
Ontology Merging Using Belief Revision and
Defeasible Logic Programming?

Sergio Alejandro Gómez and Guillermo Simari

Artificial Intelligence Research and Development Laboratory (LIDIA)
Department of Computer Science and Engineering

Universidad Nacional del Sur
Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

Email: {sag,grs}@cs.uns.edu.ar

Abstract. We combine argumentation, belief revision and description
logic ontologies for extending the δ-ontologies framework to show how
to merge two ontologies in which the union of the strict terminologies
could lead to inconsistency. To solve this problem, we revisit a procedure
presented by Falappa et al. in which part of the offending terminologies
are turned defeasible by using a kernel revision operator.

1 Introduction

The confluence of Description Logics and argumentation is an important re-
search topic as shown by the ever growing list of publications that can be found
on the subject [1–5]. Description Logics [6] constitute the semantic substrate
of the Web Ontology Language OWL [7], which is at the core of the Seman-
tic Web initiative. The Semantic Web [8] is a vision of the current Web where
resources have exact meaning assigned in terms of knowledge bases called ontolo-
gies [9], enabling agents to reason about them. Argumentation [10, 11] is a form
of non-monotonic reasoning that allows to obtain consequences from possibly
inconsistent knowledge bases. On the other hand, belief revision is the process
of changing beliefs to take into account a new piece of information; in spite of
the union of argumentation and belief revision not being new it can be regarded
as a live research topic (see [12–14]).

In [1], Gómez et al. developped a framework called δ-ontologies that allows
to reason in the presence of inconsistent description logic ontologies by using
Defeasible Logic Programming [15], which is an argumentative framework based
on logic programming. In a δ-ontology the terminology defining the vocabulary
is separated in strict and defeasible, the former is inconsistency free but the
latter could be not. While joining two defeasible terminologies is trivial, joining
two strict terminologies can lead to inconsistency if done careless. In this article,
? This research is funded by the Project Representación de Conocimiento y Razon-

amiento Argumentativo: Herramientas Inteligentes para la Web y las Bases de Datos
Federadas (24/N030), Agencia Nacional de Promoción Cient́ıfica y Tecnológica and
Universidad Nacional del Sur.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


we combine argumentation, belief revision and description logic ontologies for
extending the δ-ontologies framework to show how to merge two ontologies in
which the union of the strict terminologies could lead to inconsistency. To solve
this problem, we revisit a procedure presented by Falappa et al. [12] in which part
of the offending terminologies are turned defeasible by using a kernel revision
operator.

The rest of this paper is structured as follows. In Section 2 we briefly present
the fundamentals of Description Logics and Defeasible Logic Programming. Sec-
tion 3 briefly recalls the framework of δ-ontologies for reasoning with possibly
inconsistent ontologies. In Section 4, we extend the δ-ontologies framework to
allow for merging strict terminologies while conserving consistency. Finally Sec-
tion 5 concludes.

2 Background

2.1 Description Logics

Description Logics (DL) are a well-known family of knowledge representation
formalisms [6]. They are based on the notions of concepts (unary predicates,
classes) and roles (binary relations), and are mainly characterized by the con-
structors that allow complex concepts and roles to be built from atomic ones.
Let C and D stand for concepts and R for a role name. Concept descriptions are
built from concept names using the constructors conjunction (C uD), disjunc-
tion (CtD), negation (¬C), existencial restriction (∃R.C), and value restriction
(∀R.C). To define the semantics of concept descriptions, concepts are interpreted
as subsets of a domain of interest, and roles as binary relations over this domain.
Further extensions to the basic DL are possible including inverse and transitive
roles noted as P− and P+, resp.

A DL ontology consists of two finite and mutually disjoint sets: a Tbox which
introduces the terminology and an Abox which contains facts about particular
objects in the application domain. Tbox statements have the form C v D (inclu-
sions) and C ≡ D (equalities), where C and D are (possibly complex) concept
descriptions. Objects in the Abox are referred to by a finite number of individ-
ual names and these names may be used in two types of assertional statements:
concept assertions of the type a : C and role assertions of the type 〈a, b〉 : R,
where C is a concept description, R is a role name, and a and b are individual
names.

2.2 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [15] provides a language for knowledge
representation and reasoning that uses defeasible argumentation [10] to decide
between contradictory conclusions through a dialectical analysis. Codifying knowl-
edge by means of a DeLP program provides a good trade-off between expressivity
and implementability for dealing with incomplete and potentially contradictory



information. In a defeasible logic program P = (Π,∆), a set Π of strict rules
P ← Q1, . . . , Qn, and a set ∆ of defeasible rules P −≺ Q1, . . . , Qn can be dis-
tinguished. An argument 〈A, H〉 is a minimal non-contradictory set of ground
defeasible clauses A of ∆ that allows to derive a ground literal H possibly us-
ing ground rules of Π. Since arguments may be in conflict (concept captured in
terms of a logical contradiction), an attack relationship between arguments can
be defined. A criterion is usually defined to decide between two conflicting argu-
ments. If the attacking argument is strictly preferred over the attacked one, then
it is called a proper defeater. If no comparison is possible, or both arguments are
equi-preferred, the attacking argument is called a blocking defeater. In order to
determine whether a given argument A is ultimately undefeated (or warranted),
a dialectical process is recursively carried out, where defeaters for A, defeaters
for these defeaters, and so on, are taken into account. Given a DeLP program
P and a query H, the final answer to H w.r.t. P takes such dialectical analysis
into account. The answer to a query can be: yes, no, undecided, or unknown.

3 Reasoning with Inconsistent Ontologies in DeLP

In the presence of inconsistent ontologies, traditional DL reasoners issue an error
message and the knowledge engineer must then debug the ontology (i.e. making
it consistent). In [1], Gómez et al. showed how DeLP can be used for coping
with inconsistencies in ontologies such that the task of dealing with them is
automatically solved by the reasoning system. We recall some of the concepts
for making the article more self-contained.

Definition 1 (δ-Ontology). Let C be an Lb-class, D an Lh-class, A,B Lhb-
classes, P,Q properties, a, b individuals. Let T be a set of inclusion and equality
sentences in LDL of the form C v D, A ≡ B, > v ∀P.D, > v ∀P−.D, P v Q,
P ≡ Q, P ≡ Q−, or P+ v P such that T can be partitioned into two disjoint
sets TS and TD. Let A be a set of assertions disjoint with T of the form a : D
or 〈a, b〉 : P . A δ-ontology Σ is a tuple (TS , TD, A). The set TS is called the
strict terminology (or Sbox), TD the defeasible terminology (or Dbox) and A
the assertional box (or Abox).

Example 1. Figure 1 presents a very simple δ-ontology Σ = (∅, T 1
D, A

1) that
expresses that every man is a mortal unless he is a Highlander. Socrates is a
man and McLeod is both a man and a Highlander.

For assigning semantics to a δ-ontology, two translation functions T∆ and TΠ
from DL to DeLP are defined based on the work of [16] (for details see [1]).

Definition 2. (T ∗Π mapping from DL sentences to DeLP strict rules) Let
A,C,D be concepts, X,Y variables, P,Q properties. The T ∗Π : 2LDL → 2LDeLPΠ
mapping is defined in Fig. 2. Besides, intermediate transformations of the form
“(H1∧H2) ← B” will be rewritten as two rules “H1 ← B” and “H2 ← B”.
Similarly transformations of the form “H1 ← H2 ← B” will be rewritten as
“H1 ← B ∧H2”, and rules of the form “H ← (B1 ∨B2)” will be rewritten as
two rules “H ← B1” and “H ← B2”.



Ontology Σ1 = (∅, T 1
D, A

1):

Defeasible terminology T 1
D: Assertional box A1:

Man v Mortal SOCRATES : Man
Man u Highlander v ¬Mortal MCLEOD : Man

MCLEOD : Highlander

Fig. 1. A very simple δ-ontology

Definition 3 (Transposes of a strict rule). Let r = H ← B1, B2, B3, . . . , Bn−1, Bn
be a DeLP strict rule. The set of transposes of rule r, noted as “Trans(r)”, is
defined as:

Trans(r) =



H ← B1, B2, . . . , Bn−1, Bn
B1 ← H,B2, B3, . . . , Bn−1, Bn
B2 ← H,B1, B3, . . . , Bn−1, Bn
B3 ← H,B1, B2, . . . , Bn−1, Bn
. . .

Bn−1 ← H,B1, B2, B3 . . . , Bn
Bn ← H,B1, B2, . . . , Bn−1


.

Definition 4 (TΠ mapping from DL sentences to DeLP strict rules).
The mapping from DL ontologies into DeLP strict rules is defined as TΠ(T ) =
Trans(T ∗Π(T )).

Definition 5 (Interpretation of a δ-ontology). Let Σ = (TS , TD, A) be
a δ-ontology. The interpretation of Σ is a DeLP program P = (TΠ(TS) ∪
TΠ(A), T∆(TD)).

Notice that in order to keep consistency within an argument, some internal
coherence between the Abox and the Tbox must be enforced; namely given a δ-
ontology Σ = (TS , TD, A), it must not be possible to derive two complementary
literals from TΠ(TS) ∪ TΠ(A).

Definition 6. (Potential, justified and strict membership of an indi-
vidual to a class) Let Σ = (TS , TD, A) be a δ-ontology, C a class name, a an
individual, and P = (TΠ(TS) ∪ TΠ(A), T∆(TD)).

1. The individual a potentially belongs to class C, iff there exists an argument
〈A, C(a)〉 w.r.t. P;

2. the individual a justifiedly belongs to class C, iff there exists a warranted
argument 〈A, C(a)〉 w.r.t. P, and,

3. the individual a strictly belongs to class C, iff there exists an argument
〈∅, C(a)〉 w.r.t. P.

Example 2 (Continues Ex. 1). Consider again the δ-ontologyΣ1, it is interpreted
as the DeLP program P1 according to Def. 5 as shown in Fig. 3. From P1, we



T ∗Π({C v D}) =df
{
Th(D,X) ← Tb(C,X)

}
,

if C is an Lb-class and D an Lh-class
T ∗Π({C ≡ D}) =df T ∗Π({C v D}) ∪ T ∗Π({D v C}),

if C and D are Lhb-classes
T ∗Π({> v ∀P.D}) =df

{
Th(D,Y ) ← P (X,Y )

}
,

if D is an Lh-class

T ∗Π({> v ∀P−.D}) =df
{
Th(D,X) ← P (X,Y )

}
,

if D is an Lh-class
T ∗Π({a : D}) =df

{
Th(D, a)

}
,

if D is an Lh-class
T ∗Π({〈a, b〉 : P}) =df

{
P (a, b)

}
T ∗Π({P v Q}) =df

{
Q(X,Y ) ← P (X,Y )

}
T ∗Π({P ≡ Q}) =df

{
Q(X,Y ) ← P (X,Y )
P (X,Y ) ← Q(X,Y )

}
T ∗Π({P ≡ Q−}) =df

{
Q(X,Y ) ← P (Y,X)
P (Y,X) ← Q(X,Y )

}
T ∗Π({P+ v P}) =df

{
P (X,Z) ← P (X,Y ) ∧ P (Y, Z)

}
T ∗Π({s1, . . . , sn}) =df

⋃n
i=1 T

∗
Π({si}), if n > 1

where:
Th(A,X) =df A(X)

Th((C uD), X) =df Th(C,X) ∧ Th(D,X)
Th((∀R.C), X) =df Th(C, Y ) ← R(X,Y )

Tb(A,X) =df A(X)
Tb((C uD), X) =df Tb(C,X) ∧ Tb(D,X)
Tb((C tD), X) =df Tb(C,X) ∨ Tb(D,X)
Tb((∃R.C), X) =df R(X,Y ) ∧ Tb(C, Y )

Fig. 2. Mapping from DL ontologies to DeLP strict rules

can determine that Socrates justifiedly belongs to the concept Mortal in Σ1 as
there exists a warranted argument structure 〈A1,mortal(socrates)〉 where:

A1 =
{

mortal(socrates) −≺ man(socrates)
}
.

Likewise, we can determine that Mcleod justifiedly belongs to the concept
¬Mortal in Σ1. We can see that Mcleod potentially belongs to Mortal, as in
the case of Socrates, for there is an argument 〈B1,mortal(mcleod)〉 where

B1 =
{

mortal(mcleod) −≺ man(mcleod)
}
.

This argument B1 is however defeated by 〈B1,∼mortal(mcleod)〉, where

B2 =
{
∼mortal(mcleod) −≺ man(mcleod), highlander(mcleod)

}
.

Notice that as B2 is more specific (see [17] for details) than B1, B1 cannot defeat
B2.

4 Ontology Merging based on Belief Revision Theory

We now extend the δ-ontologies framework to allow for ontology merging based
on belief revision. First the fundamentals of belief revision are presented. Next
we present the actual extension along with a running example.



DeLP program P1 = (Π1, ∆1) obtained from Σ1:

Facts Π1: Defeasible rules ∆1:
man(socrates). mortal(X) −≺ man(X).
man(mcleod). ∼mortal(X) −≺ man(X), highlander(X).
highlander(mcleod).

Fig. 3. DeLP program P1 obtained from ontology Σ1

4.1 Fundamentals of Belief Revision

Belief revision is the process of changing beliefs to take into account a new piece
of information. Two kinds of changes are usually distinguished [18, 19]: update,
in which new information must be considered with respect to a set of old beliefs,
then update refers to the operation of changing the old beliefs to take into ac-
count the change; and revision, where there are old beliefs and new information;
in this case the new information is considered more reliable, then revision is
the process of inserting the new information into the set of old beliefs without
generating an inconsistency. Belief revision should produce minimal change, i.e.
the knowledge before and after the change should be as similar as possible.

Given two set of sentences K and A, a revision operator K ◦A is a function
that maps K and A to a new set of sentences. In particular, in Falappa et al. [12]
the mechanism of a revision operator K ◦ A by a set of sentences with partial
acceptance is defined as follows: first, the input set A is initially accepted, and,
second, all posible inconsistencies of K ∪ A are removed. The mechanism of
this operator consists of adding A to K and then eliminating from the result
all possible inconsistencies by means of an incision function that makes a “cut”
over each minimally inconsistent subset of K ∪A.

In [12], beliefs are split into two distinguished sets: (i) particular beliefs KP ,
that are represented by ground facts, and (ii) general beliefs KG, that are rep-
resented by closed material implications. Thus, each belief base K has the form
KP ∪KG where KP ∩KG = ∅. When doing a kernel revision by a set of sentences,
an incision function is needed to make a cut upon every set; i.e. it is necessary to
determine which beliefs must be given up in the revision process. They consider
two possible policies: discard particular beliefs, and discard general beliefs. In
the latter, at least one sentence is discarded. Thus [12] propose a refined char-
acterization of revision by preserving retracted beliefs with a different status:
retracted general beliefs are preserved as defeasible rules. They also introduce a
revision operator that generates defeasible conditionals from a revision operator
upon belief bases represented in a first order language. It may be the case that
in the revision process a conditional sentence of the form (∀(X))(α(X)→ β(X))
has to to be eliminated. This can occur because new incoming information results
in an inconsistency. One of the following cases may occur: (i) there exists some
individual satisfying α but not satisfying β, and (ii) there exists some individual
satisfying ¬β but not satisfying ¬α. Eliminating (∀(X))(α(X) → β(X)) from



the knowledge base produces too much loss of information. As an alternative,
Falappa et al. propose a transformation to change it into β −≺ α. Formally:

Definition 7 (Positive/negative transformation [12]). Let δ = (∀X1 . . . Xn)
(α→ β) be a material implication in DeLP. A positive transformation of δ, noted
by T+(δ), is a sentence of the form β −≺ α; a negative transformation of δ, noted
by T−(δ), is a sentence of the form ¬β −≺ ¬α.

Definition 8 (Kernel (partial meet) composed revision [12]). Let (K,∆)
be a knowledge structure,1 (◦) an operator of kernel (partial meet) revision by
a set of sentences for K and A a set of sentences. The kernel (partial meet)
composed revision of (K,∆) w.r.t. A is defined as: (K,∆) ? A = (K ′, ∆′) such
that K ′ = K ◦A and ∆′ = ∆ ∪∆′1 ∪∆′2 where:

∆′1 =
{
α −≺ true|α ∈ (KP \K ◦A)

}
∆′2 =

{
T+(α)|α ∈ (KG \K ◦A)

}
∪

{
T−(α)|α ∈ (KG \K ◦A)

}
.

The set K ′ contains the revised undefeasible beliefs, ∆′1 is the transformation
in defeasible rules of particular beliefs (also called presumptions [15, Section 6])
eliminated from K whereas ∆′2 is the transformation of general beliefs eliminated
from K into defeasible rules.

4.2 Merging of δ-ontologies using Belief Revision

We now adapt the reasoning framework for δ-ontologies to use it in ontology
merging. Merging is the process of creating a new ontology from two or more
existing ontologies with overlapping parts [20]. Suppose we have two strict on-
tologies2 that we desire to reason with at the same time. However accepting
both ontologies at once may generate inconsistencies. The simplest solution is
two consider the ontologies as defeasible information. This solution is too sim-
plistic, a smarter approach consists of transforming into defeasible the part of the
ontologies producing the inconsistency letting the part which is not in conflict
as is.

For simplicity, in the following discussion we assume unique name assumption
(UNA). If UNA could not be assumed, it would be always possible to use an
ontology integration schema based on a mapping function as it was presented in
Gómez et al. [1].

Definition 9 (Merged δ-ontology). Let Σ1 and Σ2 be two δ-ontologies. The
merged ontology between Σ1 and Σ2 is noted as Σ1 ⊕Σ2.

In the same way as with single δ-ontologies, the merge of two δ-ontologies
will be interpreted as a DeLP program.
1 In [12], a DeLP program composed of material implications instead of derivation

rules is called a knowledge structure.
2 This situation can be modeled by two δ-ontologies with non-empty Sbox, and empty

Dbox and non-empty Abox.



Definition 10 (Interpretation of a merged δ-ontology). Let Σ1 and Σ2

be two δ-ontologies such that Σ1 = (T 1
S , T

1
D, A

1) and Σ2 = (T 2
S , T

2
D, A

2). The
interpretation of the merged δ-ontology Σ1⊕Σ2, noted as T (Σ1⊕Σ2), is defined
as the DeLP program (Π,∆) where

Π1 = TΠ(T 1
S) ∪ TΠ(A1);

∆1 = T∆(T 1
D);

Π2 = TΠ(T 2
S) ∪ TΠ(A2);

∆2 = T∆(T 2
D);

(Π,∆′) = (Π1,∆1) ? Π2, and

∆ = ∆1 ∪∆2 ∪∆′.

We now extend the reasoning tasks over Aboxes for the case of a merged
ontology. In particular, we define the instance checking operation for merged
ontologies.

Definition 11 (Instance checking for a merged δ-ontology). Let Σ1 and
Σ2 be two δ-ontologies. let C a concept name and a an individual name.

– The individual a is a potential member of the concept C w.r.t. Σ1 ⊕ Σ2 iff
there exists an argument 〈A, C(a)〉 w.r.t. T (Σ1 ⊕Σ2).

– The individual a is a justified member of the concept C w.r.t. Σ1 ⊕ Σ2 iff
there exists a warranted argument 〈A, C(a)〉 w.r.t. T (Σ1 ⊕Σ2).

– The individual a is an strict member of the concept C w.r.t. Σ1⊕Σ2 iff there
exists an argument 〈∅, C(a)〉 w.r.t. T (Σ1 ⊕Σ2).

– The individual a is an indeterminate member of the concept C w.r.t. Σ1⊕Σ2

iff there is no argument for the literal C(a) w.r.t. T (Σ1 ⊕Σ2).

Definition 12 (Set of justified and strict answers). Let Σ be a δ-ontology,
a an individual and p a concept. The set of justified answers of Σ is the set of
literals p(a) such that a belongs justifiedly to p. The set of strict answers of Σ
stands for all the literals p(a) such that a belongs strictly to p.

Example 3. Suppose we are given the δ-ontology Σ1 = (T 1
S , ∅, A1), where:

T 1
S =

{
Penguin v Bird
Bird v Flies

}
, and

A1 =

{
TWEETY : Bird
OPUS : Penguin

}
.

The set of strict answers of this ontology is the set of literals: {bird(tweety),
penguin(opus), bird(opus), flies(tweety), flies(opus)}.

Let us suppose that we receive another δ-ontology Σ2 = (T 2
S , ∅, A2), viewed

as an explanation for “OPUS : ¬Flies”, where:

T 2
S =

{
Bird u Penguin v ¬Flies

}
, and

A2 =

{
OPUS : Bird
OPUS : Penguin

}
.



Suppose that we now desire to find the DeLP program P = (Π,∆) = T (Σ1⊕
Σ2) that interprets δ-ontology which merges Σ1 and Σ2. When we compute the
interpretation of the merged ontology, we must perform a kernel revision by a
set of sentences. We need to find the minimally inconsistent subsets of the set
of DeLP sentences: TΠ(A1) ∪ TΠ(T 1

S) ∪ TΠ(A2) ∪ TΠ(T 2
S). The two sets in this

condition are:

1. Trans(


bird(opus),
penguin(opus),
(flies(X) ← bird(X), penguin(X)),
(flies(X) ← bird(X))

), and

2. Trans(


penguin(X),
(bird(X) ← penguin(X)),
(flies(X) ← bird(X)),
(∼flies(X) ← bird(X), penguin(X))

).

To discard general beliefs, we must discard at least one sentence in each set above.
As the sentence “flies(X) ← bird(X)” is in both sets, it can be discarded. The
set Π of strict rules of the revised ontology is then composed by:

Π =


bird(tweety),
bird(opus),
penguin(opus)

 ∪ Trans(
{

bird(X) ← penguin(X)
}

) ∪

Trans(
{
∼flies(X) ← bird(X), penguin(X)

}
).

In this case, the set of strict answers of the merged ontology Σ1 ⊕ Σ2 is
{bird(tweety), bird(opus), penguin(opus),∼flies(opus)}. Nevertheless, the set of
deleted sentences are not completely forgotten but stored as defeasible rules.
That is, the set ∆ of defeasible rules in the interpretation of the merged δ-
ontology is ∆ = {(flies(X) −≺ bird(X)), (∼ bird(X) −≺ ∼flies(X))}. Then the
set of justified answers of Σ1 ⊕ Σ2 is {bird(tweety), bird(opus), penguin(opus),
∼flies(opus), flies(tweety)}. Notice that the literal “flies(tweety)” is present in
the set of justified answers but it is not in the set of strict answers; i.e. we are
now able to conclude that the individual Tweety is a justified member of the
concept Flies.

5 Conclusion

We have presented an approach for merging ontologies based on Belief Revision
and Defeasible Logic Programming. We have combined argumentation, belief
revision and description logic ontologies for extending the δ-ontologies frame-
work and thus showing how to merge two ontologies in which the union of the
strict terminologies could lead to inconsistency. To solve this problem, we revis-
ited a procedure presented by [12] in which part of the offending terminologies
are turned defeasible by using a kernel revision operator. We have presented
a framework for characterizing the behavior of the proposed approach and an
example scenario. Future work includes characterizing mathematical properties
of the approach.



References

1. Gómez, S.A., Chesñevar, C.I., Simari, G.R.: Reasoning with Inconsistent Ontolo-
gies Through Argumentation. Applied Artificial Intelligence 1(24) (2010) 102–148

2. Zhang, X., Zhang, Z., Lin, Z.: An Argumentative Semantics for Paraconsistent
Reasoning in Description Logic ALC (2009)

3. Bassiliades, N., Antoniou, G., Vlahavas, I.P.: DR-DEVICE: A Defeasible Logic
System for the Semantic Web. In: PPSWR 2004. (2004) 134–148

4. Wang, K., Billington, D., Blee, J., Antoniou, G.: Combining Description Logic and
Defeasible Logic for the Semantic Web. In: RuleML 2004. (2004) 170–181

5. Grigoris Antoniou, Antonis Bikakis, G.W.: A System for Nonmonotonic Rules on
the Web. In: RuleML 2004. (2004) 23–36

6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook – Theory, Implementation and Applications.
Cambridge University Press (2003)

7. McGuiness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview
(2004)

8. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scient. American
(2001)

9. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisi-
tion 5(2) (1993) 199–220

10. Chesñevar, C.I., Maguitman, A., Loui, R.: Logical Models of Argument. ACM
Computing Surveys 32(4) (December 2000) 337–383

11. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif.
Intell. 171(10-15) (2007) 619–641

12. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, Belief Revision and
Defeasible Reasoning. Artificial Intelligence 141 (2002) 1–28

13. Falappa, M.A., Garćıa, A.J., Kern-Isberner, G., Simari, G.R.: On the evolving
relation between Belief Revision and Argumentation. The Knowledge Engineering
Review 26(1) (2011) 35–43

14. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Belief Revision and Argumen-
tation Theory. In Rahwan, I., Simari, G.R., eds.: Argumentation in Artificial
Intelligence, Springer (2009) 341–360

15. Garćıa, A., Simari, G.: Defeasible Logic Programming an Argumentative Ap-
proach. Theory and Prac. of Logic Program. 4(1) (2004) 95–138

16. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Com-
bining Logic Programs with Description Logics. WWW2003, May 20-24, Budapest,
Hungary (2003)

17. Stolzenburg, F., Garćıa, A., Chesñevar, C., Simari, G.: Computing Generalized
Specificity. J. of N.Classical Logics 13(1) (2003) 87–113

18. Alchourron, C., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet functions for contraction and revision. Journal of Symbolic Logic
(50) (1985) 510–530

19. Falappa, M.A.: Teoŕıa de Cambio de Creencias y sus Aplicaciones sobre Estados
de Conocimiento. PhD thesis, Universidad Nacional del Sur (1999)

20. Klein, M.: Combining and relating ontologies: an analysis of problems and so-
lutions. In Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H., Uschold, M.,
eds.: Workshop on Ontologies and Information Sharing, IJCAI’01, Seattle, USA
(August 4–5, 2001)


