. < 3 : hasAlarmFor(?p, ?loc)→ TELL(8, 11, hasAlarmFor(?p, ?loc)) >

5. < 1 : TELL(13, 8, BurglarAlarm(′Beep))→ BurglarAlarm(′Beep) >

6. < 1 : TELL(14, 8, BurglarAlarm(′Beep))→ BurglarAlarm(′Beep) >

7. < 1 : TELL(15, 8, BurglarAlarm(′Beep))→ BurglarAlarm(′Beep) >

8. < 1 : TELL(16, 8, BurglarAlarm(′Beep))→ BurglarAlarm(′Beep) >

9. < 2 : BurglarAlarm(′Beep)→ TELL(8, 17, BurglarAlarm(′Beep)) >

A.9 GPS Sensor

Initial Facts: Person(’Philip), GPS(’KFCKajangTown)

Rules:

1. < 3 : Person(?p), GPS(?loc)→ hasGPSLocation(?p, ?loc) >

2. < 2 : hasGPSLocation(?p, ?loc)→ TELL(9, 7, hasGPSLocation(?p, ?loc)) >

3. < 1 : hasGPSLocation(?p, ?loc)→ TELL(9, 8, hasGPSLocation(?p, ?loc)) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 202

A.10 Telephone Agent

Initial Facts:

Rules:

1. < 3 : TELL(7, 10, hasWarningSign(?p, ?loc))→ hasWarningSign(?p, ?loc) >

2. < 2 : hasWarningSign(?p, ?loc)→ hasAmbulanceCallFor(?p, ?loc) >

3. < 1 : hasAmbulanceCallFor(?p, ?loc)→

TELL(10, 6, hasAmbulanceCallFor(?p, ?loc)) >

A.11 Caregiver Agent

Initial Facts: Caregiver(’Alice), hasCaregiver(’Philip, ’Alice)

Rules:

1. < 2 : TELL(8, 11, hasAlarmFor(?p, ?loc))→ hasAlarmFor(?p, ?loc) >

2. < 1 : Caregiver(?c), hasCaregiver(?p, ?c), hasAlarmFor(?p, ?loc)→

logAlarm(?c, ?p) >

A.12 Image Sensor

Initial Facts: Person(’Alice), AuthorizedPersonID(’1001), hasAuthorizedPersonID(’Alice,’1001),

UnAuthorizedID(’2001), hasUnAthorizedID(’Bob, ’2001)

Rules:

1. < 2 : Person(?p), AuthorizedPersonID(?apid), hasAuthorizedPersonID(?p, ?apid)

→ isAuthorizedPerson(?p,′ Y es) >

2. < 4 : Person(?p), UnAuthorizedID(?suspctID), hasUnAuthorizedID(?p, ?suspectid)

→ isAuthorizedPerson(?p,′No) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 203

3. < 1 : isAuthorizedPerson(?p,′ Y es)→ TELL(12, 13, isAuthorizedPerson(?p,′ Y es))

>

4. < 3 : isAuthorizedPerson(?p,′No)→ TELL(12, 13, isAuthorizedPerson(?p,′No))

>

A.13 Motion Detector

Initial Facts: MotionDetector(’Yes)

Rules:

1. < 5 : TELL(12, 13, isAuthorizedPerson(?p,′ Y es))→

isAuthorizedPerson(?p,′ Y es) >

2. < 5 : TELL(12, 13, isAuthorizedPerson(?p,′No))→

isAuthorizedPerson(?p,′No) >

3. < 1 : MotionDetector(?md), isAuthorizedPerson(?p,′ Y es)→

BurglarAlarm(′NoBeep) >

4. < 4 : MotionDetector(?md), isAuthorizedPerson(?p,′No)→

BurglarAlarm(′Beep) >

5. < 3 : BurglarAlarm(′Beep)→ TELL(13, 8, BurglarAlarm(′Beep)) >

6. < 2 : MotionDetector(′Y es)→ TELL(13, 19,MotionDetector(′Y es)) >

A.14 Gas Detector

Initial Facts: GasDetector(’GasLeakage), isGasDetected(’GasLeakage, ’Yes)

Rules:

1. < 3 : GasDetector(?gas), isGasDetected(?gas,′ Y es)→ BurglarAlarm(′Beep) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 204

2. < 1 : GasDetector(?gas), isGasDetected(?gas,′No)→ BurglarAlarm(′NoBeep) >

3. < 2 : BurglarAlarm(′Beep)→ TELL(14, 8, BurglarAlarm(′Beep)) >

A.15 Glass Break Sensor

Initial Facts: GlassDetector(’GlassBroke), isGlassBroken(’GlassBroke, ’Yes)

Rules:

1. < 3 : GlassDetector(?g), isGlassBroken(?g,′ Y es)→ BurglarAlarm(′Beep) >

2. < 1 : GlassDetector(?g), isGlassBroken(?g,′No)→ BurglarAlarm(′NoBeep) >

3. < 2 : BurglarAlarm(′Beep)→ TELL(15, 8, BurglarAlarm(′Beep)) >

A.16 Smoke Sensor

Initial Facts: Smoke(’Smoke), isSmokeDetected(’Smoke, ’Yes)

Rules:

1. < 3 : Smoke(?s), isSmokeDetected(?s,′ Y es)→ BurglarAlarm(′Beep) >

2. < 1 : Smoke(?s), isSmokeDetected(?s,′No)→ BurglarAlarm(′NoBeep) >

3. < 2 : BurglarAlarm(′Beep)→ TELL(16, 8, BurglarAlarm(′Beep)) >

A.17 Relative Sensor

Initial Facts: Relative(’Maria), Patient(’Philip)

Rules:

1. < 2 : TELL(8, 17, BurglarAlarm(′Beep))→ BurglarAlarm(′Beep) >

2. < 1 : Relative(?r), Patient(?p), BurglarAlarm(′Beep)→ hasRelative(?p, ?r) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 205

A.18 Light Sensor

Initial Facts:

Rules:

1. < 4 : TELL(19, 18, hasOccupancy(?p,′ Y es))→ hasOccupancy(?p,′ Y es) >

2. < 2 : TELL(19, 18, hasOccupancy(?p,′No))→ hasOccupancy(?p,′No) >

3. < 3 : hasOccupancy(?p,′ Y es)→ hasLightFor(?p,′On) >

4. < 1 : hasOccupancy(?p,′No)→ hasLightFor(?p,′Off) >

A.19 Occupancy sensor

Initial Facts: Person(’Philip)

Rules:

1. < 5 : TELL(13, 19,MotionDetector(′Y es))→MotionDetector(′Y es) >

2. < 4 : Person(?p),MotionDetector(′Y es)→ hasOccupancy(?p,′ Y es) >

3. < 2 : Person(?p),MotionDetector(′No)→ hasOccupancy(?p,′No) >

4. < 3 : hasOccupancy(?p,′ Y es)→ TELL(19, 20, hasOccupancy(?p,′ Y es)) >

5. < 3 : hasOccupancy(?p,′ Y es)→ TELL(19, 18, hasOccupancy(?p,′ Y es)) >

6. < 1 : hasOccupancy(?p,′No)→ TELL(19, 20, hasOccupancy(?p,′No)) >

7. < 1 : hasOccupancy(?p,′No)→ TELL(19, 18, hasOccupancy(?p,′No)) >

A.20 Aircon Sensor

Initial Facts: Aircon(’On)

Rules:

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 206

1. < 3 : TELL(21, 20, hasTemperature(?temp,′Cool))→

hasTemperature(?temp,′Cool) >

2. < 5 : TELL(21, 20, hasTemperature(?temp,′Hot))→

hasTemperature(?temp,′Hot) >

3. < 6 : TELL(19, 20, hasOccupancy(?p,′ Y es))→ hasOccupancy(?p,′ Y es) >

4. < 2 : TELL(19, 20, hasOccupancy(?p,′No))→ hasOccupancy(?p,′No) >

5. < 4 : hasOccupancy(?p,′ Y es), hasTemperature(?temp,′Hot)→

hasAirConFor(?p,′On) >

6. < 1 : hasOccupancy(?p,′No), hasTemperature(?temp,′Hot)→

hasAirConFor(?p,′Off) >

7. < 1 : hasOccupancy(?p,′No)→ hasAirConFor(?p,′Off) >

A.21 Temperature Level Sensor

Initial Facts: Temperature(’28), greaterThan(’28, ’25)

Rules:

1. < 1 : Temperature(?temp), greaterThan(?temp,′ 18), lessThan(?temp,′ 25)

→

hasTemperature(?temp,′Normal) >

2. < 5 : Temperature(?temp), greaterThan(?temp,′ 25)→

hasTemperature(?temp,′Hot) >

3. < 4 : Temperature(?temp), lessThan(?temp,′ 18)→

hasTemperature(?temp,′Cool) >

4. < 2 : hasTemperature(?temp,′Cool)→ TELL(21, 20,

hasTemperature(?temp,′Cool)) >

APPENDIX A. A SET OF RULES FOR SMART ENVIRONMENT... 207

5. < 3 : hasTemperature(?temp,′Hot)→ TELL(21, 20,

hasTemperature(?temp,′Hot)) >

Appendix B

The Onto-HCR Translated Rules

Welcome to Onto-HCR

List of ontologies

==================

1. Patient Care System

2. Home Care System

3. A simple example

4. Patient Care System (Previous Version)

5. Smart Environment Ontology

Please enter your choice : 5

Extracting Axioms From Ontology

====================================

******TBox axioms******

PhsiologicalData(?x) -> Context(?x)

BodyTemperature(?x) -> PhsiologicalData(?x)

208

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 209

UnAuthorizedPersonID(?x) -> Context(?x)

Alarm(?x) -> Context(?x)

OccupancySensor(?x) -> SmartHomerSensor(?x)

SystolicBP(?x) -> BloodPressureAgent(?x)

Tell13To8BurglarAlarm(?x) -> Alarm(?x)

EmergencyAlarm(?x) -> Alarm(?x)

Tell8To17BurglarAlarm(?x) -> Alarm(?x)

SmartHomerSensor(?x) -> Context(?x)

Person(?x) -> Context(?x)

ImageSensor(?x) -> SmartHomerSensor(?x)

Tell15To8BurglarAlarm(?x) -> Alarm(?x)

EmergencyMonitoring(?x) -> SmartHomerSensor(?x)

AuthorizedPersonID(?x) -> Context(?x)

Informal(?x) -> AuthorizedPerson(?x)

Light(?x) -> Devices(?x)

Aircon(?x) -> Devices(?x)

Formal(?x) -> AuthorizedPerson(?x)

Tell14To8BurglarAlarm(?x) -> Alarm(?x)

Tell13To19MotionDetector(?x) -> SmartHomerSensor(?x)

OnCall(?x) -> SmartHomerSensor(?x)

Caregiver(?x) -> Informal(?x)

BloodSugarLevel(?x) -> DiabetesTester(?x)

GPS(?x) -> PhsiologicalData(?x)

MotionDetector(?x) -> SmartHomerSensor(?x)

AuthorizedPerson(?x) -> Person(?x)

DiastolicBP(?x) -> BloodPressureAgent(?x)

GasDetector(?x) -> SmartHomerSensor(?x)

GlassBreakSensor(?x) -> SmartHomerSensor(?x)

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 210

Devices(?x) -> Context(?x)

PatientID(?x) -> Context(?x)

PulseMonitor(?x) -> PhsiologicalData(?x)

BurglarAlarm(?x) -> Alarm(?x)

PC(?x) -> Devices(?x)

DiabetesTester(?x) -> PhsiologicalData(?x)

Temperature(?x) -> SmartHomerSensor(?x)

Patient(?x) -> Person(?x)

PDA(?x) -> Devices(?x)

Ambulance(?x) -> Context(?x)

BloodPressureAgent(?x) -> PhsiologicalData(?x)

Fan(?x) -> Devices(?x)

Relative(?x) -> Caregiver(?x)

Tell16To8BurglarAlarm(?x) -> Alarm(?x)

Nurse(?x) -> Formal(?x)

Smoke(?x) -> SmartHomerSensor(?x)

******ABox axioms******

PatientID(’P001)

UnAuthorizedPersonID(’2001)

GasDetector(’GasLeakage)

Nurse(’Alice)

Caregiver(’Maria)

BodyTemperature(’104)

OccupancySensor(’yes)

PulseMonitor(’120)

Person(’Philip)

MotionDetector(’Yes)

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 211

BloodSugarLevel(’256)

Temperature(’28)

AuthorizedPersonID(’1001)

Smoke(’smoke)

Ambulance(’KajangTownVan3)

DiastolicBP(’88)

GlassBreakSensor(’GlassBroke)

GPS(’KFCKajang)

Aircon(’On)

SystolicBP(’134)

hasRelative(’Philip, ’Alice)

isGlassBroken(’GlassBroke, ’Alice)

hasAuthorizedPersonID(’Philip, ’1001)

hasPatientID(’Philip, ’P001)

hasBloodSugarLevelBeforeMeal(’Philip, ’256)

hasBodyTemperature(’Philip, ’104)

isSmokeDetected(’smoke, ’Yes)

hasDiastolicBP(’Philip, ’88)

hasGPSLocation(’2001, ’KFCKajang)

hasCaregiver(’Philip, ’Maria)

logAlarm(’Philip, ’KajangTownVan3)

hasAmbulanceCallFor(’Philip, ’KFCKajang)

isGasDetected(’GasLeakage, ’KFCKajang)

hasUnAuthorizedPersonID(’Philip, ’2001)

isRescuedBy(’Philip, ’KajangTown_Van3)

hasSystolicBP(’Philip, ’134)

hasPulse(’Philip, ’120)

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 212

**************Horn Clause Rules**************

Tell14To8BurglarAlarm(?Beep) -> BurglarAlarm(?Beep)

Temperature(?temp),lessThan(?temp, "18") -> hasTemperature(?temp, "Cool")

OccupancySensor(?x) -> SmartHomerSensor(?x)

BloodSugarLevel(?bsl),Person(?p),hasBloodSugarLevelBeforeMeal(?p,?bsl),

greaterThan(?bsl, "80"),lessThan(?bsl, "130") ->

hasDBCategory(?p, "Controlled")

MotionDetector(?md),Person(?p) -> hasOccupancy(?p, "No")

Patient(?p),hasDBCategory(?p, "Hypoglycaemia") -> hasSituation(?p, "Emergency")

Patient(?p),hasBloodPressure(?p, "Stage1hypertension"),

hasDBCategory(?p, "EstablishedDiabetes"),hasFever(?p, "High")

-> hasSituation(?p, "OnCall")

hasBloodPressure(?p, "Normal") -> Tell2To1hasBloodPressure(?p, "Normal")

Tell15To8BurglarAlarm(?x) -> Alarm(?x)

Patient(?p),hasFever(?p, "Hyperthermia") -> hasSituation(?p, "OnCall")

hasGPSLocation(?p,?loc) -> Tell9To7hasGPSLocation(?p,?loc)

Patient(?p),hasBloodPressure(?p, "Normal") -> hasNotSituation(?p, "Emergency")

Alarm(?x) -> Context(?x)

hasGPSLocation(?p,?loc),hasSituation(?p, "OnCall") -> hasAlarmFor(?p,?loc)

BurglarAlarm(?Beep) -> Tell8To17BurglarAlarm(?Beep)

Tell3To1hasDBCategory(?p, "EstablishedDiabetes") ->

hasDBCategory(?p, "EstablishedDiabetes")

PulseMonitor(?x) -> PhsiologicalData(?x)

Tell4To1hasFever(?p, "Hypothermia") -> hasFever(?p, "Hypothermia")

BodyTemperature(?temp),Person(?p),hasBodyTemperature(?p,?temp),

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 213

greaterThanOrEqual(?temp, "103") -> hasFever(?p, "Hyperpyrexia")

BloodPressureAgent(?x) -> PhsiologicalData(?x)

Tell8To17BurglarAlarm(?x) -> Alarm(?x)

Temperature(?x) -> SmartHomerSensor(?x)

AuthorizedPerson(?x) -> Person(?x)

Patient(?p),hasBloodPressure(?p, "’Stage2hypertension") ->

hasSituation(?p, "Emergency")

hasAmbulanceCallFor(?p,?loc) -> Tell10To6hasAmbulanceCallFor(?p,?loc)

PhsiologicalData(?x) -> Context(?x)

Temperature(?temp),greaterThan(?temp, "18"),lessThan(?temp, "25") ->

hasTemperature(?temp, "Normal")

Tell16To8BurglarAlarm(?Beep) -> BurglarAlarm(?Beep)

Tell19To20hasOccupancy(?p, "No") -> hasOccupancy(?p, "No")

Tell5To1hasPulseRate(?p, "Normal") -> hasPulseRate(?p, "Normal")

Patient(?p),hasBloodPressure(?p, "Prehypertension"),hasDBCategory(?p, "Controlled"),

hasFever(?p, "Normal") -> hasNotSituation(?p, "OnCall")

Patient(?p),hasSituation(?p, "OnCall") -> Tell1To8hasSituation(?p, "OnCall")

SmartHomerSensor(?x) -> Context(?x)

Patient(?p),hasDBCategory(?p, "Type2Diabetes"),hasPulseRate(?p, "Abnormal")

-> hasSituation(?p, "Emergency")

Patient(?p),hasFever(?p, "Hyperpyrexia") -> hasSituation(?p, "Emergency")

hasBloodPressure(?p, "Prehypertension") ->

Tell2To1hasBloodPressure(?p, "Prehypertension")

hasDBCategory(?p, "Type2Diabetes") -> Tell3To1hasDBCategory(?p, "Type2Diabetes")

MotionDetector(?x) -> SmartHomerSensor(?x)

hasGPSLocation(?p,?loc),hasSituation(?p, "Emergency") -> hasWarningSign(?p,?loc)

Tell2To1hasBloodPressure(?p, "Stage1hypertension") ->

hasBloodPressure(?p, "Stage1hypertension")

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 214

hasDBCategory(?p, "Hyperglycaemia") ->

Tell3To1hasDBCategory(?p, "Hyperglycaemia")

Patient(?p),hasPulseRate(?p, "Abnormal") -> hasSituation(?p, "Emergency")

hasGPSLocation(?p,?loc) -> Tell9To8hasGPSLocation(?p,?loc)

Tell13To19MotionDetector(?x) -> MotionDetector(?x)

MotionDetector(?md),isAuthorizedPerson(?p, "No") -> BurglarAlarm(?p)

BurglarAlarm(?Beep) -> Tell15To8BurglarAlarm(?Beep)

hasOccupancy(?p, "No") -> hasAirconFor(?p, "Off")

Patient(?p),hasFever(?p, "Hyperpyrexia"),hasPulseRate(?p, "Abnormal")

-> hasSituation(?p, "Emergency")

Patient(?p),hasDBCategory(?p, "EstablishedDiabetes"),hasFever(?p, "Hyperpyrexia")

-> hasSituation(?p, "Emergency")

hasBloodPressure(?p, "Stage2hypertension") ->

Tell2To1hasBloodPressure(?p, "Stage2hypertension")

AuthorizedPersonID(?apid),Person(?p),hasAuthorizedPersonID(?p,?apid) ->

isAuthorizedPerson(?p, "Yes")

OccupancySensor(?os),Person(?p) -> hasOccupancy(?p, "No")

Patient(?p),hasDBCategory(?p, "Hyperglycaemia") -> hasSituation(?p, "Emergency")

PC(?x) -> Devices(?x)

Tell5To1hasPulseRate(?p, "Abnormal") -> hasPulseRate(?p, "Abnormal")

GlassBreakSensor(?x) -> SmartHomerSensor(?x)

Smoke(?s),isSmokeDetected(?s, "No") -> BurglarAlarm(?s)

DiastolicBP(?dbp),Person(?p),SystolicBP(?sbp),hasDiastolicBP(?p,?dbp),

hasSystolicBP(?p,?sbp),greaterThan(?dbp, "90"),greaterThan(?sbp, "140"),

lessThan(?dbp, "100"),lessThan(?sbp, "160") -> hasBloodPressure(?p, "Stage1hypertension")

Tell8To21hasAlarmFor(?p,?loc) -> hasAlarmFor(?p,?loc)

BodyTemperature(?x) -> PhsiologicalData(?x)

Tell13To19MotionDetector(?Yes) -> MotionDetector(?Yes)

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 215

Patient(?p),hasBloodPressure(?p, "Stage2hypertension"),

hasDBCategory(?p, "Hyperglycaemia"),hasFever(?p, "Hyperpyrexia"),

hasPulseRate(?p, "Abnormal") -> hasSituation(?p, "Emergency")

isAuthorizedPerson(?p, "No") -> Tell12To13isAuthorizedPerson(?p, "No")

Patient(?p),hasFever(?p, "Normal") -> hasNotSituation(?p, "Emergency")

Smoke(?s),isSmokeDetected(?s, "Yes") -> BurglarAlarm(?s)

Patient(?x) -> Person(?x)

hasDBCategory(?p, "Hypoglycaemia") ->

Tell3To1hasDBCategory(?p, "Hypoglycaemia")

Tell8To17BurglarAlarm(?Beep) -> BurglarAlarm(?Beep)

Patient(?p),hasBloodPressure(?p, "Stage2hypertension"),hasDBCategory(?p, "Type2Diabetes")

-> hasSituation(?p, "Emergency")

Patient(?p),hasPulseRate(?p, "Normal") -> hasNotSituation(?p, "Emergency")

Tell10To6hasAmbulanceCallFor(?p,?loc) -> hasAmbulanceCallFor(?p,?loc)

hasOccupancy(?p, "No") -> hasLightFor(?p, "Off")

BodyTemperature(?temp),Person(?p),hasBodyTemperature(?p,?temp),

greaterThan(?temp, "95"),lessThan(?temp, "99") -> hasFever(?p, "Normal")

hasOccupancy(?p, "Yes"),hasTemperature(?temp, "Hot") -> hasAirconFor(?p, "On")

Patient(?p),hasDBCategory(?p, "Type2Diabetes"),hasFever(?p, "Normal")

-> hasSituation(?p, "OnCall")

Tell4To1hasFever(?p, "Normal") -> hasFever(?p, "Normal")

hasBloodPressure(?p, "Hypotension") ->

Tell2To1hasBloodPressure(?p, "Hypotension")

hasOccupancy(?p, "No") -> Tell19To18hasOccupancy(?p, "No")

ImageSensor(?x) -> SmartHomerSensor(?x)

hasFever(?p, "High") -> Tell4To1hasFever(?p, "High")

hasWarningSign(?p,?loc) -> hasAmbulanceCallFor(?p,?loc)

BodyTemperature(?temp),Person(?p),hasBodyTemperature(?p,?temp),

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 216

greaterThanOrEqual(?temp, "101"),lessThan(?temp, "103") ->

hasFever(?p, "Hyperthermia")

Patient(?p),hasBloodPressure(?p, "’Stage1hypertension") ->

hasSituation(?p, "OnCall")

hasWarningSign(?p,?loc) -> Tell7To10hasWarningSign(?p,?loc)

GasDetector(?gas),isGasDetected(?gas, "Yes") -> BurglarAlarm(?gas)

hasTemperature(?temp, "Cool") -> Tell21To20hasTemperature(?temp, "Cool")

hasFever(?p, "Hyperpyrexia") -> Tell4To1hasFever(?p, "Hyperpyrexia")

GasDetector(?gas),isGasDetected(?gas, "No") -> BurglarAlarm(?gas)

MotionDetector(?md),isAuthorizedPerson(?p, "Yes") -> BurglarAlarm(?p)

Tell12To13isAuthorizedPerson(?p, "No") -> isAuthorizedPerson(?p, "No")

Tell4To1hasFever(?p, "Hyperthermia") -> hasFever(?p, "Hyperthermia")

Tell21To20hasTemperature(?temp, "Cool") -> hasTemperature(?temp, "Cool")

Patient(?p),hasBloodPressure(?p, "Prehypertension"),hasDBCategory(?p, "Hypergly-

caemia"),hasPulseRate(?p, "Abnormal") -> hasSituation(?p, "Emergency")

hasBloodPressure(?p, "Stage1hypertension") ->

Tell2To1hasBloodPressure(?p, "Stage1hypertension")

EmergencyAlarm(?x) -> Alarm(?x)

BurglarAlarm(?Beep) -> Tell13To8BurglarAlarm(?Beep)

AuthorizedPersonID(?x) -> Context(?x)

DiastolicBP(?x) -> BloodPressureAgent(?x)

BloodSugarLevel(?x) -> DiabetesTester(?x)

Patient(?p),hasDBCategory(?p, "EstablishedDiabetes") ->

hasNotSituation(?p, "Emergency")

PDA(?x) -> Devices(?x)

Patient(?p),hasSituation(?p, "Emergency") -> Tell1To7hasSituation(?p, "Emergency")

Tell3To1hasDBCategory(?p, "Hypoglycaemia") -> hasDBCategory(?p, "Hypoglycaemia")

BurglarAlarm(?x) -> Alarm(?x)

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 217

Patient(?p),hasBloodPressure(?p, "Prehypertension"),

hasDBCategory(?p, "EstablishedDiabetes"),hasFever(?p, "Normal") ->

hasNotSituation(?p, "Emergency")

Tell13To8BurglarAlarm(?Beep) -> BurglarAlarm(?Beep)

Tell2To1hasBloodPressure(?p, "Hypotension") ->

hasBloodPressure(?p, "Hypotension")

Tell15To8BurglarAlarm(?Beep) -> BurglarAlarm(?Beep)

BloodSugarLevel(?bsl),Person(?p),hasBloodSugarLevelBeforeMeal(?p,?bsl),

greaterThan(?bsl, "300") -> hasDBCategory(?p, "Hyperglycaemia")

Nurse(?x) -> Formal(?x)

EmergencyMonitoring(?x) -> SmartHomerSensor(?x)

DiastolicBP(?dbp),Person(?p),SystolicBP(?sbp),hasDiastolicBP(?p,?dbp),

hasSystolicBP(?p,?sbp),greaterThan(?dbp, "80"),greaterThan(?sbp, "120"),

lessThan(?dbp, "90"),lessThan(?sbp, "140") ->

hasBloodPressure(?p, "Prehypertension")

Smoke(?x) -> SmartHomerSensor(?x)

Tell19To18hasOccupancy(?p, "Yes") -> hasOccupancy(?p, "Yes")

BurglarAlarm(?Beep) -> Tell14To8BurglarAlarm(?Beep)

hasOccupancy(?p, "Yes") -> hasLightFor(?p, "On")

MotionDetector(?md),Person(?p) -> hasOccupancy(?p, "Yes")

hasPulseRate(?p, "Normal") -> Tell5To1hasPulseRate(?p, "Normal")

Formal(?x) -> AuthorizedPerson(?x)

Tell2To1hasBloodPressure(?p, "Prehypertension") ->

hasBloodPressure(?p, "Prehypertension")

SystolicBP(?x) -> BloodPressureAgent(?x)

Patient(?p),hasBloodPressure(?p, "Prehypertension") ->

hasNotSituation(?p, "Emergency")

Tell9To8hasGPSLocation(?p,?loc) -> hasGPSLocation(?p,?loc)

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 218

OnCall(?x) -> SmartHomerSensor(?x)

Patient(?p),hasBloodPressure(?p, "Hypotension") -> hasSituation(?p, "Emergency")

MotionDetector(?md),OccupancySensor(?os),Person(?p) -> hasOccupancy(?p, "Yes")

GPS(?loc),Person(?p) -> hasGPSLocation(?p,?loc)

Ambulance(?x) -> Context(?x)

Tell1To7hasSituation(?p, "Emergency") -> hasSituation(?p, "Emergency")

Informal(?x) -> AuthorizedPerson(?x)

Tell2To1hasBloodPressure(?p, "Normal") -> hasBloodPressure(?p, "Normal")

PatientID(?pid),Person(?p),hasPatientID(?p,?pid) -> Patient(?p)

Caregiver(?x) -> Informal(?x)

Light(?x) -> Devices(?x)

hasAlarmFor(?p,?loc) -> Tell8To21hasAlarmFor(?p,?loc)

Tell3To1hasDBCategory(?p, "Type2Diabetes") -> hasDBCategory(?p, "Type2Diabetes")

hasOccupancy(?p, "No") -> Tell19To20hasOccupancy(?p, "No")

MotionDetector(?Yes) -> Tell13To19MotionDetector(?Yes)

hasOccupancy(?p, "No"),hasTemperature(?temp, "Hot") -> hasAirconFor(?p, "Off")

Tell21To20hasTemperature(?temp, "Hot") -> hasTemperature(?temp, "Hot")

DiastolicBP(?dbp),Person(?p),SystolicBP(?sbp),hasDiastolicBP(?p,?dbp),

hasSystolicBP(?p,?sbp),greaterThan(?dbp, "60"),greaterThan(?sbp, "90"),lessThan(?dbp,

"80"),

lessThan(?sbp, "120") -> hasBloodPressure(?p, "Normal")

hasOccupancy(?p, "Yes") -> Tell19To18hasOccupancy(?p, "Yes")

hasPulseRate(?p, "Abnormal") -> Tell5To1hasPulseRate(?p, "Abnormal")

BloodSugarLevel(?bsl),Person(?p),hasBloodSugarLevelBeforeMeal(?p,?bsl),

lessThanOrEqual(?bsl, "60") -> hasDBCategory(?p, "Hypoglycaemia")

BodyTemperature(?temp),Person(?p),hasBodyTemperature(?p,?temp),

lessThan(?temp, "95") -> hasFever(?p, "Hypothermia")

Tell3To1hasDBCategory(?p, "Hyperglycaemia") ->

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 219

hasDBCategory(?p, "Hyperglycaemia")

GlassBreakSensor(?g),isGlassBroken(?g, "No") -> BurglarAlarm(?g)

hasFever(?p, "Hypothermia") -> Tell4To1hasFever(?p, "Hypothermia")

Tell19To20hasOccupancy(?p, "Yes") -> hasOccupancy(?p, "Yes")

Person(?p),PulseMonitor(?pulse),hasPulse(?p,?pulse),greaterThan(?pulse, "110")

-> hasPulseRate(?p, "Abnormal")

GasDetector(?x) -> SmartHomerSensor(?x)

Person(?p),UnAuthorizedPersonID(?suspctID),hasUnAuthorizedPersonID(?p,?suspectid)

-> isAuthorizedPerson(?p, "No")

hasOccupancy(?p, "Yes") -> Tell19To20hasOccupancy(?p, "Yes")

DiastolicBP(?dbp),Person(?p),SystolicBP(?sbp),hasDiastolicBP(?p,?dbp),

hasSystolicBP(?p,?sbp),lessThan(?dbp, "60"),lessThan(?sbp, "90")

-> hasBloodPressure(?p, "Hypotension")

GlassBreakSensor(?g),isGlassBroken(?g, "Yes") -> BurglarAlarm(?g)

Fan(?x) -> Devices(?x)

Patient(?p),hasDBCategory(?p, "Controlled") -> hasNotSituation(?p, "Emergency")

hasDBCategory(?p, "EstablishedDiabetes") ->

Tell3To1hasDBCategory(?p, "EstablishedDiabetes")

UnAuthorizedPersonID(?x) -> Context(?x)

Tell12To13isAuthorizedPerson(?p, "Yes") -> isAuthorizedPerson(?p, "Yes")

BodyTemperature(?temp),Person(?p),hasBodyTemperature(?p,?temp),

greaterThanOrEqual(?temp, "99"),lessThan(?temp, "101") -> hasFever(?p, "High")

BurglarAlarm(?Beep),Patient(?p),Relative(?r) -> hasRelative(?p,?r)

Tell9To7hasGPSLocation(?p,?loc) -> hasGPSLocation(?p,?loc)

DiabetesTester(?x) -> PhsiologicalData(?x)

hasDBCategory(?p, "Controlled") -> Tell3To1hasDBCategory(?p, "Controlled")

Person(?p),PulseMonitor(?pulse),hasPulse(?p,?pulse),lessThan(?pulse, "60")

-> hasPulseRate(?p, "Abnormal")

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 220

Tell3To1hasDBCategory(?p, "Controlled") -> hasDBCategory(?p, "Controlled")

Caregiver(?c),hasAlarmFor(?p,?loc),hasCaregiver(?p,?c) -> logAlarm(?c,?p)

Patient(?p),hasDBCategory(?p, "Type2Diabetes") -> hasSituation(?p, "OnCall")

Tell4To1hasFever(?p, "High") -> hasFever(?p, "High")

DiastolicBP(?dbp),Person(?p),SystolicBP(?sbp),hasDiastolicBP(?p,?dbp),

hasSystolicBP(?p,?sbp),greaterThan(?dbp, "100"),greaterThan(?sbp, "160")

-> hasBloodPressure(?p, "Stage2hypertension")

Temperature(?temp),greaterThan(?temp, "25") -> hasTemperature(?temp, "Hot")

BurglarAlarm(?Beep) -> Tell16To8BurglarAlarm(?Beep)

hasFever(?p, "Hyperthermia") -> Tell4To1hasFever(?p, "Hyperthermia")

Person(?p),PulseMonitor(?pulse),hasPulse(?p,?pulse),greaterThan(?pulse, "60"),

lessThan(?pulse, "100") -> hasPulseRate(?p, "Normal")

Tell7To10hasWarningSign(?p,?loc) -> hasWarningSign(?p,?loc)

Patient(?p),hasFever(?p, "Hypothermia") -> hasSituation(?p, "Emergency")

BloodSugarLevel(?bsl),Person(?p),hasBloodSugarLevelBeforeMeal(?p,?bsl),

greaterThan(?bsl, "200"),lessThanOrEqual(?bsl, "300") ->

hasDBCategory(?p, "Type2Diabetes")

Tell4To1hasFever(?p, "Hyperpyrexia") -> hasFever(?p, "Hyperpyrexia")

BloodSugarLevel(?bsl),Person(?p),hasBloodSugarLevelBeforeMeal(?p,?bsl),

greaterThan(?bsl, "130"),lessThanOrEqual(?bsl, "200") ->

hasDBCategory(?p, "EstablishedDiabetes")

Relative(?x) -> Caregiver(?x)

Ambulance(?amb),hasAmbulanceCallFor(?p,?loc) -> isRescuedBy(?p,?amb)

Aircon(?x) -> Devices(?x)

GPS(?x) -> PhsiologicalData(?x)

Tell1To8hasSituation(?p, "OnCall") -> hasSituation(?p, "OnCall")

Devices(?x) -> Context(?x)

Tell19To18hasOccupancy(?p, "No") -> hasOccupancy(?p, "No")

APPENDIX B. THE ONTO-HCR TRANSLATED RULES 221

Person(?x) -> Context(?x)

hasFever(?p, "Normal") -> Tell4To1hasFever(?p, "Normal")

Tell2To1hasBloodPressure(?p, "Stage2hypertension") ->

hasBloodPressure(?p, "Stage2hypertension")

isAuthorizedPerson(?p, "Yes") -> Tell12To13isAuthorizedPerson(?p, "Yes")

Bye...

	List of Figures
	List of Tables
	Introduction
	The notion of Context
	Context-aware System
	Context-aware Multi-agent Systems
	Resources Constraints in Context-aware Systems
	Resource-bounded Context-aware Agents

	Motivation
	Problem Statements
	Methodology
	Thesis Outline
	Conclusion

	Logical Formalisms for Multi-agent systems
	Chapter Objectives
	Introduction
	Modal Logic
	Syntax of Modal Logic
	Semantics of Modal Logic

	Temporal logic
	Linear Temporal Logic (LTL)
	Syntax
	Semantics

	Computational Tree Logic (CTL)
	Syntax
	Semantics

	Full Computation Tree Logic (CTL*)
	State Formula
	Path Formula

	Some Standard System Properties
	Analysis of Temporal Logics

	Model Checking
	Maude LTL Model Checker

	Conclusion

	Formalisms for Context-aware MAS
	Chapter Objectives
	Reasoning Formalisms for the Semantic Web
	Description Logic
	DL Knowledge Base

	The Semantic Web
	Web Ontology Language (OWL)
	OWL 2.0
	Why to Choose OWL 2 RL

	Why OWL is Not Enough?
	Semantic Web Rule Language (SWRL)
	DL Safe Rule in SWRL

	Rule-based System
	Components of Rule-based System
	Multi-agent Rule-based System

	Formal Approaches for Distributed MAS
	Ontology-Based Context-aware Systems

	Monotonic Vs Non-monotonic Reasoning
	Defeasible Reasoning
	Defeasible Logic

	Defeasible Reasoning based Distributed Systems
	Defeasible Reasoning based Frameworks for the Semantic Web
	Integration of Description Logics with Defeasible Reasoning
	Integrating Rules and Ontologies using DeLP
	Defeasible Reasoning based Multi-context Systems
	Discussion

	Conclusion

	The Logic LOCRS
	Chapter Objectives
	Motivation for the Logic LOCRS
	Formal Approaches to Resource-bounded Multi-agent System
	Description Logic Based Reasoning
	Context Modelling

	LOCRS - A Logic for Context-aware Systems
	The Language of LOCRS
	Communication Bound
	Memory Bound
	Syntax
	Semantics
	Axiomatization

	Soundness Proof
	Completeness Proof
	LOCRS Proofs of Correctness
	The satisfiability Problem of L(nM, nC)
	The Canonical Model of M(nM, nC)

	Bisimulation
	Soundness Proofs in the Canonical Model Mc
	Completeness Proofs in the Canonical Model Mc

	Encoding and Verification of LOCRS Model
	Conclusion

	The Logic LDROCS
	Chapter Objectives
	Motivation for the Logic LDROCS
	Preliminaries
	Non-monotonic Rule-based System
	Defeasible Reasoning
	Semantic Context Retrieval for LDROCS
	Semantic Context Modelling

	Context-aware Systems as Multi-agent Defeasible Reasoning Systems
	The Logic LDROCS
	Communication Bound
	Memory Bound and Inconsistent Memory Manipulation
	Syntax
	Semantics
	Axiomatization

	Correctness Proof
	Soundness Proof
	Completeness Proof

	A Simple Health-care Example
	Verifying System Properties

	Conclusion

	Ontology-based System Modelling and Verification
	Chapter Objectives
	Motivation
	Translation of an ontology into a set of Rules
	Translating Ontology Axioms into DL Knowledge-base
	Translating DL Knowledge-base into Defeasible Logic Programming (DeLP)
	Translating Strict and Defeasible Terminologies to Horn-clause Rules

	Onto-HCR Translator
	OWL API
	OWL API Design
	Ontology Management

	The Onto-HCR's Main Features

	A Smart Environment: Case Study
	Smart Environment Agents' Functions

	Encoding and verification of LDROCS model
	Maude Encoding
	Specifying and Verifying the System

	Conclusion

	Conclusion and Future Work
	Summary
	Future Work
	Extending Logic LDROCS Using Multi-Context System (MCS)
	Contextualizing Ontologies
	Distributed Semantic Knowledge Translator (D-Onto-HCR)
	Potential Application Framework using Context-aware Resource-bounded Devices

	Conclusion

	A set of rules for Smart Environment Case Study
	Patient Care Agent
	Blood Pressure Agent
	Diabetes Tester
	Body Temperature
	Pulse Monitor
	Ambulance Agent
	Emergency Monitoring Agent
	OnCall Agent
	GPS Sensor
	Telephone Agent
	Caregiver Agent
	Image Sensor
	Motion Detector
	Gas Detector
	Glass Break Sensor
	Smoke Sensor
	Relative Sensor
	Light Sensor
	Occupancy sensor
	Aircon Sensor
	Temperature Level Sensor

	The Onto-HCR Translated Rules

