
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Summer 2017

Motion-capture-based hand gesture recognition for
computing and control
Andrew Gardner
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Artificial Intelligence and Robotics Commons, and the Statistics and Probability
Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Gardner, Andrew, "" (2017). Dissertation. 57.
https://digitalcommons.latech.edu/dissertations/57

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.latech.edu%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.latech.edu%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.latech.edu%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/57?utm_source=digitalcommons.latech.edu%2Fdissertations%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

M OTION-CAPTURE-BASED HAND GESTURE RECOGNITION

FOR COM PUTING AND CONTROL

by

Andrew Gardner, B.S., M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

August 2017

ProQuest Number: 10753664

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest 10753664

ProQuestQue

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

5/15/2017
Date

We hereby recommend that the dissertation prepared under our supervision

by Andrew Bryan Gardner

entitled___ _________________

Motion-Capture-Based Hand Gesture Recognition for Computing and Control

be accepted in partial fulfillment o f the requirements for the Degree o f

Doctor of Philosophy in Computational Analysis and Modeling

Recommendation concurred in: ^

-rL vyyCa-ns

Approved

Director of Graduate Studies

Dean of the College

I f "Supervisor of Dissertation Research

... i f c
U Head of Department

Computational Analysis and Modeling
Department

Advisory Committee

ApWjdved:V ^

r ? * //
Dean of the Graduate School

GS Form 13a
(6/07)

ABSTRACT

This dissertation focuses on the study and development of algorithms that

enable the analysis and recognition of hand gestures in a motion capture environment.

Central to this work is the study of unlabeled point sets in a more abstract sense.

Evaluations of proposed methods focus on examining their generalization to users not

encountered during system training.

In an initial exploratory study, we compare various classification algorithms

based upon multiple interpretations and feature transformations of point sets, including

those based upon aggregate features (e.g. mean) and a pseudo-rasterization of the

capture space. We find aggregate feature classifiers to be balanced across multiple

users but relatively limited in maximum achievable accuracy. Certain classifiers based

upon the pseudo-rasterization performed best among tested classification algorithms.

We follow this study with targeted examinations of certain subproblems.

For the first subproblem, we introduce the a fortiori expectation-maximization

(AFEM) algorithm for computing the parameters of a distribution from which un

labeled, correlated point sets are presumed to be generated. Each unlabeled point

is assumed to correspond to a target with independent probability of appearance

but correlated positions. We propose replacing the expectation phase of the algo

rithm with a Kalman filter modified within a Bayesian framework to account for the

unknown point labels which manifest as uncertain measurement matrices. We also

propose a mechanism to reorder the measurements in order to improve parameter

estimates. In addition, we use a state-of-the-art Markov chain Monte Carlo sampler

to efficiently sample measurement matrices. In the process, we indirectly propose a

constrained /c-means clustering algorithm. Simulations verify the utility of AFEM

against a traditional expectation-maximization algorithm in a variety of scenarios.

In the second subproblem, we consider the application of positive definite

kernels and the earth mover’s distance (EMD) to our work. Positive definite kernels

are an important tool in machine learning that enable efficient solutions to otherwise

difficult or intractable problems by implicitly linearizing the problem geometry. We

develop a set-theoretic interpretation of EMD and propose earth mover’s intersection

(EMI), a positive definite analog to EMD. We offer proof of EMD’s negative definiteness

and provide necessary and sufficient conditions for EMD to be conditionally negative

definite, including approximations that guarantee negative definiteness. In particular,

we show that EMD is related to various min-like kernels. We also present a positive

definite preserving transformation that can be applied to any kernel and can be used

to derive positive definite EMD-based kernels, and we show that the Jaccard index

is simply the result of this transformation applied to set intersection. Finally, we

evaluate kernels based on EMI and the proposed transformation versus EMD in various

computer vision tasks and show that EMD is generally inferior even with indefinite

kernel techniques.

Finally, we apply deep learning to our problem. We propose neural network

architectures for hand posture and gesture recognition from unlabeled marker sets in

a coordinate system local to the hand. As a means of ensuring data integrity, we also

V

propose an extended Kalman filter for tracking the rigid pattern of markers on which

the local coordinate system is based. We consider fixed- and variable-size architectures

including convolutional and recurrent neural networks that accept unlabeled marker

input. We also consider a data-driven approach to labeling markers with a neural

network and a collection of Kalman filters. Experimental evaluations with posture and

gesture datasets show promising results for the proposed architectures with unlabeled

markers, which outperform the alternative data-driven labeling method.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions o f this Dissertation. It is understood

that “proper request” consists o f the agreement, on the part o f the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval o f the

author o f this Dissertation. Further, any portions o f the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author o f this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this Dissertation.

Author pL/At* f~~

Date 7 / S / ^ > l 7

GS Form 14
(5/03)

DEDICATION

This dissertation is dedicated to my loving and supportive parents, without

whom it would likely have never been completed.

TABLE OF CONTENTS

ABSTRACT... iii

DEDICATION.. vii

LIST OF TABLES...xiii

LIST OF FIGURES... xiv

ACKNOWLEDGMENTS.. xvii

CHAPTER 1 INTRODUCTION... 1

1.1 An Overview of Hand Gesture Recognition.. 2

1.2 Problem Statement and Setting.. 6

1.2.1 Problem Setting.. 6

1.2.2 Key Objectives... 10

1.3 Contribution.. 12

1.4 Limitations of the Study.. 13

1.5 Organization of Dissertation... 14

CHAPTER 2 BACKGROUND... 15

2.1 Fundamentals.. 15

2.1.1 Linear Algebra.. 16

2.1.2 Quaternions.. 17

2.1.3 Metrics... 20

2.1.4 Kernels.. 21

viii

ix

2.1.5 Measures.. 24

2.1.6 Probability... 25

2.1.7 Statistics.. 28

2.1.8 Classification... 29

2.2 Special Topics in Statistics.. 30

2.2.1 Divergences.. 31

2.2.2 The Maximum-Likelihood Principle... 33

2.2.3 Expectation-Maximization.. 35

2.2.4 Markov Chain Monte Carlo... 36

2.3 Constrained Optimization.. 39

2.4 Optimal Transport.. 41

2.5 Filtering... 45

2.5.1 The Kalman Filter.. 45

2.5.2 Bayes Filters.. 47

2.5.3 Extended Kalman Filter... 48

2.5.4 Other Filters.. 50

2.6 Support Vector Machines... 51

2.7 Neural Networks and Deep Learning.. 55

2.7.1 Multi-layer Perceptrons.. 55

2.7.2 Recurrent Neural Networks... 58

2.7.3 Convolutional Neural Networks... 60

2.7.4 Deep Learning... 62

CHAPTER 3 3D HAND POSTURE RECOGNITION FROM SMALL,
UNLABELED POINT SETS.. 67

3.1 Methodology.. 68

3.1.1 Data... 69

3.1.2 Classifiers.. 71

3.1.3 Evaluation.. 77

3.2 Results.. 78

CHAPTER 4 ESTIMATING THE DISTRIBUTION OF UNLABELED,
CORRELATED POINT SETS... 82

4.1 Problem Definition and Related Work... 83

4.2 The Proposed Algorithm... 85

4.2.1 A Kalman Filter for Uncertain Measurement Matrices............... 86

4.2.2 A Fortiori Estimates... 88

4.2.3 Defining the State... 89

4.2.4 Defining the Measurements.. 89

4.2.5 Uncertain Measurement Matrices... 91

4.2.6 The AFEM Algorithm... 93

4.3 Experimental Evaluation... 95

4.3.1 Simulation Description.. 96

4.3.2 Comparing Profiles... 97

4.3.3 Results.. 100

CHAPTER 5 ON THE DEFINITENESS OF EARTH MOVER’S DISTANCE
AND ITS RELATION TO SET INTERSECTION........................104

5.1 Preliminaries..105

5.1.1 Multisets... 106

5.1.2 Earth Mover’s Distance...107

5.2 A Definite Preserving Transformation.. 108

5.3 EMD Is Conditionally Negative Definite
For Certain Ground Distances.. 114

5.3.1 Earth Mover’s Intersection: A Set Theoretic Interpretation of
EMD...115

5.3.2 Transportation on the Real Line... 119

5.3.3 Transportation on the Circle.. 120

5.3.4 Transportation on the L2 Hypersphere... 121

5.4 Experiments... 124

5.4.1 Datasets...127

5.4.2 Design of Experiments... 128

5.4.3 Results and Discussion..130

CHAPTER 6 NEURAL NETWORK ARCHITECTURES
FOR GESTURE RECOGNITION...135

6.1 Tracking a Rigid P attern ..137

6.2 Feature Extraction from Unlabeled Marker Sets....................................... 141

6.2.1 Labeling Markers with Kalman Filters.. 141

6.2.2 Architectures for Unlabeled, Unordered Markers...........................143

6.3 Evaluation...146

6.3.1 Posture Recognition.. 147

6.3.2 Gesture Recognition.. 150

CHAPTER 7 CONCLUSIONS... 154

xii

7.1 Discussion...155

7.2 Future Work..157

7.2.1 Enhanced Data Collection.. 157

7.2.2 Constrained k-Means... 158

7.2.3 Improved Online Marker Tracking and Labeling........................... 159

7.2.4 MCMC Algorithms for Weighted Permutations.............................159

7.2.5 Posture and Gesture Recognition in Global Coordinates...............160

7.2.6 Marker Filtering and Labeling with Neural Networks.....................161

7.2.7 Kernel Methods for Gesture Recognition..161

7.2.8 A Kernel Trick for Optimal Transport..162

APPENDIX A NOTATION..164

APPENDIX B DATASETS.. 167

B.l General Remarks.. 168

B.2 Labeled Marker Dataset.. 169

B.2.1 Data Collection and Description... 169

B.2.2 File Format...170

B.3 Posture D ataset..171

B.3.1 Data Collection and Description... 172

B.3.2 File Format... 173

B.4 Gesture Dataset... 175

B.4.1 Data Collection and Description..175

B.4.2 File Format... 175

BIBLIOGRAPHY..178

LIST OF TABLES

Table 3.1: The average BERs per user left out and corresponding standard
deviations for tested transformed feature classifiers. Lower BER is
better.. 78

Table 3.2: The average BERs per user left out and corresponding standard
deviations for tested aggregate feature classifiers tested. Lower
BER is better... 79

Table 3.3: The average BERs per user left out and corresponding standard
deviations for tested raw feature classifiers. Lower BER is better 80

Table 5.1: Accuracies for texture recognition on normalized sets with KTH-
TIPS. All kernels were found to be positive definite. Since sets are
normalized, EMD is equal to EMD.. 130

Table 5.2: Accuracies for object category classification on normalized sets with
Caltech-101. All kernels were found to be positive definite. Since
sets are normalized, EMD is equal to EMD.. 130

Table 5.3: Accuracies for handwritten character recognition on unnormalized
sets with the MNIST derived data..131

Table 5.4: Accuracies for posture recognition on unnormalized sets......................131

Table 6.1: Accuracies for leave-one-user-out classification with the posture
dataset..149

Table 6.2: Accuracies for leave-one-user-out classification with the gesture
dataset..152

Table A.l: A list of symbols and notation used throughout the dissertation
along with definitions and short descriptions.. 165

Table A.2: A list of acronyms and their expansions used throughout the
dissertation.. 166

LIST OF FIGURES

Figure 1.1: The MAVSeN laboratory near the time data was gathered. A non-
reflective padded covering was placed on the floor after the photo
was taken.. 7

Figure 1.2: The glove used as the data source for all experiments and datasets.
The axes of the local coordinate system based upon the rigid pattern
are shown.. 8

Figure 2.1: An illustration of a separating hyperplane for a non-separable
problem. Support vectors are circled. Note that the error £ is with
respect to the margin for the side of the plane on which the point
should ideally be located.. 52

Figure 2.2: A detailed illustration of a multilayer perceptron with input x,
output o, and two layers, one of which is hidden. The arrows show
the flow of input from left to right. During back-propagation in
training, the gradient of the error flows backwards from right to
left. The bias is not shown... 56

Figure 2.3: A block diagram representing a hidden layer in an RNN. The layer’s
output ht is provided as input to the next layer, which may or may
not be recurrent... 59

Figure 2.4: A block diagram representing a GRU. The layer’s output ht is
provided as input to the next layer, which may or may not be
recurrent... 60

Figure 2.5: A 2 x 2 filter is convolved with a 3 x 3 input layer to produce a
2 x 2 output. The output is then given to a nonlinear activation
function such as hyperbolic tangent. Note that without padding
the input, the output will be smaller.. 61

Figure 3.1: A 2D grid transformation with m — 4, r s = 2, and i = 2. The
opacity of each sphere is proportional to its activation by the top-left
marker... 71

xiv

XV

Figure 3.2: The algorithm used to train heuristic GMMs. Convergence depends
upon O. If R is used, convergence occurs when the number of
markers rematched to a different component drops below a threshold.
Otherwise, convergence depends on the matching cost under C. A
maximum number of iterations is allowed before convergence 74

Figure 3.3: The sub-procedure used to initialize a heuristic Gaussian mixture
model (GMM).. 75

Figure 3.4: The sub-procedure used to refine a heuristic GMM............................ 76

Figure 4.1: The improvement in H \ for each sampler when using AFEM versus
normal EM as a function of spread for d = 3 and unconstrained
true covariance.. 100

Figure 4.2: The improvement in R \ for each sampler when using AFEM versus
normal EM as a function of target count for d — 2 and unconstrained
true covariance.. 101

Figure 4.3: The improvement between each pair of samplers in H i for AFEM
as a function of the number of targets for of = 3 and unconstrained
true covariance.. 101

Figure 4.4: The improvement between each pair of samplers in log H i for AFEM
as a function of the number of targets for d = 3 and unconstrained
true covariance.. 102

Figure 4.5: The improvement in the Rand index for each sampler when using
AFEM versus normal EM as a function of spread for d = 3 and
unconstrained true covariance... 102

Figure 6.1: A high-level diagram of the overall architecture and flow of data
from the lowest accessible level (Vicon Datastream SDK) to the
desired result (probabilities for gesture classification)..........................135

Figure 6.2: An illustration of a CDAN architecture for sets of 3D marker
positions, arbitrarily ordered. A function represented by an MLP
is convolved with the positions to produce a dynamically learned
embedding in some potentially high-dimensional space....................... 145

Figure 6.3: An illustration of a (unidirectional) RDAN architecture for sequences
of 3D marker positions. Embeddings are no longer independent 146

Figure B.l: Pseudocode for calculating axes of the hand’s local coordinate
system using labeled markers.. 169

xvi

Figure B.2: The labeled marker dataset after processing (i.e. in local coordinates).
Some outliers for certain classes are visible... 170

Figure B.3: The glove used to capture data along with a sample from each class
of posture projected onto the local X Y plane. The classes are fist
(1), stop (2), point with one finger (3), point with two fingers (4),
and grab (5).. 172

ACKNOWLEDGMENTS

Many people have contributed in many ways to this dissertation. For those

not explicitly mentioned in this small space, know that you are not forgotten.

I gratefully acknowledge Dr. Rastko Selmic, Dr. Jinko Kanno, and Dr.

Christian Duncan for jointly advising me throughout my studies and discussing

numerous tangents and diversions encountered along the way. Special thanks is

extended to Dr. Duncan for originally approaching me as an undergraduate with

talk of an upcoming gesture recognition project. I would also like to thank Dr. Jean

Gourd and Dr. Weizhong Dai for serving on my committee. Thanks to my research

group member Ademola for his insights regarding certain neural network architectures.

Further thanks is given to Dr. Selmic for securing my financial support. On a related

note, I am grateful for the funding provided by the Louisiana Space Consortium

(LaSPACE) and the Louisiana Tech College of Engineering and Science.

My family and friends also offered tremendous support and motivation. To

my immediate and extended family I offer my love and extreme gratitude for their

unwavering support. To my friends I offer my appreciation for the many conversations

and encounters that broke the monotony of an ordinary day in the office. Finally, to

Josh I give my completely sincere and heartfelt gratitude for performing the critical

task of eyeballing the dimensions of his office as a surrogate for the erstwhile MAVSeN

laboratory.

CHAPTER 1

INTRODUCTION

The motivating subject of this dissertation is the development of an interactive

hand posture and gesture recognition system for various computing and control

environments. The primary objective of the contained research is to develop and

explore methods and algorithms for robust and efficient hand gesture recognition for

computing and control, with applications including but not limited to virtual reality,

home automation, and robotics control. Examples include pointing to direct a robot

to its destination, directly controlling a drone’s pitch or yaw with a mimicked joystick

gesture, or interpreting hand signals for commands or authentication. Accomplishing

these tasks requires the accurate recognition of a user’s posture, motion, and intent.

Recognition of intent, however, is not within the scope of this project. The project is

especially focused on characterizing the physical aspects of the gestures irrespective

of context or semantics, which may change with the application. Effectively, the

research focuses on developing an application independent software layer for gesture

recognition. Vicon motion capture cameras act as a source of data, providing precise

3D coordinates of keypoints (infrared markers) on the user’s hand.

Seeking alternative problems beyond gesture recognition to which developed

algorithms or perceived insights can be applied is the chief secondary objective. The

1

development of algorithms and theory related to gesture recognition, computer vision,

and various other and potentially unforeseen areas is emphasized. Multi-target tracking,

optimal transport, and the design of neural network architectures are included in the

list of related problems. As such, algorithms and methods proposed in the dissertation

for gesture recognition are usually tailored for transference to other domains.

1.1 An Overview of Hand Gesture Recognition

Gesture recognition, as a means of human-computer interaction, provides

an intuitive and effective interface for user control, offering the ability to perform

complicated tasks with minimal effort. The success of smartphones and tablets with

touchscreens supports this hypothesis. A significant amount of research involving

gestures has been performed in the past two decades with many methods and solutions

offered [97, 145]. Hand gesture recognition is an especially appealing branch of the

gesture recognition field because it can offer a more tantalizing avenue for the average

end-user, even if only for the visceral thrill of execution. However, there is no current

camera-based system that can demonstrate robust and precise finger-based gesture

recognition (or even tracking) in a sizable 3D space [152] (although significant strides

in finger tracking have been made recently [2]).

We separate our recognition targets into two categories: postures and gestures.

A posture, or static gesture, is one in which the hand makes a certain pose, such as

holding a closed fist, whereas a (dynamic) gesture involves motion of the hand, arm,

or fingers, such as pointing or waving. Examples of each abound in the literature. Ge

et al. [42] project depth images of a hand onto orthogonal planes and use convolutional

neural networks (see Section 2.7.3) to estimate the hand’s 3D pose. Bhuyan et al. [9]

use a finite state machine with fuzzy logic to segment continuous gestures from video

streams and present an integrated system for recognition of various postures and

gestures. Hand gesture recognition is inherently interactive, providing a wide range of

applications including virtual reality and games [78, 125], robot control [16, 92], and

interactive sign language [75].

There are many different methods by which hand features can be measured.

Gloves are sometimes used [32]. Ceruti et al. [14] use wireless magnetic sensors

embedded in a glove to detect finger motion and interpret a Braille-like binary code

for communication. Luzanin and Plancak [89] and Weissmann and Salomon [150] each

use neural networks and data gloves to classify a variety of postures. Vision-based

approaches [129] are of particular interest as they do not require any peripheral

accessories other than the camera or equivalent sensing device. The Microsoft

Kinect [53] and Leap Motion Controller [107] are both commercially available and

affordable. The Kinect employs an HGB-D (color plus depth) camera for full body

tracking, whereas the Leap Motion uses only a depth camera to track the hands. Both

devices operate in a limited field of view, although of the two the Kinect is larger.

However, the Kinect is generally focused on full-body gestures and lacks the precision

to model individual fingers at a significant distance [53, 125]. In particular, the Kinect

only differentiates between a closed and open hand using the commercial software.

The Leap Motion Controller offers a peripheral-free interaction system in a limited 3D

space, but its detection currently suffers from some notable limitations. The controller

primarily detects extended fingers, and thus, like the Kinect, requires the hand to be

4

held at a certain angle with respect to the sensor. In fact, the Leap Motion Controller

is incapable of recognizing a fist, and touching or crossing fingers can lead to spurious

approximations of the hand’s pose [107]. Developers are responsible for detecting

certain gestures or postures, such as a fist, thus yielding inconsistent performance

across applications and platforms. Wang et al. [149] offer an alternative vision-based

approach that is capable of detecting a limited class of pinching gestures for 3D CAD

applications.

Posture recognition is an integral component of gesture recognition. The level

of detail with which the hand is probed affects the expressiveness and variety of

recognizable gestures. A system should generally ensure that the user’s hand is not

relaxed and is making the correct shape before positively interpreting the motion,

assuming that the gesture is not defined solely by the motion or trajectory (such as a

figure-eight). A system such as Vicon enables the greatest range of dynamic expression

in a gesture by tracking the articulatiozi of individual fingers.

The usage of Vicon motion capture cameras is similar to but fundamentally

distinct from both depth-based methods and vision-based approaches, which we define

to be detection methods based on the visible spectrum of light. Motion capture

cameras instead observe infrared (i.e. not visible) light reflected by markers placed at

preselected locations on the subject of interest. A noteworthy advantage of motion

capture is the low-volume and sparsity of the data. A significant amount of noise that

can be introduced by the environment is automatically filtered. Only the coordinates

of the markers, inferred by triangulation, are reported for each frame measured. Aside

from the exceptionally high costs for the hardware and software involved and the

5

careful camera calibration required to make practical use of the system, motion capture

also comes with another major disadvantage encountered repeatedly throughout this

research: marker identity is not known except under very limited circumstances.

Marker identity is generally known (or equivalently, markers are labeled) only

when part of a rigid pattern or predefined skeleton. A rigid pattern is a configuration

of markers such that if each marker is connected by an inflexible rod, then the angle

between each pair of rods is constant. Consequently, the rod lengths are also fixed.

A skeleton differs from a rigid pattern in that certain rods and angles are explicitly

defined whereas others are free to change. Marker identities are often determined by

having the subject strike a pose (such as a “T”-pose for a full body skeleton) in order

to label markers, after which joint angles and other parameters of the skeleton are

determined via inverse kinematics [3] or some other, perhaps probabilistic, method [95].

Automatic skeleton learning [28] and tracking [118] are also possible under certain

conditions. In many cases, though, marker trajectories need to be manually labeled in

a post-processing step, and not all of these methods operate in real-time.

The term skeleton is not a misnomer; predefined skeletons often correspond

to major bone and joint segments in the human body. Motion capture cameras are

commonly used to model and record human motion for animation in movies and

video games. The use of motion capture cameras for hand gesture recognition is

also well-established. Chang et al. [15] use supervised feature selection techniques to

discover a reduced marker set sufficient for classifying certain classes of grasp gestures

and use a similar method to our own in determining a local reference frame for the

hand. Liu and McMillan [83] propose a method to estimate missing marker positions

6

during motion from a Random Forest based on local linear kinematic models, which

is related to previous work that focused on accurately estimating the motion itself

with limited markers [84]. Martin et al. [91] use a similar camera system to our own

in order to recognize specific user actions, such as lifting and tipping a carton of

milk or writing, via a combination of vector quantization and dynamic time warping.

Lee and Tsai [75] also use a Vicon camera system with neural networks that are

trained to completion to recognize 20 Taiwanese sign language static gestures. Both of

these works are distinguished from our own in that they do not deal with anonymous

markers but with labeled entities; i.e. it was known prior to classification which marker

corresponded to the thumb or other location. Martin et al. [91] employed Vicon Nexus

software to define a skeletal model of the user’s hand, although it is not clear how Lee

and Tsai [75] accomplished the labeling.

1.2 Problem Statement and Setting

This section states the specific problems that we attempt to solve, provides a

detailed description of the setting in which the problems lie, and gives brief sketches

of possible solutions.

1.2.1 Problem Setting

This subsection describes the laboratory in which the research was conducted

as well as the glove constructed to serve as the source of data for all algorithms analysis

and development.

7

L aboratory

Ten Vicon MX T40 (4 megapixel) motion capture cameras available in the

Micro-Aerial Vehicle and Sensor Networks (MAVSeN) Laboratory at Louisiana Tech

University act as the source of data. The MAVSeN lab conducts research and

development in small-scale vehicle design, cooperative intelligent sensing, and control

algorithms for unmanned air and ground vehicles (see Figure 1.1). As the figure

partially shows, the cameras are arranged roughly on the boundary of a rectangular

area approximately 10 x 15 m2. The cameras are capable of recording at multiple

frame-rates, with 50 Hz and 100 Hz being the options used in the majority of situations

including data capture and interactive tests.

F igure 1.1: The MAVSeN laboratory near the time data was gathered. A non-
reflective padded covering was placed on the floor after the photo was taken.

8

D ata Source

The collection of data is facilitated by the Vicon Tracker application, which

provides a graphical user interface to configure camera settings and define rigid

patterns. Vicon Tracker does not support skeletons. Vicon DataStream SDK [1]

enables programmatic access to streaming data from Vicon Tracker via C++ and C #

libraries. This data can then be written to a file or reacted to in a real-time or near

real-time fashion.

A glove with 15 markers attached is used as the source of data for posture

and gesture recognition, both for the generation of datasets and for the practical

evaluation of developed algorithms. Figure 1.2 shows a picture of the glove with all

markers visible.

Figure 1.2: The glove used as the data source for all experiments and datasets. The
axes of the local coordinate system based upon the rigid pattern are shown.

9

Four of the markers form a rigid pattern on the back of the hand to serve as

identification of the hand’s position and orientation and to create a local coordinate

system for the remaining 11 markers. The remaining 11 markers are unlabeled; they do

not form part of a rigid pattern nor skeleton. A rigid pattern is infeasible because the

markers are not related in any manner that could be described as rigid. All distances

and angles between these markers are flexible. For a similar reason, a skeleton is also

infeasible since in theory the skeleton needs fixed segment lengths between certain

markers. In reality, even if some distortion is allowed in the segment lengths, a skeleton

is still infeasible, or at the least impractical, due to the variance in the lengths but

more so due to the inherently high rates of marker occlusion. Visibility of fingers can

be blocked by other fingers or the hand itself depending upon the hand’s pose and

orientation. For example, the fingertips are occluded when making a fist and multiple

markers may become occluded simply when the user’s hand is relaxed at their side

and pointing downwards. An effective skeletal model also requires a denser marker

set than ours in order to capture the 20+ degrees of freedom of the hand [2, 32] and

eliminate ambiguity between similar poses. A denser marker set is not very practical in

our laboratory (but also in general for large capture spaces) due to limited resolution

as the cameras have a hard time discerning individual markers that are too close

together.

We therefore chose to develop algorithms that either extract the markers’

identity and are robust to incorrect labels or avoid using this information altogether.

In the course of this dissertation, we collected posture and gesture recognition datasets

using unlabeled markers. The samples in each dataset were voluntarily provided by

10

12 users to provide a corpus of five postures and six gestures. In addition, a dataset

of labeled markers was collected for one user (the author) and was meant to provide

a representation of each marker’s range of motion. These datasets are referred to

multiple times throughout the dissertation and serve to evaluate proposed methods.

For more detailed descriptions of each dataset including their capture, please refer

to Appendix B.

1.2.2 Key Objectives

The key objectives of this research can ultimately be broken down into three

related, but ultimately distinct, subproblems: marker tracking, marker labeling, and

classification of postures and gestures. The subproblem of marker tracking deals with

tracking the unlabeled markers through sequential frames in order to build complete

tracks (i.e. trajectories) and fill in missing portions due to occlusion. Marker labeling is

concerned with assigning parts of the hand either to individual markers in each frame

or the complete tracks if available. These tasks are complementary in that solving one

aids the solution of the other. Taken together, they serve as a way to cleanse input

prior to posture or gesture recognition. Consistently labeled markers and trajectories

would greatly simplify the application of different classification algorithms. However,

labeling and tracking the markers are challenging problems that may introduce errors

if not done in a adequately robust manner. Therefore, the design of classifiers that

operate directly on the unlabeled markers would avoid any bias introduced by sub-

par solutions to the other problems and may be considered the holy grail of this

dissertation.

11

Marker Tracking

Since the markers that do not form part of the rigid pattern on the hand

are unlabeled in each frame and inconsistently ordered when their positions are

obtained from the Vicon DataStream SDK, motion information of individual markers

is unavailable. One cannot select a marker and know its path for the duration of a

gesture. This key objective is concerned with designing algorithms to address this

fault. Natural contenders for the solution include the Kalman filter (Section 2.5.1)

and its relatives. However, a Kalman filter will not work “out of the box” due to the

unknown associations between markers from frame to frame. One class of solutions

uses the assignment problem, which seeks the minimum-cost assignment between two

sets of items given a cost for each pair of potentially assigned items (see Section 2.4

for more details). The assignment problem also plays a pivotal role in marker labeling.

Marker Labeling

The labeling of markers (or assignment of each marker to part of the hand)

comprises the second major objective. A solution to this problem would make marker

tracking trivial. However, the system must necessarily have some idea of what the

“thumb” is or where it appears. A data-driven approach may be sufficient if not

necessary to resolve this issue, where examples of labeled markers captured over a

wide range of motion are collected. The labels for this data almost certainly need

to be manually generated (see Section B.2). Similar to how a solution to marker

labeling makes tracking easier, so too does the converse. Observing the entire or

12

partial trajectory of a tracked marker increases the confidence of assigning a label

based upon position.

Classification

Classification comprises the ultimate goal of posture or gesture recognition

wherein frames or sequences of frames are classified as a type of posture or gesture.

Part of the study is concerned with identifying robust and efficient methods that can

accomplish recognition to a reasonable degree of accuracy. A significant portion of

the study is devoted to classification without labels or tracked markers. In fact, as

stated above, the ideal results include methods that are effective using just the raw

unlabeled data. While kernel methods (described in Sections 2.1.4 and 2.6) appear

very promising in terms of accuracy (see Chapter 5) and theoretical support, they

are relatively inefficient. Deep learning via neural networks (Section 2.7) provides a

possible alternative. Deep learning avoids engineered features by instead providing a

mechanism that implicitly learns important features during training [73]. As a result,

one may expect better results using deep learning without labels, especially since there

is no guarantee that a label is correct. In Chapter 6, we explore this idea and find it

to hold true.

1.3 Contribution

Aside from the datasets described in Appendix B, the chief contributions of

this dissertation are both algorithmic and theoretical. In Chapter 4, we propose a

Kalman filter based algorithm for estimating the generating distribution of a collection

of unlabeled, correlated point sets. This algorithm can also be considered a type of

13

constrained fc-means clustering algorithm. We also provide proof of both positive and

negative definite preserving kernel normalizations in Chapter 5, and we provide a

principled generalization of the Wasserstein distance on sets of different sizes for kernel

methods. Finally, in Chapter 6 , we propose neural network architectures for posture

and gesture recognition with labeled and unlabeled markers. Minor contributions are

also contained within the text of each chapter.

1.4 Limitations of the Study

We are not especially concerned in this study with defining an extensive corpus

of postures or gestures but rather on developing methods that could be applied on

an arbitrary corpus with reasonable robustness and reliability. Rather than focusing

on the anatomy of the hand and any particularly special qualities of it, we develop

algorithms that apply to unlabeled point sets, which is a more general point of view.

We also note that the quality of our results are limited by the quality of our

data. The markers used on the glove in Figure 1.2 were each 4 mm in diameter. The

MAVSeN laboratory was not calibrated or setup to reliably detect these markers in the

entire space. This inadequacy of the laboratory was due to multiple factors including

camera count, layout, and bright ambient light that limited camera exposure. Data

capture was generally confined to a small volume as a result, which may bias results

and prohibits certain studies from taking place such as those involving both hands.

We expect future extensions of this work to involve the collection of a much more

extensive dataset under more favorable conditions.

14

1.5 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides

the knowledge necessary to understand concepts and tools fundamental to succeeding

chapters. The following three chapters focus on posture recognition. Chapter 3

applies a variety of different classification algorithms and feature transforms in an

exploratory study meant to guide future efforts. Chapter 4 provides a principled

approach to an algorithm sketched in Chapter 3 for estimating the distribution of a

posture defined by unlabeled marker sets. Chapter 5 applies the Wasserstein distance

(see Section 2.4) to posture recognition and obtains the best accuracy of any method

reported in this dissertation. The chapter also proposes a positive definite (PD)-

preserving transformation for kernels and a principled adaptation of the Wasserstein

distance to kernel methods with sets of different sizes. Chapter 6 introduces time to

the discussion by directly examining the key objectives with deep learning. Finally,

we conclude the dissertation with a discussion of the overall results and possible

extensions and future work.

The dissertation is supplemented by Appendix A and Appendix B, which

provide a table defining notation, a list of defined acronyms, and descriptions of the

datasets gathered in support of the dissertation and used in various chapters.

CHAPTER 2

BACKGROUND

This chapter introduces concepts and tools used throughout the dissertation

including notation, definitions, algorithms, and equations. First we review certain

foundational elements that are used repeatedly throughout the dissertation. We

follow this with introductions to various topics including Kalman filters, support

vector machines, and neural networks. Note that this chapter is meant to provide the

reader with merely a basic understanding of their fundamental theory and practical

application. References for further information are provided.

2.1 Fundamentals

This section introduces notation, definitions, and basic fundamental topics

such as linear algebra, probability, and kernels. Familiarity with certain topics not

explicitly covered is assumed (e.g. set theory). Table A.l provides a summary of the

major notational elements used throughout the background and dissertation, some of

which are given greater elaboration in the text. In addition, Table A.2 in the same

appendix provides a reference for acronyms used in the text.

15

16

2.1.1 Linear Algebra

Readers are assumed to be familiar with topics in linear algebra such as matrices,

vectors, and various matrix decompositions (e.g. eigen-, Cholesky). For a review of

decompositions, a numerical analysis textbook such as Burden and Faires [12] suffices.

Familiarity with calculus including differentiation and integration is also assumed.

Regarding notation conventions, a vector v can always be safely assumed to

be a column vector. Tensors are also applied in certain contexts (see Section 2.7.3),

where a tensor is a multi-dimensional array with an arbitrary number of dimensions.

A tensor generalizes a matrix, which may be considered a two-dimensional array. We

only use tensors to organize data, so no further knowledge of their theory is required.

Just as elements of a matrix A are referenced by subscripts separated by commas

(e.g. A itj is the element in the z-th row and j -th column of the matrix A), so too are

elements of a tensor.

Regarding multidimensional calculus, let us explicitly recall that the derivative

of an ra-dimensional vector-valued function y with respect to an n-dimensional vector

x is
dyi dyi dyi
d x i 9x2 ' ' ' 9 x n

9y2 dy2 dy2
d x \ 9X2 ' ‘ ‘ 9 xn

(2 . 1)

9ym 9ym dym
d x i 9x2 ' ' ' 9 xn

This matrix is known as the Jacobian. Note that the Jacobian is column-oriented in that

the columns correspond to dimensions of x, which differs from some representations of

dy
d x

17

the gradient. A similar matrix composed of second order partial derivatives is called

the Hessian. If J is the Jacobian, then the Hessian H is given by 9VQCj J'>.

Certain special matrix products are employed including the Hadamard and

Kronecker tensor product. The Hadamard (or Schur) product between two matrices A

and B of the same shape is defined to be the element-wise product denoted by A 0 B

and given by

>
(2 .2)

where i and j are valid indices. See Theorem 2.5 for a result concerning Hadamard

products. The Kronecker tensor (or simply Kronecker) product [86] between an n x m

matrix A and a p x q matrix B is denoted by A ® B and defined to be the np x rnq

matrix given by

A ® B

A \ \B A 1 2 B

A"2,\B A 2 2 B

An,iB

A\^mB

A R

(2.3)

2.1.2 Quaternions

Quaternions are an extension of the complex numbers that contain three

imaginary components instead of one. We do not delve too deeply into the theory

behind quaternion algebra. By definition [133], a quaternion is given by

Q — Qo + 9ii + Q2J + 93k) (2.4)

where qt e l , i € [0 ,3], and i, j, and k are an imaginary basis satisfying

i2 = j 2 = k2 = - l , (2.5)

ij = - j i = k, (2.6)

jk = -k j = i, (2.7)

ki = — i k = j . (2.8)

For our purposes, it is sufficient to note that a quaternion q can be represented as

a four-dimensional vector or equivalently as a real scalar paired with an imaginary

three-dimensional vector, i.e. q = (r/0, q) with q = (9i , 92, 93)t - The product of two

quaternions p = (p0, p) and 9 = (9 0 , q) is non-commutative and is given by

P q = (Po9o - PTq, 9oP + PoQ + P x q), (2.9)

where

i j k

p x q = Pi P2 P3

9i 92 93

is the cross product of p and q. The conjugate of a quaternion 9 — (90, q) is given by

T = (9o, -q).

Unit quaternions (i.e. those satisfying \/ff* = 1) are especially useful for

modeling rotations. If 9 and v (as a unit vector) are the angle and the axis of a

right-handed rotation, then the rotation may be represented by the unit quaternion

19

For axis-angle representations (where the magnitude of the vector v is the angle of

rotation), we define the operation

q u a t (v) = (c o s (M) , s i n (M) ^) (2 .12)

to facilitate conversions between the two representations. Note that — q represents

the same rotation but in the opposite direction and that the unit quaternion with

positive scalar represents the shorter of the two rotations. Let us assume that all

unit quaternions henceforth denote rotations. Unit quaternions can be used to rotate

arbitrary three-dimensional vectors by placing the vectors in the imaginary part of a

quaternion and performing quaternion multiplication. In other words, if q is a unit

quaternion, v E R3, and p = (0, v), then

yields the rotated vector in the imaginary part of the result. Since po = 0 , the result is

purely imaginary. A sequence of rotation quaternions q i,q 2 ■ ■ ■ ,q r can be composed

with a single quaternion qR = qrqr_l . . , qv

We use quaternions in Chapter 6 to design Kalman filters (see Section 2.5) for

estimating the orientation of rigid patterns of markers. Certain derivatives are useful

and are listed here. The partial derivative of a quaternion product with respect to the

right-hand quaternion is

0
qpq (2.13)

9o(®)V + 2q X v) + 2qqTv - vqTq

dpq P° pT
(2.14)

dq
P Pola+Lpxj

20

where [px j is the skew-symmetric cross product matrix

Lp x J =

-p2 Pi 0

Differentiating with respect to the left-hand quaternion yields

0 ~ P z P2

Pz 0 - p i

dpq
dp

?o -q'

q 90I3 - LqxJ

In addition,

dquat (v)
dv

- | s i n (M) ^

sin j I3 + vv T i |v l | / 2 c o s (| |v | l / 2) - s in (| |v | | / 2)
| |v | |v Tv i

In order to account for small |lu||, we note via L’Hospital’s rule that

lim
dquat (v)

|[—>0 <9v
- I 3 — —vv^
2 3 24

(2.15)

(2.16)

(2.17)

(2.18)

2.1.3 Metrics

A metric is a function that satisfies certain axioms (outlined in Definition 2.1)

and can be used to represent a distance between two items.

Definition 2.1. A function S : X x X —>■ K is a metric on some set X if and only if

the following properties are satisfied for every x , y , z € X :

• Non-negativity: 6(x,y) > 0.

• Symmetry: S(x,y) =S(y ,x) .

• Identity of indiscemibles: S(x,y) = 0 if and only if x = y.

• Triangle inequality: 5(x , y) < <5(x, z) + 6{y, z).

21

We will use the term discrete metric to refer to the 0-1 distance defined by

3o-i(x ,y) = 0 if x = y and 1 otherwise. As can be inferred from its name, the discrete

metric is a metric. We also define the term semimetric to indicate satisfaction of all

of the preceding properties except for the triangle inequality. The Euclidean distance

is a metric, and the squared Euclidean distance is a semimetric. A simple example

of the squared Euclidean distance failing the triangle inequality may be noted with

the points x = (0, 0), y = (0, 2), and 2 = (0,1) as elements of R2 since the resulting

distances are 5(x, y) = 4, 5(x, z) = 1, and 6(y, z) = 1.

2.1.4 Kernels

A kernel on a set X is, in general, a function K : X x X -4 R. Kernels can be

used to represent the similarity or distance between objects, and therefore generalize

the notion of a metric. Kernels that satisfy Definition 2.2 below are especially useful.

Be aware that our notation condenses the double summation when each index i and j

shares the same range as in (2.19).

Definition 2.2. A kernel K is PD if and only if it is symmetric and for any choice

of n distinct elements x ,\ , . .. , x n and real numbers <q,. . . , cn,

n
y ; cicj K (x l, xJ) > 0. (2.19)
*,j=l

I f the constraint c* = 0 is added, then K is conditionally positive definite (CPD).

The condition (2.19) is equivalent to testing whether the kernel matrix for

the chosen elements Gk — [A(x,(, Xj)] is positive semi-definite via a quadratic form,

i.e. cTG*-c > 0 where c = [c*]. If the kernel is PD, then Gk is called the Gram

matrix. A (conditionally) strictly PD kernel is one in which the preceding inequalities

22

are strict with equality holding only if each C; = 0. One may note that PD implies

CPD, but the converse does not hold. Simply reversing the inequality of (2.19) yields

negative definite (ND) kernels of each respective type. Consequently, if K is PD, then

—K is ND. PD kernels are useful for a variety of machine learning tasks including

classification, regression, and principal component analysis and are sometimes known

as Mercer kernels [13].

PD-ness is an attractive property because it implies the existence of a mapping

(j) : X -» H from X to some Hilbert space H in which the kernel gives the value of

the inner product and certain nonlinear problems in X become linear [123], i.e.

K{xi,Xj) = (0 (xi),0 (x j)). (2 .20)

This property is the key component of the so-called “kernel trick,” wherein a separating

hyperplane is implicitly found without ever working directly in H (see Section 2.6). A

conditionally negative definite (CND) kernel is also related to some Hilbert space H

through a mapping 0 by

K (x i , Xj) = ||<j>{xi) - <j>{xj)||2. (2.21)

Note that the existence of 4> implies the respective type of definiteness and vice versa.

CND kernels are sometimes referred to as metrics of negative type, and as indicated by

(2.21), correspond to functions that isometrically embed into squared Euclidean space.

Note that we follow traditional nomenclature for kernels in that PD and strictly PD

kernels correspond to positive semi-definite and PD matrices, respectively.

The following three results are adapted from Berg et al. [7] and form a basis for

several later propositions. Theorem 2.3 and Lemma 2.4 propose relationships between

23

CND and PD kernels. Kernels of the form exp(uK) with arbitrary K are sometimes

called generalized radial basis function (RBF) kernels. Theorem 2.5, originally proved

by Schur [120] and known as the Schur product theorem, demonstrates that PD

kernels are closed under multiplication. Note that Theorem 2.5 does not apply to

CPD kernels.

Theorem 2.3 ([7]). Let X be a nonempty set and let K : X x X —> R be a symmetric

kernel. Then K is CND (CPD) if and only if cxp(uK) is PD for each u < 0 (0 < u).

Lemma 2.4 ([7]). Let X be a nonempty set, x0 £ X , and let D : X x X —> R be a

symmetric kernel. Let K(x, y) = D(x, xo) + D(y , xo) — D(x, y) — D(x0, x0). Then K

is PD if and only if D is CND. I f D (x o , x q) > 0, then Ko(x,y) — K(x , y) + D(x0, x 0)

is also PD.

Theorem 2.5 ([7]). I f K \ : X x X —> R and K 2 : X x X —> E are both PD, then

their Schur product (K\ ■ K 2)(x,y) = K\ {x , y) K2{x,y) is also PD.

The next two propositions are adapted from Boughorbel et al. [11] and were

involved in the derivation of the generalized histogram intersection kernel. As a preview

of upcoming proofs and an example of working with kernels, a proof of Proposition 2.6

is given since the statement appears counterintuitive at first.

Proposition 2.6 ([11]).

K , (x , y) = f (x) + f (y) (2.22)

is both a CPD and CND kernel for any function f .

24

Proof. Let cx, . . . , cn and x x, . . . , x n be defined as in Definition 2.2 with

Y2= i ('i = 0. Then the following holds.
n n

Y 2 clcJK f (xl,xJ) = ci°j lf(x i) + f (xi)}
*j=i *j =i

n n

= C i C j f (X i) + C i C j f (X j)

i , j =1 i.j=l

n

= 2 CjCif(xi) (2.23)
*>j=l

= 2 (e ^)

= o.

□

Proposition 2.7 ([11]). I f K is positive valued and a CND kernel, then K " 1 is PD

for each 7 > 0 .

2.1.5 Measures

A measure is a function that generalizes the notion of cardinality, area, volume,

or length. To be precise, a measure p : E* —»• E assigns a number to subsets contained

in a a-algebra Ex of some set X , where a cr-algebra is some collection of subsets of

X that contains the empty set and is closed under complement, countable unions,

and countable intersections. The measure of a subset must be less than or equal to

that of its superset, i.e. p(A) < p{B) if A C B. Measures also possess countable

additivity, i.e. the measure of the union of disjoint sets is the sum of their measures.

The elements of X on which p has non-zero measure constitute its support, denoted

supp (p). We use measures in a somewhat informal sense; we do not particularly care

whether the measure is Lebesgue, Radon, Haar, etc. For a deeper understanding of

25

measures, please refer to any introductory textbook on analysis or measure theory,

e.g. Tau [131].

2.1.6 Probability

Readers are assumed to be familiar with the concept of a random variable

and probability density or mass functions. Random variables are often denoted with

capital letters, but we will not maintain this convention as we more often deal with

random vectors and matrices. A very brief review of some key topics is given the

following subsections.

Joints and Marginals

Recall that a joint distribution f x y between two random variables X and Y

assigns probability mass or density to every possible combination of X and Y . A

marginal distribution assigns a density f x to X (or f y for Y) and is related to the

joint distribution according to

In this situation, Y is said to have been marginalized out. A conditional distribution

on X given Y (denoted X \ Y) is also related to the marginal and joint distributions

according to

One may note that (2.25) is simply a restatement of the ubiquitous Bayes’ theoerem

y
(2.24)

(2.25)

relating the conditional probabilities of two events A and B

(2.26)

26

where p(A) denotes the probability of the event A (and similarly for the other terms).

Probability Measures

Define J r(X) to be the family of measures p : E* —> E yielding finite, non

negative measure n{X). In addition, let V{X) C T { X) be the family of all probability

measures on X , where a probability measure is a measure that assigns a total mass of

1 to X , i.e. p(X) — 1. A probability measure p is associated with a mass or density

function that can be obtained by restricting p to just individual elements of X. Let

p^X : X -4 E be this restricted version of p. The set X is sometimes referred to as

the state space or domain of the random variable associated with p. One should note

that p is uniquely defined by /i(r) and vice versa. This fact should be evident since for

a given set Y €E Y x ,

p(Y) = j p^r\x)d x . (2.27)

Due to this relation, we will often abuse notation and simply refer to p ^ directly as a

measure or p as a distribution or even interchange the terms distribution and random

variable. We will also tend to use p(Y) to denote the probability of the event Y when

no probability measure is explicitly given as in (2.26).

Common Distributions

Let us review some common probability distributions—namely the normal,

binomial, and multinomial distributions. We also discuss mixture models.

Let Af{p, E) denote a multivariate normal or Gaussian distribution with mean

p and covariance E, and let A/"(x; p . E) denote the probability density function of

27

j\7(/i, E) evaluated at x, or

A7(x; p, E) = |27rE|—1/2 ^.28)

In the event that and E are scalars, then we simply have the normal distribution. A

(multivariate) normal distribution is parameterized by its mean and variance, which

are respectively /x and E.

Let B(p, n) represent a binomial distribution with n trials and success parameter

p. A binomial distributions may represent the outcome of n coin flips. The probability

mass function is given by

B(x ;p ,n) = f " V (l —p)”- . (2.29)

Note that B(p, 1) denotes a Bernoulli distribution.

A multinomial distribution is a generalization of the binomial distribution to k

outcomes instead of two. For example, where a binomial distribution can represent the

outcome of independent coin flips, a multinomial distribution represents the outcome

of independent k sided dice rolls. The probability mass function is given by

C(x;p,n) = - ^ — n ? * - . (2.30)
lli=l X i- i = l

where n is the number of trials, p* is the probability of the z-th outcome on an

independent trial, and Xi is the number of times the z-th outcome occurs in n trials.

The vectors x and p are just notationally convenient. By necessity, = 1 and

Y,Xi = n. Note that C(p, 1) denotes a categorical distribution.

A mixture is a distribution defined as a weighted combination of two or more

distributions with the same domain. For example, the probability density p of a

28

mixture of two distributions p and v given respective weights a and j3 (a + /3 — 1)

would be given by

rj(x) = ap(x) + fiv{x). (2-31)

The GMM is possibly the most common example of a mixture, which is defined to

be a mixture of normal or multivariate normal distributions. The probability density

function of a GMM with k components i € [1 ,k\, and mixture weights

* = £?=1 ^ = h is given by
k

M(x; /Xj, E i , . . . , f ik,'Ek,n) = ^7TjJV(x; pu Et). (2.32)
i=i

Despite their prevalence, many problems involving GMMs, such as estimation of their

parameters [38], do not have closed form solutions.

2.1.7 Statistics

Readers are assumed to be familiar with basic statistics terminology including

but not limited to moments (e.g. mean, variance, etc.) For completeness, certain

topics will be reviewed here. The reader is referred to the textbook by Hogg et al. [59]

for more complete coverage of the subject.

The expected value (commonly referred to as the mean or average) of a function

f (X) of a random variable X is a sum over the variable’s entire domain weighted by

the associated probability measure p, and is defined to be

Ex [/ (*)]= / (2.33)
J su p p (/i)

Note that p is implicit to the random variable X here. In fact, given the context,

we could have simply written E [/(A-)]. In the event that we are given a probabiliy

29

measure/density without a random variable, then an implicit random variable can be

denoted by the notation [/(X)]. Note that the value reported by the expectation

does not necessarily lie within the domain of the random variable. A related quantity,

the variance, is defined as E[(X — E[X])2]. The generalization of the variance to

jointly distributed variables X and Y is called the covariance and is defined as

Cov (X, Y) = E [{X - E [X])(Y - E [Y])}, (2.34)

where the expectation is understood to be taken with respect to their joint distribution.

2.1.8 Classification

Classification is a problem within the field of machine learning that involves

assigning (i.e. classifying) an object or instance to one of several categories or classes.

A classifier is an algorithm that performs this assignment. Equivalently, we may

consider the classifier a parametric function that maps instances to classes. Generally,

we wish to maximize the expected accuracy (or minimize the expected error) of

a classifier when presented with an arbitrary instance. We train the classifier by

selecting (or trying to select) the optimal parameters with respect to this (or some

proxy) criterion. The process of training typically assumes that a set of independent

and identically distributed data X is available and is accompanied by a set of known

class labels Y. In order to fairly evaluate the efficacy of the classifier, one must usually

partition X and Y into a training set on which we train the classifier and a disjoint

test set on which we assess its performance. This treatment is necessary since the

error on the training set is not necessarily indicative of the classifier’s generalization

error when given new data.

30

Many different classification algorithms exist of varying complexity. For

example, k-nearest neighbor (fc-NN) and naive Bayes sit at the simpler end of the

spectrum. The /c-NN classifier is non-parametric (and thus requires no training) and

consists of classifying an instance by a majority vote based on the classes of the k

most similar instances in the training set (assuming a kernel to compute similarity

between instances is defined). Naive Bayes is the name of a probabilistic classifier

that assigns a class y to an instance represented by a feature vector x according to

y = arg max p(n) TT p(x{ \ k), (2.35)r,e_K
X

where JC is the set of classes. The classifier is naive because it assumes that each feature

Xi is conditionally independent given a class k . Features, though not always explicitly

required, play an important role in classification, and the selection or computation

of useful features is a commonly pursued research topic [15, 51, 88 , 114, 156]. In

this work, we focus especially on kernel-based classifiers (Section 2.6) and neural

networks (Section 2.7). For a more thorough review of classification and machine

learning in general, please refer to introductory textbooks on the subject, e.g. Smola

and Vishwanathan [126].

2.2 Special Topics in Statistics

In this section we cover some more advanced topics in statistics of which a

casual acquaintance with the subject may not be entirely knowledgeable.

31

2.2.1 Divergences

An f -divergence is a function that measures the difference between two

probability distributions [79]. We describe three well-known /-divergences that are

used or referred to in following chapters.

The Kullback-Leibler (KL) divergence D KL between two probability distribu

tions n : X -» R and u : X —»• R is given by

H{x)'
Dk M W) = In- (2.36)

u(x)

and measures the information gain when transitioning from v to p. Although it

can be quite difficult to compute in general (for example, if both distributions are

Gaussian mixture models [61]), a special case for which a closed form solution exists

is the KL divergence between two d-dimensional multivariate Gaussian distributions

/i ~ Si) and v ~ A/"(/i2, E2), which is given by

Dk M W) = 2
IS I

In | ^ | + tr [E2 l s J “ d + (#*i “ ~ M2) (2.37)

Another special case is of that between two Bernoulli distributions /r ~ B(p, 1) and

v ~ B(q, 1), which is given by

DkM W) = P ln ~ + (1 - P) l n ^ (2.38)

Finally, KL divergence is additive. If //, and v can each be decomposed into independent

distributions /q : X —» R, /q : Y —¥ R, v\ : X —> R, and iq '■ Y —> R such that

M ^y) = mi(z)m2(y) and K ^ y) = ^ f a W y) . then

= Dk I[) + Dk l {^2 IN)- (2.39)

Drawbacks to KL divergence include the facts that it is asymmetric and unbounded.

The Jensen-Shannon (JS) divergence is a symmetric divergence based on KL

divergence that compares /x and v to the midpoint distribution r/ = (p + v)J%

Aside from being symmetric, JS divergence offers some other advantages. First, it

ranges from 0 to In 2 . Perhaps more importantly, \ fD js is a metric, which is a

consequence [7] of the fact that JS divergence is CND [40].

The squared Hellinger distance between two distributions p and u defined on

the same u-algebra is defined as

The squared Hellinger distance is symmetric and ranges from 0 (if and only if p = u)

seen by definition of H 2 as a sum of squared differences or as a constant minus PD

kernel through its alternative form

Consequently, H is a metric [7]. The Hellinger distance is also multiplicative for

joint independent distributions. If p and u can each be decomposed into independent

Djsi/i , v) = DKL(p\\rj) + DKL(i/\\rj). (2.40)

Defined in terms of Shannon entropy,

H(p) = ~ E X̂ [ln/r(x)], (2.41)

one finds that

(2.42)

(2.43)

to 1. In fact, the squared Hellinger distance is CND [57], which can rather trivially be

(2.44)

33

distributions /ii : X -» R, /i2 : Y —V M, iq : X —> R, and i/2 : Y

/i(x,y) = y x{x)y2{y) and 1/(1 , y) = ui(x)u2(y), then

H 2(y, u) = 1 - J J y/y i{x)y2{y)ux(x)v2{y)dxdy

= 1 - J y/ni(x)vi{x)dx J yj y 2{y)u2(y)dy.

We may also express H 2 as

H 2(y, v) = 1 - J y{x)

such that

(2.45)

' u(x)
f*(x)

(2.46)

which enables Monte Carlo estimation of H 2 by sampling from y (or u by a similar

construction). The squared Hellinger distance between two multivariate Gaussian

distributions y ~ Ar(/x1, Si) and v ~ M { y 2, ^ 2) is given by

H 2(y,u) = 1 -
1 /4 | 1 /4|S i | ‘̂ |S 3

IS.+Sal1/2
I 2 I

exp (Mi - M2)1
Si + S 2

(#»i - fh) • (2.47)

2.2.2 The Maximum-Likelihood Principle

Let pmodei(x ; 0) be the probability density or mass function of a family of

probability distributions parameterized by 0, and let X = X i,. . . ,xj be a set of

samples drawn independently from an unknown distribution Pdata- The maximum

likelihood principle states that the value of 0 that maximizes the likelihood

L(0;X) = f j p modei(xj;0) (2.48)
i = 1

of generating X from the family Pmodeb

0 — arg max L(0] X), (2.49)
0

is an asymptotically minimum variance unbiased estimator (subject to some regularity

conditions). Therefore, maximizing the likelihood is a prudent objective for many

34

problems. Often, as a matter of practicality, the log-likelihood is maximized instead

since the logarithm is monotonic, i.e.

i
0 — argmax logpmode](xj; 0). (2.50)

i=i

We show here that maximum likelihood estimation is closely related to KL divergence

(Section 2.2.1) (note that the argument is paraphrased from Goodfellow et al. [44]).

The ultimate purpose of pmode\ is to estimate the true probability Pdata- Let

Pdata be the empirical distribution of the data defined by

Pdata(x) = ylx(x). (2.51)

Since (2.50) is invariant to changes in scale, we can divide the right-hand side by I to

obtain

0 = arg max Ex^ data [logpmodei(x; 0)]. (2.52)
e

Now observe the KL divergence between Pdata and pmodeb

LlKI.(Pdata||Pmodel) ~ Ex~pdata [logPdata(x) logPmodel(x, 0)] • (2.53)

Note that since the term on the left does not depend upon 0 but only on the data,

minimizing (2.53) with respect to 0 is the same as maximizing (2.52).

The rightmost term of (2.53) actually has a special name: cross entropy. The

cross entropy H between two probability distributions y and v generalizes the Shannon

entropy (2.41) and is given by

H{y, v) = - E x^m [log i/(x)] = H(y) + DKL(y\\v), (2.54)

35

where we can see that H(jt) = H(n, //,). Therefore, minimizing the negative log-

likelihood is equivalent to minimizing the cross entropy between the empirical dis

tribution and the model. Many objectives can be placed into this framework. For

example, mean squared error (or sum of squared errors) is the cross entropy between

a Gaussian model and the empirical distribution.

2.2.3 E xpectation-M axim ization

An expectation-maximization (EM) algorithm [30] is an iterative method to

obtain maximum likelihood estimates of a statistical model’s parameters 0 given a set

of data X generated from the model and latent (unobserved) data Z. The method

consists of repeating a two-step procedure until convergence. The first step consists

of calculating the expectation of the log-likelihood L(0\ X, Z) with respect to the

latent variables given the data and current parameter estimates The second step

consists of calculating 0^+1 ̂ by maximizing the expected log-likelihood. Both steps

can be concisely represented by the following equation

0(m) = arg max Ez|x 0(t) [L(0; X, Z)], (2.55)
9

where Ex [V] denotes the expected value of Y with respect to X. Practical implemen

tations sometimes consist of calculating the mode Z' of Z|X, 0 ^ and maximizing with

respect to L(0;X, Z'), which is sometimes called a “hard” EM algorithm. Computing

the full expectation with respect to all possible values of Z on the other hand is

sometimes known as a “soft” EM algorithm. Both variants are guaranteed to converge

to at least locally optimal values of the parameters, although the soft variant is likely to

be better. The standard k-means clustering algorithm [70] is an example of hard EM

36

in which 6 represents the cluster means, X is a collection of points, and Z determines

the cluster from which each point was drawn.

2.2.4 M arkov Chain M onte Carlo

Markov chain Monte Carlo (MCMC) is a family of techniques used to sample

from difficult or intractible probability distributions. MCMC works by constructing

a Markov chain with equilibrium distribution equal to some target density function

(see below for more details). Many MCMC methods work even if the user only

knows a function proportional to the true density. Some of the challenge comes from

constructing a suitable Markov chain, but the majority of the challenge is ensuring

that the chain reaches equilibrium in a reasonable amount of time. We review here the

definition and qualities of a Markov chain that are required for MCMC and summarize

the Metropolis-Hasting algorithm, which is a relatively simple, widely applicable

MCMC algorithm for constructing a suitable Markov chain. See the technical report

by Neal [101] for more information.

Recall that a Markov chain is a series of random variables X 0l X i, X 2, . ..

with the same state space or domain where the t-th variable is only dependent upon

the immediately preceding one, i.e.

p(Xt I X t^ . . . , X 2, X 1, X Q) = p (X t I X t - J . (2.56)

A Markov chain is completely defined by the initial marginal distribution P o { x) of X 0

and the conditional probability Tt(x,x') of transitioning from x to x' at time t. A

chain is homogenous if Tt is the same for all t. Assume that the state space is discrete

and finite (not necessary, but it simplifies the following equations and definitions). The

37

marginal probability of X t may then be represented by a vector pt, and the transition

probabilities may be represented by a stochastic (each element is non-negative and

each row sums to 1) matrix Tt where each row is the conditional distribution for a

specific element. We then have

p 1+i = r tTp 1= f n r iTJ Po, (2 .57)

where the product is understood to left-multiply as t increases. A distribution it

(represented by vector 7r) is invariant with respect to the chain if for all t

tt - T Jtt. (2.58)

If the chain satisfies the detailed balance condition for any choice of x and x ', i.e.

7r(x)Tt(x, x') = Tr(x')Tt{x', x), (2.59)

then 7r is an invariant distribution. We also need the Markov chain to be ergodic, i.e. pt

needs to converge to an invariant distribution—called the equilibrium distribution—as

t grows regardless of the initial choice of p0. For homogenous chains, one finds that

the chain is ergodic with respect to an invariant distribution t t if the probability of

transitioning from any state x to any x' e supp (n) is strictly greater than zero, or

min min T (x , x ') > 0. (2.60)
x i 'e su p p (7r)

One therefore just needs to satisfy (2.59) and (2.60) to construct a valid Markov chain

for MCMC.

The Metropolis-Hastings algorithm provides a generic framework for construct

ing valid Markov chains. The algorithm requires a function p proportional to the

desired distribution as well as specification of a proposal distribution Q{x\y) that can

38

be used to suggest a candidate sample x j at each iteration t. Note that a means to

sample from Q is practically a corequisite. Given an initial sample x0, the algorithm

proceeds by repreating the following steps at each iteration t:

1. Sample x~[Q(xt |

2. Calculate the acceptance ratio

3. Accept x l = x t with probability a. Otherwise, x t — x t_\ .

If Q is symmetric, i.e. Q{x\y) = Q(y\x), then a simplifies somewhat and the algorithm

is usually just referred to as the Metropolis algorithm. The intuition of the algorithm

is that it attempts to randomly move about the sample space with a low probability

option presents itself. As a result, we spend little time in low density areas and a more

time in high density areas, with a ensuring that the relative amount of time remains

proportional to p. Choosing an appropriate proposal density is the primary challenge.

A common, though not entirely justified in theory, post-processing operation

known as burn-in is to ignore the first m samples based on the assumption that the

Markov chain has not converged in the first m steps and therefore these samples do not

represent the target distribution. An appropriate burn-in time must be determined

from experience or various heuristics if burn-in is used at all. For example, starting the

Markov chain from a mode or otherwise high-density region may render burn-in moot.

One should always desire that the Markov chain exhibits the rapid mixing property,

a = min < 1, (2.61)

of falling “downhill” to a low density area and a guarantee to move “uphill” when the

39

which basically states that it reaches equilibrium quickly with high probability. Proving

that a given chain is rapidly mixing, however, is a challenging problem.

2.3 C onstrained O ptim ization

In this section, we review the basics of constrained optimization. Please refer

to the text by Griva et al. [50] for a more comprehensive introduction. Solving a

constrained optimization problem usually necessitates the introduction of Lagrange or

Karush-Kuhn-Tucker (KKT) multipliers, which are additional variables that represent

activation of the constraints. To simplify further discussion, we will assume that all

constraints are linear, i.e. we wish to solve

minimize /(x)
(x) (2.62)

subject to Ax < b,

which is known as the primal problem. For each inequality constraint a j x < bj, where

a j is the i-th row of A, we introduce a non-negative KKT multiplier A*. For equality

constraints, an unconstrained multiplier is introduced. The objective function /(x) is

then replaced with the Lagrangian

LP(x, A) = /(x) + AT(Ax - b). (2.63)

This problem is directly related to what is known as the Lagrangian dual

maximize inf [/(x) + AT(Ax — b)]
W (*) (2 _6 4 ^

subject to A > 0.

A concept known as strong duality states that if / is convex and there exists at least one

point that satisfies the constraints, then the value of the objective functions of (2.62)

40

and (2.64) are equal at their optimal solutions x* and A*. A direct consequence of

this fact is the condition of complementary slackness, which states that

Ai(a,Tx - 60 = 0 (2.65)

or more concisely A 0 (Ax — b) = 0. Convexity is not necessary for strong duality

to hold, but it is an otherwise useful property in that it guarantees global optimality

of a locally optimal solution. Note that weak duality, which states that the primal

objective is always greater than or equal to the dual objective, always holds between

a primal minimization and dual maximization problem regardless of convexity.

A couple of examples of convex optimization follow. A linear program is a

convex problem that can be written in the canonical form

minimize cTx
(x)

subject to Ax < b (2.66)

x > 0.

In other words, a linear program is a constrained optimization problem in which the

objective and all of the constraints are linear. A quadratic program differs from a

linear program by adding a quadratic form to the objective and has canonical form

minimize ^x THx + cTx
(x) 2 (2.67)

subject to Ax < b.

The matrix H is the Hessian, and the problem is convex if and only if H is positive

semi-definite.

41

2.4 Optimal Transport

Optimal transport is the name given to the study of the optimal transportation

or allocation of resources. One of the most important topics in optimal transport is

the Wasserstein distance. Consider two probability distributions on a metric space

(M, d) with finite p-th moments, p € [1, oo), and probability density functions given

by p : M —>■ R and v : M —> R. The p-th Wasserstein distance between p and v is

given by

where r(p , v) is the collection of all joint distributions on M x M with marginals p

and u [137]. Note that the p-th Wasserstein distance can also be expressed in terms

of the joint distribution that minimizes the expectation

The Wasserstein distance can be interpreted as the minimum cost required to transform

p into v or vice versa. If we consider p and v to represent piles of dirt, then we

see the intuition behind one of the Wasserstein distance’s commonly known other

names: the earth mover’s distance (EMD). Under the moniker EMD—first used in

print by Rubner et al. [116]—the metric has been applied in computer vision for

comparing color distribution or texture histograms of images for content based image

retrieval [20, 116, 82, 105, 106].

The Wasserstein distance, however, has a much longer history than its use in

computer vision would imply. Gaspard Monge [98] originally laid the groundwork

for EMD, and the problem was reformulated in the mid-20th century by Leonid

(2 .68)

in f e n , h W U)] .
7er(/i,i/)

(2.69)

42

Kantorovich [68, 69]. Thus does Wp receive another name, the Monge-Kantorovich

mass transportation distance, under which it is applied in economics, fluid mechanics,

meteorology, and partial differential equations (PDEs) [36, 41]. In statistics, the

metric may also be known as the Mallows distance [76]. The Wasserstein distance is

also used as a means of evaluating the performance of multiple-object trackers and

filters [58, 113, 119]. Other names not listed still exist, and for further information

and a more comprehensive survey of the Wasserstein distance’s history and optimal

transport in general, the reader is referred to Vershik’s article [138] and Villani’s

texts [139, 140].

We now turn our focus towards EMD, which often takes a discrete (i.e.

countable) form. While the choice of the metric space (M, d) can have significant

implications on the existence and feasibility of computing Wp, the choice has less

severe implications when M is discrete as the solution depends on only one algorithm

regardless of the choice of d. Let the term “ground distance” refer to the metric d.

Application of EMD requires specification of a ground distance and computation of

the flow /(a , b) of mass from x € supp (/r) to y £ supp (u). EMD is then calculated

as the cost of the minimum-cost maximum flow and is defined to be the solution of

the linear program

x 6 su p p (/i) j/e su p p (i/)

subject to the constraints

EMD(fi , u) - >V£(//, u) = mm E E f (x,y)dF(x,y) (2.70)

(2.71)
j/G supp(i/)

43

E f{ x ,y) < v{y), (2.72)
x esu p p (* t)

E E /(* ,y)= m in | e /*(*), E ^} ' (2.73)
x esu p p (M) y e s u p p (v) U g M y e A f)

The solution to this problem can be found in 0 (n 3 log n) time, where n is the larger

cardinality of each measure’s support. Several observations can be made from this

linear program. First, the value of p is irrelevant in computing its solution; one could

just as well use D = dp (hence the lack of a p subscript or superscript in EMD(p, u)).

In fact, d does not need to be a metric for the solution to exist and be computable

in polynomial time. Furthermore, /x and v do not actually need to be probability

measures and may have different total masses as hinted by (2.73). The downside

of allowing arbitrary masses is that certain properties of EMD no longer hold. For

example, EMD is a metric on V{X) if dp is a metric on X [116], but EMD is not a

metric on T (X) . In the special case that p(x) — 1 for each x 6 supp (/x) and v{y) — 1

for each y £ supp (u). then EMD is also known as the assignment problem and can be

solved in 0 (n 3) time [34]. As is often the case with the assignment problem, the flow

/ is sometimes the variable of interest rather than the actual minimum cost.

EMD is usually assumed to possess a Euclidean ground distance, but examples

of other ground distances exist in the literature. Igbida et al. [62] study EMD in the

context of PDEs with a discretized version of the Euclidean ground distance rounded

up to the nearest whole number. Ling and Okada [82] proposed an efficient tree-based

algorithm for computing EMD with a Manhattan ground distance, and Pele and

Werman [106] explored the effect of applying a threshold to various ground distances

44

and its impact on computation time and accuracy. In the realm of image retrieval,

EMD is often applied as a metric for nearest neighbor searches.

The computational complexity of EMD is often a hindrance to applying it

in large problems. The fastest known algorithm to compute EMD exactly (up to

precision) for a general cost function is 0 (n 3 log n) [104], However, approximate

algorithms have been introduced in recent years that are linear in complexity. The

first such algorithm, the computation of Sinkhorn distances introduced by Cuturi [24],

adds an entropic term that regularizes the objective and makes it solvable numerically

via a simple iterated procedure. To be precise, a constraint is placed on the entropy

of the flow so that it yields the dual

EMD(n, v, A) = min E E f (x , y) [dP(x, y) - A log f (x , y)) . (2.74)

Sinkhorn distances parallelize easily, which is a significant advantage over other

algorithms. Convolutional Wasserstein distances, introduced by Solomon et al. [127],

improve on Cuturi’s Sinkhorn distance by removing the need to compute pairwise

distances dp(x,y). Instead, the convolutional Wasserstein distance algorithm exploits

the relationship between the heat kernel and the geodesic distance g : M x M —>■ R on

a manifold M, where the geodesic distance is the shortest path possible between two

points on the manifold and the heat kernel 7it : M x M -> R solves the heat equation

dtft = A ft with initial condition / 0 : M —> R via

i£supp(/i) yGsupp(i/)

(2.75)

45

The exploited relationship is Varadhan’s formula [134], which states that as the time

goes to zero, the geodesic distance may be recovered from the heat kernel

g2(x,y) = \ im -2 t lo g 'H t(x,y). (2.76)

The intuition behind the formula arises from the fact that the heat equation models

the diffusion of many particles taking random walks and that as time approaches zero,

the particles have had less and less opportunity to deviate from the geodesic [22]. Of

course, the heat kernel must exist and be known as a necessary precondition, and

therefore the algorithm is primarily useful for only geometric domains such as shape

interpolation or color manipulation in image processing.

2.5 Filtering

This section introduces the concept of filtering. Filtering solves the problem of

estimating the state of a dynamic process observed through a noisy signal. The exact

algorithm used to filter the signal depends on the application, and certain trade-offs

between efficiency and optimality may be necessary. We focus on the Kalman filter

and some of its relatives, outlining the theory behind their derivation and use.

2.5.1 The Kalman Filter

The Kalman filter [67] is a recursive two-step procedure for obtaining state

estimates of a Markov process that is observed through intermittent and possibly

incomplete measurements. Generally, the model for the state’s evolution over time

must be known disregarding noise. In fact, for the standard Kalman filter (numerous

extensions exist including but not limited to the extended [151] and unscented Kalman

46

filters [147]), the process must be linear and described by an equation of the form

xfc+1 = A kx k + B ku k + w*, (2.77)

where x k is the state vector at time k, A k is the transition matrix that describes the

state dynamics, B k is a matrix that relates some external control input u* to the

state, and v?k is zero-mean Gaussian noise with covariance Qk, known as the process

noise covariance. The state is observed through measurements y fc, which are related

to the state according to

y k = Hkx k + v k, (2.78)

where Hk is the measurement matrix and v k is zero mean Gaussian noise with

covariance Rk, known as the measurement noise covariance. Neither the process nor

measurement noises at different times are correlated, i.e. Cov (w*, w*) = Cov (vfc, v*) =

0 for A: ^ I.

The objective of the Kalman filter is to minimize the error between the state

estimate x and the true state x, and it does so by minimizing the estimated error

covariance

Pk = E [(xjt - x fc)(xfc - x k)r]. (2.79)

The filter alternates between calculating a priori estimates (predictions of the state

and its error) and a posteriori estimates (corrections made upon observing the

measurement). The prediction is based upon the transition function and is given by

x k = A kx k-i, (2.80)

Pk = A kPk- \ A y + Qk, (2-81)

47

where xfc and P y are the a priori estimates at time k and Xfc_i and Pk-i are

the a posteriori estimates of the previous timestep. A correction based upon the

measurement y k is applied to obtain the a posteriori estimates

xfc = x^ + K k{ y k - HkiCk), (2.82)

Pk = (I - K kHk) P ^ (2.83)

where K k is the Kalman gain used to weight the prediction and measurement and is

calculated as

K k = Pk Hk'{H kPk Hk' + R k) ~ \ (2.84)

The Kalman gain in (2.84) is optimal in the sense that it minimizes the trace of Pk.

Note that (2.83) is only valid for the optimal Kalman gain. A more numerically stable

version that is valid for any value of K k is given by

Pk = (I - K kHk)Pk (I - K kHk)J + K kR K k . (2.85)

In fact, minimizing the trace of the right-hand side of (2.85) with respect to K k yields

the optimal Kalman gain. For a linear transition and measurement function with

Gaussian additive noise as defined above, the Kalman filter is optimal in the mean

squared error sense. In particular, the Kalman filter provides the minimum variance

unbiased estimator of the state x assuming an unbiased initial estimate Xo-

2.5.2 Bayes Filters

The Kalman filter may also be considered a special case of a recursive Bayesian

(or B ayes) filter [4]. A recursive Bayesian filter performs similar prediction and

correction steps, but instead of maintaining an estimate of the state mean and error

48

covariance, such a filter maintains the probability distribution of the state when

considered as a random variable. Let y hk be shorthand for the first k measurements.

The prediction equation is given by

P(xfc I Yufc-i) = J P (* k | x k- i)p (* k - i | y 1:Jfe_1)dxfc_1, (2.86)

which can be derived using Bayes’ rule on the condition that x is a Markov process.

The correction or update equation is given by

, , \ P(yk 1 x fcM x fc 1 yi:fc-i)
P\^-k yi:fc) r / | \ / | \ j ’ (2 .87)

J P(Yk I XM X I y l:fc—X) X

which also largely follows from Bayes’ rule. Although theoretically optimal, Bayes

filters are often intractable. The Kalman filter is an exception. One can check that a

Kalman filter is a Bayes filter by using the relations

P(x k I yi:*-i) ~ N { x k , Pk), (2 .88)

P(*k I y i:fc) ~ AT(xfc, Pk). (2.89)

2.5.3 Extended Kalman Filter

The extended Kalman filter (EKF) [151] is a heuristic applied when the

transition or measurement equations do not satisfy normal linear assumptions. In

other words, (2.77) and/or (2.78) are replaced with

x*+i = /(x*,Ujb,wfc), (2.90)

y k = h(xk, v k), (2.91)

49

where / and h. are presumed to be differentiable functions. The extended Kalman

filter operates by replacing (2.80) and (2.81) with

Xfc = / (x fc_ i,u fc,0), (2.92)

Pk = A kPk^ A kJ + WkQkWk\ (2.93)

and replacing (2.82) and (2.84) with

Xfc = x k + K k{yk - h(xk , 0)), (2.94)

K k = Pk Hkt(Hkp - H kJ + VkR kVkJ) ~ \ (2.95)

where A k, Hk, Wk, and Vk are linearizations of / and h such that

d f
A k = - J - (x k„l , u*,0), (2.96)

OX-k

= (2.97)

d f
ITjfc = — (xjfc_i, u k, °) , (2.98)

dwfe

Vt 0). (2.99)

One can see that the EKF is only a first order approximation. Consequently, the

EKF is not an optimal estimator in any sense unless the transition and measurement

functions are linear and it reduces to the standard filter. Higher order versions based

upon successive terms of the Taylor series expansions of / and h are possible, but

are not typical and are not guaranteed to provide a significant benefit despite the

increased computational burden.

50

2.5.4 Other Filters

Numerous filters have been proposed over the years for a diverse array of

applications. The unscented Kalman filter [147] is a direct alternative to the EKF

that applies a deterministic sampling called the unscented transform to the transition

function that is able to preserve the mean and covariance of the process regardless of

the nature of the transition. As a result, the unscented Kalman filter does not require

one to compute partial derivatives for linearization nor even a differentiable transition.

Nondeterministic Monte Carlo sampling leads particle filters. For the purpose of

multi-target tracking (e.g. radar systems), the problem is complicated by uncertain

associations between measurement and state variables. The joint probabilistic data

association (JPDA) [39] filter, probability hypothesis density (PHD) filters [142],

and relatives such as that given by Vo and Vo [143] can be used as heuristics to

solve the problem. A JPDA filter aggregates measurements based upon possible

assignments between observed and predicted targets. Since the number of assignments

is combinatorial, the JPDA filter suffers some practical drawbacks. The PHD filter

avoids sampling and combinatorics by estimating the intensity of the target locations

instead of the actual locations, where the intensity is a function giving the expected

number of targets within a given volume. The intensity is normally modeled with a

Gaussian mixture model, and heuristics regularly prune components with low weight

in order to avoid an unbounded growth in their number. In Chapter 4, we use a

modified Kalman filter similar to the JPDA in order to estimate the positions and

correlations of stationary targets.

51

2.6 Support Vector Machines

A support vector machine (SVM) is a binary classifier that assigns positive or

negative labels to a set of instances by calculating an optimal separating hyperplane

that separates the positive and negative instances. In the event that the instances are

not separable, then penalties for each misclassification are incorporated into the calcu

lation of the hyperplane. SVMs are an example of a kernel method (see Section 2.1.4).

The primary advantage of SVMs is that they are theoretically well-founded. Provided

with a PD kernel and non-negative misclassification cost C, an SVM finds the globally

optimal solution to a quadratic programming problem.

Let us derive the quadratic program with a linear kernel (see Burges [13] for a

more detailed derivation) as it gives some insight into how SVMs operate. Consider a

set of data X with I elements a set of labels (represented by a vector) y £ {—1,1}; for

each element of X. Without loss of generality, assume that all of the elements of X

are vectors Xj £ R71 for some n > 0 and i £ [1, /]. A label yt indicates whether a data

point belongs to the positive or negative group. Our goal is to determine a hyperplane

that separates the positive and negative groups of points with the widest margin

possible, where the margin is defined to be the shortest perpendicular distance from

the hyperplane to any x , £ X. If the groups cannot be separated by a hyperplane,

then we want to minimize the number of violations. A hyperplane can be defined by a

vector w normal to its surface and a scalar b that offsets the plane from the origin. The

(signed) distance of any point x from the hyperplane is given by (wTx + 6)/||w||. We

require that members of the positive or negative group lie on the positive or negative

side of the plane. This constraint can be represented for all i by

2/t(wTx + b) - 1 + & > 0, (2.100)

where & > 0 is the error incurred by any point Xj on the wrong side of the margin.

Any point with & > 1 is on the wrong side of the hyperplane. Note that points

satisfying equality in (2.100) with & = 0 lie on the margin, which means that the

margin has a magnitude of l/||w ||. Points that lie on (or within) the margin are

called support vectors. See Figure 2.1 for a visualization. Maximizing the margin

therefore corresponds to minimizing ||w||2. We also wish to minimize the cost of

misclassifications given by C]Ci£«> where C is chosen beforehand.

Figure 2.1: An illustration of a separating hyperplane for a non-separable problem.
Support vectors are circled. Note that the error £ is with respect to the margin for
the side of the plane on which the point should ideally be located.

o

o

c

Combining both objectives and introducing Lagrange multipliers for each

constraint yields the desired Lagrangian

53

where a* > 0 and //,, > 0 are the Lagrange multipliers for the inequality constraints

given by (2.100) and & > 0. Recall the definition of the dual (2.64) as a maximization

with respect to the Lagrange multipliers with the constraint that the partial derivatives

of the Lagrangian with respect to the primal variables must be zero. Let us therefore

note that

= 0 ==► w = (2.102)
X— 1

f)T ^
- g f = 0 =*• (2.103)

i=l

d i p
0 = * C = Oi + tn. (2.104)

d£i

Applying these equality constraints to the Lagrangian yields the dual objective

i i
L D = ^ 2 a i - Y l OLiaj yiyj x.iJx j (2.105)

i=l i,j=1

subject to 0 < o t i <C. The dual is remarkably easier to solve as it has fewer variables

and simpler constraints, and general or special purpose methods may be used to find

the solution.

A more significant observation is the fact that the data only appears in the

dual in the form of dot products, which means that one can replace these dot products

with kernel evaluations, i.e.

i i
L d = a i a j y i y j K { ^ * 3) ; (2.106)

t=l i j= l

where K is a PD kernel and Xj no longer needs to be an element of Rn. A new data

point z is classified (assigned a label yz) according to the side of the hyperplane on

which it falls, which can be determined by

Vz = sign 'f a iyiK (x i,z) + b (2.107)

One can see then that SVMs can be expensive to operate depending on the number

PD, then the solution may only be locally optimal. Many interesting problems are

characterized by indefinite kernels, and learning SVMs with indefinite kernels is an

active research area. See Chapter 5 for an example of two indefinite kernel techniques.

Wc state several facts about the solution. First, due to complementary slackness,

Consequently, cq > 0 only for support vectors, and cq < C if and only if G = 0 (and

cq = C if and only if & / 0). This fact yields another interpretation for the term

support vector since support vectors are simply those that have nonzero or non-null

support over a considered as a domain. Any vector that is not a support vector has

no effect on the solution and can be removed from further calculations. Given the

solution of the dual a*, we can also calculate w using (2.102) and

for any i such that 0 < cq < C. If the data is separable, then C and G can be ignored

and the primary difference is that each cq is no longer bounded above by C.

of support vectors and the complexity of the kernel. Note that if the kernel K is not

cq[?/i(wTx + 6) - 1 + &] = 0, (2.108)

/q£i 0. (2.109)

b = yi - ^ P c ^ x /X i
j = i

(2 .110)

55

2.7 Neural Networks and Deep Learning

An artificial neural network (ANN) or simply neural network is a computational

paradigm designed to emulate the biological neural network found in organisms. In a

neural network, nonlinear functions emulate the behavior (activity) of neurons, and

scalar weights emulate the connectivity strength of synapses between the neurons.

Despite this layer of abstraction, neural networks can often be concisely represented

as functions of matrices and vectors. Many types of neural networks exist, including

multi-layer perceptrons (MLPs), recurrent neural networks (RNNs), and convolutional

neural networks (CNNs), which we will introduce in the following subsections, and

they have been successfully used in a wide variety of applications including speech

recognition [49], computer vision [72], and nonlinear control [77]. More advanced

neural networks including restricted Boltzmann machines and deep belief networks

(see Bengio [6]) are not covered. In the final subsection, we review the basics of deep

learning, which may be considered a collection of best practices for ANNs. Unless

otherwise stated, the main reference for this section is Goodfellow et al. [44], which

gives the background for an understanding of the current state of the art in neural

networks and deep learning. The reader is referred to Jain et al. [64] for a simpler

and much smaller in scope reference.

2.7.1 Multi-layer Perceptrons

The MLP or feed-forward neural network is perhaps the simplest and most

widely used form of ANN. In an MLP, neurons (or nodes) are organized into n distinct

layers with directed connections only from neurons in layer i to neurons in layer i + 1.

56

See Figure 2.2 for an example of a network with one hidden layer. The symbols in the

figure are defined in the next two paragraphs.

Figure 2.2: A detailed illustration of a multilayer perceptron with input x, output o,
and two layers, one of which is hidden. The arrows show the flow of input from left to
right. During back-propagation in training, the gradient of the error flows backwards
from right to left. The bias is not shown.

Let n, be the number of neurons in layer i with the input considered layer 0.

Let w represent the connections between layers i and i + 1, where is

the weight of the connection between the j-th neuron of layer i and the k-th neuron of

r (*) belayer i + 1. In addition, let the nt-dimensional vector-valued function —

the activation function of layer i, where represents the scalar activation function

of neuron j in layer i, i.e. for a given n,-dimensional vector v

o M(V) - (2 . 111)

The input of cr^ is found from the output of the previous layer multiplied by the

appropriate connection weights. Each layer may also have an optional bias that is

57

added to its input. The output z* of layer % is then given by

zi = f f ^ (l V (i)Zi_ 1 + b (<)), (2.112)

= ffW(WF(i)a (i- 1)(Ŵ (i- 1)zi_2 + b^~^)), (2.113)

= . . . (lT(2V (1)(t r (1)x + b (1})))), (2.114)

where x is an input vector provided to the first (input) layer of neurons.

The weights and biases of a network may be simultaneously learned using the

back-propagation algorithm, which is effectively just an efficiently organized application

of the chain rule from calculus followed by gradient descent, i.e. the updated value of

a weight *w^ is given by

= (2-115)

where a is a learning rate and il measures the error of the network’s output o. For

example, 0, may be the squared error of the output with respect to some target values

o*, which results in

Sl(o) = i | |o - o * ! |2. (2.116)

Layers in between the input and output layer of neurons are said to be hidden.

Activation functions are usually assumed to be sigmoidal functions that approximate

the Heaviside step function, e.g. the logistic sigmoid function

(> = r r ^ ' (2-117)

A powerful result [26] states that one hidden layer (with enough neurons) is sufficient

to model arbitrarily complex functions. Since the input and output layers are always

58

presumed to exist, from this point forward let the term n-layer network refer to an

ANN (not necessarily MLP) with n hidden layers.

2.7.2 Recurrent Neural Networks

An RNN allows the existence of feedback loops or connections from higher to

lower layers (although it is not necessarily organized into layers). RNNs implicitly

possess a sort of memory, which allows them to model time-dependent phenomena

or sequences of variable length. We consider two types of RNNs. The first type is

considered only for illustration and is a single layer RNN with connections from the

hidden layer to itself. The second type is more advanced and employs what is known

as a gated recurrent unit (GRU).

Consider a single layer MLP parameterized by hidden weight matrix W . An

RNN extends the hidden layer with the introduction of an additional weight matrix

U that is multiplied by the hidden layers previous output. More formally, let x*,

t £ [1 ,T] be a sequence of inputs to the network, and let be the output of the

hidden layer at time t. The hidden layer’s output is computed according to

h t = c { W x t + Uht- l), (2.118)

where ho = 0 and a is the logistic sigmoid function (see Figure 2.3). The RNN outputs

a vector at every timestep, but for certain applications only certain timesteps (e.g. the

last) are of interest. The training and operation of an RNN is more difficult than that

of an MLP due to either a vanishing or exploding gradient as the number of timesteps

grows.

59

*Q

Delay

Figure 2.3: A block diagram representing a hidden layer in an RNN. The layer’s
output ht is provided as input to the next layer, which may or may not be recurrent.

GRUs provide a solution to the gradient problem encountered by basic RNNs

by constructing a more elaborate activation function. A GRUs consists of so called

update and reset gate vectors zt and rf that control to what degree a layer’s previous

output h£_i and current input x* contribute to its next output ht. If an element of

the reset gate is zero, then the corresponding element of h*_i is ignored and that

part of the network behaves as though the sequence has just started. The update

gate, on the other hand, controls whether elements of ht_i or the candidate output

ht are propagated forward in time. The update and reset gates are computed in a

similar manner to the output of a traditional hidden recurrent layer, although they

are parameterized by their own respective weight matrices Wz, Uz and lVr, Ur, i.e.

z t = a{Wzx l + Uih t. 1), (2.119)

rt = o{WryLt + Urh t- l). (2.120)

The candidate output is the traditional output modulated by the reset gate and is

given by

h4 = tanh (Wxt + U(rt Q h*_i)). (2.121)

Interpolating h(] and h* using the update gate provides the next output

ht = (1 - zt) © h*_i + zt 0 ht. (2.122)

60

Figure 2.4 provides a block diagram of a GRU. The reader is referred to Chung

et al. [19] for extra details and an introduction to another type of gated RNN, the

Long Short Term Memory network, which predates GRUs.

-wtanh

Delay

Figure 2.4: A block diagram representing a GRU. The layer’s output h t is provided
as input to the next layer, which may or may not be recurrent.

2.7.3 Convolutional Neural Networks

A CNN is a special type of feed-forward neural network designed especially

for processing images or other regular grids. Inspired by mammalian vision systems

(especially cats), a CNN consists of tiled or replicated weights that connect to only

local regions of the input. Weights that are tiled together as a single unit are usually

referred to as a kernel, but to avoid confusion we will use the term filter. The name of

this type of network comes from its similarity to the convolution operation between

two functions / , g : M ->■ E:

/
O O

f (x)g { t~ x)d x . (2.123)
-00

In a sense, the input is one function and the weights of the filter are the other. If the

input has more than one dimension (e.g. a two-dimensional image), then the filter

is convolved in each dimension separately (see Figure 2.5). A convolutional layer is

61

comprised of one or more filters that are convolved with the image to produce an output

layer of similar shape. Thinking of each entity as a tensor aids the interpretation and

definition of equations.

'wa+xb \ fwb+xc >
^ryd+zej \+ye+zf>

'wd (xe \ fwe+xf '
A yg \ zhJ \+yh+ziFilter

Input Output

Figure 2.5: A 2 x 2 filter is convolved with a 3 x 3 input layer to produce a 2 x 2
output. The output is then given to a nonlinear activation function such as hyperbolic
tangent. Note that without padding the input, the output will be smaller.

To be more precise, suppose the input is a color image represented by the

tensor X where X itj tk is the intensity of the red, green, or blue channel (i = 1, 2, or 3)

in the j -th row and k-th column. In addition, suppose that we are using an /-channel

M x N filter, where M and N are the width and height in pixels of a patch of the

image on which the filter operates, and let Fij^ i represent the weight between the

i-th output channel and j-th input channel at the k-th row and I-th column of the

filter’s input patch. Assuming the output is also organized as a two-dimensional grid,

then the i-th output channel Zitjtk in the j-th row and fc-th column can be given by

3 M N

^ i , j , k ^ ̂ ^ ̂ (2.124)
(=1 m= 1 n=l

Multiple filters may be used, and the input may consist of multiple channels at each

position (e.g. red, green, and blue color channels). Note that near the borders of the

input, zero-padding may be necessary in order to have the filter cover all possible

62

positions. Alternatively, the number of output neurons is simply shrunk based upon

the width and height of the filter. Filters may also be defined that skip input in

regular intervals. The stride of a filter is one plus the number of pixels that it skips.

Note that the size of the output is reduced relative to the input by a factor equal to

the stride, which can be useful in reducing the computational load of the network.

A convolutional layer is typically composed of three stages: filtering, detecting

via nonlinear activations, and an important operation known as pooling. Filters serve

as local, translation invariant feature extractors that are automatically learned during

training. Increased computational efficiency resulting from the replicated weights is

a beneficial side-effect. Pooling replaces the output of a layer at a certain location

with an aggregate function of nearby outputs. The aggregate function may be a max

function or an average, for example. Aside from reducing the size of the output,

pooling makes the network largely invariant to small translations of the input. Instead

of knowing precisely where a feature was located in the input, pooling informs the

network that the feature exists. Pooling is also an important ingredient in making

a CNN capable of handling variable-sized input. For example, regardless of the size

of the image, we may choose to pool each quadrant before passing the output to a

fixed-size layer.

2.7.4 Deep Learning

Deep learning is the latest name given to the branch of machine learning

dominated by ANNs, which has garnered renewed interest since massively parallel

architectures and large datasets have made certain challenging problems feasible.

63

CNNs in particular have been very successful in recent years and have played a major

role in the resurgence of interest in neural networks and the development of deep

learning. Prom the author’s point of view, deep learning is best thought of as a

collection of best practices for using neural networks, and we will list some of them

here.

One of the most significant best practices is to treat a neural network as a

probabilistic model. A neural network is parameterized by a set of weights and biases

that can be collectively represented by the vector 0. Let /(x ;0) be the function

representing the output of a neural network parameterized by 0. Since the network is

a probabilistic model, we choose to train our networks using the maximum likelihood

principle in order to find the maximum likelihood estimate 0. A common objective or

loss function when training the network is to minimize squared error as in (2.116).

When the network is interpreted as a probabilistic model, however, this loss function is

likely to be inappropriate as it places a Gaussian prior on the output (see Section 2.2.2).

For example, networks used for classification are often multinomial models with a

single output per class constrained to be between 0 and 1 by a softmax output layer,

where the j -th output of a softmax function is defined to be

for x € M.K. The outputs of the network are then constrained to be probabilities. A

Gaussian prior is entirely inappropriate for this situation. Instead, the categorical

cross entropy should be used, which is given by

softmax [x] (2.125)

ff(Pmodeh Pdata) (2.126)

64

where pmodei, Pdat&, and x, are defined as in Section 2.2.2 and y7 is the index of the

output corresponding to the correct classification of x7.

Alternative nonlinear activation functions comprise the second best practice.

Sigmoidal activations such as the logistic function (2.117) or hyperbolic tangent have

practical deficiencies that render them unsuitable, especially for networks with many

layers. The main deficiency is that the gradient tends to vanish outside of a very

small window, which slows training considerably. Instead of such activations, the

rectified linear unit (ReLU) should be used. An ReLU is calculated as the element-wise

maximum of a given vector and 0, i.e. the j -th output is

ReLU[x]j = max{0, Xj}. (2.127)

Networks employing ReLUs are more efficiently computed than those with sigmoids, do

not suffer from vanishing gradients, and retain the universal approximation property.

Deep learning also places great emphasis on regularization. Regularization is

any method that is used with the intention of reducing test or generalization error,

possibly at the expense of training error. In other words, the goal of regularization is

to avoid overfitting to the training data. Some types of regularization are listed here.

• Weight decay, also known as regularization, adds the norm of the model’s

parameter vector to the objective function scaled by a coefficient A. For example,

if we have a model with parameter vector 0 and loss function £(x; 0), then the

training objective Vt becomes

Q(0) = £(x; 0) + A0T0, (2.128)

65

where A > 0 controls the influence of the regularization. Note that weight decay

does not have to be applied to the entire parameter vector. Other lp norms may

be used for weight decay that have subtle effects on the regularization.

• In dropout [130], units in the neural network are randomly dropped during

training by setting their outputs to zero. Dropout makes the network more

robust to noise and is theoretically a means to simulate an ensemble of 2N

networks, where N is the number of neurons in the target architecture. In

addition, dropout reduces codependencies and correlations between weights by

forcing them to train separately from one another, thus allowing the network

to learn multiple partial representations of the data. A downside is that the

network’s size and training time must generally be increased to accommodate

dropout.

Two similarly themed forms of dropout exist, namely dropconnect [148] and word

dropout [63]. In dropconnect, individual weights are randomly set to zero rather

than entire units. Word dropout is a somewhat constrained version of dropout

that drops out certain subsets of units together. For example, word dropout

may consist of randomly dropping timesteps in a recurrent neural network.

• Gaussian noise may be added to the input layer during training as a form of

regularization.

Regularization is not guaranteed to improve generalization error, and applying too

much or too strong of a regularizer can make the classifier perform worse than without.

66

These tools should therefore be used with careful intent. Used correctly, however, one

can expect a more reliable model in untested situations.

CHAPTER 3

3D HAND POSTURE RECOGNITION FROM SMALL,
UNLABELED POINT SETS

In this chapter we explore several classification algorithms for identifying hand

postures using the 3D marker positions reported by Vicon. A natural complication

arises when choosing features with which to perform classification, and choosing an

appropriate feature extraction or transformation is challenging. Note that there is no

context provided for the points other than each other; each frame or set of markers is

a standalone entity with no external context. For the duration of this chapter, we will

refer to the positions as raw features. Our comparison will include methods that work

directly with the raw features as well as those that do not.

Some might think that image or point set registration [8], which aims to align

several images or point sets via rigid or non-rigid [66] transformations, would yield a

solution or be a practical step towards one. This intuition would be incorrect. For

all intents and purposes, we consider our point sets to already be aligned via a rigid

transformation based upon the distinctive rigid pattern of markers organized on the

back of the glove in Figure 1.2. Since we are dealing with a small number of points,

some of which may be missing or occluded, registration under normal assumptions

67

68

could lead to spurious alignments, such as the knuckles of one posture being aligned

with the fingertips of another.

Our main contribution is an analysis and comparison of various methods for

the classification of relatively sparse, aligned, unlabeled point sets of variable size. As

stated above, we assume that there is no further context for each point set beyond the

information contained in the positions themselves. At no point in time do we know

which marker is the “thumb” or something similar. Note that in this framework, terms

such as “thumbs up” or “thumbs down” (used by Song et al. [129]) are considered

synonymous as they correspond to the same posture. By including details such as

orientation after posture recognition, one can make more refined distinctions (e.g.

thumbs up at 9 degrees). Any system capable of generating positions corresponding to

landmarks (e.g. fingertips), especially with respect to some standard reference frame,

may benefit from our analysis.

3.1 M ethodology

In this section, we describe our dataset and the classification algorithms

evaluated with it. To our knowledge, there is no public dataset directly related to our

purpose, i.e. a dataset comprised of instances of small unordered point sets, especially

for 3D hand gesture or posture recognition. Therefore, we have produced our own.

Several classification algorithms were evaluated on both the raw data (unordered

positions) as well as on certain feature transformations.

69

3.1.1 Data

We base our analysis on the posture recognition data set described in Section B.3.

The five postures are fist, pointing with one finger, pointing with two fingers, stop

(hand flat), and grab (fingers curled) (see Figure B.3). Since each instance is a

variable-size (due to occlusion) unordered set of 3D points, multiple derivative datasets

were created to address the lack of structure.

Raw

This dataset is comprised of simply the instances with the minimal preprocessing

described in the appendix.

Aggregate

We extract aggregate features that do not depend on the points’ order. In

particular, the following aggregate features were considered: number of markers, mean,

eigenvalues and vectors of the points’ covariance matrix, and the dimensions of the

axis-aligned minimum bounding box centered on the mean. The expectation is that

aggregate features will suffice as long as marker occlusion is not too severe, at which

stage more locally sensitive features may be beneficial.

Grid Transformation

Although one could rasterize the space, the resolution of the rasterization

would likely be prohibitive in terms of associated time and space constraints. As an

alternative, we used a low-resolution pseudo-rasterization based upon a limited 3D

grid of overlapping spheres. Cubes or diamonds could have alternatively been used by

changing the spheres’ associated lp metric, but these were not ultimately considered.

70

Each sphere contributes one feature to a transformed instance, recording the presence

of markers within its boundary according to some function of their Euclidean distance

to the sphere’s center. In this manner, we impose a spatially relevant order on the

raw features. Step, linear, and Gaussian functions fi(x) of a marker’s distance x from

the center of a sphere with radius r were considered and are defined as

where o is the number of standard deviations (compared to standard normal) within

the sphere. Each function is scaled so that it has a value of 1 for x = 0 and a value

of 0 (or near 0 in the case of the Gaussian with a = 3) for x > r. In a sense, the

spheres are like neurons in a neural network whose activations are triggered by the

markers. The activations caused by multiple markers in the same sphere are simply

aggregated in a summation. One may note that this grid transformation is reminiscent

of a convolutional layer of a neural network, albeit more hand-crafted.

We first, determined a box in which the user’s hand was expected to lie based

upon the mean position plus or minus two standard deviations. Supposing there

are m spheres per dimension, the spheres are scaled and arranged such that they

form a regular, densely packed grid spanning the internal volume of the box. Their

radii are then uniformly scaled by an integer multiple rs such that the entire internal

volume is covered. The advantage of letting the spheres overlap lies in the implicit

1 if x < r,
/ i W = 1 (3.1)

0 otherwise

f i ix) - max (l - (3.2)

(3-3)

71

creation of extra detection regions according to their intersections. We considered 36

transformations based upon the following options: m £ {3,4,5,6}, rs £ {2,3,4}, and

f i(x) with i £ {1,2,3}. See Figure 3.1 for a visualization.

F igure 3.1: A 2D grid transformation with m = 4, rs = 2, and i = 2. The opacity of
each sphere is proportional to its activation by the top-left marker.

3.1.2 Classifiers

Our classifiers are split into multiple categories based upon the associated type

of dataset. We will list raw data classifiers first, which require extra explanation,

before providing the traditional classifiers, e.g. SVM, considered for use with the

aggregate and transformed data. First, we briefly describe two tools used thoroughly

in the raw classifiers, GMMs and minimum-cost matchings.

Recall the definition of a GMM given in Section 2.1.6. A GMM is a collection

of n multivariate Gaussian distributions, or components, used to estimate an arbitrary

probability density distribution.

72

A minimum-cost matching is a solution to the assignment problem (see Sec

tion 2.4). In our case, we wish to assign the points of one instance to the points of

another (or to the components of a GMM) such that the summation of costs over

all matched pairs is minimized. In this scenario, a GMM component’s distribution

describes the region in which a marker (such as the tip of the thumb) is expected

to lie. Each component represents the expected location of a certain marker. The

mixture gains represent the probability of each component being present at all in

a given instance. A given GMM approximates the shape of a certain posture, and

therefore we construct one per class.

Five cost functions for matching component Ck to the j-th position Xj of an

instance were considered. The first, Ci(cfc,Xj), is simply the Euclidean distance

between the point and the mean, i.e.

CMcfc.xj) = ||xj - / i fc||2- (3-4)

The other cost functions measure the probability of observing Xj independently of other

components and factors. The first of these is a normalized version of the component’s

probability density function and is calculated according to

C2 (cfc,Xj) = - In (/ fc(xj)>/(27r)3|£fc|) , (3.5)

where the negative logarithm is taken so that the minimum-cost matching will maximize

the product of independent probabilities. Similarly,

C3(cfc,Xj) = - In (1 - x2 ((xj - ^ ^ (X j - A**))), (3-6)

73

where x 2(z) is the cumulative distribution function of a chi-squared variable of degree

3. Note that 2 in C ^C k ,^) is the square of the Mahalanobis distance, which has a

chi-squared distribution with 3 degrees of freedom [122], We augment C2 and C3 to

produce the last two cost functions

which account for components that are more or less likely to appear.

For classification based upon a matched GMM, we choose the class correspond

ing to the GMM with the minimum average-cost (per component) matching. An

unmatched component c*, is given a cost of — In (1 — irk), the probability of it being

absent in a given instance.

Greedy GMM

The standard algorithm for computing a GMM with a fixed number of compo

nents is the EM algorithm. Since we do not necessarily know how many components

to expect, we use the greedy algorithm of Verbeek et al. [136]. The GMMs are

constructed using the greedy algorithm on the union of all training sets I. For

unmatched classification, we treat each instance I as a small standalone dataset and

classify it as the GMM with the highest log-likelihood

Cik't.Xjj = C2(ct,Xj) - lnjTfc (3.7)

C5(ct ,xj) = Cs(c*,X|) - tri 71,: (3.8)

(3.9)

74

The classification corresponds to which model’s parameters are more likely given the

data in I. A matched version uses the same greedy algorithm for construction with

C4 or C5 for classification.

Heuristic GMM

We also explore alternative heuristics employing minimum-cost matchings

for constructing the mixtures. The underlying motive for the heuristic GMM is to

produce a pseudo-naive Bayes classifier where each GMM component contributes an

independent observation. The algorithm in Figure 3.2 produces pseudo-GMMs that

respect the constraint where two markers of the same instance cannot belong to the

same component.

procedure train(7, C E {Ci, C2, C3}, 0 e {R, E})
Given: Set of instances I, cost function C, option 0
Output: GMM G that approximates I
Initialize G with 0 components
matchInstances(G, I, C)
while G is not converged do

Randomly permute /
if 0 equals R then

rematchInstances(G, / , C)
else

matchInstances(G, /, C)
end if

end while
Set mixture gains to percentage of I containing matches

Figure 3.2: The algorithm used to train heuristic GMMs. Convergence depends
upon O. If R is used, convergence occurs when the number of markers rematched
to a different component drops below a threshold. Otherwise, convergence depends
on the matching cost under C. A maximum number of iterations is allowed before
convergence.

75

The algorithm relies on two sub-procedures: “matchlnstances” and “rematchln-

stances.” The first procedure merges each instance into an empty (i.e. 0 components)

or pre-existing GMM according to sequential bipartite matchings and is shown

in Figure 3.3.

procedure matchInstances(G, /, C)
Given: GMM G , set of instances / , cost function C
Output: Refined GMM G
for all instances f in I do

Match points of i to components of G according to C
for all points p of i do

if p is matched to component c then
Merge p into c; update mean and covariance

else
Add component to G with mean p

end if
end for

end for___

Figure 3.3: The sub-procedure used to initialize a heuristic GMM.

The second sub-procedure (Figure 3.4) adjusts a GMM presumably constructed

by the first sub-procedure by iteratively removing and re-merging each instance based

upon the assumption that the assignment from points to components used to re-merge

is more accurate than the assignment previously used in the removal. One of C\,

C4, or C5 is used for classification. If C\ is chosen, then we ignore the cost of an

unmatched component as we are not performing a probabilistic classification. Let

Q(Ci,Cj) denote a heuristic GMM built with option O and cost function Ci that

classifies according to Cj. Note that we do not produce a GMM in the strict sense of

the definition (the mixture gains do not add up to 1). However, GMMs do provide

76

a useful vocabulary with which to discuss the classifier. See Chapter 4 for a more

developed version of this idea.

procedure rernatchlnstances(G , / , C)
Given: GMM G , set of previously matched instances / , cost function C
Output: Refined GMM G
for all instances i in I do

Remove points of i from prior matched components
Rematch and merge points of i into components of G

end for__

Figure 3.4: The sub-procedure used to refine a heuristic GMM.

Raw Nearest Neighbor

We use the normalized matching distance of Ramon and Bruynooghe [111].

This distance is similar to EMD (Section 2.4) except it is normalized and remains a

metric on sets of unequal size. As such, it measures the cost of transforming one set

into the other via a minimum-cost deformation. When applied between two measures

/i and u on a domain X with bounded metric d, it takes the form

2EMD(n,i>) + | ii{X) — i/(X)|max{d(x, y)}
M U , v) = -------------f / v . . (3.10)

max{fx(X), v(X)} + EMDU, v)

A majority vote among the 6 nearest neighbors is used to classify a given query

instance, with ties broken by the query’s minimum average distance per class of

neighbor. Chapter 5 shifts this approach to a more theoretically sound kernel setting.

Traditional

Six traditional classifiers are considered for the aggregate and grid transformed

datasets: naive Bayes, Bayesian networks, MLPs, SVMs, random forests, and A:-NN

(with k — 6). The implementation and testing of these classifiers is provided by

77

WEKA [52]. Grid transformed classifiers employ feature selection (FS) to both reduce

processing time and improve accuracy since many of the spheres in the grid hardly ever

contain a marker. Aggregate classifiers did not necessarily use FS. Generally, with

the exception of k in fc-NX, we let WEKA choose default classification parameters.

3.1.3 Evaluation

Due to the streaming nature of the data capture, it is likely that for an instance

of a given user there will be a duplicate or near duplicate within the user’s dataset.

Therefore, we adopted a leave-one-user-out evaluation strategy. In addition, this

strategy allows us to measure the ability of a given classifier to generalize to users it

has not seen before, just as it would need to do in practice.

We found it prohibitive in terms of time to consider every possible combination

of grid transformed dataset, traditional classifier, and left out user. Thus, we opted to

first select the “best” on-average classifier and dataset combination via a reduced user

set of 4 randomly selected users and 12 randomly selected transformations. The selected

classifier would then be compared against the raw and aggregate classifiers on the

remaining 8 users. The “best” on-average grid transformed classifier was determined

to be the MLP, and it attained its best performance on a transformation with 6

spheres per dimension, each of radius 4, and the linear function (Equation 3.2).

We used balanced error rate (BER) as our primary metric for evaluating the

performance of a classifier on c classes with confusion matrix A, which is defined as

(3.11)

78

BER weights classes equally regardless of their representation in the dataset. If all

classes are equally weighted, then it is equivalent to 1 minus the accuracy. Thus, the

lower the value of this metric, the better our perceived evaluation of the classifier.

3.2 Results

For reference, we report a BER of 0.540 ± 0.123 for a “Simple” naive Bayes

classifier based upon a single feature, the number of visible markers. This reference

classifier gives us an idea of the discriminative power that comes just from counting

markers.

Results for transformed feature classifiers are given in Table 3.1. The other

traditional classifiers (aside from MLP) were also evaluated on the “best” on-average

transformation. The transformed classifiers had a wide range of performance. Even

though the MLP achieved the best on-average performance, the fc-NN classifier

performed better on the chosen final transformation. Note that increasing the number

of spheres or sphere radii may yield improved performance. However, this increased

transformation complexity automatically translates to increased model complexity,

which potentially complicates training and increases the risk of overfitting.

Table 3.1: The average BERs per user left out and corresponding standard deviations
for tested transformed feature classifiers. Lower BER is better.

Classifier BER

fc-NN
MLP
SVM
Random Forest
Bayes-Net
Naive Bayes

0.158 ± 0.152
0.183 ± 0.168
0.204 ± 0.155
0.241 ± 0.151
0.353 ± 0.154
0.375 ± 0.181

79

Results for aggregate feature classifiers are given in Table 3.2. Aggregate classi

fiers performed fairly similarly to one another, exhibiting fairly balanced performance

across the different users. On average, though, they were generally on the higher end

in terms of BER. FS did not generally yield improvement in average BER, which is

not particularly surprising given the relatively small number of aggregate features.

Deviation in BER across users, on the other hand, was generally reduced by FS. Only

the MLP and Bayesian network noticeably benefited from attribute selection. Many

of the aggregate classifiers had relatively low deviation, reflective of the smooth nature

of their features (i.e. they are not prone to overfitting).

Table 3.2: The average BERs per user left out and corresponding standard deviations
for tested aggregate feature classifiers tested. Lower BER is better.

Classifier B E R
SVM 0.216 ± 0.136
Random Forest 0.221 ± 0.156
SVM (FS) 0.232 ± 0.098
MLP (FS) 0.248 ± 0.098
Naive Bayes 0.273 ± 0.117
MLP 0.289 ± 0.128
Random Forest (FS) 0.292 ± 0.148
Jfe-NN 0.300 ± 0.165
Jfc-NN (FS) 0.301 ± 0.142
Naive Bayes (FS) 0.303 ± 0.202
Bayes-Net (FS) 0.352 ± 0.101
Bayes-Net 0.421 ± 0.187

Table 3.3 provides results for raw feature classifiers. The matched pseudo

GMMs built using the provided algorithm performed best on average among all

raw classifiers, in particular the variants that trained with the C\ cost function and

classified with C4 or C5. The reasoning for this is not completely clear; perhaps using

8 0

the incomplete covariance as in C2 or C3 leads to a feedback loop that augments the

initial error. On the other hand, ignoring covariance entirely by building and classifying

with Ci yielded very poor results. Note, however, that the raw nearest neighbor has

significantly less deviation among the users despite possessing slightly worse on average

performance. This lower deviation indicates that it generalizes more readily. The

GMMs are prone to overfitting. The greedy GMMs performed quite poorly, likely due

to the implicit assumption that a given marker would appear in roughly the same

place for each user. Since marker constraints were ignored, overlapping distributions

from each user caused the resulting components to poorly reflect the true distributions

of individual markers. This problem was magnified in the matched greedy GMMs,

whose components clearly did not represent the expected locations of the markers.

Table 3.3: The average BERs per user left out and corresponding standard deviations
for tested raw feature classifiers. Lower BER is better.

Classifier B ER
Unmatched Greedy 0.416 ± 0.183
Matched Greedy (C 5) 0.681 ± 0.155
Matched Greedy (C 4) 0.719 ± 0.134

R{Ci,Cs) 0.192 ± 0.180
R{Cx,Ct) 0.194 ± 0.178
i?(C2,C4) 0.197 ± 0.192
£(C 2,C4) 0.199 ± 0.203
E{Cx,Cb) 0.203 ± 0.179
£(C 3,C5) 0.203 ± 0.190
r (c 3, c 5) 0.216 ± 0.227
E(Ci,Ci) 0.217 ± 0.169
R{C\,Ci) 0.375 ± 0.211
E(CX,CX) 0.383 ± 0.211

k- NN 0.214 ± 0.089

81

We also note that some users are inherently harder to classify than others,

regardless of the chosen algorithm. One user consistently had the highest error when

left out, even though their rates of marker occlusion were not particularly abnormal

or even above average. We think that this supports the idea that an online learning

scheme will inevitably be required for any system that expects users to perform

natural gestures rather than those precisely dictated by the system. Regardless of the

initial training set, there will likely be outlying users that require the system to adapt

automatically or through some form of positive and/or negative feedback.

CHAPTER 4

ESTIMATING THE DISTRIBUTION OF UNLABELED,
CORRELATED POINT SETS

The specific problem we address in this chapter involves the estimation of

positions and correlations of multiple unlabeled, presumed stationary targets. The

goal is to obtain a distribution that describes the expected position of each target, the

dependencies (captured via a covariance matrix) between the targets, as well as the

probability that each target will appear or not, assuming independence. A practical

motivation for this problem is that of the estimation of hand postures from noisy,

incomplete, and unlabeled point sets that represent positions of certain landmarks

on the hand as recorded by a motion capture environment. As will be shown, this

problem bears some relation to /c-means clustering [70] (with constraints), multi

target tracking, and certain optimal transport problems such as the computation of

Wasserstein barycenters.

We solve the problem through use of the EM algorithm (Section 2.2.3) and

propose using the Kalman filter (Section 2.5.1) in a manner similar to Einicke et al. [35]

to provide partial, incremental EM steps with the intention of obtaining better solutions.

A fundamental problem encountered is the uncertainty in assigning observed targets

to estimated targets since the targets are unlabeled. One could compute the single

8 2

83

(or k) best assignment(s) based upon current state estimates, yielding a so-called hard

EM algorithm. Alternatively, one could compute the expectation over all possible

assignments and obtain a soft EM algorithm. However, sampling such assignments

effectively can be remarkably difficult due to the constraints and multi-modality of

the distribution, and literature is rather sparse. We apply a state-of-the-art MCMC

sampling algorithm [144] and evaluate it against the hard EM approach.

We also propose two modifications of the Kalman filter in order to address

the uncertainty in observed target identity. In the first modification, we propose

treating the measurement matrix as a random variable and propagating a Gaussian

approximation of the true state density. In the; second modification, we present a way

to iteratively reorder the measurements such that the state estimate improves.

A series of simulations with varying numbers of targets and spreads are

performed in which a true distribution is known and sampled from to generate

simulated data. The quality of a computed distribution is assessed through the use

of the Rand index [112] and a modified Hellinger distance with respect to this true

distribution. We find that the Kalman-filter-based EM algorithm yields improvements

in accuracy in the majority of scenarios (for example, see the figures in Section 4.3).

Similarly, the MCMC sampler is found to usually be better even without careful

tuning.

4.1 Problem Definition and Related Work

Consider as motivation unlabeled point sets that represent positions on a user’s

hand of infrared reflective markers (targets) used in motion capture systems. Our

goal is to obtain a statistical description of a posture that includes expected positions,

deviations, and probabilities of appearance for each marker/target. The estimated

postures may then be used to classify new point sets, identify users, or simply visualize

the posture. Given that certain markers are attached to the same finger, we reason

that the inter-target covariance is significant and worth estimating. Let m be the

number of targets, Mi € be the position of the i-th target, 7r* the probability of

the i-th target appearing or being detected, n € be a concatenation of these

positions into a single vector, and S be the covariance of /it. We define a profile

m
P ~ f i f (f j , , Z) x l [B (n u 1). (4.1)

i = l

We will simplify this by introducing the notation V(pi, £ ,t t) to represent such a

distribution. Our goal is to find the maximum likelihood estimates of a profile given

some data. Note that this parameterization assumes that the probability of each target

being occluded is independent from other targets, which is not likely to be true in

practice but avoids the problem of modeling the potentially intractable combinatorial

relationships between targets.

This work generalizes and formalizes the heuristic GMMs proposed in Chapter 3.

Otherwise, to our knowledge, this precise parameterization has not been considered

before. The main ways in which our problem and proposed solution differ from

existing work is in the explicit consideration of the target covariance and different

appearance or detection probabilities for each target. For example, if we assumed that

the targets were independent, then numerous filtering algorithms exist for estimating

target positions (see Section 2.5.4). On the other hand, if we ignore £ and 7T, then

85

what we effectively propose is a constrained £>means clustering algorithm [21] where

constraints force points to have the same or different clusters. One algorithm for

constrained A;-means uses Wasserstein barycenters [25], which are conceptually similar

to a profile. Unlike Wasserstein barycenters in this context, profiles are not equivalent

to Gaussian mixtures, however, as the targets are not individually weighted. We note,

though, that our algorithm can benefit from the entropically regularized algorithm

of Cuturi [24] for computing the Wasserstein distance and Wasserstein barycenters,

although this would again ignore the covariance between targets and only be an

approximation of our goal. Adapting Cuturi’s algorithm to handle the quadratic

program induced by the covariance may be possible, although it is beyond the scope

of this dissertation and we did not use the algorithm in our experiments.

4.2 The Proposed Algorithm

This section is devoted to defining a fortiori expectation-maximization (AFEM),

a Kalman-filter-based EM approach to obtaining maximum likelihood estimates of a

profile. The interpretation of each point set as a performance or sample of a posture

guides us as we define a Kalman filter that estimates the posture’s profile. Since the

point sets are inherently unlabeled, there is no a priori association between targets

measured at different times. Consequently, Hk is unknown. Therefore, we must

first introduce a modified Kalman filter capable of handling uncertain measurement

matrices.

8 6

4.2.1 A Kalman Filter for Uncertain Measurement Matrices

Note that as a Bayes filter (Section 2.5.2), the measurement matrix Hk is

implicitly given in that the Kalman filter actually maintains p(xk\yl.k, Hi:k). We

assume that Hi is independent of Hk for I ^ k, so we simplify this expression to

p(xfc|y1;fc, Hk). Consequently, we must marginalize out Hk in order to obtain p(xfc|y1;fc).

To do so, note the joint distribution

p(xfc, Hk\y1:k) = p(xfc|y1:fc, Hk)p(Hk |y1:fc) (4.2)

and the marginal distribution

Pfafclyi:*) = J P f a , Hk\y1:k)dHk = EHfc|yi:fc [p(x*|yi:fc> Hk)}, (4.3)

where

P(x*|yi:*> Hk) = -^(xfc;x fc, Pk) (4.4)

p{Hk\y1:k) = p { H k\yk,-kk ,Pj^), (4.5)

and ^(xfcjXfc, Pk) is the probability density function of J\f(xk, Pk) evaluated at xfc. A

similar derivation for unknown filter parameters including A k, Qk, or R k is given by

Mehra [93].

In practice, p(xfc|y1:fc) is likely to be multimodal and difficult to compute

depending on the complexity of p(Hk\yhk). We therefore propose to propagate

the mean and covariance of p(xfc|y1;fc) in an adapted Kalman filter as a Gaussian

approximation to the true distribution. In order to accomplish this, we observe that

87

"Xfclyi:!

for an arbitrary function /(x*,),

i:* [/(x*)] = J /(xfcMxfclyiJdxfc

= J /(xfc)EWfc|y1:fc [p(xfc|y1:fc, Hk)\ dxfe

= J /(xfc) J p(^k\yhk,H k)p(Hk\yl:k)dHk dxi (4.6)

- I I f (x k)p(xk\yl:k, Hk)dxk p{Hk\y Vk)dHk

Wc can therefore infer how to adapt our Kalman filter to an uncertain measurement

matrix by converting (2.82) and (2.83) into expectations, i.e.

x fc — E x fc|y 1:fe [x fc]

= EHk\y1;k [Xfc + K k{yk - Hkk k)] ,

A = Exfc|y1:fc [(xfc - x*)(xfc - xfc)T]

(4.7)

(4.8)
EHk\yv, (I - K kHk) Pk

where the Kalman gain is defined normally as a function of Hk. At each step we

assume that the previous steps of the Kalman filter satisfied the standard assumptions

for optimality, compute the expected filter output, and then treat the result as a

typical state estimate. A normal Kalman filter can be considered a special case where

Hk is distributed as a discrete variable with only one point of nonzero probability mass.

The proposed Kalman filter is similar to the JPDA filter [39] when Hk is constrained

to be a permutation matrix. Instead of aggregating measurements, we aggregate a

posteriori estimates. Depending on the distribution of Hk, specialized algorithms or

Monte Carlo sampling may be necessary for the sake of efficiency.

8 8

4.2.2 A Fortiori Estimates

The fact that measurements are unordered allows us to employ one additional

heuristic to enhance our filter’s accuracy. By assuming that x*. is a better estimate

than X; for k I, we reason that a more accurate distribution for Hi would result

if y; had appeared last. We can simulate this scenario by removing y t from the

calculation of X*, i.e. reversing a Kalman filter timestep as though y t was the most

recent measurement, and then repeating the timestep with y; as the observation to

obtain x k and Pk. We use the term a fortiori to denote the presumably improved

estimates that result from this process since a fortiori indicates a conclusion with

stronger evidence than a previously accepted one.

In order to undo a timestep, it suffices to calculate simulated a priori estimates

and Pff'* given the a posteriori estimates and a measurement. Suppose Hi is

known. The a priori error covariance can then be calculated using the Sherman-

Morrison-Woodbury identity [124, 153], which states that for some selection of

conformable matrices A, U, C, and V,

(.A + U C V)-1 = A"1 - A - l U{C~l + V A~l U)~xV A~x. (4.9)

Letting A~x = Pk \ V = UJ = Hi, and C~l = Ri and examining (2.83), we find

Solving for x j r \ we obtain

x<-> = (c y c i r ' c y (i t - K v i) , f4-11)

89

where K'k is the Kalman gain computed with Pk Hi, and Ri and

Ck = I — K'kHi. (4.12)

The a fortiori estimates and Pk follow after a normal correction step with

y ; as the measurement and x j^ and as the a priori estimates. Of course, if Hi

is known, then x'fc = x*, and P'k = Pk- If Ht is not known, then a procedure similar to

that of Section 4.2.1 can be used, i.e. calculating the expected values of x jf ̂ and P ^

with respect to Hi\yl:l. In practice, one re-uses samples of the measurement matrix

computed at the I-th timestep. A normal timestep with new samples follows.

4.2.3 Defining the State

A posture is defined to be a translation and rotation invariant static configu

ration of points or targets. We assume that the posture is described within a local

coordinate system such that translation and rotation are not an issue. Since a posture

is by definition constant, we resolve the question of process noise by interpreting each

performance as a measurement of a noiseless state that describes the ideal posture.

We define the state x of our filter to be the parameter pi of the target profile. The

discrete-time transition function is then x*,+i = xfc. Note that as a consequence of zero

process noise and a constant state, the a priori estimates are equal to the previous

time-step’s a posteriori estimates. Since the state is constant and noiseless at all

times, we drop the k subscript on x.

4.2.4 Defining the Measurements

Let Y k be a point set, nk its cardinality, and let y k G]Rnfcd be a concatenation

of each point’s position vector in an arbitrary order. The measurement equation is

90

given by

y k = tffcx + Hk wfe + v k, (4.13)

where w k and v k are zero-mean white noise with covariances E and R k, respectively.

The vector w k represents the deviation of the k-th performance from the ideal posture

and is assumed to have constant covariance, i.e. each performance has the same

expected deviation. The vector v fc denotes the error due to measurement and is not

necessarily of constant variance. By hypothesis, we do not know Hk. We can, however,

constrain Hk with Hk = Bk % Id, where Bk is a binary matrix, which ensures that

the components of a measurement cannot be assigned to different components of one

target, e.g. x-axis to 2-axis.

Note that (4.13) assumes that nk < m and that each observed point corresponds

to a target, which is not always the case with extraneous targets. In the event that

extraneous targets are present, one can consider y fc = Hky k, where Hk is similar

in structure to Hk in that it selects and possibly permutes elements of the full

measurement vector y k. Note that Hk and Hk depend upon one another.

The sum HkEHkJ + Rk represents the traditional measurement noise covariance

given in the Kalman filter’s introduction. We remark here that E plays an almost

identical role to that of the process noise in a standard Kalman filter except for the

prediction stage. The main effect is that the estimated error covariance P does not

increase in the prediction stage or when a target is not observed, which more accurately

reflects the notion of a constant state not subject to random walks.

91

4.2.5 Uncertain Measurement Matrices

A distribution must be specified for p(Hk\y1:k). The choice of the distribution

is significant as it reflects the assumptions and constraints on the possible assignments.

The distribution presented here corresponds to the conditions of our simulations later

in the chapter. In particular, we keep the constraint that no two observed targets may

be assigned to the same states. We also discount the possibility of extraneous targets,

requiring that each target must be assigned an observation (if any are available)

without violating constraints.

Regardless of the choice of the conditional distribution p(yk\Hk, x k , Pk), we

assume that each permutation of targets is equally likely to be observed. Since by

(4.7) and (4.8) we define the state to be Gaussian,

y k\Hk, x ; , P k ~ N (H kx k ,S k), (4.14)

where

Sk = Hk(Z + Pk)HkJ + R k. (4.15)

The conditional distribution of Hk given y k and the marginal distribution of y k are

thus

, Pk) « N (y k, Hkx ; , Sk)

Af(yk;Hkx k ,S k)

p(y tl* t. h ‘) = (4.i7)

If the probability of each target being occluded is not the same, then (4.16)

should be augmented with Bernoulli random variables. Let n be an estimate of the

(4.16)

92

profile’s target occlusion probability vector. Then

p(Hk\yk,Xk,Pk’*) oc-A/Xy*;*W,Sfc)
(4.18)

x 7rB*Tln* (l m - ^ lm~BkJlnk \

where vb represents element-wise exponentiation such that

v - = I R (419>
i

We see from (4.16) that computation of p(Hk\y\±) (and hence (4.7) and (4.8))

involves an intractable sum in the denominator, which rules out exact computations

for moderately sized problems. The mode or most likely assignment is also difficult to

compute as it can be shown that maximizing the logarithm of (4.16) yields an NP-Hard

quadratic program in most situations. We are forced to rely upon approximations

regardless of whether we wish to perform hard or soft EM.

An approximation of the most likely measurement matrix can be obtained by

linearizing \ogM{yk\ Hkx k , Sk). The linearization consists of treating each target as

though it were independent, i.e. as though Sk were block-diagonal and consequently

nk
k\H kx k , S k) = (4.20)

2 = 1

where yk(i) and {Hkx k](i) represent the coordinates of the z-th observation or target

and Sk(i) represents the z-th d x d block on the diagonal of the matrix Sk. An

approximate mode can then be found in 0 (m 3) time by using algorithms for the

assignment problem [34]. In fact, approximations for the t best assignments can be

found using Murty’s ranked assignment algorithm [99].

For estimating expectations according to (4.16) (and indeed any expression

proportional to p{Hk\yhk)), we turn to MCMC algorithms. MCMC methods for

93

sampling from a probability distribution are advantageous in that they only require

an expression proportional to the true probability density function. The primary issue

is one of practicality in that convergence to the true distribution is not guaranteed to

be fast. Due to the combinatorial constraints on Hk, however, an effective sampler is

matrix permanents and related sub-problems [65], but few algorithms for sampling

of arbitrarily weighted permutations exist. General purpose combinatorial samplers

exist [80], but a special purpose sampler is likely to be more efficient. We propose

using the sequential match sampling algorithm of Volkovs and Zemel [144], which

is capable of sampling from arbitrary densities on permutations and appears to be

the state of the art in this regard. The sequential match sampler is a Metropolis-

Hastings algorithm [17] with a proposal distribution constructed by sampling partial

assignments item by item. A temperature hyperparameter of the sampler controls

the proposal distribution in a manner similar to temperature as used in simulated

annealing in that higher temperatures promote jumps to more dissimilar permutations.

4.2.6 The AFEM Algorithm

The EM procedure to estimate a profile V(p , E, 7r) from a collection of N point

sets Yi;Ar is outlined by the steps listed below. One may note that the Kalman filter

fills the role of the expectation step along with the maximization with respect to /i..

Setting the Kalman gain to zero yields a more traditional EM algorithm. Maximum

likelihood estimates at iteration i can be obtained with

difficult to obtain. Samplers have been proposed with special emphasis on calculating

(4 .2 1)

94

t{i) = jj E E«.lyM [(y» - H^)(yk - , (4.22)
fc=i

(4.23)

although each equation comes with some caveats. For example, (4.21) is optional as

one could just use the final estimate given by the Kalman filter.

Both (4.21) and (4.22) assume that each measurement is complete, which

is by hypothesis unlikely. If some performances are incomplete, then obtaining a

maximum likelihood estimate is significantly more complicated. If the positions

are missing at random [115], then algorithms exist [94] that can obtain maximum

likelihood estimates of the covariance. Unfortunately, the positions are for the most

part definitely not missing at random. In motion capture, the probability of a marker

becoming occluded is mostly dependent upon its position. For example, the finger tips

become occluded whenever a fist is made. Therefore, since no obvious solution exists to

obtain biased or unbiased maximum likelihood estimates, we choose to perform random

imputation by sampling A Random imputation is deemed preferable to

mean imputation since the latter will certainly underestimate the variance. Regardless

of the method, note that this estimated covariance E(t) is technically an estimate of

both the performance and measurement covariance.

Regarding (4.23), Laplace smoothing should be performed since we cannot be

absolutely certain that a target will or will not appear, which amounts to adding

fictitious point sets Y), i E [1, m\, such that Y* contains a single point assigned with

absolute certainty to the i-th target. The steps of the algorithm follow.

95

1. Initialize Xg0,0̂ to be a random measurement vector augmented with extra random

values if needed and set E ^ diagonal.

2. For i — 1,2,3, . . . until convergence,

(a) Set P0(i’0) = E(l_1).

(b) Randomly permute Y1:jv to obtain Y^v.

(c) For each measurement in Y^)N, perform a Kalman filter update using (4.7)

and (4.8) to obtain and P^ 0'1.

(d) For j = 1,2,3, . . . until convergence,

i. Set = x ^ 1’ and P0(tj) =

ii. For each measurement in Y^)N, calculate a fortiori estimates using the

procedure outlined in Section 4.2.2 to obtain x^j) and

(e) Calculate f f l\ and according to (4.21), (4.22), and (4.23).

(f) Set x j +1’0) =

We make some final remarks to clarify the algorithm. Convergence is guaranteed

since this is an EM algorithm and is indicated by small changes in the log-likelihood or

parameter values. Step 2a presents a natural choice for the initial state error covariance

Pq in that if each measurement set is complete, then K f = l / {k + 1). Furthermore, if

P0 = aE, then lim^oo K *. = I jk.

4.3 Experimental Evaluation

This section describes simulations and measures of evaluation for AFEM. In

particular, we compare our algorithm versus a more traditional (sans Kalman filter)

EM algorithm. In addition, we compare the MCMC sampler versus linearized optimal

96

assignments, which respectively yield approximate soft and hard EM algorithms. The

expectation is that the MCMC sampler will yield more accurate profile estimates,

although we need experimental data to verify. To our knowledge, we are the first to

apply the sampler to this type of problem.

4.3.1 Simulation Description

Since available real-world data does not come with labeled targets, we resorted

to simulated data to evaluate the algorithm under a variety of conditions. Simulations

involved independently varying the number and spread of targets sampled from some
4

randomly generated true distribution. The parameters of each simulation included the

number of targets rn, the dimensionality of each target d, the spread of the targets <r,

and whether the true distribution’s targets are constrained to be independent or not

(i.e. whether E is constrained to be block-diagonal or not). Target dimensionalities of

d = 2 and d = 3 were considered.

For each considered combination of parameters, five random true distributions

were generated. The m components for each distribution were drawn uniformly at

random from within the volume of a d-dimensional hypercube and ranged from m = 2

to m — 18 in steps of 4. If varying the number of targets, the hypercube was scaled

such that the intensity (the expected number of targets as a function of position)

was kept approximately constant. To be precise, the length of a side was equal to

[l00m1/,rfJ . The same side lengths were used to vary the spread when keeping the

number of components fixed at m — 10 (that is, 10 targets were placed in volumes

sized for 2, 6, 10, 14, and 18 targets). The true covariance matrix was sampled from

97

a Wishart distribution [103] with md degrees of freedom and a scale parameter of

Imd before being multiplied by a factor of 100. The parameters for this Wishart

distribution were chosen to ensure with high probability that the correlations between

targets were significant, and the factor of 100 increases the likelihood of target overlap.

The elements of the true appearance probability vector were independently sampled

from the uniform distribution on [0,1].

For each distribution thus generated, 400 sets were sampled and their elements

randomly permuted. Empty sets were kept as they contain information about 7r.

Three generators or samplers of measurement matrices were considered: the optimal

(linearized) assignment, the 10 best linearized assignments, and a sequential match

MCMC sampler with a default temperature of 1. These samplers are denoted in

figures, respectively, as “Best-1,” “Best-10,”, and “MCMC-1.” Burn-in of 10% was

used for 1000 samples initialized from a random permutation. All of the remaining

900 samples were used. Thoroughly tuning the sequential match sampler was not the

objective of this dissertation.

4.3.2 Comparing Profiles

Even if we know the true distribution, we are faced with a conundrum: which

target is which? Even if we have perfectly estimated the true parameters, their order

may be scrambled. We must therefore consider assignments between estimated and

true targets, and these assignments need to respect the target positions, covariance,

and appearance probabilities.

98

Let us first suppose that the correspondence between targets is known. In such

a case, we propose using the Hellinger distance (Section 2.2.1) to compare the profiles.

Since H 2 be computed in closed form for Gaussian densities, it can also be computed

in closed form for profiles with known correspondence.

There are some issues, however, that make H 2 and similar metrics such as

KL or JS divergence; less than ideal for comparing profiles. For example, if just oik;

target’s position is wrong, H 2 tends towards 1. Similarly, differences in the structure

of the covariance matrices can push H 2 towards 1 even if each position is correct.

We therefore propose modifying H 2 in such a way that the comparison of individual

targets and the covariance is separated. Define the modified squared Hellinger distance

between profiles P ~ V (x , £, 7r) and Q ~ V (x , T, r) as

H2(P,Q) = l - H l (P , Q) H 22{P,Q), (4.24)

where

- m

H\(P,Q) = 1 - (4.25)
m '

1 = 1

Hl(P, Q) = 1 - H2(N{0, E), V (0, r)), (4.26)

x,, Xi are the coordinates of the z-th targets of each profile, and T, are the d x d

diagonal blocks corresponding to the internal covariance of the i-th targets. One may

note that W2 calculates the average similarity between individual targets whereas

Hi(P, Q) calculates the similarity between the overall covariances ignoring positions.

Note that H 2 is still negative definite.

Negative definiteness is a potentially useful property as it implies that H2 is

isometric to L2 and can be interpreted in a manner similar to the Euclidean distance

as the logarithm of some (perhaps Gaussian) probability density function. Hence, one

could set e“ //2 as the target density for a sequential match sampler that is used to

approximate the expected value of the Hellinger distance when the correspondence

between targets is not known. However, H2 comes with an implicit variance and

should be scaled depending on the application. We chose to compare two profiles using

the correspondence that maximized H\(P,Q), which can be computed in polynomial

time. We did not attempt to directly minimize H2(P, Q) since the objective ends up

being concave and NP-Hard to solve.

To balance the results that use our custom metric, we also present results

based upon the Rand index [112], a standard measure of cluster similarity that is less

affected by target correspondence. The Rand index provides a means to assess the

accuracy of a clustering without knowing cluster identity. Instead of operating on

individual clustered points, the Rand index operates on pairs. Let C = [J^=1 C, and

D = Uj=i be partitions of a dataset X into disjoint subsets Cl and Dj. Let a and b

be the number of pairs of points in X that belong respectively to the same or different

set in C and the same or different set in D. The Rand index is then defined to be

= (4-27)

For our purposes, X = the clusters are the targets, and points are assigned

to clusters based upon the linearized mode of Hk (i.e. constraints for the data are

known).

100

4.3.3 R esults

Results focus on Tij and 1~C\, which respectively measure the difference between

individual targets or total covariances, and the Rand index, which measures the

accuracy of the estimated profile when used as a clustering algorithm. In general, it

was observed that AFEM tended to lead to better values of each measure regardless of

the sampler or simulation parameters with few exceptions (for example, see Figure 4.1).

Differences were more dramatic for three dimensions than for two when comparing

the EM algorithms and comparing samplers. The primary situations in which the

algorithm did not usually confer improved measures of accuracy were when the number

of targets was relatively low (e.g. Figure 4.2) and when the MCMC sampler was used

for covariance estimation. The MCMC sampler’s occasional poor performance can

likely be attributed to the fact that it was not carefully tuned for the problem.

0.25
$ 4 Best-1
I I Best-10
t - f MCMC-l0.20

0.15

0.05

0.00

-0.05
120 140 160 180 200 220 240 260

Spread

Figure 4.1: The improvement in H \ for each sampler when using AFEM versus
normal EM as a function of spread for d = 3 and unconstrained true covariance.

101

0.20
$ I Best-1
I I Best-10
♦ - ! MCMC-l

0.15

0.10

0.05

0.00

-0.05

- 0.10

-0.15

Number of targets

Figure 4.2: The improvement in H \ for each sampler when using AFEM versus
normal EM as a function of target count for d, = 2 and unconstrained true covariance.

Due to the large number of simulations, only a small subset are shown via

Figures 4.1, 4.2, 4.3, 4.4, and 4.5. Descriptions of the rest are conveyed through

general comments and observations. More detailed comments for each measure can be

found in the following subsections.

0.15

o.io

0.05

0.00

-0.05

- 0.10

f - f Best-10 vs. Best-1
i i MCMC-l vs. Best-1
i i MCMC-l vs. Best-10

-0.15

- 0.20

Number of targets

Figure 4.3: The improvement between each pair of samplers in H \ for AFEM as a
function of the number of targets for d = 3 and unconstrained true covariance.

102

2.0
¥-i Best-10 vs. Best-1
J i MCMC-l vs. Best-1
• f MCMC-l VS. Best-io1.5

1.0

bO

0.5

0.0

-0.5

Number of targets

Figure 4.4: The improvement between each pair of samplers in log H \ for AFEM as
a function of the number of targets for d — 3 and unconstrained true covariance.

0.06
$ Best-1
i I Best-10
f -+ MCMC-l

0.05

0.04
X<L>

"O 0.03
c
■oc 0.02(0
DC

0.01

0.00

- 0.01
120 140 160 180 220 240200 260

Spread

Figure 4.5: The improvement in the Rand index for each sampler when using AFEM
versus normal EM as a function of spread for d = 3 and unconstrained true covariance.

T arget E stim ation

Target accuracy exhibited a fairly clear dependency on the spread in that

increasing the spread seemed to yield further improvements (see Figure 4.1). The

MCMC sampler tended to receive the least absolute benefit from the Kalman filter, but

103

also tended to yield better estimates than either of the optimal assignment samplers

for larger target counts (see Figure 4.3). A slight bias in favor of the MCMC sampler

was also observed for smaller spreads. The optimal assignment sampler performed

worst overall as should be expected. The MCMC sampler also benefited from the

extra dimension in d = 3.

Covariance Estimation

Since H% tended to be close to zero, plots show log H% instead. AFEM was

generally better than traditional EM except when the covariance was constrained,

in which case the MCMC sampler tended to perform worse. Even though AFEM

conferred no advantage to the MCMC sampler, MCMC still performed better than

its peers for larger target counts (m > 10) in nearly all simulations (see Figure 4.4).

No advantage in the MCMC sampler was observed for varying spread, although this

may have been due to the target count being too low.

Clustering Accuracy

Results with the Rand index agreed with T-t\ and 1~L\ hi that AFEM generally

conferred an advantage for each sampler. Since simultaneously observed targets are

guaranteed to be placed into different clusters, each method is guaranteed to agree

on a large fraction of b. Differences tended to be relatively small as a result (see

Figure 4.5).

CHAPTER 5

ON THE DEFINITENESS OF EARTH MOVER’S
DISTANCE AND ITS RELATION TO SET

INTERSECTION

Recall the definition of the Wasserstein distance and EMD given in Section 2.4.

The foundations of EMD’s definiteness as a kernel (Section 2.1.4) are the primary

topic of this chapter. EMD has been applied in kernel methods for texture and object

category classification with SVMs [156]. However, it is not known whether kernels

derived from EMD are actually PD. In fact, there is evidence to the contrary for a

Euclidean ground distance [100]. Regardless, EMD continues to be used successfully

for various purposes such as facial expression analysis [117] and EEG classification [27].

Methods to ensure PD-ness have been explored [155]. Cuturi [23] suggested using the

permanent of the transportation polytope, which is guaranteed to be PD although

difficult to compute. Grauman and Darrell [47] on the other hand proposed a PD

approximation of a maximum-cost version of EMD that also has the advantage of

being easier to compute.

In Section 5.2, we propose the PD-preserving transformation (5.4) that can be

applied to any kernel, and we provide a new proof of the Jaccard index’s PD-ness,

which has already been the subject of at least two papers [45, 10]. Under certain

conditions, the transformation may even induce PD-ness. As a corollary, we deduce

104

that the biotope transform [31] preserves CND-ness in addition to metric properties.

In Section 5.3, we show that given certain ground distances, EMD is CND and

may thus be used to construct PD kernels using standard relations. In particular,

in Section 5.3.1 we use a set theoretic interpretation of EMD to show how EMD

generalizes the intersection kernel. With a special emphasis on unnormalized sets, we

generalize EMD [105] for use as a kernel. In addition, we show in Section 5.3.2 that

convex, non-negative symmetric ground distances of the form h(x — y) for x, y G M

and some h yield CND EMD on the real line. On the circle in Section 5.3.3, we find

that EMD is not in general CND, although a CND approximation can be found by

substituting the mean for the median in a calculation. In Section 5.3.4, we apply (5.4)

to transform ground distances to the form P — K such that CND-ness in EMD is

induced. Finally, we evaluate EMD and the transformation on a variety of experiments,

showing that both yield kernels superior to EMD, especially on unnormalized sets.

Throughout the chapter we find that EMD is related to min-like kernels including

intersection, Brownian bridge, and the Jaccard index.

The next section presents information including definitions and theorems that

may be used as a reference for the rest of the chapter.

5.1 Preliminaries

This section provides definitions that are useful for following the rest of the

chapter. A review of kernels (Section 2.1.4) and measures (Section 2.1.5) is advised.

In addition, recall the definitions of Jr(X) and V (X) given in Section 2.1.6.

106

5.1.1 M ultisets

A multiset generalizes a set by allowing duplicate elements. We use the

terms multiset and set interchangeably with context indicating which is meant in the

strict sense. By definition, the multiplicity of an element a; is a non-negative integer

indicating how many copies of x are contained in a given multiset A. We generalize

this definition by allowing a non-negative real number of “copies.” With this definition,

we may also include probability distributions and other continuous functions with real

output.

Let X be the set of all possible elements under consideration, i.e. the domain.

Let Xa : X —> R be the mass density (or multiplicity) function of the multiset A

that indicates the multiplicity of each x £ X contained in A. For any element x not

contained in A, X a {x) = 0. The density function completely defines a multiset and is

similar to a probability density without the restriction that it must sum to 1. When

we refer to a multiset or density, the other is implied. Note that for a standard set A

(i.e. not multiset), xa — ^a- The mass density function of A gives rise to a measure

For discrete sets, (5.1) simplifies to series summation. The support of a multiset is the

same as the support of its measure. We use the term singleton to denote a multiset A

with support satisfying supp (A) = supp (p.4) = {xq} for some fixed element xq £ A.

(5.1)

We generalize the definition of a subset A C B in X to be such that X a { x) <

X b {x) for each x £ X . The density function for the intersection of two multisets A

107

and B is defined as

X a h b {x) = min { x a { x) , X b (x) } , (5.2)

and the union is defined in a similar manner with max instead of min.

Henceforth, we will abuse notation by defining yu(A) = p^(supp (A)), which

we will refer to interchangeably as the size, mass, or measure of A. Note that unlike

histograms, multisets do not imply a finite, countable base set X from which every set

draws its support. This distinction allows somewhat more flexible definitions of EMD.

5.1.2 Earth Mover’s Distance

We consider EMD to be a metric on J-'(X) for some set X. Note that here we

mean metric as in dissimilarity measure. Based on the equivalency set forth between

measures and multisets in the previous section, we henceforth consider EMD to act

directly on the sets as in (5.3) instead of their associated measures. Recall that EMD

is not a true metric in the sense of Definition 2.1 on T (X) but rather on V (X) for

metric ground distance [116]. Violations of identity and triangle inequality are easily

found when considering subsets and supersets.

Recall that EMD involves calculating the minimum-cost maximum flow via

the linear program given by (2.70), (2.71), (2.72), and (2.73). Note that our definition

of EMD differs slightly from that of Rubner et al. [116], which scales (2.70) by the

inverse of the total flow given in (2.73). For sets of the same size, Rubner’s definition

is just (2.70) scaled by a constant factor. We say that a collection of multisets is

normalized if each set is the same size or mass. The sets are unnormalized if any two

sets are not the same size. Pele and Werman [105] introduced a means to calculate

108

EMD between unnormalized sets for use in nearest neighbor calculations and image

retrieval and defined it as

EMDa(A, B) = EMD (A, B) + a\fi(A) - /z(£)|max{d(a, &)}, (5-3)
a ,b (zX

where A and B are sets, a > 0 and d is presumed to be bounded. EMDa is a metric

on F { X) if EMD is a metric on V (X) and a > 0.5 [105]. Schuhmacher et al. [119]

independently proposed an almost identical version of EMD under the acronym OSPA

(Optimal Subpattern Assignment). Normalized forms of EMD such as (3.10) have

also been proposed, although a connection to EMD was not explicitly acknowledged

by Ramon and Bruynooghe [111]. The transformation of the following section was

inspired by the search for and study of a normalized form.

5.2 A Definite Preserving Transformation

In this section we propose the PD-preserving transformation

Kr(x,y) = — -----k-1 \ <5'4>K(x , x) + K(y, y) - K(x , y)

that normalizes any given PD kernel K. If K(x , x) — K(y,y) = 0, we define

Kr(x ,y) = 1. As opposed to the traditional normalization,

K n (x ' v) = / k ^ T k i V (5 ' 5)y /K{x , x)K{y , y)

which can be interpreted as a surjective mapping of images <j>(x) in Hilbert space onto

the unit hypersphere via projection, K t can be interpreted as an injective mapping

onto a unit hypersphere of unspecified dimension. Image vectors in Hilbert space

109

of different magnitude that share the same direction remain distinguishable post

transformation. Both transformations are nearest neighbor preserving for points on

the same hypersphere.

Technically, this kernel (or one algebraically equivalent to it) has been proposed

before as the Tanimoto kernel by Ralaivola et al. [110]. We stress the differences in our

proposed transformation and how our contributions differ from existing work. First,

the Tanimoto kernel is equivalent to the Jaccard index and has only been proved PD

when X consists solely of binary vectors and K is the dot product (see the proof given

by Ralaivola et al, which hinges on the proof of semi-PD-ness of the Jaccard index

given by Gower [45]). We prove (see Theorem 5.1) that (5.4) is strictly PD for any K

if K is strictly PD (and similarly for semi-definiteness), which is stronger than the

proof of Ralaivola et al. and more general than both it and the proof of strict PD-ness

of the Jaccard index given by Bouchard et al. [10]. Since we are not limited to binary

vectors, the range of (5.4) is not even constrained to be positive. This more general

view of the transformation also allows us to examine its properties in new situations,

such as when it is applied to itself or nested.

In fact, the transformation can be nested indefinitely as in

(5.6)

such that

lim K ^ \ x , y) € {0,1} (5.7)

110

where K ^ is the n-th nested transformation with = K. A closed form expression

for the n-th nested transformation can be derived and is given by

K ^ H x v) = ______________ K (x , y)______________ >
r Qn - i [K (x , x) + K (y , y)] - (* - l) K { x , y y

From Lemma 2.4, the denominator converges to 2n~l D(x, y). where D(x, y) = K(x, ,r)+

K(yiy) ~ 2K(x,y) . Geometrically, we may then loosely interpret the transformation

as division of the inner product by the distance squared. Note that although we

focus on n = 1, n could be considered a continuous hyperparameter within the range

(—oo, oo) for which (5.8) is PD on the subinterval [0, oc). In fact, if n — 0, then we

obtain a generalization of the F measure (as interpreted as a kernel by Ralaivola

et al. [110])

X {Q)(x v) = ___ 2 K (x , y)____ . .
K t { X ' V) K (x , x) + K (y , y y (5'9j

In the next section, we will use this transformation to define new EMD-based kernels

and to define ground distances for which EMD is CND. First, however, we must show

that the transformation preserves definiteness as claimed.

Theorem 5.1. If K : X x X —> E is PD, then the function K r as defined by (5-4) is

also PD.

Proof. Without loss of generality, assume K (x , x) — K (y , y) = 0 = > x =

y — p for some p € X and let us restrict K in the following discussion to X \ {p} . The

denominator in (5.4) is positive valued due to a well-known property of PD kernels

and matrices,

\ K(x , y) \ < < K (x ,x) + K(y , y) . (5.10)

I l l

The denominator is also CND as it is the sum of two CND kernels: K(x, x) + K (y , y)

(by Proposition 2.6) and —K(x,y) (by hypothesis). Thus by Proposition 2.7 with

7 = 1,

Ki(x ,y) = [K(x,x) + K(y ,y) - K(x,y)}~1 (5.11)

is PD. We therefore have the product of two PD kernels

Kr(x , y) = K { x , y) K 1(x,y), (5-12)

which is itself PD by Theorem 2.5.

In order to include the case x = y = p , we note that if (j) : X —> H is the

kernel’s feature mapping into the Hilbert space H, then K(p,p) = (<p{p), 4>{p)) =

0 = > 4>(p) = 0 , which further implies

K{P, x j = (frfa)) = (0, (j){xt)) = 0 (5.13)

for Xi 7 ̂p. Therefore, K?{xi,p) = 0 if Xj ^ p. Let xq = p and cq € R. Then K r is

PD because

n n
Y CiCjKT(xi, Xj) = cl + Y j CiCjKT(xu xj) > 0. (5.14)
i,j=0 i,j=l

□

Corollary 5.2. Let D : X x X ^ - R be a CND kernel, and let p € X . Then,

n , \ ______ 2D(x, y) - D(x, x) - D{y, y)______
T’p x , y D{x,p) + D{y,p) + D { x , y) ~ £ D{ z , z) ’ (5-15)

z£{x,y,p}

is also CND.

112

Proof. We can define a PD kernel K according to the relation given by

Lemma 2.4, i.e.

K(x ,y) = D(x,p) + D{y,p) - D(x,y) - D(p,p). (5.16)

Using (5.16), note that K (x , x) = 2D(x,p) — D (x , x) - D(p,p). Furthermore, note

that

K(x , x) + K(y ,y) - K(x , y) = D(x,p) + D(y,p) + D{x ,y)
(5.17)

- D(x,x) - D(y,y) - D(p,p).

We see that the denominator of DT is the same as that of K r . Note then that

K T(x,y) + DT,p(x,y) = 1. (5.18)

If x i , . . . , xn G X , c i , . . . , cn e K, and Y^=i ci ~ 0) ^ e n

n n

CiCjDT,P{xu X j) = ^ 2 cic3 { - K T(xl, X j)) < 0. (5.19)
i , j =1 i , j =1

We have thus shown that DT>P is CND. □

If K(x , y) > 0, then K T(x,y) G [0,1]. Otherwise, Kr(x ,y) G [—1/3,1].

Consequently, DT,p{x, y) G [0, 4/3] and DTtP(x, y) > 1 if and only if D(x, y) + D(p, p) >

D(x,p) + D(y,p). In addition, Theorem 5.1 also holds for strictly PD K. Using

Theorem 5.1 with K as the intersection kernel therefore provides an easy proof for

the PD-ness of the Jaccard index,

= (5 ' 2 0)

Note that DT}P generalizes the well-known biotope transform [31], showing that it

preserves CND-ness in addition to metric properties. As an example, suppose A and

B are sets and D(A, B) = \p(A) - n{B)\. This kernel is CND. By Corollary 5.2 with

113

p = 0 followed by some simplification, we can derive the CND kernel

Z W A B) = (5.21)
max fi(B)}

The transformation K t possesses another interesting property in that it can

induce PD-ness in addition to preserving it. The following proposition gives a sufficient

condition under which this phenomenon occurs for nested transformations. We

hypothesize that the proposition holds simply if X is finite and K satisfies the

equivalence relation

x = y 2K(x ,y) = K(x , x) + K(y,y) . (5.22)

Proposition 5.3. For any symmetric kernel K : X x X —> M where X is finite and

x^ f iy =$■ 2 K(x ,y) ^ K (x , x) + K(y,y) for x , y € X , there exists a number no such

that K ^ : X x X -» R is PD for all n > n 0.

Proof. Consider the kernel matrix = [KjU\ x u x3)\ for some selection

of elements x i , . . . , x n G X with 1 < z, j < n. Since the definition of a PD kernel

requires only distinct elements for (2.19), we may without loss of generality assume

that each element is distinct, i.e. i / j = > x, xy We now show that

must eventually become diagonally dominant and thus PD [12] as n increases, where

diagonal dominance for a symmetric matrix M is defined for each row index i by

\M, i \ (5 '2 3 >
j¥=i

We show this by noting that each transformation is effectively a step in a fixed point

iteration wherein converges to identity. We allow infinite values in (5.4) due to

division by zero as these can be removed by further transformations described shortly.

114

Note that for n > 1, K ^ \ x , y) = 1 if and only if x = y, and since K !p \x , x) — 1

for all x and n > 1,

A•<."+1)(xi,%) = K̂ t ' X’K - <5-24)

Consequently, repeated transformations with fixed i, j are effectively identical to fixed

point iteration with fixed points of 0 and 1, and any sequence K ^ \ K ^ \ . . . starting at

Xj) 7 ̂ 1 will converge to 0 [12]. An infinite value in any sequence is followed by

— 1, obtained by observing the limits at infinity of (5.24). We can then deduce that there

must exist an m such that for any n > m and i \ K ^ (x i , X j) \ < \ K ^ l\ x l: x3)\.

Therefore, as the number of nested transformations increases beyond the m-th, the

diagonal of stays constant at a value of 1 and the absolute value of each off-

diagonal element decreases. Eventually, must become diagonally dominant and

hence PD for all n greater than or equal to some finite rtQ > m. □

5.3 EMD Is Conditionally Negative Definite
For Certain Ground Distances

In this section, we introduce new results on ground distances and conditions

under which EMD can be proved to be CND. In some cases, we offer CND approxi

mations.

Since any ground distance is just a special case of EMD between singletons of

unit mass, EMD is CND only if the ground distance is CND. Unless otherwise noted,

we will assume that ground distances discussed henceforth are CND.

115

5.3.1 E arth M over’s In tersection: A Set Theoretic In te rp re ta tio n of EM D

In this section we introduce earth mover’s intersection (EMI), a useful concept

and PD analog to EMD that computes the similarity between two sets rather than

their difference for a given ground distance. The name comes from the following

motivating scenario.

Suppose there are two sets of two-dimensional points where one is a slightly

perturbed version of the other. According to the strict definition of set intersection

given by (5.2), their intersection is empty despite the fact that they are clearly related

by their elements. The inability of set intersection to account for the sets’ inherent

similarity is a problem. EMD provides a natural solution to this problem, although

it is proportional to their difference rather than similarity. EMD also reflects the

qualities of whatever norm is chosen to compare the individual points. We now show

that EMD and subsequent related functions define smooth (in the sense of strictness

of equality) generalizations or approximations of classic set operations.

Sets are usually normalized prior to application of EMD by dividing their

density function by their total mass, an operation analagous to normalizing a vector

to unit norm. The disadvantage of this method is that sets with differently scaled

but otherwise identical density functions become indistinguishable post-normalization.

As a side-effect, one removes an entire dimension of the data (for the most extreme

case, consider singleton point sets with non-negative mass on the real line). An

application where this distinction is important is that of multi-object tracking and

filtering [119, 113]; normalizing set mass can cause one to ignore the fact that the

incorrect number of objects are being tracked. For our set theoretic interpretation

116

of EMD, we prefer to retain the sets’ original mass and transport excess mass to a

predetermined point p e l , referred to as the sink. One could also consider this a

form of additive normalization by supplementing mass at the point p. EMD then more

accurately represents the relative magnitudes of set differences as well as distinguishes

differently scaled sets.

Define the term EMDP to represent the transportation of excess mass from the

larger of two sets A and B to some sink p € X , i.e.

where D is the ground distance, /* is the optimal flow, and we assume without loss of

generality that p,(A) < p{B). The total cost of transforming one set into another is

then given by

where we have adopted the notation for Pele and Werman’s EMDa. Note that the

sink does not necessarily have to be in X (in which case we must replace D with an

appropriate function in (5.25)). Ideally, though, p is a reserved point that does not

naturally appear in the sets under consideration. Otherwise, there is a different type

of potential identity loss.

We define EMI as the kernel resulting from Lemma 2.4 with x$ = $ and

D = EMDp, which is

EMDP(A,B) = X b W - E /*(“ • i>) j D (b , p) - E M ± , (5.25)

EMDP(A, B) = EMD(A, B) + EMDV(A, B), (5.26)

EMIP{A, B) —EMDP(A, 0) + EMDP(B, 0) - EMDP(A, B). (5.27)

117

Note that EMI is PD whenever EMD is CND for some collection of sets (and vice

versa). By assuming p G X , we can define a PD kernel Kp according to Lemma 2.4

with xq — p and D as the ground distance, which we can then use with (5.25) to

simplify EMI to

Observe that the minimum-cost maximum flow with respect to D is the same as the

maximum-cost maximum flow with respect to Kp, regardless of the choice of p. As

a result, EMI can hypothetically be specified in terms of just a PD ground distance

without explicitly specifying the sink. The definition of EMI also provides some

insight into the pyramid match kernel [47], which can be viewed as an approximation

of EMIo on Jr(Mn). We may also consider an alternative definition EMI'p(A, B) =

EMIP(A, B) + ^2^2 f*(a, b)D(p,p) that is also PD if D(p,p) > 0 and EMD is CND;

this is equivalent to discarding D(p,p) in (5.25).

As our first example of a situation in which EMI is PD on •F(A) (and

hence EMD and EMD are respectively CND on J-(X) and V(X)) , consider the

discrete metric, which can trivially be verified to be CND. Define the discrete kernel

corresponding to this ground distance to be K q. \ { x , y) = 1 — 5o_\(x,y), which is PD.

We can show that EMI in this case is equivalent to the intersection kernel.

P roposition 5.4. Let E MI 0~i(A, B) be EMI equipped with the discrete kernel as the

ground distance on an arbitrary set X . Then EMIo-i is equivalent to the intersection

kernel.

(5.28)
<z£./4 b£F3

118

Proof. The goal is to find the maximum-cost maximum flow subject to

constraints, and the only way to increase the cost with the discrete kernel is to send

available mass from a point in one set up to the capacity allowed by the other set at

the same location. Therefore, f*(a,a) will be saturated up to the available capacity

at a in each set, i.e.

f*{a,a) = m in{x^(a),xB(a)} . (5.29)

The cost to transport this mass is simply the amount of mass transported. The exact

mapping of the remaining mass is irrelevant as it costs nothing to move. As a result,

EMI0-i (A,B) = f*{a,a) = f i { A n B) . (5.30)
a e A U B

□

Since the intersection kernel is PD [11], we conclude that EMIo-i is as well.

One can then deduce that EMDq.\ and EMD0.i give measures of the set difference

between A and B. Specifically, EMD^i gives the set difference of the larger set from

the smaller, and EMDq.\ gives the set difference of the smaller set from the larger.

The sum of both yields the symmetric difference. One may also apply (5.4) with

K = EM Iq-i or (5.15) with D = EMDq.\ and p = 0 to obtain the Jaccard index and

distance.

Switching to a ground distance other than the discrete metric is like allowing a

degree of uncertainty in element identity. The sharper or more concave the comparison

function, the closer EMD and its derivatives are to their respective binary set operations.

The point p is used to determine the cost of an unmatched element, which could

potentially vary if some point is considered more important than another. Practically,

119

thresholding a ground distance by some upper bound can be used to artificially induce

concavity and make comparisons more strict.

Another result that can be derived as a special case of EMI follows.

P roposition 5.5. I f there exists a function g : X —> R such that the ground distance

D(x, y) = g(x) + g(y), then EMIp = 0 and is trivially PD on F { X) for any choice of

P-

Proof. Let / (a, 6) be the maximum-cost maximum flow between sets A and

B with respect to K p defined using Lemma 2.4 with xq — p. Note that in this case,

K p(x, y) = 0. As a result, EMIP(A, B) = 0, which is trivially PD. □

If g(p) > 0 and we opt to use EMI' by discarding D(p,p) in (5.25), then

which is simply a scaled version of the min-kernel, which is known to be PD. We now

explore more complex scenarios.

5.3.2 Transportation on the Real Line

Consider the space of probability distributions on the real line R. Let D :

R x R —y Rq be a convex, non-negative symmetric function that takes the form

D(a, b) = h(a — b), where h : R —> Rq . If D is CND, then one can show that EMD

equipped with D is CND as well. A well known result [108] states that EMD between

two probability distributions P(R) with a ground distance such as D can be

written

(5.31)

(5.32)

120

where U_1 and V'-1 are the inverse cumulative distribution functions of u and v. In

essence, the z-th point in ascending order of one distribution maps to the z-th point of

the other. Since EMD in this form is clearly just the summation of CND functions,

then EMD must also be CND.

5.3.3 Transportation on the Circle

Transportation on the circle is similar to transportation on the real line. In

fact, one simply has to find an optimal point at which to cut the circle prior to treating

it like the real line. In this case, the geodesic distance (i.e. length of arc or angle) is

used to compare points. If the points x, y are linearly indexed on S 1, the circle with

radius 1, then

D(x , y) = min{|:r - y \ , 2 i r - \ x - y\} (5.33)

or equivalently

D(x ,y) = arccos cos(y) sin(y)
TN

(5.34)cos(x) sin(x)

which is provably CND by an infinite series expansion [60]. With the given ground

distance and probability distributions u,v € V (S 1), it can be shown that

r2n
EMD(u, v) = \\U — V — a ||! = / \U(s) - V(s) - a|ds, (5.35)Jo

where U and V are cumulative distribution functions and a is the weighted median of

U — V [29, 108]. Surprisingly, one can empirically show that for arbitrary u and v,

EMD is not CND on the circle despite its similarity to the line.

The reason that EMD is not CND on the circle is due to the use of the median in

(5.35). If we approximate the median with the mean (guaranteed by Jensen’s inequality

121

to be within 1 standard deviation [90]), then we obtain a CND approximation of EMD.

Note that substituting the mean in (5.35) yields

which is a sum of CND kernels. If the median can be expressed by a function h as

a = h(u) — h(v) (perhaps only for certain families of distributions), then EMD is

5.3.4 Transportation on the L 2 Hypersphere

Consider the class of ground distances of the form ft — K, where @ is a positive

constant and K is PD. This class of ground distances coincides with those implied

by CND EMDq since we may note that Pele and Werman’s EMDa is a special case

formulation of (5.26) that uses D(a,p) = «max{J9(a, b)} for every a, 6 € X . If a

point p can be found or created such that D(a,p) = /? for each a € X \ {p} and D

is CND, then by Lemma 2.4 we can conclude that D is of the form j3 — K (in this

case, /3 = 2a-max D(a, b) — D(p,p)). A characterization of kernels of this form is

given by Berg et al. [7]. However, if we add the condition that D satisfies identity

of indiscernibles, then a geometric interpretation of D is readily forthcoming. In

particular, the image <t>{X) from K's feature mapping lies on the hypersphere of radius

y/P in a Hilbert space centered on the point <p(p) — 0. This follows from the fact

that K(a,a) = 3 as a consequence of D(a,a) — 0. In other words, this subclass is

comprised of normalized kernels and embeds into squared L 2 on the hypersphere.

Ground distances of this form have already appeared in the literature. Rabin

et al. [108] considered geodesic distances on the circle and used them for color image

(5.36)

CND.

122

retrieval and color transfer between images. Zhang et al. [156] used a Euclidean ground

distance in a high-dimensional space to compare SIFT descriptors for object and

texture recognition in images. However, they normalized the vectors comprising each

set’s support, effectively restricting their computations to distance between points on

the hypersphere. This study provided empirical evidence that EMD tends to be CND

for this restricted case since no violations were found.

However, the result of Naor and Schechtman [100] states that EMD is indefinite

on the {0, l}2 C M2 grid with a Euclidean ground distance. We can thus conclude that

EMD is actually not CND for ground distances of the form f3 — K in general since one

can find a subspace of the hypersphere isometric to {0, l}2. Consequently, any ground

distance must necessarily not include subspaces isometric to {0, l}2 if there is any

hope for EMD to be CND. We do have one example, though, of a ground distance of

this form—the discrete metric—where EMD is CND, and we hypothesize that ground

distances close to discrete in form are also sufficient. More; formally, we hypothesize

that there exists e > 0 such that if K(x, x) = 1 for all x € X and K(x, y) < e for all

x / y, then EMI equipped with K is PD. We will now illustrate this notion with a

method that transforms a ground distance into a nearly discrete form in order to yield

CND EMD.

Under the following assumptions about the distribution of the sets under

consideration for use with EMD, we may use Proposition 5.3 to show that there

exists a transformed ground distance of the form ft — K that yields CND EMD. The

assumptions that we make are that the sets are discrete, the collection of sets is finite,

and that each pair of sets is disjoint. Note that these assumptions form sufficient but

123

not necessary conditions for the strategy that follows. We also assume that K strictly

satisfies (5.10) for different x , y but is not necessarily PD. One may then infer that

there exists a number no for which K ^ is PD for n > n0.

Let X\ , X2, . . . , X n €1 T (X) be subsets of X discretely supported with support

cardinalities Sj, i € [l,n]. Let K\ be the .sj x s7 kernel matrix computed between the

elements of X * and Xj, and let

F{ = arg max vec (Xf)T vec (/) (5.37)
/

be the x Sj maximum-cost maximum-flow matrix computed between X, and X ?,

where vec (M) is the vectorization of the matrix M made by concatenating columns.

Note that

E MI (XU Xj) = vec (K f Y vec (F /) . (5.38)

Let H\ be the Schur product of F] and Kf . Note that HI is diagonal for each i as a

consequence of (5.10). Additionally, H) = H f , and

= <5'39>
h=\ fc=l

By an application of the derived subsets kernel [123], we may deduce that EMI is

PD if the kernel matrix Gh , where the (i, j)-th block Gu(i , j) = H\ > PD, i.e. if

H : X* x X* -» M is a PD kernel, where X* = [£=l X4.

There are several ways one may proceed to obtain PD EMI. One may transform

K and either keep or recompute the flow. One may also transform H or EMI itself.

Since the sets are disjoint and K satisfies the conditions of Proposition 5.3, then H and

EMI satisfy the same conditions. By Proposition 5.3, repeated transformation of H or

124

EMI will eventually become PD. Transforming only K is slightly more complicated

to analyze, but one may note by similar reasoning used in the proof of Proposition 5.3

that Gh must eventually become PD since the off-diagonals converge to zero and the

diagonal will be constant after the first transformation. Note that we do not endorse

this transformation scheme for use with any ground distance, and we hypothesize that

it is most appropriate for ground distances that are already normalized, i.e. of the

form (3 — K . We do not test this idea in our experiments since the kernels that would

have been candidates for the approach turned out to be PD. An exploration of this

idea is beyond the scope of this dissertation.

5.4 Experiments

In this section we describe experiments with classification using SVMs (see Sec

tion 2.6) designed to demonstrate the utility of EMD as well as the utility of the definite

preserving transformation of Section 5.2 with respect to EMD. To our knowledge,

EMD has not been applied in a kernel setting and we therefore perform the first such

experiments. In particular, we evaluate the effect of choosing some different values

of p (the sink to which excess mass is transported in our generalization of Pele and

Werman’s EMD). For each of the EMD variants, we make use of Theorem 2.3 to

construct generalized RBF kernels of the form exp (—u D e m d) , where D ^ m d is an

EMD-based distance between sets. In order to avoid the overhead of tuning u via

cross-validation, we assign u to be the inverse of the average value of Demd on the

training set as suggested by Zhang et al. [156].

125

We also show that when using unnormalized sets, especially when the magnitude

of the mass has semantic significance relevant to classification, that EMD is superior

to EMD. Since we axe dealing with indefinite kernels, we evaluate the results in the

context of two techniques designed to address the nonconvex optimization encountered

in training SVMs with such kernels. The techniques mentioned axe eigenvalue shifting

of the kernel matrix and the Krein support vector machine (KSVM) recently proposed

by [87], Both methods were chosen for their relative simplicity of implementation

as well as the fact that test points (or associated kernel evaluations) do not need to

be modified. Where appropriate, these methods are balanced against SVMs trained

directly with the indefinite kernels.

Shift is a heuristic that involves shifting the eigenvalues of the kernel matrix

to be non-negative (e.g. by adding si to the kernel matrix, where s is the amount to

shift each eigenvalue and I is the identity matrix). Shifting causes the SVM training

problem to become convex, assuring a globally optimal solution. Wu et al. [154] show

that shifting adds a regularization term that penalizes the norm of the support vector

coefficients. Thus, simply choosing a very large s that guarantees PD-ness is not

necessarily beneficial as it may constrain possible solutions. The smallest possible s

(i.e. the magnitude of the least negative eigenvalue) is generally a good default choice.

Approximations for s that assure PD-ness without requiring an eigendecomposition of

the kernel matrix can be used. We did not make use of these approximations, however.

On the other hand, KSVM is formulated in the theory of Krein spaces

(generalizations of Hilbert spaces with indefinite inner products) and may be considered

a state of the art indefinite kernel technique. Our results certainly reflect its ability to

126

compensate for deficiencies in an indefinite kernel. However, KSVM is computationally

expensive, requiring an eigendecomposition of the entire precomputed kernel matrix

used for training. Therefore, Loosli et al. [87] also proposed KSVM-L, a more practical

alternative that uses partial decompositions.

For completeness, we briefly describe the KSVM algorithm. Given a kernel

matrix GK and label vector y containing ±1 for each respective positive or negative

instance, one must compute an eigendecomposition of Y G k Y , where Y — diag (y)

is an otherwise zero matrix with y on the diagonal. If U and D are the resulting

eigenvector and eigenvalue matrices satisfying UDUT — Y G ^ Y , then one trains

the SVM using a standard solver with the PD kernel matrix Gk — U S D W , where

S = sign (D) and sign (D) is the element-wise sign function of the matrix D that

yields 1 for each positive element, -1 for each negative, and 0 otherwise. Finally, one

transforms the resulting support vector coefficients a (not to be confused with a in

EMDa) to obtain support vector coefficients a = U S W a in the original indefinite

space. The solution is not sparse. One may note that KSVM is equivalent to flipping

each negative eigenvalue of the kernel matrix to be positive prior to transforming the

result. We also note that a one-versus-all scheme for multiclass SVMs can have a

distinct computational advantage over one-versus-one schemes since if y, is the label

vector treating the i-th class as positive and the remainder negative, Yi — diag (y;),

and V contains the eigenvectors of Gk, then t/* = YtV provides the eigenvectors

of YiGkYi. Consequently, only one eigendecomposition is required regardless of the

number of classes. We take advantage of this fact in our experiments; i.e. all results

are computed using one-versus-all binary SVMs.

127

5.4.1 D atasets

Each considered kernel—EMD with Rubner’s scaling, EMD, and its biotope

transformation EMDy,p (hereafter referred to as earth mover’s Jaccard distance

(EMJD))—was evaluated on four datasets: the texture database KTH-TIPS [55],

the object category database Caltech-101 [37], the handwritten character database

MNIST [74], and the motion capture hand posture dataset described in Section B.3.

The Euclidean distance served as the ground distance for each dataset except for

Caltech-101, for which it was squared.

The KTH-TIPS database consists of 10 texture classes under varying scale,

pose, and illumination with 81 instances per class. Images are standardized by resizing

to a horizontal resolution of 480 pixels while preserving aspect ratio. We adopted

much of the experimental design of Zhang et al. [156], constructing image signatures

from SIFT descriptors. The SIFT descriptor [88] computes an Ar-bin histogram of

image gradient orientations for an M x M grid of samples in the region of interest,

resulting in an M x M x N dimensional vector. We used the implementation of the

SIFT descriptor provided by Vedaldi and Fulkerson [135] with M = 4 and N = 8. The

resulting 128-dimensional vectors were scaled to have a Euclidean norm of 1 to reduce

the influence of illumination changes. The descriptors were then clustered using a

7-means algorithm (with k = 40). Each mean was weighted with the percentage of

descriptors assigned to it, and the means paired with these weights constituted the

so-called signature for a single image.

A very similar feature extraction procedure was conducted for the Caltech-101

dataset composed of color images of 101 categories (e.g. face, car, etc.) with varied

128

presentation. Instead of SIFT descriptors, the PHOW descriptor implemented by

Vedaldi and Fulkerson [135] was used to represent images. At a high level, the PHOW

descriptor is a dense SIFT extractor (the regions of interest are densely sampled in a

grid) that can operate on multiple color channels instead of just grayscale. However,

we simply used grayscale. Sets were normalized for both KTH-TIPS and Caltech-101.

The MNIST dataset comprises 28 x 28 grayscale images of handwritten digits

ranging from zero to nine. Noble’s version [102] of the Harris corner detector [54] was

used to identify keypoints in the image (implemention again provided by Vedaldi and

Fulkerson [135]). Images were smoothed with a Gaussian window with a variance of

1 prior to application of the Harris response function, which also used a Gaussian

window with a variance of one. Local maxima in the response were interpreted as

corners. The set of coordinates (scaled to lie between zero and one) of these detected

corners then constitute the features of the image with the expected number of corners

and their locations depending upon the digit. The number of detected corners typically

ranged from 5 to 15.

5.4.2 Design of Experiments

Each experiment on each dataset involves the choice of a different sink p to

which excess mass is sent. If the ground distance is thresholded and p lies beyond the

threshold for every point in the training and test sets, then one can use a flat rate

equal to the threshold as the cost of transporting excess mass. Therefore, we simply

use the threshold to identify different experiments. The thresholds that were used

are reported in the next subsection’s tables. One will note that the bottom row of

each table has no threshold (denoted by a dash), and in this case p was generally

chosen to be the origin with the exception of MNIST, where it was chosen to be the

center of an image, [0.5,0.5]T. In the case of KTH-TIPS and Caltech-101, choosing

the origin is not much different than choosing a threshold of 1 since every point lies

on the surface of a unit hypersphere. The advantage of flat thresholds lies in their

simplicity of implementation (the precise value of the optimal flow is irrelevant) as

well as the ability to use faster algorithms [106].

The following data selection schemes were repeated for each experiment

(threshold) with the exception that the selection of data for experiments with no

threshold matched that of the highest threshold in order to enable a direct comparison.

For KTH-TIPS (and Caltech-101), 40 (15) images from each class were randomly

drawn to be the training set with an equivalently drawn disjoint test set. This random

selection was repeated five times in order to obtain five training/test set pairs, the

results of which were averaged. For MNIST, 200 examples from each class were

randomly chosen and five-fold cross validation was computed for each experiment. For

the posture recognition dataset, special consideration was required due to the fact that

there is signficant correlation and even near duplication for samples corresponding

to a single user. Therefore, a leave-one-user-out approach was employed where each

of the 12 users served in turn as the test set. As a result, experiments measured the

generalization of the classifier to new users. The size of the dataset was reduced and

classes balanced by randomly selecting 75 examples per class per user.

5.4.3 Results and Discussion

For normalized sets contained in KTH-TIPS and Caltech-101 (Tables 5.1

and 5.2), there is no significant difference between the three kernels. In fact, EMD

and EMD are the exact same for any two normalized sets since the difference in mass

is zero.

Table 5.1: Accuracies for texture recognition on normalized sets with KTH-TIPS.
All kernels were found to be positive definite. Since sets are normalized, EMD is equal
to EMD.

Threshold EMD (EMD EMJD

0.5 71.45 70.95
± 6 .1 9 ± 6 .1 6

1 74.75 74.55
± 1 .0 0 ± 0 .6 5

\/2 70.70 70.85
± 7 .9 6 ± 8 .0 6

- 70.70 70.80
± 7 .9 6 ± 8 .0 7

Table 5.2: Accuracies for object category classification on normalized sets with
Caltech-101. All kernels were found to be positive definite. Since sets are normalized,
EMD is equal to EMD.

Threshold EMD/EMD EMJD

0.5 49.97 49.65
± 0 .9 0 ± 0 .8 0

1 48.77 48.84
± 0 .7 5 ±0 .8 1

2 48.57 48.71
± 1 .3 9 ± 1 .1 9

_ 48.57 48.55
± 1 .3 9 ± 1 .2 6

However, for unnormalized sets (Tables 5.3 and 5.4), EMD and EMJD are

noticeably better than EMD despite the indefinite kernel techniques. KSVM actually

improved EMD’s accuracy far beyond what was expected, nearly matching EMD’s

performance (and surpassing it on the highest thresholds for MNIST). However, this

state of the art indefinite kernel technique was still unable to bridge the difference in

131

all cases, and the results should be balanced by the more computationally practical

Shift, which was completely unable to compensate for EMD’s indefiniteness.

Table 5.3: Accuracies for handwritten character recognition on unnormalized sets
with the MNIST derived data.

Indefinite Shift KSVM
Threshold EMD EMD EMJD EMD EMD EMJD EMD EMD EMJD

0.25 34.30
± 5.45

67.80
± 1.36

78.20
±2.22

32.25
±2.36

79.90
± 1 .76

80.65
± 1 .97

75.30
±1.78

78.05
±1.56

79.50
± 1.99

0.5 28.10
± 4 .03

60.30
± 2 .77

73.90
±3.22

28.70
±1.22

78.80
± 1 .90

78.85
± 1 .7 4

75.30
±1.34

76.00
± 0 .98

76.90
±0 .84

1 32.70
± 3 .43

58.65
± 0.38

67.10
± i . n

29.10
±2 .37

77.70
± 2 .19

77.45
± 1 .93

72.15
±1.81

73.65
± 1 .62

74.85
±1.61

\/2 32.75
±2.71

59.90
± 0.72

65.45
±1.81

27.85
±1 .46

77.70
± 2 .03

77.75
± 1.85

76.05
± 2 .00

74.70
± 1 .23

74.65
±1 .72

- 32.75
±2.71

49.60
± 1.56

52.00
±2.05

27.85
±1 .46

75.30
± 1 .6 7

76.85
± 1 .93

76.05
± 2 .00

73.85
± i . i i

74.35
±1.01

Table 5.4: Accuracies for posture recognition on unnormalized sets.

Indefinite Shift KSVM
Threshold EMD EMD EMJD EMD EMD EMJD EMD EMD EMJD

25 37.20
±16.56

80.87
± 1 1 . 1 1

80.53
±10.53

53.31
±15.42

80.64
±11.15

80.53
±10.53

73.00
±13.76

80.67
±10.99

80.53
±10.53

50 38.96
±18.65

90.91
±12.03

90.96
±12.00

42.20
±17.87

91.13
±11.76

90.96
±12.00

87.98
±13.36

90.96
±12 .06

90.96
± 12.00

100 32.80
±20.22

95.02
± 6.37

94.44
±6.63

34.07
±16.94

95.00
±6 .40

94.44
± 6.63

92.93
±10.06

95.00
±6 .12

94.44
±6.63

150 28.96
±22.31

95.47
± 6.40

95.02
± 6 .60

30.69
±16.30

95.00
±6.77

95.02
±6 .60

91.82
±11.92

95.42
±6 .54

95.02
±6 .60

200 29.73
±18 .65

95.09
±6 .73

94.31
±7.17

30.89
±16.82

94.44
±7.20

94.24
± 7.22

92.22
±8 .43

94.60
±7 .22

94.27
±7 .23

- 29.73
±18.65

95.20
± 5.97

95.24
±6.07

30.89
±16.82

95.27
±5.69

95.09
± 6.15

92.22
±8 .43

95.60
±5.77

95.58
± 5.92

Our experiments on KTH-TIPS and Caltech-101 confirmed the report of Zhang

et al. [156] that the RBF kernel for EMD is PD with this data. However, computation

of EMI revealed an indefinite kernel matrix, which indicates that only a subset of

u < 0 from Theorem 2.3 is satisfied and that Zhang et aVs selection strategy for u

just happens to fall within this subset. The same behavior was observed for EMJD on

these two datasets. The ground distance’s support for posture recognition and MNIST,

132

on the other hand, does not consist of normalized vectors. For posture recognition,

we noticed that EMJD was more likely to yield a PD RBF using the aforementioned

selection strategy. For example, observe that the Shift and KSVM results are the

same as the indefinite results for certain thresholds, with lower threshelds apparently

increasing the likelihood of generating a PD kernel. Exploration on normalized

sets (not shown) with both MNIST and posture recognition made this effect more

pronounced.

Of special note is the fact that EMD and EMJD yield significant improvements

in accuracy even without applying any indefinite kernel technique. On the posture

recognition dataset in particular, the effective results are nearly indistinguishable from

Shift and KSVM. For the MNIST dataset, indefinite EMJD consistently outperformed

the other two kernels and rivaled Shift and KSVM at the lowest threshold. These

results indicate that EMD, EMJD, and perhaps the definite preserving transformation

in general have value on their own without additional indefinite kernel methods.

In general, one can observe that the threshold has a significant effect on the

quality of the classifier. The highest threshold for each dataset, which matches or

exceeds the diameter of the ground distance’s support, did not yield the best observed

results for any dataset. Lower thresholds tended to yield better results (up to a point).

As the threshold lowers, EMD becomes a closer approximation to the set symmetric

difference and thus more similar to the intersection kernel. As stated in Section 5.3.1,

thresholding can be interpreted as a means to induce concavity in the ground distance

and make it more similar to the discrete metric. This explains why the accuracy

drops off after a certain minimum threshold (as it becomes too similar to classical

133

intersection to associate slightly different elements) as well as its tendency to improve

prior to the drop off.

Our work raised some open questions. We do not know whether thresholding a

distance preserves CND properties as it does metric properties [106]. Our experiments

did not contradict the hypothesis. The choice of the optimal threshold is also open.

One could always tune the threshold via cross-validation, but we suspect that a decent

approximation to the optimal threshold would be to use the average or median distance

between all points. Using no threshold or choosing p to be closer than the threshold

is also an option to consider as the posture recognition experiments demonstrate.

One unexpected result was KSVM’s poor performance on MNIST relative to

Shift for EMD and EMJD. This result is at odds with the expectation that KSVM

should be at least as good as other indefinite kernel techniques, which is fairly well

justified in its introductory article [87]. We noted that the eigenspectrum of an MNIST

kernel matrix was much less concentrated than those for the other datasets. Whereas

performing a partial decomposition with the 50 highest magnitude eigenvalues was

typically sufficient to retain approximately 95% of the spectrum’s total magnitude on

the other datasets, as many as 1200 eigenvalues were required to achieve the same

preservation of the spectrum on MNIST. In fact, the results reported in Table 5.3

are from a complete eigendecomposition. Additional research may be required to

determine if this is a peculiarity unique to our treatment of MNIST or some weakness

of KSVM.

As a final addendum on EMD’s definiteness, we expect there to be many other

instances of PD kernels based either directly or indirectly of EMD. For example,

134

recalling Section 5.3.2, note that Kolouri et al. [71] use D(a,b) = (a — b)2 to show

that the sliced Wasserstein kernel, which is calculated between distributions in

via one-dimensional projections, is PD. Cuturi [24] on the other hand proposed

a regularized version of EMD via an additional entropic term that yields the PD

independence kernel when the entropic term’s effect is maximized. One may also

consider the following special case to reveal similarities to another min-like kernel, the

Brownian bridge product kernel [128],

K B(x,y) = min{x,y} - xy. (5.40)

Suppose the ground distance D is supported by two points p\ ,p2 £ K, and without

loss of generality assume pi = —p2 = 1. Assuming u, v 6 V({pi ,p2}), let Xu(Pi) = x

and Xv(Pi) = y so that Xu(P2) = 1 — x and XviPt) = 1 — y. Then for i € {1,2}, the

optimal flow /* satisfies

f*(Pi,Pi) = min{x„(Pi), Xv(Pi)}, (5.41)

f*(PuP2) + f*(P2,Pi) = 1 - f*{Pl,Pl) ~ /*(P2,P2). (5.42)

Choosing the sink p = 0 in (5.28), we can determine that
2

EMI0(u,v) = ^ f*{pi,Pj)PiP3 = 2(min{x, y} + min{l - x , l - y }) - I
i,j=1

= K B(x,y) + 2KB(l - x , l - y)

+ min{x,y} - x (l - y)

- y(l - x) + (I - x)(l - y),

which is clearly the sum of two Brownian bridge product kernels and a similarly

structured term.

CHAPTER 6

NEURAL NETWORK ARCHITECTURES
FOR GESTURE RECOGNITION

In this chapter we propose ANN architectures for posture and gesture recog

nition and evaluate them on the posture and gesture recognition datasets described

in Appendix B. As a prerequisite, we describe the steps taken to prepare the data for

processing by neural networks. In order to establish context, consider the diagram

in Figure 6.1.

Hand Position,
Orientation

Labeled
Markers

Gesture Class
Probabilities

Unlabeled
Markers Features

Rigid
Pattern Tracker

Neural NetworkVicon
DataStream SDK

Feature
Extraction

Figure 6.1: A high-level diagram of the overall architecture and flow of data from
the lowest accessible level (Vicon Datastream SDK) to the desired result (probabilities
for gesture classification).

Some effort should be made to ensure that the data provided to the neural

networks is consistent and relatively error free. Thus, a preprocessing layer is interjected

prior to the neural network that filters or otherwise transforms information provided

135

136

by the Vicon DataStream SDK. This figure shows that we separate the processing

of unlabeled markers and the four labeled markers that constitute the pattern on

the back of the hand (see Figure 1.2). The pattern’s markers, which may be noisy,

incorrect, or partially occluded, are filtered to produce more reliable estimates of the

hand’s position and orientation than what the Vicon DataStream SDK provides. As

in previous chapters, we use the pattern to establish a local coordinate system for the

hand. We also use the pattern to estimate the position and orientation of the hand,

which are expected to be important features for gesture recognition. The extraction

of features from unlabeled markers is not quite as straightforward and is intentionally

vague; in the figure. However, we; avail ourselves a resource; denied in prior e;hapters

by exploiting the context of temporally adjacent frames. We consider two general

approaches to extracting features from unlabeled markers. We either use the positions

directly by extracting marker identities, or we transform the unlabeled marker sets

with certain neural network architectures. After features are extracted from both

labeled and unlabeled markers, the application of an RNN is rather straightforward

for the considered data.

The chapter is organized as follows. In Section 6.1, we describe an EKF

(Section 2.5) for tracking an arbitrary rigid pattern. We follow this with a discussion on

feature extraction from unlabeled markers in Section 6.2 before describing experiments

to evaluate and compare the proposed architectures in Section 6.3 and their results.

For a review of neural networks, please refer to Section 2.7. A review of quaternions

(Section 2.1.2) and EKFs (Section 2.5.3) is also advised for the next section.

137

6.1 Tracking a Rigid Pattern

Recall the definition of a rigid pattern given in Section 1.1. In this subsection,

we define a filter to estimate the position and orientation of an arbitrary pattern.

Let us formally define a pattern to be a set of m functions M, : R —> R3, i <E [1, m],

representing marker positions whose pairwise Euclidean distances are constant over

time, i.e.

|| M i{ t) - M j {t)\\ = eij, (6.1)

where each is constant and t is time. In reality, some flexibility in the pattern is

expected but assumed to be negligible. We use a rigid pattern composed of m = 4

markers to determine the location and orientation of the hand. Sometimes the pattern

becomes partially or completely occluded, corrupted by noise, or misrepresented by a

completely incorrect measurement reported by Vicon. We therefore need a filter to

fill in these missing values as well as smooth the measurements. We choose to use an

EKF (Section 2.5.3). For the remainder of the section, assume that we are sampling

marker positions at a rate of t -1 H z in order to obtain measurement vectors

y k
T

(6 .2)M i{ k r y i i { k) M 2(k T y i2(k) . . . M m(kT)JIm(k)

where Ii(k) = I3 if the i-th pattern marker is visible at time kr and 0 otherwise.

The state used to represent the pattern should be comprised of a minimal set of

variables that represent the entire pattern’s dynamics (position, velocity, acceleration,

etc.). Let us select a marker Mj and assume that the vector-valued functions E ^ t) =

Mi(t) - i y j , are known for t = 0. Without loss of generality, assume j = 1,

let Ofc = Mi(kr) and = (0, En(kr)), and note via (2.13) that for each k > 0 there

138

exists a unit quaternion A*, such that

-<£' = A tv 'V (6.3)

In fact, A0 = (1,0). We can therefore conclude that a second order Taylor approxima

tion of the pattern’s dynamics can be represented by the state

xfc = (6.4)OkT OkT OfcT A*1 <j)k «fcT

where u>k and a k are the angular velocity and acceleration, respectively, each repre

sented as a vector whose direction is the axis of rotation and whose magnitude is the

angle in radians.

The associated transition function is nonlinear due to the rotation and is given

by

Xfc+1 = / (x fc, Ufc,Wfc)

Ofc + r O k + O k

O k + t O k

Ok

1 _2.

T " T

Ik ^ k

u k + r a . k

<*k

+ w*, (6.5)

where 7 fe = quat (7 J and 7 fc = TUk + W 2a k. The measurement function is also

nonlinear and is given by

y k = h(xk, v k)

h(k)Ok

h{k) Ofc + Im

Im(k) O k + Im

+ V(. (6.6)

139

The linearized transition and measurement matrices are thus given by

Ak =

I 3 r h l T% 0 0 0

0 I 3 r h 0 0 0

0 0 I 3 0 0 0

0 0 0 d \k
d^kXk &yk

9-yk aik
1 _2 d lkX)
2 37*

0 0 0 0 I 3 r h

0 0 0 0 0 I3

(6.7)

Hk =

h { k) 0 0 0 0 0

£) \ —■(*') \ w
I 2(k) 0 0 h { k) -*• 0 0

Im (k) 0 0 Im {k)

dXk

o \ kel ' \ k
d \ k 0 0

(6 .8)

The partial derivatives can be determined via substitution into the equations given

in Section 2.1.2. The measurement noise covariance R k is simply the identity matrix

scaled by a factor of, whereas the process noise covariance is based on discretized

white noise models [5] with the assumption of independence between translation and

rotation, which yields

Qn 0

0 Qn{k)

Q k (6 .9)

140

where

Qu —

t6/ 36 t5/12 t4j 6

f5/ 12 t4! 4 f3/2

i 4/ 6 t 3/ 2 t2

' h , (6 .10)

Q22(k) —

t3 d\k r
6 dXk 13

J
6 d\k 3

T

*2 t
T A3

*2tT 3 (6 .1 1)

tlz th

Afc is a vector with ||Afc|| € [0,2n) such that A* = quat (A*,),and o2a and a2 are the

freely chosen respective magnitudes of the translational and rotational covariance.

The measurement noise is not truly normal, although its exact form is unknown.

Depending on visibility, the quality of marker reconstruction, and the closed source

algorithm Vicon uses to label markers that belong to a pattern, occasionally a

completely incorrect measurement is reported. For example, four of the unlabeled

markers on the fingers may be erroneously labeled as part of or as the entire pattern.

Aside from the fact that these markers do not represent the pattern, Vicon also

overrides their positions to force them into the pattern’s shape. The second issue is

unavoidable if one uses Vicon for labeling. The first issue is addressed by rejecting

measurements that exceed some threshold distance from the EKF’s prediction. For

specific details of the threshold used in experiments, please refer to Section 6.3.2.

141

6.2 Feature Extraction from Unlabeled Marker Sets

If markers were labeled, then subsequent classification would be trivial. How

ever, if a sufficient percentage of labels are not correct, then we run the risk of

introducing errors that lower the quality of the classifier, which is especially true if

we interpolate or extrapolate data based on these labels. Therefore, establishing a

method that effectively uses the raw unlabeled marker positions could be superior.

Based on these guidelines, we consider two approaches to extracting a consistent set

of ordered features from unlabeled markers: extracting marker identities via tracking

with Kalman filters and unsupervised feature extraction via neural networks. Note

that this is not an exhaustive list of possible feature extractors, although we think

that these are among the most promising for practical purposes.

6.2.1 Labeling Markers with Kalman Filters

Labeled markers allow one to consistently order features for a neural network

or other classifier. We use 11 Kalman filters to track each unlabeled marker separately,

although there is no a priori label for each filter. Each Kalman filter is similar to

the rigid pattern tracker described in the previous section albeit with all orientation-

related variables removed. Global coordinates are used for each filter in order to

avoid propagation of transient or persistent errors in the pattern tracker. Measured

unlabeled marker positions are assigned to predicted positions based on a Euclidean

ground distance (see Section 2.4). Adaptive spherical gates centered on each prediction

are used to reject infeasible assignments. The radius of each gate varies between a

142

minimum of 40 mm and a maximum of 1000 mm, increasing or decreasing by a factor

of 1.2 whenever a measurement is not or is available.

The purpose of the Kalman filters is to consistently provide 11 markers per

frame regardless of the amount reported by Vicon. We must then decide which

a posteriori estimate corresponds to which part of the hand. We determine this

correspondence on a per-frame basis; labels are not assigned to the filters. We use

a feed-forward neural network with softmax output to approximate the probability

p (A | x) that a given position x generates a label A. Let A be the set of labels (e.g.

thumb tip, knuckle, etc.) and Xk the set of a posteriori estimates produced at time

k (expressed in local coordinates). Labels are assigned to estimates according to the

bijection T/>fe : A —> Xk possessing the maximum likelihood, i.e.

The neural network is trained beforehand using data captured in a controlled setting

and described in Section B.2. Obviously, the quality of the labeling depends on the

quality of the labeled marker set.

The described procedure for finger tracking and marker labeling is quite similar

to that proposed by Alexanderson et al. [2]. Whereas Alexanderson et al. use a more

elaborate configuration of Kalman filters based on multiple potential assignments

of labels, we use only a single assignment. We also use a neural network instead of

GMMs to provide label probabilities.

= arg max (6.12)

143

6.2.2 Architectures for Unlabeled, Unordered Markers

In this section we propose several architectures for handling unlabeled marker

sets and extracting a fixed-size output from them. Each architecture has different

advantages and disadvantages and may also be used directly for posture recognition.

We separate these architectures into two groups—fixed-size and variable-size—that

indicate the expected format of the input.

Fixed-Size Architectures

Using a fixed-size architecture enables the use of MLPs and certain CNNs.

Determination of an MLP is straightforward from Section 2.7.1 and thus does not bear

repeating. When considering CNNs, each coordinate x, y, z is treated as a channel

of a 1 x n “image,” where n depends on the dataset and is the maximum number of

markers observed at one time in a sample frame. Frames with fewer than n markers

are padded with zeros.

In general, fixed-size architectures are easier to implement and train in the

sense of requiring fewer epochs and regularization (especially CNNs). However, they

also possess serious disadvantages. Note that the second dimension on the input is

not 11 because the dataset may contain extraneous markers, which highlights one

of the primary issues with a fixed-size architecture. Namely, fixed-size architectures

cannot handle extraneous markers in a principled manner. If in practice more markers

appear in an example than the network can accept, then there is no way to classify the

example without additional heuristics. Since the entire purpose of these architectures

is to generally minimize the processing of raw data through external means, this

144

problem could be significant. A potentially troublesome related issue is the fact that

the network implicitly uses the number of missing markers as a feature since this

information is encoded in the number of padded zeros provided as input. The number

of missing markers may not be a reliable feature as it depends on the quality of

the camera calibration and physical configuration in addition to the hand’s posture.

Extraneous markers also inflate the number of markers visible.

Variable-Size Architectures

Variable-size architectures offer a principled manner to address both occluded

and extraneous markers. These architectures are designed to exploit only the

information explicitly contained within the markers that are visible.

The first and arguably simplest variable-size architecture we discuss is based

on deep averaging networks [63] for text classification. A deep averaging network

takes an arbitrary number h of word embeddings as input (i.e. words converted to

vectors through some mapping), averages the embeddings, and gives the average to a

feed-forward network. Whereas the embedding function is typically predetermined,

we propose to dynamically learn the embedding by representing it as a MLP (see Fig

ure 6.2). We refer to our version of this architecture as a convolutional deep averaging

network (CDAN) since it is equivalent to consider convolving a 3 x 1 filter with a 3 x h

image followed by a pooling operation over the entire horizontal axis. Even though

“averaging” is part of the name, we allow other pooling operations such as max. In

fact, max-pooling may be preferable as it introduces an additional nonlinearity. The

145

primary advantage of a CDAN is that it is invariant to permutations of the input

markers.

Pooling

MLP

Embedding
MLP

Embedding
MLP

Embedding
MLP

Figure 6.2: An illustration of a CDAN architecture for sets of 3D marker positions,
arbitrarily ordered. A function represented by an MLP is convolved with the positions
to produce a dynamically learned embedding in some potentially high-dimensional
space.

However, the lack of connectivity before the pooling layer also constrains the

ability of the network to learn. At the cost of giving up permutation invariance, we

consider each marker set as a time series wherein each marker represents an observation

at a certain time. RNNs provide a principled solution in this case. We consider two

types of bidirectional RNN [121], where bidirectional denotes that we have two RNNs

iterating over the input in opposite directions whose outputs are concatenated at each

timestep. In the first type, we consider a GRU whose outputs are pooled over the

entire time duration of the sequence prior to being given to an MLP. In essence, this

architecture is equivalent to a CDAN if we allowed recurrent connections between the

filters at each location (see Figure 6.3). For this reason, we refer to this architecture as

146

a recurrent deep averaging network (RDAN). The primary advantage of an RDAN over

a traditional RNN is that the pooling allows earlier timesteps to override later ones.

For example, an RDAN theoretically allows the detection of a relevant subsequence

followed by meaningless noise that may otherwise lead the network astray. The second

type of RNN is simply a GRU network, potentially multi-layer, that provides the

output at its final time-step to an MLP. Of course, successfully training these networks

to exploit their theoretical advantages is another matter.

t

Pooling

Embedding Embedding Embedding
MLP MLP MLP

, « k

X y 2 X y z • • • y

Figure 6.3: An illustration of a (unidirectional) RDAN architecture for sequences of
3D marker positions. Embeddings are no longer independent.

6.3 Evaluation

In this section we describe experiments used to evaluate neural networks for

both posture and gesture recognition. In the case of gesture recognition, we compare

feature extraction through labeling markers versus the features implicitly represented

by the output of one of the architectures described in the previous section. We use

147

Keras [18] with the Theano [132] backend to implement and test our neural network

architectures.

When using one of the proposed neural network architectures for unlabeled

marker sets, the following additional preprocessing is performed to normalize the

data. Unlabeled markers are lexicographically sorted according to perpendicular

distance to three hyperplanes defined by linearly independent normal vectors (in local

coordinates). In experiments, we simply use the basis vectors (1,0,0), (0,1,0), and

(0, 0,1). Consequently, in practice we effectively just sort by the ^-coordinate from left

to right since the probability of a tie is extremely low. Sorting minimizes the impact

of the originally unordered nature of the markers, although it is not guaranteed to sort

the markers in any consistent manner with respect to their latent labels. In addition,

we center the markers of each frame on their mean as a form of normalization and

optionally prepend the mean to the beginning of the sorted sequence. Prepending

the mean ensures that the input is not invariant to translation of the original marker

set, although it could potentially provide the networks a greater challenge during

training. Theoretically, centering the markers is unnecessary as a sufficiently sized

neural network should be able to learn the classification function without centering.

Indeed, given enough resources, the proposed architectures are theoretically all equally

capable. However, we found that centering yielded significant practical benefits.

6.3.1 Posture Recognition

For posture recognition, we considered the dataset described in Section B.3

and adopted the leavc-one-uscr-out approach as taken in previous chapters with 75

148

samples per class per user. We tried to make the different architectures comparable

by using similar amounts of regularization (see Section 2.7.4). In particular, we used

weight decay with A = 0.001, applied dropout to weights (not biases) at a 10% rate

when indicated, and added Gaussian noise with a standard deviation of 20 mm to the

input. All non-GRU layers used ReLU activations with the exception of a softmax

layer as the output of each network, which is appropriate for classification. For the

results reported in this section, the mean was not prepended to the centered marker

positions.

The fixed-size MLP contained two hidden layers with 36 and 128 nodes,

respectively. Dropout was applied to each. The fixed-size CNN used a 32 channel

network-in-network [81] layer (i.e. l x l filters) followed by a 32 channel 1 x 3 filter.

No pooling was applied. A dense hidden layer of 128 nodes followed convolution prior

to the softmax output layer.

For each of the recurrent variable-size architectures, we used two bidirectional

recurrent layers with 11 neurons each (and in each direction). The CDAN’s embedding

MLP possessed two layers with 11 neurons each. The MLPs to which these special

layers feed their output are also two layers with 11 nodes in the first layer and five

(the number of classes) in the second. Dropout was applied to all hidden layers, and

max instead of average pooling was used in the CDAN and RDAN.

Results for each user left out as well as the overall average accuracy are listed

in Table 6.1. The fixed size CNN achieves the best average performance, although

the RDAN and RNN are not significantly worse. We attribute the slightly inferior

performance of the recurrent architectures to the fact that they are in general harder

149

to train. The CDAN is significantly worse, however, which is due to the fact that it

possesses less representational capacity for a given number of neurons as well as the

fact that it is arguably harder to train. A CDAN is handicapped by the fact that

each marker is considered in isolation prior to pooling. However, CDANs still possess

potential as indicated by user 10. The MLP performs worse than the CNN, which is

expected given that a CNN is an MLP with built-in regularization.

Table 6.1: Accuracies for leave-one-user-out classification with the posture dataset.

User M LP CNN CDAN RDAN R N N
1 80.80 91.73 74.40 80.80 94.67
2 85.33 96.00 74.67 94.67 95.47
3 83.73 91.20 70.13 80.00 80.00
4 90.93 93.07 72.27 99.73 99.73
5 98.68 100.00 99.73 99.73 98.93
6 84.80 88.00 67.73 81.07 83.47
7 95.47 99.47 62.13 88.27 86.67
8 88.80 89.60 56.27 86.40 86.93
9 93.60 88.53 68.27 97.33 96.80
10 59.47 82.67 84.80 76.80 74.67
11 78.67 91.47 48.80 92.53 91.47
12 72.53 90.40 82.40 95.20 94.67

Average 84.40 91.84 71.80 89.38 90.29

We also experimented with training the variable-size architectures with fixed-

size input (shorter sequences padded with zeros), which as stated previously implicitly

encodes the number of missing markers as a feature. We found that there was no

significant difference between the resulting accuracies, and so we can conclude that

the majority of the information about a posture is contained in the markers that are

present. Given the general disadvantages of a fixed-size architecture and the fact that

there is no significant difference between the recurrent architectures and the fixed-size

150

CNN, we therefore recommend RDAN or RNN for classification tasks with unlabeled

markers.

6.3.2 Gesture Recognition

For gesture recognition, we considered the dataset described in Section B.4

and adopted the same leave-one-user-out approach as that taken with the posture

dataset. Every sample in the dataset was considered, and samples for each class

underrepresented for a particular user were randomly sampled with replacement from

within the user’s data so that classes were equally represented. Sequences (i.e. samples)

that were more than two standard deviations longer than the average sequence length

were pruned as outliers prior to balancing classes. We compare the supervised and

unsupervised feature extraction methods given in Section 6.2 to one another and find

the unsupervised extraction with neural networks to yield superior accuracy.

Let us first describe the remaining characteristics of the rigid pattern tracker

(Section 6.1), which affect the values of the features provided to the neural networks.

Values of of = 0.001, = 1000 were chosen for the process and measurement

noise magnitudes. The threshold used for rejecting measurements was based on

differences between the local coordinate system that would be established using the

algorithm in Figure B.l for the a priori estimate and the measurement. The maximum

distance between origins was set to be 40 mm, and the maximum angle between each

respective axis was set to be 2.5 radians. If 30 consecutive frames were rejected, then

the EKF was reinitialized with the latest measurement. In order to stop the EKF

from diverging in scenarios with extended lapses of visibility or rejections, missing and

151

rejected measurements were substituted with the prior a posteriori estimate. This

treatment stalled the estimated movement based upon the expectation that the user’s

hand was likely to reappear nearby.

Features extracted from the pattern tracker for each sample and timestep of a

gesture included the global positions of each of the labeled markers, which implicitly

encode both the position and orientation of the hand, as well as the global angular

velocity and acceleration vectors. With the exception of the quaternion encoding the

orientation, these features effectively are just the state of the EKF. We also extracted

the position of each marker, angular velocity, and acceleration relative to the local

coordinate system of the previous timestep. These relative features give a rotation

and translation invariant representation of the hand with respect to itself. Since the

dataset is relatively small and confined to a small space, we did not use the global

features in these experiments.

Features extracted from the unlabeled marker set at each timestep were

concatenated with the features from the pattern tracker and provided to an RNN

composed of two 100-neuron GRU layers followed by a non-recurrent six node softmax

layer replicated at each timestep. Weight decay with A = 0.001 was applied to each

layer. Only the RNN architecture for unlabeled feature extraction was considered as

an alternative to labeling with Kalman filters, and it shared the same structure as

the one used for postures except that the softmax function was stripped from the

network and it possessed 200 neurons per recurrent layer and 100 neurons for both

dense layers. Eleven neurons per layer was found to be insufficient given the much

more diverse range of postures implicit to the gesture data. Weight decay applied to

152

the internal RNN was increased to A = 0.01, but no Gaussian noise was added to the

input. Dropout of 10% was applied to all hidden layers. The mean was prepended

after centering the unlabeled markers. All markers, whether labeled via Kalman filters

or not, were transformed each timestep to local coordinates using the pattern tracker’s

state. The gesture recognition results for each left-out user can be found in Table 6.2,

where accuracy is determined by the classification of the final frame of each sequence.

Table 6.2: Accuracies for leave-one-user-out classification with the gesture dataset.

User Label E xtraction RN N
1 61.51 68.25
2 75.80 90.87
3 67.06 78.97
4 76.98 79.76
5 69.04 72.62
6 60.71 88.00
7 81.35 98.81
8 83.33 79.76
9 57.14 59.13
10 90.08 73.02
11 72.62 74.60
12 69.84 87.70

Average 72.12 78.54

We can clearly see that the unlabeled feature extraction yielded a superior

gesture classifier, which may seem counterintuitive; at first. However, the results

illustrate the problem with using supervised features that are not expertly crafted.

Our supervised features (the labeled marker positions) depend on the quality of the

labels, which are limited by both our method and our data. Ultimately, we conclude

that our labeling algorithm introduced errors or inconsistencies in the marker positions

and labels that were entirely avoided by the ANN-based extraction. We did not

employ the most sophisticated ensemble of Kalman filters possible for tracking the

markers. More importantly, however, labels were based on data collected from only

a single user. A need to collect this data for each of the original 12 users was not

identified until long after the possibility had vanished. This limitation also highlights

a weakness with a data-driven approach for extracting marker identities in that one

must collect data for each user, which may not be practical or desirable.

CHAPTER 7

CONCLUSIONS

In this dissertation, we studied means to achieve gesture recognition in a

motion capture environment. The Wasserstein distance and its derivatives (such as

EMD and the assignment problem) pervaded nearly every aspect of the dissertation,

underscoring the challenge induced by unlabeled motion capture markers. Various

methods to address the fundamental uncertainty in marker identity were proposed.

In Chapter 3, we explored different classifiers and feature transforms as effective ways

to represent and characterize the data. We expanded these results in Chapters 4

and 5. In Chapter 4, we proposed the AFEM algorithm as a means to estimate the

generative distribution of unlabeled, correlated point sets representing hand postures

and showed that it was superior to a traditional EM algorithm. In Chapter 5, we

proposed a generalization of EMD for kernels and explored scenarios under which EMD

could be guaranteed to yield PD kernels. We also proved that a certain normalizing

transformation was PD-preserving, described a family of transformed, normalized

kernels, and implied that the biotope transform preserved CND-ness. Most importantly

for our primary focus, we found that EMD-based SVMs yielded very accurate posture

classifiers. Finally, in Chapter 6, we shifted focus to deep learning with neural networks

154

155

where we proposed an EKF for tracking rigid patterns along with several architectures

for posture and gesture recognition with unlabeled markers.

7.1 Discussion

In Chapter 3, we demonstrated the performance of several classification

algorithms on a variety of data transformations of small unlabeled point sets for

3D hand posture recognition. We found each data transformation to have inherent

advantages and disadvantages. Aggregate features led to classification with reduced

deviation but limited peak performance. Raw feature classifiers tended to the extremes

in both overall error rate and deviation, likely due to their propensity for overfitting.

On the other hand, the training objectives also significantly affected performance,

as indicated by the results of the greedy GMMs. Grid transformed classifiers also

possessed the potential for overfitting, but were capable of achieving maximum accuracy

among the algorithms tested. In designing a classifier, one should strike; a balance;

between global (e.g. aggregate) and local (e.g. individual point coordinates) features.

We presented an EM algorithm in Chapter 4 for estimating the parameters of

a static distribution from which unlabeled point sets are presumed to be drawn. The

algorithm consists of using a Kalman filter in the expectation phase of an EM algorithm.

Modifications to the Kalman filter were proposed to handle intractable distributions

resulting from unknown point labels and improve the likelihood of the algorithm’s

output. The algorithm is versatile in that arbitrary probability distributions may

be assigned to the labels. Simulations found that AFEM had significant advantages

versus an EM algorithm without the Kalman filter.

156

In Chapter 5, we presented proof that PD kernels can be derived from EMD

and are dependent on the ground distance and the space in which it operates. We set

our discussions in the context of set theory, providing motivation for our derivations

and an intuitive interpretation of EMD’s value, namely as a generalization of otherwise

binary set operations. In doing so, we generalized EMD for kernels. We also proposed

a PD preserving transformation that normalizes a kernel’s values and showed that the

Jaccard index is simply the result of this transformation applied to the intersection

kernel. As a corollary, the biotope transform was shown to preserve CND as well as

metric properties. Finally, we provided the first assessment of EMD in a kernel setting

and showed that it and its biotope transform EMJD achieve superior accuracy over

EMD on experiments with unnormalized sets and a state of the art indefinite kernel

technique. Indeed, we showed that an indefinite kernel technique may not even be

necessary. EMJD was found to have more favorable numerical properties than EMD.

In Chapter 6, we proposed neural networks capable of recognizing gestures

represented by variable-length sequences of motion capture frames. We relied upon

the rigid pattern on the back of the glove (Figure 1.2) to establish a local coordinate

system in which our classifiers operated. Our proposed neural network architectures

were not quite as effective at posture recognition as the SVM considered in Chapter 5,

although they were much more computationally efficient . We also found that extracting

features from the raw unlabeled markers using appropriately structured ANNs was

more effective than a data-driven algorithm for sorting the markers by estimated labels.

Further refinement of the proposed architectures along with layer-by-layer training

157

as stacked denoising autoencoders [141] or with residual learning [56] may yield even

better results with raw unlabeled markers, especially for the CDAN architecture.

Ultimately, we found evidence that practical hand posture and gesture recogni

tion is possible with motion capture cameras and unlabeled markers. The primary

factors that control the feasibility and performance of a recognition system are the

number of cameras, their configuration, and the amount of training data. If there

are too few cameras or they are poorly placed, then the data used to train gesture

classifiers will be of poor quality and unlikely to be representative of data encountered

at a later time. Similarly, if not enough training data exists, then the generalization

error encountered in practice is likely to be large. Deep learning appears especially

promising as a potential solution, but these two factors will continue to play a major

role in any future work.

7.2 Future Work

A significant amount of potential future work exists. The following subsections

highlight areas of particular importance.

7.2.1 Enhanced Data Collection

Note that despite the variance in the accuracies reported in Tables 6.1 and 6.2,

we found that the generalization error was consistently low when no users were left

out. These results indicate that the challenge is not necessarily in the data but

in generalizing to new users. The simplest way to address this problem is with

the collection of more data, which is a characteristic common to machine learning

algorithms.

158

In general, the quality of results in this work was highly dependent on the

quality and amount of data that supported it. We collected data for a limited corpus

of postures and gestures from 12 users. The number of users and the size of the corpus

should be increased to assess the scalability of different algorithms and obtain more

positive results. A camera configuration that allows a wide range of motion during

capture should also be emphasized. A collection of (manually) labeled data would also

be very beneficial for developing and evaluating future marker labeling algorithms.

Some needs were not foreseen at the time of collection. For example, gestures

were captured as isolated segments of a stream of frames, and sequences of motion not

corresponding to any gesture were ignored. This type of data capture, though useful for

assessing whether a given classifier is capable of distinguishing gestures, is not entirely

appropriate for online processing of a stream that may contain multiple gestures. Future

data collection should aim to be compatible with so-called connectionist temporal

classification [48], wherein the streams need only be labeled with the sequence of

gestures they contain without any segmentation.

7.2.2 Constrained /c-Means

In Chapter 4, we noted that the AFEM algorithm implicitly defined a con

strained k-means algorithm. Future work could focus on clarifying this statement

by rigorously expressing a variant of AFEM as such and evaluating the resulting

algorithm against other constrained fc-means algorithms. AFEM is also constrained

by the requirement to know the number of targets beforehand. We believe this

requirement could be relaxed by adapting the method of Figucircdo and Jain [38]

159

for GMM estimation, which uses the minimum message length criterion [146] to

simultaneously estimate the number of components and their parameters. On a

related note, the outer loop of the AFEM algorithm can probably be removed by

shifting the covariance E and occlusion probability vector 7r directly into the state of

a Bayes filter or smoother.

7.2.3 Improved Online Marker Tracking and Labeling

The marker tracking method proposed in Section 6.2.1 is relatively simple and

largely dependent on heuristics. The method consists of a filtering phase followed

by a labeling phase. The AFEM algorithm of Chapter 4 suggests a more principled

method for filtering based on multiple assignments. Alternatively, a PHD filter [142]

could be used that avoids assignments in the filtering phase. The labeling phase

could be improved by employing one or more grid-based filters [4] that maintain the

discrete label probability distribution for each filter. Grid-based filters form the class

of closed-form Bayes filters for discrete processes just as Kalman filters form the class

of closed-form Bayes filters for linear Gaussian processes. The resulting method could

be compared against Alexanderson et al. [2], which could in fact probably benefit from

a similar application of a grid-based filter.

7.2.4 MCMC Algorithms for Weighted Permutations

The sequential match sampling algorithm used in Chapter 4 by Volkovs and

Zemel [144] has a temperature hyperparameter with no clear guidelines for its optimal

value. We also found that the algorithm could get stuck in low density areas for

highly skewed distributions and certain temperature ranges. Future work could involve

160

designing an improved sampler that avoids getting stuck or investigating efficient rules

or heuristics for choosing the temperature.

7.2.5 Posture and Gesture Recognition in Global Coordinates

Working in global coordinates tends to add a great deal of complexity as

classifiers may need to be translation or rotation invariant depending on the posture or

gesture. Establishing a local coordinate system for the hand based on a rigid pattern

was an expedient way to resolve this issue. However, this solution also imposes one

of the greatest limitations on our work as the failure to observe or correctly identify

the pattern renders many of the proposed methods inapplicable. We believe that

spatially sparse CNNs [46] or similar networks offer an elegant solution that allows us

to completely forgo any use of a rigid pattern or local coordinate system. In essence,

one may consider a high-resolution grid over the entire capture space represented by a

3D tensor whose elements record the presence or absence of markers at grid locations.

Exploiting sparse matrix representations [43] allows us to efficiently represent this

tensor in a manner that scales with the number of visible markers rather than the

grid’s resolution. Convolutional layers can be implemented to inherit this sparsity, and

pooling layers can eventually reduce the size of the grid to a fixed, manageable size

while feeding important features to deeper layers of the network. Convolutions are

also translation invariant and can be made rotation invariant given enough data and

the correct structure. A spatial representation via a grid also avoids the combinatorial

issues of ordering the markers in a list. In some ways, a spatially sparse grid can be

161

seen as a scalable, high-resolution descendant of the grid transformation proposed

in Chapter 3.

7.2.6 Marker Filtering and Labeling with Neural Networks

The role of neural networks can be expanded beyond just classification to

include marker filtering and labeling, especially with the spatially sparse represen

tation described in the previous subsection. A denoising autoencoder [141] can be

used to reconstruct missing markers or remove extraneous ones wherein a neural

network is trained to output an observed sequence of markers (or spatially sparse

grid representation of them) given a noisy version of the sequence. The denoising

autoencoder (or a different ANN) could also be trained to simultaneously output the

label or label probabilities of each marker assuming a dataset of labeled marker sets is

available.

7.2.7 Kernel M ethods for Gesture Recognition

Despite the shift to neural networks in Chapter 6, SVMs with EMD-based

kernels are still a promising route to accomplish gesture recognition. The fact that

labels (or the lack thereof) have no effect on their computation is a tremendous

advantage. Despite the high accuracy reported in Chapter 5, the practicality of

EMD-based kernels are limited by their computational complexity. However, with

the advent of computationally efficient approximations of EMD such as the sinkhorn

distance [24] and the convolutional Wasserstein distance [127], kernel methods may still

be competitive with deep learning. Aside from SVMs, these methods also include kernel

Kalman filters [109] and kernel principal component analysis (PCA) [96]. The former

162

can possibly be used as a label-free method to filter unlabeled markers whereas the

latter could be used to calculate a permutation invariant feature vector representation

of an unlabeled marker set. The kernel PCA representation could be used in myriad

ways including but not limited to input to a neural network. Further work more directly

related to the content of Chapter 5 could explore generalizations to set operations

involving more than two sets, analyzing connections to rough or fuzzy set theory, a

more in depth exploration of the proposed kernel transformation, further study on

the definiteness of EMD, and various applications including the use of EMJD in the

performance evaluation of multi-object filters.

7.2.8 A Kernel Trick for Optimal Transport

This final subsection on future work is more speculative than the previous

and focuses on answering the question of whether a heat kernel can be defined and

computed for CND ground distances. The motivation is to extend the convolutional

Wasserstein distance of Solomon et al. [127] to CND ground distances, thereby enabling

its application to a wider class of problems. We base our hypothesis on the facts that

CND kernels with finite dimensional feature maps are equivalent to high-dimensional

squared Euclidean distances and that the heat kernel for a flat finite-dimensional

Euclidean manifold is a function of the distance. These facts form a reasonable basis

to suggest that the convolutional Wasserstein distance can in fact be applied to certain

nonlinear, non-geometric domains. The confounding issue is the fact that many CND

kernels of interest correspond to infinite dimensional Hilbert spaces for which the

heat kernel may not exist [33]. Furthermore, actual computation of the convolutional

Wasserstein distance may not translate even if the kernel exists. The point cloud

Laplacian described by Crane [22] and Liu et al. [85] may or may not be sufficient.

Consequently, based on the author’s current knowledge, the difficulty in resolving this

problem ranges anywhere from trivial to impossible.

APPENDIX A

NOTATION

164

165

This appendix serves as a reference for the rest of the dissertation regarding

notation. Table A.l provides a list of defined mathematical notation, and Table A.2

provides a list of acronyms used in various chapters.

Table A .l: A list of symbols and notation used throughout the dissertation along
with definitions and short descriptions.

Notation Description
R, Z Real numbers, integers. R+ (resp. Z+) indicates positive numbers.
[a, b] The closed interval from a to b in R or Z as context indicates.

V A column vector.
VT The transpose of the matrix V.
Vi The z-th coordinate of the vector v.

V,j...A- The i j . .. Axth element (z-th row, j - th column, etc.) of the tensor V.
IMI The magnitude (2-norm) of the vector v. Equal to

The determinant of the matrix V.
tr [V] The trace of the matrix V.

sn The n x n matrix of the scalar s, e.g. 0„.
®nxm The n x m matrix of the scalar s, e.g. 0nxm.

S A tensor of scalars equal to s whose dimensions match the context.
In The n x n identity matrix.

Inxm An otherwise zero matrix containing Imin[n,m] in the upper left
corner.

I An identity matrix whose dimensions match the context.
V X u The cross product of the 3D vectors v and u.
[vxj The matrix V = [vxj that satisfies V u = v x u for any vector u.

Q A quaternion.
quat (v) The quaternion constructed from v according to (2.12).
Im (q) The imaginary vector component of the quaternion q.

vec (V) The vectorization of the matrix V formed by stacking its columns.
diag (v) A diagonal matrix with the elements of v on the diagonal.
V ® W The Kronecker tensor product of V and W.
w w The Hadamard product of V and W, i.e. element-wise

multiplication.
Ex [y] The expectation of Y taken with respect to the distribution of the

random variable X.
x The random variable X has distribution Y.
Ix(i') Indicator function of the set X. 1 if x e X, 0 otherwise.

supp (fi) The support of the measure p : X —> R, i.e. {.x | /z(x) > 0, x £ X}.

166

Table A .2: A list of acronyms and their expansions used throughout the dissertation.

Acronym Expansion
AFEM a fortiori expectation-maximization
ANN artificial neural network
BER balanced error rate
CDAN convolutional deep averaging network
CNN convolutional neural network
CND conditionally negative definite
CPD conditionally positive definite
CSV comma separated value
EKF extended Kalman filter
EM expectation-maximization
EMD earth mover’s distance
EMI earth mover’s intersection
EMJD earth mover’s Jaccard distance
FS feature selection
GMM Gaussian mixture model
GRU gated recurrent unit
JPDA joint probabilistic data association
JS Jensen-Shannon
KL Kullback-Leibler
KKT Karush-Kuhn-Tucker
fc-NN A-nearest neighbor
KSVM Krein support vector machine
MCMC Markov chain Monte Carlo
MLP multi-layer perceptron
ND negative definite
PCA principal component analysis
PD positive definite
PDE partial differential equation
PHD probability hypothesis density
RBF radial basis function
RDAN recurrent deep averaging network
ReLU rectified linear unit
RNN recurrent neural network
SVM support vector machine

APPENDIX B

DATASETS

167

168

This appendix describes the collection, features, and organization of datasets

gathered for this dissertation. In each case, the Vicon motion capture system described

in Section 1.2.1 was used to collected the data. Each dataset can be downloaded

separately as a zip archive of its described file format at h ttp ://w w w 2.latech.edu/

- jk an n o /co llab o ra tiv e .htm.

B .l General Remarks

A rigid pattern of markers on the back of the glove is used to establish a local

coordinate system for the hand, and 11 other markers are attached to the thumb

and fingers of the glove. Three markers are attached to the thumb with 1 above the

thumbnail and the other 2 on the interphalangeal and metacarpophalangeal joints (i.e.

the knuckles). Two markers are attached to each finger with 1 above the fingernail

and the other on the proximal interphalangeal joints (see Figure 1.2 for a detailed

view).

The pattern of markers visible in Figure 1.2 on the back of the glove plays

an important role in establishing a local coordinate system for posture and gesture

recognition. Four markers comprise the pattern and are given the labels “Origin,”

“XMarker,” “YMarker,” and “Extra.” Four is the minimum number of markers required

to define a pattern in Vicon Tracker, although only 3 must be visible in order for

the pattern to be detected. The axes of the local coordinate system are determined

according to the pseudocode in Figure B.l, which assumes that the origin is not

occluded and tries to recover if any of the other markers are not visible.

http://www2.latech.edu/

169

procedure getLocalCoordinateAxes
Given: Origin o, XMarker x, YMarker y, Extra e
Output: local x-axis x*, y-axis y*, 2-axis z*
if XMarker is not occluded & YMarker is not occluded then

X* = x — o
y* = y - o
z* = x* x y*

else if YMarker is not occluded then
y* = y - o
z* = (e — o) x y*
x* = y* x z*

else if XMarker is not occluded then
X* = x — o
z* = x* x (e — o)
y* = z* x x*

end if
X* = X * / | |x * | |

y* = y*/lly*ll
z* = z*/|[z* ||

Figure B .l: Pseudocode for calculating axes of the hand’s local coordinate system
using labeled markers.

B.2 Labeled Marker Dataset

This section describes the dataset of labeled markers and its associated file

format.

B.2.1 Data Collection and Description

In contrast to the posture and gesture datasets, a single user donated this

data. The purpose of this dataset is to provide the range of motion for each part of

the hand/glove to which a marker is attached. This dataset is naturally limited in

that it cannot apply to all potential users, but it may still serve as a basis for future

algorithm development.

170

In order to be absolutely certain that no confusion between markers was

possible, only a single unlabeled marker was attached to the glove at a time during

capture. The user performed a full range of motion with each marker.

The data described here is already preprocessed. First, all markers were

transformed to the local coordinate system of the record containing them using the axes

given by the algorithm in Figure B.l. Any record that could not be transformed was

dropped. Second, each transformed marker with a norm greater than 200 millimeters

was pruned. Finally, any record that contained more than one marker was dropped.

Figure B.2 provides a plot the processed data.

'200
• 150

Figure B.2: The labeled marker dataset after processing (i.e. in local coordinates).
Some outliers for certain classes are visible.

B .2.2 File Form at

Data is provided as a comma separated value (CSV) file. A header row provides

the name of each attribute. There are no missing values. Each record corresponds to

171

the position of a single labeled marker. The attributes are defined in the following list

and are enumerated by their names:

• ‘Class’: Integer. The class ID of the given record. Ranges from 1 to 11 with

1 Pinky Finger (Joint),

2 Pinky Finger (Nail),

3 i-» Ring Finger (Joint),

4 i-» Ring Finger (Nail),

5 1-4 Middle Finger (Joint),

6 h4 Middle Finger (Nail),

7 Pointer Finger (Joint),

8 1-4 Pointer Finger (Nail),

9 >-4 Thumb (Metacarpophalangeal Joint),

10 t-4 Thumb (Interphalangeal Joint),

11 Thumb (Nail).

• ‘X’: Float. The x-coordinate of the marker.

• ‘Y’: Float. The y-coordinate of the marker.

• ‘Z’: Float. The z-coordinate of the marker.

B.3 Posture Dataset

This section describes the posture dataset used throughout the dissertation

and its associated file format. Figure B.3 provides illustrations of instances within the

dataset.

172

• •

Figure B.3: The glove used to capture data along with a sample from each class of
posture projected onto the local X Y plane. The classes are fist (1), stop (2), point
with one finger (3), point with two fingers (4), and grab (5).

B.3.1 D ata Collection and D escription

We recorded 12 users performing five hand postures with markers attached to

a left-handed glove (Figure B.3).

The 11 markers not part of the rigid pattern were unlabeled; their positions

were not explicitly tracked. Consequently, there is no a priori correspondence between

the markers of two given records. In addition, due to the resolution of the capture

volume and self-occlusion due to the orientation and configuration of the hand and

fingers, many records have missing markers. Extraneous markers were also possible

due to artifacts in the Vicon software’s marker reconstruction/recording process and

other objects in the capture volume. As a result, the number of visible markers in a

record varies considerably.

The data described here is already partially preprocessed in the following

manner. The data was transformed and pruned in the same manner as the Labeled

Marker Dataset. Any record that could not be transformed or contained fewer than

three markers was removed. The processed data has at most 12 markers per record and

173

at least three, which implies that at least one record has an extraneous marker. See the

next subsection for more information on the attributes and file format. Unprocessed

data in global coordinate is also available, but is not used anywhere in the dissertation

and therefore an associated file format is not described.

Due to the manner in which data was captured, it is likely that for a given

record and user there exists a near duplicate record originating from the same user.

We recommend therefore to evaluate classification algorithms on a leave-one-user-out

basis wherein each user is iteratively left out from training and used as a test set. One

then tests the generalization of the algorithm to new users. The ‘User’ attribute is

provided to accommodate this strategy.

This dataset may be used for a variety of tasks, the most obvious of which is

posture recognition via classification. One may also attempt user identification. Alter

natively, one may perform clustering (constrained or unconstrained) to discover marker

distributions either as an attempt to predict marker identities or obtain statistical

descriptions/visualizations of the postures (for example, the content of Chapter 4).

B .3.2 File Format

Data is provided as a CSV file. A header row provides the name of each

attribute. An initial dummy record composed entirely of zeros should be ignored

(this record was included for compatibility with WEKA [52]). A question mark ‘?’ is

used to indicate a missing value. A record corresponds to a single instant or frame as

recorded by the camera system. Descriptions of each attribute are provided in the

following list organized by attribute name:

174

• ‘Class’: Integer. The class ID of the given record. Ranges from 1 to 5 with

1 Fist (with thumb out),

2 M- Stop (hand flat),

3 1-4 Point 1 (point with pointer finger),

4 h4 Point2 (point with pointer and middle fingers),

5 t-4 Grab (fingers curled as if to grab).

• ‘User’: Integer. The ID of the user that contributed the record. No meaning

other than as an identifier.

• ‘Xi’: Float. The x-coordinate of the z-th unlabeled marker position, ‘i’ ranges

from 0 to 11.

• ‘Yi’: Float. The y-coordinate of the z-th unlabeled marker position, ‘i’ ranges

from 0 to 11.

• ‘Zi’: Float. The z-coordinate of the z-th unlabeled marker position, ‘i’ ranges

from 0 to 11.

Each record is a set. The z-th marker of a given record does not necessarily

correspond to the z-th marker of a different record. One may randomly permute the

visible (i.e. not missing) markers of a given record without changing the set that the

record represents. For the sake of convenience, all visible markers of a given record

are given a lower index than any missing marker. A class is not guaranteed to have

even a single record with all markers visible.

175

B .4 G esture D ataset

This section describes the gesture dataset used in Chapter 6 and its associated

file format.

B.4.1 Data Collection and Description

The same 12 users of the posture dataset reprised their roles for this dataset.

Each user repeated each of six gestures for approximately 30 times.

Since the pattern is not always visible and has noisy or even incorrect obser

vations, a filter should be used to smooth the measurements of the labeled markers.

Since there are many ways one could define a filter for this purpose, no processing

has been performed on the data as it could bias subsequent results. As a result of no

pruning or local transformations, the number of unlabeled markers (i.e. not including

the pattern) can be as high as 16 due to artifacts of the capture. See Chapter 6 for an

example of an extended Kalman filter (Section 2.5.3) that simultaneously estimates

the position and orientation of the pattern.

There is less of an issue with duplicated gestures than with postures, but we

still advise evaluating the dataset with a leave-one-user-out approach. Once again, a

’User’ attribute is provided to accommodate this strategy.

B .4.2 File Format

Data is provided as a CSV file. Two header rows provide the name of each

attribute. The first header row indicates the attributes for an entire sequence of frames

that together constitute a single gesture. The beginning of a gesture is heralded by

the word “Start” at the beginning of the first header. The second header indicates

176

the attribute names for individual frames. An initial dummy sequence composed

entirely of zeros is provided immediately after the headers as an example and should

be ignored. Question marks are used to indicate missing values. Descriptions of each

attribute are provided in the following list organized by attribute name:

• ‘Class’: Integer. The class ID of the given record. Ranges from 1 to 6 with

1 h-4 Click (or poke with pointer finger),

2 i-4 SwipeLeft (casual backhand as if swiping away),

3 i-4 SwipeRight (opposite motion of SwipeLeft),

4 1-4 TurnGrab (same as grab, but with left-handed

rotation about forearm axis),

5 i—y Grab (hand closes with fingers outstretched),

6 i-4 Release (opposite motion of grab).

• ‘User’: Integer. The ID of the user that contributed the record. No meaning

other than as an identifier.

• ‘Origin-X’: Float. The x-coordinate of the origin marker of the rigid pattern.

• ‘Origin-Y’: Float. The y-coordinate of the origin marker of the rigid pattern.

• ‘Origin-Z’: Float. The z-coordinate of the origin marker of the rigid pattern.

• ‘XMarker-X’: Float. The x-coordinate of the X-axis marker of the rigid pattern.

• ‘XMarker-Y’: Float. The y-coordinate of the X-axis marker of the rigid pattern.

• ‘XMarker-Z’: Float. The z-coordinate of the X-axis marker of the rigid pattern.

• ‘YMarker-X’: Float. The x-coordinate of the Y-axis marker of the rigid pattern.

• ‘YMarker-Y’: Float. The y-coordinate of the Y-axis marker of the rigid pattern.

177

• ‘YMarker-Z’: Float. The z-coordinate of the Y-axis marker of the rigid pattern.

• ‘Extra-X’: Float. The x-coordinate of the extra marker of the rigid pattern.

• ‘Extra-Y’: Float. The y-coordinate of the extra marker of the rigid pattern.

• ‘Extra-Z’: Float. The z-coordinate of the extra marker of the rigid pattern.

• ‘Xi’: Float. The x-coordinate of the z-th unlabeled marker position, ‘i’ ranges

from 0 to 15.

• ‘Yi’: Float. The y-coordinate of the z-th unlabeled marker position, ‘i’ ranges

from 0 to 15.

• ‘Zi’: Float. The z-coordinate of the z-th unlabeled marker position, ‘i’ ranges

from 0 to 15.

Each record is a set in a sequence of sets. The z-th marker of a given record

does not necessarily correspond to the z-th marker of a different record. One may

randomly permute the visible (i.e. not missing) markers of a given record without

changing the set that the record represents. For the sake of convenience, all visible

markers of a given record are given a lower index than any missing marker. A class is

not guaranteed to have even a single record with all markers visible.

BIBLIOGRAPHY

[1] Vicon Datastream SDK developer’s manual, Jan. 2013.

[2] S. Alexanderson, C. O’Sullivan, and J. Beskow. Robust online motion capture
labeling of finger markers. In Proceedings of the 9th International Conference
on Motion in Games, MIG ’16, pages 7-13, New York, NY, USA, 2016. ACM.

[3] A. Aristidou and J. Lasenby. Motion capture with constrained inverse kinematics
for real-time hand tracking. In Proceedings of the fth International Symposium
on Communications, Control and Signal Processing, ISCCSP ’10, pages 1-5,
Mar. 2010.

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions
on Signal Processing, 50(2):174-188, Feb. 2002.

[5] Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li. Estimation with Applications to
Tracking and Navigation. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[6] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1-127, Jan. 2009.

[7] C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups:
Theory of Positive Definite and Related Functions, volume 100 of Graduate Texts
in Mathematics. Springer, 1st edition, Jun. 1984.

[8] P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239—256, Feb.
1992.

[9] M. K. Bhuyan, D. Ghosh, and P. K. Bora. Hand motion tracking and trajectory
matching for dynamic hand gesture recognition. Journal of Experimental and
Theoretical Artificial Intelligence, 18(4):435-447, 2006.

178

179

[10] M. Bouchard, A.-L. Jousselme, and P.-E. Dor. A proof for the positive
definiteness of the Jaccard index matrix. International Journal of Approximate
Reasoning, 54(5):615-626, 2013.

[11] S. Boughorbel, J.-P. Tarel, and N. Boujemaa. Generalized histogram intersection
kernel for image recognition. In Proceedings of the IEEE International Conference
on Image Processing, volume 3 of ICIP ’05, pages 161-164, Sept. 2005.

[12] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole, 9th edition,
2011 .

[13] C. J. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121-167, 1998.

[14] M. G. Ceruti, V. V. Dinh, N. X. Tran, H. Van Phan, L. T. Duffy, T. Ton,
G. Leonard, E. Medina, O. Amezcua, S. Fugate, G. J. Rogers, R. Luna, and
J. Ellen. Wireless communication glove apparatus for motion tracking, gesture
recognition, data transmission, and reception in extreme environments. In
Proceedings of the ACM Symposium on Applied Computing, SAC ’09, pages
172-176. ACM, 2009.

[15] L. Chang, N. Pollard, T. Mitchell, and E. Xing. Feature selection for grasp
recognition from optical markers. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS ’07, pages 2944-2950. IEEE,
Nov. 2007.

[16] M.-S. Chang and J.-H. Chou. A robust and friendly human-robot interface
system based on natural human gestures. International Journal o f Pattern
Recognition and Artificial Intelligence, 24(6):847-866, 2010.

[17] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm.
The American Statistician, 49(4):327—335, 1995.

[18] F. Chollet. Keras. h ttp s ://g ith u b .c o m /fc h o lle t/k e ra s , Nov. 2016. Version
1 .2 .2 .

[19] J. Chung, Q. Giilgehre, K. Cho, and Y. Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv:1412.3555, 2014.

https://github.com/fchollet/keras

180

[20] S. Cohen and L. Guibas. The earth mover’s distance under transformation
sets. In Proceedings of the 7th International Conference on Computer Vision,
volume 2 of IC C V ’99, pages 1076-1083, Washington, DC, USA, 1999. IEEE
Computer Society.

[21] T. F. Covoes, E. R. Hruschka, and J. Ghosh. A study of k-means-based
algorithms for constrained clustering. Intelligent Data Analysis, 17(3):485-505,
May 2013.

[22] K. Crane, C. Weischedel, and M. Wardetzky. Geodesics in heat: A new approach
to computing distance based on heat flow. ACM Transactions on Graphics,
32(5): 152:1—152:11, Oct. 2013.

[23] M. Cuturi. Permanents, transport polytopes and positive definite kernels on
histograms. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence, IJCAI ’07, pages 732-737, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

[24] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.
In Advances in Neural Information Processing Systems 26, NIPS ’13, pages
2292-2300, 2013.

[25] M. Cuturi and A. Doucet. Fast computation of Wasserstein barycenters. In
Proceedings of the 31st International Conference on Machine Learning, volume 32
of ICML ’14, pages 685-693. PMLR, Jun. 2014.

[26] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math
ematics of Control, Signals, and Systems (MCSS), 2(4):303-314, 1989.

[27] M. R. Daliri. Kernel earth mover’s distance for EEG classification. Clinical
EEG and Neuroscience, 44(3): 182-187, 2013.

[28] E. de Aguiar, C. Theobalt, and H.-P. Seidel. Automatic Learning of Articulated
Skeletons from 3D Marker Trajectories, pages 485-494. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.

[29] J. Delon, J. Salomon, and A. Sobolevski. Fast transport optimization for Monge
costs on the circle. SIAM Journal of Applied Mathematics, 70(7):2239-2258,
2010 .

181

[30] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B , 39(l):l-38, 1977.

[31] M. M. Deza and E. Deza. Encyclopedia of Distances. Springer, 1st edition, Aug.
2009.

[32] L. Dipietro, A. M. Sabatini, and P. Dario. A survey of glove-based systems and
their applications. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 38(4):461-482, Jul. 2008.

[33] B. K. Driver. Heat kernels measures and infinite dimensional analysis.
Contemporary Mathematics, 338:101-142, 2003.

[34] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the Association for Computinq Machinery,
19(2):248-264, 1972.

[35] G. A. Einicke, J. T. Malos, D. C. Reid, and D. W. Hainsworth. Riccati
equation and EM algorithm convergence for inertial navigation alignment. IEEE
Transactions on Signal Processing, 57(l):370-375, Jan. 2009.

[36] L. C. Evans. Partial differential equations and Monge-Kantorovich mass transfer.
In Current Developments in Mathematics, CDM 1997, pages 65-126, Boston,
MA, 1999. International Press.

[37] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4):594—611,
Apr. 2006.

[38] M. A. T. Figueiredo and A. K. Jain. Unsupervised learning of finite mixture
models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(3):381 396, Mar. 2002.

[39] T. Fortmann, Y. Bar-Shaiom, and M. Scheffe. Sonar tracking of multiple targets
using ioint probabilistic data association. IEEE Journal of Oceanic Enqineerinq,
8(3):173—184, Jul. 1983.

182

[40] B. Fuglede and F. Topsoe. Jensen-Shannon divergence and Hilbert space
embedding. In Proceedings of the International Symposium on Information
Theory, ISIT ’04, pages 31-36, 2004.

[41] W. Gangbo. An introduction to the mass transportation theory and its
applications. Gangbo’s notes from lectures given at the 2004 Summer Institute
at Carnegie Mellon University and at IMA in March 2005, Mar. 2005.

[42] L. Ge, H. Liang, J. Yuan, and D. Thalmann. Robust 3D hand pose estimation in
single depth images: From single-view CNN to multi-view CNNs. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’16, pages 3593-3601. IEEE Computer Society, Jun. 2016.

[43] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: Design
and implementation. SIAM Journal on Matrix Analysis and Applications,
13(1):333—356, 1992.

[44] I. Goodfellow, Y. Bengio, and A. Courvillc. Deep Learning. MIT Press, 2016.
h t tp ://www.deeplearningbook.org.

[45] J. C. Gower. A general coefficient of similarity and some of its properties.
Biometrics, 27(4):857-871, 1971.

[46] B. Graham. Spatially-sparse convolutional neural networks. arXiv:1409.6070,
Sept. 2014.

[47] K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with
sets of features. Journal of Machine Learning Research, 8:725-760, May 2007.

[48] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber. Connectionist
temporal classification: Labeling unsegmented sequence data with recurrent
neural networks. In 200, editor, Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, pages 369-376, New York, NY, USA, Jun.
2006. ACM.

[49] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, ICASSP ’13, pages 6645-6649.
IEEE, May 2013.

http://www.deeplearningbook.org

183

[50] I. Griva, S. Nash, and A. Sofer. Linear and Nonlinear Optimization. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA 19104, 2nd
edition, 2009.

[51] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157-1182, Mar. 2003.

[52] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The WEKA data mining software: An update. SIGKDD Explorer Newsletter,
11(1) :10—18, Nov. 2009.

[53] J. Han, L. Shao, D. Xu, and J. Shotton. Enhanced computer vision with Microsoft
Kinect sensor: A review. Cybernetics, IEEE Transactions on, 43(5): 1318-1334,
2013.

[54] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings
of Fourth Alvey Vision Conference, pages 147-151, 1988.

[55] E. Hayman, B. Caputo, M. Fritz, and J.-O. Eklundh. On the significance of
real-world conditions for material classification. In Proceedings of the European
Conference on Computer Vision, ECCV ’04, May 2004.

[56] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’16, pages 770-778. IEEE Computer Society, Jun.
2016.

[57] M. Hein and O. Bousquet. Hilbertian metrics and positive definite kernels on
probability measures. In Proceedings of the 10th International Conference on
Artificial Intelligence and Statistics, AISTATS ’05, pages 136-143, 2005.

[58] J. R. Hoffman and R,. P. S. Mahler. Multitarget miss distance via optimal
assignment. IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, 34(3):327-336, May 2004.

[59] R. V. Hogg, J. W. McKcan, and A. T. Craig. Introduction to Mathematical
Statistics. Pearson Education, Inc., 7th edition, 2013.

184

[60] P. Honeine and C. Richard. The angular kernel in machine learning for
hyperspectral data classification. In Proceedings of the 2nd Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing,
WHISPERS ’10, pages 1-4, Jun. 2010.

[61] M. F. Huber, T. Bailey, H. Durrant-Whyte, and U. D. Hanebeck. On entropy
approximation for Gaussian mixture random vectors. In Proceedings of the IEEE
International Conference on Multisensor Fusion and Integration for Intelligent
Systems, MFI ’08, pages 181-188, Aug. 2008.

[62] N. Igbida, J. Mazn, J. Rossi, and J. Toledo. A Monge-Kantorovich mass
transport problem for a discrete distance. Journal of Functional Analysis,
260(12):3494-3534, 2011.

[63] M. Iyyer, V. Manjunatha, J. L. Boyd-Graber, and H. Daum III. Deep unordered
composition rivals syntactic methods for text classification. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics, ACL
’15, pages 1681-1691. The Association for Computer Linguistics, 2015.

[64] A. K. Jain, J. Mao, and K. Mohiuddin. Artificial neural networks: A tutorial.
IEEE Computer, 29:31-44, 1996.

[65] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation
algorithm for the permanent of a matrix with nonnegative entries. Journal of
the ACM, 51(4):671-697, Jul. 2004.

[66] B. Jian and B. Vemuri. Robust point set registration using Gaussian mixture
models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(8): 1633-1645, Aug. 2011.

[67] R. E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASM E-Journal of Basic Engineering, 82(Series D):35-45,
1960.

[68] L. V. Kantorovich. On the translocation of masses. C. R. (Doklady) Acad. Sci.
USSR, 321:199-201, 1942.

[69] L. V. Kantorovich. On a problem of Monge. Uspekhi Matematicheskikh Nauk,
3(2):225-226, 1948.

185

[70] T, Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu. An efficient k-means clustering algorithm: Analysis and
implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7):881-892, 2002.

[71] S. Kolouri, Y. Zou, and G. K. Rohde. Sliced Wasserstein kernels for probability
distributions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’16. IEEE Computer Society, Jun. 2016.

[72] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, NIPS ’12, pages 1097-1105. Curran Associates, Inc., 2012.

[73] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521 (7553) :436-444,
May 2015.

[74] Y. Lecun and C. Cortes. The MNIST database of handwritten digits, 1998.

[75] Y.-H. Lee and C.-Y. Tsai. Taiwan sign language (TSL) recognition based on 3D
data and neural networks. Expert Systems with Applications, 36(2): 1123 1128,
2009.

[76] E. Levina and P. Bickel. The earth mover’s distance is the Mallows distance:
some insights from statistics. In Proceedings of the 8th IEEE International
Conference on Computer Vision, volume 2 of ICCV ’01, pages 251-256, 2001.

[77] F. L. Lewis, A. Yesildirak, and S. Jagannathan. Neural Network Control of
Robot Manipulators and Nonlinear Systems. Taylor & Francis, Inc., Bristol, PA,
USA, 1998.

[78] H. Liang, J. Wang, Q. Sun, Y.-J. Liu, J. Yuan, J. Luo, and Y. He. Barehanded
music: Real-time hand interaction for virtual piano. In Proceedings of the 20th
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’16,
pages 87-94, New York, NY, USA, 2016. ACM.

[79] F. Liese and I. Vajda. On divergences and informations in statistics and
information theory. IEEE Transactions on Information Theory, 52(10):4394-
4412, Oct. 2006.

186

[80] D. Lin and J. W. Fisher III. Efficient sampling from combinatorial space via
bridging. In N. D. Lawrence and M. A. Girolami, editors, Proceedings of the
15th International Conference on Artificial Intelligence and Statistics, volume 22
of AISTATS ’12, pages 694-702, La Palma, Canary Islands, 2012.

[81] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv:1312.4400, 2013.

[82] H. Ling and K. Okada. An efficient earth movers distance algorithm for robust
histogram comparison. IEEE Transactions on Pattern Analysis and Machine
Intelligence,, 29(5):840-853, May 2007.

[83] G. Liu and L. McMillan. Estimation of missing markers in human motion
capture. Vis. Comput., 22(9):721-728, Sept. 2006.

[84] G. Liu, J. Zhang, W. Wang, and L. McMillan. Human motion estimation from
a reduced marker set. In Proceedings of the 10th ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, I3D ’06, pages 35-42, New York, NY,
USA, 2006. ACM.

[85] Y. Liu, B. Prabhakaran, and X. Guo. Point-based manifold harmonics. IEEE
Transactions on Visualization and Computer Graphics, 18(10): 1693-1703, Oct.
2012 .

[86] C. F. Loan. The ubiquitous kronecker product. Journal of Computational and
Applied Mathematics, 123(12):85-100, 2000.

[87] G. Loosli, S. Canu, and C. S. Ong. Learning SVM in Krein spaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 38(6): 1204—1216,
Jun. 2016.

[88] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91—110, Nov. 2004.

[89] O. Luzanin and M. Plancak. Hand gesture recognition using low-budget data
glove and cluster-trained probabilistic neural network. Assembly Automation,
34(1):94-105, 2014.

[90] C. Mallows. Another comment on O’Cinneide. The American Statistician,
45(3):257, 1991.

187

[91] M. Martin, J. Maycock, F. P. Schmidt, and O. Kramer. Recognition of manual
actions using vector quantization and dynamic time warping. In Proceedings
of the 5th International Conference on Hybrid Artificial Intelligence Systems,
HAIS ’10, pages 221-228, Berlin, Heidelberg, 2010. Springer-Verlag.

[92] J. Maycock, J. Steffen, R. Haschke, and H. Ritter. Robust tracking of human
hand postures for robot teaching. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS ’11, pages 2947-2952. IEEE,
2011 .

[93] R. K. Mehra. Approaches to adaptive filtering. In Proceedings of the 9th IEEE
Symposium on Adaptive Processes: Decision and Control, pages 141-141, Dec.
1970.

[94] X.-L. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM
algorithm: A general framework. Biometrika, 80(2):267-278, 1993.

[95] J. Meyer, M. Kuderer, J. Muller, and W. Burgard. Online marker labeling for
fully automatic skeleton tracking in optical motion capture. In Proceedings of
the IEEE International Conference on Robotics and Automation, ICRA ’14,
pages 5652-5657. IEEE, May 2014.

[96] S. Mika, P. B. Scholkopf, A. J. Smola, K.-R. Muller, M. Scholz, and G. Ratsch.
Kernel PCA and dc-noising in feature spaces. In M. J. Kearns, S. A. Sofia, and
D. A. Cohn, editors, Advances in Neural Information Processing Systems 11,
NIPS ’99, pages 536-542. MIT Press, 1999.

[97] S. Mitra and T. Acharya. Gesture recognition: A survey. IEEE Transactions on
Systems, Man and Cybernetics Part C: Applications and Reviews, 37(3) :311—324,
2007.

[98] G. Monge. Memoire sur la theorie des deblais et des remblais. Histoire de
TAcademie Royale des Sciences, pages 666-704, 1781.

[99] K. G. Murty. Letter to the editor-an algorithm for ranking all the assignments
in order of increasing cost. Operations Research, 16(3):682-687, 1968.

[100] A. Naor and G. Schechtman. Planar earthmover is not in LI. SIAM Journal of
Computing, 37(3):804-826, 2007.

188

[101] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods.
Technical report, University of Toronto, Sept. 2003. Technical Report CRG-TR-
93-1.

[102] J. A. Noble. Finding corners. Image and Vision Computing Journal, pages
2-121, 1988.

[103] S. W. Nydick. The Wishart and inverse Wishart distributions. Electronic Journal
of Statistics, 6:1-19, 2012.

[104] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm.
Operations Research, 41(2):338-350, 1993.

[105] O. Pele and M. Werman. A linear time histogram metric for improved SIFT
matching. In Proceedings of the 10th European Conference on Computer Vision:
Part III, ECCV ’08, pages 495-508, Berlin, Heidelberg, 2008. Springer-Verlag.

[106] O. Pele and M. Werman. Fast and robust earth mover’s distances. In Proceedings
of the 12th IEEE International Conference on Computer Vision, ICCV ’09, pages
460-467, 2009.

[107] L. E. Potter, J. Araullo, and L. Carter. The Leap Motion Controller: A view
on sign language. In Proceedings of the 25th Australian Computer-Human
Interaction Conference: Augmentation, Application, Innovation, Collaboration,
OzCHI T3, pages 175-178, New York, NY, USA, 2013. ACM.

[108] J. Rabin, J. Delon, and Y. Gousseau. Transportation distances on the circle.
Journal of Mathematical Imaging and Vision, 41(1):147—167, 2011.

[109] L. Ralaivola and F. d’Alche Buc. Time series filtering, smoothing and learning
using the kernel Kalman filter. In Proceedings of the IEEE International Joint
Conference on Neural Networks, volume 3 of IJCNN ’05, pages 1449-1454. IEEE,
Jul. 2005.

[110] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical
informatics. Neural Networks, 18(8):1093-1110, 2005. Neural Networks and
Kernel Methods for Structured Domains.

[111] J. Ramon and M. Bruynooghe. A polynomial time computable metric between
point sets. Acta Informatica, 37(10):765-780, 2001.

189

[112] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66(336):846-850, 1971.

[113] B. Ristic, B.-N. Vo, D. Clark, and B.-T. Vo. A metric for performance evaluation
of multi-target tracking algorithms. IEEE Transactions on Signal Processing,
59(7):3452-3457, 2011.

[114] G. Roffo, S. Melzi, and M. Cristani. Infinite feature selection. In Proceedings of
the 15th IEEE International Conference on Computer Vision, ICCV ’15, pages
4202 4210. IEEE, Dec. 2015.

[115] D. B. Rubin. Inference and missing data. Biometrika, 63:581-590, 1976.

[116] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric
for image retrieval. International Journal of Computer Vision, 40:2000, 2000.

[117] E. Sangineto, G. Zen, E. Ricci, and N. Sebe. We are not all equal: Personalizing
models for facial expression analysis with transductive parameter transfer. In
Proceedings of the ACM International Conference on Multimedia, MM ’14, pages
357-366, New York, NY, USA, 2014. ACM.

[118] T. Schubert, A. Gkogkidis, T. Ball, and W. Burgard. Automatic initialization
for skeleton tracking in optical motion capture. In Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA ’15, pages 734-739.
IEEE, May 2015.

[119] D. Schuhmacher, B. T. Vo, and B. N. Vo. A consistent metric for performance
evaluation of multi-object filters. IEEE Transactions on Signal Processing,
56(8):3447-3457, Aug. 2008.

[120] J. Schur. Bemerkungen zur theorie der beschrnkten bilinearformen mit unendlich
vielen vernderlichen. Journal fr die reine und angewandte Mathematik, 140:1-28,
1911.

[121] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11) :2673—2681, Nov. 1997.

[122] G. A. F. Seber. Multivariate observations. Wiley series in probability and
mathematical statistics. Wiley, New York, NY, 1984.

190

[123] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, New York, NY, USA, 2004.

[124] J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding
to a change in one element of a given matrix. The Annals of Mathematical
Statistics, 21(1): 124-127, 1950.

[125] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, E. Moore,
A. Kipman, and A. Blake. Real-time human pose recognition in parts from
single depth images. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, CVPR ’11, pages 1297-1304. IEEE Computer Society,
20 1 1 .

[126] A. J. Smola and S. Vishwanathan. Introduction to Machine Learning. Cambridge
University Press, 2008.

[127] J. Solomon, F. de Goes, G. Peyre, M. Cuturi, A. Butscher, A. Nguyen, T. Du, and
L. Guibas. Convolutional Wasserstein distances: Efficient optimal transportation
on geometric domains. ACM Transactions on Graphics, 34(4):66:1—66:11, Jul.
2015.

[128] G. Song, H. Zhang, and F. J. Hickernell. Reproducing kernel Banach spaces
with the 11 norm. Applied and Computational Harmonic Analysis, 34(1):96—116,
2013.

[129] Y. Song, D. Demirdjian, and R. Davis. Continuous body and hand gesture
recognition for natural human-eomputer interaction. ACM Transactions on
Interactive Intelligent Systems, 2(1):5:1—5:28, Mar. 2012.

[130] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929-1958, 2014.

[131] T. Tao. An Introduction to Measure Theory. Graduate studies in mathematics.
American Mathematical Society, 2011.

[132] Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv:1605.02688, abs/1605.02688, May 2016.
Version 0.8.2.

191

[133] N. Trawny and S. I. Roumeliotis. Indirect Kalman filter for 3D attitude
estimation. Technical report, University of Minnesota, Department of Computer
Science & Engineering, Mar. 2005. Technical Report-2005-002.

[134] S. R. S. Varadhan. On the behavior of the fundamental solution of the heat
equation with variable coefficients. Communications on Pure and Applied
Mathematics, 20(2):431-455, 1967.

[135] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer
vision algorithms, h ttp ://w w w .v lfea t.o rg /, 2008.

[136] J. J. Verbeek, N. Vlassis, and B. Krse. Efficient greedy learning of Gaussian
mixture models. Neural Computation, 15:469-485, 2003.

[137] R. Verde, A. Irpino, and A. Balzanella. Dimension reduction techniques for
distributional symbolic data. IEEE Transactions on Cybernetics, 46(2):344-355,
Feb. 2016.

[138] A. Vershik. Long history of the Monge-Kantorovich transportation problem.
The Mathematical Intelligencer, 35(4): 1-9, 2013.

[139] C. Villani. Topics in optimal transportation. Graduate studies in mathematics.
American Mathematical Society, cop., Providence, RI, USA, 2003.

[140] C. Villani. Optimal transport: old and new. Grundlehren der mathematischen
Wissenschaften. Springer, Berlin, 2009.

[141] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion. Journal of Machine Learning Research, 11:3371-3408,
Dec. 2010.

[142] B. N. Vo and W. K. Ma. The Gaussian mixture probability hypothesis density
filter. IEEE Transactions on Signal Processing, 54(11):4091-4104, Nov. 2006.

[143] B. T. Vo and B. N. Vo. Labeled random finite sets and multi-object conjugate
priors. IEEE Transactions on Signal Processing, 61(13):3460-3475, Jul. 2013.

http://www.vlfeat.org/

192

[144] M. N. Volkovs and R. S. Zemel. Efficient sampling for bipartite matching
problems. In Advances in Neural Information Processing Systems 25, NIPS ’12,
pages 1313-1321. Curran Associates Inc., 2012.

[145] J. P. Wachs, M. Kolsch, H. Stern, and Y. Edan. Vision-based hand-gesture
applications. Communications of the ACM, 54(2):60-71, 2011.

[146] C. S. Wallace and D. L. Dowe. Minimum message length and Kolmogorov
complexity. The Computer Journal, 42(4):270, 1999.

[147] E. A. Wan and R. V. D. Merwe. The unscented Kalman filter for nonlinear
estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal
Processing, Communications, and Control Symposium (Cat. No.OOEXSIS). pages
153-158, 2000.

[148] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of
neural networks using dropconnect. In S. Dasgupta and D. Mcallester, editors,
Proceedings of the 30th International Conference on Machine Learning, volume 28
of ICML ’13, pages 1058-1066. PMLR, May 2013.

[149] R. Wang, S. Paris, and J. Popovic. 6D hands: Markerless hand-tracking for
computer aided design. In Proceedings of the 2fth Annual ACM Symposium on
User Interface Software and Technology, UIST ’11, pages 549-558, New York,
NY, USA, 2011. ACM.

[150] J. Weissmann and R. Salomon. Gesture recognition for virtual reality applications
using data gloves and neural networks. In Proceedings of the International Joint
Conference on Neural Networks, volume 3 of IJCNN ’99, pages 2043-2046, Jul.
1999.

[151] G. Welch and G. Bishop. An introduction to the Kalman filter. Technical report,
University of North Carolina, Chapel Hill, NC, USA, 1995. Technical Report
95-041.

[152] N. Wheatland, Y. Wang, H. Song, M. Neff, V. Zordan, and S. Jdrg. State of
the art in hand and finger modeling and animation. Computer Graphics Forum,
34(2):735-760, May 2015.

[153] M. A. Woodbury. Inverting Modified Matrices. Number 42 in Statistical Research
Group Memorandum Reports. Princeton University, Princeton, NJ, 1950.

193

[154] G. Wu, E. Y. Chang, and Z. Zhang. An analysis of transformation on non
positive semidefinite similarity matrix for kernel machines. In Proceedings of
the 22nd International Conference on Machine Learning, volume 8 of ICML ’05.
ACM, Aug. 2005.

[155] A. Zamolotskikh and P. Cunningham. An assessment of alternative strategies
for constructing EMD-based kernel functions for use in an SVM for image
classification. In Proceedings of the 5th International Workshop on Content-
Based Multimedia Indexing, CBMI ’07, pages 11-17, Jun. 2007.

[156] J. Zhang, M. Marszaek, S. Lazebnik, and C. Schmid. Local features and
kernels for classification of texture and object categories: A comprehensive study.
International Journal of Computer Vision, 73(2) :213—238, 2007.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Summer 2017

	Motion-capture-based hand gesture recognition for computing and control
	Andrew Gardner
	Recommended Citation

	00001.tif

