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Abstract
John Vial Doctor of Philosophy
The University of Sydney March 2013

Conservative Sparsification for
Efficient Approximate Estimation

Linear Gaussian systems often exhibit sparse structures. For systems which grow
as a function of time, marginalisation of past states will eventually introduce extra
non-zero elements into the information matrix of the Gaussian distribution. These
extra non-zeros can lead to dense problems as these systems progress through time.

This thesis proposes a method that can delete elements of the information matrix
while maintaining guarantees about the conservativeness of the resulting estimate
with a computational complexity that is a function of the connectivity of the graph
rather than the problem dimension. This sparsification can be performed iteratively
and minimises the Kullback Leibler Divergence (KLD) between the original and ap-
proximate distributions. This new technique is called Conservative Sparsification
(CS).

For large sparse graphs employing a Junction Tree (JT) for estimation, efficiency is
related to the size of the largest clique. Conservative Sparsification can be applied to
clique splitting in JTs, enabling approximate and efficient estimation in JTs with the
same conservative guarantees as CS for information matrices.

In distributed estimation scenarios which use JTs, CS can be performed in parallel
and asynchronously on JT cliques. This approach usually results in a larger KLD
compared with the optimal CS approach, but an upper bound on this increased
divergence can be calculated with information locally available to each clique.

This work has applications in large scale distributed linear estimation problems where
the size of the problem or communication overheads make optimal linear estimation
difficult.
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Chapter 1

Approximate Estimation: Efficiency

and Conservativeness

Gaussian estimation is a simple technique for inferring the value of uncertain vari-

ables known as states. It is a convenient representation as it is the most entropic

two parameter distribution, while its low number of parameters and self-conjugate

property make it useful for estimation of large problems [8].

Despite having few parameters there are scenarios for which Gaussian estimation

can become intractable, for example, scenarios that exhibit state space growth as a

function of time. Typical examples such as Simultaneous Localisation and Mappings

(SLAMs) and Distributed Sensor Networks (DSNs) are described in Section 2.4. The

intractability of these problems is due to increase in density (number of non-zero

entries of the information matrix or edges in the graph) of the estimate through

marginalisation, which is described in Section 2.2.

Given finite computer resources, these system can never be fully approximated by

a multi-dimensional Gaussian distribution due to the unbounded growth of time.

Designers of solutions in these settings have to make trade-offs to correctly estimate

these systems. The choices available at the moment are;

• completely forget states and observations that are old,
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• perform marginalisation and suffer reduced efficiency due to fill-in,

• remove links and risk a distribution that underestimates the uncertainty (i.e.,

an overconfident estimate), or

• place an upper bound on the system running time.

These choices are undesirable because;

• Marginalisation can quickly reduce sparsity, increasing the computational re-

sources necessary for performing matrix solves and inversion.

• Some safety critical control tasks require conservative estimates (that is esti-

mates which have larger uncertainty than the true uncertainty).

• Placing an upper bound on the system running time limits the long-term au-

tonomy of the robot.

This thesis suggests an alternative to these approaches, described in Chapter 3, which

is called Conservative Sparsification (CS). CS allows the removal of any edge in the

graph representing the information matrix of a Gaussian distribution and guarantees

that the resulting distribution will be conservative and representative.

An important setting where computational constraints are observed is distributed sen-

sor networks. In this scenario a large number of small sensors with limited computer

resources, communication bandwidth and battery power must attempt to estimate

some dynamic quantity. Chapter 4 describes an approach to Conservative Sparsifi-

cation that uses only local information, requires no additional message passing to be

performed and can be done in an entirely asynchronous manner, albeit at the cost of

higher divergence from the true distribution.

1.1 Example: Sparsifying the ‘Smart Grid’

The smart grid [3] is a futuristic vision of electrical power distribution where dis-

tributed generators (using energy sources such as solar panels or wind farms) control
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the power applied to the electricity network in their local area to ensure a required

level of power quality. This is a useful example as it combines the estimation problem

with a control problem that has strict constraints.

x1

x2

x3

x4

x5

x6

x7 x8

x9 x10

x11

x12

(a) Prior knowledge of conditional de-
pendency structure between generators.

x1

x2

x3

x4

x5

x6

x7 x8

x9 x10

x11

x12

(b) Approximate sparse structure.

Figure 1.1 – In this distributed generation example the dependency structure between
loads near each distributed generator is shown in (a). It is desired to represent
this using the estimation structure shown in (b). Conservative Sparsification can
be applied to (a) to transform it to the structure in (b).

For a network the size of a city or region, consider the problem of estimating the

power that is required to be output by a distributed generator. Let the city in

question contain 12 generators that are located in different parts of the city. Assume

that some prior knowledge is available which describes the conditional dependency

structure of the network loads. Figure 1.1(a) shows the structure of the conditional

dependencies between loads near1 each generator. It is desired to use this as prior

knowledge so that the estimates of the voltages and currents in the network are more

accurate. Also assume that the number of links in this graph make the problem

difficult2. Upon inspection of the prior structure many of the link weights are “close”
1A path exists through the network from loads to every generator, therefore, the loads are shared

by all the generators. However, it is more costly (in terms of line losses) for a distant generator to
supply power to a local load, therefore it is desired that each generator provides enough power to
supply its nearby loads.

2For illustration purposes this section considers a simple 12 node graph, which is not difficult
for modern computers to solve. However, the techniques described in this thesis are applicable to
graphs of arbitrary size.
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to zero, indicating that the dependence between some loads is weak. Maintaining

only the strong links results in the structure in Figure 1.1(b). This structure is much

simpler and will be easier to solve given due to the increased sparsity. As the new

structure maintains only strong links, it will hopefully be a close approximation to

the original system. The desire to remove links from the graph could have been driven

by restrictions in communication between the generators, limited computing power

at each generator or a low latency requirement in computation.

Many methods exist to enforce the sparsity constraints required to transform Figure

1.1(a) to Figure 1.1(b) (see Section 2.5.2) while also minimizing the divergence be-

tween them but most fail to ensure conservatism. Conservatism is important as the

generator must ensure that the power it applies to the grid will not damage users of

the grid, it is discussed in Section 2.5.1.

A simple performance measure of power quality is voltage. A power company may

require that the line voltage remain between 216V and 255V to prevent damage

to devices on the network. Assume that generator x1 is estimating the effect of not

changing its present power output. The probability density function for the predicted

line voltage from this is shown in Figure 1.2. When assessing the action, the generator

needs to consider the probability that the network voltage will rise over the limit,

and possibly damage devices connected to the network3. Given an overconfident,

conservative and true estimate, the probability that the voltage will rise above 255

V is given in Table 1.1. This table shows that the overconfident estimate will under-

report the probability of an over voltage, while the conservative estimate will inflate

it. Thus, if the controller used this over-confident estimate it would have a 2% chance

of failure but would believe that its chance was only 0.6%. Thus a control system

which bases its observations on overconfident estimators is more likely to make poor

decisions. Chapter 3 describes a method for performing sparsification such that the

conservativeness of estimates can be enforced.

3It is also important to ensure an under voltage does not occur, but to keep the discussion brief
under-voltages will not be considered.
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200 220 240 260
0

2

4

6

8

·10−2

Voltage at x1

Predicted voltage

Truth
Conservative
Over-confident

Figure 1.2 – This shows the three predicted voltage distributions that are based upon
a conservative, overconfident and true estimate of the system. The two dashed lines
indicate the maximum and minimum line voltages of 255V and 216V respectively.
The distributions share the same mean (245V) and vary only with the standard
deviation. The true standard deviation is 5V, while the conservative is 6V and the
over-confident is 4V.

Name Prob(Voltage > 255) Ratio to Truth ( p
ptr

)

Truth 0.023 -
Conservative 0.048 2.09
Over-confident 0.006 0.27

Table 1.1 – Probability that the action proposed by generator x1 will push the voltage
over the 255V limit. In this case the conservative estimate has inflated the prob-
ability of an over-voltage by 2 times the actual, while the overconfident estimate
reports only 1/4 of the actual probability.

1.2 Problem Statement

This work investigates methods of increasing the sparsity of linear Gaussians systems.

This will result in approximate estimates that are:

• close to the original distribution,

• have increased sparsity, and,
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• are conservative with respect to the original distribution.

The increased sparsity will allow for faster estimation and easier distributed estima-

tion.

1.3 Thesis Outline

The outline of the thesis is as follows:

Chapter 2: Estimation This chapter describes the basic principles required to un-

derstand this work and describe some prior approaches to this problem.

Chapter 3: Conservative Sparsification for Information Matrices This chap-

ter introduces the Conservative Sparsification approach and shows an important

complexity reduction technique.

Chapter 4: Conservative Sparsification for Junction Trees This chapter de-

scribes the use of Junction Trees as a way to enable immediate marginal recovery

and allow for approximate parallel sparsification.

Chapter 5: Conclusion The work is summarised.

1.4 Contributions

The key contributions of this thesis are:

• Conservative Sparsification, an approach to link removal and a complexity re-

duction theorem.

• Conservative Sparsification applied to a Junction Tree (JT).

• Parallel CS using Junction Trees, a formulation that allows for completely de-

centralised sparsification but trades off accuracy.



Chapter 2

Gaussian Estimation

This thesis explores problems that exhibit a particular structure, these problems:

• consist of large number of unknown states to be estimated;

• operate over a very long time horizon;

• are well approximated by a Gaussian distribution;

• continually observe new information;

• have a dynamic state space size (i.e., it can grow or shrink); and

• have states that are conditionally dependent on a small number of other states.

There are many examples of problems that exhibit this structure, some of which

are described in more detail in Section 2.4. The following sections will describe

computationally efficient approaches for the estimation of these systems and consider

methods for the approximate estimation of these systems.

2.1 Gaussian Estimation

This section presents a brief overview of the fundamentals of estimation. For a more

complete treatment see [8][39]. Let the vector x contain a set of states of interest
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(e.g. Cartesian coordinates of the location of objects, temperature in a room, noisy

observations of these quantities), which have an inherent uncertainty about them.

This uncertainty is expressed with a probability density function (pdf), i.e. p(x).

The pdf p(x) has the property ∫ ∞
−∞

p(x)dx = 1. (2.1)

The vector x can be split into two vectors x1 and z1 and the joint distribution over

these can be expressed as

p(x) = p(x1, z1). (2.2)

The marginal distribution p(x1) is obtained through the use of the sum rule on the

joint and allows the removal of states z1 from the estimate, i.e.

p(x1) =

∫ ∞
−∞

p(x1, z1)dz1. (2.3)

The product or chain rule also allows the joint to be decomposed in terms of a marginal

and a conditional distribution, that is

p(x1, z1) = p(x1|z1)p(z1). (2.4)

The product rule can be expressed using the alternate factorisation

p(x1, z1) = p(z1|x1)p(x1). (2.5)

Rearranging this equation gives the definition of a conditional distribution

p(x1|z1) =
p(x1, z1)

p(z1)
. (2.6)

Combining both variants of the product rule results in Bayes theorem,

p(x1|z1) =
p(z1|x1)p(x1)

p(z1)
. (2.7)
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Bayes theorem can be used to combine a likelihood function p(z1|x) with a prior esti-

mate p(x), and a normalising distribution p(z1). This thesis only considers Gaussian

probability density functions.

A multi-dimensional Gaussian distribution is a probability density function over a

vector of unknown states x, p(x) = N (x; x̂,Σ). The covariance form of the distri-

bution has two sufficient statistics, a vector of mean estimates x̂ (of length D) and

a covariance matrix Σ (of size D ×D). The equation for a Gaussian distribution is

shown below:

N (x; x̂,Σ) =
1

(2π)D/2
1

det(Σ)1/2
exp

(
−1

2
(x− x̂)TΣ−1(x− x̂)

)
. (2.8)

2.2 Canonical Gaussian Parametrisation

An alternative representation for the Gaussian distribution is the canonical or infor-

mation form. This is parametrised by a real valuedD×D positive definite information

matrix Y and an information (row) vector y also of size D.

N−1(x; y,Y) =
1

(2π)D/2
1

det(Y)−1/2
exp

(
−1

2
(x−Y−1y)TY(x−Y−1y)

)
. (2.9)

The information and covariance representations are related through the following

equations:

Σ = Y−1, (2.10)

x = Y−1y. (2.11)

For estimation problems such as the SLAM Problem (Section 2.4.1) and DSN (Sec-

tion 2.4.2), the information matrix is sparse (that is a high number of zero valued

entries) while the equivalent covariance matrix is dense. The following subsections

illustrate a graphical approach to describing the structure of sparse matrices, and

explain methods of exploiting sparse structures to increase efficiency.



2.2 Canonical Gaussian Parametrisation 10

2.2.1 Graphical Models

A sparse matrix is a matrix that has many zero valued elements. This can be depicted

graphically using a color sparsity (cspy) plot [14], as seen in Figure 2.1(a). This cspy

plot highlights the location of non-zero elements in the matrix using colored squares.

Darker colours indicate larger magnitude elements. Figure 2.1(b) demonstrates an al-

ternate representation using an undirected graphical model (or Markov random field).

The diagonal elements of the matrix are represented by labeled vertexes while any

non-zero off-diagonal elements are shown by edges between vertexes. If a graph does

not contain a vertex, then the row and column of the information matrix associated

with that state is zero. The graphs used in this thesis will not represent the mag-

nitude of an edge, rather just its existence. If any set of states are connected such

that they form a complete sub-graph1, that set is known as a clique. Figure 2.1(a)

contains a clique between the states x1, x2 and x3. The cardinality of a vertex is the

number of edges attached to it. For example, in Figure 2.1(b), vertex x2 has a cardi-

nality of three. In this thesis cspy plots and graphs represent the sparsity pattern of

information matrices.

10 1 1 0

1 10 1 1

1 1 10 0

0 1 0 10




(a) Information Matrix

1 2 3 4
1
2
3
4

(b) CSPY Plot

x1

x3

x2

x4

(c) Graphical Model

Figure 2.1 – Example of mapping from an information matrix (a), to a cspy plot (b),
to equivalent graphical model (c), a light grey square indicates nonzero elements
in the information matrix which correspond to conditional dependency links in the
graph.

1A graph is called complete if no extra edges can be added to it.
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2.2.2 Updates and Augmentation

New observations are of the form z = Hx + r, where z is the actual observation, H is

a linear model which describes a mapping between the states x and the observation

z, r is the zero mean additive Gaussian noise with covariance R and x is the true

value of the states from which the observation is derived. x̂ is the mean estimate of

the Gaussian distribution. For large problems, observations are usually dependent

upon a small subset of the total states x.

Since the observations are affected by noise, their actual value is uncertain and a

joint distribution p(x, z) can be formed by augmenting p(x). Consider the following

example parameters for p(x),

Y =


Y11 Y12 0

YT
12 Y22 Y23

0 YT
23 Y33

 , y =


y1

y2

y3

 , x =


x1

x2

x3

 . (2.12)

If the observation was only a function of the states in x3, then p(x, z) will have the

following information matrix and vector [5]:

Y =


Y11 Y12 0 0

YT
12 Y22 Y23 0

0 YT
23 Y33 + HTR−1H −HTR−1

0 0 −R−1H R−1

 , y =


y1

y2

y3 + HTR−1z

R−1z

 .
(2.13)

Observe that this operation has increased the dimension of the problem and only

affected values in the information matrix and vector associated with x3. An example

of augmentation can be found in Figure 2.3. In many practical scenarios such as

SLAM and DSN (Section 2.4), the joint over x and z is not maintained and the

conditional distribution p(x|z) can be used instead.

A useful property of the canonical form is that conditional distributions can be formed

by simply removing the row and column associated with the conditioned variable [8].
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For graphical models this corresponds to removing the vertex being conditioned upon

and any connecting edges. Therefore, p(x|z) has the following parameters:

Y =


Y11 Y12 0

YT
12 Y22 Y23

0 YT
23 Y33 + HTR−1H

 , y =


y1

y2

y3 + HTR−1z

 . (2.14)

Examining this result, it can be seen that forming the conditional distribution based

on an observation is an additive step for an information matrix and vector. An

example of the update process is shown in Figure 2.2, where the update is treated as

an additive term related to a particular set of states.

The augmentation operation described in Equation 2.13 is not specific to observations

and can be used to add new states of interest to the estimation problem [5]. Figure

2.3 demonstrates a scenario where a new state (x5) is augmented but not conditioned

upon and therefore remains in the network for future updates.

x1

x3x2

x4

(a) Prior Graph

x1

x3x2

(b) Structure of Update

x1

x3x2

x4

(c) Resultant Graph

Figure 2.2 – Graphical Model of an update step (Equation 2.14). (a) shows the original
graph structure. (b) is the structure of the observation, it connects the states
(x1, x2, x3). (c) displays the final structure, observe that pre-exisiting links are not
removed, but new links can be induced by this operation.

2.2.3 Marginalisation

Marginalisation is the process of removing states from the system. Consider Equation

2.12. Let the states in x3 be selected for marginalisation. The marginal Ym,ym has
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x1

x3x2

x4

(a) Prior Graph

x4 x5

(b) Structure of Update

x1

x3x2

x4 x5

(c) Resultant Graph

Figure 2.3 – Graphical model demonstrating augmentation (Equation 2.13). (a) shows
the prior graph, while (b) shows an update which references a state that is not in
(a). The resultant graph is shown in (c). Observe that a new vertex has been added
and that no other part of the graph was affected.

the following form [6]:

Ym =

 Y11 Y12

YT
12 Y22 −Y23Y

−1
33 YT

23

 , ym =

 y1

y2 −Y23Y
−1
33 y3

 , (2.15)

where the expression Y22−Y23Y
−1
33 YT

23 is known as the Schur complement of x3 [51].

Another example of this process is depicted in Figure 2.4. Observe that marginalisa-

tion only affects states that are connected to the removed states. This thesis uses a

shorthand for marginalisation:

Ym = Y/ Y∗3, (2.16)

ym = y/ y∗3. (2.17)

States after the * in the superscript indicate the states to be marginalised.

Matrix inversion and marginalisation are related problems, this can be shown by

considering the 2×2 matrix inversion lemma (Eq, 14.11(1) [51]):
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Lemma 2.1. Let Y be partitioned as Y =

 Y11 Y12

YT
12 Y22

 , then Y−1 is defined as:

Y−1 =

 (Y/ Y∗2)−1 −Y−1
11 Y12(Y−1

22 −Y21Y
−
111YT

21)

(−Y−1
11 Y12(Y−1

22 −Y21Y
−
111YT

21))T Y−1
22 + Y−1

22 YT
12(Y/ Y∗2)−1Y12Y

−1
22


(2.18)

In the top left of the partitioned matrix in Equation 2.18, the inverse is equal to

the inverse of the Schur complement. Thus, the inverse of this smaller marginal

provides all the information required to find the covariance over the states in x1.

For large matrices the marginalisation can be performed several times until the top

left block contains very few or even a single element, for which inversion is trivial.

This illustrates the relationship between marginalisation, the inverse and the Schur

complement. That is, a large matrix inversion problem can be reduced to a series of

matrix marginalisation problems.

x1 x2

x4 x5

x8x7x6

x3

(a) Prior Graph

x1 x2

x4 x5

x8x7x6

(b) Marginalised Graph

Figure 2.4 – Marginalisation example, showing the structure of removing state x3 (in-
dicated in blue). (a) shows the graph prior to marginalisation, (b) shows the graph
after marginalisation. Blue edges indicate fill-in. Observe that only neighbours of
x3 are effected by this operation.

2.2.4 Matrix Inversion and Fill-in

A significant disadvantage of using the information form is that the mean and covari-

ance must be derived from the information matrix and vector using Equation 2.10.
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This requires solving the linear equation y = Yx for x and inverting the matrix Y

to form the covariance, which has a worst case time complexity of O(n3) when the

matrix is dense (no or few zero valued entries).

If Y is sparse, then sparse matrix techniques can be used to greatly improve upon

O(n3)[14]. Matrix inversion on sparse matrices is equivalent to incremental matrix

marginalisation (Section 2.2.3) and marginalisation results in fill-in as shown in Figure

2.4. This fill-in increases the number of non-zero entries in the graph, making it less

sparse.

Fill-in is dependent upon the order that vertices are removed from the graph. This

order is called the elimination ordering. Figure 2.5 shows two different elimination

ordering choices, and their respective graphs. Ordering choices can greatly affect the

amount of fill-in. For example in Figure 2.5(b) eight fill-in links have been introduced,

while in Figure 2.5(e) zero fill-in links have been introduced. For any graph, there

exists an elimination ordering that results in the minimum amount of fill-in. However,

finding such an ordering is an NP-Complete problem for general graphs [65]. There

exist good heuristics that can find fill-reducing matrix orderings. An example is the

approximate minimum degree (amd) ordering [2].

For a special class of graphs, known as chordal graphs, a perfect elimination ordering

(i.e. one that induces no fill-in) can be found in O(n+e) time (where e is the number

of edges in the graph, and n is the number of vertices)[50]. A chordal graph has

an edge between every cycle of size 4 or greater in the graph, where a 4-cycle is

a loop of 4 vertices. Figure 2.6 demonstrates a chordal graph. Any graph can be

transformed to a chordal graph by introducing the edges induced through fill-in into

the original graph. This process is known as triangulation. Such a graph is known as

a triangulated graph, and an example is illustrated in Figure 2.7.
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x2

x3

x4

x5

x1

(a) Eliminate x1.

x2 x4

x5x3

(b) Eliminate x3

x2 x4

x5

(c) A dense clique

x1

x2

x3

x4

x5

(d) Eliminate x5

x1

x3

x4x2

(e) Eliminate x2

x1

x3

x4

(f) Fewer links re-
main than (c)

Figure 2.5 – In this example the marginal of x4 is desired. The first two steps of the
elimination process is shown for two different elimination orderings is shown. Fill-in
is shown by dashed blue links, a blue shaded node indicates the next node to be
eliminated. (a-c) demonstrate a poor ordering choice that results in a large amount
of fill-in. (d-f) demonstrate a much better ordering that results in zero fill-in edges.
This can be seen by comparing the number of edges in (b) to (e) and (c) to (f).

2.2.5 Efficient Mean and Covariance Recovery using Cholesky

A Cholesky factor is a unique lower triangular matrix L which satisfies the following

equation:

Y = LLT (2.19)

Given a Cholesky factor, a linear system can be decomposed:

x = Y−1y (2.20)

= (LLT )−1y (2.21)
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x1

x2

x3

x4

x5

x6

Figure 2.6 – Example of a chordal graph. This graph has a perfect elimination ordering,
that is, an ordering which introduces no fill-in. For this graph a perfect elimination
ordering is x1, x2, x3, x4, x5, x6. Observe the 4-cycle between x3, x4, x6 and x5 has
a chord between x4 and x5, a requirement of a chordal graph.

x1 x3

x2 x4

x5

(a) Non-chordal graph

x1 x3

x2 x4

x5

(b) Triangulated graph

Figure 2.7 – Illustration of transformation from a non-chordal graph (a) to a
chordal graph (b) through triangulation. The elimination ordering used was
x5, x1, x2, x3, x4. The blue edge in (b) was induced by this elimination ordering, by
adding it to the graph in (a), a chordal graph has been created. Since the graph
was made chordal by using an elimination ordering, it is also called the triangulated
graph of (a).

With this decomposition, the solution can be found by solving two simpler systems

of equations. The first system is (solve for t):

Lt = y, (2.22)

while the second linear system is (solve for x):

LTx = t. (2.23)

Since both matrices are triangular, each solve has cost O(|L|) 2[14]. The sparsity of

the Cholesky factor is related to the fill-in of the elimination ordering. Figure 2.8

shows the fill-in pattern of an example Cholesky decomposition. Observe that fill-in

edges appear as extra non-zeros in the Cholesky factor. The columns of the Cholesky
2Here |A| refers to the number of non-zeros in A.
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factor also represent cliques in the triangulated form of the underlying graph.

To calculate the Cholesky decomposition consider (c.f. [14]): L11 0

lT12 l22

 L11 l12

0 l22

 =

 Y11 m12

mT
12 m22

 , (2.24)

where m12 and l12 are a vectors3, while m22 and l22 are scalars. This leads to the

following equations:

L11L
T
11 = Y11 (2.25)

L11l12 = m12 (2.26)

lT12l12 + l222 = m22 (2.27)

The Cholesky factorisation can be found by iteratively solving the above equations

as shown in Algorithm 2.1. Note that Algorithm 2.1 makes use of MATLAB style

matrix indexing4.

Algorithm 2.1: Up-looking Cholesky factorisation, c.f. [14].
input : Y: Matrix to be factored.
output: L: Cholesky factor of Y.
n := dimension of Y
for k = 1 to n do

L(k, 1 : k − 1) = L(1 : k − 1, 1 : k − 1)−1Y(1 : k − 1, k)T

L(k, k) =
√

Y(k, k)− L(k, 1 : k − 1)L(k, 1 : k − 1)T

Computation of the Cholesky factor can be done in O(
∑n

k=1 l
2
k), where lk is the

number of non-zeros in row k [14]. Thus the total time complexity to solve the

system in Equation 2.21 is O(2|L|+
∑n

k=1 l
2
k), which for sparse matrices is dominated

by O(
∑n

k=1 l
2
k).

3The vector m was introduced to avoid confusion with the information vector y.
4Matlab indexing uses a colon ‘:’ to indicate a range, while the ranges in brackets after the

matrix name indicate which rows and columns are indexed. For example, Y(1 : k, k) accesses the
rows 1 to k of Y, while only accessing column k. Resulting in a column vector of length k.
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These complexities assume a very sparse matrix and the time complexity increases as

Y becomes more dense. This can be shown by considering the Cholesky factorisation

cost if Y is dense. Begin by expanding the sum of the row counts:

O(
n∑
k=1

l2k) = O(n2 + (n− 1)2 + . . .+ (n− (n− 1))2), (2.28)

= O(nn2 − 2n(1 + 2 + . . .+ (n− 1)) + 12 + 22 + . . .+ (n− 1)2) (2.29)

= O(n3), (2.30)

which is the same time complexity as performing a matrix inverse.

For sparse Choleksy factors Section 6.7.4 of [9] describes an algorithm that can com-

pute the value of elements in the covariance matrix in O(nl2), where l is the maximum

number of elements on any row of L. This algorithm is restricted to only elements

which correspond to non-zeros in the information matrix. This is also known as the

Takahashi equations and is described in [46][53][40].

If the updates are of low rank (i.e, are with respect to a small number of states),

then a low-rank update can be applied directly to the Cholesky factor such that the

information matrix need not be formed [14]. This was implemented in a decentralised

estimation scenario in [44][6].

Many software packages that perform sparse linear algebra exist including MATLAB[43],

the SciPy package for Python [27] and the Eigen library for C++ [24].

2.3 Estimation with Junction Trees

An equivalent approach to estimation is to distribute the information matrix and vec-

tor using a Junction Tree (JT). Rather than employing large sparse linear algebra to

find the mean and covariance, Junction Trees employ the message passing algorithm.

This algorithm is a standard algorithm for inference in graphical models and is also

easily decentralised [42].
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x1

x2

x3

x4

x5

x6

(a) Original Graph

x1

x2

x3

x4

x5

x6

(b) Triangulated Graph

1 2 3 4 5 6
1
2
3
4
5
6

(c) Information matrix of (a)

1 2 3 4 5 6
1
2
3
4
5
6

(d) Cholesky factor for (c)

Figure 2.8 – This figure shows the relationship between the fill-in and the Cholesky
factor. Blue links indicate a fill in link between nodes, while a blue square indicates
a non-zero element due to fill-in. The elimination ordering for the graph in (a) is
x1, x2, x3, x4, x5, x6. The fill-in induced by this ordering is apparent in the Cholesky
factor (d).

2.3.1 Fundamentals

Junction Trees (JTs) are collections of cliques connected in a tree structure. These

cliques represent densely connected components of the underlying triangulated graph

of the information matrix. To construct a JT from an information matrix, see Section

2.3.3. The size of the largest clique is known as the clique width or tree width (w). The

cliques must be connected such that the running intersection property is maintained.

This property is defined below:

Definition 2.1 (Running Intersection Property [28]). A clique tree possesses the

running intersection property if for every pair of cliques Ci and Cj, all cliques on the

unique path between Ci and Cj contain Ci ∩ Cj.

Given the set of cliques, a maximal spanning tree can be constructed that uses the

size of the intersection between clique sets as the link weight. Using this approach
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will always result in a clique tree that satisfies the running intersection property (see

Ch. 17 Th. 5 [28]).

Two cliques are neighbours if they share an edge in the JT. Neighbouring cliques must

have at least one overlapping state. The set of states that are shared by neighbouring

cliques Ci and Cj is known as the separator set Sij, and is defined Sij = Ci ∩ Cj.
Each clique Ci must maintain a potential over its states, denoted Ψi. This potential

is not strictly a probability, but all the potentials of a JT must satisfy the following

property:

p(x) ∝
∏
i

Ψi, (2.31)

that is the joint pdf over all states must equal the product of the clique potentials. If

the joint is Gaussian and each potential Ψi is parametrised by an information matrix

(YΨi
) and vector (yΨi

), then Equation 2.31 can be written in terms of the joint

information matrix Y and vector y:

Y =
∑
i

YΨi
, y =

∑
i

yΨi
. (2.32)

Figure 2.9 shows an example JT that demonstrates the notation associated with

cliques. Note that the quantity Φi displayed in this graph is the marginal over the

clique states Ci, and is described in Section 2.3.2. The µ subscript refers to message

potentials described in Section 2.3.2, while the S notation refers to clique separators

which is described above. Note that it is not a requirement that a particular ma-

trix/vector pair (YΨi
,yΨi

) is valid for a Gaussian distribution. This also means that

the matrix YΨi
is not necessarily positive definite.
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x1

x4

x5

x7

x6

x3

x2

(a) Triangulated Graph, show-
ing fill-in.

C1 C2 C3

C4

C1 : {x1, x4, x5}
Φ1 : Ψ1µ21

Ψ1 : YΨ1
,yΨ1

C2 : {x4, x5, x6, x7}
Φ2 : Ψ2µ12µ32µ42

Ψ2 : YΨ2
,yΨ2

C3 : {x3, x6, x7}
Φ3 : Ψ3µ23

Ψ3 : YΨ3
,yΨ2

C4 : {x2, x5, x6}
Φ4 : Ψ4µ24

Ψ4 : YΨ4
,yΨ4

µ12 : Yµ12
,yµ12

S12 : {x4, x5}

µ21 : Yµ21
,yµ21

S21 : {x4, x5}

µ23 : Yµ23
,yµ23

S23 : {x6, x7}

µ32 : Yµ32
,yµ32

S32 : {x6, x7}

µ24 : Yµ24
,yµ24

S24 : {x5, x6}
µ42 : Yµ42

,yµ42

S42 : {x5, x6}

(b) Annotated JT

Figure 2.9 – Annotated transformation between a graphical model (a) and a junc-
tion tree (b). The junction tree is formed using the elimination ordering
{x1, x2, x3, x4, x5, x6, x7}, which induces fill-in (blue edges) shown in (a). Infor-
mation from this graph is spread into the four clique potentials, each potential
information matrix and vector is only over the states in the cliques. For example
YΨ1 is a 3×3 matrix over {x1, x4, x5}. The messages µ and separator sets S be-
tween cliques are also shown. Similarly to the clique potentials, these matrices and
vectors are of the size of the seperator sets. The direction of each message is also
indicated.
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2.3.2 Obtaining Mean and Covariance Estimates

To find the mean and covariance, a JT uses the message passing algorithm. Messages

are sent between cliques in a directed fashion. The message from Ci to Cj is:

µij =

∫ ∞
−∞

Ψi

∏
k

µkid(Ci /∈ Sij), (2.33)

where k includes any messages already received by clique i excluding any sent from j.

That is, a message is formed by marginalising the product of the clique potential and

any other messages to only the states that are in the destination clique. In the case of

cliques that are leaves of the tree (i.e., only 1 neighbour) there are no other messages.

For the Gaussian case, the messages can be parametrised by an information matrix

Yµij and vector yµij , such that Equation 2.33 is equivalent to:

Yµij = (YΨi
+
∑
k

Yµki)
∗Ci /∈Sij , yµij = (yΨi

+
∑
k

yµki)
∗Ci /∈Sij , (2.34)

which uses the shorthand for marginalisation described in Section 2.2.3, and k is as

defined in Equation 2.33.

Algorithm 2.2 demonstrates the message passing algorithm at a high level. It begins

by identifying a particular clique to be designated as root. Then, for each leaf it

performs the DistributeMessages function shown in Algorithm 2.3. This algorithm

sends a message to a neighbouring clique only if it has at least 1 neighbour that has

not sent it a message. These messages eventually propagate to the root node. For

example, in Figure 2.9 if C1 is the root node, C3 and C4 are leaves. DistributeMessages

is first run on C3. This sends a message to C2. However, since C2 has yet to receive two

other messages from its neighbours, DistributeMessages ends. DistributeMessages is

then called on C4, which sends another message to C2. C2 has now received messages

from all but one neighbour, so it sends a message to clique C1. The final call to

Distribute Messages on the root node transmits the final message in the other direction

to the other cliques. Once this occurs, a message is sent to C2, which has now received

messages from every neighbour. It sends messages to each of its neighbours with the
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exception of the parent (in this case C1). These messages arrive at C3 and C4 and, as

they have no neighbours other than their parent (C2), DistributeMessages ends. After

this process, every clique has received a message from every one of its neighbours.

Any clique Ci is now capable of calculating the marginal (Φi = p(xCi)) over its states

using information available locally. This is done using the following Equation:

Φi = Ψi

∏
k

µki, (2.35)

where k contains all the neighbours of Ci. That is, the marginal over the states in Ci
can be constructed using the clique potential and the messages sent from neighbouring

cliques. For Gaussian distributions, the marginal is parametrised by the information

matrix YΦi
and vector yΦi

, such that Equation 2.35 becomes:

YΦi
= YΨi

+
∑
k

Yµki , yΦi
= yΨi

+
∑
k

yµki . (2.36)

Figure 2.9(b) shows the form of the messages and marginals on an example Junction

Tree.

The message passing algorithm can also be used in decentralised estimation. In this

case, Algorithm 2.3 can be continuously performed as new updates occur to the

system. This allows information to propagate through the JT without requiring any

node to be chosen as root [42].

Algorithm 2.2: MessagePassing
input : A junction tree, T
output: A junction tree, T , with marginals available for every clique
begin
L = all leaves of tree T
Choose one leaf to be root r
Remove r from L
foreach i ∈ L do

DistributeMessages(Li)
DistributeMessages(r)
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Algorithm 2.3: Distribute Messages, c.f. [28]
input: A clique of a junction tree, Ci
input: parent clique, Cp
if ≤ 1 neighbours have not yet sent a message to Ci then

foreach Neighbour j 6= p do
µij =

∫
Ci /∈Sij Ψi

∏
k µki,∀k 6= j

Send message to neighbour i
DistributeMessages(Cj)

2.3.3 Forming a Junction Tree from an Information Matrix

The process of converting an information matrix and vector to a JT is given in

Algorithm 2.4. This requires the determination of an elimination ordering, which

can be done using the amd heuristic (see Section 2.2.4). Algorithm 2.5 applies the

elimination ordering to the matrix Y and records the cliques that are formed as

vertices are marginalised from the graph. In the case of Figure 2.9, the first two

cliques recorded would be {x1, x4, x5} and {x2, x5, x6}. These cliques are equivalent

to the subscripts of non-zeros in the rows of the Cholesky factor of Y for this particular

ordering. It is likely that many cliques will be subsets of larger cliques and Algorithm

2.6 is used to remove any non-maximal cliques from the clique set. With reference

to Figure 2.9, the cliques {x5, x6, x7} and {x6, x7} are subsets of C2 = {x4, x5, x6, x7}
and would be removed from the clique set. Once the cliques are formed they need

to be connected as a tree such that the running intersection property holds. This

is performed by finding a maximal spanning tree between the cliques where the link

weight is the size of the separator sets between cliques. Figure 2.10 demonstrates

the graph of cliques and their connectivity weight based on Figure 2.9(b). Edges are

labeled with the size of the separator and a maximal weight tree is shown with blue

edges. The final step in Algorithm 2.4 is to spread Y and y across the clique potentials

of the JT. This uses Algorithm 2.7, which iterates through the cliques assigning the

values contained in Y and y to the clique potentials. Afterwards, the elements of

Y and y that were assigned to clique potentials are set to zero. These matrix and
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vector elements are zeroed so that any neighbouring clique that is visited afterwards

does not have those values assigned to it. This is done to ensure that Equation 2.32

is satisfied. Upon completion of Algorithm 2.4 the JT is ready for message passing to

be performed. Note that Algorithm 2.7 could be replaced by any other decomposition

approach that satisfies Equation 2.32. For example Algorithm 2.8 will result in clique

potentials that are also positive definite.

C1 C2 C3

C4

C1 : {x1, x4, x5} C2 : {x4, x5, x6, x7} C3 : {x3, x6, x7}

C4 : {x2, x5, x6}

1 1

0

2 2

2

Figure 2.10 – Weighted Graph for finding the JT of Figure 2.9. The maximal weight
tree is shown in blue, edge weights that are equal to the clique seperator sizes are
labeled on each edge. Note that in this case the tree is also the maximum spanning
tree for the graph. It is not a requirement that the maximum spanning tree be
found, rather only the maximal.

Algorithm 2.4: FormJT
input : Y, Information Matrix
input : y, Information Vector
output: T , Junction Tree
I := find an elimination ordering for Y
R := FormCliqueSet(Y, I)
T := connect R such running intersection property is true
T := SimpleDecomposeInformationToCliques(Y,y, T )
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Algorithm 2.5: FormCliquesSet
input : Y, Information Matrix
input : I, elimination ordering
output: R, set of cliques
foreach i in I do
N := neighbours of i in Y.
Add N into R
Eliminate(i,Y)

R := RemoveNonMaximalCliques(R)

Algorithm 2.6: RemoveNonMaximalCliques
input : R, set of cliques
output: R, set of cliques
foreach Ci in R do

foreach Cj in R do
if Ci ⊂ Cj then

Remove Ci from R
break

Algorithm 2.7: SimpleDecomposeInformationToCliques
input : Information Matrix, Y, information vector y
input : Junction Tree, T
output: Junction Tree, T
foreach Ci in T do

YΨi
= Y(Ci, Ci)

yΨi
= y(Ci)

y(Ci) = 0
Y(Ci, Ci) = 0
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Algorithm 2.8: PSD-DecomposeInformationToCliques
input : Information Matrix, Y, information vector y
input : Junction Tree, T
output: Junction Tree, T
V := leaves of T
D := ∅
while V 6= ∅ do
Ci := any single clique in V
add Ci to D
remove Ci from V
K := /∈ Ci
S = Y(K, Ci)Y(Ci, Ci)−1Y(Ci,K)
Y(K,K) = Y(K,K)− S
y(K) = y(K)−Y(K, Ci)yCi
YΨi

= S
yΨi

= Y(K, Ci)yCi
y(Ci) = 0
Y(Ci, Ci) = 0
foreach neighbour Ni of Ci do

if size(Ni \ D) ≤ 1 then
add Ni to V
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2.3.4 Incremental Estimation

Junction Trees can be used for incremental estimation in a manner similar to incre-

mental estimation with information matrices (see Section 2.2.2). There are 3 cases to

consider when adding a new observation into the system:

1. Observed states are all members of a single clique.

2. Some observed states are not in any clique.

3. No single clique contains all the states.

For case 1, the approach is analogous to an information matrix update. Algorithm

2.10 can be used, that simply fuses the observation with the potential of the clique

which contains every state of the observation. Note that this approach only changes

states within a single clique.

Case 2 is equivalent to augmenting the information matrix. Algorithm 2.9 can be

used to fuse the new observations. This requires finding a clique that contains all of

the states that are in the observation and also exist in the JT and then adding the

previously unobserved states to it. This is followed by applying case 1 to the newly

enlarged clique. This is demonstrated in Figure 2.11. Also observe that this requires

the addition of information to only a single clique.

Case 3 is more difficult, since it requires joining all the cliques which lie in the path

between the cliques that share the states contained in the observation. The approach

is described in Algorithm 2.11. Figure 2.12 also demonstrates an example of this

approach. In this example, a new observation connects states x2 and x4, which

appear separately in C2 and C3. In this case, the shortest path between these cliques

contains only C2 and C3 but in general there can be many cliques on this path. All the

cliques on the path must be merged. This is done by combining the clique potentials

(equivalent to adding the parameters YΨi
,yΨi

for each clique) and finding the union

of the clique states. When finished, the new observation can be fused into the new
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clique potential in a manner similar to case 1. This operation has formed a large

clique (C2).

The final step of Algorithm 2.11 is to perform Algorithm 2.12, which attempts to

exploit any intra-clique sparsity through reordering. Consider Figure 2.13 which

shows an example of reordering using Algorithm 2.12. In this example the shortest

path between the cliques containing the observed states includes two other cliques,

and consequently the potential of the large clique contains some sparsity, as seen in

Figure 2.13(d). Algorithm 2.12 begins by adding any state in a separator of C2 to

the beginning of the elimination ordering, ensuring that they form a connected clique

and that the structure Tnew can be connected to the remaining components of the

prior JT T . A new ordering is found for the potential in C2 that allows the separation

of the clique into three smaller cliques, as seen in Figure 2.13(e). By reordering this

potential, the maximum clique size (or clique width) of the JT reduced from eight in

Figure 2.13(c) to four in Figure 2.13(e).

Note that it is possible for cases 2 and 3 to occur simultaneously, that is, a state must

be augmented but the preexisting states do not exist in a single clique. This can be

addressed by using Algorithm 2.9 when fusing the new observation in Algorithm 2.11.

Algorithm 2.9: Augment and add new observation
input : Junction Tree T
input : New potential Ψobs

output: Updated Junction Tree T
Ci = Find a clique in T that contains a state from Cobs
Ci = Ci ∪ Cobs
Ψi = ΨiΨobs
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C1 C2 C3

C1 : x1, x2

C2 : x2, x3

C2 : x3, x4

(a) Prior JT

x3 x5

(b) Update structure

C1 C2 C3

C4

C1 : x1, x2

C2 : x2, x3

C3 : x3, x4

C4 : x3, x5

(c) Augmented JT

Figure 2.11 – JT update case 2. The prior junction tree is given in (a), the structure
of the update is shown in (b). Since the state x5 does not exist in any cliques,
a new clique C4 is created to contain this new connection as shown in (c). The
clique is connected to any other clique such that the running intersection property
is maintained. In this example either C2 or C3 could become neighbours with C4 to
satisfy this property.

Algorithm 2.10: FuseUpdateIntoJT
input : New potential Ψobs

input : Junction Tree T
input : New potential Ψobs

output: Updated Junction Tree T
Ci = Find a clique in T for which Ci ∩ Cobs
Ψi = ΨiΨobs



2.3 Estimation with Junction Trees 32

C1 C2 C3

C1 : x1, x2

C2 : x2, x3

C3 : x3, x4

(a) Prior JT

x2 x4

(b) Update Structure

C1 C2

C1 : x1, x2

C2 : x2, x3, x4

(c) JT after Augment

Figure 2.12 – JT update case 3. (a) shows the original junction tree, while (b) shows
the structure of the update. Since this update contains two states that both exist
in the junction tree, cliques must be merged such that a single clique contains both
states. In this case C2 and C3 are merged to form (c).

Algorithm 2.11: Merge Cliques and Fuse
input : New potential Ψobs

input : Junction Tree T
output: Junction Tree T
P = shortest path between all states of Cobs
// Make large single clique Cm
foreach Pi in P do
Cm = Cm ∪ Ci
Ψm = ΨmΨi

// Fuse into new clique
Ψm = ΨmΨobs

U = Reorder Cm
replace Cm from T with U



2.3 Estimation with Junction Trees 33

Algorithm 2.12: Reorder
input : A Large clique Cm
input : Junction Tree T
output: Junction Tree T
I := Find an elimination ordering for YΨm

// Ensure that separators of Cm are also cliques in Tnew
Move all states in S∗m to beginning of I
R := FormCliqueSet(YΨm ,I)
Tnew := connect R such that the running intersection property is true.
Tnew := SimpleDecomposeInformationToCliques(YΨm ,yΨm , Tnew)
T := Connect Tnew to previous neighbours of Cm in T .
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x1 x2 x4 x6 x8

x3 x5 x7

(a) Graph of estimate, with new observed edge in
dashed red

C1 C2 C3 C4 C5

C1 : {x1, x2, x3}

C2 : {x2, x3, x4}

C3 : {x4, x5, x6}

C4 : {x5, x6, x7}

C5 : {x6, x7, x8}

(b) JT before new observation.

C1 C2

C1 : {x1, x2, x3}

C2 : {x2, x3, x4, x5, x6, x7, x8}

(c) JT after new observation.

x5

x4x3

x6x7

x2

(d) New structure of YΨ2

C1 C2 C3 C4

C1 : {x1, x2, x3}

C2 : {x2, x3, x7}

C3 : {x3, x5, x6, x7}

C4 : {x3, x4, x5, x6}

(e) Structure after re-ordering C2

Figure 2.13 – Example of reordering. (a) shows the equivalent information matrix
before a new edge is introduced, while (b) shows the equivalent JT before this
new edge. Since the edge connecting states x8 and x2 does not exist in any single
clique, this is a case 3 update. The shortest path contains C2, C3, C4, C5, these are
merged to produce the JT in (c). However, the structure of the clique potential
in C2 is shown in (d) and is clearly sparse (the new link is shown in dashed red).
Reordering (Algorithm 2.12) can be used to exploit this sparsity resulting in the
JT in (e), which has a much smaller clique width.
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2.3.5 Cost of the JT algorithm

A significant cost is incurred each time a message is formed as this requires inverting

a matrix of dimension |Ci| − |Sij|. Each clique transmits one message per neighbour,

or edge in the JT. Let E contain the size of the required inversion per edge, such that

a single element ek ∈ E is equal to ek = |Ci| − |Sij| for some i, j in the JT T . Then

the cost of message passing is:

O

(∑
k

e3
k

)
,∀ek ∈ E (2.37)

After message passing, the mean and covariance over a particular clique set can be

found by inverting the marginal matrix YΦi
. The cost of performing this for every

clique is:

O

(∑
i

|Ci|3
)
. (2.38)

For sparse systems, these costs are much less than O(n3). Compare this to the

cost of the Cholesky solve O(
∑

k |lk|2) and the cost of finding the elements of the

covariance O(nl2) described in Section 2.2.5. Although the number of cliques is

usually less than the number of rows in L, the cubic cost still dominates, resulting in

the Cholesky factorisation being more efficient. Note that this analysis is valid only

for the particular formulation of JT message passing used in this thesis.

2.3.6 Special cases of Junction Tree Inference

The JT algorithm presented in this section is a special case of general inference

using JTs. This work chooses a particular approach to message passing known as

the ‘Shafer-Shenoy’ method[28]. An equivalent approach for inference is the ‘Hugin’

method. In this method, potentials are maintained over each separator set as well as

the clique set, and message passing is performed by updating the separator potentials
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of neighbouring cliques. After message passing is performed the clique potential

becomes a marginal estimate over the clique set. This method is employed by the

Thin Junction Tree (TJT) filter described in Section 2.5.3 and Appendix B.2.1.

Other variants of JT inference can use the Cholesky or other matrix decompositions

as their internal representation. A good example of this is the Bayes Tree [33][34],

which uses a QR factorisation of the clique potentials and messages.

2.4 Sparse Problems

This section discusses some example problems and their associated graphs. The aim is

to show the types of problems that can be addressed by a sparse estimation approach

and to highlight areas where these problems may benefit from sparsity.

2.4.1 SLAM

Simultaneous Localisation and Mapping (SLAM) has become a standard problem in

robotic applications [5][17]. SLAM is was initially applied to indoor robots, but has

been successfully applied in outdoor mapping[34], undersea exploration [40][18], ship

hull inspection [60], mining robot navigation [47] and aerial surveying [11]. While

there exist many variants of SLAM, the problems considered in this thesis are re-

stricted to simplified linear systems, and also ignores the data association problem in

typical SLAM implementations.

This thesis considers a simple formulation of the SLAM problem where there are two

types of observations; observations of landmarks made by the robot; and estimates of

the robots trajectory based on internal observations such as wheel movement (from

a wheel encoder) or forces acting on the robot (observed through an accelerometer).

It will also consider two types of states; robot locations at a particular time xt; and

stationary landmark locations li. Modern approaches to SLAM can extend this by

making landmarks implicit [41], or attempting to estimate biases in sensors such as

accelerometers.
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Early work on the SLAM problem focused on the filtering variant, whereby the robot

state would be marginalised after every time step. This resulted in a problem that

was dense in both the covariance and information form, but whose state vector only

grew with the observation of new landmarks. The form of the state vector is:

x =
[
xt l1 . . . ln

]T
, (2.39)

Figure 2.14 shows the structure of a filtering SLAM problem. The robot moves

through a field of landmarks, marginalising at every time step and slowly connecting

the landmarks to form a dense clique. As can be seen in Figure 2.14(c) the state

estimate gradually increases in density as more landmarks become connected to the

robot state and other landmarks.

l1 l2

l3 l4

l5

x1

(a) time = 1

l1 l2

l3 l4

l5
x2

(b) time = 2

l1 l2

l3 l4

l5x3

(c) time = 3

Figure 2.14 – Structure of the filtering SLAM problem. Red links indicate observations
from the current time set.

The SLAM problem can be reformulated as a sparse problem by maintaining the

robot state estimates rather than marginalising them. The state vector for this is:

x =
[
x1 . . . xt l1 . . . ln

]T
, (2.40)

The structure of the problem can be seen in Figure 2.15. This shows the landmarks

being connected through the observations of the robot states. Over time, smooth-

ing SLAM will remain sparse, while an equivalent filtering SLAM solution will be

dense. A significant disadvantage is that the size of the problem grows linearly with

time, and eventually old robot states will need to be marginalised. As old states are

marginalised, smoothing SLAM begins to show the same sparsity problem exhibited
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by filtering SLAM.

l1 l2

l3 l4

l5

x1

(a) time = 1

l1 l2

l3 l4

l5

x1

x2

(b) time = 2

l1 l2

l3 l4

l5

x1

x2

x3

(c) time = 3

Figure 2.15 – Smoothing SLAM approach. The landmarks are conditionally dependent
upon the robot states. Red links indicate observations collected at the current time
step.

Another variant of SLAM is view-based SLAM [20]. In this variant only the state

history is maintained. While this results in a large sparse chain of states, links can

be induced between robot states through re-observing a view. Figure 2.16 shows

a comparison between smoothing and view-based SLAM. Since the state space of

view-based SLAM grows linearly with time, robot states will eventually need to be

marginalised. This will result initially in fill-in and eventually in a dense problem.

Thus both smoothing and view based SLAM approaches will eventually become dense

if operated for a sufficiently long time period.

2.4.2 Distributed Sensor Networks

Distributed Sensor Networks (DSNs) are useful for gathering observations of a partic-

ular unknown parameter over a wide geographical area. DSNs have also widely been

used for water and ocean monitoring in Australia [55] and the world [32], localisation

of animals through sound [63], monitoring temperature changes throughout a house

[49] and in distributed power generation [3][1] and vehicular sensor networks [4].

Although each application of a DSN is different, a simple structure can be applied

to all models. Each platform is concerned with observing a quantity at its current

location. For example the water temperature at a particular depth. These quantities
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l1 l2

l3 l4

l5

x1

x2

x3

(a) time = 3 smoothing

x1

x2

x3

(b) time = 3
view-based

l1 l2

l3 l4

l5

x1

x2

x3

x4

x5

x6

(c) time = 6 smoothing

x1

x2

x3

x4

x5

x6

(d) time = 6 view-based

Figure 2.16 – Comparison between smoothing and view-based approaches. Observe
that the view based system (b) is simply a chain of states. (c) shows a possi-
ble smoothing SLAM system after 6 time steps, with the robot re-observing the
landmarks. The view-based SLAM solution for (c) is shown in (d). Observe that
a loop has formed, and that x6 is now connected to the earlier states x1 and x2.
Re-observing landmarks can create loops between states and lead to a dense system.

can change over time, and also with the platforms location. However, since each

quantity is local to the platform, they can be considered as a single quantity rji for

platform i at time j. Therefore the state space for this problem is:

x =
[
r1

1 . . . rn1 . . . r1
t . . . rnt

]T
. (2.41)

The system is concerned with how the quantities are related to other nearby nodes,

and also how they change through time. The growth of a DSN can be seen in Figure

2.17. Note that past states eventually need to be forgotten and marginalisation

will quickly generate a dense problem. In fact, simply marginalising all states at

time i will result in dense connection of all states at time i + 1. DSNs also require

communication between nodes, which is related to how many links exist between
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nodes. See Example 2.4.1 for a discussion of how this affects the related problem of

Cooperative Localisation.

r1
1 r2

1

r3
1 r4

1

(a) time = 1
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1 r2
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1 r4
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2 r4

2

(b) time = 2

r1
1 r2

1

r3
1 r4

1

r1
2 r2

2

r3
2 r4

2

r1
3 r2

3

r3
3 r4

3

(c) time = 3

Figure 2.17 – Structure of the Distributed Sensor Network Problem

2.4.3 Cooperative Localisation

Cooperative Localisation combines the DSN and SLAM problems [6]. It estimates

the location of a set of mobile robot states (xki for robot i at time k). These robots

observe stationary landmarks in the environment (li) as well as other robots. The

state space for this system is:

x =
[
x1

1 . . . xn1 . . . x1
t . . . xnt l1 . . . ln

]T
, (2.42)

The structure of the cooperative localisation problem can be seen in Figure 2.18.

Although the structure looks dense, robots do not observe past robot states, and the

structure is thus similar to the DSN problem in Figure 2.17. Robots also need to

communicate their information to each other. This cost is considered in Example
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2.4.1. As with all other problems in this section, marginalisation of past states will

lead to a dense graph, which is demonstrated in Example 2.4.2.
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l4
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(a) time = 1
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(b) time = 2
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2
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x1
3

x2
3

x3
3

(c) time = 3

Figure 2.18 – Structure of the Cooperative Localisation Problem. Red links indicate
observations made in the current time step.

Example 2.4.1. An important factor when designing distributed cooperative

localisation estimation schemes is the message size. Message passing can be

used to allow each robot to maintain a consistenta estimate with respect to all

the other robots.

In this example consider a simple two robot problem in the following scenarios:

x1 l2

l1

l3

x2 x1 l2

l1

l3

x2

Scenario A Scenario B
In scenario A, robot x1 needs to communicate complete information to robot
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x2 about the location of landmarks l1, l2 and l3. This is because x2 is directly

related to each of these landmarks, and needs to know its full state to fuse

its internal information. However in scenario B, x2 is not directly related to

l3. This allows robot x1 to marginalise the estimate of l3 and send a message

which only contains the states of l1 and l2. Thus increased sparsity has re-

duced communication costs.

aIn this setting, consistent means that the distribution found on every robot for each
identical state will be the same [25][39]. This is different to the definition of conservative
(Section 2.5.1 ), where an estimate is ‘less certain’ than some other estimate.
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Example 2.4.2. Marginalisation is a significant source of non-zeros in a

dynamically updating estimation system. This example shows the progression

of a cooperative localisation problem where states are marginalised when they

are 5 time-steps old. The state space grows in size as new landmarks are

observed. Darker colors indicate larger numbers. The dimension of each

matrix is listed below it, along with time step.

t=1 (dim=12) t=50 (dim=112) t=100 (dim=212)

t=150 (dim=312) t=200 (dim=412) t=250 (dim=512)

At time 250 nearly all of the landmarks are now connected through margina-

liasation induced fill-in. Note that even at t=250 many of the links are of low

weight (light yellow). These are good candidates for sparsification as their

removal will only have a small affect on the overall estimate quality.
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2.5 Approximate Estimation

The previous section describes several sparse problems, which under certain condi-

tions can become dense, and therefore intractable for large problems. This section

begins with an exploration of the cost functions and the requirement for conserva-

tive estimates. Following this, methods for reducing the computational complexity

of information form and Junction Tree based estimates through approximation are

explored.

2.5.1 Approximation Quality

The most obvious quality that an approximation must have is that it is in some way

‘close’ to the original estimate. There are many possible cost functions that can be

used, such as an lp norm between the matrices (i.e., difference between values in

the information matrix of the approximate and true taken to the power p). Since

the estimates represent probabilities, it is more appropriate to use a measure that is

commonly used for probabilities. The Kullback Leibler Divergence (KLD) is chosen

as it is a commonly used measure of divergence between probability distributions

[8][39]. The equation for the KLD is shown below:

DKL (p(x)||q(x)) =

∫ +∞

−∞
p(x) log

(
p(x)

q(x)

)
dx, (2.43)

If p(x) and q(x) are Gaussian, this can then be computed as [8]

DKL (p(x)||q(x)) =
1

2

(
tr(Σ−1

q Σp) + (µp − µq)TΣ−1
q (µp − µq)− log

det(Σp)

det(Σq)
− n

)
,

(2.44)

where n is the number of states. This cost function is advantageous since it is also

convex in the elements of Σ−1
q . The KLD is chosen as the measure of divergence in

this thesis.

Another important property for an approximate estimate is conservativeness. A mo-
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tivation for conservativeness was given in Chapter 1. Assuming the distributions are

Gaussian with coincident means, an approximate estimate is conservative if its co-

variance is larger than or equal to the covariance of the true estimate. The covariance

of an n-dimensional Gaussian can be plotted using the following equation where c is

a constant:

εA = {x|xTYx = c} (2.45)

The set of points in εA contain the locus of a hyper-ellipse. The covariances of two

Gaussians can be compared by generating the locus for the same value of c. For

a simple 2-dimensional case, consider Figure 2.19. In this figure, the red ellipse

represents the approximate covariance and the blue, the original covariance. Observe

that Figure 2.19(a) and Figure 2.19(b) are conservative estimates while Figure 2.19(c)

is not. If an estimate is not conservative it is called over-confident. Unfortunately,

(a) Y−1
1 � Y−1

2 (b) Y−1
1 � Y−1

2 (c) Indefinite

Figure 2.19 – The possible ellipsoids for positive semi-definite matrices centred on the
origin are shown. Y−1

1 is represented by a red ellipse, while Y−1
2 is represented by

a blue ellipse. (c) Shows the ellipses where neither Y−1
1 � Y−1

2 nor Y−1
1 � Y−1

2

are true.

minimising the KLD does not guarantee a conservative estimate. Example 2.5.1

demonstrates a scenario where an overconfident estimate has a smaller KLD than a

conservative estimate.
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Ntr(x̂; 0, 0.5)
N1(x̂; 0, 0.64)
N2(x̂; 0, 0.4)

Figure 2.20 – Probability density functions for distributions described in Example
2.5.1. Note that the Gaussian distributions have been parametrised in covariance
form (N (x̂;x, σ)). Although the variance of N2 is closer to that of Ntr than the
variance of N1, N2 it expresses more certainty than Ntr and is therefore an over-
confident estimate.
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Example 2.5.1. Consider three single dimension Gaussians as shown in

Figure 2.20 (where the Gaussians distributions are parametrised using the

covariance form N (x̂; x, σ)):

Ntr(x̂; 0, 0.5), N1(x̂; 0, 0.64), N2(x̂; 0, 0.4),

N1 is a conservative estimate of Ntr, while N2 is an overconfident estimate.

The KLD between these estimates and Ntr is given by:

DKL (Ntr||N1) = 0.5 ∗
(
σtr
σ1

− ln(
σtr
σ1

)− 1

)
= 0.5 ∗

(
0.5

0.64
− ln(

0.5

0.64
)− 1

)
= 1.41× 10−2

DKL (Ntr||N2) = 0.5 ∗ (
0.5

0.4
− ln(

0.5

0.4
)− 1)

= 1.34× 10−2

Even though N2 has a smaller KLD and has a closer variance to Ntr, prefer-
ring N2 over N1 could be undesirable because N1 is not conservative.
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For n-dimensional Gaussians, comparing the covariance for every state to check for

conservatism could be a time consuming process. Fortunately, the set of positive

definite matrices which include covariance and information matrices have an ordering

(known as the Loewner partial ordering [10]), that if satisfied also implies that the

covariances of every state are greater or equal. This relation is ensured by Theorem

2.1.

Theorem 2.1. Y−1
1 � Y−1

2 implies that every covariance ellipsoid of N1(x̂; x,Y−1
1 )

is contained by the equivalent ellipsoid of N2(x̂; x,Y−1
2 ).

Proof. Let ε1 and ε2 be the covariance ellipsoid for N1 and N2 found using equation

2.53 for any fixed value of c so that the ellipsoids represent equivalent probability

contours. Let the sets S1 and S2 contain all points that are contained in ε1 and ε2

respectively. That is

S1 = {x|xTY1x ≤ c} (2.46)

S2 = {x|xTY2x ≤ c} (2.47)

Now consider the property: [51, Eq. 10.46]:

A � B ⇐⇒ xTAx ≥ xTBx, ∀x ∈ Rn (2.48)

Since Y1 � Y2 then the above property implies that:

xTY1x ≥ xTY2x, ∀x ∈ S2 (2.49)

but xTY2x ≥ c, ∀x ∈ S2. Therefore

xTY1x ≥ xTY2x ≥ c, ∀x ∈ S2 (2.50)

but since

xTY1x ≥ c, ∀x ∈ S1 (2.51)
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it follows that S2 ⊆ S1. That is, all the points contained in ε2 are a subset of the

points contained in ε1. Therefore ε2 is contained by ε1.

Therefore conservatism between an approximate distribution N−1
app(x̂; yapp,Yapp) and

original distribution N−1
tr (x̂; ytr,Ytr) can be checked by ensuring that the relation

Y−1
app � Y−1

tr (2.52)

holds, where A � B implies that the difference A − B is a positive semi-definite

matrix.

For a Gaussian parametrised using the information matrix, the requirement to invert

to check for conservatism is also quite costly. Fortunately, another property of the

Loewner ordering is:

A � B ⇐⇒ A−1 � B−1. (2.53)

Therefore Equation 2.52 can be expressed as

Ytr � Yapp, (2.54)

which is also a convex constraint [10].

Another property of the Loewner partial ordering is that if the estimate which is being

approximated is not the ‘true’ estimate, as long as the estimate being approximated

is conservative then the new approximate distribution will also be conservative. This

is expressed as:

Y−1
app1 � Y−1

tr ,Y
−1
app2 � Y−1

app1 =⇒ Y−1
app2 � Y−1

tr , (2.55)

and is demonstrated for a simple 2-D case in Figure 2.21. This is useful since it

allows a conservative estimate to certify that another estimate is also conservative.

This enables systems to iteratively approximate conservatively.
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Figure 2.21 – The true distribution’s (Ytr) locus is given by the black ellipse; the prior
(Ỹ) is given by the blue ellipse; the red dashed ellipse represents the Yapp which
is the conservative approximation of Ỹ. This picture graphically demonstrates the
expression Y−1

app � Ỹ−1 � Y−1
tr . This shows that if the prior estimate is a conserva-

tive approximation of the true distribution, then new conservative estimates based
on the prior will also be conservative with respect to the true distribution.
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2.5.2 Improving Efficiency of Information Form

Section 2.2.5 describes the Cholesky factorisation for efficient solving. This algorithm

has time complexity dominated by O(
∑

k l
2
k), where lk is the number of non-zeros on

row k. Considering this cost function, a simple approach to improve efficiency is to

reduce the number of non-zeros in the largest row of the Cholesky factor.

Attempting to remove non-zeros from a particular row of a Cholesky factor is not

simple. Any non-zero element may be a product of fill-in and this fill-in is dependent

upon a particular choice of elimination ordering. Consider Figure 2.22 and recall that

the Cholesky factor has the same sparsity as the triangulated graph. Observe that

in Figure 2.22(b) the fill-in between vertices x1 and x3 can be removed by changing

the elimination ordering to the one used in Figure 2.22(c). However, this change in

elimination has not improved the sparsity of the Cholesky factor and has moved the

non-zero to another location. One way to remove this fill-in is to delete the edge

between x1 and x2. However if this edge is removed and the elimination ordering of

Figure 2.22(c) is used, then the equivalent fill-in between x3 and x4 remains. Thus,

the particular choice of elimination ordering needs to be taken into account when

removing links. The best approach is to choose a new elimination ordering for the

graph after sparsification. For large graphs it will be costly to reorder the matrix

after every sparsification event.

Some links will be subject to fill-in even if they are removed from the graph. Consider

the edge between x3 and x4 in Figure 2.22(b) and Figure 2.22(c). Regardless of

elimination ordering the edge will be subject to fill-in and requires the removal of

another existing edge before it can be deleted from the chordal graph (such as the

edge between x1 and x2). However, care must be taken to ensure that the correct

elimination ordering is used, as using the elimination ordering form Figure 2.22(c)

and deleting the edge between x1 and x2 will still result in fill-in between x3 and x4.

In addition to choosing an edge that minimises fill-in, it is also desirable to reduce

the error between the true system and the approximate system. [35] and [36] suggest

a simple cost function that attempts to trade the cost of approximation with the
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x1 x3 x5

x2 x4 x6

(a) Original Graph

x1 x3 x5

x2 x4 x6

(b) Triangulated with order-
ing O1

x1 x3 x5

x2 x4 x6

(c) Triangulated with order-
ing O2

Figure 2.22 – Inducing sparsity in the Cholesky factor by modifying the information
matrix. Dashed green lines indicate fill-in. (a) shows the original graph. (b) shows
the triangulated graph for an elimination ordering O1 = {x1, x2, x3, x4, x5, x6},
while (c) shows the graph for ordering O2 = {x5, x6, x4, x3, x1, x2}. Observe that
removing the edge x3, x4 in the graph will not change the triangulated graph struc-
ture due to fill-in.

efficiency gains of sparsification. However, the exact form of the function is left

undefined. The approaches used in this thesis assume that removal of any link in

the information matrix results in increased efficiency gains and does not consider the

impact of different elimination orderings on the efficiency of the final result.

There have been many previous approaches to link removal in information matrices.

It is observed in [35] and [54] that elements of the information matrix can approach

zero in some situations (for example in filtering SLAM between the robot state and

distant landmarks). This observation has generated many approaches that set small

valued elements in the information matrix to zero.

Approximately Marginalised - Sparse Extended Information Filter (AM-SEIF) [54]

is a technique for the filtering SLAM problem, which removes links between the

robot and nearby landmarks to reduce landmarks connected to the robot state. AM-

SEIF selects links whose normalised weight is below a particular threshold, and only

when the number of landmarks connected to the robot state rises above a particular

threshold. AM-SEIF uses marginalisation to create and then combine distributions

such that a particular set of states are conditionally independent. Unfortunately,

this marginalisation results in fill-in between landmarks connected to the robot and

consequently adds many more links than it removes, resulting in a matrix with more

non-zeros. This is illustrated in Figure 2.23. However, for the filtering SLAM scenario,
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this is acceptable as the landmarks are assumed to be densely connected by previous

robot marginalisation. This work is proved in [61] to result in over-confident estimates.

Appendix B.1 describes AM-SEIF in more detail.

l1 l3

xil5

l4

l2

(a) Original graph

l1 l3

xil5

l4

l2

(b) Sparsified graph

Figure 2.23 – Removing the link between xi and l2 using AM-SEIF approach (shown
in red). This link is introduced through marginalisation of a prior state. Green
links are induced by AM-SEIF. After this operation, the robot state has 3 rather
than 4 edges, and is therefore more sparse. However, the overall graph sparsity has
been reduced (there are 10 edges in (b) but only 7 edges in (a)). See Appendix B.1
for more details.

Another important approximate technique is Covariance Intersection (CI). This tech-

nique allows for de-correlation between states in the estimate while guaranteeing that

the approximation will be conservative. CI is typically used in data fusion scenarios

where two pieces of information need to be combined without knowledge of the cross-

correlation between them. Appendix B.1 also describes CI and its variants in more

detail.

Convex optimisation and other matrix optimisation approaches such as Covariance

Selection [16] can also be used to introduce sparsity into an information matrix.

These approaches are not used in incremental estimation as they have a high cost of

O(n6.5) for dense matrices, and O(n2.5s2) for sparse matrices, where s is the number

of non-zeros in the matrix. Appendix B.3.1.1 describes this problem in more detail.

Data Discarding Sparse Extended Information Filters (DD-SEIF)[61] uses a heuristic

to ignore observations that connect each robot state through time and instead use

observations of known landmarks to estimate the robot’s new location. While this has

the effect of maintaining a conservative approximation, the accuracy of this approach

depends upon the strength of the link being discarded. In the case of strong links
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being discarded, large divergences can occur. This was observed in [59].

2.5.3 Improving Efficiency of Junction Tree Estimation

Section 2.3 describes the JT formulation for linear estimation. The largest cost of this

approach is finding the marginal of each clique by inverting the sum of the potentials

and received messages. This has cost O(
∑

i |Ci|3), which suggests that the best way

to increase efficiency is to reduce the size of the clique sets. Additionally, reducing

the clique size will also reduce the cost of message passing.

Some states cannot be removed from a clique without violating the running inter-

section property. Consider Figure 2.24(b). If state x4 was removed from C2, then

the running intersection property for x4 between cliques C1 and C3 would be violated.

Removal of states from a clique can also be considered as a clique splitting operation.

A clique split occurs when a clique is approximated by dividing it into two smaller

cliques, where the union of the states of the two cliques is equal to the states of the

previous clique. As this is an approximation the sum of the clique potentials will not

equal the original clique’s potential. For example, in Figure 2.24(d), C2 is split into

two cliques C2a and C2b such that C2 = C2a ∪ C2b. The new clique sets also need to be

chosen such that the running intersection property still holds. In Figure 2.24(d), C2a

contains x4 such that the property is maintained while reducing the clique sizes.

Another approach to clique reduction in JTs is to remove states from the edges of the

sub-trees relating to a particular state. This approach is taken by the TJT [48]. This

approach works by approximately marginalising the state from the target clique, an

approach which is similar to AM-SEIF. Figure 2.25 demonstrates the basic principle.

Appendix B.2.1 shows that this technique is not conservative and provides more

details.
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x1 x3

x4

x2

x6

x5

(a) Original (triangulated) Graph

C1 C2

C3

C1 : {x1, x2, x3, x4}

C2 : {x2, x3, x4, x5}

C3 : {x4, x6}
(b) Original JT

x1 x3

x4

x2

x6

x5

(c) Sparse Graph

C1 C2a C2b

C3

C1 : {x1, x2, x3, x4}

C2a : {x2, x3, x4}

C3 : {x4, x6}

C2b : {x2, x3, x5}

(d) Sparse JT

Figure 2.24 – Relationship between link removal and clique splitting. Note that there
may be more than one valid JT for any graph, so link removal can affect the different
JTs differently. (a) and (b) show the original graph and a corresponding Junction
Tree. The clique C2 is then split, into two cliques where neither clique contains
both x5 and x4. This is equivalent to removing the link between x5 and x4 in the
underlying triangulated graph. This is an approximation such that ΨC2 6= ΨC2aΨC2b .
Note that the split results in C2a becoming a subset of C1. This clique can now be
merged with C1.

2.5.4 Summary

This section has described methods for link removal and clique splitting to produce

more efficient, yet approximate estimates of linear systems. It has briefly discussed

existing techniques, and highlighted the need for approximate solutions which can

maintain existing sparsity, minimise the KLD and ensure the conservativeness of

estimates.
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C1 C2

C3

C1 : {x1, x2, x3, x4}

C2 : {x2, x3, x4, x5}

C3 : {x4, x6}
(a) Original JT

C1 C2

C3

C1 : {x1, x2, x3}

C2 : {x2, x3, x4, x5}

C3 : {x4, x6}
(b) Approximate JT

Figure 2.25 – Simple example of TJT clique thinning, (a) shows a simple JT. Observe
that x4 is a member of all cliques. (b) shows the JT structure with C1 thinned
by removing x4. Note that x4 cannot be removed from C2 as this will violate the
running intersection property.



Chapter 3

Conservative Sparsification for

Information Matrices

This chapter describes an approach to sparsification that can remove links in an infor-

mation matrix while maintaining guarantees on the conservativeness of the estimates.

This is a general approach that is only computationally feasible for small problems,

and but it will be shown that large problems can often be reduced to a computa-

tionally feasible problem. The chapter will also consider the effect of performing

conservative sparsification in a sequential manner, and finally show demonstrate the

approach using a simulated linear SLAM problem.

3.1 Conservative Optimisation

This section describes the methodology used to construct a conservative sparsification

problem. It is necessary to first define the cost function and ideal sparsity constraints,

these constraints will be relaxed to form a convex problem which becomes a starting

point for developing the theory of conservative sparsification.
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3.1.1 Defining the Problem

Given a multidimensional Gaussian distribution whose information matrix is sparse,

the aim is to find a new information matrix that has fewer non-zero elements and is

conservative with respect to the original distribution.

l1 x1 l3

l2 x2 l4

(a)

l1 x1 l3

l2 x2 l4

(b)

Figure 3.1 – The aim is to make a graph which is already sparse (a) more sparse (fewer
edges or non-zero elements) by the removal of links (b).

Let the true distribution be N−1
tr (x; ytr,Ytr), and let the approximating distribution

be N−1
app(x; yapp,Yapp). It is required that N−1

app be a conservative estimate of N−1
tr ,

which is equivalent to:

Ytr −Yapp � 0 (3.1)

Y−1
tr ytr = Y−1

appyapp (3.2)

Equation 3.2 enforces that the mean estimates will be equal. Rearranging 3.2 gives:

yapp = YappY
−1
tr ytr (3.3)

Therefore, the parameter yapp is determined by the matrix variable Yapp. Thus, Yapp

is the optimisation parameter.

It is important that the new system be a close approximation of the original system.

The KLD is a standard measure of divergence between two distributions. Since

DKL

(
N−1
tr ||N−1

app

)
is convex in Yapp (Section 2.5.1), this leads to the following convex



3.1 Conservative Optimisation 59

cost function1:

min
Yapp

tr(Y−1
tr Yapp)− logdet(Yapp) (3.4)

Combining the cost function and constraints results in:

min
Yapp

tr(Y−1
tr Yapp)− logdet(Yapp) (3.5)

s.t.

||Yapp||0 ≤ k,

Yapp � 0,

Ytr −Yapp � 0,

where ||Yapp||0 is the L0 norm of the matrix, or a count of the number of non-zero

elements in the matrix. This problem can be stated find a conservative approximation

to Ytr such that the number of non-zeros is less than k, and the KLD between Ytr

and Yapp is minimised. where m is the number of nonzero values in Ytr and k < m.

Unfortunately, the use of the L0 norm makes finding an optimal solution to this

problem N.P. Hard [45].

Covariance Selection approaches[7][23][16] relax the L0 constraint by adding a L1

term to the cost function. This yields a convex problem as the L1 norm is convex.

Applying this technique to Equation 3.5 yields a new problem called Conservative

Covariance Selection.

min
Yapp

tr(Y−1
tr Yapp)− logdet(Yapp) + ρ||Yapp||1, (3.6)

s.t.

Yapp � 0,

Ytr −Yapp � 0.

1Note that optimising DKL

(
N−1
app||N−1

tr

)
will yield the cost function minYapp

tr(Y−1
appYtr) +

logdet(Yapp). The solutions found using this cost function will differ from those which minimise
DKL

(
N−1
tr ||N−1

app

)
. However, since this alternate form is not convex in Yapp it is not pursued further.
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A significant disadvantage of this approach is the requirement to choose the weight

ρ of the L1 norm. This problem also inherits Covariance Selections time complexity

properties making it prohibitive for large matrices. The computational complexity is

O(n2.5k2), where n is the matrix dimension (see Appendix B.3.1.1). For large n this

will become intractable.

3.1.2 Conservative Sparsification (CS)

Rather than adding an L0 term to the cost function, a sparsity pattern is chosen

apriori. This removes the ρ||Yapp||1 term from the cost function of Equation 3.6, but

requires extra equality constraints to express the desired sparsity. Let Eapp contain

the index pairs (i, j) that index the non-zeros to be removed, and let Etr contain the

index of zero valued entries in Ytr, the CS problem is defined as a convex semidefinite

program:

min
Yapp

tr(Y−1
tr Yapp)− logdet(Yapp) (3.7)

s.t.

Yapp � 0

(Yapp)ij = 0, ∀{i, j} ∈ Eapp

(Ytr)ij = 0, {i, j}∀ ∈ Etr

Ytr −Yapp � 0

The problem statement is: Find a matrix Yapp that minimises the KLD from Ytr, is

conservative with respect to Ytr, and has a predetermined sparsity pattern. This is a

Maximum Determinant (MAXDET) problem as described in [64] and is readily solved

using an interior point method such as the solver SDPT3 ([56][57]), or a Newton-

conjugate gradient method such as logDetPPA [62]. Thus it still has a time complexity

of O(n2.5k2), and is in feasible for large problems.
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3.2 Efficient Implementation of CS

By using a predefined sparsity pattern rather than a L0 norm, CS has removed a

parameter from the problem, but the time complexity to solve the problem remains

very high, at O(n2.5k2). This section describes a method of reducing this complexity.

This method requires that the matrix Ytr and the links chosen for removal, satisfy

certain conditions. One important caveat is that the analysis will not include the

one-off cost inverting Ytr, which is required to compute the term tr(Y−1
tr Yapp) in

Equation 3.7. As marginalisation and matrix inversion are related (Section 2.2.3),

Chapter 4 will discuss the use of the Junction Tree algorithm to provide an efficient

approach to marginalisation and local matrix inversion.

3.2.1 Efficient Conservative Sparsification

The current formulation of CS applies to all parts of the graph, and for large graphs

will lead to computationally intractable problems. To be computationally feasible for

removing fill-in, a sparsification algorithm needs to also have a local cost. That is, the

cost must not be a function of the global state size, but rather some property which is

localised to the new sparsity. This section demonstrates that CS can be reformulated

to have this property. In problems such as SLAM or DSN, the graph may be already

sparse, but marginalisation can induce fill-in. Marginalisation is local to the Markov

blanket around the node that was removed. Figure 3.2 shows an example graph where

marginalisation does not involve large parts of the graph. If many of these links have

low weight they will be good candidates for removal [35][54].

Let the problem variables be decomposed as follows:

Ytr =

 A11 A12

AT
12 A22

 , Yapp =

 B11 B12

BT
12 B22

 , (3.8)

where the matrix sizes are equivalent, that is dim(A11) = dim(B11). Now assume

that all the new equality constraints Eapp apply only to elements in A11. Also, let
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x1 x2 x3 x4 x5 x6 x7

x8 x9 x10 x11 x12 x13 x14

(a) Original Graph

x1 x2 x3 x4 x5 x6 x7

x8 x9 x10 x11 x12 x14

A11

(b) Large graph after marginalisation of x13

Figure 3.2 – Large sparse graph before and after marginalisation. The Markov blanket
around x13 is indicated as a dotted blue box, and fill-in shown as dashed blue edges.
Observe that this marginalisation does not effect every node, thus a sparsification
routine for removing fill-in would benefit from also having a local formulation.
The red box in (b) shows a particular choice of partition for A11 in the problem
decomposition from Equation 3.8. If a solution is found using this partition, then
only vertexes and edges inside this box will be altered by the solution to CS.

Etr11 be the set of edges that are zero in A11 (that is Etr11 represents the prior sparsity

of A11).

Therefore a new cost function could be written in terms of sub-matrices:

min
B11

tr((A11 −A12A
−1
22 AT

12)−1B11)− logdet(B11 −A12A
−1
22 AT

12) (3.9)

s.t.

B11 � 0

B11 −A12A
−1
22 AT

12 � 0

A11 −B11 � 0

(B11)i,j = 0,∀{i, j} ∈ Eapp ∪ Etr11.
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Observe that this problem now modifies only parts of the graph that correspond to

non-zeros within A11, and the problem complexity is a function of the dimension of

A11 rather than the full problem dimension2. Therefore, this efficient approach to CS

is has a local cost. However, it is required to show that this new problem is equivalent

to the full CS problem in Equation 3.7. To do this the following lemma and corollary

are required:

Lemma 3.1. If p(x1,x2) = p(x1)p(x2|x1), q(x1,x2) = q(x1)q(x2|x1) and p(x1) 6=
q(x1), then the DKL (p||q) is minimised when p(x2|x1) = q(x2|x1).

Proof. The KLD between p and q is:

min
q

DKL (p||q) = min
q

∫∫
p(x1)p(x2|x1) log

p(x1)p(x2|x1)

q(x1)q(x2|x1)
dx2dx1 (3.10)

= min
q

∫∫
p(x1)p(x2|x1) log

p(x1)

q(x1)
)dx2dx1

+ min
q

∫∫
p(x1)p(x2|x1) log

p(x2|x1)

q(x1|x2)
dx2dx1 (3.11)

Considering only the second term:

min
q

∫∫
p(x1)p(x2|x1) log

p(x2|x1)

q(x2|x1)
)dx2dx1 (3.12)

= min
q

∫
p(x1)

∫
p(x2|x1) log

p(x2|x1)

q(x2|x1)
dx2dx1 (3.13)

= min
q

∫
p(x1) DKL (p(x2|x1)||q(x2|x1)) dx1 (3.14)

Notice that DKL (p(x2|x1)||q(x2|x1)) term is uniquely minimised when

p(x2|x1) = q(x2|x1). (3.15)

The following corollary applies Lemma 1 to Gaussian distributions.

2A12A
−1
22 A

T
12 is a marginal projection onto A11, and is a local quantity for some estimation

approaches such as JT, see Section 2.3.
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Corollary 1. For two Gaussian distributions using the information form p(x) =

N−1
1 (x; y1,Ytr), q(x) = N−1

2 (x; y2,Yapp), with the following partitions:

Ytr =

 A11 A12

AT
12 A22

 , Yapp =

 B11 B12

BT
12 B22

 , (3.16)

then the DKL (p(x)||q(x)) is minimised when A12 = B12 and A22 = B22.

Proof. Consider the factorisation q(x1, x2) = q(x1)q(x2|x1). The information matrix

for this is:

Yapp =

 B11 −B12B
−1
22 BT

12 0

0 0


︸ ︷︷ ︸

q(x1)

+

 B12B
−1
22 BT

12 B12

BT
12 B22


︸ ︷︷ ︸

q(x2|x1)

(3.17)

similarly for p(x1, x2) = p(x1)p(x2|x1):

Ytr =

 A11 −A12A
−1
22 AT

12 0

0 0


︸ ︷︷ ︸

p(x1)

+

 A12A
−1
22 AT

12 A12

AT
12 A22


︸ ︷︷ ︸

p(x2|x1)

(3.18)

Using Lemma 3.1, then DKL (p||q) is minimised when p(x1|x2) = q(x1|x2), which is

equivalent to requiring that A12 = B12 and A22 = B22

Note that this corollary is true regardless of the value of A11. The following theorem

shows that the problem described by Equation 3.9 is equivalent to CS, and that

only the elements of A11 are modified. With reference to Figure 3.2(b), assuming

that a solution was found, then all vertices and edges within the red square (i.e.,

states {x4, x5, x6, x6, x11, x12, x14}) are modified, while all other vertices and edges

(i.e., states {x1, x2, x3, x8, x9, x10}) remain unchanged by the solution to CS.

Theorem 3.1. Let the optimal solution to the problem in Equation 3.9 (if it exists)
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be B∗11, then the solution to the problem in Equation 3.7 is

Yapp =

 B∗11 A12

AT
12 A22

 . (3.19)

Proof outline: This proof will show that the problem in Equation 3.9 can be derived

from the CS problem by analysing each of the additional constraints introduced by

the problem in Equation 3.9.

Proof. Let p(x) = N−1(x; ytr,Ytr) and q(x) = N−1(x; yapp,Yapp) be Gaussian dis-

tributions with co-incident means and information matrices Ytr and Yapp partitioned

in the following way (let A11 be the sub-block associated with the states x1, and A22

be the sub-block and x2):

Ytr =

 A11 A12

AT
12 A22

 , Yapp =

 B11 B12

BT
12 B22

 . (3.20)

Applying Corollary 1, the optimal values for B12 and B22 are A12 and A22 respectively.

This results in the following:

Yapp =

 B11 A12

AT
12 A22

 . (3.21)

Using this substitution, the cost function can be decomposed into:

min
Yapp

DKL (Ytr||Yapp) (3.22)

= min
Yapp

tr(Y−1
tr Yapp)− logdet(B11 −A12A

−1
22 AT

12)− logdet(A22) (3.23)

= min
B11

tr((A11 −A12A
−1
22 AT

12)−1B11)− logdet(B11 −A12A
−1
22 AT

12) + C, (3.24)

where C is a constant containing the terms not dependent upon B11. This proof

will now consider each matrix constraint and show that they can be expressed in
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terms only related to B11. The constraints are Yapp � 0, Ytr � Yapp and sparsity

constraints on sub-block B11.

Consider the constraint Yapp � 0. Using Equation 3.21 and Equation A.9 this is

equivalent to,

B11 � 0,

B11 −A12A
−1
22 AT

12 � 0.

Now consider:

Ytr � Yapp (3.25)

Using the substitution in Equation 3.21 simplifies this constraint to,

A11 −B11 � 0. (3.26)

As the global equality constraints are only specified for the sub-block B11, their

specification does not need to be changed. The problem in Equation 3.7 can now be

written with respect to B11 only.

min
B11

tr((A11 −A12A
−1
22 AT

12)−1B11)− logdet(B11 −A12A
−1
22 AT

12) (3.27)

s.t.

B11 � 0

B11 −A12A
−1
22 AT

12 � 0

A11 −B11 � 0

(B11)i,j = 0,∀{i, j} ∈ Eapp ∪ Etr11.

which is identical to the problem in Equation 3.9.

The following corollary is useful for large distributed systems.

Corollary 2. To solve a CS problem the full matrix Ytr is not required. Only A11
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and the result A12A
−1
22 AT

12 is required.

Proof. This is true as only the terms A11 and A12A
−1
22 AT

12 are present in equation

3.27.

The reduction in the problem size has significantly reduced the cost. The cost to

solve a CS problem is now O(a2.5|B11|2), where a is the dimension of the sub-matrix

A11 and |B11| is the number of non-zeros in the approximate solution.

3.2.2 Feasible Set for Optimisation

A caveat of Theorem 3.1 is that the reduced problem must be feasible. This relates to

the states that are selected for membership of A11. Since full CS is a convex problem,

Slaters condition states that it is sufficient to find a feasible point to determine if a

problem has an optimal solution [10]. For full CS it is clear that Yapp = εI is always

a feasible solution (for small ε). However for the reduced CS problem B11 = εI is

not in general a feasible solution, and for some choices of A11 a feasible solution may

not exist. This section describes a simple heuristic for choosing the states within A11

that can be used to ensure feasibility for a particular class of problems.

The following definitions are now required:

Definition 3.1. A CS problem is locally chordal if the non-zero pattern of the ex-

pression A12A
−1
22 AT

12 is a subset of the non-zero pattern of B11.

Definition 3.2. The Markov blanket around an edge is defined as the union of the

Markov blankets of the two vertices.

These definitions allow the following theorem.

Theorem 3.2. For a locally chordal CS problem, reducing to the Markov blanket

around the new edge Eapp will always result in a feasible problem.
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Proof outline: This proof will show that for a chordal graph, when the partition is

chosen by selecting the Markov blanket, that there always exists a feasible solution

to efficient CS with that partition.

Proof. Assume that our problem has the following chordal sparsity pattern3.

A =


A11 A12 0

AT
12 A22 A23

0 AT
23 A33

 � 0, (3.28)

where additional sparsity is only introduced into the matrix represented by A11. A

feasible solution B as can be constructed follows (where ε is a small positive value

such that A11 − εI � 0 and A22 −AT
12(A11 − εI)−1A12 � 0):

B =


εI 0 0

0 A22 −AT
12(A11 − εI)−1A12 A23

0 AT
23 A33

 . (3.29)

Observe that B � 0 ⇐⇒ A � 0. Also considering the inequality A−B � 0,
A11 A12 0

AT
12 A22 A23

0 A23 A33

−

εI 0 0

0 A22 −AT
12(A11 − εI)−1A12 A23

0 A23 A33

 � 0 (3.30)


A11 − εI A12 0

AT
12 AT

12(A11 − εI)−1A12 0

0 0 0

 � 0 (3.31)

Equation 3.31 is true i.f.f.A � 0.

Finally we must check that B22 −A23A
−1
33 AT

23 � 0.

3This is a general pattern found in sparse chordal problems, the partition of the states into A11

and A22 is quite flexible.
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B22 −A23A
−1
33 AT

23 = A22 −AT
12(A11 − εI)−1A12 −A23A

−1
33 AT

23 (3.32)

� 0, if A � 0 (3.33)

Therefore B is a feasible solution.

This proof is significant as it bounds the dimensions of A11 to be a function of the

cardinality of the vertices. Note that in the case of non-chordal graphs, choosing

B22 = A22 − AT
12(A11 − εI)−1A12 may result in fill-in in B22, thus violating the

constraint to maintain all pre-existing zero terms and thus is not a feasible solution,

Section 3.2.3 describes a solution to this problem.

Lemma 3.2. Let the maximum cardinality of any vertex in a graph be k. Then the

number of vertices in the Markov blanket around a single edge is less than or equal to

2k.

Proof. By the definition of cardinality, each vertex will have at most k neighbours

in its Markov blanket, thus the union of their individual Markov blankets is at most

2k.

This lemma is demonstrated in Figure 3.3. Using this lemma a bound on the

cost of sparsification can be determined for locally chordal problems. The cost is

O((2k)2.5(2kk)2) = O(k6.5). Note that for sparse graphs (where k << n) computa-

tionally hard problems for Conservative Covariance Selection (Equation 3.6) should

be tractable for locally chordal CS problems.

3.2.3 Chordal Conservative Sparsification

There are two solutions to the infeasibility of a general reduced CS problem, expanding

the Markov blanket and approximating the sparsity with a chordal pattern.
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x1 x2

x3

x5

x6

x4

x7

x8 x9

Figure 3.3 – This figure demonstrates Lemma 3.2 for the case k = 3. The link to be
removed is in red. The Markov blanket is indicated using red dashed, it contains 6
nodes, which is equal to 2k

In some cases it may be possible to increase the size of A11 such that it is locally

chordal. However there is no guarantee that such a situation will exist until the

dimensions of A11 coincide with the dimensions of Ytr. Figure 3.5 demonstrates a

sparsification problem where expanding the Markov blanket will not result in a locally

chordal graph until the entire graph is contained in A11.

A CS problem can be relaxed to a locally chordal problem by removing the edges

from Etr, which correspond to fill-in locations from the marginal of all other states in

the system. This new problem, called Chordal Conservative Sparsification (CCS), has

the same form of the reduced CS but is always guaranteed to have a feasible solution.

A significant drawback is that allowing fill-in may increase the number of non-zeros

in the system. This also has the effect of restricting the elimination ordering that can

be used (as the fill-in is dependent upon the particular elimination ordering).

This technique is similar to the Chordal Embedding approach to Covariance Selection

[13]. CCS differs in that only the edges that interface between the Markov blanket

and the external network are required to be filled in. Figure 3.4 demonstrates the

differences between a local and global chordal embedding.

Figure 3.6 shows a comparison between CCS and CS. This figure was generated by

choosing links to remove from the matrix LF10 in the Oberwalfach set from the

University of Florida’s Sparse Matrix Collection [15]. The x-axis shows independent
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l1 x1 l3

l2 x2 l4

(a)

l1 x1 l3

l2 x2 l4

(b)

l1 x1 l3

l2 x2 l4

(c)

l1 x1 l3

l2 x2 l4

(d)

Figure 3.4 – A red edge indicates the link to be sparsified, a blue edge indicates an
edge added by an embedding. The red dashed box indicates the Markov blanket
around the link to be sparsified. (a) A graph that is locally chordal. (b) A graph
that is not locally chordal. (c) The locally chordal embedding for graph (b). (d)
The chordal embedding for graph (b). Comparing (c) to (d) it can be seen that a
complete chordal embedding adds more links than a local chordal embedding.

x1 x3 x5 x7 x9 x11

x2 x4 x6 x8 x10 x12

Figure 3.5 – The link between x1 and x2 is chosen for removal. However the Markov
blanket around this is not locally chordal, expanding the Markov blanket will not
result in a locally chordal graph until the entire graph is included.

runs where a single edge is chosen for removal. The runs are independent because

each run is performed on the original matrix without any other induced sparsity. An

edge was chosen only if its Markov blanket was not locally chordal. A KLD of -1 is

plotted for links that have no solution using the CS.

Figure 3.6(a) shows that CCS can find a solution even when CS is in-feasible. Figure

3.6(c) shows the amount of fill-in used by the CCS algorithm. Note that the key
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relaxation of CCS is that some existing sparsity in the Markov blanket is allowed to

be filled in to ensure feasibility. It is interesting to observe that the algorithm does

not always use all of the allowed fill-in. Figure 3.6(a) shows that the KLD for CCS

is a lower bound for the KLD of CS. Appendix C.2 demonstrates this approach on

several other matrices from the sparse matrix library. In Figure 3.7 CCS always used

all the available fill-in edges, observe that this resulted in extra fill-in of between 50

to 70 new edges, since CCS is only removing a single existing edge, this represents

a large decrease in the sparsity of the matrix. Thus CCS must be used with care.

In all cases CCS has a lower KLD but in some cases CCS can reduce the amount

of sparsity. The lower KLD of the CCS approach compared with the CS is due to

the additional variables which allow the CCS problem to more closely represent the

original distribution, but at the cost of increased sparsity.

Single link sparsification can be extended to multiple link removal. For CS all that is

required is to find the union of the Markov blankets of the links to be removed. Once

the Markov blanket is known a convex problem can be formed using Equation 3.9, by

adding the new link to the set of sparsity constraints. CCS can be used by enforcing

the local chordal property of the combined Markov blanket. Figure 3.8 shows the

intersection of two Markov blankets, and the edge required to use CCS. For the case

where the Markov blankets of the links to be removed are disjoint, see Section 3.2.5.
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Figure 3.6 – An example of the tradeoff for CCS vs CS, on the Oberwalfach matrix
LF10 from the SuiteSparse matrix library [15]. Links are selected for removal if they
have a Markov blanket that is not locally chordal, they are then ordered and the
effect of removing a single link independently is examined. A KLD of -1 indicates
that a solution could not be found. (a) shows that in all instances CCS was able to
find a solution even when CS failed, while (c) shows that CCS did not always use
all of its available fill-in for every solution, and in some cases had the same sparsity
as CS. (d) shows the sparsity pattern of the complete matrix, while (b) plots the
normalised weight of the link which was removed.
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Figure 3.7 – For this matrix every single non locally chordal link removal could be
solved by both CCS and CS. CCS always used all of the allowed edges. Observe
that each run of CCS has added up to an extra 70 edges into the problem. This
will quickly destroy any gains made through sparsification.



3.2 Efficient Implementation of CS 75

x1
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x5

x6

x7

x8

MB(x3, x4)

MB(x1, x2)

Figure 3.8 – This figure demonstrates sparsification with multiple links when the
Markov blankets are intersecting. The dashed rectangle illustrates MB(x3, x4),
the full stroke rectangle outlines MB(x1, x2). A blue line indicates an edge that is
required if CCS is used.
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3.2.4 Sparsification and Semi-Definite Matrices

There are some cases for which conservative sparsification cannot occur. Consider

the matrix below, which is positive semi-definite, but has all non-zero diagonals:

Y =

 A B

BT BA−1BT

 � 0 (3.34)

with A � 0.

Theorem 3.3. There does not exist a matrix Ã 6= A for which Ỹ will be a conser-

vative approximation of Y.

Proof. Proceed with a proof by contradiction. Assume that there does exist an Ã for

which Ỹ is a conservative approximation. This implies that:

A � Ã (3.35)

A−1 � Ã−1 (3.36)

BA−1BT � B(Ã−1)BT (3.37)

However if Ỹ is a conservative approximation, then Ỹ � 0. Consider the Schur factor

Ỹ∗11
22 :

Ỹ∗11
22 = BA−1BT −BÃ−1BT � 0 (3.38)

BA−1BT � BÃ−1BT , (3.39)

which is a contradiction (using the antisymmetric property of the Loewner partial

ordering and since Ã 6= A).

Theorem 3.3 poses an interesting problem for data fusion problems, as information

added to a system when performing an augment has the same structure as the positive

semi-definite matrix Y in Equation 3.34 (see Section 2.2.2). Fortunately this does
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not prevent sparsification, provided that the matrix being augmented was previously

positive-definite, then the resulting matrix will remain positive definite. This is shown

by the following theorem:

Theorem 3.4. Let C � 0 and

Y =

 C + A B

BT BA−1BT


which implies Y � 0.

Proof. To show Y � 0 requires C + A � 0 and C + A − B(BA−1BT )−1BT � 0

(using Equation A.8). Begin with,

C + A � 0 (3.40)

since C � 0 and A � 0 (using Equation A.2). Next,

C + A−BT (BA−1BT )B � C � 0 (3.41)

where the above has used (Equation A.4). Therefore the matrix Y is positive definite.

3.2.5 CS for Disjoint Markov Blankets

A natural extension of Theorem 3.2 is to the case where the edges to be sparsified can

be separated into two disjoint Markov blankets. Let MB be an operator that returns

the Markov blanket around a set of edges. Consider the case where the following

conditions are true (see Figure 3.9 for an example):

MB(Eapp) = MB(Emb1) ∪MB(Emb2)

∅ = MB(Emb1) ∩MB(Emb2)
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There are 3 possible approaches. Combining the Markov blankets and solving jointly,

solve each Markov blanket sequentially or solve them synchronously. Let the partition

of the variables Ytr and Yapp as be redefined as:

Ytr =


A11 A12 0

AT
12 A22 A23

0 AT
23 A33

 ,Yapp =


B11 A12 0

AT
12 A22 A23

0 AT
23 B33

 .
where MB(Emb1) ⊂ B11 and MB(Emb2) ⊂ B33, and Theorem 3.1 allows the substitu-

tion B22 = A22,B12 = A12 and B23 = A23. The CS cost function can be decomposed

x1 x3 x5

x2 x4 x6

x7 x9

x8 x10

Figure 3.9 – An example where two disjoint markov blankets exist around the sparsity
to be induced. Red links are to be removed, while the markov blankets are indicated
by dashed red rectangles.

as follows:

tr(Y−1
tr Yapp)− logdet(B11)− logdet(B33)− logdet(A22 −AT

12B
−1
11 A12 −AT

23B
−1
33 A23).

(3.42)

Using the rule det(A) > det(A−B) for A−B � 0, B � 0 (Equation A.3 from [51]),

an upper bound on the cost function can be expressed as

tr(Y−1
tr Yapp)− logdet(B11)− logdet(B33)− logdet(A22), (3.43)

which is equivalent to:

tr((Y−1
tr )11B11)− logdet(B11) + tr((Y−1

tr )33B33)− logdet(B33) + C, (3.44)
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where the notation (Y−1
tr )11 represents the upper left block of the matrix Y−1

tr . Thus

the cost function has been decomposed into terms relating to only B11 and B33.

Unfortunately the problem cannot be completely decoupled as the implicit constraint

Yapp � 0 requires that4:

A22 −AT
12B

−1
11 A12 −AT

23B
−1
33 A32 � 0. (3.45)

This section considers two out of three approaches to enabling large disjoint markov

blanket sparsification. These are forming a joint and sparsifying separate problems

sequentially.

A simple approach is to form the union of markov blankets. This approach will

achieve optimal KLD for a CS problem, but it does not take advantage of the inherent

separation in the problem, and so has cost O((k1 + k2)2.5(r1 + r2)2), where k1 and

k2 are the size of the Markov blankets for A11 and A33, respectively, and r1 and r2

are the number of non-zeros in the respective Markov blankets. The cost function for

this approach is:

min
B11,B33

tr((Y−1
tr )11B11) + tr((Y−1

tr )33B33)

− logdet

 B11 0

0 B33

−
 A12

A32

A−1
22

[
AT

12 AT
32

] (3.46)

The complexity of this approach does not grow with an increase in the seperation

between A11 and A22. However in distributed estimation settings it will require

transmitting the information to a single node for processing. This is because the

complete state and marginal need to be collected at a data fusion centre, and then

the result transmitted back to the nodes.

An alternative approach is to approximate the solution by considering two separate

CS problems. One of the Markov blankets is then chosen for sparsification and the

resulting marginal is sent to the nodes of the second Markov blanket, which can then
4Note that section 4.2 will use a different approach to ensure that Yapp � 0.
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use this to solve its problem. The cost for the first is (note that it does not depend

upon B33):

min
B11

tr((Y−1
tr )11B11)− logdet(B11 −A12(A22 −A23A

−1
33 AT

23)−1AT
12). (3.47)

The cost for the second is,

min
B33

tr((Ỹ−1
tr )33B33)− logdet(B33 −A32(A22 −A21B

−1
11 AT

21)−1AT
32), (3.48)

where Ỹtr is the resultant system after the first sparsification. The resultant KLD

will be an upper bound on the KLD derived from optimising the joint, but will have

the lower computation cost of O((max(k1, k2))2.5(max(r1, r2))2). The communication

required between the two Markov blankets is only the marginal after sparsification,

and so the problem could be solved in a local fashion.

The third approach is to iteratively perform sequential sparsification. Unfortunately

this approach is not guaranteed to converge on the optimal. This approach is better

posed in a Junction Tree formulation, and thus is described in more detail in Section

4.1.4.

3.3 Experiments

The techniques in this chapter are assessed on a simple SLAM experiment. Section

3.3.1 describes the application CS to an incremental estimation problem. Section 3.3.2

illustrates and discusses the results. A final experiment is performed on matrices from

the Suite Sparse matrix library [15] in Section 3.3.4.

3.3.1 Conservative Sparsification for Incremental Estimation

This thesis considers incremental scenarios where the state estimate grows over time

and complete information is not available when sparsification is performed. This is
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an approximation to a global solution where all information about states is used to

sparsify. Figure 3.10 shows two approaches to sparsification for a filtering SLAM prob-

lem. In Figure 3.10(a-d) sparsification is performed after each state is marginalised,

resulting in three problems of similar complexity. This can be seen by noting that

the Markov blanket for Figure 3.10(b) does not include the states l4 and l8 and sim-

ilarly Figure 3.10(d) does not include the states l1 and l5. Figure 3.10(e) shows a

sparsification problem that is delayed until t=5. The marginalisation of states x2, x3

and x4 results in a dense graph, and a single but large sparsification problem must

be solved. The estimate resulting from the sparsification in Figure 3.10(e) will be a

closer approximation to the true distribution, however the smaller sparsification steps

in Figure 3.10(a-d) allow the system to maintain its sparse property, and has a lower

computational cost.
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l1 l2 l3 l4

l5 l6 l7 l8

x2 x3

(a) t=3

l1 l2 l3 l4

l5 l6 l7 l8

x3 x4

(b) t=4

l1 l2 l3 l4

l5 l6 l7 l8

x4 x5

(c) t=5

l1 l2 l3 l4

l5 l6 l7 l8

x5

(d) t=5 (after marginalisation)

l1 l2 l3 l4

l5 l6 l7 l8

x5

(e) t=5 delayed sparsification

Figure 3.10 – Difference between incremental and delayed sparsification. (a-d) show
the progression of a filtering SLAM problem. Red links indicate edges that are
chosen for sparsification. In (a-d) sparsification is performed after marginalising
each robot state (xt), while (e) shows the connectivity if this sparsification is delayed
until t=5. In order to maintain the same sparsity of (d), a much larger problem
needs to be solved in (e). However, the solution found by solving (e) will be a closer
approximation to the true distribution than (d).
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3.3.2 Linear SLAM

This section will demonstrate the conservative sparsification algorithm compared with

the SEIF on a simulated SLAM dataset. The slam simulation data was generated

using MATLAB. The world is a 50 × 50 unit 2-D environment, with 100 landmarks

randomly distributed throughout. The robot begins at a random location and then

traverses the simulated environment. The robot attempts to navigate within 3 world

units of several way points in the map. These way points were chosen such that the

robot would pass within range of each landmark in the simulation. The robots sensor

range is 5, therefore it cannot see all the landmarks but visits every one during the

mission. The mission goes for 500 time steps, at each time the robot moves in the

direction of its next way point. The ground truth for the simulation is shown in

Figure 3.11. The simulation was run with an observation model R and prediction

model Q shown below:

R =

 1.3803 0.1730

0, 1730 1.1108

 ,Q =

 2.9242 0.2248

0.2248 2.1487

 (3.49)

SLAM is performed using the methods as described in Section 2.4.1. State updates

and augments are performed using the theory introduced in Section 2.2.2, while

marginalisation is performed using the equations described in Section 2.2.3.

0 20 40
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20

40

60

x

y

Simulation environment

Figure 3.11 – Ground truth of simulated data. Red crosses indicate landmark positions.
The blue line is the robots path.
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The SLAM simulation is used as ground truth for the filtering and smoothing variants

of the SLAM problem. In the following simulations, conservatism is assessed by

plotting the minimum eigenvalue of the conservatism constraint, that is:

min(eig(Ytr −Yapp)). (3.50)

If this expression is less than zero, then the following constraint is violated:

Ytr −Yapp � 0. (3.51)

The timing results reported below were performed using a quad core i7 laptop com-

puter with 16 GB of RAM.

3.3.2.1 Filtering SLAM

The first approach is AM-SEIF, that is described in Section B.1.2. AM-SEIF is an

approach which can induce sparsity but does not guarantee conservatism. AM-SEIF

chooses links to remove by finding the link connected to the robot state with the

smallest normalised link weight. All other approaches in this experiment attempt

to maintain the same sparsity pattern as AM-SEIF. The normalised link weight was

calculated using the following equation:

w =
(Y)2

ij

(Y)ii(Y)jj
. (3.52)

A new approach is introduced in this section, MAXDET - COPY, this is the same as

CS but the conservative constraint Ytr −Yapp � 0 has been removed. MAXDET -

COPY is equivalent to a Covariance Selection problem with know sparsity pattern (see

Appendix B.3.1.1). It is expected that MAXDET - COPY will exhibit the best case

KLD for a given sparsity pattern as it will not be constrained to be conservative. The

approach CS - Copy performs Conservative Sparsification while exactly replicating a

target sparsity, (which in the case of Figure 3.12 is the sparsity pattern of AM-SEIF).
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The approach CS-Follow attempts to meet the same overall sparsity level but may

choose any link for removal. CS-Follow uses the AM-SEIF heuristic to choose the

link for removal. The final approach, CS - Threshold, chooses links for removal when

their normalised link weight rises above a certain threshold (see Equation 3.52) and

then applies Conservative Sparsification to the result.

The filtering solution in Figure 3.12(a) shows all approaches maintaining the same

sparsity level. Observe that after time step 100 the sparsity is significantly lower than

the ground-truth (shown by the True Info plot). Figure 3.12(b) shows the KLD for the

approaches. It can be seen that both CS - Copy and AM-SEIF perform the worst. The

poor performance of AM-SEIF as compared to MAXDET - Copy suggests that AM-

SEIF may not in-fact minimise the KLD as suggested in the work [54]. The excellent

performance of CS - Follow compared to CS - Copy and MAXDET - Copy suggests

that the heuristic of precisely following the sparsity pattern of another approach is

poor. This performance is due to CS - Follow being able to choose weaker strength

links than CS - Copy or MAXDET - Copy. Figure 3.12(c) shows that the conservative

approaches do indeed maintain conservativeness, while the alternate approximate

methods have become inconsistent before time step 100. The maximum eigenvalue

of the robot covariance is plotted in Figure 3.12(d). This illustrates the error of the

robots location estimate directly, while the KLD expresses this for the entire system.

Note that the plots for MAXDET, True Info and CS-Follow are overlapping. Also

observe that AM-SEIF is much lower than the true value, indicating its inconsistency.

Figure 3.12(e) and (f) show the time taken to perform the sparsification and marginal-

isation of states. These plots show that the reduced sparsity does reduce the time

taken to marginalise, and to a tiny extent fusing of observations. Its important to

note however the significant difference in the scales between plots (e) and (f). As

the time cost of solving the sparsification problem is not recouped in the savings in

marginalisation time.
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Figure 3.12 – Filtering SLAM example. Several approaches to link removal are shown.
AM-SEIF chooses the sparsification and CS - Copy and KLD - Copy will copy that
sparsity pattern. CS - Follow attempts to maintain a similar sparsity level but may
choose different edges to remove.
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3.3.3 Smoothing SLAM example

The smoothing SLAM problem is explored in Figure 3.13. In this example MAXDET

- COPY is used to mimic the sparsity pattern determined by CS - Threshold. AM-

SEIF was not used in this experiment because AM-SEIF is not suited to smoothing

scenarios as it can induce more fill-in than it removes [59]. Figure 3.13(a) shows these

approaches maintaining equivalent sparsity patterns, while Figure 3.13(c) shows that

MAXDET - COPY once again becomes overconfident. Figure 3.13(b) shows the KLD,

demonstrating that MAXDET - COPY is capable of outperforming CS in terms of

KLD because it is not constrained to be conservative.

Figure 3.13(d) shows the maximum eigenvalue of the robot covariance, observe that

the MAXDET - COPY has a slightly smaller maximum eigenvalue demonstrating its

inconsistency. Also the eigenvalue is monotonically increasing as in Figure 3.12(d).

Figure 3.13(e) shows the time taken to do data fusion for the smoothing problem. It

shows that the approximate approaches take slightly less time than the full solution.

Figure 3.13(f) shows the time spent on marginalisation at each time step. Since the

smoothing problem is naturally much more sparse than the filtering problem, the

time taken to perform the required sparsification is much lower.
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Figure 3.13 – Smoothing SLAM example. Several approaches to link removal are
shown, CS - Threshold chooses which links to remove and MAXDET - Copy at-
tempts to replicate the same sparsity pattern.
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3.3.4 Benchmark matrices

Conservative Sparsification was applied to a set of matrices from the University of

Florida Sparse Matrix Library [15]. Each off-diagonal was sparsified separately (i.e.,

starting from the original matrix), the results are ordered with respect to their nor-

malised link weight and vertex cardinality.

Each sparsification attempt was timed using MATLAB, and each sparsification was

performed using the SDPT3 solver [57]. Thus, the timing reflects the complexity of

each problem. The time for each independent sparsification was compared against

the resultant KLD and the Markov blanket size.

Figure 3.14 shows the results for the 1138 Bus matrix from the HB set. This bench-

mark was done on other matrices, which are in Appendix C.1. The results show a

loose correlation between normalised link weight and the KLD of the final result.

However, this relation is clearly very weak.

The timing results in Figure 3.14 (a) show little correlation between computation

time and KLD. Similarly in Figure 3.14 (c) the Markov blanket size does not appear

to effect the time taken to solve each step. This is may be because larger Markov

blankets were not explored. However, in Figure 3.15(c) does show an increase in time

as the Markov blanket size increases.
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Figure 3.14 – HB 1138 bus Matrix sparsification result. (a) shows the KLD as the
computation time increased. (b) shows the KLD for edge weights, the graph shows
an upwards trend, that is, the KLD get higher as the normalised weight grows, but
there are many cases where this was not significant. (c) shows the time taken to
find a solution as a function of the Markov blanket size for the edge.
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Figure 3.15 – HB nos3 Matrix sparsification result. The solve time increases as the
Markov blanket size increases.



Chapter 4

Conservative Sparsification for

Junction Trees

A key assumption made by the reduction of Conservative Sparsification (CS) in Sec-

tion 3.2.1 is that the marginal of nodes not in the Markov blanket can be computed in

a local manner. Junction Trees (JTs) were introduced in Section 2.3 as an alternative

approach to estimation that also caches the marginals at every clique. This cache

can be used by CS. This chapter begins by describing how CS can be posed for JTs,

and examines the properties of this new approach. This new CS approach is then ex-

tended in Section 4.2 to allow for asynchronous parallel sparsification. This approach

is suited to distributed estimation schemes, but usually results in a higher Kullback

Leibler Divergence (KLD) than the optimal approaches. The chapter concludes with

a simple simulation.

4.1 Conservative Sparsification in Junction Trees

This section follows many of the key points in Chapter 3, as such it begins with

a quick formulation of the CS problem in JTs by clique splitting rather then edge

sparsification. The reduced CS problem is than considered and it is observed that the

clique split problem is always locally chordal and thus always feasible. The Markov
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blanket of a JT split is considered and is shown to be often larger than the equivalent

Markov blanket in the information form based CS problem. Finally the cost of the

algorithm is described.

4.1.1 Conservative Sparsification

To sparsify a JT it is necessary to split cliques rather then removing off-diagonals

from an information matrix. Consider a JT T tr that is to be approximated by T app

(see Figure 4.1). The KLD between this can be determined by forming the joint using

each tree’s clique potentials,

DKL

(
T tr||T app

)
≡ DKL

(∏
Ψtr||

∏
Ψapp

)
. (4.1)

Let YΨapp
i

and YΨtr
i
, be the information matrix associated with Ψapp

i and Ψtr
i respec-

tively, then assuming that the mean estimates of the JTs are equal1, Equation 4.2

can be expressed using only the clique potential matrices:

DKL

(
T tr||T app

)
= tr

((∑
YΨtr

i

)(∑
YΨapp

i

)−1
)
− logdet

(∑
YΨapp

i

)
. (4.2)

The CS problem is posed in Junction Tree notation:

min
Yapp

tr

((∑
YΨapp

i

)(∑
YΨtr

i

)(∑
YΨapp

i

)−1
)
− logdet

(∑
YΨapp

i

)
(4.3)

s.t.∑
YΨtr

i
�
∑

YΨapp
i
,∑

YΨapp
i

= Yapp
Ψs1

+ Yapp
Ψs2

+

app∑
i 6=s

YΨi
,

1This assumption was also made in Section 3.1.2, it requires the marginals to be known so the
mean can be calculated before sparsification. Since the marginals are required for sparsification
anyway this does not add extra complexity.
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where the clique CtrΨs
is split into two new cliques CappΨs1

and CappΨs2
these cliques are

constrained by the following set relations:

CappΨs1
∪ CappΨs2

= Ctrs , (4.4)

CappΨs1
⊂ CtrΨs

, (4.5)

CappΨs2
⊂ CtrΨs

. (4.6)

That is, the union of the new clique states must be equal the original clique states,

and the states of each new clique must be a proper subset of the original clique states.

Comparing Equation 4.3 to Equation 3.7 from Section 3.1.2, the equality constraints

have been replaced by adding new cliques and imposing membership constraints, thus

performing CS on the clique potential matrices is equivalent to clique splitting. Figure

4.1 demonstrates clique splitting on a simple JT. Note that applying CS for clique

splitting is an approximation, such that the product of the new clique potentials will

not be equal to the original clique potential.

C1 C2

C3

C1 : {x1, x2, x3, x4}

C2 : {x2, x3, x4, x5}

C3 : {x4, x6}
(a) Original JT

C1 C2a C2b

C3

C1 : {x1, x2, x3, x4}

C2a : {x2, x3, x4}

C3 : {x4, x6}

C2b : {x2, x3, x5}

(b) Sparse JT

Figure 4.1 – Example of clique splitting operation. (a) shows a JT before the split. C2

is chosen for splitting. (b) C2 has been split into two new cliques C2a and C2b. The
new cliques are smaller than the original clique, therefore this system will be more
efficient. Section 2.5.3 discusses improving the efficiency of JTs.

4.1.2 Efficient Clique Splitting

The reduced CS approximation employed in Section 3.2.1 can also be used for sparsifi-

cation of JTs. Since the reduction of CS employed in Section 3.2 requires the concept
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of a Markov blanket, this concept also needs to be defined for JTs.

Definition 4.1. Any clique Ci of a JT has a Markov blanket MB(Ci) that is the set of
all cliques that contain any of the states within that clique. MB(Ci) = {Cj} ∀Cj∩Ci 6=
∅.

The following theorem compares the sizes of the Markov blanket in an information

matrix and a JT (an example is given in Figure 4.2).

Theorem 4.1. The maximum number of states in the Markov blanket of Ci is 2k

where k is the largest clique size.

Proof. There are k states in Ci, each of these will have at most k neighbours. For each

state k − 1 neighbours already exist in the Ci, so each state has one extra neighbour

that does not already exist in Ci. Therefore the total number of states is 2k.

It is possible to specify a JT split such that states within a separator set are involved.

The Markov blanket for a separator split is larger than the Markov blanket for a

clique split.

Theorem 4.2. The maximum number of states involved in the Markov blanket of a

separator split is 4k − 4, where k is the maximum clique size.

Proof. To construct the Markov blanket of a separator, the two neighbouring cliques

must be merged, let this new clique be CΨs . The largest clique size will occur if the

separator set is of size two2, which results in 2k−4 unique states in CΨs . Each of these

states has at most one neighbour not in CΨs (since the clique in question is of the

maximum size k). Therefore, the total number of states is 2k−2+2k−2 = 4k−4.

Comparing this result to Theorem 3.2, the worst case size of the Markov blanket can

be greater than the equivalent information form Markov blanket if a separator set is

split, this is illustrated in Figure 4.2.

2A separator of size one cannot be split
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There is an additional cost in forming the Markov blanket for a JT which involves

gathering the potentials present in every clique containing the target states.

Theorem 4.3. To gather the potentials over m states from a JT requires at most ml

cliques, where l is the maximum subtree length.

Proof. The worst case is that all m states are disjoint and their sub-trees do not share

any common cliques. The conditional for a single state is found by gathering the l

cliques that contain it, therefore ml cliques are required to gather all m states.

Given a Cs that is to be split into Cs1 and Cs2 it is convenient to define the union of

all other cliques in the Markov blanket, B = {MB(s)/ s}. Associate with this the

following:

CB =
⋃
i

Ci,∀i ∈ B (4.7)

µB =
∏
i

∏
j

µij,∀(i, j) ∈ B (4.8)

YµB =
∑
i

∑
j

Yµij ,∀(i, j) ∈ B, (4.9)

yµB =
∑
i

∑
j

yµij ,∀(i, j) ∈ B, (4.10)

where Yµij is the information matrix and yµij is the information vector associated

with the message from Ci to Cj. Now the problem can be posed using clique potential

matrices:

min
YΨs1

,YΨs2
,Yapp

ΨB

Dkl(Y
tr
Ψs

+ Ytr
ΨB

+ Ytr
µB
||YΨs1 + YΨs2 + Yapp

B + Ytr
µB

) (4.11)

s.t.

YΨs1 + YΨs2 + Yapp
ΨB
� 0

YΨs1 + YΨs2 + Yapp
ΨB

+ Ytr
µB
� 0

YΨs + YΨB − (YΨs1 + YΨs2 + Yapp
ΨB

) � 0,
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x10

MB(x5, x6)

(a) The Markov blanket around edge 5-6

C1 C2 C3 C4

C5C6C7C8

C1 : {x1, x2, x3}

C2 : {x2, x3, x4}

C3 : {x3, x4, x5} C4 : {x4, x5, x6}

C5 : {x5, x6, x7}

C6 : {x6, x7, x8}

C7 : {x7, x8, x9}

C8 : {x8, x9, x10}

MB(C4, C5)

(b) A JT of the graph in (a), removing the link between x5 and x6 is equivalent to splitting cliques
C4, C5 as the states are both contained in the separator S45.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

MB(x5, x6)

(c) The effective JT Markov blanket as seen in an information matrix

Figure 4.2 – The differences between a Markov blanket posed in a junction tree and
a Markov blanket posed in an information matrix, whose sparsity pattern is rep-
resented by an undirected graphical model. The junction tree Markov blanket is
larger. This is because any clique that refers to a state contained in the sparsified
cliques must be gathered to perform sparsification.
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where Yapp
ΨB

represents the summands rather than the sum of the information matrices

in B (that is, replace Yapp
ΨB

with the variables
∑

i YΨi
∀i ∈ B). Therefore, the opti-

misation is over all the clique potentials that are contained in the Markov blanket.

Comparing this to CS for information matrices, there are several common elements.

The messages from cliques outside the Markov blanket replace the marginal projec-

tion A12A
−1
22 AT

12 (see Equation 3.9), while the clique membership constraints encode

the sparsity constraints. This problem is more complex than the CS problem due to

the addition of extra variables associated with optimising over the clique potentials

rather than the sum of the clique potentials. These extra variables all increase the

matrix dimension term in the time complexity analysis. For example, if there are

m cliques in the split, each of size k, then the dimension of the optimisation matrix

is n = mk. However, in practice the cost of the CS problem can be recovered by

optimising over the sum and then performing an exact clique split (Section 4.2.2) to

recover the summands (the exact split requires a feasible not optimal solution, so it

can be calculated analytically).

The states inside a JT clique are densely connected, this implies a chordal structure of

the underlying graph. Therefore all JT CS problems are locally chordal and therefore

guaranteed to always have a feasible solution by Theorem 3.2.

4.1.3 Computational Cost

This section considers the worst case computational cost of Conservative Sparsifica-

tion in a Junction Tree setting. The costs considered in this section will assume an

already constructed JT. This is because JTs can be used as a fundamental repre-

sentation for estimation and JTs can be built incrementally in a similar way to the

information form, so the setup costs can be ignored. Costs associated with message

passing and forming marginal distributions are described in Section 2.3.5.

Using an interior point method for solving CS problem for dense matrices is O(n6.5),

where n is the dimension of the matrix variable [64]. Let l be the length of a sub-tree



4.1 Conservative Sparsification in Junction Trees 99

in the JT3. For a clique split, n is the number of states involved in the problem. For

a clique split, Theorem 4.1 states that there will be 2k states, while Theorem 4.2

states that there will be 4k− 4 for a separator split. Taking the larger size results in

a computation cost of O((4k − 4)6.5) = O(k6.5).

4.1.4 Multiple Cliques

A large distributed estimation system can require sparsification in two distantly re-

lated parts of the graph. This section investigates methods of splitting multiple clique

sets. This problem is equivalent to the disjoint Markov blanket problem considered

for the CS in Section 3.2.5.

The simplest case is a five clique chain JT, with each leaf being split, and no common

states between the leaves. This structure is demonstrated in Figure 4.3.

C2C1 C3 C4 C5

(a) JT structure for multi-clique split examples.

C2

C1a

C1b

C3 C4

C5a

C5b

(b) JT after clique splits in C1 and C5.

Figure 4.3 – In this example, cliques C1 and C5 need to be sparsified, but they do not
share any common states. Unfortunately these two problems are still coupled, and
so cannot be solved independently.

A simple approach is to gather all the information from cliques that belong to the
3A sub-tree is the set of all nodes which contain a reference to a particular state. By the running

intersection property these cliques must form a connected sub-tree.
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union of the Markov blanket around the cliques being split, called Joint Splitting.

Let the cliques be Ci and Cj, and let Jjoint = MB(i) ∪MB(j). For Figure 4.3 these

correspond to i = 1, j = 5 and Jjoint = {C1, C2, C4, C5} (assuming that the Markov

blanket for C1 and C2 does not contain C3). The clique split technique described in

Section 4.1.2 can be used to enforce this structure.

Joint Splitting makes no approximation in forming the CS problem, and will therefore

have the optimal KLD for this problem. This is equivalent to the joint sparsification

approach described in Section 3.2.5.

An alternative approach is to approximate the Joint Splitting problem by performing

a clique split on each clique sequentially. That is, perform the conservative clique

split Ci = Cia + Cib and keeping Cj fixed, then split Cj = Cja + Cjb using the new

values for Cia, Cib. This is also equivalent to the approach in Section 3.2.5, therefore

this technique will provide a solution that represents an upper bound on the optimal

KLD for the problem. A key benefit is that the dimension of the convex problem

that is required to be solved at each step is smaller than the joint approach. This

is however offset by the requirement to perform the clique splits sequentially and to

transmit a message after each clique split.

An additional approach is to perform incremental sparsification iteratively until the

KLD change approaches zero. That is, rather than immediately applying the result

of incremental sparsification, the message associated with the final result is formed

and then transmitted. The receiver also performs incremental clique splitting, caches

the original result and transmits a message. This is iterated until the change in

messages approaches some threshold, at which point the changes are finally applied.

Unfortunately, this thesis was unable to present a satisifactory proof with regard to

convergence of this technique to the optimal KLD. Finding such a proof is left for

future work.
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4.2 Parallel Sparsification

Junction Trees are useful because of their implicit caching of marginals. The previ-

ous section described a direct translation of the CS problem into a JT to exploit this

property. Consider a decentralised estimation scenario, such as a large distributed

sensor network. In this setting it may not be practical to gather information from

neighbouring cliques, sparsify the result, and then transfer that information back to

the original cliques. Ideally a clique split algorithm would have a computational cost

that is completely local, requiring only information available at the clique level, and

add no additional burden to the estimation process (i.e. by increasing the number

of messages sent or using special messages). This is the motivation for the parallel

sparsification approach, which allows for decentralised sparsification and local com-

putational cost at the expense of higher KLD than the optimal CS KLD.

4.2.1 Key Assumption

This approach relies on one key assumption, that every clique contains a strictly

positive definite clique potential. This is a reasonable assumption in Gaussian esti-

mation, as a positive definite covariance/information matrix is required to define a

multi-dimensional Gaussian. Therefore, this requires that each clique potential de-

fines a valid Gaussian distribution. Note that the JT construction technique described

in Section 2.3.3 does not have this requirement4.

Given that each clique has a positive definite potential, the following theorem guar-

antees that the global potential is also positive definite, see Figure 4.4 for an example.

Theorem 4.4. Let Ai be a positive definite matrix and let A be constructed by placing

A1 to Am in a manner such that there are no zero valued diagonal, but any amount

of overlap is allowed. The matrix A will be positive definite.

4Treemap (see Appendix B.2.2) also allowed positive semi-definite potentials in its bounded
information blocks.



4.2 Parallel Sparsification 102

1 2

1

2

(a) A1 � 0
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(c) A3 � 0

1 2 3 4
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(d) A1 + A2 + A3 � 0

Figure 4.4 – Demonstration of the partition specified by Theorem 4.4. In this example
three strictly positive definite matrices are summed. Each matrix has rows and
columns associated with different states, such that each matrix is positive semi-
definite when considered with the other states added as zeros in the respective rows
and columns. The sum of these matrices is strictly positive definite. Note that it is
required that at least one matrix relates to every state, otherwise a zero will occur
on the diagonal.

Proof. Consider the sum A = Af
1 +. . .+Af

n where Af
i is Ai padded with zeros so that

it is conformable and that A has no zero valued diagonal elements. Each Af
i is positive

semi-definite since no principal sub-matrix5 of Af
i has a negative determinant[52,

p.321]. (The determinants are either zero if a zero is included on the diagonal, or

positive if the principal sub-matrix is Ai or a subset of). Recall that if Af
i � 0 ⇐⇒

xAf
i x ≥ 0 ∀x 6= 0.

Consider xTAf
i x, where column vector x ∈ Rn and n is the dimension of A. If at least

one nonzero element of x corresponds a non-zero component of Af
i , then xTAf

i x > 0

since Ai is positive definite. Therefore if
∑m

i Af
i spans the diagonal such that there

is no zero valued diagonal, then if x 6= 0 then xTAf
i x > 0 will be satisfied by at least

one Af
i . The expression xTAx can be decomposed:

xTAx =
m∑
i

xTAf
i x,

since at least one xTAf
i x will be positive, and all other i satisfy xTAf

i x ≥ 0, therefore

xTAx > 0 which is necessary and sufficient for A � 0.

5A principal sub-matrix is any sub-matrix that is attained by removing the same rows and
columns.
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Theorem 4.4 reduces the problem of maintaining a large positive definite matrix

to maintaining a property on a set of much smaller and independent matrices, the

information based approaches used the positive definiteness of the Schur complement

to achieve the same property. This useful property will be exploited in Sections 4.2.3

and 4.2.4 to enable a parallel approach to sparsification.

4.2.2 Exact Clique Split

To allow a large information matrix to be transformed to a JT with positive def-

inite cliques, a technique for decomposing it into a sum of small positive-definite

matricies is required. This technique is called an exact clique split because it makes

no approximations. It can be posed as a convex problem. Consider:

Y =


A B 0

BT C D

0 DT E

 , (4.12)

it is desired to split Y = Y1 + Y2 such that

Y1 =


A B 0

BT C∗1 0

0 0 0

 ,Y2 =


0 0 0

0 C∗2 D

0 DT E

 (4.13)

and ensuring that  A B

BT C∗1

 � 0,

 C∗2 D

DT E

 � 0. (4.14)

This poses the following matrix splitting problem:

max
C∗1,C

∗
2

tr(C∗1 + C∗2) (4.15)

s.t.
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C∗1 � 0, C∗2 � 0

C∗1 � BTA−1B

C∗2 � DTE−1D

C∗1 + C∗2 = C

To ensure that every matrix is positive definite, only a feasible solution, rather than

an optimal solution is required. Analytically a feasible solution can be found by

defining:

∆C = C−BTA−1B−DTE−1D (4.16)

If Y � 0 then ∆C � 0. Let 0 < α < 1, then a feasible solution is:

C∗1 = α∆C + BTA−1B (4.17)

C∗2 = (1− α)∆C + DTE−1D (4.18)

However, this analytic approach encounters numerical errors when Y is close to being

positive semi-definite or poorly conditioned. In these cases a convex optimisation

package may be capable of finding a feasible solution to the problem in Equation

4.15. If the matrix needs to be split into more than two cliques, the above process

can be performed multiple times.

4.2.3 Individual Clique Splitting

This approach treats each sparsification step as an optimisation on a particular Yi.

Therefore, as long as the sparsification maintains Yapp
i � 0 then the sum of the whole

system will remain positive definite. This can be done on any number of cliques

asynchronously, all that is required is that the result is positive definite.

The simplest case is where a clique contains the only reference to a link between

states. That is, the union of the two states is not contained by any of the separators
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of that clique. Let the states of interest be {x1, x2}, then the following is required:

{x1, x2} 6⊂ Sj∀j ∈ Ci. (4.19)

This clique (Ci) is then split into two cliques Ci1 and Ci2 with messages at Ci given by

µi, the problem is defined below:

min
Yi1,Yi2

Dkl(Yi + Yµi ||Yi1 + Yi1 + Yµi) (4.20)

s.t.

Yi1 � 0,Yi2 � 0

Yi � Yi1 + Yi2

Observe that the trivial solution Yi1 = εI,Yi2 = εI for some small positive ε and I

the identity matrix, is a feasible solution for this problem. Therefore, using Slaters

Condition this problem has an optimal solution [10]. However, the solution found

using this method will always be an upper bound of the solution found using the

technique in Section 4.1.2. This is because there may exist a Ck that is in the Markov

blanket of Ci and therefore contains information about some states in Ci, but the

potential Ψk will not be changed by this approach. This is easily shown by the

following theorem, which analyses the logdet term of the KLD cost. Consider the

following partitioned information matrix:

Y =

 A 0

0 0

+

 B CT

C D

 . (4.21)

Theorem 4.5. The cost function logdet(Y), where the optimisation variable is A,

is bounded from below by logdet(B−CD−1CT ) + logdet(D)

Proof. Taking logdet(Y) and using Equation A.6 we have

logdet(Y) = logdet(A + B−CD−1CT ) + logdet(D). (4.22)
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Taking the limA→0 logdet(Y), gives the desired result.

The matrix B represents the information present in other cliques regarding the

Markov blanket around the clique split. Thus the accuracy of the solution is af-

fected by the magnitude of information in those cliques that are part of the Markov

blanket but cannot be altered by this approach (that is they are not part of the clique

potential which is modified by the problem). The cliques required for sparsification

using the parallel approach, and the optimal approaches are shown in Figure 4.5.
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C1 C2 C3 C4

C5C6C7C8

C1 : {x1, x2, x3}

C2 : {x2, x3, x4}

C3 : {x3, x4, x5} C4 : {x4, x5, x6}

C5 : {x5, x6, x7}

C6 : {x6, x7, x8}

C7 : {x7, x8, x9}

C8 : {x8, x9, x10}

MB(C1)

MB(C8)

(a) Markov blanket for the joint, sequential and distributed cases

C1 C2 C3 C4

C5C6C7C8

C1 : {x1, x2, x3}

C2 : {x2, x3, x4}

C3 : {x3, x4, x5} C4 : {x4, x5, x6}

C5 : {x5, x6, x7}

C6 : {x6, x7, x8}

C7 : {x7, x8, x9}

C8 : {x8, x9, x10}

(b) Required cliques for parallel sparsification

Figure 4.5 – Illustration of required cliques to perform two clique splits. C1 is to be
split into C1a = {x1,x3}, C1b = {x2,x3}, while C8 is to be split into C8a = {x8,x10},
C8b = {x8,x9}. The clique required when using the approaches described in Section
4.1.2 is shown in (a), while the cliques required when using the parallel approach
of Section 4.2 is shown in (b). A red box encloses cliques that contain information
required for the optimisation, it can be seen that the parallel approach requires
fewer cliques than the sequential approaches.



4.2 Parallel Sparsification 108

4.2.4 Separator Splitting

It may be desired to disconnect states which appear in more than one clique. This

generalisation of a clique split is called a separator split, and is demonstrated in Figure

4.6. This will involve all cliques that are associated with the separator tree of links

to be removed. A separator tree is defined below:

Definition 4.2. A separator tree is a set of separators that contain a specific group

of states as a subset. The running intersection property enforces that this must be a

tree.

If a link is part of a separator tree then all the cliques which are associated with

that tree must be gathered, resulting in multiple cliques being split. To simplify the

specification of this problem, define the original collection of cliques CO to represent

all of the cliques to be modified and their associated potentials and message sets. Also

let CS represent the new clique split set and its associated potentials and messages.

The separator splitting problem is expressed as6,

min
YS

Dkl(YO + YµO ||YS + YµO) (4.23)

s.t.

Yi � 0, ∀i ∈ S

YO � YS .

This multiple clique scenario will result in a much smaller set of altered cliques com-

pared to the equivalent separator split in Section 4.1.2, but its solution represents an

upper bound to the problem.

Since Theorem 4.4 ensures that the information matrix over all states is positive

definite, the parallel variant of JT sparsification can be applied with no regard for

violating the positive definiteness of the system. This allows any number of par-

allel sparsification events to occur asynchronously and in parallel, thus achieving a

completely local cost.
6YµO is the messages on S onto the states O.
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x1 x3

x2 x4 x6

x7

x5

(a) Original graph. Equivalent links for sparsification indicated in red.

C1 C2 C3

C4

C5

C1 : {x1, x2, x3} C2 : {x2, x3, x4}

C3 : {x3, x4, x5}

C3 : {x4, x5, x6}

C3 : {x3, x4, x7}

(b) Junction Tree. Red link indicates separator to be split. Dashed red box indicates
cliques potentials to be modified.

C1 C2 C4

C3

C1 : {x1, x2, x3}

C2 : {x2, x4}

C3 : {x4, x5, x6}

C4 : {x4, x7}

(c) Junction tree after splitting S23 and S35

Figure 4.6 – In this example, the states to be split exist in two separators (S23 and
S35). (a) shows the underlying triangulated graph, and the equivalent links which
are removed by the clique split. (b) shows the junction tree, the separator tree to
be split is highlighted in red, and the cliques required for this split (enclosed by a
red box). (c) shows the final junction tree structure, the maximum path length has
been reduced, and the size of all cliques except C1 and C3 is smaller.
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4.2.5 Locally Computable Error Bound

The true error between the optimal and the parallel approaches cannot be determined

without performing the optimisation. However, an upper bound on the error induced

by the parallel variant can be computed by calculating the KLD without the effect of

the messages. The maximum error is:

∆Dkl = Dkl <With messages > −Dkl <Without messages > (4.24)

∆Dkl = Dkl(Ψ
tr
i − µtri ||Ψ

app
i − µtri )−Dkl(Ψ

tr
i − µtri ||Ψ

app
i ) (4.25)

That is, if the messages from other cliques are ignored, then the KLD found at

the clique coincides with the true KLD (which is the minimum). If the messages

are included, then this represents a maximum KLD. Therefore the optimal must lie

between the two, resulting in the error shown above. This bound however assumes

that other parts of the network have not changed since the messages were last received.

Since the parallel JT approach is based upon information locally available at a partic-

ular node, if a particular clique is unable to gather all clique potentials that contain

a particular set of states then those states cannot be sparsified. Thus, the communi-

cation cost associated with the parallel variant of CS is linked to how many cliques

contain the states of interest. For example, in Figure 4.6 cliques C1, C2 and C3 are

required to perform the clique split.

4.2.6 Parallel Sparsification Computational Cost

The computational cost to perform parallel clique splitting for a single clique isO(k6.5)

where k is the maximum clique size. This is the same cost as performing the full CS

split. However, the advantage becomes apparent when considering slitting multiple

cliques that have disjoint Markov blankets. Using the joint approach to multiple

clique splitting, the cost is O((tk)6.5), where t is the number of cliques to be split.

For the sequential approach, the cost is reduced to O(tk6.5). However for the parallel

approach the computational cost remains at O(k6.5), which is independent of t.
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4.3 Comparison Between JT and Information Based

Sparsification

There are several advantages for the JT with respect to the information based ap-

proach. By expressing the problem in cliques, JTs provide logical structures to build

decentralised algorithms upon. This clique structure has the following advantages:

(i) The JT clique size is a locally computable indicator of current solve complexity;

(ii) JT message passing allows for marginals to be readily available at every clique;

and (iii) the implicit chordal structure allows strong guarantees on feasibility of the

problem. Applying the positive-definite decomposition also allows for parallel clique

splitting while maintaining conservatism but trading off KLD accuracy.

The most significant disadvantage for the JT with respect to the information based

approach is that the elimination ordering is predetermined. Therefore, an information

matrix representation can always achieve as good or better an elimination ordering

and the implicit chordal structure may obscure some extra sparsity that exists in the

problem.

4.4 Linear SLAM Simulation

The synthetic Simultaneous Localisation and Mapping (SLAM) data as used in Sec-

tion 3.3.1 is also used in the following SLAM example. A smoothing approach to

the SLAM problem is used, but is implemented using the JT framework described in

Section 2.3. Errors induced through sparsification will be carried by each approach

throughout the simulation.

The CS JT algorithm (labeled JT CS Split), as well as the parallel variant of CS

(labeled JT D-CS Split) are compared. During the simulation both approaches main-

tained conservative approximations with respect to the true state JT True. Due

to the different numerical values in each filter, different cliques were best suited for

sparsification but the overall sparsity was maintained approximately equal for both
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filters. Figure 4.7(a) shows the number of elements in the maximum clique, while

Figure 4.7(b) shows the mean number of elements per clique. Observe that both

plots show the new techniques significantly improving upon the sparsity of the true

solution. Figure 4.7(c) shows the KLD of both approaches. Numerical difficulties

resulted in the JT D-CS Split approach maintaining a lower KLD initially, but this

was eventually corrected and the JT-CS Split achieves a better KLD at the end. JT

CS Split may alter all elements in the Markov blanket during its optimisation, while

JT D-CS Split can only change the values that are in cliques that are being split,

allowing it to achieve a lower KLD. Figure 4.7(d) shows the maximum eigenvalue of

the robot covariance. Unexpectedly, the JT D-CS Split technique achieves a better

KLD than the JT-CS Split. This is because JT-CS Split may have more aggressively

sparsified the robot states than the JT D-CS split. Note that although the maximum

eigenvalue is higher, the overall KLD is lower after time 250. This demonstrates that

the uncertainty in the entire state space must be considered when comparing filters.

Figure 4.7(e) shows the time taken to perform sparsification. This time includes se-

lecting the clique for sparsification and reforming a valid JT. Figure 4.7(f) shows the

time taken to perform marginalisation. Note that the True JT approach appears to

outperform the approximate approaches as the clique size increases. This is because

large cliques can take advantage of optimized linear algebra routines in MATLAB,

while the JT approaches, which involve message passing have a much lower perfor-

mance when implemented in MATLAB.

This experiment shows that the JT based variants of CS are capable of maintaining

sparse conservative approximations of the true distribution.
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Figure 4.7 – Filtering SLAM example. All techniques are conservative with respect
to the true value. Observe that both the maximum and mean clique size is lower
than the true system. Note that the junction tree implementation was written in
MATLAB, and that this resulted in very slow solving once the number cliques in the
problem became large. Note that due to the reduced computational requirement of
D-JT this is not as apparent.



Chapter 5

Conclusion and Future Work

Long term estimation can become intractable due to marginalisation of past states

unless approximate techniques are used to maintain the sparse structure of the esti-

mate. It is important for approximate techniques to be conservative approximations

so that any risks associated with uncertainty in the state variables are not under-

stated. This thesis has described three approaches that minimise the KLD while

maintaining conservatism.

For problems that use the information form as their parameterisation, Chapter 3

details a new method for enforcing sparsity in the information matrix of a Gaussian

distribution. The complexity of this method is a function of the maximum cardinal

value of the graph, which can be quite small for sparse problems. This method was

compared on a simple simulated SLAM data set and was capable of providing a better

KLD than a competing technique, while guaranteeing conservatism.

For problems that require distributed estimation, Chapter 4 describes the application

of conservative sparsification to Junction Trees. This formulation allows the marginals

to be available at every clique, and therefore removes the need to consider the cost of

forming the marginal when applying conservative sparsification to JT clique splitting.

Finally the Junction Tree clique splitting technique is extended to allow asynchronous

parallel sparsification on Junction Trees. This technique, which is an approximation
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to the conservative sparsification problem, enables sparsification in large decentralised

estimation systems. A key feature of this technique is that it can be performed

asynchronously and in parallel. Simulations show that the distributed approach has

a worse KLD then the optimal CS based approach, but still maintains a conservative

estimate.

5.1 Future Work

This thesis has not addressed the problem of choosing which edge (or edges) to re-

move. This problem is difficult as it is related to elimination orderings, for which the

minimimum fill reducing elimination ordering is an NP Hard problem. Nonetheless,

heuristics for choosing edges based on their weight or information content are com-

monly used. Section 2.5.2 describes some of the complications with choosing edges for

removal. It would be interesting to incorporate the concept of expected fill-in from

sparsifying a single link. For example, consider Figure 5.1, here two edges may have

the same weight, yet removing the red edge is clearly better as it reduces the fill-in.

Perhaps a simpler yet related problem is choosing how to split cliques. This problem

has a predetermined elimination ordering and so fill-in is easier to compute.

x1 x3 x5

x2 x4 x6

Figure 5.1 – Illustration of the fill-in inducing properties of edges. The dashed blue
edge is fill-in induced by the elimination ordering (x1, x2, x3, x4, x5, x6). Observe
that removing the red edge will also remove the blue dashed fill-in, while removing
the green edge will not result in less fill-in since x4, x5 is not a fill-in edge.

A direction arising immediately from this work is the concept of a sparse marginalise

operation. This would apply conservative sparsification to the graph immediately

after marginalisation, perhaps maintaining a spanning tree over the remaining states
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(in a method similar to [37]). This is a good avenue as it avoids the problem of

re-linearisation, which cannot be addressed by CS.

Applying these techniques to non-simulated data set is another exciting avenue. How-

ever care needs to be taken to ensure that observations involved in sparsification are

not re-linearised, as this can destroy the induced sparsity. One possible approach is

to sparsify an observation after re-linearisation and then fusing it into the system.

This thesis has been unable to prove convergence of iterative sparsification with dis-

joint Markov Blankets. This is considered for future work. A complicating factor is

that the sequence of clique potentials are not necessarily decreasing over the Loewner

ordering.
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Appendix A

Proofs

A.1 Useful Identities

Positive Definite Matrices

Suppose that A and B are symmetric real matrices and R is non-singular, then (Eq.

10.46 [51]):

A � B ⇐⇒ RTAR � RTBR (A.1)

also note the useful identity (Eq. 10.58(a) of [51]):

let A � 0 and B � 0 then

A + B � 0. (A.2)

and the corollary (Eq. 10.58(c) of [51])

if A−B � 0⇒ det(A−B) < det(A). (A.3)

Another useful identity (Eq. 10.55(a) of [51]). Let V have dimensions n × n and

V � 0. Also let X have dimensions n× p with rank(X) = p then
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V � X(XTV−1X)−1XT (A.4)

Partitioned Matrices

Suppose A is partitioned as:

A =

 A11 A12

A21 A22

 , (A.5)

then (Eq. 14.17(b) from [51]):

det(A) = det(A22) det(A11 −A12A
−1
22 AT

12), (A.6)

and using the shorthand introduced in Section 2.2.3,

det(A) = det(A22) det(A/A∗2), (A.7)

Note the useful identities: From [51] p290 14.5 (b)

A � 0 ⇐⇒ A/A∗2 � 0 (A.8)

Shorthand

If A is symmetric, i.e. AT
12 = A21, then (Eq. 14.26(a) from [51] )

A � 0 (A.9)

if and only if

A11 � 0,
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and

A/A∗1 � 0. (A.10)

Matrix Inversion Lemma

The 2x2 matrix inversion lemma (Eq, 14.11(1) [51]):

A−1 =

 (A/ A∗2)−1 −A−1
11 A12(A−1

22 −A21A
−
111AT

21)

(−A−1
11 A12(A−1

22 −A21A
−
111AT

21))T A−1
22 + A−1

22 AT
12(A/ A∗2)−1A12A

−1
22


(A.11)

A.2 Alternative Proof Approaches

This appendix demonstrates some alternative approaches for the proofs in Chapter

3. These proofs appeared in [59], however an error was later found. The error was

in assuming that a G(x) marginals could be found that is positive definite when the

marginal were subtracted. If the graph of G(x) was not locally chordal, then this

cannot be guaranteed.

This appendix proves two key theorems that are vital for the problem reduction

described in Section 3.2.1. We define the following notation; (A)ij accesses the ith

element and jth row of the matrix expression A Let the matrix Enm be known as the

indicator matrix, defined as:

(Enm)ij =



√
2, if (i 6= j) and

((n,m) = (i, j) or (n,m) = (j, i))

1, if (i = j)and(n = i)and(m = j)

0, otherwise .

We will also define a mapping from Rn to Sm×m (where Sm×m is the set of real
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symmetric matrices):

F (x) = F0 +
n∑
i=1

xiEqp, (q, p) ∈ Z (A.12)

where, Z is a set of indices in a m×m matrix space, Eqp,F0 ∈ Sm×m and (F0)ij = 0

for all (i, j) ∈ Z.

We now define the CS problem:

argmin
Yapp

tr(YappY
−1
tr )− logdet(Yapp)

subject to:

Ytr −Yapp � 0

Yappij = 0 ∀ {(i, j) ∈ I ∪ J },

where, Ytr,Yapp ∈ Sm×m+ , I contains the set of indices that are to be sparsified, while

J contains the set of indices that satisfy (Ytr)ij = 0. Here Sm×m+ is the cone of m×m
positive definite matrices.

We will also define another set of indices K, which contains the indicies of all the

elements that are to have a nonzero value in the final solution K /∈ I ∪ J .

We can remove the equality constraints by performing a parameterisation using Equa-

tion A.12. Let,

Yapp = F (x)

= F0 +
n∑
i=1

xiEqp, {(q, p) ∈ K}

and, F0 = 0.

We can now define the CS problem using the new parameterisation:

argmin
x

tr(F (x)Y−1
tr )− logdet(F (x))
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subject to:

Ytr − F (x) � 0.

The Lagrange dual function for this problem is:

L(x,λλλ) = tr(F (x)Y−1
tr )− logdet(F (x)) (A.13)

+ tr(λλλ(F (x)−Ytr)). (A.14)

Using the Lagrange function we can form the first KKT1 equation,

d

dx

(
tr(F (x)Y−1

tr )− logdet(F (x))
)

(A.15)

+
d

dλλλ
(tr(λλλ(F (x)−Ytr))) = F−1

tr − F−1
sp + Fλ. (A.16)

where,

F−1
tr =

(Y−1
tr )ij ∀{(i, j) ∈ K}

0, otherwise
(A.17)

F−1
sp =

(F−1)ij ∀{(i, j) ∈ K}

0, otherwise
(A.18)

Fλ =

(λλλ)ij ∀{(i, j) ∈ K}

0, otherwise
(A.19)

It is sufficient for the optimal solution to this problem to satisfy the following equa-

tions (known as the KKT conditions):

F−1
tr − F−1

sp + Fλ = 0 (A.20)

Ytr − F � 0 (A.21)

1The KKT or Karush-Kuhn-Tucker equations are a set of equations defining neccesary and
sufficient conditions for the solution of a convex problem. See [10]
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λλλ � 0 (A.22)

tr(λλλ(F−Ytr)) = 0. (A.23)

The KKT conditions only hold under the assumption of strong duality. Slater’s

constraint states that a convex problem has strong duality if its inequality constraints

hold strictly. For this problem, Slater’s constraint holds if there exists a positive

number ε, that satisfies the following (where I is the identity matrix):

Ytr − εI � 0. (A.24)

Since this is true for any matrix as long as Ytr � 0, the assumption of strong duality

is valid for this problem.

Defining a Graph Cut: Consider a new operation, the CS Graph Cut, which can

operate on any CS problem. This operation splits states in the problem into two

disjoint sets of arbitrary size. The only constraint on a CS Graph Cut is that the

full set of sparsification indices I must be included in only one of the sets. We can

express this using matrix partitions as below:

Ytr =

 A11 AT
12

A12 A22

 , F (x) =

 A∗11 A∗12
T

A∗12 A∗22

 ,
where A11 contains the set of indices I. We will also define another set of indices L,
which is the set of indices that satisfies,

(A12A
−1
22 AT

12)ij 6= 0.

We will define two sets of indices related to the cut. Let J11 be the subset of J which

is contained in the cut A11, and let K11 be the subset of indices contained in the cut

A11. It is important to recognise that the CS Graph Cut is not unique, there may

be many valid cuts, all that is required is that the split is disjoint and indices I are

entirely included in one of the sets.
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Finally we will define the mapping from Rt to Su×u:

G(x11) = G0 +
t∑

p=1

xpEi,j,∀{(i, j) ∈ K11} (A.25)

where, E is a u×u indicator matrix, u is the size of the graph cut, and t is the number

of free parameters in the cut, x11 ∈ Rt.

Theorem 1: 2 For any CS problem, choose a valid CS graph cut for which the

following problem is feasible.

Let

Ỹtr = A11 −A12A
−1
22 AT

12 (A.26)

(G0)ij =

(−A12A
−1
22 AT

12)ij, ∀{(i, j) ∈ L}

0, otherwise
(A.27)

Now solve the problem (known as the reduced problem):

argmin
x11

tr(G(x11)Ỹ−1
tr )− logdet(G(x11))

subject to:

Ỹtr −G(x̃11) � 0

Let x̃11 and λ̃λλ11 be the optimal primal and dual solutions to the reduced problem.

We will then consider the optimal solution to the full problem to be:

F ∗(x̃) =

 G(x̃11) + A12A
−1
22 AT

12 A12

AT
12 A22

 (A.28)

2 Note that Theorem 1 is similar to the result in [35, Sect. 6.2] as both show that the KLD can
be computed locally. Our theorem differs, as we show that the consistency constraint can also be
optimised locally, and we do not require our final solution to be a Junction Tree (which requires a
matrix ordering to be chosen and can cause fill in).
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λλλ∗ = F ∗(x̃)−1 −Y−1
tr (A.29)

Proof Outline: This proof will show that the KKT conditions hold for the proposed

solutions.

Proof. If x̃11 and λ̃λλ11 are the optimal solutions to the reduced problem, then the

following KKT equations for that system must hold:

d

dx


tr(G(x̃11)Y−1

tr )

− logdet(G(x̃11))

+ tr(λ̃λλ11(G(x̃11)−Ytr))

 = G−1
tr − G−1

sp + Gλ = 0. (A.30)

d

dx

(
λ̃λλ11

)
= Fλ

= −F−1
tr + F−1

sp (A.31)

G−1
tr =

(Ỹ−1
tr )ij ∀{(i, j) ∈ K11}

0, otherwise
(A.32)

G−1
sp =

(G(x̃11)−1)ij ∀{(i, j) ∈ K11}

0, otherwise
(A.33)

Gλ =

(λ̃λλ11)ij ∀{(i, j) ∈ K11}

0, otherwise .
(A.34)

Where,

G−1
tr − G−1

sp + Gλ = 0 (A.35)

λ̃λλ11 � 0 (A.36)

tr(λ̃λλ11(G(x̃11)− Ỹtr)) = 0 (A.37)

Ytr −G(x̃11) � 0. (A.38)
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Also, a solution to the reduced problem must lie in its domain. That is, the following

must be true,

G(x̃11) � 0. (A.39)

Show that F ∗(x̃) � 0:

Using partition in Eqn. A.28 and since G(x̃11) � 0 and A−1
22 � 0 then,

G(x̃11) + A12A
−1
22 AT

12 � 0. (A.40)

now,

G(x̃11) + A12A
−1
22 AT

12 −A12A
−1
22 AT

12 = G(x̃11) � 0, (A.41)

and using A22 � 0 implies F ∗(x̃) � 0.

Show KKT Condition (Equation A.20):

F−1
tr − F−1

sp + Fλ = F−1
tr − F−1

sp + (−F−1
tr + F−1

sp ) (A.42)

= 0, (A.43)

where the above has used Eqn. A.29

Show KKT Condition (Equation A.21):

Ytr − F ∗(x̃) =

 A11 AT
12

A12 A22

−
 G(x̃11) + A12A

−1
22 AT

12 A12

AT
12 A22

 (A.44)

=

 A11 0

0 0

−
 G(x̃11) + A12A

−1
22 AT

12 0

0 0

 (A.45)

= A11 −A12A
−1
22 AT

12 −G(x̃11) (A.46)

= Ỹtr −G(x̃11) (A.47)
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� 0. (A.48)

Show KKT Condition (Equation A.22):

Note that,

Ytr − F ∗(x̃) � 0 ⇐⇒ F ∗(x̃)−1 −Y−1
tr � 0, (A.49)

therefore,

λλλ∗ = F ∗(x̃)−1 −Y−1
tr (A.50)

� 0. (A.51)

Show KKT Condition (Equation A.23)

tr (λλλ∗ (F ∗(x̃)−Ytr)) = tr
(
λ̃λλ11

(
G(x̃11) + A12A

−1
22 AT

12 −A11

))
(A.52)

= tr
(
λ̃λλ11(G(x̃11)− Ỹtr)

)
(A.53)

= 0 (A.54)

Where λλλ11 is the top left block of λλλ. By re-arranging Eqn. A.35 we have

Gλ = G−1
sp − G−1

tr .

Decomposing λλλ11:

λλλ11 =

(Gλ)ij ∀{(i, j) ∈ J11 ∪ K11}

(λλλ0)ij ∀{(i, j) ∈ L},
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where,

λλλ0 =

(λλλ∗)ij ∀{(i, j) ∈ L}

0 otherwise .
(A.55)

Also, note that

(F ∗(x̃)−Ytr)ij = 0,∀{(i, j) ∈ L}. (A.56)

Now, Eqn A.53 becomes:

tr(λλλ∗(F ∗(x̃)Ytr) = tr((λλλ0 + Gλ)(G(x̃11)− Ỹtr)) (A.57)

= tr (λλλ0(F ∗(x̃)Ytr)) + tr(Gλ(G(x̃11)− Ỹtr)) (A.58)

= tr
(
λλλ0(G(x̃11)− Ỹtr)

)
(A.59)

where we have used Eqn: A.37. Finally using equations A.56, A.55 and A.27 we have,

(G(x̃11)− Ỹtr)ij = (G0 −A12A
−1
22 AT

12)ij (A.60)

= (A12A
−1
22 AT

12 −A12A
−1
22 AT

12)ij (A.61)

= 0 (A.62)

where (i, j) ∈ L. Which implies:

tr
(
λλλ0(G(x̃11)− Ỹtr)

)
= 0, (A.63)

therefore,

tr(λλλ∗(F ∗(x̃)−Ytr) = 0. (A.64)

Since the KKT equations are satisfied, the proposed solution is optimal.
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The final part of the proof used the fact that we made the matrix G(x̃11) contain

the marginals, and since it was only for fill in for which we had no expression derived

from the reduced solution, this made the fill in entries correspond with zeros in the

right expression. Thus allowing our result.

Both the dual and primal solutions are as hard as each other to solve for.

Theorem 2: If the Markov blanket is wholly included in one of the sets of a CS

Graph cut, then the associated reduced problem will always have a feasible solution.

Proof Outline: This proof first describes the inequalities which can result in an infea-

sible solution. It then describes a choice of the reduction which will always result in

a feasible solution. A problem is known as infeasible if there are no solutions which

satisfy the equality and inequality constraints.

Proof. We denote a solution to the reduced problem by, G(x̃11) = Ã11. The inequality

for the reduced problem corresponding to the consistency constraint is:

A11 −A12A
−1
22 AT

12 − Ã11 � 0 (A.65)

A11 −A12A
−1
22 AT

12 � Ã11 � 0. (A.66)

The subtraction of the term (A12A
−1
22 AT

12) reduces the upper bound on the solution

Ã11, if I ∩ L 6= ∅, then it is possible that the problem will have no solution (i.e.

infeasible).

Exploiting Structure: Consider a matrix Ytr with the following structure:

Ytr =


B11 B12 0

BT
12 B22 B23

0 BT
23 B33

 . (A.67)

If we choose to reduce the problem so that Ã11 encompasses B11 and B22 (the Markov

blanket of the equality constraints contained in B11), then the above inequality be-

comes:
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 B11 B12

BT
12 B22 −B23B

−1
33 BT

23

−
 B̃11 B̃12

B̃T
12 B̃22

 � 0 (A.68)

If this structure exists for a particular reduction choice, then this problem will always

have a feasible solution as long as I is contained in B11, and L is contained in B22 .

A feasible solution is demonstrated below (where ε satisfies the B11 � εI)

Ã11 =

 εI 0

0 B23B
−1
33 BT

23

 . (A.69)

This satisfies the equality and inequality constraints, which is demonstrated below:

 B11 B12

BT
12 B22 −B23B

−1
33 BT

23

−
 εI 0

0 B23B
−1
33 BT

23

 � 0 (A.70)

 εI 0

0 B23B
−1
33 BT

23

 � 0. (A.71)

Note that we cannot choose B̃22 = εI as the equality constraints associated with L
require off diagonal terms to be non-zero.

Therefore, the reduced problem will always have a feasible solution if the Markov

blanket is included in the reduced problem.



Appendix B

Details of Previous Work in Sparse

Approximations

B.1 Approximate Sparsification for Data Fusion

This section describes two important approaches for sparsification in data fusion,

Covariance Intersection (CI) and Approximately Marginalised - Sparse Extended In-

formation Filter (AM-SEIF). CI is a commonly used approach for fusion of datums

whose correlation is unknown, and guarantees conservatism in its result. AM-SEIF

differs from CI in that it was developed to solve the SLAM problem, however its

solution is sufficiently general to be applicable to general estimation problems.

B.1.1 Covariance Intersection and Related Approaches

A common problem in data fusion is maintaining records of cross-correlation terms

between states. Standard approaches that use the Kalman filter [26] require knowl-

edge of the cross correlation terms to produce estimates that are consistent.

The CI family of approaches use a simple geometric property to guarantee consistency

and conservatism. There are three key members of the CI family, CI, Covariance

Union (CU) and split Covariance Intersection (split-CI).
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CI is a method for fusing two Gaussian distributions when the cross-correlation be-

tween the two is unknown. Let the two distributions have means ā, b̄ and covariances

A, B for the distributions NA and NB, respectively. Let the resultant distribution

have mean c̄ and covariance C.

The fundamental equation for covariance intersection is then [30]:

C−1 = wA−1 + (1− w)B−1, (B.1)

C−1c̄ = wA−1ā + (1− w)B−1b̄, (B.2)

where w ∈ [0, 1]. The parameter w can be optimised to reduce some cost, typically

the trace or determinant of the resulting system.

The CU approach attempts to solve the problem of conflicting observations [58].

That is, two observations that purport to be of the same thing but predict very

different results. The algorithm assumes that one of the estimates must be true but

cannot know which one. CU creates a resultant distribution that encompasses both

distributions. The problem is formed as either a Maximum Determinant (MAXDET)

problem or a Semi-Definite Program (SDP):

min
U∈Sn,u∈Rn

F (U) (B.3)

s.t.

U � A + (u− a)(u− a)T

U � B + (u− b)(u− b)T

where F is either the negative log determinant (for MAXDET) or trace (for SDPs).

Split-CI is an extension to Covariance Intersection that has also been used in SLAM to

increase the accuracy of results [31]. Split-CI allows the incorporation of observations

that are known or assumed to be uncorrelated. That is, the data fusion is split into

independent and dependent parts [29]. Let A = 1
w

A1 + A2, and B = 1
1−wB1 + B2,

then split-CI is:
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C =
[
A−1 + B−1

]−1
=

[(
1

w
A1 + A2

)−1

+

(
1

1− w
B1 + B2

)−1
]−1

(B.4)

c̄ =
[
A−1ā + B−1b̄

]−1
= C

[(
1

w
A1 + A2

)−1

ā +

(
1

1− w
B1 + B2

)−1

b̄

]
. (B.5)

B.1.1.1 Limitations of Covariance Intersection Approaches

CI is very useful for guaranteeing conservative data fusion when two pieces of data

need to be fused. However, it is not possible to introduce an arbitrary sparsity pattern

into an existing estimate using CI based approaches. To illustrate this, consider the

following information matrix (Y) and its desired sparsity (Ỹ) :

Y =


a b d

b c e

d e f

→ Ỹ =


a b 0

b c e

0 e f

 (B.6)

CI cannot in general be used to transform Y to Ỹ. However, CI could be used to

perform this sparsification if all the updates that included non-zero information about

d were known.

Although CI is a conservative approach to sparsification, its assumption that the

correlations between states are unknown is not used in this thesis. Thus comparisons

with CI are flawed as CI will always perform worse than other approaches because it

makes no use of the known correlations.

B.1.2 Approximately Marginalised Sparse Filtering

Approximately Marginalised - Sparse Extended Information Filters (AM-SEIFs) [54]

is a technique for removing conditional dependencies in a way that provides a close

approximation to the original distribution. It was designed for use in SLAM scenarios

to disconnect robot states from the set of stationary states (landmarks). Notably,
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this approach allows for constant time filtering prediction steps, although it produces

inconsistent estimates [19].

AM-SEIF induces sparsity through combining marginal distributions to form a new

approximate distribution with the desired sparsity. This requires the system to be

divided into four sets. The robot state will be denoted x, while the states that are

to be disconnected from x are denoted as y0. Let y+ indicate the states that are

to remain connected to x, and y− the states that are not connected to x, that is

x ⊥⊥ y−.

Now consider the system:

p(x,y+,y−,y0) = p(y−|y+,y0)p(x|y+,y0)p(y+,y0) (B.7)

To induce sparsity or conditional independance between x and y0, the new factorisa-

tion should be of the form:

p(x,y+,y−,y0) = p(x|y+,y−)p(y0|y+,y−)p(y+,y−) (B.8)

This can also be expressed as:

p(x,y+,y−,y0) =
p(x,y+|y−)

p(y+|y−)
p(y+,y0,y−) (B.9)

Each of the probability distributions in equation B.9 can be formed by appropriate

marginalisation of the original distribution. Thus, the approximation requires forming

the marginals and combining them as in equation B.9. Let the information matrix

for the distribution p(x,y+|y−) , p(y+|y−) and p(y+,y−,y0) be M1, M2 and M3

respectively.
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These matricies are combined to form the approximate system.

Y = M1 −M2 + M3. (B.10)

Although AM-SEIF is tailored to a SLAM filtering scenario, the fundamental equa-

tions are not specific to the SLAM problem, and can be used for more general Gaussian

estimation problems where sparsity is desired.

l1 l3

xil5

l4

l2

(a) Original graph

l1 l3

xil5

l4

l2

(b) Sparsified graph

Figure B.1 – Sparsifying link between xi and l2 using AM-SEIF approach (shown in
red), this link was induced through marginalisation of a prior state. Green links
are induced by AM-SEIF. The landmark sets are: Y0 which contains landmark l3;
Y− which contains l2 and set Y + which contains the active landmarks l1, l4 and
l5. Fill-in has occurred between the sparsified set Y− and the active set Y+ but
not the deactive set Y0. After this operation, the robot state has 3 rather than
4 edges, and is in this sense more sparse, although the overall graph sparsity has
been increased.

B.1.2.1 Link removal heuristic

AM-SEIFs link removal heuristic is used when the number of links connected to the

robot pose reaches a predetermined threshold. AM-SEIF then removes links to en-

sure that the number of connections to the robot pose is reduced below the threshold.

Weaker links are chosen for deletion first. This approach tends to disconnect land-

marks that are further away from the robot [54]. Link strength is determined by its

normalised weight. The weight for a link aij is:

wij =
a2
ij

aiiajj
. (B.11)
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wij will range from [0,1], since a property of positive definite matrices is that an

off-diagonal must be less than or equal to its diagonal [51, Eq 10.34 (a)].

Example B.1.1. This example will demonstrate the AM-SEIF sparsification

process on a matrix. Consider the system below:

Y =


A BT CT 0

B D ET FT

C E G HT

0 F H I

 , y =


y1

y2

y3

y4

 (B.12)

It is desired to remove the dependence between y1 and y2, which is equivalent

to setting the matrix B = 0. To apply AM-SEIF to y form information

matrices of the probabilities in equation B.9.

p(x,y+|y−) = M1 =


A 0 CT 0

0 0 0 0

C 0 G 0

0 0 0 0

−


BD−1BT 0 BD−1ET 0

0 0 0 0

ED−1BT 0 ED−1ET

0 0 0 0


(B.13)

p(y+|y−) = M2 =


0 0 0 0

0 0 0 0

0 0 G− L 0

0 0 0 0

 (B.14)
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Where L = [ C E ]
[

A BT

B D

]−1 [
CT

ET

]
,

p(y+,y0,y−) = M3 =


0 0 0 0

0 D−BA−1BT ET −BA−1CT FT

0 E−CA−1BT G−CA−1CT HT

0 F H I

 ,
(B.15)

So combining these as in equation B.9 ỹ = M1 −M2 + M3 :

ỹ =


A−BD−1BT 0 CT −BD−1ET 0

0 D−BA−1BT ET −BA−1CT FT

C− ED−1BT E−CA−1BT G−CA−1CT − ED−1ET + L HT

0 F H I

 .
(B.16)

Clearly AM-SEIF has induced the desired sparsity, however the presence of

many Schur complement complement fill terms will result in significant fill-in.

The AM-SEIF approach is not a conservative approach to sparsification. The follow-

ing proposition was first proved in [19] using covariance matrices. What follows is a

similar approach, instead focusing on information matrices.

Proposition 1. The AM-SEIF approach to sparsification is not conservative.

Proof. Consider the conservatism constraint using the matrix decomposition from

example B.1.1.

Y − Ỹ =


BD−1BT B BD−1ET 0

B BA−1BT BA−1CT 0

ED−1BT CA−1BT CA−1CT + ED−1ET − L 0

0 0 0 0

 . (B.17)



B.1 Approximate Sparsification for Data Fusion 143

Examine the diagonal term of the third row:

CA−1CT + ED−1ET −
[

C E
] A BT

B D

−1  CT

ET

 , (B.18)

This can be re-written as:

[
C E

] A−1 0

0 D−1

−
 A BT

B D

−1 CT

ET

 , (B.19)

In order to be positive definite, all the diagonals must be positive and all diagonal

sub-blocks must be positive definite. The following shows that one of the diagonal

sub-blocks is not positive definite.

Consider the top left sub-block of the inner term, and using the Woodman-Morrisey

matrix inversion lemma [51, Eq. 15.3(c)]:

A−1 −
(
A−BD−1BT

)−1
= A−1 −

(
A−1 + K

)
(B.20)

= −K (B.21)

where K = A−1B(D−BTA−1B)−1BTA−1. Therefore if K is positive definite, then

equation B.18 will not be positive definite. All that remains to be shown is that K is

positive definite. Assume that Y � 0, this implies D−BA−1BT � 0, using [51, Eq.

10.46 (a)] then implies K � 0, which implies that −K � 0. Therefore

Y − Ỹ � 0. (B.22)

The fill-in properties of AM-SEIF are described by the graph in Figure B.1. It can

be seen that AM-SEIF will induce fill-in between the disconnected states and the

currently connected states. It will also induce internal fill-in in the ‘robot’ states, as
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well as internal AM-SEIF fill-in for the connected landmarks. However, AM-SEIF

will not induce any fill-in between any state not connected to the robot pose.

AM-SEIFs property of inducing internal fill-in in the connected states is suitable for a

filtering system, where marginalisation can often induce this fill-in anyway. However,

if the state being separated is not going to be marginalised, then this extra fill-in

becomes an undesirable property of the approach, this is demonstrated in Figure B.1.

B.1.3 Approximate Sparsification for SLAM

The motivating example for these approaches will be the SLAM problem.

B.1.4 Short overview of SLAM

The SLAM problem involves the concurrent localisation of a robot in an unknown

environment. Typically states are split into robot states (x), and landmarks. Many

different approaches to SLAM exist, this thesis will consider only linear SLAM with

known data association. That is, the robot movement model and observation models

are linear and correspondences between observations and landmarks is known.

B.1.4.1 DD-SEIF

The Data Discarding Sparse Extended Information Filters (DD-SEIF) approach ([61])

uses the insight that by selectively choosing to discard odometry data, as used by the

vehicle’s prediction step, the sparsity of the graph can be improved. The algorithm

also requires the robot to re-observe a landmark in order to reinitialise the robot pose.

In the case of the filtering SLAM problem (Section 2.4.1), DD-SEIF chooses to discard

odometry whenever the number of links to the robot state rises above a predefined

threshold. This motion observation is then discarded, the previous robot pose is

marginalised into the landmarks, and the robot pose is reinitialised through a land-

mark re-observation. An example of this process is given in Figure B.2.
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xkl4

l2

l1

l6

l5xi

(a) Original graph

xkl4

l2

l1

l6

l5

(b) Optimal solution

xkl4

l2

l1

l6

l5xi

(c) DD-SEIF discards orange
link

xkl4

l2

l1

l6

l5

(d) DD-SEIF solution

Figure B.2 – The optimal approach is shown in (a) and (b), while the DD-SEIF
approach is shown in (c) and (d). In this example the robot predicts its state
forward and then observes two new landmarks (l5 and l6) and a previously surveyed
landmark, l4. The graph in (b) shows the network after the state xi has been
marginalised and has formed a large clique. In (c) the DD-SEIF algorithm chooses
to discard the motion update (represented by an orange link). In (d) marginalising
xi landmarks l1 and l2 are not connected to state xk. DD-SEIF has induced sparsity
by ignoring a motion observation.

B.1.4.2 Laser Based Pose Graph Sparsification

A recent approach to sparsification is presented by H. Kretzschmar et. al [37]. In this

work a map is constructed using robot poses and laser scans. Each scan is associated

with a particular robot pose, and each pose is correlated to other poses using laser

based features seen in the environment. The key insight in this work is that many

laser scans may overlap, and therefore not all laser scans are necessary to create a

representative map of the environment.

The technique begins by finding a pose whose mutual information with all other poses

is large. This pose is then marginalised out of the graph, inducing fill-in between its

neighbours. A Chow-Liu [12] maximum spanning tree is then constructed over the

markov blanket of the marginalised node. The tree edges are calculated by computing



B.2 Previous Work in Sparsification for Junction Trees 146

each weights mutual information, using the following formula c.f. [37]:

I(xi;xj) =
1

2

(
logdet(Σii)− logdet(Σii − ΣijΣ

−1
jj Σji)

)
, (B.23)

where Σij is the covariance matrix between the states i and j.

This approach is not a conservative estimate as the Chow-Liu spanning tree does not

guarantee conservatism, rather only connectivity [12].

B.2 PreviousWork in Sparsification for Junction Trees

B.2.1 Thin Junction Trees (TJT)

Junction Trees have been used in approximate estimation [49], and applied to the

SLAM problem in [48]. Although the system is represented as a JT, the approach to

sparsification is similar to AM-SEIF in that it involves a combination of marginals to

form a new approximate distribution.

This approach forms a JT over the estimation space and then identifies large cliques,

which are then ‘thinned’ to increase the efficiency of the underlying JT message

passing algorithm. The thinning operation is performed by marginalising a state from

a particular clique, but not from the entire network, example B.2.1 demonstrates this

using the Shafer-Shenoy message passing algorithm. Thin Junction Tree (TJT) uses

the Hugin message passing scheme, Example B.2.1 is repeated using Hugin message

passing in Example B.2.2.

Example B.2.1. This example demonstrates the clique contraction tech-

nique. Consider the following junction tree (C1 = {1, 2, 3}, C2 = {2, 3, 4},
assume message passing has already occurred):
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C1 C2

where the potentials are:

YΨ1 =


A BT CT

B D ET

C E G

 , yΨ1 =


y1

y2

y3

 , (B.24)

YΨ2 =


0 0 FT

0 0 HT

F H I

 , yΨ2 =


0

0

y4

 . (B.25)

It is desired to thin the tree by removing state 3 from C2. The first step is

to form the conditional distribution for all the states that are neighbours of

state 3 in Ψ2.

Yc =


D ET FT

E G HT

F H I

 , yc =


y2

y3

y4

 , (B.26)

The marginals Yc/ Y∗3c and yc/ y∗c are calculated, and the change in Yc and

yc results in the following system (however any change in information related

to a state that is in a separator of C2 is nullified):

Y∆c =


0 0 −EG−1HT

0 0 0

−HG−1ET 0 −HG−1HT

 , (B.27)

y∆c =


0

0

−HG−1y3

 (B.28)
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The information is then redistributed such that:

YΨ1 =


A BT CT

B D ET

C E G

 , yΨ1 =


y1

y2

y3

 ,
(B.29)

Yapp
Ψ2

=

 0 FT − EG−1HT

F−HG−1ET I−HG−1HT

 , yappΨ2
=

 y2

y4 −HG−1y3


(B.30)

Here it can be seen that C2 no longer has reference to state 3, effectively

removing any link between states 3 and 4.

This new estimate is not necessarily representative of the original distribution. The

following proposition proves that the TJT approach is not conservative.

Proposition 2. The Thin Junction Tree is not a conservative method for sparsifica-

tion.

Proof. All that is required is to show that the conservatism constraint does not hold.

Using the decomposition from example B.2.1. Let Y = YΨ1+YΨ2 and Ỹ = YΨ1+Ysp
Ψ2

Y − Ỹ =


0 0 0 0

0 0 0 EG−1HT

0 0 0 HT

0 HG−1ET H HG−1HT

 � 0 (B.31)

Where the result is not positive semi-definite since a row with a zero diagonal has a

non-zero off-diagonal [51, Eq. 10.34(c)].

The clique contraction technique described above can only be used in situations where

the state to be removed is on the edge of a subtree. To allow arbitrary link removal

[49] introduced the concept of clique cloning, and subsequent contraction of two states
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from each clone to create a clique split, resulting in a removed link in an arbitrary

position in the underlying graph.

B.2.1.1 Link removal heuristic

As the complexity of the JT algorithm is related to the clique width, large cliques

become good candidates for variable contraction.

In the SLAM variant of TJT [48], states are removed from a clique based on the min-

imisation of its conditional mutual information with the separator. Consider the case

where i contains one or more states from the target clique C to be removed. Let Yc be

the information matrix of the marginal formed by marginalising the target potential

Ψc2 down to the states i. Let Ys be the information matrix of the marginal formed

by finding the marginal over the messages across the seperator (in both directions)

µs to the states i. The conditional mutual information is then c.f. [48, Prop. 6]:

I =
1

2
(logdet(Yc)− logdet(Ys)) (B.32)

TJT then chooses the elements of i such that equation B.32 is minimised.

The matrix Yc is composed by calculating the marginal around i, while the matrix

Ys is constructed by combining only the messages from the sub-tree associated with

the states i and the clique potential, and then marginalising that result to the states

i.

Yc =
∑
k=C/i

Yµk + YΨk
(B.33)

Ys =
∑
k=C/i

Yµk + YΨSim
, (B.34)

where m = Ci /∈ Sij is the set of states not in the neighbouring subtree of i and k is

all states not in i. Here ΨSim is the conditional potential, conditioned on the states

m.
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B.2.1.2 Comparison to SEIF

Both the TJT and SEIF share a similar approach to sparsification. That is, they

attempt to induce sparsity through the combination of marginals from the true dis-

tribution. TJT differs in that its sparsification does not suffer from the drawback of

incidental non-zero’s being introduced as junction tree cliques are assumed to already

be triangulated. TJT also uses a significantly different approach to choosing links to

remove.

B.2.1.3 TJT Sparsification using Hugin

The Hugin method of inference uses the concept of a seperator potential to distribute

information. Each link maintains a potential φs, that is a marginal distribution over

the states in the seperator. Also, each clique potential is also a marginal over the

particular states of the interest. The marginal over two clique potentials is calculated

using:

p(x1,x2) =
φ1φ2

φs
(B.35)

If the distributions are parametrised using a Gaussian with the information form,

then the information matrix for the above equation becomes:

Y12 = Yφ1 + Yφ2 −Yφs (B.36)
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Example B.2.2. Consider the simple case below:

Y =


A BT CT 0

B D ET FT

C E G HT

0 F H I

 , (B.37)

which is split into the following using the Hugin junction tree approach [28]:

Yφc1 =


A BT CT 0

B D ET 0

C E G 0

0 0 0 0

 ,Yφs =


0 0 0 0

0 D ET 0

0 E G 0

0 0 0 0

 , (B.38)

Yφc2 =


0 0 0 0

0 D ET FT

0 E G HT

0 F H I

 . (B.39)

Let the states associated with G be chosen for contraction from the clique

φc2. This requires marginalising the states associated with G from φ2 and φs.

Resulting in the following:

Yφc1 =


A BT CT 0

B D ET 0

C E GT 0

0 0 0 0

 ,Yφs =


0 0 0 0

0 D− EG−1ET 0 0

0 0 0 0

0 0 0 0

 , (B.40)

Yφc2 =


0 0 0 0

0 D− EG−1ET 0 FT − EG−1HT

0 0 0 0

0 F−HTG−1E 0 I−HG−1HT

 . (B.41)
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Since the size of the seperator and the clique have been reduced, this new

system will require less computation and communication to solve. To demon-

strate that this has infact induced sparsity, reform the information matrix

using the formula:

Ỹ = φc1 − φs + φc2, (B.42)

resulting in:

Ỹ =


A BT CT 0

B D ET FT − EG−1HT

C E G 0

0 F−HG−1ET 0 I−HG−1HT

 (B.43)

Notice the induced zeros in the previous position of the matrix H.

B.2.2 TreeMap

Treemap [22] is an architecture to perform SLAM. Although it is specifically a SLAM

algorithm, its sparsification procedure can be applied to any information matrix. The

procedure is now presented c.f. [21]:

Consider an information matrix (where a is a scalar, b and c are vectors and A is a

matrix),

Y =


a bT cT

b A22 AT
32

c A32 A33

 , (B.44)

Then the matrix that sets the vector b from Y to zero is:

B = xxT , x = Y


λ

δA−1
22 b

0

 , (B.45)
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Using:

α = bTA−1
22 b, β = (a− α)−1 (B.46)

λ = 4
√
a(bTA22b), γ = β(λ−λ−1α), δ = β(−λ+ aλ−1). (B.47)

The sparsification can be performed using the equation:

Ỹ = Y −B (B.48)

Lemma B.1. The Treemap approach to sparsification is a conservative approach to

sparsification, assuming that Y −B � 0.

Proof. If Y − B � 0 then the Treemap approach will result in a well formed infor-

mation matrix. Consider the consistency constraint:

Y − Ỹ = Y − (Y −B) (B.49)

= B (B.50)

� 0 (B.51)

where the final step has used B = xxT � 0 ( [51, Eq. 10.10]).

Treemap is not guaranteed to produce a result that can be used for sparsification.

This is because of a flaw in Theorem 3 from [21]. This theorem’s proof optimizes

the quantity x, but makes no claim of its optimal value, while Lemma 17 from the

same work requires that xTA−1x < 1 for the matrix A− xxT � 0. Thus in the case

that Treemap’s value for x does not satisfy xTA−1x < 1 then using the result from

treemap will cause the system to become indefinite, that is, the value Y −B � 0.
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B.2.2.1 Flexibility of induced sparsity

This approach cannot delete an arbitrary sparsity pattern, rather it can only delete

links connected to a single state. In [21] this method is extended to allow for multiple

link removal steps, but these steps lose the closeness bounds guaranteed by the single

state case. This method will also compound the numerical instabilities for large

dimension matrices.

The subtraction of a rank one matrix is not in general a sparse operation, and in

this case the B matrix will be dense in every other part except for the offdiagonal

columns being sparsified. This technique is therefore not useful for information form

sparsification where existing sparsity needs to be maintained. The technique can be

used in scenarios where a dense matrix can still represent overall sparsity, such as a

junction tree clique.

Algorithm B.1: Multi-row Treemap Sparsify
input : Y: matrix to be sparsified
output: Y: sparse approximation of Y
W := Y
for i=1 to number of rows of Y do

B := elimination matrix for row i of W2 from Eq. B.48
Y := Y −B
W := W −B
wwT := elimination matrix of row/column i of W
W := W − wwT

B.2.2.2 Link removal heuristic

The heuristic used in Treemap is based upon the particular structure of the SLAM

problem. Treemap avoids recording robot states at all, and only does so when the

number of observed landmarks is insufficient to constrain the robots location. If

Treemap does maintain a robot state, it immediately sparsifies odometry links be-

tween robot states. This is similar to DD-SEIF, except that the information contained

in the link can be approximated rather than discarded.
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B.2.3 CS-JT Comparison to Chordal Embedding

Dahl et al [13] describe a method for improving the efficiency of Newton’s method

for covariance selection through chordal embedding. This is similar to the approach

taken in Section 4.2.3 as both use the concept of a junction tree (or clique tree)

to decompose the graph. In this method however, the chordal sparsity pattern is

exploited to enable fast computation of the gradient and Hessian for the associated

convex optimisation problem. The approach in this thesis is different in the following

ways:

• Conservative Sparsification adds a conservatism constraint,

• chordal embedding aims to solve the problem globally, whereas CS with JT’s

focuses on removing links in a small subset of the graph,

• chordal embedding uses the clique tree to speed up optimisation rather than

using it as a basis for estimation, and,

• chordal embedding does not allow for approximate solutions like the parallel

CSJT.

CS using junction trees attempts to solve a different problem, and maintains the junc-

tion tree form with conservatism constraints to enable data fusion after sparsification.

B.2.4 CS-JT Comparison to Treemap

The idea of working with a sum of positive definite matrices was posed with the SLAM

solution Treemap [21], which is described in Section B.2.2. This work considers a BIB

(Basic Information Block) as a data structure for the information matrices. BIB’s play

a similar role to clique potentials in a junction tree, but they only contain landmark

states. Treemap is not a general framework, and requires a SLAM problem for its

use. It requires the concept of robot and landmark states and its sparsification is only

performed upon robot odometry measurements (see Section B.2.2 for a description of

Treemap sparsification procedure).
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B.3 Matrix Approximation

This section discusses alternate approaches to matrix approximation that also induce

sparsity or reduce the complexity of a matrix while maintaining its dimensions. These

approaches are considered in the context of large scale, distributed and incremental

linear estimation.

B.3.1 Optimisation Based Approaches

The set of positive semi-definite matrices forms a convex cone and is therefore a

convex set. This has enabled many different approaches to matrix approximation

using convex analysis.

B.3.1.1 Matrix Completion and Covariance Selection

The MAXDET problem, as specified in [64] is shown below:

min
x

cTx + logdetG(x)−1

s.t.

G(x) � 0

F (x) � 0

where x, c ∈ Rm, and the functions G(x) : Rm → Rl×l, F (x) : Rm → Rn×n are affine.

That is, they are of the form:

G(x) = G0 + x1G1 + . . .+ xmGm,

F (x) = F0 + x1F1 + . . .+ xmFm,

where Fi = FT
i and Gi = GT

i . By appropriately choosing the Fi and Gi matrices this

can represent many matrix inequalities. Example problems that can be represented

are the matrix completion problem [38] (where some elements of a matrix are set
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and a positive definite matrix is formed using the undefined other elements), or the

covariance selection problem [16] (where particular offdiagonals in a covariance matrix

are set to zero, while minimizing a cost such as the matrix determinant).

The worst case runtime complexity for this is O(
√
n(n2 + l2)m2) [64], if x is the

vectorised form of a dense matrix of dimension r, then it will havem = r(r−1)
2

elements.

Assuming that the matrix inequalities are of similar size, then the runtime complexity

becomes:

O(
√
n(n2 + l2)m2) = O

(√
r(r2 + r2)(

r(r − 1)

2
)2

)
= O

(√
r(r2 + r2)r4

)
= O

(
r.5r2r4

)
= O

(
r6.5
)

However, if the matrix x is sparse, then assuming it has s nonzeros the complexity

becomes:

O
(√

n(n2 + l2)m2
)

= O
(√

r(r2 + r2
)
s2

= O
(
r2.5s2

)



Appendix C

Results

C.1 Extra Benchmark Matrices

This section contains extra matrices that were used to benchmark the CS algorithm

in Chapter 3. These figures show the algorithms performance on matrices which

have different sparse structures. Each off diagonal in the matrix was sparsified in-

dependently and then sorted by their runtime, initial normalised edge weight and

Markov blanket size. These experiments were performed on an i7 2.2Ghz processor

with 16Gb of RAM using SDPT-3 [56] as the solver. Many of the Markov blanket vs

computation time results show that there is no strong connection between run-time

and Markov blanket size. This is due to the matrices being small in dimension, with

small Markov blankets. It is expected that larger Markov blankets will demonstrate

the cost increase. It is good to note however, that for Markov blankets less than 22

states, all the problems can be solved in less than 2 seconds.
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Figure C.1 – FIDAP EX-5 Matrix sparsification result. This banded diagonal matrix
shows very weak trend as in computation time as the Markov blanket increases.
Likely because of the large sparsity in this problem. Observe that the KLD of the
final solution appears unrelated to the computation time required or the initial edge
weight.
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Figure C.2 – HB gr-30-30 Matrix sparsification result. This 30×30, singly banded
diagonal matrix has off-diagonals with the same value. Despite this, there is a
large variance in the KLD’s as shown by (b). Also, there is a large variance in the
run-times for a given Markov blanket size.
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Figure C.3 – HB 494 bus Matrix sparsification result. This large sparse matrix shows
a noisy upwards trend in KLD as the edge weight increases. Strangely the compu-
tation time appears to be unaffected by the size of the Markov blanket.
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Figure C.4 – HB bcsstk01 Matrix sparsification result. This strongly structured sparse
matrix shows an increase in KLD as the normalised edge weight increases. However
the computation time as a function of the Markov blanket size remains flat.
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C.2 Suite Sparse matrices, Chordal CS vs. CS com-

parisons

These matrices were tested to compare the Chordal CS and CS approaches described

in Section 3.2.3. These results are presented to demonstrate the technique applied to a

variety of different matrix structures. Links were selected if they had a Markov blanket

which was not locally chordal. They were then ordered and sparsified independently.

In most cases, the problems can be solved, however there are some cases where only

Chordal CS is capable of finding a solution.
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Figure C.5 – For this matrix every single non locally chordal link removal could be
solved by both Chordal Conservative Sparsification (CCS) and CS. CCS always used
all of the allowed edges. The difference in KLD is very small for both approaches,
but CCS always uses all of the available fill-in.
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Figure C.6 – For this matrix every single non locally chordal link removal could be
solved by both CCS and CS. CCS always used all of the allowed edges.
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Figure C.7 – For this matrix every single non locally chordal link removal could be
solved by both CCS and CS. CCS always used all of the allowed edges.
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Figure C.8 – For this matrix every single non locally chordal link removal could be
solved by both CCS and CS. CCS always used all of the allowed edges.
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