440 research outputs found

    Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks

    Get PDF
    Local data aggregation is an effective means to save sensor node energy and prolong the lifespan of wireless sensor networks. However, when a sensor network is used to track moving objects, the task of local data aggregation in the network presents a new set of challenges, such as the necessity to estimate, usually in real time, the constantly changing state of the target based on information acquired by the nodes at different time instants. To address these issues, we propose a distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras. When a target is detected, cameras that can observe the same target interact with one another to form a cluster and elect a cluster head. Local measurements of the target acquired by members of the cluster are sent to the cluster head, which then estimates the target position via Kalman filtering and periodically transmits this information to a base station. The underlying clustering protocol allows the current state and uncertainty of the target position to be easily handed off among clusters as the object is being tracked. This allows Kalman filter-based object tracking to be carried out in a distributed manner. An extended Kalman filter is necessary since measurements acquired by the cameras are related to the actual position of the target by nonlinear transformations. In addition, in order to take into consideration the time uncertainty in the measurements acquired by the different cameras, it is necessary to introduce nonlinearity in the system dynamics. Our object tracking protocol requires the transmission of significantly fewer messages than a centralized tracker that naively transmits all of the local measurements to the base station. It is also more accurate than a decentralized tracker that employs linear interpolation for local data aggregation. Besides, the protocol is able to perform real-time estimation because our implementation takes into consideration the sparsit- - y of the matrices involved in the problem. The experimental results show that our distributed object tracking protocol is able to achieve tracking accuracy comparable to the centralized tracking method, while requiring a significantly smaller number of message transmissions in the network

    Design and implementation of an FPGA-based piecewise affine Kalman Filter for Cyber-Physical Systems

    Get PDF
    The Kalman Filter is a robust tool often employed as a process observer in Cyber-Physical Systems. However, in the general case the high computational cost, especially for large plant models or fast sample rates, makes it an impractical choice for typical low-power microcontrollers. Furthermore, although industry trends towards tighter integration are supported by powerful high-end System-on-Chip software processors, this consolidation complicates the ability for a controls engineer to verify correct behavior of the system under all conditions, which is important in safety-critical systems and systems demanding a high degree of reliability. Dedicated Field-Programmable Gate Array (FPGA) hardware can provide application speedup, design partitioning in mixed-criticality systems, and fully deterministic timing, which helps ensure a control system behaves identically to offline simulations. This dissertation presents a new design methodology which can be leveraged to yield such benefits. Although this dissertation focuses on the Kalman Filter, the method is general enough to be extended to other compute-intensive algorithms which rely on state-space modeling. For the first part, the core idea is that decomposing the Kalman Filter algorithm from a strictly linear perspective leads to a more generalized architecture with increased performance compared to approaches which focus on nonlinear filters (e.g. Extended Kalman Filter). Our contribution is a broadly-applicable hardware-software architecture for a linear Kalman Filter whose operating domain is extended through online model swapping. A supporting application-agnostic performance and resource analysis is provided. For the second part, we identify limitations of the mixed hardware-software method and demonstrate how to leverage hardware-based region identification in order to develop a strictly hardware-only Kalman Filter which maintains a large operating domain. The resulting hardware processor is partitioned from low criticality software tasks running on a supervising software processor and enables vastly simplified timing validation

    Quantisation mechanisms in multi-protoype waveform coding

    Get PDF
    Prototype Waveform Coding is one of the most promising methods for speech coding at low bit rates over telecommunications networks. This thesis investigates quantisation mechanisms in Multi-Prototype Waveform (MPW) coding, and two prototype waveform quantisation algorithms for speech coding at bit rates of 2.4kb/s are proposed. Speech coders based on these algorithms have been found to be capable of producing coded speech with equivalent perceptual quality to that generated by the US 1016 Federal Standard CELP-4.8kb/s algorithm. The two proposed prototype waveform quantisation algorithms are based on Prototype Waveform Interpolation (PWI). The first algorithm is in an open loop architecture (Open Loop Quantisation). In this algorithm, the speech residual is represented as a series of prototype waveforms (PWs). The PWs are extracted in both voiced and unvoiced speech, time aligned and quantised and, at the receiver, the excitation is reconstructed by smooth interpolation between them. For low bit rate coding, the PW is decomposed into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW). The SEW is coded using vector quantisation on both magnitude and phase spectra. The SEW codebook search is based on the best matching of the SEW and the SEW codebook vector. The REW phase spectra is not quantised, but it is recovered using Gaussian noise. The REW magnitude spectra, on the other hand, can be either quantised with a certain update rate or only derived according to SEW behaviours

    Conservative Sparsification for Efficient Approximate Estimation

    Get PDF
    Linear Gaussian systems often exhibit sparse structures. For systems which grow as a function of time, marginalisation of past states will eventually introduce extra non-zero elements into the information matrix of the Gaussian distribution. These extra non-zeros can lead to dense problems as these systems progress through time. This thesis proposes a method that can delete elements of the information matrix while maintaining guarantees about the conservativeness of the resulting estimate with a computational complexity that is a function of the connectivity of the graph rather than the problem dimension. This sparsification can be performed iteratively and minimises the Kullback Leibler Divergence (KLD) between the original and approximate distributions. This new technique is called Conservative Sparsification (CS). For large sparse graphs employing a Junction Tree (JT) for estimation, efficiency is related to the size of the largest clique. Conservative Sparsification can be applied to clique splitting in JTs, enabling approximate and efficient estimation in JTs with the same conservative guarantees as CS for information matrices. In distributed estimation scenarios which use JTs, CS can be performed in parallel and asynchronously on JT cliques. This approach usually results in a larger KLD compared with the optimal CS approach, but an upper bound on this increased divergence can be calculated with information locally available to each clique. This work has applications in large scale distributed linear estimation problems where the size of the problem or communication overheads make optimal linear estimation difficult

    Dynamic Data Assimilation

    Get PDF
    Data assimilation is a process of fusing data with a model for the singular purpose of estimating unknown variables. It can be used, for example, to predict the evolution of the atmosphere at a given point and time. This book examines data assimilation methods including Kalman filtering, artificial intelligence, neural networks, machine learning, and cognitive computing

    Optimisation techniques for low bit rate speech coding

    Get PDF
    This thesis extends the background theory of speech and major speech coding schemes used in existing networks to an implementation of GSM full-rate speech compression on a RISC DSP and a multirate application for speech coding. Speech coding is the field concerned with obtaining compact digital representations of speech signals for the purpose of efficient transmission. In this thesis, the background of speech compression, characteristics of speech signals and the DSP algorithms used have been examined. The current speech coding schemes and requirements have been studied. The Global System for Mobile communication (GSM) is a digital mobile radio system which is extensively used throughout Europe, and also in many other parts of the world. The algorithm is standardised by the European Telecommunications Standardisation histitute (ETSI). The full-rate and half-rate speech compression of GSM have been analysed. A real time implementation of the full-rate algorithm has been carried out on a RISC processor GEPARD by Austria Mikro Systeme International (AMS). The GEPARD code has been tested with all of the test sequences provided by ETSI and the results are bit-exact. The transcoding delay is lower than the ETSI requirement. A comparison of the half-rate and full-rate compression algorithms is discussed. Both algorithms offer near toll speech quality comparable or better than analogue cellular networks. The half-rate compression requires more computationally intensive operations and therefore a more powerful processor will be needed due to the complexity of the code. Hence the cost of the implementation of half-rate codec will be considerably higher than full-rate. A description of multirate signal processing and its application on speech (SBC) and speech/audio (MPEG) has been given. An investigation into the possibility of combining multirate filtering and GSM fill-rate speech algorithm. The results showed that multirate signal processing cannot be directly applied GSM full-rate speech compression since this method requires more processing power, causing longer coding delay but did not appreciably improve the bit rate. In order to achieve a lower bit rate, the GSM full-rate mathematical algorithm can be used instead of the standardised ETSI recommendation. Some changes including the number of quantisation bits has to be made before the application of multirate signal processing and a new standard will be required

    ๋ถ€๋ถ„ ์ •๋ณด๋ฅผ ์ด์šฉํ•œ ์‹œ๊ฐ ๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐํ™” ๋œ ์ดํ•ด: ํฌ์†Œ์„ฑ, ๋ฌด์ž‘์œ„์„ฑ, ์—ฐ๊ด€์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๋”ฅ ๋„คํŠธ์›Œํฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. Oh, Songhwai.For a deeper understanding of visual data, a relationship between local parts and a global scene has to be carefully examined. Examples of such relationships related to vision problems include but not limited to detecting a region of interest in the scene, classifying an image based on limited visual cues, and synthesizing new images conditioned on the local or global inputs. In this thesis, we aim to learn the relationship and demonstrate its importance by showing that it is one of critical keys to address four challenging vision problems mentioned above. For each problem, we construct deep neural networks that suit for each task. The first problem considered in the thesis is object detection. It requires not only finding local patches that look like target objects conditioned on the context of input scene but also comparing local patches themselves to assign a single detection for each object. To this end, we introduce individualness of detection candidates as a complement to objectness for object detection. The individualness assigns a single detection for each object out of raw detection candidates given by either object proposals or sliding windows. We show that conventional approaches, such as non-maximum suppression, are sub-optimal since they suppress nearby detections using only detection scores. We use a determinantal point process combined with the individualness to optimally select final detections. It models each detection using its quality and similarity to other detections based on the individualness. Then, detections with high detection scores and low correlations are selected by measuring their probability using a determinant of a matrix, which is composed of quality terms on the diagonal entries and similarities on the off-diagonal entries. For concreteness, we focus on the pedestrian detection problem as it is one of the most challenging problems due to frequent occlusions and unpredictable human motions. Experimental results demonstrate that the proposed algorithm works favorably against existing methods, including non-maximal suppression and a quadratic unconstrained binary optimization based method. For a second problem, we classify images based on observations of local patches. More specifically, we consider the problem of estimating the head pose and body orientation of a person from a low-resolution image. Under this setting, it is difficult to reliably extract facial features or detect body parts. We propose a convolutional random projection forest (CRPforest) algorithm for these tasks. A convolutional random projection network (CRPnet) is used at each node of the forest. It maps an input image to a high-dimensional feature space using a rich filter bank. The filter bank is designed to generate sparse responses so that they can be efficiently computed by compressive sensing. A sparse random projection matrix can capture most essential information contained in the filter bank without using all the filters in it. Therefore, the CRPnet is fast, e.g., it requires 0.04ms to process an image of 50ร—50 pixels, due to the small number of convolutions (e.g., 0.01% of a layer of a neural network) at the expense of less than 2% accuracy. The overall forest estimates head and body pose well on benchmark datasets, e.g., over 98% on the HIIT dataset, while requiring at 3.8ms without using a GPU. Extensive experiments on challenging datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in low-resolution images with noise, occlusion, and motion blur. Then, we shift our attention to image synthesis based on the local-global relationship. Learning how to synthesize and place object instances into an image (semantic map) based on the scene context is a challenging and interesting problem in vision and learning. On one hand, solving this problem requires a joint decision of (a) generating an object mask from a certain class at a plausible scale, location, and shape, and (b) inserting the object instance mask into an existing scene so that the synthesized content is semantically realistic. On the other hand, such a model can synthesize realistic outputs to potentially facilitate numerous image editing and scene parsing tasks. In this paper, we propose an end-to-end trainable neural network that can synthesize and insert object instances into an image via a semantic map. The proposed network contains two generative modules that determine where the inserted object should be (i.e., location and scale) and what the object shape (and pose) should look like. The two modules are connected together with a spatial transformation network and jointly trained and optimized in a purely data-driven way. Specifically, we propose a novel network architecture with parallel supervised and unsupervised paths to guarantee diverse results. We show that the proposed network architecture learns the context-aware distribution of the location and shape of object instances to be inserted, and it can generate realistic and statistically meaningful object instances that simultaneously address the where and what sub-problems. As the final topic of the thesis, we introduce a new vision problem: generating an image based on a small number of key local patches without any geometric prior. In this work, key local patches are defined as informative regions of the target object or scene. This is a challenging problem since it requires generating realistic images and predicting locations of parts at the same time. We construct adversarial networks to tackle this problem. A generator network generates a fake image as well as a mask based on the encoder-decoder framework. On the other hand, a discriminator network aims to detect fake images. The network is trained with three losses to consider spatial, appearance, and adversarial information. The spatial loss determines whether the locations of predicted parts are correct. Input patches are restored in the output image without much modification due to the appearance loss. The adversarial loss ensures output images are realistic. The proposed network is trained without supervisory signals since no labels of key parts are required. Experimental results on seven datasets demonstrate that the proposed algorithm performs favorably on challenging objects and scenes.์‹œ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์‹ฌ๋„ ๊นŠ๊ฒŒ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ „์ฒด ์˜์—ญ๊ณผ ๋ถ€๋ถ„ ์˜์—ญ๋“ค ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ ํ˜น์€ ์ƒํ˜ธ ์ž‘์šฉ์„ ์ฃผ์˜ ๊นŠ๊ฒŒ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ์ด์— ๊ด€๋ จ๋œ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ฌธ์ œ๋กœ๋Š” ์ด๋ฏธ์ง€์—์„œ ์›ํ•˜๋Š” ๋ถ€๋ถ„์„ ๊ฒ€์ถœํ•œ๋‹ค๋˜์ง€, ์ œํ•œ๋œ ๋ถ€๋ถ„์ ์ธ ์ •๋ณด๋งŒ์œผ๋กœ ์ „์ฒด ์ด๋ฏธ์ง€๋ฅผ ํŒ๋ณ„ ํ•˜๊ฑฐ๋‚˜, ํ˜น์€ ์ฃผ์–ด์ง„ ์ •๋ณด๋กœ๋ถ€ํ„ฐ ์›ํ•˜๋Š” ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋“ฑ์ด ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š”, ๊ทธ ์—ฐ๊ด€์„ฑ์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ์•ž์„œ ์–ธ๊ธ‰๋œ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ๋“ค์„ ํ‘ธ๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ด์‡ ๊ฐ€ ๋œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ๊ณ ์ž ํ•œ๋‹ค. ์ด์— ๋”ํ•ด์„œ, ๊ฐ๊ฐ์˜ ๋ฌธ์ œ์— ์•Œ๋งž๋Š” ๋”ฅ ๋„คํŠธ์›Œํฌ์˜ ๋””์ž์ธ ๋˜ํ•œ ํ† ์˜ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ ์ฃผ์ œ๋กœ, ๋ฌผ์ฒด ๊ฒ€์ถœ ๋ฐฉ์‹์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด ๋ฌธ์ œ๋Š” ํƒ€๊ฒŸ ๋ฌผ์ฒด์™€ ๋น„์Šทํ•˜๊ฒŒ ์ƒ๊ธด ์˜์—ญ์„ ์ฐพ์•„์•ผ ํ•  ๋ฟ ์•„๋‹ˆ๋ผ, ์ฐพ์•„์ง„ ์˜์—ญ๋“ค ์‚ฌ์ด์— ์—ฐ๊ด€์„ฑ์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ ๊ฐ ๋ฌผ์ฒด ๋งˆ๋‹ค ๋‹จ ํ•˜๋‚˜์˜ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋ฅผ ํ• ๋‹น์‹œ์ผœ์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์šฐ๋ฆฌ๋Š” objectness์— ๋Œ€ํ•œ ๋ณด์™„์œผ๋กœ์จ individualness๋ผ๋Š” ๊ฐœ๋…์„ ์ œ์•ˆ ํ•˜์˜€๋‹ค. ์ด๋Š” ์ž„์˜์˜ ๋ฐฉ์‹์œผ๋กœ ์–ป์–ด์ง„ ํ›„๋ณด ๋ฌผ์ฒด ์˜์—ญ ์ค‘ ํ•˜๋‚˜์”ฉ์„ ๋ฌผ์ฒด ๋งˆ๋‹ค ํ• ๋‹นํ•˜๋Š”๋ฐ ์“ฐ์ด๋Š”๋ฐ, ์ด๊ฒƒ์€ ๊ฒ€์ถœ ์Šค์ฝ”์–ด๋งŒ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ›„์ฒ˜๋ฆฌ๋ฅผ ํ•˜๋Š” ๊ธฐ์กด์˜ non-maximum suppression ๋“ฑ์˜ ๋ฐฉ์‹์ด sub-optimal ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ๋ฐ–์— ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ณ ์ž ๋„์ž…ํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ํ›„๋ณด ๋ฌผ์ฒด ์˜์—ญ์œผ๋กœ๋ถ€ํ„ฐ ์ตœ์ ์˜ ์˜์—ญ๋“ค์„ ์„ ํƒํ•˜๊ธฐ ์œ„ํ•ด์„œ, determinantal point process๋ผ๋Š” random process์˜ ์ผ์ข…์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด๊ฒƒ์€ ๋จผ์ € ๊ฐ๊ฐ์˜ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋ฅผ ๊ทธ๊ฒƒ์˜ quality(๊ฒ€์ถœ ์Šค์ฝ”์–ด)์™€ ๋‹ค๋ฅธ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋“ค ์‚ฌ์ด์— individualness๋ฅผ ๋ฐ”ํƒ•์œผ ๋กœ ๊ณ„์‚ฐ๋œ similarity(์ƒ๊ด€ ๊ด€๊ณ„)๋ฅผ ์ด์šฉํ•ด ๋ชจ๋ธ๋ง ํ•œ๋‹ค. ๊ทธ ํ›„, ๊ฐ๊ฐ์˜ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๊ฐ€ ์„ ํƒ๋  ํ™•๋ฅ ์„ quality์™€ similarity์— ๊ธฐ๋ฐ˜ํ•œ ์ปค๋„์˜ determinant๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ๊ทธ ์ปค๋„์— diagonal ๋ถ€๋ถ„์—๋Š” quality๊ฐ€ ๋“ค์–ด๊ฐ€๊ณ , off-diagonal์—๋Š” similarity๊ฐ€ ๋Œ€์ž… ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์–ด๋–ค ๊ฒ€์ถœ ํ›„๋ณด๊ฐ€ ์ตœ์ข… ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋กœ ์„ ํƒ๋  ํ™•๋ฅ ์ด ๋†’์•„์ง€๊ธฐ ์œ„ํ•ด์„œ๋Š”, ๋†’์€ quality๋ฅผ ๊ฐ€์ง๊ณผ ๋™์‹œ์— ๋‹ค๋ฅธ ๊ฒ€์ถœ ๊ฒฐ๊ณผ๋“ค๊ณผ ๋‚ฎ์€ similarity๋ฅผ ๊ฐ€์ ธ์•ผ ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณดํ–‰์ž ๊ฒ€์ถœ์— ์ง‘์ค‘ํ•˜์˜€๋Š”๋ฐ, ์ด๋Š” ๋ณดํ–‰์ž ๊ฒ€์ถœ์ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋ฉด์„œ๋„, ๋‹ค๋ฅธ ๋ฌผ์ฒด๋“ค์— ๋น„ํ•ด ์ž์ฃผ ๊ฐ€๋ ค์ง€๊ณ  ๋‹ค์–‘ํ•œ ์›€์ง์ž„์„ ๋ณด์ด๋Š” ๊ฒ€์ถœ์ด ์–ด๋ ค์šด ๋ฌผ์ฒด์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด non-maximum suppression ํ˜น์€ quadratic unconstrained binary optimization ๋ฐฉ์‹๋“ค ๋ณด๋‹ค ์šฐ์ˆ˜ํ•จ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‹ค์Œ ๋ฌธ์ œ๋กœ๋Š”, ๋ถ€๋ถ„ ์ •๋ณด๋ฅผ ์ด์šฉํ•ด์„œ ์ „์ฒด ์ด๋ฏธ์ง€๋ฅผ classifyํ•˜๋Š” ๊ฒƒ์„ ๊ณ ๋ คํ•œ๋‹ค. ๋‹ค์–‘ํ•œ classification ๋ฌธ์ œ ์ค‘์—, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ €ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ์‚ฌ๋žŒ์˜ ๋จธ๋ฆฌ์™€ ๋ชธ์ด ํ–ฅํ•˜๋Š” ๋ฐฉํ–ฅ์„ ์•Œ์•„๋‚ด๋Š” ๋ฌธ์ œ์— ์ง‘์ค‘ํ•˜์˜€๋‹ค. ์ด ๊ฒฝ์šฐ์—๋Š”, ๋ˆˆ, ์ฝ”, ์ž… ๋“ฑ์„ ์ฐพ๊ฑฐ๋‚˜, ๋ชธ์˜ ํŒŒํŠธ๋ฅผ ์ •ํ™•ํžˆ ์•Œ์•„๋‚ด๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์šฐ๋ฆฌ๋Š” convolutional random projection forest (CRPforest)๋ผ๋Š” ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด forest์— ๊ฐ๊ฐ์˜ node ์•ˆ์—๋Š” convolutional random projection network (CRPnet)์ด ๋“ค์–ด์žˆ๋Š”๋ฐ, ์ด๋Š” ๋‹ค์–‘ํ•œ ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•ด์„œ ์ธํ’‹ ์ด๋ฏธ์ง€๋ฅผ ๋†’์€ ์ฐจ์›์œผ๋กœ mapping ํ•œ๋‹ค. ์ด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด sparseํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ํ•„ํ„ฐ๋“ค์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ์••์ถ• ์„ผ์‹ฑ ๊ฐœ๋…์„ ๋„์ž… ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ์ฆ‰, ์‹ค์ œ๋กœ๋Š” ์ ์€ ์ˆ˜์˜ ํ•„ํ„ฐ๋งŒ์„ ์‚ฌ์šฉํ•ด์„œ ์ „์ฒด ์ด๋ฏธ์ง€์˜ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ๋ชจ๋‘ ๋‹ด๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ CRPnet์€ 50ร—50 ํ”ฝ์…€ ์ด๋ฏธ์ง€์—์„œ 0.04ms ๋งŒ์— ๋™์ž‘ ํ•  ์ˆ˜ ์žˆ์„ ์ •๋„๋กœ ๋งค์šฐ ๋น ๋ฅด๋ฉฐ, ๋™์‹œ์— ์„ฑ๋Šฅ ํ•˜๋ฝ์€ 2% ์ •๋„๋กœ ๋ฏธ๋ฏธํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ์ „์ฒด forest๋Š” GPU ์—†์ด 3.8ms ์•ˆ์— ๋™์ž‘ํ•˜๋ฉฐ, ๋จธ๋ฆฌ์™€ ๋ชธํ†ต ๋ฐฉํ–ฅ ์ธก์ •์— ๋Œ€ํ•ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ตœ๊ณ ์˜ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ, ์ €ํ•ด์ƒ๋„, ๋…ธ์ด์ฆˆ, ๊ฐ€๋ ค์ง, ๋ธ”๋Ÿฌ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๊ฒฝ์šฐ์—๋„ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ ๋ถ€๋ถ„-์ „์ฒด์˜ ์—ฐ๊ด€์„ฑ์„ ํ†ตํ•œ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์ž…๋ ฅ ์ด๋ฏธ์ง€ ์ƒ์— ์–ด๋–ค ๋ฌผ์ฒด๋ฅผ ์–ด๋–ป๊ฒŒ ๋†“์„ ๊ฒƒ์ธ์ง€๋ฅผ ์œ ์ถ”ํ•˜๋Š” ๊ฒƒ์€ ์ปดํ“จํ„ฐ ๋น„์ „๊ณผ ๊ธฐ๊ณ„ ํ•™์Šต์˜ ์ž…์žฅ์—์„œ ์•„์ฃผ ํฅ๋ฏธ๋กœ์šด ๋ฌธ์ œ์ด๋‹ค. ์ด๋Š” ๋จผ์ €, ๋ฌผ์ฒด์˜ ๋งˆ์Šคํฌ๋ฅผ ์ ์ ˆํ•œ ํฌ๊ธฐ, ์œ„์น˜, ๋ชจ์–‘์œผ๋กœ ๋งŒ๋“ค๋ฉด์„œ ๋™์‹œ์— ๊ทธ ๋ฌผ์ฒด๊ฐ€ ์ž…๋ ฅ ์ด๋ฏธ์ง€ ์ƒ์— ๋†“์—ฌ์กŒ์„ ๋•Œ์—๋„ ํ•ฉ๋ฆฌ์ ์œผ๋กœ ๋ณด์ผ ์ˆ˜ ์žˆ๋„๋ก ํ•ด์•ผ ํ•œ๋‹ค. ๊ทธ๋ ‡๊ฒŒ ๋œ๋‹ค๋ฉด, image editing ํ˜น์€ scene parsing ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ์— ์‘์šฉ ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š”, ์ž…๋ ฅ semantic map์œผ๋กœ ๋ถ€ํ„ฐ ์ƒˆ๋กœ์šด ๋ฌผ์ฒด๋ฅผ ์•Œ๋งž์€ ๊ณณ์— ๋†“๋Š” ๋ฌธ์ œ๋ฅผ end-to-end ๋ฐฉ์‹์œผ๋กœ ํ•™์Šต ๊ฐ€๋Šฅํ•œ ๋”ฅ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, where ๋ชจ๋“ˆ๊ณผ what ๋ชจ๋“ˆ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜๋Š” ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๋‘ ๋ชจ๋“ˆ์„ spatial transformer network์„ ํ†ตํ•ด ์—ฐ๊ฒฐํ•˜์—ฌ ๋™์‹œ์— ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ฐ๊ฐ์˜ ๋ชจ๋“ˆ์— ์ง€๋„์  ํ•™์Šต ๊ฒฝ๋กœ์™€ ๋น„์ง€๋„์  ํ•™์Šต ๊ฒฝ๋กœ๋ฅผ ๋ณ‘๋ ฌ์ ์œผ๋กœ ๋ฐฐ์น˜ํ•˜์—ฌ ๋™์ผํ•œ ์ž…๋ ฅ์œผ๋กœ ๋ถ€ํ„ฐ ๋‹ค์–‘ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€๋‹ค. ์‹คํ—˜์„ ํ†ตํ•ด, ์ œ์•ˆํ•œ ๋ฐฉ์‹์ด ์‚ฝ์ž…๋  ๋ฌผ์ฒด์˜ ์œ„์น˜์™€ ๋ชจ์–‘์— ๋Œ€ํ•œ ๋ถ„ํฌ๋ฅผ ๋™์‹œ์— ํ•™์Šต ํ•  ์ˆ˜ ์žˆ๊ณ , ๊ทธ ๋ถ„ํฌ๋กœ๋ถ€ํ„ฐ ์‹ค์ œ์™€ ์œ ์‚ฌํ•œ ๋ฌผ์ฒด๋ฅผ ์•Œ๋งž์€ ๊ณณ์— ๋†“์„ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ณ ๋ คํ•  ๋ฌธ์ œ๋Š”, ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์— ์ƒˆ๋กœ์šด ๋ฌธ์ œ๋กœ์จ, ์œ„์น˜ ์ •๋ณด๊ฐ€ ์ƒ์‹ค ๋œ ์ ์€ ์ˆ˜์˜ ๋ถ€๋ถ„ ํŒจ์น˜๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ์ „์ฒด ์ด๋ฏธ์ง€๋ฅผ ๋ณต์›ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๊ฒƒ์€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ๊ณผ ๋™์‹œ์— ๊ฐ ํŒจ์น˜์˜ ์œ„์น˜ ์ •๋ณด๋ฅผ ์ถ”์ธกํ•ด์•ผ ํ•˜๊ธฐ์— ์–ด๋ ค์šด ๋ฌธ์ œ๊ฐ€ ๋œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ ๋Œ€์  ๋„คํŠธ์›Œํฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ฆ‰, ์ƒ์„ฑ ๋„คํŠธ์›Œํฌ๋Š” encoder-decoder ๋ฐฉ์‹์„ ์ด์šฉํ•ด์„œ ์ด๋ฏธ์ง€์™€ ์œ„์น˜ ๋งˆ์Šคํฌ๋ฅผ ์ฐพ๊ณ ์ž ํ•˜๋Š” ๋ฐ˜๋ฉด์—, ํŒ๋ณ„ ๋„คํŠธ์›Œํฌ๋Š” ์ƒ์„ฑ๋œ ๊ฐ€์งœ ์ด๋ฏธ์ง€๋ฅผ ์ฐพ์œผ๋ ค๊ณ  ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ „์ฒด ๋„คํŠธ์›Œํฌ๋Š” ์œ„์น˜, ๊ฒ‰๋ณด๊ธฐ, ์ ๋Œ€์  ๊ฒฝ์Ÿ์˜ ์„ธ ๊ฐ€์ง€ ๋ชฉ์  ํ•จ์ˆ˜๋“ค๋กœ ํ•™์Šต์ด ๋œ๋‹ค. ์œ„์น˜ ๋ชฉ์  ํ•จ์ˆ˜๋Š” ์•Œ๋งž์€ ์œ„์น˜๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ๊ณ , ๊ฒ‰๋ณด๊ธฐ ๋ชฉ์  ํ•จ์ˆ˜๋Š” ์ž…๋ ฅ ํŒจ์น˜ ๋“ค์ด ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€ ์ƒ์— ์ ์€ ๋ณ€ํ™”๋งŒ์„ ๊ฐ€์ง€๊ณ  ๋‚จ์•„์žˆ๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ์ ๋Œ€์  ๊ฒฝ์Ÿ ๋ชฉ์  ํ•จ์ˆ˜๋Š” ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€๊ฐ€ ์‹ค์ œ ์ด๋ฏธ์ง€์™€ ๋น„์Šทํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ์ ์šฉ๋˜์—ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ๊ตฌ์„ฑ๋œ ๋„คํŠธ์›Œํฌ๋Š” ๋ณ„๋„์˜ annotation ์—†์ด ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹ ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•œ ์žฅ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด, ์ œ์•ˆํ•œ ๋ฐฉ์‹์ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ž˜ ๋™์ž‘ํ•จ์„ ๋ณด์˜€๋‹ค.1 Introduction 1 1.1 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . 5 2 Related Work 9 2.1 Detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Orientation estimation methods . . . . . . . . . . . . . . . . . . . . 11 2.3 Instance synthesis methods . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Image generation methods . . . . . . . . . . . . . . . . . . . . . . . 15 3 Pedestrian detection 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Determinantal Point Process Formulation . . . . . . . . . . 22 3.2.2 Quality Term . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 Individualness and Diversity Feature . . . . . . . . . . . . . 25 3.2.4 Mode Finding . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.5 Relationship to Quadratic Unconstrained Binary Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . 36 3.3.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 DET curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.5 Effectiveness of the quality and similarity term design . . . 44 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Head and body orientation estimation 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Algorithmic Overview . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Rich Filter Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 Compressed Filter Bank . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Box Filter Bank . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Convolutional Random Projection Net . . . . . . . . . . . . . . . . 58 4.4.1 Input Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4.2 Convolutional and ReLU Layers . . . . . . . . . . . . . . . 60 4.4.3 Random Projection Layer . . . . . . . . . . . . . . . . . . . 61 4.4.4 Fully-Connected and Output Layers . . . . . . . . . . . . . 62 4.5 Convolutional Random Projection Forest . . . . . . . . . . . . . . 62 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.6.1 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . 65 4.6.2 CRPnet Characteristics . . . . . . . . . . . . . . . . . . . . 66 4.6.3 Head and Body Orientation Estimation . . . . . . . . . . . 67 4.6.4 Analysis of the Proposed Algorithm . . . . . . . . . . . . . 87 4.6.5 Classification Examples . . . . . . . . . . . . . . . . . . . . 87 4.6.6 Regression Examples . . . . . . . . . . . . . . . . . . . . . . 100 4.6.7 Experiments on the Original Datasets . . . . . . . . . . . . 100 4.6.8 Dataset Corrections . . . . . . . . . . . . . . . . . . . . . . 100 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5 Instance synthesis and placement 109 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.1 The where module: learning a spatial distribution of object instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2.2 The what module: learning a shape distribution of object instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.2.3 The complete pipeline . . . . . . . . . . . . . . . . . . . . . 120 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6 Image generation 129 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.2.1 Key Part Detection . . . . . . . . . . . . . . . . . . . . . . 135 6.2.2 Part Encoding Network . . . . . . . . . . . . . . . . . . . . 135 6.2.3 Mask Prediction Network . . . . . . . . . . . . . . . . . . . 137 6.2.4 Image Generation Network . . . . . . . . . . . . . . . . . . 138 6.2.5 Real-Fake Discriminator Network . . . . . . . . . . . . . . . 139 6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.2 Image Generation Results . . . . . . . . . . . . . . . . . . . 142 6.3.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . 150 6.3.4 Image Generation from Local Patches . . . . . . . . . . . . 150 6.3.5 Part Combination . . . . . . . . . . . . . . . . . . . . . . . 150 6.3.6 Unsupervised Feature Learning . . . . . . . . . . . . . . . . 151 6.3.7 An Alternative Objective Function . . . . . . . . . . . . . . 151 6.3.8 An Alternative Network Structure . . . . . . . . . . . . . . 151 6.3.9 Different Number of Input Patches . . . . . . . . . . . . . . 152 6.3.10 Smaller Size of Input Patches . . . . . . . . . . . . . . . . . 153 6.3.11 Degraded Input Patches . . . . . . . . . . . . . . . . . . . . 153 6.3.12 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.3.13 Failure cases . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7 Conclusion and Future Work 179Docto

    Learning with Scalability and Compactness

    Get PDF
    Artificial Intelligence has been thriving for decades since its birth. Traditional AI features heuristic search and planning, providing good strategy for tasks that are inherently search-based problems, such as games and GPS searching. In the meantime, machine learning, arguably the hottest subfield of AI, embraces data-driven methodology with great success in a wide range of applications such as computer vision and speech recognition. As a new trend, the applications of both learning and search have shifted toward mobile and embedded devices which entails not only scalability but also compactness of the models. Under this general paradigm, we propose a series of work to address the issues of scalability and compactness within machine learning and its applications on heuristic search. We first focus on the scalability issue of memory-based heuristic search which is recently ameliorated by Maximum Variance Unfolding (MVU), a manifold learning algorithm capable of learning state embeddings as effective heuristics to speed up Aโˆ—A^* search. Though achieving unprecedented online search performance with constraints on memory footprint, MVU is notoriously slow on offline training. To address this problem, we introduce Maximum Variance Correction (MVC), which finds large-scale feasible solutions to MVU by post-processing embeddings from any manifold learning algorithm. It increases the scale of MVU embeddings by several orders of magnitude and is naturally parallel. We further propose Goal-oriented Euclidean Heuristic (GOEH), a variant to MVU embeddings, which preferably optimizes the heuristics associated with goals in the embedding while maintaining their admissibility. We demonstrate unmatched reductions in search time across several non-trivial Aโˆ—A^* benchmark search problems. Through these work, we bridge the gap between the manifold learning literature and heuristic search which have been regarded as fundamentally different, leading to cross-fertilization for both fields. Deep learning has made a big splash in the machine learning community with its superior accuracy performance. However, it comes at a price of huge model size that might involves billions of parameters, which poses great challenges for its use on mobile and embedded devices. To achieve the compactness, we propose HashedNets, a general approach to compressing neural network models leveraging feature hashing. At its core, HashedNets randomly group parameters using a low-cost hash function, and share parameter value within the group. According to our empirical results, a neural network could be 32x smaller with little drop in accuracy performance. We further introduce Frequency-Sensitive Hashed Nets (FreshNets) to extend this hashing technique to convolutional neural network by compressing parameters in the frequency domain. Compared with many AI applications, neural networks seem not graining as much popularity as it should be in traditional data mining tasks. For these tasks, categorical features need to be first converted to numerical representation in advance in order for neural networks to process them. We show that a na\ {i}ve use of the classic one-hot encoding may result in gigantic weight matrices and therefore lead to prohibitively expensive memory cost in neural networks. Inspired by word embedding, we advocate a compellingly simple, yet effective neural network architecture with category embedding. It is capable of directly handling both numerical and categorical features as well as providing visual insights on feature similarities. At the end, we conduct comprehensive empirical evaluation which showcases the efficacy and practicality of our approach, and provides surprisingly good visualization and clustering for categorical features

    Motion-capture-based hand gesture recognition for computing and control

    Get PDF
    This dissertation focuses on the study and development of algorithms that enable the analysis and recognition of hand gestures in a motion capture environment. Central to this work is the study of unlabeled point sets in a more abstract sense. Evaluations of proposed methods focus on examining their generalization to users not encountered during system training. In an initial exploratory study, we compare various classification algorithms based upon multiple interpretations and feature transformations of point sets, including those based upon aggregate features (e.g. mean) and a pseudo-rasterization of the capture space. We find aggregate feature classifiers to be balanced across multiple users but relatively limited in maximum achievable accuracy. Certain classifiers based upon the pseudo-rasterization performed best among tested classification algorithms. We follow this study with targeted examinations of certain subproblems. For the first subproblem, we introduce the a fortiori expectation-maximization (AFEM) algorithm for computing the parameters of a distribution from which unlabeled, correlated point sets are presumed to be generated. Each unlabeled point is assumed to correspond to a target with independent probability of appearance but correlated positions. We propose replacing the expectation phase of the algorithm with a Kalman filter modified within a Bayesian framework to account for the unknown point labels which manifest as uncertain measurement matrices. We also propose a mechanism to reorder the measurements in order to improve parameter estimates. In addition, we use a state-of-the-art Markov chain Monte Carlo sampler to efficiently sample measurement matrices. In the process, we indirectly propose a constrained k-means clustering algorithm. Simulations verify the utility of AFEM against a traditional expectation-maximization algorithm in a variety of scenarios. In the second subproblem, we consider the application of positive definite kernels and the earth mover\u27s distance (END) to our work. Positive definite kernels are an important tool in machine learning that enable efficient solutions to otherwise difficult or intractable problems by implicitly linearizing the problem geometry. We develop a set-theoretic interpretation of ENID and propose earth mover\u27s intersection (EMI). a positive definite analog to ENID. We offer proof of EMD\u27s negative definiteness and provide necessary and sufficient conditions for ENID to be conditionally negative definite, including approximations that guarantee negative definiteness. In particular, we show that ENID is related to various min-like kernels. We also present a positive definite preserving transformation that can be applied to any kernel and can be used to derive positive definite EMD-based kernels, and we show that the Jaccard index is simply the result of this transformation applied to set intersection. Finally, we evaluate kernels based on EMI and the proposed transformation versus ENID in various computer vision tasks and show that END is generally inferior even with indefinite kernel techniques. Finally, we apply deep learning to our problem. We propose neural network architectures for hand posture and gesture recognition from unlabeled marker sets in a coordinate system local to the hand. As a means of ensuring data integrity, we also propose an extended Kalman filter for tracking the rigid pattern of markers on which the local coordinate system is based. We consider fixed- and variable-size architectures including convolutional and recurrent neural networks that accept unlabeled marker input. We also consider a data-driven approach to labeling markers with a neural network and a collection of Kalman filters. Experimental evaluations with posture and gesture datasets show promising results for the proposed architectures with unlabeled markers, which outperform the alternative data-driven labeling method
    • โ€ฆ
    corecore