IntechOpen

Dynamic Data Assimilation

Beating the Uncertainties

Edited by Dinesh G. Harkut

Dynamic Data
Assimilation - Beating the

Uncertainties
Edited by Dinesh G. Harkut

Published in London, United Kingdom

C
o
Q.
@)
L
&)
o
)
£

Supporting open minds since 2005

Dynamic Data Assimilation - Beating the Uncertainties
http: /dx.doi.org/10.5772/intechopen.87789
Edited by Dinesh G. Harkut

Contributors

Yassine Zahraoui, Mohamed Akherraz, Afef Salhi, Ahmed Fakhfakh, Fahmi Ghozzi, Anand Raju, Shanthi
Thirunavukkarasu, Wesam Salah Alaloul, Hong Son Hoang, Dinesh G. Harkut, Remy Baraille, Abdul
Hannan Qureshi

© The Editor(s) and the Author(s) 2020

The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).

Violations are liable to prosecution under the governing Copyright Law.

@) |

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http: /www.intechopen.com/copyright-policy. html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2020 by IntechOpen

IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Dynamic Data Assimilation - Beating the Uncertainties
Edited by Dinesh G. Harkut

p.cm.

Print ISBN 978-1-83968-083-0

Online ISBN 978-1-83968-084-7

eBook (PDF) ISBN 978-1-83968-085-4

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

5®®®+ 126,000+ 145M+

ailable International authors and editor: Downloads

Our authors are among the

151 Top 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Meet the editor

Dr. Dinesh G. Harkut is Associate Professor at Prof Ram Meghe
College of Engineering & Management (PRMCEAM), Badnera,
India, in the Computer Science and Engineering Department.
He obtained a bachelor’s degree, a master’s of engineering (CSE),
and a PhD (CSE) from SGBAU Amravati University, Maharash-
tra, India. He also holds a master’s degree and PhD in Business
Administration. His primary research interests are in artificial
intelligence, big data, analytics, embedded systems, and e-commerce. He has su-
pervised eighteen master’s degree and twenty-four bachelor’s degree students. He
has published forty-seven papers in refereed journals and published six books with
international publishers. He has also organized various workshops, sessions, con-
ferences, and trainings. He has two patents filed and published in his name in India.
He is a member of the Board of Studies (Computer Science and Engineering) and a
recognized PhD supervisor at SGBAU Amravati University, Maharashtra, India. He
holds membership in various professional bodies including the Institution of Elec-
tronics and Telecommunication Engineers (IETE), New Delhi; International Society
for Technology in Education (ISTE), New Delhi; Universal Association of Computer
and Electronics Engineers (UACEE), USA; International Economics Development
and Research Center (IEDRC), Hong Kong; International Association of Engineers
(IAENG), Hong Kong; and the European Alliance for Innovation, Belgium.

Contents

Preface XIII

Chapter 1 1
Introductory Chapter: Data Assimilation
by Dinesh G. Harkut

Chapter 2 5
Adaptive Filter as Efficient Tool for Data Assimilation under

Uncertainties

by Hong Son Hoang and Remy Bavaille

Chapter 3 27
Convolutional Neural Network Demystified for a Comprehensive

Learning with Industrial Application

by Anand Raju and Shanthi Thirunavukkarasu

Chapter 4 45
Estimation for Motion in Tracking and Detection Objects

with Kalman Filter

by Afef Salhi, Fahmi Ghozzi and Ahmed Fakhfakh

Chapter 5 61
Kalman Filtering Applied to Induction Motor State Estimation
by Yassine Zahraoui and Mohamed Akherraz

Chapter 6 81
Data Processing Using Artificial Neural Networks
by Wesam Salah Alaloul and Abdul Hannan Quveshi

Preface

It’s alright, sweetie.

In the information age of ridiculously enormous and complex data set,

everybody feels stupid, unless one has the right tools and methodology to deal with.
Anonymous

This book provides a comprehensive introduction to data assimilation, a vital tool
used mostly in atmospheric science and oceanography. Ensemble data assimilation
methods have been applied with remarkable success in several real-life history-
matching problems. However, performance is severely degraded as data assimila-
tion methods are based on Gaussian assumptions. This problem can be overcome
with artificial neural networks, machine learning, and deep learning. The synergy of
these complementary technologies leverages their benefits and results in the emer-
gence of one of the most efficient tools for handling linear and non-linear models
predicting the evolution of the atmosphere. This hybrid approach emulates hidden,
chaotic dynamics and predicts future states with desired accuracy. The most known
use of data assimilation is predicting the state of the atmosphere using meteorolog-
ical data. Data assimilation is a vital step in numerical modeling, specifically in the
atmospheric sciences and oceanography. However, even with a good understanding
of the underlying physical laws that drive it, its chaotic nature makes it extremely
difficult to determine the state of the environment, specifically atmospheric vari-
ables like temperature, humidity, pressure, and so on, with accuracy in a given
spatio-temporal domain. This book presents the material in a clear, simple style and
examines the many challenges and opportunities in the field of data assimilation.

I would like to convey our appreciation to all authors for their contributions. I owe
special thanks to Author Service Managers Ms. Ivana Barac and Ms. Sara Debeuc,
and Commissioning Editor Ms. Klara Mestrovic, at IntechOpen, London, UK, for
their kind support and great efforts in bringing this book to fruition. In addition,
I'am grateful to all those who worked behind the scenes and assisted in formatting
the book.

Dr. Dinesh G. Harkut

Dean and Associate Professor,

Department of Computer Science and Engineering,

Prof Ram Mehge College of Engineering and Management,
Badnera-Amravati, M.S., India

Chapter1

Introductory Chapter: Data
Assimilation

Dinesh G. Harkut

1. Introduction

Our life is highly influenced and affected by the uncertainty in predicting the
outcome of various phenomena and human activities. All the activities are highly
influenced by predictions like uncertainty in predicting natural phenomena like
rains, heat waves, short-term climate change, cyclone, tornados, or revenue predic-
tion/projection by state/central government while preparing budgets and, GDP
growth while formulating financial policies or predicting stock prices/indices by
individual investors. These predications are based on some relevant class of models
that are either causality or empirically derived and can be:

1. Static model or dynamic model

2. Stochastic model or deterministic model

3.Based on either continuous space or discrete space
4.Operates in either discrete time or continuous time domain

Irrespective of the model used or its origin, solution computed or predictions
generated were based on several prerequisite unknown controlling parameters
along with initial conditions, boundary conditions variables those are based on
some estimation: observations of the phenomenon in question like observed pres-
sure distribution around the eye of the hurricane, data from radars or satellites, the
time series of data on unemployment, etc.

Data assimilation is basically a process of fusing data with the model for the sin-
gular purpose of estimating the unknown variables. One can obtain an instantiation
of the model once these estimates are available, which in turn then run forward in
time to generate the requisite forecast products for public consumption. Basic math-
ematical principles and tools along with conventional methods like Kalman filters
and variational approaches, which find applications in dynamic data assimilation
include: linear algebra, multivariate calculus, estimation theory, finite dimensional
optimization theory, chaos, and nonlinear dynamics. It refers to the computation
of the conditional probability distribution function of the output of a numerical
model describing a dynamical process, conditioned by observations. Numerical
prediction of atmospheric evolution is critically dependent on the initial conditions
provided to it. It is a technique by which numerical model data and observations
are combined to obtain an analysis that best represents the state of the phenomena
of interest. It is the process of updating model forecasts (priors) with information

1 IntechOpen

Dynamic Data Assimilation - Beating the Uncertainties

from the observations of complete or incomplete state variables, that is, combining
a physical model with observations with a goal to produce an improved model state
(posteriors), which better represents the dynamics system.

Data assimilation can be used for multiple purposes: to estimate the optimal
state of a model and to estimate the initial state of a system in order to use it to
predict the future state of the system. The most known use of data assimila-
tion is predicting the state of the atmosphere using meteorological data. Data
assimilation is a vital step in numerical modeling, specifically in the atmospheric
sciences and oceanography. However, even with a good understanding of the
underlying physical laws that drive it, the chaotic nature makes it extremely
difficult to determine the state of environment specifically all the atmospheric
variables such as temperature, humidity, and pressure with desire resolutions and
accuracy in given spatio-temporal domain. Data assimilation is a crucial step in
numerical modeling, particularly in the oceanography and atmospheric sciences,
which involves huge volume and variety of observations of either complete or
incomplete state variables conditions. The volume and variety involved further
increase the complexity of the task. Conventional methods for assimilation
include Kalman filters and variational approaches which addresses redundancy
and uneven spatial or temporal distribution of data which in turn can consume
massive data sets. However, because these methods rely on Gaussian assumptions,
performance is severely degraded when the prior facts are described in terms of
complex distributions and based on unrealistic assumptions, particularly linear-
ity and normality. Nevertheless, these approaches are incapable of overcoming
fully their unrealistic assumptions, particularly linearity, normality, Markovian
processes, knowledge of underlying mathematical models, and zero error covari-
ances. Predicting the evolution of the atmosphere is a complicated problem that
requires the most accurate initial conditions to obtain an accurate estimate of the
atmospheric state variables at a given time and point. Though lots of information
through meteorological observations from various sources like weather stations,
radio soundings, and ocean buoys is easily available, but it is not enough to fully
describe the conditions of the model and also the observations may contain errors.
The data from sensors are often partial, distorted, or too inaccurate. State obser-
vations of the atmosphere can be corrected to some extend by taking samples in
different time and space. Linking actual sensors data with physical model of the
atmosphere facilitates debugging the errors by correcting the initial conditions
and thus finding the missing part of model dynamics.

Furthermore, ensemble data assimilation method gives significant results in
most of the real-life history/data-matching problem domain. Kalman filtering has
been a robust method for the past few decades which is further complemented
by the recent advances in such filters specifically the use of ensembles and the
extended Kalman filter. It combines observation data and the underlying dynamical
principles governing the system to provide an estimate of the state of the system
which is better than could be obtained using just the data or the model alone. But,
despite of popularity, Kalman filters and ensemble Kalman filters are suboptimal as
it is based on some unrealistic assumptions like correctness about the prior knowl-
edge and the number of ensemble members, linearity, error covariances and are
inefficient when the data sets become large.

Though traditional data assimilation methods introduce Kalman filters and
variational approaches, application of artificial intelligence, neural network,
machine learning, and cognitive computing can be exploited further to forecast by
accommodating the dynamics of model to obtain the most critical initial condition
precisely. Recent progress in machine learning has shown how to forecast and, to
some extent, learn the dynamics of a model from its output, resorting in particular

Introductory Chapter: Data Assimilation
DOI: http://dx.doi.org/10.5772/intechopen.93330

to neural networks and deep learning techniques. Specifically, the use of machine
learning combine data with human knowledge in the form of mechanistic models
facilitates forecasting future states, to attribute missing data from the past by
smoothing and to infer measurable and unmeasurable quantities with a desired
accuracy. In the last decades, the volume and quality of observations from land,
ocean atmosphere, and space-based platform lead to massive amounts of data avail-
able to incorporate into models have increased dramatically, particularly thanks to
remote sensing. At the same time, new developments in machine learning, particu-
larly deep learning, have demonstrated impressive skills in reproducing complex
spatiotemporal processes by efficiently using a huge amount of data, thus paving
the path for their use in Earth System Science.

The accuracy, efficiency, speed, and scalability in recovering state trajectories
ascertain the feasibility of machine learning for data assimilation. This comple-
mentary combination and arrangements of the two technologies will enhance the
sophistication to justify their application requirements, thwart their implementa-
tion issues and improve the accuracy.

Machine learning may complimentary and provide efficient alternative to
Kalman filtering to predict the future of a dynamic system without any knowledge
of the underlying physical model and make minimal assumptions about the data
and error properties. Data assimilation and machine learning are complimentary
to each other and deep learning which makes it possible to predict and understand
complex spatio-temporal phenomena, sometimes in an optimal way, compared
to traditional data assimilation approaches. This combination of two techniques
enables us to obtain much better results by exploiting the purely physical approach
of data assimilation which is most suitable for linear parts of model and purely
given approach of machine learning which facilitates the observations and address
the nonlinear parts of the model. Effectiveness of machine learning trained on
noise-free and complete observations of the system in reconstructing the model
dynamics have been proven by various numerical models and hence incorporating
explicit or implicit regularization processes, machine learning algorithms aids in
optimizing in high-dimension without the need for additional information under
the form of an explicit prior. Machine learning even finds its application in the
situations where either the observations are subsampled in time or only a dense
portion of the system is observed or when. Thus, to leverage the benefits of recent
machine learning developments, which in turn provide flexibility and facilitate
parallel calculations, a novel hybrid method the combination of data assimilation
and machine learning finds wide spread application in recent time. This hybrid
model has dual edge benefits of predicting future state by emulating hidden
chaotic dynamics.

Thus, the use of enhanced and cheaper computational capability and the
successful synergy between data assimilation and machine learning, two seem-
ingly unrelated inverse problems have proven here with a low-dimensional system,
encourages further investigation of such hybrids with more sophisticated dynamics
and proven with a low-dimensional system.

Dynamic Data Assimilation - Beating the Uncertainties

Author details
Dinesh G. Harkut
Prof Ram Meghe College of Engineering and Management, Badnera—Amravati

(M.S.), India

*Address all correspondence to: dg.harkut@gmail.com

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

1

Chapter 2

Adaptive Filter as Efficient Tool
for Data Assimilation under
Uncertainties

Hong Son Hoang and Remy Bavaille

Abstract

In this contribution, the problem of data assimilation as state estimation for
dynamical systems under uncertainties is addressed. This emphasize is put on high-
dimensional systems context. Major difficulties in the design of data assimilation
algorithms is a concern for computational resources (computational power and
memory) and uncertainties (system parameters, statistics of model, and observa-
tional errors). The idea of the adaptive filter will be given in detail to see how it is
possible to overcome uncertainties as well as to explain the main principle and tools
for implementation of the adaptive filter for complex dynamical systems. Simple
numerical examples are given to illustrate the principal differences of the AF with
the Kalman filter and other methods. The simulation results are presented to
compare the performance of the adaptive filter with the Kalman filter.

Keywords: adaptive filter, innovation process, minimum prediction error,
simultaneous perturbation stochastic approximation, filter stability

1. Introduction

In this chapter, the adaptive filter (AF) is considered as a computational device
that yields estimates of the system state by minimizing recursively (in time) the
error between the predicted output of the device and its observed signal in real
time. As the main objective of the AF is to produce estimates of the state in high-
dimensional systems (HdSs), we shall focus the attention on the mathematical form
of the AF in a state-space form as that used in the Kalman filter (KF) [1]. In this
chapter, the HdS is referred to as a system whose state dimension is of order
0(107) — O(10®).

The assimilation problem in this chapter is formulated as a standard filtering
problem. For simplicity, let the dynamical system be described by the equation

x(t+1) = Dx(t) + w(t),x(0) =x0, =0,1, ... (@)

where x(t) is the system state at the ¢ time instant. At each time instant ¢, we are
given the observation for the system output

z(t+1)=Hx(t+1)+v@E+1),t=0,1, ... @)

5 IntechOpen

Dynamic Data Assimilation - Beating the Uncertainties

In (1) and (2), w(t) is the model error (ME), v(t) is the observation error (ObE),
and @ represents the system dynamics. In general, the system (1) and (2) may be
nonlinear with ®@x =f(x), Hx = h(x). The filtering problem for a partial observed
dynamical system (1) and (2) is to obtain the best possible estimate for the state
x(t) at each instant ¢, given the set of observations Z(1: t) = [z(1), ...,2(Z)].

There exist different techniques to solve estimation problems. The simplest
approach is related to linear estimator [2], since it requires only first two moments.
Linear estimation is frequently used in practice when there is a limitation in com-
putational complexity. Among others, the widely used methods are maximum
likelihood, least squares, method of moments, the Bayesian estimation, minimum
mean square error (MMSE), etc. For more details, see [3].

There are limitations of optimal filters. In practice, the difficulties are numerous:
the statistics of signals which may not be available or cannot be accurately esti-
mated; there may not be available time for statistical estimation (real-time); the
signals and systems may be non-stationary; memory required and computational
load may be prohibitive. All these difficulties become insurmountable, especially
for HdSs.

In order to deal with real-time applications, the AFs appear to be a valuable tool
in solving estimation problems when there is no time for statistical estimation and
when we are dealing with non-stationary signals and/or systems environment. They
can operate satisfactorily in unknown and possibly time-varying environments
without user intervention. They improve their performance during operation
by learning statistics from current signal observations. Finally, they can track
variations in the signal operating environment [4].

It is well-known that the MMSE estimator in the class of Borel measurable (with
respect to (wrt) Z(1 : ¢)) functions is given by the conditional mean

x(t) = Elx(t)/Z(1 : 1)] (3

Under standard conditions, related to the noise sequences w(t), v(¢) (Gaussian
i.i.d.—identically independent (temporal) distributed), the estimate (3) % (¢) for x(¢)
can be obtained from the KF in the recursive form

xt+1) =xt+1/t) +K{(t+ 1), (4)

Xt +1/t) =dx(t),(E+1) == +1) —x(+1/t) (5)
K(t) = M(t)H" [HM(t)H" +R] " (6)
M(t+1) = ®P()d" +Q 7)

P(t) = [I - K@)HIM()[I — K@)H]" + K(t)RKT (¢) (8)

In (4)-(8), Q, R are the covariance matrix for w(t) and v(t), respectively. One
sees that K = K(M)—the gain matrix, is a function of M := M(t + 1)—the error
covariance matrix (ECM) for the state prediction error (PE) e(t + 1/t) which is
defined ase(t + 1/t):=x(t + 1) — x(¢ + 1), and (¢ + 1) is known as innovation vec-
tor. Note from (7) and (8) that the ECM M(t + 1) can be found by solving the
matrix nonlinear Algebraic Riccati equation (ARE). Generally speaking, a solution
of the ARE is not unique. Conditions must be introduced for ensuring an existence
of a unique non-negative definite solution [5]. It is remarkable that the ECMs P, M
in (7) and (8) do not depend on observations; therefore, they can be computed in
advance, offline, given the system matrices and the noise covariances. The same
remark is valid for the gain matrix K in (6). In contrast, the gain in the AF is
observation-dependent [6] (see Section 2).

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
DOI: http://dx.doi.org/10.5772 /intechopen.92194

Under the most favorable conditions (perfect knowledge of all system parame-
ters and noise statistics), for a dynamical system with dimension of order 107-108,
it is impossible to solve the ARE (due to computational burden), not to say about
storing M, P. To overcome these difficulties, the AF is proposed. Mention that the
KF is also an MMSE filter in the complete Hilbert space of random variables,

) _ A7)
E|£[? < oo, with scalar product (&, &)y = E < &¢&, > and the norm ||¢]| = [E(|§|)] :

For the nonlinear models, there are KF variants, among those are the extended
KF (EKF) [7], the unscented KF (UKF, [8]), and the Ensemble Kalman filter
(EnKF, [9]). In the EnKF, the ECM is a sampled ECM whose samples are generated
using samples of the state variable, and consequently the ECM in the KF becomes a
sampled ECM. For an example of application of the EnKF for data assimilation in
geophysical data assimilation with high dimensional model, see [10]. Another class
of ensemble filtering technique is a class of particle filters (PF, [11]). The basic idea
of the PF (also the EnKF) is to use a discrete set of weighted # particles to represent
the distribution of x(¢), where the distribution is updated at each time by changing
the particle weights according to their likelihoods.

Despite a possible implementation of the KF variants, they might still be seri-
ously biased because the accuracy of the KF update requires linearity of the obser-
vation function and Gaussianity of the distribution of system state x(¢). In reality,
the KF (4)-(8) may be biased and unstable, even divergent [12]. Today, the PF
algorithms are ineffective for HdS data assimilation.

In this chapter, we shall show how the AF can be efficient in dealing with
uncertainties existing in the filtering problem (1) and (2). In Section 2, a brief
outline of the AF is given. The main features of the AF, which are different to those
of the KF, are presented. This concerns the optimal criteria, stabilizing gain struc-
ture, optimization algorithms. Section 3 shows in detail how the AF is capable of
dealing with uncertainties in the specification of ME covariance. The hypothesis on
a subspace of ME is presented in Section 4 from which one sees how one can make
order reduction for representing the bias and ME covariance. Simple numerical
examples on one- and two-dimensional systems are given in Section 5 to illustrate in
details the differences between the AF and the traditional KF. Numerical experi-
ments on low and high dimensional systems are given in Section 6 to demonstrate
how the AF algorithm works. The performance comparison between the AF and KF,
for both situations of perfect knowledge of ME statistics and that with ME uncer-
tainties, is also presented. Conclusions and perspectives of the AF are summarized
in Section 7.

2. Adaptive filter

The AF is originated from [13]. It is constructed for estimating the state of a
dynamical system based on partially observed quantities related in some way to the
system state. As reported before, for linear systems contaminated by Gaussian
noise, the MMSE estimate can be obtained by the KF. Since publication of [1] in
1960, an uncountable number of works are done for solving engineering problems
by KF, in all engineering fields, as well as many modifications have been proposed.
The reasons for the need in modification of the KF are numerous, but mostly related
to nonlinear dynamics, parameter uncertainties in specification of system parame-
ters, bias of ME, unknown statistics of ME, model reduction. With the rapid pro-
gress of computer technology (computer power, memory, ...), various simplified
versions of KF are suggested for solving filtering (or data assimilation) for HdSs, in
particular, in meteorology and oceanography.

Dynamic Data Assimilation - Beating the Uncertainties

Direct application of the KF to HdSs is impossible due to the limit in computer
power, memory, and computational time. In particular, the KF requires to solve the
matrix AREs (7) and (8) for computing ECMs M(z), P(¢). Storing such matrices is
impossible, not to say on computational time.

Different simplified approaches are proposed for overcoming difficulties in the
application of the KF. The example of successful tool for solving data assimilation
problems in HdSs is the EnKF [9]. In the EnKF, an ensemble of error samples, of
small size, is generated on the basis of model states to approximate the ECMs. In
practice of data assimilation for HdSs, it is possible to generate only ensembles of
moderate sizes (of order O(100)) by model integrations over the assimilation
window (time interval between two successive arrivals of observations) since one
such integration takes several hours! The other approach like PF is based on sam-
pling from conditional distributions. Theoretically, this approach is more appropri-
ate for nonlinear problems because no linearization is required as in the EKF
(Extended KF based on linearization technique). However, even for filtering prob-
lems with state dimensions of order O(10), relatively large ensembles of size
0(10000) would be required in order to produce reasonably good performance.

The AF in [13] is based on the different idea. Here, no linearization is required
for nonlinear filtering problems. For the problem (1) and (2), the filter is of the
form (4) and (5) but the gain K = K(0) is assumed to be of a given stabilizing
structure [6]. It means that K is parametrized by some vector of unknown param-
eters 6 € O so that the filter (4) and (5) with the gain K(0), V0 € © is stable. It is well-
known that under mild conditions, the solution of the ARE will tend (quickly) to
stationary solution M., and so the gain (6), to the stationary gain K... Moreover, the
innovation ¢(t + 1) = z(t + 1) — 2(t + 1/t), representing the error for the output
prediction (¢t + 1/t) := Hx (¢t + 1/t) = H®x(t), is unbiased and of minimum vari-
ance. This fact leads to the idea to seek the optimal vector # by minimizing

J(6)=E[¥({)] — arg mind 9)

here E[.] denotes the average in a probabilistic sense. For stationary systems (1)
and (2), if we assume the validity of the ergodic hypothesis, the average value in a
probabilistic sense, expressed in (7), is almost everywhere equivalent to the time
average (for large time of running the dynamical system). The optimal 6* can be
found by solving the equation

Vo] (0) = VoE[¥({)] = E[Vo¥ ({)] = 0 (10)
A stochastic approximation (SA) algorithm for solving (10) can be written out
0t +1) = 6(t) — y() Vo ¥ [C(t + 1)] (11)

Conditions related to the sequence of positive scalar y(t) for ensuring a
convergence {6(¢)} in the procedure (11) are

10> 0, 7(e) = o0, 3 (0 <0 (12)

t=0 t=0

One of the most advantages of the SA algorithm (11) is that, instead of
computing the gradient of the cost function (9) (which requires knowledge of
probability distribution), the algorithm (11) is based on the knowledge of only the
gradient of sample cost function ¥ (wrt to €) which can be easily evaluated
numerically.

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
DOI: http://dx.doi.org/10.5772 /intechopen.92194

Comment 2.1. Generally speaking, the convergence rate of the algorithm (11) and
(12) is O(1/t). It is possible to improve the convergence rate of the SA by averaging
of the iterates,

On(t) = %Z o) (13)
t'=1

For more details, see [14].

Comment 2.2. For high HdSs, even with 0 being of moderate dimension, instead
of the algorithm (12) or (13), the SPSA (Simultaneous Perturbation Stochastic
Perturbation) algorithms in [15, 16] are of preference. That is due to the fact that
integration of HdS over the assimilation window is very expensive. These algo-
rithms generate stochastic perturbation 60 = (664, ..., 56,,)T with components as
Bernoulli i.i.d. realizations. Each i component of the gradient-like (pseudo-
gradient) vector is computed as the divided difference 6¥/50; where
¥ :=¥[0 + 66]— ¥[0]. This allows to evaluate the gradient-like vector by only two or
three time integration of the numerical model.

For details on the SPSA algorithm and its convergence rate, see [15, 16].

3. Covariance uncertainties and AF
3.1 Covariance uncertainties
3.1.1 Adjoint approach

As seen from (11) and (12), implementation of SA algorithms is much simpler
for searching optimal gain parameters compared to the other optimization methods.
The SA algorithms require only numerical computing derivatives Vo¥[{(t + 1)] of
the sample cost function Y[¢(¢ + 1)] wrt 0 evaluated at 6(¢) and y(¢) is a scalar which
can be chosen a priori, for example, as y(¢) = 1. That is possible due to introducing
the ergodic hypothesis on of the system (1) and (2) from which there exists an
asymptotic optimal gain

First, consider the situation when the vector of parameters consists of are all
elements of K, @ = K. Compute the innovation vector,

Ct+1) =2@+1) —2t+1/t) =20 +1) — HOx(t)
x(t) =x(t—1/t) + K(0)¢(t)
8ol (t + 1) = —HPBx(t) = —HDE,K(0)((t) = —HPSK {(t).
SkP[C(t+1)] = dx <{(t+1),L(t+1)> = 2<{(t + 1), 8{(t + 1) >

= 2<(t+1), HBSKL(t) > = —2<PTHT¢(t 4 1), SKL(t) > .

Let us compute derivatives of the sample cost function ¥ wrt the elements K;; of
the gain K. To do so, one needs to integrate the adjoint operator @7 s.t. the forcing
f= —H"¢(t + 1) which yields y :== — ®TH"¢(¢ + 1) and hence

6% /6Ky = =yl (t,5), (14)

Dynamic Data Assimilation - Beating the Uncertainties

here y, is the i component of y, {(t,]) the j component of {(t). The AF now
takes the form

xE+1) =xC+1/t) +K{(t+1), (15)
x(t4+1/t) =dx(),{t+1)=20+1) — Hx(+ 1/1), (16)
K(t+1)=K(t) —y(t)VkP[C(t + 1)], 17)

where V¥ ({(t + 1)) is the gradient vector whose components are computed by
(14). In the AF (15)-(17), no matrix ARE (see (7) and (8) in the KF) is involved. The
AF (15)—(17) is quite realizable for HdSs, since at each assimilation instant we need to
integrate only the direct model to produce the forecast (16) and (eventually) an
adjoint model over the assimilation window for computing Vg ¥[C(t + 1)] [13].

3.1.2 Simultaneous perturbation stochastic approximation (SPSA) approach

Remark that in the form (14) the adjoint operator @7 would be available to
implement the AF. It is well-known that construction of numerical code for &7 is a
very difficult and heavy task, especially for meteorological and oceanic numerical
models which are HdSs and nonlinear (linearization is required).

A comparison study of the AF with other assimilation methods is done in [17].
Compared to the AF, the widely used variational method (VM) minimizes the dis-
tance between the observations available (for example, the observations of the whole
set Z[1 : T|) and the outputs of the dynamical system. This optimization problem is
carried out in the phase space, hence is very difficult and expensive. Theoretically, a
simplification is possible subject to (s.t.) the condition of linearity of the dynamical
system: in this case, one can reformulate the VM minimization problem as searching
the best estimate for the initial system state x(0). For HdSs, to ensure a merely high
quality estimate for x(0), it is necessary: (i) to take the observation window as large
as possible; (ii) to parameterize the initial state by some parameters (using a slow
manifold, for example). Iterative minimization procedures require usually O(10)
iterates involving integrating the direct and adjoint models over the window [1, T'.
For an unstable dynamics, integration of direct and adjoint equations over a long
period naturally amplify the initial errors during assimilation process. For a more
detailed comparison between the AF and VM, see [17].

Thus, if the ergodic conditions hold, there exists an optimal stationary gain and
the AF in limit will approach to the optimal one in the given class of stable filters. It is
important to emphasize that up to this point, no covariance matrices Q, R are
specified. It means that the AF in the form (12) is robust to uncertainties in the
specification of the covariances of the ME and ObE.

3.2 Stability of the AF

One of the main features of the AF is related to its stability.

For simplicity of presentation, in the previous section, the AF algorithm is
written out under the assumption (13). In practice, application of the AF in the
form (13) is not recommended since instability may occur. It is easy to see that the
transition matrix of the filter is given by

L=(I-KH)® (18)

It is evident that if we do not take care on the structure of K, varying stochastically
all elements of K can lead to instability of L and the filter will be exploded. Moreover,

10

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
DOI: http://dx.doi.org/10.5772 /intechopen.92194

for HdSs, the number of elements of K is very large. It is therefore primordial to
choose a parametrized stabilizing structure for K (depending on 6) to ensure a
stability of L and reducing a number of tuning parameters. This question is addressed
in [6]. One of possible structures for K is of the form

K(t) = P,®K,,K.=M.H! [H.M, H! + o] ' H,:=HP, (19)

where P, € ™" is a matrix with dimensions n x r, r is the dimension of the
reduced space (equal to the number of unstable eigenvectors (EiVecs)of @), the
matrix M, is a strictly positive symmetric definitive playing the role of the ECM in
the reduced space R,, © is a diagonal matrix with diagonal elements 6; whose values
belong to (¢,2 — ¢€), i.e. 6; €(€,2 — €), with e € (0, 1) whose value depends on the
modulus of the first stable eigenvalue (EiV) [6]. We will refer to the filter s.t. (19)
with @ = Id (Id is the identity matrix of appropriate dimension) as a nonadaptive
filter (NAF). In the AF, the parameters 6; are adjusted each time when a new
observation arrives, to minimize the cost function (9). Thus 6; is a time-varying
function. As to the matrix P,, its choice is important to ensure a filter stability. One
simple and efficient procedure (called Prediction Error Sampling Procedure—PeSP)
to generate P, is to use the power orthogonal iteration method [18] which allows to
compute real leading Schur vectors (SchVecs) of @;. The advantage of using the
SchVecs compared to the EiVecs, is that they are real and their computation is
stable. It is seen that the optimal AF is found in a class of stable filters which is
stable even for an unstable numerical model. As to the VM, the optimal trajectory
is found on the basis of only the numerical model with the initial state as a
control vector. It means that for unstable dynamics, the errors in the forcing
or numerical errors arising during computations will be amplified and lead to
large estimation error growth. More seriously, the VM requires a large set of
observations and large number of iterations (i.e., many forward and backward
integrations of the direct and adjoint models) which naturally leads to increase of
estimation error too.

3.3 On improving the initial gain

Consider the gain structure (19). Suppose that M, has been chosen in agreement
with the required stability conditions. Before tuning the parameters ¢; to minimize
the cost function (9), remark that stability of the filter is still ensured for the
following gain:

K(t) = P,AGK,, (20)
where A = diag(4y, ..., 4), 4 € (0, 1) since then for I' = A® = diag(yy, ..., 7,) it
implies y(t) = A(t)0(¢) € (¢,2 —€), where € € (0, 1). Writing the equation for the
filtered error (FE) ef(¢) :=%(t) — x(¢) one sees that the matrix L in (18) also repre-

sents the transition of the FE ef(t). It means that it is possible to choose a more
optimal initial gain by solving, for example, the minimization problem

Jo(A) = [|IL(A)|)5 — min 5 1)

The problem (21) is solved without using the observations, hence it is offline. Once
the optimal A* has been found, the standard AF is implemented s.t. the filter gain

K(t) = P,OK, K} =A*K, (22)

11

Dynamic Data Assimilation - Beating the Uncertainties

It is seen that using the structure (22) this optimization procedure does not
require the information on the ME statistics.

4. Joint estimation of state and model error in AF

The previous section shows how the AF is designed to deal with the difficulty in
specification of covariances of the ME and ObE. This is done without exploiting a
possibility to determine, more or less correctly, a subspace for the ME. If such a
subspace can be determined without major difficulties, it would be beneficial for
better estimating the AF gain and improving the filter performance. In [19], the
hypothesis of the structure of the ME has been introduced and a number of
experiments have been successfully conducted.

There is a long history of joint estimation of state and ME for filtering algo-
rithms, in particular, with the bias and covariance estimation. One of the most
original approaches, dealing with the treatment of bias in recursive filtering (known
as bias-separated estimation—BSE), is carried out by Friedland in [20]. He has
shown that the MMSE state estimator for a linear dynamical system augmented with
bias states can be decomposed into three parts: (1) bias-free state estimator; (2) bias
estimator; and (3) blender. This BSE approach has the advantage that it requires
fewer numerical operations than the traditional augmented-state implementation
and avoids numerical ill-conditioning compared to the case of bias-separated esti-
mation by filtering technique.

It is common to treat the bias as part of the system state and then estimate the
bias as well as the system state. There are two types of ME—deterministic (DME)
and stochastic (SME). Generally speaking, a suitable equation can be introduced for
the ME. In the presence of bias, under the assumption on constant b, instead of (1)
one has

xt+1) =dx(t) +b@E)+w),bt+1) =b(),:=0,1,2.. (23)
To introduce a subspace for the variables w(t), b(¢) the SME and DME in (23), let

w = Gyup,b = Gyd
G, ERV™ G, eRV™ n>n,,n>ny (24)

Generally speaking, G,,, G, are unknown, and finding reasonable hypothesizes
for them is desirable but not self-evident. In [19], one hypothesis for G,,, G, has
been introduced (it will be referred to as Hypothesis on model error—HME).

The information on Gy, G, given in (25), allows to better estimate the DME b
and SME w for improving the filter performance, especially for n, < n,n, <nina
HdS setting. The difficulty, encountered in practice of operational forecasting sys-
tems, is that (practically) nothing is given a priori on the space of the ME values. To
overcome this difficulty, one simple hypothesis has been introduced in [19]. This
hypothesis is postulated by taking into consideration the fact that for a large num-
ber of data assimilation problems in HdSs, the model time step ¢ (chosen for
ensuring a stability of numerical scheme and for guaranteeing a high precision of
the discrete solution) is much smaller than At—the assimilation window (time
interval between two successive observation arrivals).

Suppose that At = n,6t where 7, is a positive integer number.

Hypothesis (on the subspace of ME—HME) [19]. Under the condition that #, is
relatively large, the ME belongs to the subspace spanned by all unstable and neutral
EiVecs (or SchVecs) of the system dynamics &.

12

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
DOI: http://dx.doi.org/10.5772 /intechopen.92194

5. Simple numerical examples
5.1 One-dimensional system

To see the difference between the AF and the KF in doing with ME uncer-
tainties, introduce the one-dimensional system

x(t+1) =Px(t) +wt),zt+1) =hx(t+1)+ov(t+1),t=0,1, .. (25)

In (25), @ is the unique eigenvalue (also the singular value) of the system
dynamics.

i. For simplicity, let @ = 1,h = 1. This corresponds to the situation when the
system is neutrally stable. The filter fundamental matrix (18) now is
L(K) = (1 — K) which is stable if K € (0, 2). For the KF gain (4)—(8), as

K (t) = % we have K¢ () € (0, 1), Mys(t) is the solution of (7). That is

true for any M (¢) > 0, R > 0. It means then the KF is stable. Mention that if
Q> 0 always My, (¢) > 0. In general, Ky (t) = My () [Mys (£) + R] * where
[A]" is the pseudo-inverse of A [21].

For the AF, we have in this case P, = 1. Consider the gain K,¢(6) := P,0K,,

where K, is the gain of the form K, = 1\%’ M, >0, R> 0, M, is constant.

We have then for the NAF (¢ = 1) 0<K, < 1and K,,;s = K..

For the AF, the transition matrix (18) reads L,s(¢) = (1 — 6K,). For

0 €(0,2), |Lir(0)| € (0,1), Kur(0) € (0,2) and the AF is stable. It is evident
that there is a larger margin for varying the gain in the AF than that in the
KF since Kz (t) € (0,1). One sees that the stationary KF is a member of the
class of stable AFs (19). The performance of AF is optimized by solving the
problem (9) using the procedure (11) and (12) or SPSA algorithms
(Comment 2.2).

ii. Let @ <1, i.e., the system (1) is stable. The results in (i) are valid for the AF
structure. In this situation, the filter is stable even for K,s = 0.

iii. Let [@] > 1—the system (1) is unstable. Consider two situations (a) &> 1;
(b) ® < — 1. As before P, = 1.

For @ >1 we have

d—-1 D+1
0 +

-1 o+l 2
Ko 'S Ko (26)

In particular, when @ — 1, approximately 6 € (0, %) When Q >R (that is

usually in practice), approximately 6 € (0, 2) as in the situation (i). For large ®>>1,
% — Kl (left-hand limit), % — Kl (right-hand limit) and there remains no margin
for varying 6 (or Q >R) and K, — 1. It is important to emphasize that as K, is
chosen by designer, we can define the interval for varying @ if the amplitude of @ is
more or less known. In practice, one can vary 6 € [¢,2 + €] with small e > 0 for @

close to 1, and with ¢ close to 1 for large ®.

13

Dynamic Data Assimilation - Beating the Uncertainties

For @ < — 1 we have

q)+1<9< -1
K, K,®

(27)

It is seen from (27) that when & — —1, approximately e (0, e) As for the

situation ® < — 1, }‘gﬁ; — (left hand limit), £ ﬁ - (rlght -hand limit) when

Q> R approximately 6 — K—o hence K,r — 1.

It is important to stress that the KF gain is computed on the basis of Q and R
(under the condition that the statistics of the initial state will be forgotten as ¢
becomes large); whereas, the gain of the AF is updated on the basis of samples of
the innovation vector. It means that the KF is optimal in the MMSE sense (under the
condition of exact knowledge of the required statistics) whereas the AF is optimized
during the assimilation process using PE realizations of the system output (innova-
tion vector). The KF gain can be computed in an offline fashion, whereas the AF
gain is a function of observation and computed in online.

5.2 Two-dimensional system: specification of covariances
5.2.1 Stable filter

To see the role of the correction subspace R[P,| in ensuring a stability of the AF,
let us consider the system (1) and (2) s.t.

b= dl(lg (@11, @22),H = dmg (1, 1) (28)

Consider the AF with the gain (19) s.t. P, = Id, i.e., two columns of P, are in fact
the EiVecs associated with two EiVs @1, and @;,. Let us denote the AF gain K, =
P,eMH" [HMH" + R] ™' = K, with K, := M,H" [HM,H" + R] " which is structur-
ally identical to that of the KF. For the nonadaptive filter K,,, = K. and with the
choice M, = diag (M11, M»,), taking into account (28) one gets

M.:
Ko = diag (K11, K2),Ki; = m,i =1,2 (29)
. M;;
Lyop = diag(li, 1), li = (1 “M. 4R,)cb/,,,z 1,2 (30)

The filter transition matrix (30) is obtained on the basis of L, = (I — K,/ H)®
and the assumption (29). It is easily to see that Lyar has two EiVs, 4; = [;;,i = 1,2
where [; est. the (ij) element of L.

Stability of the filter depends on the condition |/;| <1, i = 1,2. For M;; >0,R; > 0,
if @;; is stable or neutrally stable, i.e. |®;| <1,i = 1,2, we have |l;;| < 1. For unstable ®;;

(I®;] > 1,i = 1,2), the filter is unstable if @; > M”+R (situation @; > 1) or @;; < —
M”+R (situation @; < — 1). These conditions should be taken into account when the

E1Vs of @ are large.
For the AF gain (19) (P, =1I),

_ 0;M;;
lll - (1 Mz'l + Rl >¢ll’ (31)

14

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
DOI: http://dx.doi.org/10.5772 /intechopen.92194

From (31) conditions for |/;;| <1 can be obtained as done in Section 5.1 with the
one-dimensional system since [;,i = 1,2 are independent one from another. The
length of the interval I;for varying 6; depends on the value of @;; (see (26)).

This example shows that for P, = Id, it is always possible to construct a stable AF
whatever are the EiVs of @ (stable or unstable). There are some constraints for M;;
(they are positive) and for R; (small positive). Optimality of the AF is obtained by
searching recursively (in time) the optimal ¢; during assimilation process. Thus, in
the AF, a correct specification of ME and ObE statistics (second order) is not
important as happens in the KF.

5.2.2 Unstable filter

Consider the situation when P, is constructed from only one vector. Let P, =
(1, O)T—the EiVec associated with @4; (the results remain the same if we choose
P, = (0, l)T—the EiVec associated with &,,).

b = dl(flg (@11, @22), |(D11| > 1, ‘¢22| > 1,H = dl&lg(l, 1) (32)

We show now that the filter with the gain (19) is unstable. We have (for © = Id),

H, = HP, = P,,K = P,K,,K, = M,H' [H,M,H' +R]™" = M,P,[P,M,P" + al] '

(33)

if we put R = al. For L,,s = [— KH|®, taking into account (32), (33) it implies

acbn 0
Lnuf = |Mmta (34)
0 D)
As 2 can be made as small as desired by choosing small a > 0, the first EiV
lh = % can be made stable. However, the second EiV in (34) [,y = &, >11s

unstable. It implies that the filter with the gain (19) s.t. P, = (1, O)T is unstable. This
happens even for © # Id. It means that when the projection subspace R[P,| does not
contain all unstable and neutral EiVecs of the system dynamics, it is impossible to
guarantee a stability of the filter.

5.3 Two-dimensional system: estimation of ME

Consider the filtering problem (1) and (2), the dynamical system (1) describes a
sequence of system states at time instants ¢ = 0,1, ... when the observations are
available. It means that @ represents the transition of system state over the (obser-
vation) time window At separating arrivals of two successive observations. In
practice, the interval At is much larger than the model time step 6t which is the step
size in approximating the temporal derivative. The choice of &t is important for
guaranteeing a stability of discretized scheme and having high is important for
guaranteeing a stability of discretized scheme and having high precision of the
discretized solution (wrt the continuous solution). We have then AT = n,6t, where
n, is a relatively large positive integer. For example, in the HYCOM model at SHOM
(French marine) for the Bay of Biscay configuration, the interval At between two
observation arrivals is 7 days which is equivalent to integrating 1200 model time

15

Dynamic Data Assimilation - Beating the Uncertainties

steps &t. It means n, = 1200. Symbolically we have then the equations for model
time step integration

x(1+1) = &x'(7) + v/ (2),y/ (1) =b'(7) + w'(7) (35)

In (35), &' represents the integration of numerical model over one model time
step ot. Hence

@ = [o]" (36)

The contribution of y/(z), over the assimilation window [t — 1,¢] (for simplicity
and without loss of generality, one supposest — 1:=0,¢:=#n_a) is

W(0) = b(O) +0(0,b(0) = D (el (@) = 0" (@),
7=0
wit) = > a(0), wale) = B (0), @) o= 0 (37)
=0

The HME in Section 4 says that the SME w(t) and DME b(t), as functions of 7,,
belong to the subspace spanned by leading EiVs (or SchVecs) of @ for a relatively
large n,. The initial filtering problem now has the form (1) and (2) s.t. (36) and (37)
where t = 7/n,.

To illustrate this HME, continue the two-dimensional system in Section 5.2.2
and suppose that |@'11]| > 1, |®'»| < 1. Applying HME in this case is equivalent to
saying that the values of MEs b(t), w(t), approximately, belong to the subspace
Rlu,] spanned by the first EiVec u; = col(1, 0), associated with the EiV @'1;. Here
y =col(y,, ...,,) denotes the vector-column with components y,, ...,,. It
follows that the covariance matrix of w(t) is assumed to be of the form Q = o2 ujul
and b(¢)—of the structure b(t) = cus, c is a scalar to be estimated. For the algorithm
of joint estimation of state and bias (in term of ¢), see [19].

6. Simulation results
6.1 One-dimensional system

In this section, the filtering problem (25) in Section 5.1 is considered s.t.

®=099,H=1.02,Q =0.09,R = 0.01.

The true system states and observations are simulated using the initial state
x(0) = 1and w(¢),v(t) are zero mean Gaussian mutually uncorrelated and temporal
uncorrelated sequences.

To see the performance of the AF, unknown system states are estimated on the
basis of the AF algorithm. To obtain a reference, the standard KF is also
implemented for solving this filtering problem. In the filtering algorithms, the
estimate of the initial state is X(0) = 2. The gain K, in the NAF is taken as that of
the KFatt =0, i.e., I<naf = I<kf(0)

Figure 1 shows the temporal evolution of the parameters 6,,(¢) during
assimilation process.

The gains in the KF and AF during the assimilation process are displayed in
Figure 2. Mention that the KF gain is computed s.t. true statistics Q, R. In the AF, 6,,,(t)
has been used for computation of the AF gain, i.e., K;s = 6,,(¢)K. From Figure 2, one

16

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
DOI: http://dx.doi.org/10.5772 /intechopen.92194

sees that initialized by the same value, the two gains become different during assimi-
lation process. The KF gain has reached a stationary regime very quickly.

The mean temporal RMS (root mean square) of the innovation is shown in
Figure 3. It is interesting to remark that no significant difference is observed
between two curves and a slightly better performance is produced by the KF.

In Figure 4, we show RMS of the state FE produced by the KF and AF under the
condition that the variance Q is known exactly. One sees that the KF, as expected,
produces the best results.

thetam +
12
thetam
11 ++++ ++++++++++ b g R
+ +4 4+F
£ 47 Tt
@ + +
s + o+
] +F
=
=
1 ++
08
KF
08
] 0 40 [1] B0 100
assimilation instants
Figure 1.
Temporal evolution of the parameter 0,,(t) in the AF gain.
Temporal evolution of gains in KF and AF
L3 5\;
Lz
AF
.//
-

R Ahad Pt b g bbb bR

gain
+
+

++

KF

i 1)
assimilation instants

Figure 2.
Temporal evolution of gains in KF and AF during data assimilation.

17

Dynamic Data Assimilation - Beating the Uncertainties

WOV MV

Figure 3.

Temporal evolution of innovation in KF and AF

AF
[

B %0 0
assimilationy instants

RMS of innovation produced by the KF and AF.

meari Kivis

Figure 4.

KF and AF: Performances comparison - correct ME statistics

+ 4

+

+ o

4+ +F

i

+

-AF

+,

+
+

* ++
Pk, + ¥
. i P,

KE-FE
AF-FE

++

AF

++.
Laas™
+ - gy
4+ by " +++++%++ i

4y by
* hy, ity ey add ey iy ¥
"+ '

KF

W+H+“MH+HWW+F+H
"

20 40 &0
assimilation instants

RMS of the state FE produced by the KF and AF under the condition that the variance of ME is known exactly.
It is seen that when the ME is correctly specified, the KF behaves better than the AF.

Figure 5 shows the RMS of FE as a function of the variance Q. Here, the value of
Q varies from 0.1 to 1.9. Note that the true value of Q is 0.1. The red curve
represents the RMS of FE produced by the KF at the end of the assimilation period
(as a function of Q). The green curve has the same meaning, but for the FE

18

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
DOI: http://dx.doi.org/10.5772 /intechopen.92194

rms of filtered error

0.099

0.098

0.097 \\
KF

0.096
!

mean RVis

0.095 /
/

{
0.094 f’ AF
| /
/

0.091 L L L s
0 0.2 0.4 0.6 08 1
ME covariance

Figure 5.
RMS of FE as a function of Q. The true value of Q is equal to o. It is noted that the KF behaves better than the
AF s.t. true Q but is more and more degraded as the ME becomes greater and greater. At the same time, the FE of

the AF vemains very robust.

produced by the AF. It is interesting to note that when Q is correctly specified, the
KF behaves better than the AF, but misspecification of Q leads to growing of the
error in the KF. The AF is robust wrt the error in the specification of Q. This fact
says in favor of the AF as an efficient tool for overcoming uncertainties in the ME.

6.2 Two dimensional system

6.2.1 llustration of hypothesis HME

According to the notations in Section 5.3, consider the two-dimensional system (1)
with @ = [@/;], @11 =1.02, @' = 0.1, &5 = 0, = 0.9, H = (1,1) with the true
DME »’(z) = col(0.1, 0.1)". Thus the first EiV is unstable, the second—stable [19].

Numerically one finds that the first SchVec is equal tou; = (-1, 7.0 E — 7"
Figure 6 [19] shows the simulation results obtained on the basis of (37). One
sees that, for n, > 10, the second component of w(z) is close to 0 whereas the first

component becomes bigger and bigger (in absolute value) as n, increases. Here,
w'(r) is a sequence of independent two-dimensional Gaussian random vectors of
zero mean and variance 1. This means that the values of w(¢) become more and
more close to the subspace R[u1] spanned by %1, hence the HME is practically valid
for n, > 10 in this example. Mention that, as a rule, in ocean numerical models, 7, is
of order 0(100) (n, = 800 or the MICOM model in the experiment in Section 6.3).

See also [22].
6.2.2 Assimilation results

First simulation of the sequence of true system states x'(z),7 = 1, ..., 390 has
been carried out (see (35)). The observations are picked at = = 15, 30, ..., 390.

19

Dynamic Data Assimilation - Beating the Uncertainties

Two components of w as function of na

8 T T T T T T T T
1st component +
6 | 2nd component* J
+ + +
4+ . 4
+ +
2 o + o+ *s + + +
+
* H +r+ + 4ot +F e
0 Rt ++ +§ A # Fono - 4
+# st R ! e +
- + + : oy +F + N * W
* *+ ++ + + + i
2 . + o, s
4 * 4
.

0 10 20 30 40 50 60 70 80 90 100
na

Figure 6.
Two components of w(t) as functions of n,.

In terms of x(t), the filtering problem then is of the form (1) and (2) s.t.t =

0= 5 (if no bias exists). When there is a bias, instead of w(¢) stands
w(t)=b(e) + (o).

In the experiment, the true system states x’(¢) are generated by (35) s.t. b'(r) =
c0l(0.1,0.1),w'(¢) is zero mean with the covariance Q' = Id. The observation error is

of zero mean and covariance R = 0.16. For the state x(¢) in the KF and NAF, the

forecast is obtained at each assimilation instant ¢ as %(¢ + 1/t) = ®%(t) + b(t). The
simulation yields b(t) = (0.2296,2.0589E — 02) which results from applying (37)
s.t. b'(z) = ¢0l(0.1,0.1).

Figure 7 depicts the time evolution of the KF and AF gains. One sees here as in
the experiment with 1D system (Figure 2) that the KF gain is stabilized very
quickly compared to that of the AF gain.

Figure 8 (from [19]) shows the sample time average RMS of the state FE
produced by the three filters NAF, KF, and AF. One sees that the AF outperforms
the NAF and KF.

Gain coefficients in KF and AF

KF:k(1) ——
09 | KF-k(2) |
AF: k(1)
s 081 AF: k(2) :
8 0.7 b
o -
o8}]
8 AN
c 05r 1
©
© 04} 1
03t]
02 1 L L L
0 5 10 15 20 25

assimilation instant

Figure 7.
Gain coefficients in KF and AF: The gains in KF and AF ave identical at the beginning of the assimilation
process.

20

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
DOI: http://dx.doi.org/10.5772 /intechopen.92194

Time average rms state filtered error

24 : : :
: NAF ——

KF 1

AF
5
= -]
° 4
@
5]
=
@ -
E

10 15 20 25

assimilation instant

Figure 8.
Sample time average RMS of the state filtered ervor produced by the NAF, KF, and AF.

6.3 Data assimilation in the high-dimensional ocean model

To illustrate the effectiveness of the AF in dealing with uncertainties in HdSs,
this section presents the results on data assimilation in the oceanic numerical model
MICOM (Miami Isopycnic Coordinate Ocean Model) [19]. This MICOM describes
the oceanic circulation in the North Atlantics. The model has four vertical layers
with the state consisting of three variables x = (%, u,v) where £ is layer thickness,
(u,v) are two velocity components. The horizontal grid is 140 x 180. Totally at each
time instant ¢ we have the state x(¢) of dimension 302400 (140 x 180 x 4 (layers)
x3 (variables)) . For more details on the configuration of this experiment, see [22].

The experiment is carried out on estimating the oceanic circulation using sea
surface height (SSH) measurements. The SSH observation is available each 7 days
(ds) (hence the observation window AT = 7ds). Mention that simulating the
circulation over 7 ds requires 800 model time steps (&) integration.

6.3.1 AF with optimal initial gain

First, in order to examine whether the method of optimal gain initialization,
described in Section 3.2, is really useful for improving the filter performance, the

optimization problem (21) has been solved. Symbolically, in the gain (20), P, =

T
[Id, (QG)T} where Id is the identity operator on the space of layer thickness /2, QG

is the quasi-geostrophy operator computing the correction for velocity using the
SSH innovation ¢. The gain K, computes the correction for % using {. The ECM

M = M, ® Mj,—Kronecker product of M;,—ECM of horizontal variable, M,—ECM
with vertical variable (see below for details). The two parameter matrices ® and A
are related to parameterization of M,. The problem (21) is solved s.t. ® = Id—
identity operator.

The optimal parameters 4;,i = 1, ..., 4 are found by solving the minimization
problem (21) using SPSA algorithm. Figure 9 shows the averaged values (see
Comment 2.1) of 4;,i =1, ..., 4 resulting during the optimization process. All 4;,i =
1, ..., 4 are initialized as }; = 1,i =1, ..., 4.

The two NAFs are performed, one (denoted as NAFI) is with the gain (20) s.t.
©® =1Id, A = Id, and the other (denoted by NAFOI) s.t. ® =Id and 4;,i =1, ..., 4
obtained by solving (21) (their values are those displayed at the end of the

21

Dynamic Data Assimilation - Beating the Uncertainties

Figure 9.
Control parameters 4;,i = 1, ..., 4 during optimization process.

optimization process in Figure 9). The performances of these two NAFs are shown
in Figure 10. One sees here that the NAFOI has improved considerably the quality
of estimates of the velocity #-component compared with the NAFI. This result
justifies that offline optimization (21) is an interesting strategy for finding the
optimal initial gain in the NAF.

6.3.2 Estimating the ECM of ME

In practice, for real operational systems, information on the space of ME is not
available or very poorly known. Usually, there is a big difference between the model
and the real physical process and if the ME statistics are taken more or less properly,
in some way, in the filtering algorithm, one can improve the filter performance and
reduce the estimation error.

This idea is tested here by applying the HME in Section 4. We carry out the
procedure for estimating the ECM of the ME by first constructing the subspace for
the ME. For more details on the structure of the ECM M in the AF, see [23].
According to [23], the ECM M is assumed to be of the structure M = M, ® M;,—the
Kronecker product of Mj, with M, where M, is the ECM of the horizontal variable,
M,—ECM with vertical variable. Figure 11 displays RMS of FE for the u velocity

Tamporal avarage KMS of £l

TUFE
1UFE

65

Figure 10.
Temporal average RMS of FE for total velocity u-component produced by the NAF s.t. the initial gain (red
curve) and the NAF s.t. optimal initial gain resulting from solving (22) (green curve).

22

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
DOI: http://dx.doi.org/10.5772 /intechopen.92194

RMS u-component filtered error, 1st layer
9 ; : . - .

AFOU ——
AF3U

85|]

ET.S o\ .

65 1 L 1 1 1 it 1
0 10 20 30 40 50 60 70 80

observation instant

Figure 11.
Performance of the AF: (i) AFoU—no ME ECM has been taken into account; (ii) AF3U—with ME ECM
computed in accovdance with the HME.

component at the surface resulting from two AFs. The curve AFOU corresponds to
the AF whose nonadaptive version has the gain computed on the basis of the ECM
M using an ensemble of PE samples (generated by the PeSP in [18]). The curve
AF3U shows the performance of the AF with the modified ECM (by adding the
vertical ME covariance Q, to the vertical ECM M,). More precisely, Q, is assumed
to belong to the subspace spanned by three leading EiVs of M,. This choice is
justified by the fact: the eigenvalue decomposition of M, has the first three EiVs
with the explained variances 67, 17, 15%, respectively. As the fourth EiVec has only
the explained variance 0.7E-07%, it is dropped from the subspace constructed for
the vertical ME. The better performance of the AF3U, in comparison with that

of the AFOU, is apparently seen in Figure 11.

The above experiment shows in details how, on the basis of HME, the subspace
for the ME can be constructed, and how one estimates the ECM for the model error.
The superior performance of the AF3U over that of the AFOU validates the useful-
ness of the HME which can serve as an important tool for estimating the ME and
improving the performance of the AF for solving the data assimilation problems
with HdSs.

7. Conclusions

One of the key assumptions to ensure the optimal performance of the KF is that
a priori knowledge of the system model is given without any uncertainty. This
assumption, however, is never valid in practice for dynamical systems under con-
sideration. The uncertainties exist everywhere in modeling a real process like struc-
tural uncertainty, model parameterization, model resolution, model bias or ME
statistics. For HdSs, order reduction introduced either in the original numerical
model or in the filtering algorithms, inevitably leads to uncertainty in the ME,
especially in geophysical numerical models.

Our focus in this chapter is to show how the AF solves efficiently filtering
problems for systems operating in an uncertain environment.

As seen from this chapter, the AF has proven to be efficient to deal with
uncertainties in the specification of the ME statistics, system bias or model reduc-
tion. The reasons of the success of the AF are that (i) it belongs to the class of

23

Dynamic Data Assimilation - Beating the Uncertainties

parametrized stable filters; (ii) it is defined as the best member minimizing mean
PE for the system outputs; (iii) The tuning parameters are chosen as elements of
stabilizing gain and they are of no physical sense.

It is obvious from this chapter that the performance of the AF is comparable
with that of the KF when perfect knowledge of all ME statistics is given, and it
outperforms the KF in presence of uncertainties. This happens since the AF acquires
knowledge during assimilation process, regardless of uncertainties existing in the
filtering problems. From the computational point of view, implementation of the
AF consumes much less memory and computational time than the KF or other
assimilation methods.

Simple numerical examples and simulation results, presented in Sections 5 and 6,
clearly demonstrate the advantages gained through application of the AF in dealing
with uncertainties. These positive results encourage a wide application of the AF in
different fields of technology and applied sciences like automatic control, finance,
aerospace, space exploration, meteorology, and oceanography. A more in-depth and
significant research on the capacity of the AF to deal with uncertainties is surely a
challenge for the near future.

Author details

Hong Son Hoang* and Remy Baraille
REC/HOM/SHOM, Toulouse, France

*Address all correspondence to: hhoang@shom.fr

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

24

Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties

DOI: http://dx.doi.org/10.5772 /intechopen.92194
References

[1] Kalman REA. New approach to linear
filtering and prediction problems.
Journal of Basic Engineering. 1960;82:
35-45. DOI: 10.1115/1.3662552

[2] Kailath T, Sayed AH, Hassibi B.
Linear Estimation. NJ, Upper Saddle
River: Prentice-Hall; 2000

[3] Liptser RS, Shiryaev AN. Statistics of
Random Processes—I. General Theory.
Berlin and Heidelberg: Springer-Verlag;
2001

[4] Sayed AH. Fundamentals of
Adaptive Filtering. NJ: Wiley; 2003

[5] Kucera V. The discrete Riccati
equation of optimal control.
Kybernetika. 1972;8(5):430-447

[6] Hoang HS, Talagrand O, Baraille R.
On the design of a stable adaptive filter
for high dimensional systems.
Automatica. 2001;37:341-359

[7] Simon D. Optimal State Estimation.
Hoboken, NJ: John Wiley and Sons;
2006. ISBN: 978-0-471-70858-2

[8] Gustafsson F, Hendeby G. Some
relations between extended and
unscented Kalman filters. IEEE
Transactions on Signal Processing. 2012;
60(2):545-555

[9] Evensen G. The ensemble Kalman
filter: Theoretical formulation and
practical implementation. Ocean
Dynamics. 2003;53(4):343-367. DOL
10.1007/s10236-003-0036-9

[10] Chen Y, Snyder C. Assimilating
vortex position with an ensemble
Kalman filter. Monthly Weather
Review. 2007;135(5):1828-1845. DOI:
10.1175/MWR3351.1

[11] Del Moral P. Non linear filtering:
Interacting particle solution. Markov

25

Processes and Related Fields. 1996;2(4):
555-580

[12] Fitzgerald R. Divergence of the
Kalman filter. IEEE Transactions on
Automatic Control. 1971;16(6):736-747

[13] Hoang HS, De Mey P, Talagrand O,
Baraille R. A new reduced-order
adaptive filter for state estimation in
high dimensional systems. Automatica.

1997;33(8):1475-1498

[14] Polyak BT. New method of
stochastic approximation type.
Automation and Remote Control. 1990;

51(7):937-946

[15] Spall JC. Introduction to
Stochastic Search and Optimization.
New Jersey: Wiley; 2003. ISBN 978-0-
471-33052-3

[16] Hoang HS, Baraille R. Stochastic
simultaneous perturbation as powerful
method for state and parameter
estimation in high dimensional systems.
In: Baswell AR, editor. Advances in
Mathematics Research. Nova Science
Publishers; 2015;20:117-148. ISBN:
978-1-63482-741-6¢

[17] Hoang HS, Baraille R. A comparison
study on performance of an adaptive
filter with other estimation

methods for state estimation in high-
dimensional system. In: Hokimoto T,
editor. Advances in Statistical
Methodologies and their Application to
Real Problems. Rijeka, Croatia:
IntechOpen; 2017. pp. 29-52. DOL:
10.5772/67005

[18] Hoang HS, Baraille R. Prediction
error sampling procedure based on
dominant Schur decomposition.
Application to state estimation in high
dimensional oceanic model. Journal of
Applied Mathematics and Computing.
2011;218(7):3689-3709

Dynamic Data Assimilation - Beating the Uncertainties

[19] Hoang HS, Baraille R. On estimation
of model error by an adaptive filter.
WSEAS Transactions on Systems and
Control. 2019;14:158-168

[20] B. Friedland B. Treatment of bias in
recursive filtering. IEEE Transactions on
Automatic Control. 1969;14:359-367

[21] Albert AE. Regression and the
Moore-Penrose Pseudo-Inverse.
London: AP; 1972

[22] Hoang HS, Baraille R, Talagrand O.
On an adaptive filter for altimetric data
assimilation and its application to a
primitive equation model, MICOM.
Tellus 57A; 2005:153-170. DOI: 10.1111/
j.1600-0870.2005.00094.x

[23] Hoang HS, Baraille R. On the
efficient low cost procedure for
estimation of high-dimensional
prediction error covariance matrices.
Automatica. 2017;83:317-330. DOI:
10.1016/j.automatica.2017.06.018

26

Chapter 3

Convolutional Neural Network
Demystified for a Comprehensive
Learning with Industrial
Application

Anand Raju and Shanthi Thirunavukkarasu

Abstract

In the recent past of time, numerous investigators have driven on and subsidized
novelties to image classification methods. In this chapter, an introduction to image
classification scheme and their types is offered. Image classification discovers its
application in a variety of fields, to name a few, judgment of diseases, finding and
identification of faults, classification of nutrition goods based on superiority, valua-
tion of usual capitals and conservation pollution, education of land use and land
cover from remote sensing satellite images, character identification and detection in
optical character reader, face recognition, object detection, and so on. Automatic
image classification schemes found on actual algorithms deliver high accuracy and
exactness in recognizing object/features. Convolution neural network is a superior
genre of neural network that requires minimal preprocessing. The ability of the
convolutional neural network (CNN) to understand the visual content of the input
image makes its suitable for recognizing minute variation between the classes. This
power of the CNN makes it a good choice to address image classification problems
with multi-classes. So, in this chapter, the entire flow of CNN’s architecture with
different industrial applications will be discussed.

Keywords: convolutional neural network, machine learning, deep learning,
python, data prepossessing, pooling, layers, architectures

1. Introduction

The convolutional neural network also termed as ConvNet or CNN is a form of
deep learning neural network. Most of the inner layers apply mathematical convo-
lution operation to compute the feature maps for the next layer and hence the name
convolutional neural network. The effortless construction of such network makes
itself useful for a variety of real-time applications like image classification systems,
image recommender systems, optical character recognition (OCR) systems, medical
diagnosing systems, fault detection systems, and so on. The CNN architecture is
highly inspired by a pattern of neuron connectivity in human visual cortex. The
minimum intervention of human in feature selection and nominal preprocessing
makes itself preferable for different applications. Like the traditional neural
network, CNN consists of input layer, hidden layers, and an output layer [1].

27 IntechOpen

Dynamic Data Assimilation - Beating the Uncertainties

The hidden layers are formed by combinations of convolution layers, ReLU layers,
and pooling layers. The CNN differs from regular neural network in several ways.
The input is a three-dimensional data that usually includes the color channels of the
input image. The parameter sharing and confined connectivity are unique features
of CNN. Parameter sharing refers to the sharing of equal weights for all neurons in
computation of a feature map. Confined connectivity enables the neurons to get
connected to a specific subset of the input layer. This reduces the overfitting prob-
lem. These two features of CNN reduce the total number of learnable parameters,
thereby decreasing the computation time [2, 3]. The following section explains the
functions of each layer in detail.

1.1 Convolutional layer

The convolutional layer computes a simple dot product between the selected
region of the image and set of kernel functions called filters. Generally, an image of
dimension M x N x C is given as input. M x N represents the length and width of
the image, and C represents the number of color channels usually C = 3 (red, green,
and blue color channels) [4]. The output of the convolutional layer is called feature
map and its dimensions are given as W x Q x K. The values of W and Q can be
determined using the equation given below. Several parameters like filter size (F),
zero padding (ZP), stride (S), and number of filters (K) are used to compute the
dimensions of the feature map.

(M —F + (2ZP))

W= S +1 (1)
WZ(N—F;—(ZZP))Jr1 Q)

The filter parameters are explained as below filter size (F) denotes the size of the
filter or kernel used for convolution operation. Generally, kernel functions are
odd-numbered square matrix, i.e., 3 x 3,5 x 5, etc. [5]; an odd value is preferred so
that the center of the kernel matrix can be fixed on the pixel on which it is operated.
The figure shows the convolution of 5 x 5 input image (blue-colored matrix) with
3 x 3 kernel function (green-colored matrix) and a 3 x 3 feature map output

(Figure 1).
1.2 Zero padding

Zero padding refers to the number of zeroes that are added along the brim of the
input matrix. The dimensions of output matrix of the convolutional layer will be

Tx1 | IxO0 | 1x1 (8} O
O | Tx1 | 120 1 (8] -k
Ox1 | OxO | 1x1 1 1
(8} L8] 1 1 0
(8} 1 1 O O
Input x Filver Feature Map

Figure 1.
Convolution of 3 x 3 kernel function over a 5 x 5 input.

28

Convolutional Neural Network Demystified for a Comprehensive Learning with Industrial...
DOI: http://dx.doi.org/10.5772/intechopen.92091

Figure 2.
Demonstration of zero padding to maintain the output size same as that of the input.

reduced because of mathematical operation performed in that layer. Appending
zeroes to the input matrix will prevent the shrinkage of size of feature maps
produced at the output. Maintaining the size of feature maps can be achieved by
assigning zero padding as depicted in the figure, and hence, it becomes essential in
networks with more number of layers (Figure 2).

1.3 Stride (S)

A filter or the kernel matrix has to be translated throughout the input matrix
vertically from top to bottom and also horizontally from left to right, covering all
the elements in the input matrix. Stride controls the movement of the translation.
It represents the number of steps taken by the kernel matrix during its translational
movement. The figure illustrates the movement of the filter when a 3 x 3 kernel
function is applied over a 7 x 7 input with stride S = 2 output and results in a size of
3 x 3 (Figure 3).

A demonstration of the function of convolutional layer is displayed in the figure.
The three-dimensional input with the volume 5 x 5 x 3 (M =N =5, C = 3) when
padded with zero outer border turns into a volume of 7 X 7 x 3 and is shown in blue
color. Two filters with the volume 3 x 3 x 3 (F = 3, K = 2) are shown in red color.
The three layers are shown one below the other. The filter is convolved with the
input matrix with zeros in the outer border (zero padding ZP = 1) and stride S = 2.
With these parameters, the dimension of the feature map is computed using the
equation:

M —F + (2ZP 5-34+ (21
woq-MoFrOZR) L, (o3en) g)
Input Volume Output Volume (5x5) Input Volume Output Volume
(7x7) With §=1 (7%7) (3x3) with §=2

Figure 3.
Application of 3 x 3 kernel function over a 7 X 7 input with stride S = 1 and S = 2.

29

Dynamic Data Assimilation - Beating the Uncertainties

The dimension of the feature map is givenas W x Q x K =3 x 3 x 2, and it is
shown in green color. The kernel matrix contains different weights in order to
differentiate features of higher importance with other features. Filter weights are
the values of the kernel matrix. Apart from assigning weights, bias values are also
provided to mention the probability of occurrence of a particular pattern. The
weights and biases refer to the parameters of the network. The parameters are
learned by the network during the training phase, and all other parameters are
termed as hyper parameters (Figure 4). The values in the output matrix are
calculated using the equation:

Output = (Inputxfilter) 4 bias (4)

A unique feature of CNNs is that same filter is shared with many neurons. Using
the same bias and weight vectors along the region reduces the memory requirement
to a great extent. The convolution explained in this section is basically a 2D convo-
lution. It is called 2D convolution because the kernel is moved in only two direc-
tions, i.e., along the height and width of the input layer. 3D convolution is also
possible if a 3D kernel is applied and moved along all three dimensions, i.e., along
the height, width, and depth of the input volume. Apart from the regular convolu-
tion, there are few other types of convolutions as discussed below.

1.4 Types of convolution
1.4.1 Transposed convolution
This type of convolution is preferred for deconvolution operation and generally

introduces checkerboard effects in the output image. This type of convolution
generally increases the size of output image as it does up sampling process [4].

1.4.2 Dilated convolution

In this type of convolution (d-1), spaces are inserted in between the kernels
before applying convolution. If d = 1, it resembles regular convolution.

o|jo|lOo]jJojOo]|O]oO
oli1|lo0l0o]jO|1]O 0 0 1 oj1]j]o0|0]|O
0 0OjlojOoJO]|O oj1|]1|1]|0
0 0| 1|0 |0]0

c | o [o | o
o
o
o
=

0 0 1|l4|l2|1]0
0 1 | N2 "2 | ol | o 9 2 ¢ Gl G| |
0 oo lolloll]o
Input Image Feature Feature Map
Detector
Figure 4.

Display of convolution function of convolutional layer.

30

Convolutional Neural Network Demystified for a Comprehensive Learning with Industrial...
DOI: http://dx.doi.org/10.5772/intechopen.92091

1.4.3 Separable convolution

In this type of convolution, the kernels are separated into two smaller kernels.
A 2D kernel will be broken into row matrix and column matrix. This reduces the
number of computations. Despite reduction in the computational cost, this type of
convolution is not preferred generally in many deep learning algorithms as it
provides only suboptimal results.

1.4.4 Flattened convolution

In this type of convolution, a 1D kernel is used to traverse over the 3D input
volume to produce the output feature maps. This greatly reduces the number of
learnable parameters and results in less computational cost.

1.5 Pooling layer

Pooling layer is an important layer in CNN. Pooling is used for down sampling. It
is mainly involved in reducing the spatial dimension of the feature maps. This
considerably reduces the number of parameters required for training the network.
By reducing the trainable parameters, it minimizes the computations required.
Pooling layer becomes essential in networks with a greater number of layers.
Applying a 2 x 2 pooling filter reduces the size of the feature map to half of its
original size. The figure demonstrates the effect of 2 x 2 pooling filter applied on
224 x 224 x 64 feature map that reduces the size of the o/p feature map to
112 x 112 x 64. However the depth of the feature map remains unaltered
(Figure 5) [6].

There are two types of pooling filters: maximum pooling (max pooling) and
average pooling (avg pooling). A 2 x 2 max pooling filter selects a 2 x 2 region from
the input image and passes the maximum value to the next stage. Average pooling
filter passes the average value of the selected region to the next stage (Figure 6).

1.6 Activation functions

The input for the any CNN network is an image, and the output is the class
score. This establishes a nonlinear relation between the input and output data.
Activation functions are the nonlinear transformation inserted in between the
layers. Firing of neurons depends on the results of the activation functions. The
important characteristic of an activation function is that its derivative should exist

(Figure 7).

Pooling

224x224x64 112x112x64

Figure 5.
Effect of pooling layer with 2 x 2 filter.

31

Dynamic Data Assimilation - Beating the Uncertainties

20130 Max Pooling
112 37

12|20 30 0

8 |12] 2

3470137 4

1121100} 25 | 12 13] 8 ‘
7_9| 20 Average Pooling

Figure 6.
Application of 2 x 2 max pooling filter and average pooling filter on a 4 x 4 feature map.

=10 10

0 . 1|

(a) (b)

10 10

Lo

10 ST ——1 10
(c) (d)

=10

Figure 7.
Activation functions: (a) sigmoid function, (b) tanh function, (c) ReLU function, and (d) leaky ReLU
function.

The activation functions are shown in the figure in which the y-axis represents
the function f(a) and x-axis denotes the value a. The following functions are the
most prevalent activation functions used in neural network.

1.7 Sigmoid function

Sigmoid or logistic function is a function that ranges between 0 and 1. It is com-
puted as given in the equation. Slow convergence of the function makes it less popular.

f(a) =)

1.8 Hyperbolic tangent function
The hyperbolic tangent function ranges between —1 and 1. It overcomes the

disadvantage of sigmoid function of having the zero centered function. It makes the
optimization easier and it is preferred over sigmoid function.

32

Convolutional Neural Network Demystified for a Comprehensive Learning with Industrial...
DOI: http://dx.doi.org/10.5772/intechopen.92091

f(a) = tanh(a) = (e* —e ¥)/(e* +e7?) (6)
1.9 ReLU: rectified linear units

The function results in values in the range [0, o). It is the most commonly
used activation function. The negative values of the input matrix are removed
completely. A simple thresholding can be used for implementing this activation.
This function avoids the simultaneous activation of all neurons, thereby
reducing the number of computations. Convergence of this function is also
faster than the sigmoid and tangent functions. The disadvantages of this function
are that it cannot update all the weights during back propagation when the
gradient is zero and it results in more number of dead neurons when used with
high learning rate.

0fora<O
f =
(@) {a fora>0 @)

1.10 Leaky ReLU: rectified linear units

The function results in values in the range (—o0,00). Instead of removing nega-
tive values, it provides a negative slope for a<0. The values of slope can be very
small in the range § = 0.01, 0.1, etc. This eliminates the problem of dying neurons
as in the case of ReLU.

fa) dafora<O)
a) =
afora>0

1.11 Normalization layer

The stability of the network can be improved by introducing batch normaliza-
tion layers in between the regular layers. In this layer the mean and standard
deviation of the values in previous layer are computed. Then the mean value is
subtracted from each of the input value and divided by the standard deviation. The
batch normalization gives a choice to network from getting rid of dropouts and
enables the network to have a higher learning rate. It introduces two more learnable
parameters pl and p2 to the network. The output y after the batch normalization of
a small batch of the input data x; = x4, X3, X3, .X; is given by the equation:

y= BNPle (Xi) = Plf(i + P2 (9)

_iym : i o 2 _ANm o
where batch mean up = - ", x; and variance is given as 65 = > i"; (Xi — pip)-

1.12 Fully connected layer

The name fully connected layer is coined since each neuron in the layer is
connected to every neuron in the previous layer as displayed in Figure 8. Generally,
two to three fully connected layers are appended as the final layers in every CNN.
Activations of fully connected layer follow affine transformation, which involves
matrix multiplication and addition of bias values. This fully connected layer is
equivalent to the classifiers, whereas the previous layers are responsible for feature
extraction [7].

33

Dynamic Data Assimilation - Beating the Uncertainties

Meurons of next

Neurons of previous
layer

layer

Figure 8.
Fully connected layer.

1.13 Optimization methods

A CNN classifier is involved in calculating the output class score (Y) from the
input image with a set of predictors (X). Optimization algorithms aid the network
to curtail the error function by updating the parameters in the right direction.
Effective training of the network is greatly influenced by the choice of correct
network parameters. Optimum values of such parameters can be achieved by
adopting suitable optimization algorithms. Few commonly used optimization
algorithms are described below.

1.13.1 Stochastic gradient descent (SGD)

A matrix formed with first-order derivatives is called Jacobian matrix, and it is
used to represent a gradient function. SGD is an iterative method that is used with
batch processing. The network weights are updated with the average value of the
gradients of a batch. If L(w) is the loss function or error function, the objective of
the SGD is to identify the parameter %o that minimizes L(w). The SGD algorithm
performs the iterations using equation to compute the parameter value.

Wi = wh — psL(w) = w* —) L(w) (10)
i=1
where 7 is the learning rate

1.13.2 SGD with momentum

In this algorithm the update for the parameter I%o is computed as a linear
combination of the previous update and the gradient. This algorithm prevents
oscillation by traveling in the same direction.

Sw = adw — n5L;(w) (1)
W k4 sw (12)
Wit = wk + sw = adw — 6L (w) (13)

where 7 is the learning rate and « is the momentum term usually 0.9 or a similar
value.

34

Convolutional Neural Network Demystified for a Comprehensive Learning with Industrial...
DOI: http://dx.doi.org/10.5772/intechopen.92091

1.13.3 Nesterov’s accelerated gradient (NAG)

NAG utilizes the momentum to predict the future values of the parameter. Thus,
the momentum w — av;_ is used to estimate the next possible position of the
parameter. This enables the algorithm to converge more rapidly.

1.13.4 AdaGrad

AdaGrad algorithm is an adaptive gradient algorithm in which a flexible learning
rate is adopted. Larger learning rate is used for features that occur very rarely, and
smaller learning rate is used for frequently occurring features. The learning of
network stops at a point when the learning rate shrinks to zero. This is a drawback
for this method.

1.13.5 RMSProp

RMSProp also adopts the idea of using a variable learning rate. The learning rate
is decided based on the signs of the previous two gradients. If the previous two
gradients are of the same sign, it increases the step size in the order of 1.2 times the
previous learning rate. Otherwise the step size is decreased in the order of 0.5 times
the previous learning rate. The learning rate is always limited between one millionth
and 50.

1.13.6 Adam optimizer

Adam optimizer is the name derived from adaptive momentum estimation.
Adam optimizer attracts with its advantages like simple implementation procedure,
minimum memory requirements, and efficient computation. The algorithm is best
suited for very big data size with less number of tuning and problems with sparse
gradients. Adam optimizer retains the benefits of both RMSProp and AdaGrad
optimizers. Apart from the first moments of gradients, the mean of the second
moments of gradients were also used in Adam optimizer.

1.14 Softmax layer

The final layer of CNN architecture is mostly the softmax layer. Normalized
exponential function is called the softmax function. This layer converts an N num-
ber of input vectors into N probabilities. This layer is essential as it normalizes the
input vector of any value (negative values, positive values greater than one, etc.).
The number of nodes in the softmax layer is equal to the number of output classes.
The softmax function for the input vector z; = z1, 2, 23, zy is converted in to
probabilities P(z); using the given equation:

ezi

P(zi) = —x—
Ej:lem

(14)
2. LeNET architecture and its applications
Optical character recognition is one of the major research problems in real-time

applications, and it is used to recognize all the characters in an image. As English is a
universal language, character recognition in English is a challenging task. Deep

35

Dynamic Data Assimilation - Beating the Uncertainties

Layer Feature map Size Kernel size Stride Activation
Input layer 1 32x32 — — —
Convolution layer 1 6 28 x 28 5x5 1 tanh
Maximum pooling layer 6 14 x 14 2x2 2 tanh
Convolution layer 2 16 10 x 10 5x5 1 tanh
Maximum pooling layer 2 16 5x5 2x2 1 tanh
Convolution layer 3 120 1x1 5x5 1 tanh
Fully connected layer — 84 — — tanh
Output layer (FC 2) — 10 — — Softmax
Table 1.

Summary of LeNET architecture.

learning approach is one of the solutions for the recognition of optical characters.
The aim of this research work is to perform character recognition using
convolutional neural network with LeNET architecture. Optical character images
have been binned in each class (10 classes) to form 2495 samples of training images
and 1069 test images. Each of the images fed for training/testing has a size of

32 x 32 such that the convolution layer is enabled with a filter size of 5 x 5. Thus the
output of the convolution layer is 28 x 28 along with six feature maps [24, 25].

The second (maximum pooling) layer gets a maximum of 2 x 2 value from the

28 x 28 image. The maximum pooling layer [21], [22] thus gives an output size of
14 x 14 with six feature maps. The convolution layer forms the third layer which
performs the convolution operation of input with filter. The output of this layer is
10 x 10 with 16 feature maps for a filter size of 5 x 5. The last layer in the network is
a convolution layer with filter size of 5 x 5. The output of the last layer is fed to fully
connected layers 1 and 2. The fully connected layer 2 forms the output layer with a
total of 10 outputs (Table 1).

3. CNN applications
3.1 AlexNET architecture and its applications

Image classification is one of the major research problems in real-time applica-
tions, and it is used to recognize all the objects in an image. Deep learning approach
is one of the solutions for the recognition and identification of different images. The
aim of this research work is to perform character recognition using convolutional
neural network with AlexNET architecture. For analysis of AlexNET architecture
with the created database, an input image is fixed with a size of [227 x 227]. The first
layer in AlexNET is the convolution layer 1 with an input size of [227 x 227]. This
layer convolves the input with a filter size of [11 x 11] and provides an output with
96 feature maps with a size of [55 x 55] (stride 4) [8].

Maximum pooling layer forms the second layer, which subsamples the output of
the first layer with a pooling size of [3 x 3] and gives an output size of [55 x 55] (96
feature maps). The third layer convolves the output of the second layer with a filter
size of [5 x 5]. The output of the third layer is once again pooled with a filter (size
27 x 27) to get a feature map vector of size 256. The maximum size of filter utilized
in the next layer is [3 x 3] for an image input of [27 x 27|, thereby providing an
output of 256 feature maps. Another convolution layer forms the sixth layer which
convolves with the fifth layer to produce a feature vector size of 256.

36

Convolutional Neural Network Demystified for a Comprehensive Learning with Industrial...
DOI: http://dx.doi.org/10.5772/intechopen.92091

Layer Feature map Size Kernel size Stride Activation
Input layer 1 227 x 227 — — —
Convolution layer 1 96 55 x 55 11x11 4 ReLU
Maximum pooling layer 96 27 x 27 3x3 2 ReLU
Convolution layer 2 256 27 x 27 5x5 1 ReLU
Maximum pooling layer 2 256 13 x 13 3x3 2 ReLU
Convolution layer 3 384 13 x 13 3x3 1 ReLU
Convolution layer 4 384 13 x 13 3x3 1 ReLU
Convolution layer 5 256 13 x 13 3x3 1 ReLU
Max pooling 256 6x6 3x3 2 ReLU
Fully connected layer 1 — 9216 — — ReLU
Fully connected layer 2 — 4096 — — ReLU
Fully connected layer 3 — 4096 — — ReLU
Output layer (FC -4) — 10 — — Softmax
Table 2.

AlexNET architecture summary for palm leaf characters.

Table 2 gives a summary of the AlexNET architecture that has been created
during this experiment.

3.2 FaceNet architecture and its applications

Face detection is the process of detecting a face in an image or a video. Face
recognition is the process of detecting face in an image and then using algorithms to
identify who the face belongs to. Face recognition is thus a form of person identifi-
cation. Initially, features are extracted from the image for training the machine
learning classifier to identify faces in the image. Not only are these systems not
subjective, but also they are also automatic—no hand labeling of facial features is
required. Since for face recognition, we need to detect a face from the image or
video, we can think of face recognition as a two-phase stage: Stage 1, detecting the
presence of faces in the image or video stream using methods such as Haar cascades,
HOG +Linear SVM, deep learning, or any other algorithm that can localize faces,
and Stage 2, taking each of these faces detected during the localization phase and

Type Patch size/stride Output size

Convolution 34 x 34/2 112 x 112 x 64
Max pool 3 x3/2 56 x 56 x 64

Convolution 3x31 56 x 56 x 192
Max pool 3 x3/2 28 x 28 x 192
Inception(3a) — 28 x 28 x 256
Inception(3b) — 28 x 28 x 480
Max pool 3 x3/2 14 x 14 x 480
Inception(4a) — 14 x 14 x 512
Inception (4b) — 14 x 14 x 512
Inception(4c) — 14 x 14 x 512

37

Dynamic Data Assimilation - Beating the Uncertainties

Type Patch size/stride Output size
Inception(4d) — 14 x 14 x 528
Inception(4e) — 14 x 14 x 832
Max pool 3x3/2 7 x7 % 832
Inception(5a) — 7 x 7 x 832
Inception(5b) — 7 x 7 x 1024
Avg pool 7 x7/1 1x1x1024
Dropout (40%) — 1x1x1024
Linear — Ix1x7
Softmax — 1x1x7
Table 3.

FaceNet architecture.

learning whom the face belongs to; this is where you assign a name to a face.

Face detection is the techniques to finding all the faces in an image or videos [9].
Face recognition is the next step after face detection. In face recognition you identify
which face belongs to which person using an existing (Pre-Trained Image) image in
the repository. Face analysis is a process of extracting facial features like age,
complexion, etc., from the image after recognizing a face in it. Generally, OpenCV
provides three different methods for face recognitions like eigenfaces [8], local binary
pattern histograms, and fisherfaces. But, nowadays, deep learning using FaceNet is a
very popular algorithm used in many applications, which is shown in Table 3.

3.3 Object detection and its applications

The environmental problems and its treatment go back to the fifteenth century.
A wide variety of road types such as intersections and highways pose a real chal-
lenge to the computer vision algorithms. Hence, there is a need of efficient algo-
rithm to detect the accident on road and also evaluate the severity of the incident. In
this paper, an accident detection approach using ResNet architecture has been
presented with specific focus on road accident. The convolutional neural network
used in this paper has utilized around 50 layers, viz., convolution layer, pooling
layer, activation layer, fully connected layer, and softmax classifier and inspection
layer. The paper has also created a database of accident video set by utilizing the
video images of accident. The recognition of ResNet 50 classifier has been found to
be 98.1%. The prediction rate is found to be higher due to the large quantum of
features extracted in each of the CNN layers. There is no space for waste. Our
landfill sites are filling up fast; by 2010, almost all landfills in the UK will be full.
Financial expenditure in the economy is reduced. Creating products from raw
materials costs much more than if they were made from recycled products. Natural
resources should be preserved for future generations. Recycling reduces the need
for raw materials; it also uses less energy, therefore preserving natural resources for
the future garbage sorter robot, a device which uses image processing combined
with robotics to collect and sort the available garbage using highly sensitive sensors
and a smartphone camera. This would be very useful in cleaning the environment
and for effective recycling without wasting man power. Garbage is an important
cause of many diseases. Recycling must be made more effective. Usage of man
power must be considerably reduced which is shown in Figure 9. This being our

38

Convolutional Neural Network Demystified for a Comprehensive Learning with Industrial...
DOI: http://dx.doi.org/10.5772/intechopen.92091

XB6 PC

OBJECT [OBSTACLE) CAMERA IMAGE PROCESSING

USING OpenCy AND
TENSOR FLOW

SERIAL
COMMUNICATION
) 4
FOUR WHEELED | DC GEARED MOTOR DRIVER |
ROBOTIC CHASSIS [MoToRs € CIRCUIT * ARDUINO
¥
ROBOTIC ARM
SEPARATION OF WASTE [+
DC GEARED
SERVO MOTOR REaTO |
Figure 9.

Object detection system.

motivation, we could take some naturally available parameters that come out of the
garbage and make a device that could read them and detects the changes in them.
Thus by doing so, the negative effects due to waste could be reduced. The above
gives us a clear picture of the hardware and software used accordingly. The
components used along with their usage are explained below:

3.3.1 Camera

A webcam which is around 5 MP is used for capturing the images, and the
captured images are fed to the x86 PC for processing them.

3.3.2 x86 PC

The required image processing software, i.e., OpenCV and TensorFlow, is installed
and used for processing the captured images. Here the language used is Python.
Similarly the Arduino IDE is used to program the Arduino board. Arduino board is
used for the movement of wheels and robotic arm which is shown in Figure 10.

3.3.3 Robotic base

The robotic base consists of an acrylic sheet which has two pair of wheels whose
movement is done via a DC geared motor. The base also has a robotic arm.

3.3.4 Robotic arm

The arm consists of a gripper which is connected to an actuator that moves up
and down. There is another actuator connected to the previous one which moves
back and forth; this movement is done using DC geared motors. The below given is
the flow diagram which shows the work flow of the system.

39

Dynamic Data Assimilation - Beating the Uncertainties

and boundaries in width ratio of each
the frame detected class

Annotations | |Evaluating the class Estimating Height to

Dataset
Preparation

Estimating distance
batwean the Robot

and Target using
Accessing files Ultrasonic sensor
using python Retrieving
os.walk command Model
1 thé ditected Raobot moves
o a new
location
Training Model
using the Sampled
dataset frames
YES
Saving model P"‘"’d‘"""’!“
instance Camera and stores

Figure 10.
Flow diagram of the system.

Classification of object is done using image processing and TensorFlow. Camera
is used to capture the image of the object present on the surface which is then
matched with the pre-trained dataset. Here the object detection is achieved using
YOLO object detection, and the detected object is directed to its respective class.
There are several modes that are made available such as plastic, glass, metal,
degradable, and nondegradable. Based on the information of the selected mode,
either the object is picked up or ignored. The object is picked up using a robotic arm
which is controlled using the pre-programmed Arduino board. Once the desired
object is picked up in accordance with the selected mode, object classification is
completed successfully. Advances are done in proposed method in comparison with
the existing method:

* Some areas in the design of the robot in existing method have limitations; these
limitations may be overcome by improving upon the design.

* Thus we have made some improvements in the design of the robot by making
it a bit smaller, adding a webcam which is weightless and making the wheel
base strong and stable.

* We have also removed the bins available on top of the robot as the previous
one only classifies between two classes but our robot classifies almost between
more than three classes.

* The above robot mentioned in the existing method uses manual pickup of the
classified waste, but we have added a robotic arm gripper which automatically

picks up the classified object.

* Also the Recyclebot is controlled manually over a Zigbee powered joystick
application, but our robot is fully automated and uses Arduino to achieve it.

40

Convolutional Neural Network Demystified for a Comprehensive Learning with Industrial...
DOI: http://dx.doi.org/10.5772/intechopen.92091

* On the software side, we have made some major improvements like we have
used OpenCV and TensorFlow for processing the obtained image.

¢ Also we have used an algorithm called YOLO for object detection and
classification which provides better accuracy when compared with the
previous method.

* Since the robot moves by itself, the number of hardware and software used is
reduced which means there is no need for Zigbee and the joystick application
anymore.

* When it comes to recognizing objects, the Recyclebot only recognizes a small
set of images which is around 1000 to 2000.

* But our robot could almost recognize more than 5000 images which prove to
be a larger image set than the previous one.

* Also the speed of processing is improved. The accuracy of our robot is far
better for an automated robot.

* Thus this shows that our robot is much better than its predecessor.

3.3.5 Skin cancer classification using convolutional neural network

Skin diseases are becoming the most common health issues worldwide. In this
paper we propose a method that detects four types of skin disease using computer
vision [10, 11]. The proposed approach involves convolutional neural networks
with specific focus on skin disease. The convolutional neural network used in
this paper has utilized around 11 layers, namely, convolution layer, pooling layer,
activation layer, fully connected layer, and softmax classifier. Images from the
DermNet database are used for validating the architecture. The database comprises
all types of skin diseases out of which we have considered four different types of
skin diseases like acne, keratosis, eczema herpeticum, and urticaria with each class
containing around 30-60 different samples. The challenges in automating the pro-
cess includes the variation of skin tones, location of the disease, specifications of the
image acquisition system, etc.

1

Dynamic Data Assimilation - Beating the Uncertainties

Author details

Anand Raju*f and Shanthi Thirunavukkarasu®

Department of Electronics and Communication Engineering, Sona College of
Technology, Salem, Tamil Nadu, India

*Address all correspondence to: anandvimall@gmail.com

+ These authors contributed equally.

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

42

Convolutional Neural Network Demystified for a Comprehensive Learning with Industrial...

DOI: http://dx.doi.org/10.5772/intechopen.92091
References

[1] Sainath TN, Mohamed AR, Kingsbury
B, Ramabhadran B. Deep convolutional
neural networks for LVCSR. In: 2013
IEEE International Conference on
Acoustics, Speech and Signal Processing.
IEEE; 2013. pp. 8614-8618. Available
from: http://www.cs.toronto.edu/
~asamir/papers/icassp13_cnn.pdf

[2] Simard PY, Steinkraus D, Platt JC.
Best practices for convolutional neural
networks. In: International Conference

on Document Analysis and Recognition
(ICDAR). 2003. p. 958

[3] Lawrence S, Giles CL, Tsoi AC, Back
AD. Face recognition: A convolutional
neural-network approach. IEEE
Transactions on Neural Networks. 1997;

8(1):98-113

[4] Liu L, Shen C, van den Hengel A. The
treasure beneath convolutional layers:
Cross-convolutional-layer pooling for
image classification. In: Proceedings of
the IEEE Conference on Computer
Vision and Pattern Recognition. 2015.
pp. 4749-4757

(5] Krizhevsky A, Sutskever I,

Hinton GE. ImageNet classification
with deep convolutional neural
networks. In: Advances in Neural
Information Processing Systems. 2012.
pp- 1097-1105

[6] Graham B. Fractional max-pooling.
2014. arXiv preprint arXiv:1412.607

[71 Anand R, Shanthi T, Sabeenian RS,
Veni S. Real time noisy dataset
implementation of optical character
identification using CNN. International
Journal of Intelligent Enterprise. 2020;7
(1-3):67-80

[8] Anand R, Kalkeseetharaman PK,
Naveen Kumar S. Automatic facial
expressions and identification of
different face reactions using
convolutional neural network

43

[9] Anand R, Shanthi T, Nithish MS,
Lakshman S. Face recognition and
classification using GoogleNET
architecture. In: Soft Computing for
Problem Solving. Singapore: Springer;
2020. pp. 261-269

[10] Sabeenian RS, Paramasivam ME,
Anand R, Dinesh PM. Palm-leaf
manuscript character recognition and
classification using convolutional neural
networks. In: Computing and Network
Sustainability. Singapore: Springer;
2019. pp. 397-404

[11] Shanthi T, Sabeenian RS, Anand R.
Automatic diagnosis of skin diseases
using convolution neural network.

Microprocessors and Microsystems.
2020;76:103074

Chapter 4

Estimation for Motion in Tracking
and Detection Objects with
Kalman Filter

Afef Salhi, Fahmi Ghozzi and Ahmed Fakhfakh

Abstract

The Kalman filter has long been regarded as the optimal solution to many
applications in computer vision for example the tracking objects, prediction and
correction tasks. Its use in the analysis of visual motion has been documented
frequently, we can use in computer vision and open cv in different applications
in reality for example robotics, military image and video, medical applications,
security in public and privacy society, etc. In this paper, we investigate the
implementation of a Matlab code for a Kalman Filter using three algorithm for
tracking and detection objects in video sequences (block-matching (Motion
Estimation) and Camshift Meanshift (localization, detection and tracking object)).
The Kalman filter is presented in three steps: prediction, estimation (correction)
and update. The first step is a prediction for the parameters of the tracking and
detection objects. The second step is a correction and estimation of the prediction
parameters. The important application in Kalman filter is the localization and
tracking mono-objects and multi-objects are given in results. This works presents
the extension of an integrated modeling and simulation tool for the tracking and
detection objects in computer vision described at different models of algorithms in
implementation systems.

Keywords: Kalman filter, tracking objects, detection objects, localization,
video and image processing, computer vision, embedded system

1. Introduction

The computer vision, from the technological evolution point of view, is the most
useful in our days. It is a discipline at the border of computer science, mathematics,
physics, neuroscience and various other disciplines, which aims to initiate the
specific issues of image and video analysis from 2D and 3D environment, and to
implement a simple object tracking application. This phenomenon provokes a spec-
tacular development of applications in various fields in many sectors of activity:
imaging systems, robotics, surveillance systems, identification of interest (auto-
matic annotation and retrieval of video from databases multimedia data), indexing
and augmented reality, HMI interaction (gesture and gaze recognition for data
entry on computers), etc. These systems are most used in airports, metros, prisons,
banks or nuclear power plants, intelligent transport systems, the analytical

45 IntechOpen

Dynamic Data Assimilation - Beating the Uncertainties

approach for medical applications, military imagery with the target weapon, appli-
cations security and computer-controlled automatic surveillance (scene surveil-
lance, object tracking and behavior analysis, swimming systems for swimming pool
surveillance, to prevent accidents and drowning victims), video conference, driving
assistance (reversing radar, speed limiter or cruise control), pedestrian tracking
(counting and pedestrian tracking systems using aerial cameras), biometric systems
(fingerprints and recognition biometric facial), etc. Such an application uses com-
puter vision techniques: object detection, classification of moving objects and
tracking of objects, etc. The main objective is to locate a known object in the image
in order to follow it up such as faces, people, hand gestures, cars, etc. The current
trend is to lighten the tasks performed by humans by integrating intelligence into
these systems. So in computer vision, the tracking of moving objects in a known or
unknown environment is commonly studied since the year 1970. Monitoring can be
a tool to give visual autonomy to robots. In this case, visual perception is a prereq-
uisite for action and requires learning to establish links between the causes and the
actions to be produced in response. Tracking objects can also automate repetitive
tasks. Such a monitoring system must be robust to the following real constraints:
variations in the lighting of the sequence, change in the pose of the object (front
view, profile view), change in scale (change in size of the object), change of
appearance, simultaneous movement of the camera and the object, partial and total
occlusions, or even the kinematics (for example the space-time constraints) and low
processing time (20 images/s). Our aim is to classify these methods efficiently in
order to highlight the advantages and disadvantages of each method. This will allow
us, later, to choose the most robust algorithm for an object tracking system. The
object tracking system uses the method of tracking the region of interest of the
object in a video sequence. Several points will be discussed, such as the pre-
treatment methods, the change of the object and its movement, the change of
appearance, the change of scale, and change of illumination. Then we will compare
the tracking results for the different video sequences analyzed and show the per-
formance of the implemented algorithm.

Tracking corresponds to the estimation of the location of the object in each of
the images in a video sequence, the camera and/or the object (face, man, hand,
animal, etc.) being able to be simultaneously in motion. The localization process is
based on the recognition of the object of interest from a set of visual characteristics
(color, shape, speed, etc.). Specifically, the purpose of an object tracking method is
to estimate, in each image of the sequence, the functions that are used in tracking
the object or objects present in the field of vision of the camera such as motion,
color, corners, outline, shape, and object view. In object tracking, the class, appear-
ance, scale, and/or location of the tracking region are predicted based on the for-
ward images and on the underlying model for state transitions. The state of the
object is generally represented by its location and its speed.

There are then three main stages in the analysis of the video sequence, the first
stage consists in carrying out the detection of moving objects. Then the step of
tracking these objects from one image to another and finally, we analyze the tracks
of objects to recognize their behavior. Many different techniques for tracking
objects have been proposed. The detection events and detection moving objects in
complex scenes is difficult to analyze due to camera noise and changing lighting
conditions. Each limitation must be overcome in order to avoid failure of the
tracking algorithm. In an object tracking algorithm, there are generally four steps:
detection, location, association, and trajectory estimation [1-3]. The algorithms are
composed by three important modules: block matching and meanshift, camshift,
Kalman filter. The Kalman filter is used in a wide range of technological fields. It is a
major theme in automation and frame and signal processing. The Kalman filter

46

Estimation for Motion in Tracking and Detection Objects with Kalman Filter
DOI: http://dx.doi.org/10.5772/intechopen.92863

“KF” is a set of mathematical equations which provide an efficient (recursive)
computation of the means for estimation the state of a process. The KF is very
powerful in several aspects: it supports estimates of past, present and even future
states and it can do so even when the exact nature of the modeled system tracking
and detection objects. The Kalman filter is a corrective predictor filter. In the
tracking system objects, this filter looks at an object as it moves, that is, it takes
information on the state of the object at the precise moment. Then, it uses this
information to predict where the object is in the next frame. For this, it takes as
input a measurement vector (position in x, in y, width and height of the object). In
the tracking process, this filter looks at an object as it moves, that is it takes
information on the state of the object at the precise moment. In the case of tracking
an object in motion, the Kalman filter allows us to estimate the states of motion of
the object (and therefore predetermine the areas of motion in the following frames
with using the combination for three algorithms (block-matching, Camshift and
Kalman Filter)) and thus adds robustness tracking objects. Many authors have
studied the Kalman filter in object tracking [1, 2]. In this work, we optimized many
criteria in image and video processing application. For example, we can site: time
execution, quality and performance in the image and video processing, artifact and
noise in a frame, etc., the data flow for Kalman Filter is presented in Figure 1.

2. Different methods of modeling an object

In a follow-up scenario, an object can be defined as anything that is of interest
for further analysis. For example people walking on a road, boats on the sea, fish
inside an aquarium, airplanes in the air, cars on the road, a motion hand or face,
motion for different objects and multi-objects, etc. It is a collection of objects that
may be important to track in a specific area or environment. The implementation of
an object tracking system involves designing two main parts, the object representa-
tion and the object location. The localization step is based on the representation
model of the object and its location in the previous frame. The representation
consists in associating with the object followed characteristics of shape and/or
appearance allowing to recognize it in successive frames. In recent studies, repre-
sentations by shape and appearances are classified into three families such as rep-
resentation by point clouds, representation by bounding boxes (representation by
geometric shapes) and representation by silhouettes. In what follows, we will
describe these methods as illustrated in Figure 2 [4-6].

The new posilioons

—

Prodiciion Carreelion

T

TniLial positions

Figure 1.
The data flow for a Kalman filter.

47

Dynamic Data Assimilation - Beating the Uncertainties

Object tracking

a ¥

|Outline and silhouettle

| Fxplicit | | Implicit |

Bounding window

|Probabilisti(i|S‘33uti5tiC | Direct |

|N0n—parametric | iParametrie |

Figure 2.
Object tracking methods.

1. What representation is appropriate for tracking objects?
2. What algorithm should be used?
3.How is the movement, appearance and shape of the object modeled?

Tracking of events and detection motion objects in complex scenes is difficult to
analyze due to camera noise and changing lighting conditions. Each limitation must
be overcome in order to avoid failure of the tracking algorithm. In an object track-
ing algorithm, there are generally four steps: object detection, location, association,
and trajectory estimation. We will be interested in this master’s work [1, 2, 7] to
study the different methods of representing objects in a video sequence.

2.1 Camshift algorithm

Camshift is an algorithm for tracking objects in real time (people, vehicles). It is
based on the colors developed in the video sequence. Camshift is based on the
average displacement algorithm (Meanshift). The calculation module is based on
iterations to reach convergence. Camshift take the HSV color space as a model with
the color tone component (Hue). This component is designed to calculate the
probability of the histogram of each image of the analyzed sequence. The size of the
original window was just large enough to fit most of the object inside of it. The
Camshift algorithm adjusts the size of the search window according to the move-
ment of the object analyzed with constant tint. Whereas, for a quick movement, the
follow-up can fall into the analysis of another object in the sequence. For this
reason, we choose at the beginning of the algorithm a threshold of color hue of the
object to ensure correct tracking. Once the mean displacement module converges,
the center of gravity and the zero order moment are calculated. Then we calculate
the new size, width and length of the search window. Then, the window is centered
around center of gravity and the calculation of the next image is started. Next, we
calculate the Camshift parameters such as the secondary moments, the orientation,
the width and the length of the window around the object’s center of gravity.
Figure 3 shows the flowchart of the Camshift algorithm for object tracking.

2.1.1 Calculation of Camshift parameters

With each iteration of the Camshift algorithm, the object search window will be
resized. To search for the new size, the search window obtained by the average dis-
placement algorithm is slightly enlarged to include the object. Then, the parameters of
the window must be adapted such as the width, the length and the center of gravity.
The term M00/255 is the normalized area since the zero order moment is calculated

48

Estimation for Motion in Tracking and Detection Objects with Kalman Filter
DOI: http://dx.doi.org/10.5772/intechopen.92863

Choose the size of the initial .
research window Frame in HSV

and the location

4

Color histogram

Set the processing region to _l_. search in the region

center of the search window of & treatment.

but. larger than search space. l

Probability distribution

image colar

A

Use (X, Y) to define the center of

L the search window, I
s :to define the size. Find the center
I of gravity in

the search window.

!

Center the search window
at the center of gravity and find|
Report X, Y, Z, the area

and orientation. Yes

No

Convergence?!

Figure 3.
Flowchart of the Camshift algorithm for object tracking.

from the probability distribution of the image which can have values from 0 to 255. The
search window adaptation parameters are computed in Egs. (1), (2) and (3) [1, 7].

MO0
s=2x 255 1)
W=1[12xs] (2)
Le = [(xc = (W(1)/2)) (ye — (W(2)/2))] 3)

We calculate the secondary moments using the Eqgs. (4), (5) and (6), orientation is
calculated by Eq. (7) and the length and width of the object search window (11) and (12).

M20 =" "x* x I(x,y) (4)
x)

MO02=>"> "y xI(x,y) (5)
x

M11 = sz x y x I(x,y) (6)
x Yy
2 X M11 xc X yc
o MO0 Y
areka <M20 x2> B (MOZ y2>
o MO0 ¢ MO0 ¢)
2
X b
arctan P
Qg=— a—c
2

49

Dynamic Data Assimilation - Beating the Uncertainties

M?20
a:M—OO—xf (8)
M11
b=2x (]w—OO—xC X)’c) (9)
c=2x <1\1\//II_(())3_%2> (10)
a+c)+/b*+ (a—c)?
| (ST "

w= (12)

2.2 Kalman filter
2.2.1 Definition

The Kalman filter is a set of mathematical equations which provide an efficient
(recursive) computation of the means for estimation the state of a process, so as to
minimize the mean of the quadratic error. The filter is very powerful in several
aspects: it supports estimates of past, present and even future states and it can do so
even when the exact nature of the modeled system is unknown. The filter allows,
thanks to its role, to correct and restrict the areas in which we seek movement in the
next step. We can see the quadratic error by Eq. (13).

Ey = Xkaiman — Xtracking (13)
2.2.2 Role of the Kalman filter in the tracking application

The Kalman filter is used in a wide range of technological. In the tracking and
detection process, this filter looks at an object as it moves, that is, it takes informa-
tion on the state of the object at the precise moment. Then, it uses this information
to predict where the object is in the next frame. For this, it takes as input a
measurement vector (position in x, in y, width and height of the object). Then it
acts on so-called internal parameters (position, speed and acceleration in x and y, as
well as the height, the width) to make a prediction and then an estimate of these.
Finally, the result is an estimate of the following measurement. In the case of
tracking an object in motion, the Kalman filter allows us to estimate the states of
motion of the object. Many authors have studied the Kalman filter in object tracking
[1, 8, 9], the differences of the present work and the earlier works are the type and
the method of objects tracking.

2.2.3 Formulation and modeling of the Kalman filter

The main objective of the Kalman filter is to estimate the vector of states in a
discrete time. This process is illustrated by Eq. (14) with stochastic linear
differences:

Xp = A X X1+ Wp1 (14)

With a measurement vector which has the following form (15):

50

Estimation for Motion in Tracking and Detection Objects with Kalman Filter
DOI: http://dx.doi.org/10.5772/intechopen.92863

2 = H X xp, + vy, (15)

A is the transition matrix and H presents the measurement matrix. Random
variables w;, and v;, present Gaussian and measurement noise (respectively). They
are assumed to be independent (from each other), the covariance of wy, is a matrix
Q (16), similarly the covariance of v}, is a matrix “R” (17).

p(we) ~N(0,Q) (16)
p(e) ~ N(O,R) (17)

The Matrix A models the movement of the object. The movement model used is
generally at constant speed or at constant acceleration. Since the movement of objects
is not uniform, this type of model is not suitable for describing all movements in
general. However, we assume that the object movements that we consider in the third
chapter have an adapted dynamic. In our case, we use the motion model with con-
stant acceleration, for tracking a point in two dimensions. The state vector is written:

Xp = (x,y,x,));jé;j}) (18)

where (x,y) is the position, (%,) presents the speed and (¥, 7) is the acceleration.
Note that in the object tracking application, the noise covariance matrices (Q, R),
the transition matrix A and the measurement matrix are assumed to be constant.
The variable parameters over time are the state vector and the measurement vector
since the position and size of the object changes during the sequence.

2.3 The origins of filter formulation

We define X, the estimation of a priori states at the moment k and we give
knowledge of the prior process at the moment k, and X}, the estimate of the state a
posteriori at the moment & which is given to the measurement vector z;, (15). We
can then define the a priori and a posteriori estimation errors by the following
Egs. (19) and (20).

€, =Xp —Xp, (19)
€ = X — .92‘]e (20)

The covariance of the a priori estimation error is illustrated by Eq. (21):
P, =E[e,¢,"] (1)

For computing statistics for the Kalman filter, we start with the goal of finding
an equation that computes an a posteriori state estimate as a linear combination of
an a priori estimate and a weighted difference between an actual measure gk and a
measurement prediction Hx;, as shown in the equation below (22):

X, =%, +K x (5, —H x %) (22)

The difference (z, — H x %) is called measurement innovation. This difference
reflects the difference between the predicted measurement and the actual mea-
surement. The K matrix of dimension # x in the previous equation (??), is chosen
to be the gain or the mixing factor which minimizes the covariance of the posterior
error. The gain of the Kalman filter is of the following form (23):

51

Dynamic Data Assimilation - Beating the Uncertainties

Ky =Py xH" x (Hx Py x H +R) ' (23)

The use of a Kalman filter then allows us to estimate the parameters for tracking
objects. However, the Kalman filter does not allow the moving element or these
parameters to be extracted in the frame. We will first propose a method for
detecting the moving object in the frame or video sequence. The fact that we used a
robust, reliable and precise tracking algorithm greatly helped us to extract the two
measurement and state vectors for the initialization of the Kalman filter (the inputs
of the Kalman filter).

3. Different function of the Kalman filter

The Kalman filter is an optimal recursive estimator to the linear filtering prob-
lem Data. This filter has two necessary modules, a prediction module and a correc-
tion or estimation module. The Kalman filter then makes it possible to estimate the
position of the object by achieving a compromise between the position observed in
the frame and the predicted position. The input parameters of the Kalman filter are
respectively, the position of the object in the frame at time “k,” the size of the object
and the width and length of the object search window which are variable due to the
mobility of the object during the sequence. These parameters represent the state
vector and the filter measurement vector from Kalman filter. From the works that
are studied in the literature [1, 4, 5], we chose the Kalman filter for estimating the
tracking parameters. Figure 4 shows the Kalman filter cycle [8-10]. Generally the
estimation of the tracking parameters with a Kalman filter is a process requires the
following steps: itemize.

The measure which consists in taking the tracking parameters computed in the
Camshift algorithm.

The estimate, which updates the position of the object.

The prediction, which computes the position of the object in the next frame.

The variable parameters of the Kalman filter are the state vector and the mea-
surement vector:

The state vector is composed by the initial position, the width and the length of
the search window as well as the center of gravity of the object (x.;y,) at time #.
This vector is presented by the following Eq. (24):

Sk = (k595 Was Lis Xe59,) (24)
T Parameter measurement
Initialisation))
of Camshift tracking
Prediction Correction -
J

Figure 4.
Kalman filter cycle.

52

Estimation for Motion in Tracking and Detection Objects with Kalman Filter
DOI: http://dx.doi.org/10.5772/intechopen.92863

The measurement vector of the Kalman filter is composed of the initial position,
the length and the width of the search window for the object at time ;. This vector
is given by the Eq. (25):

2k = (%3 Wis L) (25)

3.1 Process to estimate

«_”»
S

The Kalman filter estimates the state
modeled by the linear Eq. (26):

of a discrete process, this state is

Sk =A X Sp_1 +wp_1 (26)

With “A” (27) is the transition matrix, wy, is the process noise and d, represents
the difference between the two instants k and & — 1 (dt = 1).

1 0 dt 0 0 O
01 0 dt 0 O
0O 01 0 0O
A= (27)
0O 00 1 00O
0O 00 0 1 0
0O 0 0 0 01
* The measurement model is defined by the Eq. (28).
zr =H X 53, +vp (28)
With H (29) presents the measurement matrix:
1 0 0 0 0 O
01 00 0O
H= (29)
0 01 0 0 O
0 001 0O

The two vectors s, and 2, present the state and the measure at the moment k, N
is the integer vector. Process noise “wy_,” and measurement “v;” are assumed to be
independent of the state and measurement vectors and to the normal and white
distributions which are presented by Egs. (30) and (31) [9, 10]:

pw) ~N(0,Q) (30)
p(®) ~N(O,R) (31)

The noise process is of the following form (32):

1

(32)

Wr—1 =

R R R R PR

53

Dynamic Data Assimilation - Beating the Uncertainties

The measurement noise is presented by the dimension matrix (4 x 1) (33):

0.1
0.1
= 33
v 0 (33)

0

So the noise and measurement process covariances are deduced from w),_; and
i, by matrices (34) and (35):

100000

010000

001000
Q=10 001 0 0 (34)
000010

000001

01 0 0 0

(00100)

R = (35)
0 0 0

0 0 0

3.2 The update equations

Finally, the output equations for the two prediction and correction blocks of the
Kalman filter are:

* Prediction Egs. (36) and (37):
S, =A X5 (36)
P, =AxP, 1 xAT+Q (37)
¢ Correction Egs. (38), (39) and (40):

-1

K, =P, xH" x (HxP, x H' +R) (38)
Sp =5, + K x (Zk —H ><§k_) (39)
P, =P, —K;, xH x P} (40)

With K;, presents the gain of the Kalman filter at the moment &, §,, the state
estimated and predicted at the moment k and P, is the prediction covariance matrix
at time k. These three Egs. (38), (39) and (40) present the output parameters of the
Kalman filter. To verify the performance and results of the Kalman filter for esti-
mation the parameters of the object tracking system. We compared the state vector
values (xc, ¥, W,L,x, y) for the sequence video “Foreman,” computed for this
filter, with the state vector values obtained by the tracking algorithm. These values
are grouped in Table 1. It can be seen that the Kalman filter has good values of the
state vectors, very close to those obtained by tracking algorithm. This proves the
efficiency of the Kalman filter in the estimation of state vectors for tracking objects,
the same for measurement vectors.

54

Estimation for Motion in Tracking and Detection Objects with Kalman Filter
DOI: http://dx.doi.org/10.5772/intechopen.92863

NFr X vy W L X ¥y, XKF Vkr Wkr Lgr XcKF Yekr

2 52 63 58 71 87.35 91.50 69 53 53 63 87.19 91.49
10 55 67 58 71 90.62 96.41 69 55 55 67 89.80 95.68
15 5 68 58 71 90.05 96.93 55 69 55 68 89.58 96.81
25 54 65 58 71 89.52 94.20 56 65 69 56 90.04 93.27
35 54 55 58 71 89.18 83.92 55 55 69 55 89.28 83.72
45 48 56 58 71 8345 85.26 49 57 69 49 83.36 85.37
55 46 63 58 71 81.56 92.43 46 64 69 46 80.97 92.44
65 43 65 58 71 78.52 93.53 44 69 69 44 78.49 93.37
75 43 63 58 71 78.73 92.46 43 64 69 43 77.98 92.59
85 36 57 58 71 7141 85.59 37 57 69 37 71.03 85.34
99 38 62 58 71 7380 91.03 39 63 69 39 73.91 91.26

Table 1.

The vesults of the state vectors computed by the tracking algorithm (block-matching and Camshift) and the
Kalman filter.

Video Nbre Histogram Subtraction Skin color
Sequence Frames Calculation Background Detection
Execution time Execution time Execution time

Foreman 68 16.51 (s) X 5.21 (s)
Redcup 68 19.21 (s) X X

Afef 68 17.02 (s) x 10.58(s)
PETS2001(1) 68 43.54 (s) 36.56 (s) X
PETS2001(2) 68 47.83 (s) 43.29 (s) X

Table 2.

Precision values calculated for skin detection method and execution times.

The expression for the estimation error is presented by Eq. (41). We applied this
Eq. (41) for all the parameters of the state vectors (x, y, W, L, x., y,) of our
implemented algorithm for tracking object in a video sequence (Camshift algorithm
and Kalman filter algorithm):

Ey = XKaiman — X Camshift (41)

The results of estimation calculation of the tracking parameters with our
algorithm (Camshift and Kalman filter) that we obtain in the different test
sequence are given in Table 2.

We can see the two pre-treatment methods (background subtraction and skin
color detection) are the fastest and the histogram calculation method is the slowest.

4. The results for tracking and detection objects
The fundamental basis for estimating the parameters of tracking by the Kalman filter

consists in estimating the state vector s, and the measurement vector z;. These vectors
are calculated by the Camshift algorithm. The parameters of the vectors are the center of

55

Dynamic Data Assimilation - Beating the Uncertainties

Trajectory of face tracking with Camshift.

100~

80+

Y (pixels)

B0

40

20

T T T T T T

O {xey) with Camshift
Trajectory of center face e

Output position of center face

‘Initial position of center face

1 L 1 L L L 1

20 40 60 B0 100 120 140 160
X (pixels)

Trajectory of center face with Kalman Filter.

a0

Y (pixels)

B0

20

(xcye) with KF.
—— Trajectary of center face. Output position of center face

Initial position of center face

| L 1 | 1 1 |

Figure 5.

20 40 60 80 100 120 140 160
X (pixels)

The trajectory of the gravity center of the face corrected by the Kalman filter.

gravity of the object (., y,), the position in each image (x, y) and the width and length of
the search window (L, W). Figure 4 shows the trajectory of the gravity center of the face
estimated by the Kalman filter. We can see other results in our publications [1-3], there
are presents the prediction and correction of trajectory of an different objects (human,

car, glass, mono and multi-objects) in different environments (Figure 5).

We can see another correction of trajectory of car (in too sequences video) in

Figure 6.

5. Results discussion

During the test sequences generated with the different pre-processing methods,
we can conclude that object tracking differs from one object to another (a human

56

Estimation for Motion in Tracking and Detection Objects with Kalman Filter
DOI: http://dx.doi.org/10.5772/intechopen.92863

Trajectory of center car with Kalan fiter.
T T T

T
500 - b
* e ye) with Kalrman Filter
400 trajectary of certer car B
=
2300+ .
[¥ 5086
= Y2275
200 g q
100 _M/*/ ¥:503.3 -
Y1286
¥ 4184
¥:85.45
0 1 I 1 1 1 I I
0 100 200 300 400 500 600 700
K (pixels)

Trajectory of center white car with Kalman filter.
T T T

T T T
500 # (e, ycy with Kalman Filter |
trajectory of centerwhite car
R 4922
400 - V374 q
. X233
= a0 - ¥ 3596 i
£
-
200 q
100 q
] 1 1 1 I I 1 1
0 100 200 300 400 s00 G000 700

X (Pixels)

Figure 6.
The trajectory of the gravity center of the face corrected by the Kalman filter.

being, a face, a hand, a glass, a car) and that several parameters can influence the
monitoring result.

The experimental results obtained indicate that our algorithm (Camshift and the
Kalman filter) gives superior results, in terms of precision, reliability and execution
time, in comparison with the various methods presented in the literature (for
example the KLT (Kanade Lucas Tomasi) algorithm and the classifier algorithm
(Adaboost and SVM) [1-3, 7]). In particular, the use of several preprocessing
methods to detect the object in each frame of the sequence. The results of the
implemented algorithms are the meanshift displacement algorithm and block-
matching, the Camshift algorithm and the Kalman filter, this combination for the
this algorithms give a robust, precise, reliable and fast algorithm.

Evaluating the performance of a mobile object tracking system in a video
sequence is a complex task which requires the definition of metrics bringing into
play concepts specific to video analysis, such as time persistence, precision and
execution time for example.

57

Dynamic Data Assimilation - Beating the Uncertainties

6. Conclusions

The detection and tracking of objects in a sequence of images or video is a topical
need for several applications such as video conferencing, video indexing and espe-
cially video surveillance. Computer vision with a Human Interface Machine “HIM”
is therefore an issue actively studied in many domains, especially since the prices of
acquisition and processing equipment have become more attractive. This is an area
that touches on everything, starting from the problems of acquisition with different
linked effects and where the originality of simple ideas can still bring a lot. In this
chapter, we introduced the Kalman filter algorithm for tracking and detection
objects and multi-objects. Localization, target tracking, and detection objects were
provided as examples for reader’s better understanding of practical usage of the
Kalman filters. We proceeded to the implementation of the different modules of
object tracking algorithm through the estimation of calculation parameters using a
Kalman filter. The results obtained make it possible to meet the monitoring
requirements of several video surveillance applications. On the one hand, the local-
ization precision achieved by our system makes it a standard module for detection
or identification or object tracking systems. On the other hand, a flow at a fre-
quency of 20 frames per second was considered, which is reasonable for an object
tracking system with a minimum execution time. The tracking algorithm with its
different modules must be tested with other video sequences. Although the imple-
mentation of monitoring systems has certain weaknesses, our method has given
promising results. Many avenues can be envisaged to continue this work. First of all,
note that we tested the algorithm implemented for tracking two objects (a car and a
pedestrian in the sequence of “PETS 2001 (1)” and two cars in the sequence of
“PETS 2001 (2)”), and it can be applied for tracking multiple objects in a video
sequence. Then, use the detection algorithm based on Adaboost classifiers upstream
of the tracking algorithm (Camshift and Kalman filter). The association of these two
modules is based on a cascade of Adaboost classifiers, improves the calculation time
and improves the quality of tracking of one or more objects in a sequence of images
or video. Then, validation of the detection and tracking system for faces and other
objects (pedestrians, cars, hand gestures, glass, etc.) on an FPGA target platform
(Saber-Lite with ARM-Cortex-A9MP). Our solution optimize the time of execution
and other criteria in frame and video processing. In future, we intend to extensively
evaluate the method quantitatively so that it can be well tested before trying on
computer vision practice.

58

Estimation for Motion in Tracking and Detection Objects with Kalman Filter
DOI: http://dx.doi.org/10.5772 /intechopen.92863

Author details
Afef Salhi™, Fahmi Ghozzi*?> and Ahmed Fakhfakh?

1 Digital Research Center of SFAX (CRNS), Laboratory of Technology for Smart
Systems (LT2S), Sfax, Tunisia

2 ENET’COM, University of Sfax, Sfax, Tunisia

*Address all correspondence to: salhiafefge@gmail.com; afef.salhi.ge@enis.tn

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

59

Dynamic Data Assimilation - Beating the Uncertainties

References

[1] Salhi A, Moresly Y, Ghozzi F,
Yengui A, Fakhfakh A. Modeling from
an object and multi-object tracking
system. In: 2016 Global Summit on
Computer Information Technology
(GSCIT); 16-18 July 2016. Vol. 1.
Sousse-Tunisia; 2016. pp. 80-85

[2] Salhi A, Moresly Y, Ghozzi F,
Fakhfakh A. Face detection and tracking
system with block-matching, Meanshift
and Camshift algorithms and Kalman
filter. In: 18th International Conference
on Sciences and Techniques of Automatic
Control Computer Engineering; 21-23
December 2017. Monastir-Tunisia: IEEE;
2017. pp. 139-145

[3] Salhi A, Ghozzi F, Fakhfakh A.
Toward a methodology for object
tracking system in computer vision. In:
14 th Tunisia-Japan Symposium on
Science, Society Technology
TJASSST’17; 24-26 November 2017.
Gammarth-Tunisia; 2017. pp. 185-187

[4] Nor Nadirah AA, Mostafah YM,
Shafie AW, Zainuddin NA,

Rashidan MA. Features-based moving
objects tracking for smart video
surveillances: A review. International

Journal on Artificial Intelligence Tools.
2018;27(2):1830001

[5] Chavda HK, Dhamecha M. Moving
object tracking using PTZ camera in
video surveillance system. In:
International Conference on Energy,
Communication, Data Analytics and
Soft Computing (ICECDS-2017). IEEE;
2017. pp. 263-266

[6] Mueller TM, Karasev P, Kolesov I,
Tannenbaum A. Optical flow estimation
for flame detection in videos. In: IEEE
Transactions on Image Processing. Vol.
22.2013. pp. 1-6

[7] Salhi A. Study and implementation a

system tracking and detection objects in
video sequence. In: 2011 at National

60

Engineering School of Sfax “ENIS”.
Sfax-Tunisia; 21 July 2011. pp. 1-100

[8] Deepak P, Krishnakumar S, Suresh S.
Human recognition for surveillance
systems using bounding box. In:
International Conference on
Contemporary Computing and
Informatics Conference (IC3I). IEEE;
2014. pp. 852-856

[9] Sakai Y, Oda T, Ikeda M, Barolli L.
An object tracking system based on SIFT
and SURF feature extraction methods.
In: 18th International Conference on
Network-Based Information Systems
(ICN-BIS), 978-1-4799-9942-2/15-CPS.
IEEE; 2015. pp. 561-565. DOI: 10.1109/
NBiS.2015.121

[10]DuD, Qi Y, YuH, Yang Y, Duan K,
Lu G, et al. The Unmanned Aerial
Vehicle Benchmark: Object Detection
and Tracking. Switzerland: Springer
Nature; 2018. p. 375391. DOI: 10.1007/
978-3-030-01249-623

Chapter 5

Kalman Filtering Applied to
Induction Motor State Estimation

Yassine Zahvraoui and Mohamed Akhervaz

Abstract

This chapter presents a full definition and explanation of Kalman filtering the-
ory, precisely the filter stochastic algorithm. After the definition, a concrete exam-
ple of application is explained. The simulated example concerns an extended
Kalman filter applied to machine state and speed estimation. A full observation of
an induction motor state variables and mechanical speed will be presented and
discussed in details. A comparison between extended Kalman filtering and adaptive
Luenberger state observation will be highlighted and discussed in detail with many
figures. In conclusion, the chapter is ended by listing the Kalman filtering main
advantages and recent advances in the scientific literature.

Keywords: Kalman filtering, stochastic algorithm, non-linear discrete system,
state variables estimation, standard Kalman filter, extended Kalman filter

1. Introduction

Kalman filtering is an algorithm that employs a series of observations over time,
containing noise and other inaccuracies, and generates approximations of unknown
variables that tend to be more accurate than those based on a single measurement
alone, by estimating a joint probability distribution over the variables for each time-
frame, as in [1].

The Kalman filter is a state observer which detects the presence of measurement
noises as well as uncertainties about an unknown dynamic state system, this system
is generally assimilated to state noise by stochastic algorithms tending to minimise
the variance of the estimation error, as described in [2].

The Kalman filter is suitable for recursive linear filtering of discrete data. It
provides an estimation of a state vector or a parameter and its error covariance and
variance matrix that contain information about the accuracy of its state variables, as
in [3]. The natural presence of noise when an induction machine is driven by an
inverter represents a strong argument for the choice of this kind of observers. Its
characteristics will relate to the observation of the speed and the components of the
rotor fluxes. The only needed measurements are the stator currents. Some state
variables will be provided directly by the control law. Thus, the stator voltages will
be considered as inputs for the filter. Table 1 shows a technical comparison between
the adaptive observer and the stochastic filter.

61 IntechOpen

Dynamic Data Assimilation - Beating the Uncertainties

Technical comparison

Features Adaptive Luenberger Observer Extended Kalman Filter
Response time Very well Very well

Tracking error Little Very little

Torque ripples Very high Medium

Robustness Robust Very robust

Noise sensitivity Very sensitive Not sensitive

*The comparison is based on the obtained results.

Table 1.
Comparison between ALO and EKF.

2. Induction motor parts, features and mathematical model
2.1 Induction motor parts and features

Induction motors are the most commonly used electrical machines, they are
cheaper, rugged and easier to maintain compared to other alternatives. It has two
main parts: stator and rotor, stator is a stationary part and rotor is the rotating part.
Stator is made by stacking thin slotted highly permeable steel lamination inside a
steel or cast iron frame, winding passes through slots of stator. When a three phase
AC current passes through it, something very interesting happens. It produces a
rotating magnetic field, the speed of rotation of a magnetic field is known as
synchronous speed.

It is called an induction motor because electricity is inducted in rotor by mag-
netic induction rather than direct electric connection. To collapse such electric
magnetic induction, to aid such electromagnetic induction, insulated iron core
lamina are packed inside the rotor, such small slices of iron make sure that Eddy
current losses are minimal. And this is another big advantage of three phase induc-
tion motors.

The parts of a squirrel cage induction motor are shown in Figure 1.

eoscling end lifting

- A - o
. — nameplate
3 & = "ﬁ"-.‘_z /,;t..nur coils
E‘—-—ﬁ by ‘ bearing seal
g h — =
&5 L

" / '».3(& - t aE— V
o g o «‘-ﬁ@..l \\}é =ullt> o

—

east-iron sage ball bearing ™
frame rotar —

Figure 1.
Squirrel cage induction motor parts.

2.2 Induction motor mathematical model

The induction motor has many state space mathematical models; each model is
expressed by assuming a certain state vector. The modelling of AC machines is based
mainly on the work of G. Kron, who gave birth to the concept of generalised machine
as described in [4]. Park’s model is a special case of this concept. It is often used for
the synthesis of control laws and estimators. Described by a non-linear algebra-
differential system, Park’s model reflects the dynamic behaviour of the electrical and
electromagnetic modes of the asynchronous machine. It admits several classes of state

62

Kalman Filtering Applied to Induction Motor State Estimation
DOI: http://dx.doi.org/10.5772/intechopen.92871

representations. These model classes depend directly on the control objectives
(torque, speed, position), the nature of the power source of the work repository and
the choice of state vector components (flux or currents, stator or rotor).

In this chapter, the mathematical model of the machine in use is described in the
stator fixed reference frame (a, §) (stationary frame) by assuming the stator
currents and the rotor fluxes as state variables:

{X:AX+BU @

Y=CX

Where X, U and Y are the state vector, the input vector and the output vector,
respectively:

X = [isa is/} d’m ¢rﬂ]t§ U= [usa us/}]t; Y= [isa is/i]t (2)
_ © -
-2 0 T Ko, 1
0 -2 -K K oLs
A TRe 1 1000
Ln o 1 _, oL, 0100
T, T, " 0 0
L 1 0
R A S
(3)
With:
R, 1-o¢ 1-0 L2 L,
A= — K= s0=1— 2T, =—. 4
oL | o, oL, "’ L.L, R,)

The rotor motion is expressed by:

aQ,
= Ton = TL~f.©, (5)

Where] is the motor inertia, T,,, is the electromagnetic torque, T7, is the load
torque, and f is the friction coefficient.
Figure 2 shows the state space mathematical model of an induction motor.

Figure 2.
Induction motor state space mathematical model.

3. Standard Kalman filter
In this chapter, the process to be observed is an induction motor. Its state is

composed of stator currents and rotor fluxes in a-f reference frame, the motor
model and its components are shown in Figure 3. The motor model is defined by a

63

Dynamic Data Assimilation - Beating the Uncertainties

um] | Booo—y ¥, 2B T W

i
o I R
28 | Y, = Cp X+ ¥, bep

Machine input i Machine output

Uy =

sa
Stator voltage components i ; Stator current components
sg | Machine state
X, =| ¢,.q| Stator currentand
rotor flux components
@

@y

Figure 3.
Induction motor model with input, state and output components.

discrete time linear state model composed of two additional terms for taking into
account discrete state noise W), and discrete state measurement V.

{XkJrl:Ad'Xk—FBd'Uk—FWk)

Y. =C;- X, +V,

The addition of noise is necessary, since the noise-free equations (deterministic
model) define an ideal system. A more realistic model (stochastic model) is
obtained by adding the noise vectors. Some assumptions are made about discrete
noises: they are white, Gaussian, their average is zero and they are correlated
neither with each other nor with the state variables. These properties derive the
following equations:

E{W:} = 0;E{Vi} = 0;E{W - W'} = Q;E{V - V'} =R @)
E{W, -V, } = GE{W, X} ,} = 0;E{V}-X} .} =0 (8)

E represents the expectation value operator.

The implementation of the Kalman filter algorithm requires two phases, the first
one is a prediction phase which consists in determining the prediction vector X1,
from the process state equations and also the previous values of the estimated states
Xpe at time k. In addition, the predicted state covariance matrix P is also obtained
before the new measurements are made, for this purpose the mathematical model
and also the covariance matrix Q of the system are used.

Xyt = Ag - Xppe + By - Up 9)
Priae = Ag - Prpe - A +Q (10)

The second phase then consists of the correction. It consists in correcting the
prediction vector by the measurement vector by adding a correction term K -

Uk »l X{-+1 :A,{.X‘- + Bd.u;\. + W;— bYk
Yg— = C;.Xk + V};
Process
+
e

Kalman filter _y N
» }:{k.q :Ad.Xk+B‘j‘uk+W,(_—+K.(Yk—?]()_ Y
Yk = Cff.X;\- + Vk - —b}fk

Figure 4.
Standard Kalman filter principle.

64

Kalman Filtering Applied to Induction Motor State Estimation
DOI: http://dx.doi.org/10.5772/intechopen.92871

(Y — f/) to the predicted states X}, 1, obtained in the first phase. This correction
term is a weighted difference between the actual output vector Y and the predicted
output vector Y. Thus, the predicted state estimate and also its covariance matrix
are corrected by a feedback correction system to obtain the estimate of the state
vector X}, 1) at the present moment k + 1. Figure 4 below shows the principle of
the standard Kalman filter.

1
Kii1="Prsp - Cy - [Ca - Peyape - Cy + R] (11)
Xiertper1 = Xprae + Key1 - [Yk+1 - Cy 'Xk+1|k] (12)
Priapes1 = Prrape — Kiera - Ca - Prsape (13)

Where K denotes the gain matrix of the Kalman filter, P is the estimation error
covariance matrix, Q and R are, respectively, the covariance matrices of the state
and the measurement noises. The gain matrix K is chosen so as to minimise the
variance of the estimation error. This minimization will focus on the diagonal
elements of the estimation matrix. Thus, the Kalman filter algorithm uses on one
hand the knowledge of the process to predict the state vector, and on other hand the
actual measurements to correct the predicted vector. The standard Kalman filter
previously described allows estimation of the state of a linear system. If we want to
estimate an additional parameter outside the state vector, as the rotational speed of
an induction motor, one solution is to extend the estimated state vector to the speed
of rotation. The model then becomes non-linear and in this case, the extended
Kalman filter is required.

4, The extended Kalman filter

The extended Kalman filter performs an estimation of the state of a non-linear
process. It allows in particular to add, to the state vector, another variable that we
wish to estimate. This filter is widely used for estimating the various quantities of
the induction machine, such as: rotor speed, load torque, electrical and mechanical
parameters. Given that the extended Kalman filter is only the application of the
standard Kalman filter previously described in the case of a non-linear system, it is
then necessary to perform a linearization of this system at each step around the
operating point defined in the previous step. Let the non-linear model of the system
to be observed defined by the following equation of state:

X€k+1 :f(Xeka Uk) + Wk

(14)
Y =h(X.,)+ Vp

Such as:
X, = [Xe Of. (15)

Where f and % are non-linear functions, X,, designates the extended state vector,
X}, and @y, are considered, respectively, as the main state vector and the parameter
vector (composed of parameters and unknown inputs to be estimated). These
parameters vary very little with respect to other quantities, for that reason we put
O+1 = O. The following discrete augmented state model is constructed:

65

Dynamic Data Assimilation - Beating the Uncertainties

Xe1] [Aa O[Xe By
{&m}[o IHGkh[o}Uﬁw’e (e
Y, = [C, o][x’“}rvk 17)
Oy,

Ag, By and C; are, respectively, the state, the input and the discrete output
matrices. I is the identity matrix.

The implementation of the extended Kalman filter algorithm to the discrete non-
linear system requires the execution of the following steps:

* Initialization of the states Xoo, the parameters ®¢jo and the covariance
matrices Pojo, Q and R

* Prediction of the states and the parameters
Xiev1je = Aa - Xipe +Ba - U (18)
Or1)k = Ok (19)
¢ Prediction of error covariance matrix

Priap = Fp - P - Fi, +Q (20)
F}, is the gradient matrix defined as follows:

pk:M _ |Aa 36 (Aa-Xip + Ba - Up)
aXeIe X"k\k O I

Ok (21)

* Calculation of Kalman gain
Kjo1 = Perape - Hy + [Hi - Pesyp - Hy +R] (22)

Hj, is the gradient matrix defined as follows:

oh(X.,)
0X,,

_ Ca ﬁ(cd'xkue)
Xewp 0 I

Hj, =

Ope (23)

* Estimation of the states and the parameters

[Xk+llk+1] i [Xkﬂlk

] + Kpes1 - [Yie1 — Ca - Xerape) (24)
O 1jk+1

k-+1lk
¢ Estimate of the error covariance matrix
Priaper1 = Prgape — K1 - K - Pryage (25)

* Update matrices at instantk =k + 1

66

Kalman Filtering Applied to Induction Motor State Estimation
DOI: http://dx.doi.org/10.5772/intechopen.92871

Xiele = X1l 1
O = Opy1jkt1 (26)

Prp = Priajera

5. Application to the estimation of induction machine speed and flux
5.1 Induction machine extended model

The continuous model of the induction machine extended to the electrical
rotational speed is represented by a non-linear system of state equations:

X (1) =f(X.(2), U(t)) = A-X(t) + B- U(2)
(27)
Y(t) = h(X.(t) = C- X,
In which:

X, =X @]t = [im ipg g ¢r/3 wr]t Y = [is i:ﬂ]tU = [Usa u:ﬂ]t (28)

With:
_—y 0 L U+ w, 0]
T, . :
0
0 —y —pu-w L oLy
T, 1
0
A= |Ln 1 B= oL (29)
— 0 1-=— -, O
T, T, “ 0 0
L 1 0 0
0o = W, — 0
T, T, L O 0
L0 O 0 0 0]

5.2 Discretization of the continuous model

The previous model of the induction machine must be discretized for the imple-
mentation of the extended Kalman filter. If quasi-constant control voltages are
assumed over a sampling period T as in [5], the discrete augmented state model can
be approximated by:

Xop =f (Xep, Up) = Ag - X, + By - Uy,
(30)
Yi =h(X,) = Cq- X,

The matrices of this model are obtained by a limited development in Taylor
series of order one:

Ag~e* T =1+A -T;B;=B-T;Cy=C- (31)

This leads to:

67

Dynamic Data Assimilation - Beating the Uncertainties

(1-T, .y 0 .. 2 Toouaw 0]])]

T T, — 0

0 1-To-y ~Ts 4w, TS-% 0 0L .

A L T, ' B 0 Ts- L
A= | 7. .=2m 0 1- =% _T.. 0|3Pa= 0Ly

T, T, @ 0 0

L T

0 T, 2" T, 1-2% 0 0 0

r Tr 0 0
L0 0 0 0 1) - -
(32)

5.3 Implementation of the extended Kalman filter to the induction machine
discrete system

The application of the extended Kalman filter to the discrete system of the
induction machine, taking into account the presence of state noise W and
measurement noise V. This leads to the following expressions:

Xopo =f (Xew Ur) + Wi = Ag - X, + By - U + W, (33)
Y, Zh(Xek) +V,=Cy -Xek + Vi
With:
Xoo = (X Okls Vi = [, i]'s U= [th, s, s Wi = [Wy, W,
(34)
Similarly, the linearization matrix Hj, is written as follows:
H — 1 0 0 0O (35)
*“lo1 000

In the determination of the initial covariance matrix Py, it is generally limited
to the choice of elements on the diagonal. These elements are chosen in such a way
that they correspond to the uncertainty about estimates of initial state variables.

5.3.1 Choice of covariance matrices Q and R

It is via these matrices that the various measured, predicted and estimated states
will pass. Their goals are to minimise the errors associated with approximate model-
ling and the presence of noise on the measurements. This is the most difficult point of
applying the Kalman filter to observation. The matrix Q linked to the noises tainting
the state, allows adjusting the estimated quality of the modelling and discretization. A
strong value of Q gives a high value of the gain K stimulating the importance of the
modelling and the dynamics of the filter. A high value of Q can, however, create an
instability of the observation. The matrix R regulates the weight of the measure-
ments. A high value indicates a great uncertainty of the measurement. On the other
hand, a low value makes it possible to give a significant weight to the measurement.

5.3.2 The refevence vecursive recipe (RRR) method for the EKF

We can consider the choice of the Kalman filter calibration matrices Q and R, as

well as the initial values of the estimated state vector X,,, and the matrix Py, as

68

Kalman Filtering Applied to Induction Motor State Estimation
DOI: http://dx.doi.org/10.5772/intechopen.92871

degrees of freedom of the Kalman filter. The following steps explain the recursive or
iterative RRR algorithm for the EKF [6]:

* Given the system model and the measurements, the first filter pass through the
data of EKF is carried out using guess values of X, Pojo, ®, R and Q.

* The RTS smoother is used backwards to get smoothed state and covariance
estimates.

* If X,,, is unknown, then the smoothed state values can be used as the initial

state values.

* The estimated smoothed Py is scaled up by the number of time points N and
further all elements except the diagonal terms corresponding to the parameters
are set to zero. Due to the effect of statistical percolation effect, the estimated R
and Q will in general be full. But, only the diagonal terms in Q need to be used
in the basic state equations and not in the parameter states. Only the diagonal
terms in R need to be used in the measurement equations. These are
summarised as below. The quadrant on the upper left denotes the state, the
bottom right the parameter states, and the others the cross terms.

T 0 0 0 07
010 00
Xeo=[0 0 0 0 O0]5Pgo=|0 0 1 0 0]; (36)
0 00 10
LO O O 0 1]
(g, 0 0 0 07
0 g, 0 0 O
1"110
Q=10 0 45 0 O 5R—[} (37)
07’22
0 0 0 q O
(0 0 0 0 g

* Then, the filter is run again using the above updates of Xegos Pojos ©, Q and R
till statistical equilibrium is reached.

Figure 5 illustrates the state space mathematical model of the observer.

5.3.3 Simulation results

In this section, an extended Kalman filter is implemented in an induction motor
vector control scheme. The EKF is designed to observe the motor states: the d-q
stator phase current components iy, 74, the d-q rotor flux components ¢,,, ¢,, and
the mechanical speed w,. The control law and the observer are implemented in
MatLab/Simulink software. A load torque of +10 N - m is applied at t;=0.6s and
removed at £,=1.6s in order to show the system robustness against the external
perturbation. Table A1 lists the parameters of the machine used in simulation.

The torque reference T,,, is generated by the speed controller, while the stator
voltage references V; and V are generated by the stator current controllers.

69

Dynamic Data Assimilation - Beating the Uncertainties

iU - s X IT X e Y !
ay SN i [y I g
i Motor A i
I + i
i Observer yT\ @ i

Figure 5.

120 T T T T T T T T 120 T T T T T T T

=
=

sy g

@
=

i
refersnce

il
artual

—

)
=

1
“nbigzri

Machanical spaod {radis)
&

Mechanical speead {rad’s)

15}
=

Tima (s) Tima (s)

Figure 6.
Speed vesponse.

The observed speed ©, and rotor flux ¢, are served for speed and flux regulators
[7, 8]. The coordinate transformation generates the abc components needed by the
PWM modulator.

The slip frequency is delivered by an integrator, this slip is the most important
parameter for the indirect vector schemes. it depends on the observed rotor flux
generated by the EKF observer.

Figures 6-19 illustrate a performance comparison between the two observers:
EKF in the left and ALO in the right. Figure 7 shows the speed response according
to the step speed reference of +100 rad /s. Both observers show good dynamic at
starting up and the speed regulation loop rejects the applied load disturbance
quickly. The two observers kept the same fast speed response since the same PI
speed controller is used for both speed loops, there is no difference in the transient
response. The system response time is very quick and does not exceed 0.2s, the
sufficient time to achieve the permanent regime.

Figure 8 shows the rotor flux response, it achieves the reference which is 1 Wb
very quickly. Even the step speed reference starts at 0.2 s, the rotor flux response is
independent to the speed application. It must reach the reference very rapidly at the
starting up. Then, Figure 9 shows the torque responses with the load application. At

70

Kalman Filtering Applied to Induction Motor State Estimation
DOI: http://dx.doi.org/10.5772 /intechopen.92871

12 T T T T T T 12 T T T T T T T
1 1
0.8 —_ 4 nE -]
ralbps

rafwrenzy

= =)
2 2 ey
= = “
= 08 - ER ohazrond 1
£ g
=) <
55 -
a4 . 04 1
02 . 0z - 1
o 0z a4 a8 03 4 1z 44 48 18 2 nooaz a4 @ 08 1 42 14 1B 18 2
Time (s) Timz (s}
Figure 7.
Rotor flux response.
a0 ——— ——— a0 T T — T T T
707 . o
5 ED[1 5 60
B =S
T S0T . T 50
2 =
=3 =
£ anr B £ a
o s
2 4 L.
g g
£ =
S zor . €
T g
g g
Wonr q Yoo
o oz o4 08 03 1 12 44 48 18 2 0oaz a4 88 08 1 13 414 1B 1§ 2
Time (s) Timz (s}
Figure 8.
Electromagnetic torque response.
0 T T 40 T . — T . '
—i
e
o | 1 an E—
he
s i
20 —i,| 1 20 =
% 1 1 2 1
; 5 I TR A o A AL AT A T 1 o E . H“‘I- CHE I L S e b
: i MU S 0 L : |I|||.|n i - Rl
g | 2
o o
&0 . -20 1
30 . 30 1
a0 L ‘ ‘ L ‘ a0 . ‘ . M . ‘ . .
0 02z 04 06 08 1 1z 14 16 18 2 0 0z 04 05 08 1 12 14 15 18 2
Time (s) Tima (s}
Figure 9.

Stator phase currents response.

71

Dynamic Data Assimilation - Beating the Uncertainties

=

n
]
=

.
[=3
1
&

=
5l
1

a0 1

ra ©
o =]
1 L

Stator d-current {A}
e
=3

Stator d-current (A}

o
L

=]
1

Time (s) Time (s)

Figure 10.
iqs curvent response.

&

b
5
.
&
]
&

o
&
T
)
&

oW
=]
T T
1 1
[CR I
ST T

o
T
L

Stator g-current (A}
5
Stator g-current (A}
=

=)
T
1

=]

5 I | | I I | | I L 3
o 32 04 06 08 | 12 14 18 18 2 102 04 06 08 1 12 14 16 18 2
Time (s} Time (=)
Figure 11.
iq: current response.
2 T T T T T T T 12 T T T T T T T
1 '(7 s
08 1
- Za — 08 1
a o &
2 ——] :
== 08 Ao 1 b3 r‘I.ﬂr
S E _
= = 0B .
= =l
5o 1 =
5} 5}
i T g]
0z 1
ok] u .
e . . L L L , ' L L a ' , L , . L L L .
G Q2 04 0B OB 1 12 e 15 18 2 C Q2 94 03 08 12 14 18 18 2
Time (=i Time (=)
Figure 12.

@y flux response.

72

Kalman Filtering Applied to Induction Motor State Estimation
DOI: http://dx.doi.org/10.5772/intechopen.92871

gl ap-d
2y 10 T T T T T T I I ir 0 T T T T T T T
1r [oA0 o
o . o J
) o)
= = Yy
Tt 1 T st o
2 =2 LT
ol -
=a L=
R} BT
=} =}
s [l
-3 b -1.5
4 2
. A S I N N N S S s
o nz 0.4 Ce neg 1 12 1.4 16 1.2 2 n
Time {s}
Figure 13.
hgr flux response.
004
LKLY
naz
na
= w
5 3
g g o
E E
L1 L
=l m
i 9 ez
=% o
(9] 9]
s
o5 f 064
s
; S S S S S S N .
0 0z 04 0.8 0.8 1 2 4 18 1.8 2
lime (s}
Figure 14.
Mechanical speed error.
Lk 3
1 : — ospll———— — —
o \T 1 a
q4F 4
P . DE
e fal
a .
5 o
[] @
] =
3 E
= =157
£ 1 £
== ‘=
2
i 4
st | 25F
- e S S S S S 5 e T S SO S S
4] 02 n4 [¢K:] 0.8 1 12 14 1.6 18 2 8 [04 n& iR} 1 1.2 1.4 15 1.8
Time {s} Tima (s}
Figure 15.

Rotor flux error.

73

Dynamic Data Assimilation - Beating the Uncertainties

b — . r r r r . .
< £
g g
@]
= =
8 &
s =
Q &}
Of ne 1 1.2 1.4 1R 18 7 o o7 04 0g ne 1 17 14 1E 1.8 K
Time {5} Tirme {s}
Figure 16.
145 component error.
Jog T T T T T T T T T
i i
LY ot P
amf
J03f
< =
=Y =
2 3
g 2
D o1 T
] =
@ &
ER =
&) L&)
-DO01 |
002
003 F
o4 1| I ! ! ! ! I]

Time {5} Tirme s}

Figure 17.
igs COmponent ervor.

[Mux error (Why)
&
Flux error (Why

Time {s) Time {s)

Figure 18.
¢4, component ervor.

the beginning, the speed controller operates the system at the physical limit since
the step reference is the hardest for most control processes.

Until now, no apparent difference in the performance of the two observers,
Figures 11-19 will reveal this difference. Figures 11 and 12 illustrate, respectively,
the observed stator current components i, and i,;. We can notice clearly the

74

Kalman Filtering Applied to Induction Motor State Estimation
DOI: http://dx.doi.org/10.5772/intechopen.92871

PRI L

Mux error (Why)
Flux error (Why

Time {g) Time {s)

Figure 19.
&g cOmponent ervor.

superiority of the EKF, no fluctuations seen around the reference. EKF uses a series
of measurements containing noise and other inaccuracies contrary to ALO that
employs only free noise measurements. Figures 13 and 14 illustrate, respectively,
the observed rotor flux components ¢,, and ¢,,. No fluctuations seen around the
reference for both observers, only a small static error of observation. Finally,
Figures 15-19 illustrate the static error of all the observed components: the machine
state parameters, the rotor flux and the mechanical speed.

All the quantities observed by the EKF are filtered and precise, the EKF is a very
good observer for the systems that present any kind of noise. It will exploit the noise
in order to estimate the quantity. The process of observation of the EKF is given in
two stages, prediction and filtering. The prediction stage is aimed to obtain the next
predicted states and predicted state-error covariance, while in the filtering stage,
the next estimated states is obtained as the sum of the next predicted states and a
correction term.

6. Conclusions

All the closed-loop observers are classified as deterministic observers, they can
be easily corrupted by measuring noise and require parameter adaptation algo-
rithms. The Kalman filter observer has high convergence rate and good disturbance
rejection, which can take into account the model uncertainties, random distur-
bances, computational inaccuracies and measurement errors. These properties
are the advantages of extended Kalman filters over other estimation methods.

For these reasons, it had wide application in sensorless control in spite of its
computational complexity. For non-linear problems Kalman filtering can
overcome this difficulty by using a linearized approximation, where, the stochastic
continuous time system must be expressed in the discrete form in order to fit with
the structure of the EKF. The process of observation of the EKF is given in two
stages, prediction and filtering. The prediction stage is aimed to obtain the next
predicted states and predicted state-error covariance, while in the filtering stage,
the next estimated states is obtained as the sum of the next predicted states and a
correction term.

However, the high degree of complexity of EKF structure and the high system
orders cause a higher computational requirement (the sampling time). Thus,

75

Dynamic Data Assimilation - Beating the Uncertainties

additional challenges and problems are introduced, such as the reduction of
dynamic performance and the increase of harmonics. Nevertheless, the develop-
ment of new processors technology (DSPs and FPGA) solves this problem due to
the powerful calculations processing.

Recently, different works have been conducted to improve the effectiveness and
the performance of the sensorless EKF for IM drive control. A bi-input EKF esti-
mator, which deals with the estimation of the whole state of the machine together
with stator and rotor resistances is presented. Another multi-model EKFs are pro-
posed in order to improve EKF performance under different noise conditions. Then,
a Kalman filter estimator has been designed for DTC controlled induction motor
drives.

Acknowledgements
The authors would like to thank the managers and the members of the

“Laboratoire d’électronique de puissance et commande (EPC) de I’Ecole
Mohammadia d’Ingénieurs (EMI)” for their precious remarks and suggestions.

Notations and symbols

Isas Lsp stator current components in a — f§ reference frame
Gras rp rotor flux components in a — f reference frame
Usq> Usp stator voltage components in a — f reference frame
R, R, stator and rotor resistances

L, L, L, stator, rotor and mutual inductances

T, rotor time constant

Tem electromagnetic torque

Ty, load torque

Wy electrical speed

Q, mechanical speed

o Blondel’s coefficient

V4 pole pair number

J inertia moment

f friction coefficient

A,B,C control, input and output matrices of the induction motor model
Abbreviations

EKF extended Kalman filter

ALO adaptive Luenberger observer

IM induction motor

PI proportional-integral

d-q direct-quadrature

MatLab matrix laboratory

DSP digital signal processor

FPGA field-programmable gate array

DTC direct torque control

AC alternating-current

76

Kalman Filtering Applied to Induction Motor State Estimation
DOI: http://dx.doi.org/10.5772/intechopen.92871

A. Appendix

Parameter * Rated value
Power 3 kW
Voltage 380V
Frequency 50 Hz
Pair pole 2
Rated speed 1440 rpm
Stator resistance 220 Q
Rotor resistance 2.68 Q
Stator inductance 0.229 H
Rotor inductance 0229 H
Mutual inductance 0.217H
Moment of inertia 0.047 kg.m?
Viscous friction coefficient 0.004 N.s/rad

“Used induction motor rated parameters.

Table A1.
The parameters of the used induction motor in simulation.

A. Computer program

function| sys, x0] =EKF (t, x,u, flag)
global al a2 a3 a4 a5bl;
global FCKRQPTsBnp;
if flag==
% Machine parameters
Rs=2.2;Rr=2.68;M=0.217;Ls=0.229;Lr=0.229;p=2;

% Initiating the state error covariance matrix
P=eye (5) ;

% State noise covariance matrix
Q=diag ([1e-6 le-6 le-6 le-6 1leb]) ;
Measure noise covariance matrix
R=diag ([1e6 1le6]) ;
Sampling period
Ts=le-5;

% Defining A and Bmatrices
Tr=Lr/Rr;

Sigma=1-M"2/ (Ls*Lr) ;
al=-(Rs/ (Sigma*Ls)+ (1-Sigma)/ (Sigma*Tr)) ;
a2=M/ (Sigma* Ls* Lr*Tr) ;

a3=M/ (Sigma* Ls*Lr) ;

ad=M/Tr;

ab5=-1/Tr;

bl=1/(Sigma*Ls) ;

% Input Matrix
B={b10;0b1;00;00;00];

o

o

Dynamic Data Assimilation - Beating the Uncertainties

% Measure Matrix
Cs{10000;01000];
Loop
=0;
x0=[00000];

sys=[0,5,5,4,0,0] ;
elseif flag==
n=n+1;

U={ u(l);u(2)];

Y={ u(3);u(4)];

oe

o]

A=la’ a a2 ad=x {5} aixx{4)
0 21 -3 (h) a2 —adex (1)
al a s5 -x{5) -x (1)
0 &4 x{h) an x (3]
0 4] Q ¥ 31
F=eye (5)+Ts*A;
G=Ts*B;

% State prediction
1=[F(1:4,1:4)*x(1:4);x(5)] +G*U;
% Covariance prediction
_1=F*P*F'+Q;
Kalman gain matrix
=p 1*C'/(C*P_1*C'+R);
tate estimation

=x 1+K* (Y-C*x 1);
State error covariance estimation
P=P 1-K*C*P 1;

SYS=X;
elseif flag==

SYS=X;
elseif flag==

sys=[1;
end

X

o]

o

=~

o\

X

o

Author details

Yassine Zahraoui*f and Mohamed Akherraz®

Mohamed 5 University, Mohammadia School of Engineering, Agdal-Rabat,
Morocco

*Address all correspondence to: zahraoui.yassin@gmail.com

+ These authors did not contribute equally.

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

78

Kalman Filtering Applied to Induction Motor State Estimation

DOI: http://dx.doi.org/10.5772/intechopen.92871
References

[1] Brown RG. Introduction to Random
Ssignal Analysis and Kalman Filtering.
Vol. 8. New York: Wiley; 1983

[2] Lefebvre T, Bruyninckx H,
Schutter J. Nonlinear Kalman Filtering
for Force-Controlled Robot Tasks.

Vol 19. Berlin: Springer; 2005

[3] Brown RG, Hwang PYC.
Introduction to Random Signals and
Applied Kalman Filtering. Vo. 3.
New York: Wiley; 1992

[4] Kron G. Generalized theory of
electrical machinery. Transactions of
the American Institute of Electrical
Engineers. 1930;49(2):666-683

[5] Zahraoui Y, Fahassa C, Akherraz M,
Bennassar A. Sensorless vector control
of induction motor using an EKF and
SVPWM algorithm. In: 5th International
Conference on Multimedia Computing
and Systems (ICMCS). Marrakech:
IEEE; 2016. pp. 588-593. DOI: 10.1109/
ICMCS.2016.7905584

[6] Ananthasayanam MR. A reference
recursive recipe for tuning the statistics
of the Kalman filter. In: de Oliveira Serra
GL, editor. Kalman Filters—Theory for
Advanced Applications. Rijeka:
IntechOpen; 2018. DOI: 10.5772/
intechopen.71961

[7]1 Zahraoui Y, Akherraz M, Fahassa C,
Elbadaoui S. Robust control of
sensorless sliding mode controlled
induction motor drive facing a large
scale rotor resistance variation. In:
Proceedings of the 4th International
Conference on Smart City

Applications, SCA ‘19 (Casablanca,
Morocco), Association for

Computing Machinery, Oct. 2019; 2020.

pp- 1-6

[8] Tahar B, Bousmaha B, Ismail B,
Houcine B. Speed sensorless field-
oriented control of induction motor

79

with fuzzy luenberger observer.
Electrotehnica, Electronica, Automatica.
2018;66(4):22

Chapter 6

Data Processing Using Artificial
Neural Networks

Wesam Salah Alaloul and Abdul Hannan Quveshi

Abstract

The artificial neural network (ANN) is a machine learning (ML) methodology
that evolved and developed from the scheme of imitating the human brain. Artifi-
cial intelligence (AI) pyramid illustrates the evolution of ML approach to ANN and
leading to deep learning (DL). Nowadays, researchers are very much attracted to
DL processes due to its ability to overcome the selectivity-invariance problem. In
this chapter, ANN has been explained by discussing the network topology and
development parameters (number of nodes, number of hidden layers, learning
rules and activated function). The basic concept of node and neutron has been
explained, with the help of diagrams, leading to the ANN model and its operation.
All the topics have been discussed in such a scheme to give the reader the basic
concept and clarity in a sequential way from ANN perceptron model to deep
learning models and underlying types.

Keywords: ANN, artificial neural network, node, network training, gradient
descent, deep learning

1. Introduction

Artificial Intelligence (AI) is the knowledge domain that targets the develop-
ment of computer systems to solve problems by giving them cognitive powers for
performing tasks that usually require human intelligence. Hence, simulation of
human intelligence, with computer programing and technologies, is the main
objective of Al. Whereas, machine learning is one of the branches of Al, in which
computer systems are programmed based on the data and type of input. Machine
learning (ML) gives the capability to Al for solving problems based on available
data. Likewise, artificial neural network (ANN) is an evolved method of ML
algorithms, developed on a concept of imitating the human brain [1-3].

A single neuron is considered as a cell, processing electrochemical signals or nerve
impulses, and the human brain is a complicated network of neurons that transfers
information, with the help of various interlinked neurons. ANN models are consid-
ered as most popular among Al models because of their architecture, which is the
collection of neurons linked with other neurons in various layers. ANN is non-linear
and complex systems of neurons and neuron is a mathematical unit [4].

Literature depicts that ML, ANN and deep learning (DL) falls under the pyramid
of Al and shown in Figure 1. Under ANN, DL has gained much importance among
researchers. DL is a complex network set of ANN with various layers of processing,
which improves the results by developing high levels of insight. DL methodologies

81 IntechOpen

Dynamic Data Assimilation - Beating the Uncertainties

Artificial Intelligence

Machine Learning

Artificial Neural Network

Deep
Learning

Figure 1.

Al pyramid.
>
("
=
o
>
o
[
<

ANMOUNT OF DATA
Figure 2.

Comparison between DL and conventional ML.

are popular due to their computational powers and handling of large data sets, and
this makes them more attractive than conventional methods.

Past studies illustrated the comparison between DL and conventional ML
methods for effective outputs, with the help of graphical representation, as shown
in Figure 2. Figure 2 illustrates the behaviour of curves, for DL and conventional
ML, by comparing the accuracy of results (outputs) against the amount of data
(input). The graph shows that the result accuracy of conventional ML methods is
better for limited data, but it decreases as the amount of data is increased. Instead,
the result accuracy of DL improves for large data sets, due to the presence of a vast
neural network than conventional ML, hence, making DL more famous. DL is
usually used for complicated tasks, such as image classification, image recognition,
and handwriting identification [1, 3].

2. History of ANN

The origins of all the work on ANN are in neurobiological studies that date back
to about a century ago. A brief overview of evolution in ANN and significant
milestones are shown in the timeline, as shown in Figures 3 and 4.

82

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

Rashevsky initiated the studies of neurodynamics
Y Lofvmame | 1938

MeCulloch and Pitts designed the first artificial model of ANN | 1943

Wiener elaborated the mathematical approach to neuredynamics

1948

Hebb's developed the first learning
— 1949

1954 | Gabor invented the learning filter

1956 | Taylor intreduced an associative memory network

1958 Rosenblatt introduced the con cept of a perceptron

Widrow and Hoff introduced the

1960 concept of the Adaline

Rosenblatt proposed the backpropagation 1961

Taylor constructed a winner-take-all circuit with inhibitions among output units | 1084
Uttley developed networks with synaptic strengths representing

mutual information between fixing patterns of neurons 1966

Cowan introduced the sigmoid fixing characteristic 1967
1968 ‘Cowan introduced a network of neurons with skew-symmetric coupling constants

1969 Minsky and Papert demonstrated the limits of simple perceptions
Werbes formulated learning rules applicable te large ANN
1974

Rumelhart, D, E, Hinton, G. E. & Williams, R, J.
developed simple error backpropagation training
1986 algorithms

Cybenko established theoretical results to understand the capabilities of non-trivial neural networks | 1988

Figure 3.
ANN evolution timeline (1938-1988).

Literature depicts that, in the 1980s, very few researchers were working on deep
NNs, and it gained popularity in the early 1990s. Since then, a large number of
research articles have been published on applications of ANN and this journey is on-
going. The few significant milestones, after 1990, regarding ANN evolution is
shown in Figure 4 [5-10].

3. Basic architecture of ANN

The architecture of ANN is stimulated by the framework of biological neurons,
like in the human brain. The human brain is the composition of a vast number of the
interlinked neurons forming a network. A neuron is like a cell, and each neuron
executes a simple task, i.e., response to an input signal. Likewise, the ANN is a
framework of interlinked nodes, similar to neurons, forming a network model.
Hence in ANN, several artificial neurons are interlinked and become a robust
computer-based tool that can handle large amounts of data to execute enormously
simultaneous calculations using input data. ANN operations are not based on
explicit rules and outputs are generated by trial and error procedures through
sequential computations. The ANN is also classified as ‘connectionism’ because the
given data is not conceded from neuron to neuron, but it is encoded in the compli-
cated interconnected network of neurons, unlike the traditional computers [2, 11, 12].

83

Dynamic Data Assimilation - Beating the Uncertainties

1091 Hochreiter discovered the fundamental DL Problem of gradient descent

Weng discussed particular winner-take-

1992 | 5 (wrA) method called Max-Pooling

Wan; Weigend& Gershenfeld won Santa Fe time-series competition | 1994
Hochreiter & Schmidhuber presented supervised DL RNN (Long Short-Term Memory) 1997

Neal won the NIPS 2003 Feature Selection Challenge for his work on Bayes NN | 2003

Chellapilla; Puri, & Simard presented GPU-based CNN
faster than CPU- CNNs 2006

2007 Ranzato, Huang, Boureau & LeCun presented BP-trained MPCNNs.

Martens & Sutskever Hesslan-free opti by all ing the fundamental
2011 deep Learning problem in RNNs, outperforming standard gradient-based LSTM RNNs.

Krizhevsky, Sutskever, & Hinton won the first contests
2012 | onimagenet, object detection segmentation

Graves, Mohamed & Hinton made a record by developing
2013 | pigirectional LSTMRNNS trained by CTC

2014 & beyond, the ANN technology was continued to evolve and intensify alongside of efficient computers with 2014 &
effective computing powers

beyond

Figure 4.
ANN evolution timeline (after 1988).

Qutput
Input Node >

Figure 5.
Basic node model.

To comprehend the basic structure of ANN, firstly, the understanding of ‘node’
is necessary. The generic model for a node is shown in Figure 5.

Each node receives various inputs through connections and transfers it to adja-
cent nodes. Figure 6 represents the general model of ANN, which is stimulated by a
biological neuron.

The nodes are arranged and organised into linear arrays known as layers.
Figure 6 shows that there are three layers in ANN called the input layer, the output
layer and the hidden layer.

In the input layer X3, X5, X3, ... X, signifies several inputs to the network.
Whereas, W, W,, W3, ... W,, are known as connection weights, which shows the
strength of a particular node. In ANN, weights are considered as the most signifi-
cant factors as these are numerical parameters that determine the effect of neurons
to each other and also impact the output, by converting the input.

In the ANN, the processing part is performed in the hidden layer. The hidden
layer executes two operational functions, i.e., summation function and transfer func-
tion, also known as an activation function. The summation function is the first step,
and in this part, each input (X;) to ANN is multiplied by its respective weight (W)
and then, the products W;.X; is cumulated into the summation function & = SW;.X;.
‘B’ is a bias value; this parameter is used to regulate the output of the neuron in
association with the weighted sum of the inputs. This process is denoted as Eq. (1):

84

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

W1

Summation Transfer /
. W3 Function ActlvaFlon
Function

E=ZWiXi | Y = f(§

Q OOF

1 Input Layer I Hidden Layer I Output Layer |

Figure 6.
Generic ANN model.

Output = X(Weights x Inputs) + Bias (1)

The activation function is the second step; which converts the input signal,
received from the summation function module and transformed it to an output of a
node for an ANN model [1-3, 12, 13].

Generally speaking, each ANN has three main components, i.e., node character,
network topology and the learning rules. The node character controls the processing
of signals by determining the associated number of inputs and outputs, the associ-
ated weight for each input and output and the activation function, for each node.
Learning rules establish the initiation and adjustment of weights. Whereas, the
network topology defines the ways the nodes will be connected and organised
(details are discussed in Section 3.2). The operation of the ANN model is computing
the output of all the neurons, which is an entirely deterministic calculation [1, 2].

3.1 The activation function

An activation function is a mathematical function. In simple words, it receives
the output of the summation function as an input and converts that into the final
output of a node with the help of ANN processing.

There are different types of activation functions, but non-linear functions are
more popular than the linear function. A linear function is just a polynomial of one
degree, and it is considered as single-layer ANN model has less power and limited
complexity to process complicated data. Therefore, non-linear activation functions
are mostly included in designing of ANN models for solving complex problems and
this unique quality makes ANN true universal function approximators.

The activation function uses the value & = ZW,;.X; as an input for processing and
controlling the input X; for activation of the neuron. The most commonly known
activation functions [1, 12-15] are shown in Table 1.

85

Dynamic Data Assimilation - Beating the Uncertainties

Transfer Graphical presentation Numerical Remarks
functions equation
Linear A Y=f(¢)=¢ Output = Input.
/ Range (—o0, +o0)
Unit step fE =0 Useful for binary
1 if£<0 schemes.
f=1 Range (0,1)
Ifé>0
Rectified A f=0 Most popular activation
linear unit if£<0 function since 2015.
(ReLU) f()=¢ Range (0,)
If£>0
-4
Sigmoid A fl&) =1 Commonly used
function. Range (0, 1)
1 f—
Gaussian A fle) = P GE Named after the
1 mathematician Carl
————————————— Friedrich Gauss
Range (0,1]
Hyperbolic A f(§) =52 Alternative to sigmoid
tangent function.
-1 Range (-1, 1)
Table 1.
Activation functions.

86

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

INPUT LAYER HIDDEN LAYER (1) HIDDEN LAYER (L) OUTPUT LAYER

Figure 7.
Conceptual model for ANN topology.

3.2 Network topology

The nodes are arranged and organised into linear arrays known as layers. The
interconnecting network model, between the nodes of ANN, with each other, is
called the topology (or architecture). ANN is composed of input layers, hidden layers
and output layers, as already discussed in Figure 6. Also, the hidden layers can be
from none to numerous, based on the model-complexity. Each layer is a combination
of many nodes, and these nodes, based on some properties, can be grouped in layers.
A single-layer ANN, with a single output, is known as Perceptron. A conceptual
model for layers and ANN topology is shown in Figure 7. Figure 7 shows n number
of data entries in the input layer as Xj, X5, X,,. Also, it can be seen that there is L
number of hidden layers in the ANN model. Whereas, there are i number of nodes in
each hidden layer. The notations 1 x 1,1 x i, L x 1and L x i, on each node giving its
information, expressing ‘L’ as (hidden) layer number, i.e., from 1 to L and ‘i’ as node
number, i.e., from 1 to i. Y is the output for the mentioned ANN model.

Designing of network topology is based on following factors; (1) the number of
nodes in each layer, (2) the number of layers in the network and (3) the connected
path among the nodes [1, 2, 12].

3.2.1 Perceptron and multi-layer architectures

A single-layered ANN, with a single output, is known as the perceptron. The
perceptron mostly uses the step function, in which, if the computed sum of the
inputs transcends a threshold point, the output is 1; otherwise, it is 0.

Multi-layer perceptrons (MLPs) are the most commonly used architecture for ANN.
Composition of MLPs contains layers of neurons with an input layer, an output layer, and
the hidden layer (at least one). The layers of the perceptron are interlinked with each
other by developing a multi-layered architecture, and this makes the model essentially
complex for the ANN processing. The MLP terminology is originated from perceptron
neural networks, but its problem-solving capabilities makes it unique [1, 14].

3.3 Connection types between nodes

The connections between nodes of ANN are classified into two categories: (1)
the feedforward network, and (2) the feedback network or recurrent network.

87

Dynamic Data Assimilation - Beating the Uncertainties

INPUT LAYER HIDDEN LAYER 1 HIDDEN LAYER 2 OUTPUT LAYER

Figure 8.
Feedforward network connection.

3.3.1 Feedforward networks

Feedforward network is a one-way connection having no loop backwards. They
are static in nature as their signal travels in one way only. Figure 8 is a model
example of feedforward networks.

3.3.2 Feedback networks

In feedback network, nodes have backward connected loops, and in these
connections, the output of the nodes can be the input to the same level or previous
nodes. Unlike the feedforward network, the feedback networks are dynamic. In
feedback networks, signals are transmitted in forward as well as in backward
directions [16]. Feedback process occurs when the output (partial or full) is
channelled back into the input of a network as part of a repeated cause-and-effect
process [17]. In the feedback network, a single input generates a series of outputs
cycles until it reaches an equilibrium point. Equilibrium point refers to minimum
error, i.e., for each predicted output if the error is enormous then, the output is
routed back, and parameters (weights and biases) are modified until the error
becomes minimum [18]. Figure 9 shows the ANN model for feedback network

INPUT LAYER HIDDEN LAYER 1 HIDDEN LAYER 2 OUTPUT LAYER

Figure 9.

Feedback network connection.

88

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

connections. It can be observed that node H2x1 is sending the information back to
node H1x1 and the cycle goes on until the output will reach an equilibrium state,
i.e., with minimum error. In a feedback network, there exists at least one
interconnected path that drives it back to the starting neuron. It may cause a delay
in specific time units, and this interconnected path is called a cycle [1, 2, 12]. This
process will be better understood, after going through the next section.

4. Training of ANN (learning process)

The training of the ANN is accomplished through a learning process. While in
the training process, weights are modified for attaining required results. In the
training process, some sample data is processed to the network and weights are
modified to attain better approximation of the desired output.

The learning process is mostly classified into two categories: (1) supervised
learning, and (2) unsupervised learning.

4.1 Supervised learning

In supervised learning, a training set is presented to the model. The training set
constitutes of input examples and corresponding target outputs. The inputs are
noted for the response of the network, and the weights between with networks are
adjusted for error reduction, for the attainment of the desired output. The network
follows successive iterations during this process until the computed result con-
verges to the correct one. Construction of the training set requires special consider-
ation. A training set is considered an ideal one, and it should be giving a better
representation of the underlying model. Otherwise, a reliable model with desirable
results cannot be achieved with an unrepresentative training set.

In the supervised learning process, the networks are trained first before its
operation in a model for predictive outputs. Significantly, when the network starts
computing the intended outputs with the series of inputs, with fixed weights, then
the ANN model can be set for the required operation. Few of the well-known
algorithms with a supervised learning method are the Adaline (used for binary
data), the Perceptron (used for continuous data), and the Madaline (developed
from the Adaline).

4.1.1 Reinforcement learning

Reinforcement learning is a particular case scenario of supervised learning. It is,
when the external environment only checks for the information for acceptance and
rejection, instead of indicating the correct output. In this process, the well-
performing and the most active neuron connections for the input are strengthened
over successive iterations. Few of the renown algorithms of reinforcement learning
are the Boltzmann machine, the learning vector quantisation, and Hopfield
networks.

Supervised ANN models have many applications for image classification,
plant control, forecasting, prediction, robotics, ECG signals classification and many
more [19-21].

4.2 Unsupervised learning

Unsupervised learning does not follow a training set or a targeted output
approach. Instead, it trails the input data pattern of the underlying model. In this

89

Dynamic Data Assimilation - Beating the Uncertainties

process, the ANN model adjusts its weights, against the supplied inputs, thus pro-
ducing outputs similar to inputs. The model, without any outer support, recognises
the patterns and differences in the inputs. In this process, the clusters are formed,
each cluster consists of a group of several weights, in such a way that related input
path results in a similar output. If any new pattern is detected during the iteration
process, it is classified as a new cluster.

Autoencoders, Hebbian Learning, Deep Belief Nets, Self-Organising Map, Gen-
erative Adversarial Networks, and Algebraic Reconstruction Technique (ART) are
the few most renown algorithms for unsupervised learning. Unsupervised ANN
models are used in diagnosing diseases, image segmentation and many more.
Unsupervised algorithms have become very useful and powerful tools in segmenta-
tion of magnetic resonance images for detection of anomalies in the body systems
[1,2, 4, 12, 14, 22-24].

5. Mapping by ANNs

The primary reason for ANN popularity is due to approximated data output.
There are five main steps for the approximation function in the ANN model, as
given below.

5.1 Data pre-processing

In data pre-processing, the appropriate predictors are selected as inputs before
processing to a network for mapping. There are three general processes in data
pre-processing, mentioned as follows:

a. Standardising: The input values are rescaled to a uniformed scale.

b. Normalising: It normalises a vector to have unity variance and zero mean
value.

c. Principal component analysis: This process replaces the groups of related
variables by new unrelated variables by detecting linear dependencies
between them.

5.2 Selection of network architecture

A network architecture comprises several hidden neurons, the number of hidden
layers, the flow of data, the way neurons are interconnected, and specific transfer
functions. Recurrent neural networks, multi-layer perceptron (MLP), probabilistic
neural networks, radial basis function networks, generalised regression neural
networks and time-delay neural networks are the few of the renown architectures.

5.3 Network training

About function mapping, the training process is known as the calibration of the
network through input and out pairs. During the training process, ANN might
suffer from the overfitting and underfitting. The overall performance of the net-
work decreases because of these two mentioned factors. This unfitting of the net-
work, during the training process, can be managed by increasing the number of
epochs, but it may result in network overfitting if the number of epochs is more

90

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

significant than a required number. Epoch is defined as a process of providing one
pass or iteration of input through the network and modifying the weights. The
optimal number of epochs can be determined by the comparison of training error
and model testing procedure.

5.4 Simulation

Simulation is the ultimate goal of applying ANN networks. It is the representa-
tion of predicted output data for an ANN model.

5.5 Post-processing

There are three types of sets in which sample data is distributed: (i) the training
set, (ii) the validation set, and (iii) the testing set. The training set is used to train
the ANN model; it is a set of sample data that is used to modify or adjust the weights
in the ANN to produce the desired outcome. The validation set is used to inform the
ANN when training is to be terminated (when the minimum error point is
achieved). The test set provides an entirely independent way of examining the
precision of the ANN. The test set is a set of sample data that is used for the
evaluation of the ANN model. A rule of thumb for this random split regarding
percentage is 70, 15, 15%, respectively [3, 12, 14].

The post-processing comprises of all the tests, which are applied on a specific
network for the validation of results, also, to analyse, describe, and to improve its
final performance. The comparison of results is achieved by using three different
statistics. The first one is the root-mean-square error (RMSE), and it is described
in Eq. (2):

S (obs; — est;)?

n

RMSE = (2)

The second statistical factor is percentage volume error (%VE), which is the
measuring of the absolute relative bias error of estimated values. It is formulated

as Eq. (3):

%VE = 3)

Zn (ohs,- —est;)
i=1 obs;
n

whereas, est; = ith estimated variable, obs; = ith observed data, and n = number
of observed values.

The third statistical factor is the correlation, and it is used in the measuring of
the linear correlation coefficient between the predicted and observed data.

In case of unsatisfactory results in the post-processing, modification can be
made in the following: (1) weights and biases, (2) number of hidden neurons,
(3) transfer functions, and (4) number of hidden layers [4, 25].

6. Gradient descent
The term ‘gradient descent’ is a combination of two words the ‘gradient’, which

means a slope and the ‘descent’, which means to incline. Therefore, with gradient
descent, the slope of gradients is descended to find the lowest point with the

91

Dynamic Data Assimilation - Beating the Uncertainties

smallest error. It is an iterative process until the correction of the error in the ANN
learning model. It is defined as during the backpropagation in the ANN model, the
process of iteration keeps updating biases and weights with the error times deriva-
tive of the activation function. The steepest descent step size is substituted by a
similar size from the previous step.

A gradient is the derivative of the activation function, as shown in Figure 10.

The primary purpose of using gradient descent is to find the overall cost mini-
mum at each step, with the lowest error. Also, at this point, model predictions are
more reliable because of upright fit data. Evaluation of slope can be done with the
help of Figure 11, and Eq. (4) can be derived.

Ax; = —a—2- (4)

;] Gradient
/
I,
1

Initial Weight

Figure 10.
Gradient descent.

Figure 11.
Slope computation.

92

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

whereas, o = learning rate and dy/dx;, also known as the partial derivative of y
with respect to x;. For gradient descent, this equation can be used for each variable
when 8y < 0 (8 is a partial derivative).

Gradient descent can be achieved either for the stochastic or full batch. In
stochastic, gradient descent performs calculation for gradient by taking a single
sample. Whereas, in full batch, the gradient is calculated for the full training
dataset. One of the advantages of stochastic gradient descent is the fast calculation
of gradients [1, 13, 23].

6.1 Training algorithm by delta rule

The biases and weights are the parameters of the network that are required to be
adjusted before operating an ANN. These parameters can be modified by using
either supervised or unsupervised approach for any ANN model. For training pur-
pose, the supervised learning process is generally considered for determining biases
and weights of an ANN network. The supervised training process of an ANN
network could be attained by using delta rule. The delta rule is expressed as Wj
with the help Egs. (5)-(7), as shown:

0,
wrewd) _ o) o[% ©)
j ’ W)
i
1
E = ;szlep (6)

whereas, n = the number of pairs of data, W = the weight of the link between the
ith neuron to the jth neuron in the Lth layer, E = the average error of estimation,

t, = target output, y, = simulated output, a = learning rate, the value of which is
selected between 0 and 1 experimentally.

The backpropagation algorithm is mostly used for the application of delta rule
for the training process of an ANN. The mathematical expression of delta rule is
changed to computational relation because of the backpropagation algorithm,
which can be applied through an iterative process. This process provides a way to
the gradient for determining of the minimum error function, and it is efficiently
calculated by using the chain rule of differentiation provided by the backpropaga-
tion algorithm. This characteristic makes this process to also be known as the
generalised delta rule. In this algorithm, during each iteration, the network weights
are shifted along with the negative of the gradient in the steepest descent direction
of the performance function (epoch). For a certain weight in the Lth hidden layer,
the chain rule gives Eq. (8):

L)

aep _ aep aIPj (8)
L L L
o 2

This algorithm keeps the iterations continued until the expected output of net-
work training is achieved. The basis for stopping the training process may be the
minimum target value of performance function, the number of epochs and run time
of the process; this is known as stopped training. The above mentioned equations
lead to the following weight calculating Eqs. (9) and (10):

93

Dynamic Data Assimilation - Beating the Uncertainties

For the last layer

Wi = Wi+ gyl 9)
For the hidden layer
Wi = Wi 4 asly Y (10)

Following this procedure of training, based on the specific input vectors using
the final derived weights and biases, the ANN model will be operated on sample
data for initiation of simulation for the related outputs. The ANN training can be
achieved either by batch training or incremental training. During the batch training
process, the adjustment of biases and weights is attained after the presentation of all
the inputs and targets. Whereas, during the incremental training, the adjustment of
biases and weights is attained just after the presentation of individual input. In
training, the process affects network performance. In the case of the low learning
rate, the time required for learning the synaptic weights will be extremely long. On
the other hand, if the set learning rate will be too high, this will tend the algorithm
to oscillate, and the trained network performance will be reduced because the
weight changes are too drastic. Therefore, the learning rate controls the conver-
gence of the algorithm. These weight modifications can be applied after each
pattern is completed, and these computed weight changes can be summed up to be
applied to the network weights, as shown in Eq. (11):

n
Awf; = ZAw;-j (11)
p=1

Usually, in dynamic networks, the inputs and targets are shown in sequence.
In the adaptive learning process, the recent data, that is perceived before the time of
simulation is considered as necessary as compared to all the data [4, 14, 26].

7. Deep learning

In the field of Al, deep learning (DL) has gained much popularity and trending
for investigation domains. One of the foremost shortcomings of conventional
machine learning is their inability to solve the selectivity-invariance problem, and
because of this drawback, these methods have limited capability of data processing
in their real state. Selectivity-invariance enables the model for the selection of those
parameters that comprise of more information and disregard parameters with less
information. This characteristic of DL, i.e., ability to overcome the selectivity-
invariance dilemma, makes it more likeable among researchers and motivate them
to the advancement of machine learning using the DL approach.

The architecture of DL is composed of various layers of trainable parameters,
and this helps DL-based algorithms for excellent performance in machine learning
and Al applications. DL algorithm is Deep Neural Networks (DNNs), and they
usually use backpropagation optimised algorithms for end-to-end training. DNNs
capability of selectivity-invariance extracts the compound features through succes-
sive layers of neurons equipped with differentiable, non-linear activation functions,
and this provides a suitable platform for the backpropagation algorithm. A generic
architectural model of DNNs is shown in Figure 12.

94

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

INPUT LAYER HIDDEN LAYER1 HIDDEN LAYER 2 HIDDEN LAYER 3 HIDDEN LAYER L CUTPUT

Figure 12.
DNNs generic model.

Figure 12 depicts a DNNs model with numerous hidden layers. The outer layer
of DNN mostly uses the softmax module for the solution of most of the classifica-
tion problems. The softmax formula is also known as normalised exponential, is
given below in Eq. (12):

exp (a;)
Yi=—"— 12
> exp (aj) (12

whereas, j is the set of output nodes, a; is the net input to a particular output
node, and Y; is the value of output node between range (0, 1).

DNNs models with non-linear behaviour can go up to several abstractions of
levels that helps in decision making by transforming original data into higher
abstract levels. This process streamlines finding the solution for non-linear and
complex functions. Basis of DL is automated learning of features that offer the
facility of transfer learning and modularity. Unlike conventional machine learning,
training of DL networks requires a large amount of data. Convolutional neural
network (CNN) and recurrent neural network (RNN) are the renown deep net-
works [27, 28].

7.1 Convolutional neural network (CNN)

CNN is the popular DL methodology, based on the animal’s visual cortex. CNNs
are very much similar to ANN that can be observed as the acyclic graph in the form
of a well-arranged collection of neurons. Although, in CNNs, the neurons in the
hidden layers are only interconnected with a subset of neurons in the preceding
layer, unlike regular ANN model. This rare type of interconnectivity enables CNN
models to learn the discreet features on an object. CNN models are used for face
recognition, scene labelling, image classification, document analysis and many
more.

The police department of the Penang Island, Malaysia had installed more than
500 CCTV cameras around the Island and many of them were equipped with face
recognition technology, which was developed by IBM. Their main objective was to
control crime and capture the wanted criminals [29]. Likewise, in China Pharma-
ceutical University, to control the student attendance and class discipline the uni-
versity management installed the facial recognition system in the campus, including

95

Dynamic Data Assimilation - Beating the Uncertainties

the classrooms, labs, library and entrance gates. This overall improved the students’
response towards academics [30]. Face recognition technology is based on deep
CNN models. This process can be performed by using both supervised and
unsupervised approaches but supervised methodologies are mostly preferred. Face
recognition is performed by taking an input from video or image and detection is
made by taking input to greyscale. The features in greyscale are applied one by one
and compared with pixel values. The CNN models give high accuracy than past
techniques by overcoming the problems, like light intensity and expressions, with
the help of trained models using more training samples [31-33].

7.2 Recurrent neural network (RNN)

RNNss are used for the tasks that require consecutive sequential inputs for
processing. Initially, training of RNNs was done by using backpropagation. RNNs
approach utilises one factor of input, at a time, in sequence by keeping state vector
in their hidden nodes, in which implicitly within nodes contains information of all
the past value of factors of that sequence. RNNs are dynamic and fairly powerful
systems, but during the training process the problem occurs as in gradients of
backpropagation algorithm either would shrink or grow at every time step, ulti-
mately they might disappear after many cycles. If we explore RNN, deep
feedforward networks will be found having all layers sharing the same weight. RNN
lags to the capability of storing information for a long time, and deficiency is known
as long-term dependencies. To control this shortcoming, one approach has been
introduced with explicit memory known as long short-term memory (LSTM). In
this method, particular hidden nodes are used to store the information in the form
of input data for a much higher time. LSTM is very much recognised for the better-
quality performance in speech recognition systems [1, 27, 28].

Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana, and Google’s Assistant are the
most popular voice recognizer tools and they are used for making a phone call, play
reminders, alarms, provide driving directions and much more. The speech recog-
nizers are developed on RNN networks, which are based on LSTM-RNN architec-
ture. This gives the RNN models the ability to deal with long-distance patterns and
makes them suitable for learning long-span relations. The models are trained end-
to-end and output is attained [34, 35]. Other few applications of RNN models are
keyphrase recognition, meteorological data updating, speech to text [35-38]. Mas-
sachusetts Institute of Technology (MIT) had performed an interesting simulated
study on self-driving cars, and its framework was also being developed on the deep
reinforced model [39].

8. Examples of ANN model using Python
8.1 Supervised ANN model

A simple ANN model was developed using Python. The model was designed by
using supervised CNN methodology for image classification. Images were collected
for training and validation purpose of the model for apples and oranges. For train-
ing purpose, 20 images were collected for each (apple and orange), making a total
of 40 images. For validation purpose, 10 more images were collected for each,
making a total of 20 images. The data for the supervised process, of the ANN model,
was arranged in a specific way with a separate folder for each process, i.e., training
and validation. In a folder named as ‘Training’, images of each fruit were placed
separately in the folders having their name titles, i.e., ‘Apple’ and ‘Orange’, and

96

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

same was done for ‘Validation’ folder. In the classification and prediction process,
the model output was analysed, for the effectiveness of the results, against two
parameters: (1) effect of increasing the number of epochs per run, and (2) the
number of hidden layers.

8.1.1 Number of epochs per run

The effect of increasing the number of epochs on the model, for each run, is
shown in Table 2. The effectiveness of the output is measured against the %
accuracy, and % loss for different number epochs. The number of hidden layers for
these tests were kept constant for each run.

Table 2 clearly shows that an increasing number of epochs refines the output by
increasing the accuracy and decreasing the data loss. The model gave a correct
prediction of the fruit classification in all the runs.

8.1.2 Number of hidden layers

The effect of increasing the number of hidden layers on the model, for each run,
is shown in Table 3. The effectiveness of the output is measured against the %
accuracy, and % loss for various number hidden layers. The number of epochs for
these tests was kept constant for each run.

Table 3 clearly shows that an increasing number of hidden layers increases the
model effectiveness by increasing the accuracy and decreasing the data loss. The
model gave one wrong prediction, when there were 2 hidden layers. Whereas, by
increasing the number of hidden layers, the model started to predict correctly.

8.1.3 Overall summary

The output window from the model is shown in Figure 13. It can be seen that the
model successfully predicted the correct output (‘Apple’). The accuracy of the
model was increasing with each epoch from almost 37 to 89% and data loss was also
decreasing, consecutively. The program code for this model is given in Appendix A.

Number of epochs % Accuracy % Loss Prediction

4 74.14 56.41 Correct

8 81.25 43.44 Correct

12 100 27.77 Correct
Table 2.

Output summary for increasing number of epochs.

Number of hidden layers % Accuracy % Loss Prediction

2 45.83 67 Incorrect

4 70 64.90 Correct

6 100 61.38 Correct
Table 3.

Output summary for incveasing number of hidden layers.

97

Dynamic Data Assimilation - Beating the Uncertainties

val_loss: 1.8518 - val_i

- accuracy:

Process finiched with exit code @

Figure 13.
Output summary of CNN model.

8.2 Unsupervised ANN model

A simple unsupervised ANN model was developed for the colour quantization of
an image, using Python, and Self-Organising Maps (SOM) methodology was
adopted. SOM is basically used for feature detection.

Two different images of houses were selected for colour quantization by the
SOM model. Separate tests were conducted with each image keeping the same
model conditions. In each test, the developed SOM model reduced the distinct
colours of the image, and another image was developed. This technique helped the
model to learn the colours in the image and then use the same colours to reconstruct
that image. The pictorial views for each output are shown in Figure 14.

Original Result
J Original

Learnt Colors . Initial Colars . Learnt Colors

Figure 14.
Pictorial output of SOM model.

98

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

training...

[100 / 100] 100% - 0:00:00 left
quantization error: 0.010787788795733765
topographic error: ©.805056450369913687
quantization...

building new image...

done.

Process finished with exit code @

Figure 15.
Output window of SOM model.

8.2.1 Overall summary

It can be seen in the output results that for each test the model detected the
distinct colours and using the same colours it reproduced that image. The output
window from the model is shown in Figure 15. The program code for this model is
given in Appendix B.

9. Conclusions

Operation of the ANN model is the simulation of the human brain, and they fall
under the knowledge domain of Al The popularity of ANN models were increased
in the early 1990s, and many studies have been done since. The basic ANN model
has three main layers, and the main process is performed in the middle layer known
as the hidden layer. The output of the ANN model is very much dependent on the
characteristics and function it carries under the hidden layer. Among the
feedforward and feedback networks, the latter one propagates the error unless it
became minimum for more effective results. The ANN models can perform super-
vised learning as well as unsupervised learning depending upon the task. The DL
algorithms are very much popular among researchers because of effective outputs
with large data. CNN and RNN are the two renown deep networks, and they have
been used for various applications. Output accuracy of the ANN models is very
much dependent on the number of hidden layers and the number of epochs.

In this era of automation, the Al plays an important role, and most of the daily
use applications are based on the architecture of ANN models. This ANN technol-
ogy, combined with other advanced and Al knowledge areas, is making life easier in
almost every domain. This evolution of DNN models has led to the creation of
Sophia the Robot (Hanson Robotics); the journey is on-going.

Acknowledgements

We will like to acknowledge UTP.

Conflict of interest

There is no conflict of interest.

29

Dynamic Data Assimilation - Beating the Uncertainties

Notes/Thanks/Other declarations

Special thanks to UTP

Appendix A

Program code for supervised CNN model is given below:
Stepz1 Opening Python
Python was opened, and conda environment was selected.

Step# 2 Installing and Import Necessary Data Sources

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D

from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K

from keras.preprocessing import image

import tensorflow as tf

import numpy as np

Step#3 CNN Convolutional Network Model

#Input Layer
model = Sequential()

Convolutional Layer 1
model.add(Conv2D(64 (3, 3), input_shape = (150, 150, 3), activation = 'relu’))
model.add(MaxPooling2D(pool_size = (2, 2)))

Convolutional Layer 2
model.add(Conv2D(64, (3, 3), activation = 'relu"))
model.add(MaxPooling2D(pool_size = (2, 2)))

The convolutional network helps to extract features from the image and digit 64
means to extract 64 features.

model.add(Flatten())

Hidden Layer 1
model.add(Dense(units = 64, activation = 'relu’))

Hidden Layer 2
model.add(Dense(units = 32, activation = 'relu"))

64 and 32 represents the number of neurons in these layers.

Output Layer
model.add(Dense(units =1, activation = 'sigmoid’))

Compiling the CNN
model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

100

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

Sigmoid represents the activation function of this model.

Step#4 Fitting CNN to the Images (Training and Validation)

train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,

zoom_range = 0.2,

horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory(‘Data/Train’,

target_size = (150, 150),

batch_size =12,

class_mode = 'binary')

test_set = test_datagen.flow_from_directory('Data/Validation’,

target_size = (150, 150),
batch_size = 8,

class_mode = 'binary')
model.fit_generator(training_set,
steps_per_epoch = 10,

epochs = 4,

validation_data = test_set,
validation_steps =10)

directories are for the path to the training folder and validation folder

Step#5 Running the ANN Model

test_image = image.load_img('Data/Apple.JPG', target_size = (150, 150))
test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = Q)

result = model.predict(test_image)

training_set.class_indices

if result[0][Q] ==1:
prediction = 'Orange'
else:
prediction = '‘Apple’

print (prediction)

Appendix B

Program code for unsupervised SOM model is given below:
Step#1 Opening Python
Python was opened, and conda environment was selected.

Step#2 Installing and Import Necessary Data Sources

from minisom import MiniSom
import numpy as np
import matplotlib.pyplot as plt

101

Dynamic Data Assimilation - Beating the Uncertainties

Stepy 3 Importing Image

img = plt.imread('HouseTest2.ipg")

Image path is to be given here.

Step#4 SOM Model

Reshaping the pixels matrix
pixels = np.reshape(img, (img.shape[0]*img.shape[1], 3)) / 255.

SOM initialization
som = MiniSom(2, 3, 3, sigma=1.,
learning_rate=0.2, neighborhood_function='bubble’)

Setting Weights
som.random_weights_init(pixels)
starting_weights = som.get_weights().copy()
som.train_random(pixels, 100, verbose=True)

100 is the number of training iteration

Quantization
gnt = som.quantization(pixels)

Compilation
clustered = np.zeros(img.shape)

for i, g in enumerate(gnt):
clustered[np.unravel_index(i, dims=(img.shape[@], img.shape[1]))] = q
print(‘done.")

Step#5 Running and Plotting of ANN Model

plt.figure(figsize=(7, 7))
plt.subplot(221)
plt.title('Original’)
plt.imshow(img)
plt.subplot(222)
plt.title('Result’)
plt.imshow(clustered)

plt.subplot(223)
plt.title('Initial Colors')
plt.imshow(starting_weights)
plt.subplot(224)
plt.title('Learnt Colors')
plt.imshow(som.get_weights())

plt.tight_layout()
plt.show()

102

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772 /intechopen.91935

Author details
Wesam Salah Alaloul* and Abdul Hannan Qureshi
Department of Civil and Environmental Engineering, Universiti Teknologi

PETRONAS, Perak, Malaysia

*Address all correspondence to: wesam.alaloul@utp.edu.my

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

103

Dynamic Data Assimilation - Beating the Uncertainties

References

[1] Ciaburro G, Venkateswaran B.
Neural Networks with R: Smart Models
Using CNN, RNN, Deep Learning, and
Artificial Intelligence Principles.
Birmingham: Packt Publishing; 2017

[2] Zou J, Han Y, So S-S. Overview of
Artificial Neural Networks. Vol. 458.

Totowa: Humana Press; 2008. pp. 14-22.

DOI: 10.1007/978-1-60327-101-1_2

[3] Aggarwal CC. Neural Networks and
Deep Learning. Cham: Springer
International Publishing; 2018. DOI:
10.1007/978-3-319-94463-0

[4] Araghinejad S. Data-Driven
Modeling: Using MATLAB® in Water
Resources and Environmental
Engineering. Vol. 67. Dordrecht:
Springer Netherlands; 2014. DOI:
10.1007/978-94-007-7506-0

(5] Adeli H, Yeh C. Perceptron learning
in engineering design. Computer-Aided
Civil and Infrastructure Engineering.
1989;4:247-256

[6] Adeli H. Neural networks in civil
engineering: 1989-2000. Computer-
Aided Civil and Infrastructure
Engineering. 2001;16:126-142. DOLI:
10.1111/0885-9507.00219

[71 Mehrotra K, Mohan CK, Ranka S.
Elements of Artificial Neural Networks.
Cambridge: MIT Press; 1997

[8] Rumelhart DE, Hinton GE, Williams
RJ. Learning internal representations by
error propagation. California Univ San
Diego La Jolla Inst for Cognitive
Science; 1985

[9] Schmidhuber J. Deep learning in
neural networks: An overview. Neural
Networks. 2015;61:85-117. DOI:
10.1016/j.neunet.2014.09.003

[10] Hochreiter S, Schmidhuber J. Long
short-term memory. Neural

104

Computation. 1997;9:1735-1780. DOL
10.1162/neco0.1997.9.8.1735

[11] Feldman JA, Fanty MA,
Goddard NH. Computing with
structured neural networks. IEEE
Computer. 1988;21:91-103

[12] Profillidis VA, Botzoris GN.
Artificial intelligence—Neural network
methods. Modeling of Transport
Demand. Elsevier; 2019:353-382. DOI:
10.1016/B978-0-12-811513-8.00008-X

[13] Taylor M. Make Your Own Neural
Network: An In-Depth Visual
Introduction for Beginners. 2017.
Independently published

[14] Priddy KL, Keller PE. Artificial
Neural Networks: An Introduction.
Bellingham: SPIE Press; 2005

[15] Suk H-I. An Introduction to Neural
Networks and Deep Learning. 1st ed.

Cambridge: Academic Press; 2017. DOIL:
10.1016/B978-0-12-810408-8.00002-X

[16] Poznyak TI, Chairez Oria I,
Poznyak AS. Background on dynamic
neural networks. Ozonation and
Biodegradation in Environmental
Engineering. 2019:57-74. DOI: 10.1016/
b978-0-12-812847-3.00012-3

[17] Zamir AR, Wu TL, Sun L, Shen WB,
Shi BE, Malik J, et al. Feedback
networks. In: Proceedings of the 30th
IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2017);
2017. pp. 1808-1817. DOI: 10.1109/
CVPR.2017.196

[18] Whittington JCR, Bogacz R. Theories
of error back-propagation in the brain.
Trends in Cognitive Sciences. 2019;23:
235-250. DOI: 10.1016/j.tics.2018.12.005

[19] Awodele O, Jegede O. Neural
networks and its application in

Data Processing Using Artificial Neural Networks

DOI: http://dx.doi.org/10.5772 /intechopen.91935

engineering. In: Proceedings of the 2009
InSITE Conference; 2009. DOI:
10.28945/3317

[20] Rao Z, Alvarruiz F. Use of an
artificial neural network to capture the
domain knowledge of a conventional
hydraulic simulation model. Journal of
Hydroinformatics. 2007;9:15-24. DOI:
10.2166/hydro.2006.014

[21] Perez RR, Marques A, Mohammadi F.
The application of supervised learning
through feed-forward neural networks
for ECG signal classification. In: Canadian
Conference on Electrical and Computer
Engineering; 2016. pp. 1-4. DOI: 10.1109/
CCECE.2016.7726762

[22] Daniel G. Principles of Artificial
Neural Networks. Singapore: World
Scientific; 2013

[23] Gurney K. An Introduction to
Neural Networks. Boca Raton: CRC
Press; 1997

[24] Damilola S. A review of
unsupervised artificial neural networks
with applications. International Journal
of Computers and Applications. 2019;
181:22-26. DOI: 10.5120/ijca2019918425

[25] Coulibaly P, Anctil F, Bobée B. Daily
reservoir inflow forecasting using
artificial neural networks with stopped
training approach. Journal of
Hydrology. 2000;230:244-257

[26] Liang P, Bose NK. Neural Network
Fundamentals with Graphs, Algorithms
and Applications. New York:
MacGraw-Hill; 1996

[27] Chauhan NK, Singh K. A review on
conventional machine learning vs deep
learning. In: 2018 International
Conference on Computing, Power and
Communication Technologies (GUCON
2018); 2019. pp. 347-352. DOI: 10.1109/
GUCON.2018.8675097

[28] Tavanaei A, Ghodrati M,
Kheradpisheh SR, Masquelier T,

105

Maida A. Deep learning in spiking
neural networks. Neural Networks.
2019;111:47-63. DOI: 10.1016/j.
neunet.2018.12.002

[29] This Malaysian State is Using Facial
Recognition to Catch Criminals—Tech.
Available from: https://sea.mashable.
com/tech/1725/this-malaysian-state-is-
using-facial-recognition-to-catch-
criminals [Accessed: 27 February 2020]

[30] Facial Recognition System in
University Classrooms Sparks
Controversy—SHINE News. Available
from: https://www.shine.cn/news/
nation/1909041394/ [Accessed:

27 February 2020]

[31] Karahan §, Yildirim MK, Kirtag K,
Rende F§, Biitiin G, Ekenel HK. How
image degradations affect deep CNN-
based face recognition? 2016 Int. Conf.
Biometrics Spec. Interes. Gr., Vol.
P-260. IEEE; 2016. pp. 1-5. DOL:
10.1109/BIOSIG.2016.7736924

[32] Khan S, Javed MH, Ahmed E,
Shah SAA, Ali SU. Networks and
implementation on smart glasses. In:
2019 International Conference on
Information Science and
Communication Technologies; 2019.
pp. 1-6. DOI: 10.1109/CISCT.2019.
8777442

[33] Bhandare A, Bhide M, Gokhale P,
Chandavarkar R. Applications of
convolutional neural networks.
International Journal of Computer

Science and Information Technologies.
2016;7:2206-2215

[34] Zhang D, Wang D. Relation
classification: CNN or RNN? Lecture
Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in
Bioinformatics). 2016;10102:665-675.
DOI: 10.1007/978-3-319-50496-4_60

[35] Graves A, Mohamed AR, Hinton G.
Speech recognition with deep recurrent

Dynamic Data Assimilation - Beating the Uncertainties

neural networks. In: ICASSP, IEEE
International Conference on Acoustics,
Speech, and Signal Processing; 2013.
pp. 6645-6649. DOI: 10.1109/
ICASSP.2013.6638947

[36] Wang W], Liao YF, Chen SH. RNN-
based prosodic modeling for mandarin
speech and its application to speech-to-
text conversion. Speech Communication.
2002;36:247-265. DOI: 10.1016/S0167-
6393(01)00006-1

[37]1 Yin W, Kann K, Yu M, Schiitze H.
Comparative Study of CNN and RNN
for Natural Language Processing. ArXiv
Prepr ArXiv170201923 2017 (belongs to
Cornell University, NY, USA)

[38] Tasyurek M, Celik M. RNN-GWR: A
geographically weighted regression
approach for frequently updated data.
Neurocomputing. 2020. DOI: 10.1016/j.
neucom.2020.02.058

[39] Fridman L, Terwilliger J, Jenik B.
DeepTraffic: Crowdsourced
Hyperparameter Tuning of Deep
Reinforcement Learning Systems for
Multi-Agent Dense Traffic Navigation.
2018

106

ISBN 978-1-83968-085-4
97781839 680854H

	Dynamic Data Assimilation - Beating the Uncertainties
	Contents
	Preface
	Chapter 1 - Introductory Chapter: Data Assimilation
	Chapter 2 - Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties
	Chapter 3 - Convolutional Neural Network Demystified for a Comprehensive Learning with Industrial Application
	Chapter 4 - Estimation for Motion in Tracking and Detection Objects with Kalman Filter
	Chapter 5 - Kalman Filtering Applied to Induction Motor State Estimation
	Chapter 6 - Data Processing Using Artificial Neural Networks

