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ABSTRACT

This dissertation focuses on the study and development of algorithms that 

enable the analysis and recognition of hand gestures in a motion capture environment. 

Central to this work is the study of unlabeled point sets in a more abstract sense. 

Evaluations of proposed methods focus on examining their generalization to users not 

encountered during system training.

In an initial exploratory study, we compare various classification algorithms 

based upon multiple interpretations and feature transformations of point sets, including 

those based upon aggregate features (e.g. mean) and a pseudo-rasterization of the 

capture space. We find aggregate feature classifiers to be balanced across multiple 

users but relatively limited in maximum achievable accuracy. Certain classifiers based 

upon the pseudo-rasterization performed best among tested classification algorithms. 

We follow this study with targeted examinations of certain subproblems.

For the first subproblem, we introduce the a fortiori expectation-maximization 

(AFEM) algorithm for computing the parameters of a distribution from which un

labeled, correlated point sets are presumed to be generated. Each unlabeled point 

is assumed to correspond to a target with independent probability of appearance 

but correlated positions. We propose replacing the expectation phase of the algo

rithm with a Kalman filter modified within a Bayesian framework to account for the 

unknown point labels which manifest as uncertain measurement matrices. We also



propose a mechanism to reorder the measurements in order to improve parameter 

estimates. In addition, we use a state-of-the-art Markov chain Monte Carlo sampler 

to efficiently sample measurement matrices. In the process, we indirectly propose a 

constrained /c-means clustering algorithm. Simulations verify the utility of AFEM 

against a traditional expectation-maximization algorithm in a variety of scenarios.

In the second subproblem, we consider the application of positive definite 

kernels and the earth mover’s distance (EMD) to our work. Positive definite kernels 

are an important tool in machine learning that enable efficient solutions to otherwise 

difficult or intractable problems by implicitly linearizing the problem geometry. We 

develop a set-theoretic interpretation of EMD and propose earth mover’s intersection 

(EMI), a positive definite analog to EMD. We offer proof of EMD’s negative definiteness 

and provide necessary and sufficient conditions for EMD to be conditionally negative 

definite, including approximations that guarantee negative definiteness. In particular, 

we show that EMD is related to various min-like kernels. We also present a positive 

definite preserving transformation that can be applied to any kernel and can be used 

to derive positive definite EMD-based kernels, and we show that the Jaccard index 

is simply the result of this transformation applied to set intersection. Finally, we 

evaluate kernels based on EMI and the proposed transformation versus EMD in various 

computer vision tasks and show that EMD is generally inferior even with indefinite 

kernel techniques.

Finally, we apply deep learning to our problem. We propose neural network 

architectures for hand posture and gesture recognition from unlabeled marker sets in 

a coordinate system local to the hand. As a means of ensuring data integrity, we also
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propose an extended Kalman filter for tracking the rigid pattern of markers on which 

the local coordinate system is based. We consider fixed- and variable-size architectures 

including convolutional and recurrent neural networks that accept unlabeled marker 

input. We also consider a data-driven approach to labeling markers with a neural 

network and a collection of Kalman filters. Experimental evaluations with posture and 

gesture datasets show promising results for the proposed architectures with unlabeled 

markers, which outperform the alternative data-driven labeling method.
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CHAPTER 1

INTRODUCTION

The motivating subject of this dissertation is the development of an interactive 

hand posture and gesture recognition system for various computing and control 

environments. The primary objective of the contained research is to develop and 

explore methods and algorithms for robust and efficient hand gesture recognition for 

computing and control, with applications including but not limited to virtual reality, 

home automation, and robotics control. Examples include pointing to direct a robot 

to its destination, directly controlling a drone’s pitch or yaw with a mimicked joystick 

gesture, or interpreting hand signals for commands or authentication. Accomplishing 

these tasks requires the accurate recognition of a user’s posture, motion, and intent. 

Recognition of intent, however, is not within the scope of this project. The project is 

especially focused on characterizing the physical aspects of the gestures irrespective 

of context or semantics, which may change with the application. Effectively, the 

research focuses on developing an application independent software layer for gesture 

recognition. Vicon motion capture cameras act as a source of data, providing precise 

3D coordinates of keypoints (infrared markers) on the user’s hand.

Seeking alternative problems beyond gesture recognition to which developed 

algorithms or perceived insights can be applied is the chief secondary objective. The

1



development of algorithms and theory related to gesture recognition, computer vision, 

and various other and potentially unforeseen areas is emphasized. Multi-target tracking, 

optimal transport, and the design of neural network architectures are included in the 

list of related problems. As such, algorithms and methods proposed in the dissertation 

for gesture recognition are usually tailored for transference to other domains.

1.1 An Overview of Hand Gesture Recognition

Gesture recognition, as a means of human-computer interaction, provides 

an intuitive and effective interface for user control, offering the ability to perform 

complicated tasks with minimal effort. The success of smartphones and tablets with 

touchscreens supports this hypothesis. A significant amount of research involving 

gestures has been performed in the past two decades with many methods and solutions 

offered [97, 145]. Hand gesture recognition is an especially appealing branch of the 

gesture recognition field because it can offer a more tantalizing avenue for the average 

end-user, even if only for the visceral thrill of execution. However, there is no current 

camera-based system that can demonstrate robust and precise finger-based gesture 

recognition (or even tracking) in a sizable 3D space [152] (although significant strides 

in finger tracking have been made recently [2]).

We separate our recognition targets into two categories: postures and gestures. 

A posture, or static gesture, is one in which the hand makes a certain pose, such as 

holding a closed fist, whereas a (dynamic) gesture involves motion of the hand, arm, 

or fingers, such as pointing or waving. Examples of each abound in the literature. Ge 

et al. [42] project depth images of a hand onto orthogonal planes and use convolutional



neural networks (see Section 2.7.3) to estimate the hand’s 3D pose. Bhuyan et al. [9] 

use a finite state machine with fuzzy logic to segment continuous gestures from video 

streams and present an integrated system for recognition of various postures and 

gestures. Hand gesture recognition is inherently interactive, providing a wide range of 

applications including virtual reality and games [78, 125], robot control [16, 92], and 

interactive sign language [75].

There are many different methods by which hand features can be measured. 

Gloves are sometimes used [32]. Ceruti et al. [14] use wireless magnetic sensors 

embedded in a glove to detect finger motion and interpret a Braille-like binary code 

for communication. Luzanin and Plancak [89] and Weissmann and Salomon [150] each 

use neural networks and data gloves to classify a variety of postures. Vision-based 

approaches [129] are of particular interest as they do not require any peripheral 

accessories other than the camera or equivalent sensing device. The Microsoft 

Kinect [53] and Leap Motion Controller [107] are both commercially available and 

affordable. The Kinect employs an HGB-D (color plus depth) camera for full body 

tracking, whereas the Leap Motion uses only a depth camera to track the hands. Both 

devices operate in a limited field of view, although of the two the Kinect is larger. 

However, the Kinect is generally focused on full-body gestures and lacks the precision 

to model individual fingers at a significant distance [53, 125]. In particular, the Kinect 

only differentiates between a closed and open hand using the commercial software. 

The Leap Motion Controller offers a peripheral-free interaction system in a limited 3D 

space, but its detection currently suffers from some notable limitations. The controller 

primarily detects extended fingers, and thus, like the Kinect, requires the hand to be
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held at a certain angle with respect to the sensor. In fact, the Leap Motion Controller 

is incapable of recognizing a fist, and touching or crossing fingers can lead to spurious 

approximations of the hand’s pose [107]. Developers are responsible for detecting 

certain gestures or postures, such as a fist, thus yielding inconsistent performance 

across applications and platforms. Wang et al. [149] offer an alternative vision-based 

approach that is capable of detecting a limited class of pinching gestures for 3D CAD 

applications.

Posture recognition is an integral component of gesture recognition. The level 

of detail with which the hand is probed affects the expressiveness and variety of 

recognizable gestures. A system should generally ensure that the user’s hand is not 

relaxed and is making the correct shape before positively interpreting the motion, 

assuming that the gesture is not defined solely by the motion or trajectory (such as a 

figure-eight). A system such as Vicon enables the greatest range of dynamic expression 

in a gesture by tracking the articulatiozi of individual fingers.

The usage of Vicon motion capture cameras is similar to but fundamentally 

distinct from both depth-based methods and vision-based approaches, which we define 

to be detection methods based on the visible spectrum of light. Motion capture 

cameras instead observe infrared (i.e. not visible) light reflected by markers placed at 

preselected locations on the subject of interest. A noteworthy advantage of motion 

capture is the low-volume and sparsity of the data. A significant amount of noise that 

can be introduced by the environment is automatically filtered. Only the coordinates 

of the markers, inferred by triangulation, are reported for each frame measured. Aside 

from the exceptionally high costs for the hardware and software involved and the
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careful camera calibration required to make practical use of the system, motion capture 

also comes with another major disadvantage encountered repeatedly throughout this 

research: marker identity is not known except under very limited circumstances.

Marker identity is generally known (or equivalently, markers are labeled) only 

when part of a rigid pattern or predefined skeleton. A rigid pattern is a configuration 

of markers such that if each marker is connected by an inflexible rod, then the angle 

between each pair of rods is constant. Consequently, the rod lengths are also fixed. 

A skeleton differs from a rigid pattern in that certain rods and angles are explicitly 

defined whereas others are free to change. Marker identities are often determined by 

having the subject strike a pose (such as a “T”-pose for a full body skeleton) in order 

to label markers, after which joint angles and other parameters of the skeleton are 

determined via inverse kinematics [3] or some other, perhaps probabilistic, method [95]. 

Automatic skeleton learning [28] and tracking [118] are also possible under certain 

conditions. In many cases, though, marker trajectories need to be manually labeled in 

a post-processing step, and not all of these methods operate in real-time.

The term skeleton is not a misnomer; predefined skeletons often correspond 

to major bone and joint segments in the human body. Motion capture cameras are 

commonly used to model and record human motion for animation in movies and 

video games. The use of motion capture cameras for hand gesture recognition is 

also well-established. Chang et al. [15] use supervised feature selection techniques to 

discover a reduced marker set sufficient for classifying certain classes of grasp gestures 

and use a similar method to our own in determining a local reference frame for the 

hand. Liu and McMillan [83] propose a method to estimate missing marker positions
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during motion from a Random Forest based on local linear kinematic models, which 

is related to previous work that focused on accurately estimating the motion itself 

with limited markers [84]. Martin et al. [91] use a similar camera system to our own 

in order to recognize specific user actions, such as lifting and tipping a carton of 

milk or writing, via a combination of vector quantization and dynamic time warping. 

Lee and Tsai [75] also use a Vicon camera system with neural networks that are 

trained to completion to recognize 20 Taiwanese sign language static gestures. Both of 

these works are distinguished from our own in that they do not deal with anonymous 

markers but with labeled entities; i.e. it was known prior to classification which marker 

corresponded to the thumb or other location. Martin et al. [91] employed Vicon Nexus 

software to define a skeletal model of the user’s hand, although it is not clear how Lee 

and Tsai [75] accomplished the labeling.

1.2 Problem Statement and Setting

This section states the specific problems that we attempt to solve, provides a 

detailed description of the setting in which the problems lie, and gives brief sketches 

of possible solutions.

1.2.1 Problem Setting

This subsection describes the laboratory in which the research was conducted 

as well as the glove constructed to serve as the source of data for all algorithms analysis 

and development.
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L aboratory

Ten Vicon MX T40 (4 megapixel) motion capture cameras available in the 

Micro-Aerial Vehicle and Sensor Networks (MAVSeN) Laboratory at Louisiana Tech 

University act as the source of data. The MAVSeN lab conducts research and 

development in small-scale vehicle design, cooperative intelligent sensing, and control 

algorithms for unmanned air and ground vehicles (see Figure 1.1). As the figure 

partially shows, the cameras are arranged roughly on the boundary of a rectangular 

area approximately 10 x 15 m2. The cameras are capable of recording at multiple 

frame-rates, with 50 Hz and 100 Hz being the options used in the majority of situations 

including data capture and interactive tests.

F igure 1.1: The MAVSeN laboratory near the time data was gathered. A non- 
reflective padded covering was placed on the floor after the photo was taken.
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D ata  Source

The collection of data is facilitated by the Vicon Tracker application, which 

provides a graphical user interface to configure camera settings and define rigid 

patterns. Vicon Tracker does not support skeletons. Vicon DataStream SDK [1] 

enables programmatic access to streaming data from Vicon Tracker via C++ and C # 

libraries. This data can then be written to a file or reacted to in a real-time or near 

real-time fashion.

A glove with 15 markers attached is used as the source of data for posture 

and gesture recognition, both for the generation of datasets and for the practical 

evaluation of developed algorithms. Figure 1.2 shows a picture of the glove with all 

markers visible.

Figure 1.2: The glove used as the data source for all experiments and datasets. The 
axes of the local coordinate system based upon the rigid pattern are shown.
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Four of the markers form a rigid pattern on the back of the hand to serve as 

identification of the hand’s position and orientation and to create a local coordinate 

system for the remaining 11 markers. The remaining 11 markers are unlabeled; they do 

not form part of a rigid pattern nor skeleton. A rigid pattern is infeasible because the 

markers are not related in any manner that could be described as rigid. All distances 

and angles between these markers are flexible. For a similar reason, a skeleton is also 

infeasible since in theory the skeleton needs fixed segment lengths between certain 

markers. In reality, even if some distortion is allowed in the segment lengths, a skeleton 

is still infeasible, or at the least impractical, due to the variance in the lengths but 

more so due to the inherently high rates of marker occlusion. Visibility of fingers can 

be blocked by other fingers or the hand itself depending upon the hand’s pose and 

orientation. For example, the fingertips are occluded when making a fist and multiple 

markers may become occluded simply when the user’s hand is relaxed at their side 

and pointing downwards. An effective skeletal model also requires a denser marker 

set than ours in order to capture the 20+ degrees of freedom of the hand [2, 32] and 

eliminate ambiguity between similar poses. A denser marker set is not very practical in 

our laboratory (but also in general for large capture spaces) due to limited resolution 

as the cameras have a hard time discerning individual markers that are too close 

together.

We therefore chose to develop algorithms that either extract the markers’ 

identity and are robust to incorrect labels or avoid using this information altogether. 

In the course of this dissertation, we collected posture and gesture recognition datasets 

using unlabeled markers. The samples in each dataset were voluntarily provided by
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12 users to provide a corpus of five postures and six gestures. In addition, a dataset 

of labeled markers was collected for one user (the author) and was meant to provide 

a representation of each marker’s range of motion. These datasets are referred to 

multiple times throughout the dissertation and serve to evaluate proposed methods. 

For more detailed descriptions of each dataset including their capture, please refer 

to Appendix B.

1.2.2 Key Objectives

The key objectives of this research can ultimately be broken down into three 

related, but ultimately distinct, subproblems: marker tracking, marker labeling, and 

classification of postures and gestures. The subproblem of marker tracking deals with 

tracking the unlabeled markers through sequential frames in order to build complete 

tracks (i.e. trajectories) and fill in missing portions due to occlusion. Marker labeling is 

concerned with assigning parts of the hand either to individual markers in each frame 

or the complete tracks if available. These tasks are complementary in that solving one 

aids the solution of the other. Taken together, they serve as a way to cleanse input 

prior to posture or gesture recognition. Consistently labeled markers and trajectories 

would greatly simplify the application of different classification algorithms. However, 

labeling and tracking the markers are challenging problems that may introduce errors 

if not done in a adequately robust manner. Therefore, the design of classifiers that 

operate directly on the unlabeled markers would avoid any bias introduced by sub- 

par solutions to the other problems and may be considered the holy grail of this 

dissertation.
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Marker Tracking

Since the markers that do not form part of the rigid pattern on the hand 

are unlabeled in each frame and inconsistently ordered when their positions are 

obtained from the Vicon DataStream SDK, motion information of individual markers 

is unavailable. One cannot select a marker and know its path for the duration of a 

gesture. This key objective is concerned with designing algorithms to address this 

fault. Natural contenders for the solution include the Kalman filter (Section 2.5.1) 

and its relatives. However, a Kalman filter will not work “out of the box” due to the 

unknown associations between markers from frame to frame. One class of solutions 

uses the assignment problem, which seeks the minimum-cost assignment between two 

sets of items given a cost for each pair of potentially assigned items (see Section 2.4 

for more details). The assignment problem also plays a pivotal role in marker labeling. 

Marker Labeling

The labeling of markers (or assignment of each marker to part of the hand) 

comprises the second major objective. A solution to this problem would make marker 

tracking trivial. However, the system must necessarily have some idea of what the 

“thumb” is or where it appears. A data-driven approach may be sufficient if not 

necessary to resolve this issue, where examples of labeled markers captured over a 

wide range of motion are collected. The labels for this data almost certainly need 

to be manually generated (see Section B.2). Similar to how a solution to marker 

labeling makes tracking easier, so too does the converse. Observing the entire or
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partial trajectory of a tracked marker increases the confidence of assigning a label 

based upon position.

Classification

Classification comprises the ultimate goal of posture or gesture recognition 

wherein frames or sequences of frames are classified as a type of posture or gesture. 

Part of the study is concerned with identifying robust and efficient methods that can 

accomplish recognition to a reasonable degree of accuracy. A significant portion of 

the study is devoted to classification without labels or tracked markers. In fact, as 

stated above, the ideal results include methods that are effective using just the raw 

unlabeled data. While kernel methods (described in Sections 2.1.4 and 2.6) appear 

very promising in terms of accuracy (see Chapter 5) and theoretical support, they 

are relatively inefficient. Deep learning via neural networks (Section 2.7) provides a 

possible alternative. Deep learning avoids engineered features by instead providing a 

mechanism that implicitly learns important features during training [73]. As a result, 

one may expect better results using deep learning without labels, especially since there 

is no guarantee that a label is correct. In Chapter 6, we explore this idea and find it 

to hold true.

1.3 Contribution

Aside from the datasets described in Appendix B, the chief contributions of 

this dissertation are both algorithmic and theoretical. In Chapter 4, we propose a 

Kalman filter based algorithm for estimating the generating distribution of a collection 

of unlabeled, correlated point sets. This algorithm can also be considered a type of
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constrained fc-means clustering algorithm. We also provide proof of both positive and 

negative definite preserving kernel normalizations in Chapter 5, and we provide a 

principled generalization of the Wasserstein distance on sets of different sizes for kernel 

methods. Finally, in Chapter 6 , we propose neural network architectures for posture 

and gesture recognition with labeled and unlabeled markers. Minor contributions are 

also contained within the text of each chapter.

1.4 Limitations of the Study

We are not especially concerned in this study with defining an extensive corpus 

of postures or gestures but rather on developing methods that could be applied on 

an arbitrary corpus with reasonable robustness and reliability. Rather than focusing 

on the anatomy of the hand and any particularly special qualities of it, we develop 

algorithms that apply to unlabeled point sets, which is a more general point of view.

We also note that the quality of our results are limited by the quality of our 

data. The markers used on the glove in Figure 1.2 were each 4 mm in diameter. The 

MAVSeN laboratory was not calibrated or setup to reliably detect these markers in the 

entire space. This inadequacy of the laboratory was due to multiple factors including 

camera count, layout, and bright ambient light that limited camera exposure. Data 

capture was generally confined to a small volume as a result, which may bias results 

and prohibits certain studies from taking place such as those involving both hands. 

We expect future extensions of this work to involve the collection of a much more 

extensive dataset under more favorable conditions.
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1.5 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides 

the knowledge necessary to understand concepts and tools fundamental to succeeding 

chapters. The following three chapters focus on posture recognition. Chapter 3 

applies a variety of different classification algorithms and feature transforms in an 

exploratory study meant to guide future efforts. Chapter 4 provides a principled 

approach to an algorithm sketched in Chapter 3 for estimating the distribution of a 

posture defined by unlabeled marker sets. Chapter 5 applies the Wasserstein distance 

(see Section 2.4) to posture recognition and obtains the best accuracy of any method 

reported in this dissertation. The chapter also proposes a positive definite (PD)- 

preserving transformation for kernels and a principled adaptation of the Wasserstein 

distance to kernel methods with sets of different sizes. Chapter 6 introduces time to 

the discussion by directly examining the key objectives with deep learning. Finally, 

we conclude the dissertation with a discussion of the overall results and possible 

extensions and future work.

The dissertation is supplemented by Appendix A and Appendix B, which 

provide a table defining notation, a list of defined acronyms, and descriptions of the 

datasets gathered in support of the dissertation and used in various chapters.



CHAPTER 2 

BACKGROUND

This chapter introduces concepts and tools used throughout the dissertation 

including notation, definitions, algorithms, and equations. First we review certain 

foundational elements that are used repeatedly throughout the dissertation. We 

follow this with introductions to various topics including Kalman filters, support 

vector machines, and neural networks. Note that this chapter is meant to provide the 

reader with merely a basic understanding of their fundamental theory and practical 

application. References for further information are provided.

2.1 Fundamentals

This section introduces notation, definitions, and basic fundamental topics 

such as linear algebra, probability, and kernels. Familiarity with certain topics not 

explicitly covered is assumed (e.g. set theory). Table A.l provides a summary of the 

major notational elements used throughout the background and dissertation, some of 

which are given greater elaboration in the text. In addition, Table A.2 in the same 

appendix provides a reference for acronyms used in the text.

15
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2.1.1 Linear Algebra

Readers are assumed to be familiar with topics in linear algebra such as matrices, 

vectors, and various matrix decompositions (e.g. eigen-, Cholesky). For a review of 

decompositions, a numerical analysis textbook such as Burden and Faires [12] suffices. 

Familiarity with calculus including differentiation and integration is also assumed.

Regarding notation conventions, a vector v can always be safely assumed to 

be a column vector. Tensors are also applied in certain contexts (see Section 2.7.3), 

where a tensor is a multi-dimensional array with an arbitrary number of dimensions. 

A tensor generalizes a matrix, which may be considered a two-dimensional array. We 

only use tensors to organize data, so no further knowledge of their theory is required. 

Just as elements of a matrix A  are referenced by subscripts separated by commas 

(e.g. A itj is the element in the z-th row and j -th column of the matrix A), so too are 

elements of a tensor.

Regarding multidimensional calculus, let us explicitly recall that the derivative 

of an ra-dimensional vector-valued function y with respect to an n-dimensional vector 

x is
dyi dyi dyi
d x i  9x2 ' ' ' 9 x n

9y2 dy2 dy2
d x \  9X2 '  ‘ ‘ 9 xn

( 2 . 1)

9ym 9ym dym
d x i  9x2 ' ' ' 9 xn

This matrix is known as the Jacobian. Note that the Jacobian is column-oriented in that 

the columns correspond to dimensions of x, which differs from some representations of

dy
d x
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the gradient. A similar matrix composed of second order partial derivatives is called 

the Hessian. If J  is the Jacobian, then the Hessian H  is given by 9VQCj J'>.

Certain special matrix products are employed including the Hadamard and 

Kronecker tensor product. The Hadamard (or Schur) product between two matrices A  

and B  of the same shape is defined to be the element-wise product denoted by A  0  B

and given by

>
(2 .2)

where i and j  are valid indices. See Theorem 2.5 for a result concerning Hadamard 

products. The Kronecker tensor (or simply Kronecker) product [86] between an n x m  

matrix A and a p x q matrix B  is denoted by A ® B  and defined to be the np x rnq

matrix given by

A ® B

A \ \B  A 1 2 B

A"2,\B A 2 2 B

An,iB

A\^mB

A R

(2.3)

2.1.2 Quaternions

Quaternions are an extension of the complex numbers that contain three 

imaginary components instead of one. We do not delve too deeply into the theory 

behind quaternion algebra. By definition [133], a quaternion is given by

Q — Qo +  9ii +  Q2J +  93k) (2.4)



where qt e l ,  i € [0 ,3], and i, j, and k are an imaginary basis satisfying

i2 = j 2 =  k2 =  - l ,  (2.5)

ij =  - j i  =  k, (2.6)

jk =  -k j = i, (2.7)

ki =  — i k = j .  (2.8)

For our purposes, it is sufficient to note that a quaternion q can be represented as 

a four-dimensional vector or equivalently as a real scalar paired with an imaginary 

three-dimensional vector, i.e. q =  (r/0, q) with q = (9i , 92, 93)t - The product of two 

quaternions p =  (p0, p) and 9 =  ( 9 0 , q) is non-commutative and is given by

P q  =  (Po9o -  PTq, 9oP + PoQ +  P x q), (2.9)

where

i j k

p x q = Pi P2 P3

9i 92 93

is the cross product of p and q. The conjugate of a quaternion 9 — (90, q) is given by 

T  =  (9o, -q ).

Unit quaternions (i.e. those satisfying \/ff* =  1) are especially useful for 

modeling rotations. If 9 and v (as a unit vector) are the angle and the axis of a 

right-handed rotation, then the rotation may be represented by the unit quaternion
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For axis-angle representations (where the magnitude of the vector v is the angle of

rotation), we define the operation

q u a t ( v ) = ( c o s ( M ) , s i n ( M )  ^ ) (2 .12)

to facilitate conversions between the two representations. Note that — q represents 

the same rotation but in the opposite direction and that the unit quaternion with 

positive scalar represents the shorter of the two rotations. Let us assume that all 

unit quaternions henceforth denote rotations. Unit quaternions can be used to rotate 

arbitrary three-dimensional vectors by placing the vectors in the imaginary part of a 

quaternion and performing quaternion multiplication. In other words, if q is a unit 

quaternion, v E R3, and p = (0, v), then

yields the rotated vector in the imaginary part of the result. Since po = 0 , the result is 

purely imaginary. A sequence of rotation quaternions q i,q 2 ■ ■ ■ ,q r can be composed 

with a single quaternion qR =  qrqr_l . . ,  qv

We use quaternions in Chapter 6 to design Kalman filters (see Section 2.5) for 

estimating the orientation of rigid patterns of markers. Certain derivatives are useful 

and are listed here. The partial derivative of a quaternion product with respect to the 

right-hand quaternion is

0
qpq (2.13)

9o(®)V +  2q X v) + 2qqTv  -  vqTq

dpq P° pT
(2.14)

dq
P Pola+Lpxj
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where [px j is the skew-symmetric cross product matrix

Lp x J =

-p2 Pi 0

Differentiating with respect to the left-hand quaternion yields

0 ~ P z  P2

Pz 0  - p i

dpq
dp

?o -q' 

q 90I3 -  LqxJ

In addition,

dquat (v) 
dv

- | s i n ( M ) ^  

sin j  I3 +  vv T i |v l | / 2 c o s ( | |v | l / 2 ) - s in ( | |v | | / 2 )  
| |v | |v Tv  i

In order to account for small |lu||, we note via L’Hospital’s rule that

lim
dquat (v)

|[—>0 <9v
- I 3 — —vv^
2 3 24

(2.15)

(2.16)

(2.17)

(2.18)

2.1.3 Metrics

A metric is a function that satisfies certain axioms (outlined in Definition 2.1) 

and can be used to represent a distance between two items.

Definition 2.1. A function S : X  x X  —>■ K is a metric on some set X  if and only if 

the following properties are satisfied for every x , y , z  € X :

• Non-negativity: 6(x,y) > 0.

• Symmetry: S(x,y) =S(y ,x) .

• Identity of indiscemibles: S(x,y) = 0 if  and only if x =  y.

• Triangle inequality: 5(x , y) < <5(x, z) + 6{y, z).
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We will use the term discrete metric to refer to the 0-1 distance defined by 

3o-i(x ,y) = 0 if x = y and 1 otherwise. As can be inferred from its name, the discrete 

metric is a metric. We also define the term semimetric to indicate satisfaction of all 

of the preceding properties except for the triangle inequality. The Euclidean distance 

is a metric, and the squared Euclidean distance is a semimetric. A simple example 

of the squared Euclidean distance failing the triangle inequality may be noted with 

the points x =  (0, 0), y =  (0, 2), and 2 =  (0,1) as elements of R2 since the resulting 

distances are 5(x, y) =  4, 5(x, z) = 1, and 6(y, z) =  1.

2.1.4 Kernels

A kernel on a set X  is, in general, a function K  : X  x X  -4 R. Kernels can be 

used to represent the similarity or distance between objects, and therefore generalize 

the notion of a metric. Kernels that satisfy Definition 2.2 below are especially useful. 

Be aware that our notation condenses the double summation when each index i and j  

shares the same range as in (2.19).

Definition 2.2. A kernel K  is PD if and only if  it is symmetric and for any choice 

of n distinct elements x ,\ , . .. , x n and real numbers <q,. . . ,  cn,

n
y ;  cicj K ( x l, xJ) > 0. (2.19)
*,j=l

I f  the constraint c* = 0 is added, then K  is conditionally positive definite (CPD).

The condition (2.19) is equivalent to testing whether the kernel matrix for 

the chosen elements Gk — [A(x,(, Xj)] is positive semi-definite via a quadratic form,

i.e. cTG*-c > 0 where c = [c*]. If the kernel is PD, then Gk is called the Gram 

matrix. A (conditionally) strictly PD kernel is one in which the preceding inequalities
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are strict with equality holding only if each C; =  0. One may note that PD implies 

CPD, but the converse does not hold. Simply reversing the inequality of (2.19) yields 

negative definite (ND) kernels of each respective type. Consequently, if K  is PD, then 

—K  is ND. PD kernels are useful for a variety of machine learning tasks including 

classification, regression, and principal component analysis and are sometimes known 

as Mercer kernels [13].

PD-ness is an attractive property because it implies the existence of a mapping 

(j) : X  -» H  from X  to some Hilbert space H  in which the kernel gives the value of 

the inner product and certain nonlinear problems in X  become linear [123], i.e.

K{xi,Xj) = (0 (xi),0 (x j)). (2 .20)

This property is the key component of the so-called “kernel trick,” wherein a separating 

hyperplane is implicitly found without ever working directly in H  (see Section 2.6). A 

conditionally negative definite (CND) kernel is also related to some Hilbert space H  

through a mapping 0  by

K ( x i ,  Xj) =  ||<j>{xi) -  <j>{xj)||2. (2.21)

Note that the existence of 4> implies the respective type of definiteness and vice versa. 

CND kernels are sometimes referred to as metrics of negative type, and as indicated by 

(2.21), correspond to functions that isometrically embed into squared Euclidean space. 

Note that we follow traditional nomenclature for kernels in that PD and strictly PD 

kernels correspond to positive semi-definite and PD matrices, respectively.

The following three results are adapted from Berg et al. [7] and form a basis for

several later propositions. Theorem 2.3 and Lemma 2.4 propose relationships between
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CND and PD kernels. Kernels of the form exp(uK)  with arbitrary K  are sometimes 

called generalized radial basis function (RBF) kernels. Theorem 2.5, originally proved 

by Schur [120] and known as the Schur product theorem, demonstrates that PD 

kernels are closed under multiplication. Note that Theorem 2.5 does not apply to 

CPD kernels.

Theorem 2.3 ([7]). Let X  be a nonempty set and let K  : X  x X  —> R be a symmetric 

kernel. Then K  is CND (CPD) if and only if cxp(uK) is PD for each u < 0 (0 < u).

Lemma 2.4 ([7]). Let X  be a nonempty set, x0 £ X , and let D : X  x X  —> R be a 

symmetric kernel. Let K(x,  y) =  D(x, xo) +  D(y , xo) — D(x, y) — D(x0, x0). Then K  

is PD if and only if D is CND. I f D ( x o , x q )  > 0, then Ko(x,y) — K(x , y)  + D(x0, x 0) 

is also PD.

Theorem 2.5 ([7]). I f  K \ : X  x X  —> R and K 2 : X  x X  —> E are both PD, then 

their Schur product (K\ ■ K 2)(x,y) = K\ {x , y ) K2{x,y) is also PD.

The next two propositions are adapted from Boughorbel et al. [11] and were 

involved in the derivation of the generalized histogram intersection kernel. As a preview 

of upcoming proofs and an example of working with kernels, a proof of Proposition 2.6 

is given since the statement appears counterintuitive at first.

Proposition 2.6 ([11]).

K , ( x , y )  =  f ( x )  +  f ( y )  (2.22)

is both a CPD and CND kernel for any function f .
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Proof. Let cx, . . . ,  cn and x x, . . . , x n be defined as in Definition 2.2 with 

Y2= i ('i =  0. Then the following holds.
n  n

Y 2 clcJK f (xl,xJ) = ci°j lf(x i) + f ( xi)}
*j=i *j =i

n  n

=  C i C j f ( X i ) +  C i C j f ( X j )  

i , j =1 i.j=l

n

= 2 CjCif(xi) (2.23)
*>j=l

= 2 ( e ^)

=  o.

□

Proposition 2.7 ([11]). I f  K  is positive valued and a CND kernel, then K " 1 is PD 

for each 7  > 0 .

2.1.5 Measures

A measure is a function that generalizes the notion of cardinality, area, volume, 

or length. To be precise, a measure p  : E* —»• E assigns a number to subsets contained 

in a a-algebra Ex of some set X ,  where a cr-algebra is some collection of subsets of 

X  that contains the empty set and is closed under complement, countable unions, 

and countable intersections. The measure of a subset must be less than or equal to 

that of its superset, i.e. p(A) < p{B)  if A  C B.  Measures also possess countable 

additivity, i.e. the measure of the union of disjoint sets is the sum of their measures. 

The elements of X  on which p  has non-zero measure constitute its support, denoted 

supp (p). We use measures in a somewhat informal sense; we do not particularly care 

whether the measure is Lebesgue, Radon, Haar, etc. For a deeper understanding of
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measures, please refer to any introductory textbook on analysis or measure theory, 

e.g. Tau [131].

2.1.6 Probability

Readers are assumed to be familiar with the concept of a random variable 

and probability density or mass functions. Random variables are often denoted with 

capital letters, but we will not maintain this convention as we more often deal with 

random vectors and matrices. A very brief review of some key topics is given the 

following subsections.

Joints and Marginals

Recall that a joint distribution f x y  between two random variables X  and Y  

assigns probability mass or density to every possible combination of X  and Y . A 

marginal distribution assigns a density f x  to X  (or f y  for Y )  and is related to the 

joint distribution according to

In this situation, Y  is said to have been marginalized out. A conditional distribution 

on X  given Y  (denoted X  \ Y ) is also related to the marginal and joint distributions 

according to

One may note that (2.25) is simply a restatement of the ubiquitous Bayes’ theoerem

y
(2.24)

(2.25)

relating the conditional probabilities of two events A and B

(2.26)
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where p(A) denotes the probability of the event A  (and similarly for the other terms). 

Probability Measures

Define J r(X ) to be the family of measures p  : E* —> E yielding finite, non

negative measure n{X).  In addition, let V{X)  C T { X )  be the family of all probability 

measures on X , where a probability measure is a measure that assigns a total mass of 

1 to X ,  i.e. p(X)  — 1. A probability measure p  is associated with a mass or density 

function that can be obtained by restricting p  to just individual elements of X.  Let 

p^X : X -4 E  be this restricted version of p. The set X  is sometimes referred to as 

the state space or domain of the random variable associated with p. One should note 

that p  is uniquely defined by /i(r) and vice versa. This fact should be evident since for 

a given set Y  €E Y x ,

p(Y)  = j  p^r\x )d x .  (2.27)

Due to this relation, we will often abuse notation and simply refer to p ^  directly as a 

measure or p  as a distribution or even interchange the terms distribution and random 

variable. We will also tend to use p(Y)  to denote the probability of the event Y  when 

no probability measure is explicitly given as in (2.26).

Common Distributions

Let us review some common probability distributions—namely the normal, 

binomial, and multinomial distributions. We also discuss mixture models.

Let Af{p,  E) denote a multivariate normal or Gaussian distribution with mean 

p  and covariance E, and let A/"(x; p . E) denote the probability density function of
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j\7(/i, E) evaluated at x, or

A7(x; p, E) =  |27rE|—1/2 ^.28)

In the event that and E are scalars, then we simply have the normal distribution. A 

(multivariate) normal distribution is parameterized by its mean and variance, which 

are respectively /x and E.

Let B(p, n ) represent a binomial distribution with n trials and success parameter 

p. A binomial distributions may represent the outcome of n coin flips. The probability 

mass function is given by

B( x ;p ,n ) =  f " V ( l —p)”- .  (2.29)

Note that B(p, 1) denotes a Bernoulli distribution.

A multinomial distribution is a generalization of the binomial distribution to k 

outcomes instead of two. For example, where a binomial distribution can represent the 

outcome of independent coin flips, a multinomial distribution represents the outcome 

of independent k sided dice rolls. The probability mass function is given by

C(x;p,n) =  - ^ —  n ? * - .  (2.30)
lli=l X i- i = l

where n  is the number of trials, p* is the probability of the z-th outcome on an 

independent trial, and Xi is the number of times the z-th outcome occurs in n trials. 

The vectors x and p are just notationally convenient. By necessity, =  1 and 

Y,Xi = n. Note that C(p, 1) denotes a categorical distribution.

A mixture is a distribution defined as a weighted combination of two or more 

distributions with the same domain. For example, the probability density p of a
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mixture of two distributions p  and v given respective weights a  and j3 (a + /3 — 1) 

would be given by

rj(x) =  ap(x) + fiv{x). (2-31)

The GMM is possibly the most common example of a mixture, which is defined to 

be a mixture of normal or multivariate normal distributions. The probability density 

function of a GMM with k components i € [1 ,k\,  and mixture weights

*  = £?=1 ^  =  h  is given by
k

M(x;  /Xj, E i , . . . , f ik,'Ek,n)  =  ^7TjJV(x; pu Et). (2.32)
i=i

Despite their prevalence, many problems involving GMMs, such as estimation of their 

parameters [38], do not have closed form solutions.

2.1.7 Statistics

Readers are assumed to be familiar with basic statistics terminology including 

but not limited to moments (e.g. mean, variance, etc.) For completeness, certain 

topics will be reviewed here. The reader is referred to the textbook by Hogg et al. [59] 

for more complete coverage of the subject.

The expected value (commonly referred to as the mean or average) of a function 

f ( X )  of a random variable X  is a sum over the variable’s entire domain weighted by 

the associated probability measure p, and is defined to be

Ex [ / (* ) ]=  /  (2.33)
J  su p p ( /i)

Note that p  is implicit to the random variable X  here. In fact, given the context, 

we could have simply written E [/(A-)]. In the event that we are given a probabiliy
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measure/density without a random variable, then an implicit random variable can be 

denoted by the notation [/(X)]. Note that the value reported by the expectation 

does not necessarily lie within the domain of the random variable. A related quantity, 

the variance, is defined as E[(X  — E[X])2]. The generalization of the variance to 

jointly distributed variables X  and Y  is called the covariance and is defined as

Cov (X, Y)  = E [{X -  E [X])(Y -  E [Y])}, (2.34)

where the expectation is understood to be taken with respect to their joint distribution. 

2.1.8 Classification

Classification is a problem within the field of machine learning that involves 

assigning (i.e. classifying) an object or instance to one of several categories or classes. 

A classifier is an algorithm that performs this assignment. Equivalently, we may 

consider the classifier a parametric function that maps instances to classes. Generally, 

we wish to maximize the expected accuracy (or minimize the expected error) of 

a classifier when presented with an arbitrary instance. We train the classifier by 

selecting (or trying to select) the optimal parameters with respect to this (or some 

proxy) criterion. The process of training typically assumes that a set of independent 

and identically distributed data X is available and is accompanied by a set of known 

class labels Y. In order to fairly evaluate the efficacy of the classifier, one must usually 

partition X and Y into a training set on which we train the classifier and a disjoint 

test set on which we assess its performance. This treatment is necessary since the 

error on the training set is not necessarily indicative of the classifier’s generalization 

error when given new data.
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Many different classification algorithms exist of varying complexity. For 

example, k-nearest neighbor (fc-NN) and naive Bayes sit at the simpler end of the 

spectrum. The /c-NN classifier is non-parametric (and thus requires no training) and 

consists of classifying an instance by a majority vote based on the classes of the k 

most similar instances in the training set (assuming a kernel to compute similarity 

between instances is defined). Naive Bayes is the name of a probabilistic classifier 

that assigns a class y to an instance represented by a feature vector x according to

y = arg max p(n) TT p(x{ \ k), (2.35)r,e_K
X

where JC is the set of classes. The classifier is naive because it assumes that each feature 

Xi is conditionally independent given a class k . Features, though not always explicitly 

required, play an important role in classification, and the selection or computation 

of useful features is a commonly pursued research topic [15, 51, 88 , 114, 156]. In 

this work, we focus especially on kernel-based classifiers (Section 2.6) and neural 

networks (Section 2.7). For a more thorough review of classification and machine 

learning in general, please refer to introductory textbooks on the subject, e.g. Smola 

and Vishwanathan [126].

2.2 Special Topics in Statistics

In this section we cover some more advanced topics in statistics of which a 

casual acquaintance with the subject may not be entirely knowledgeable.
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2.2.1 Divergences

An f  -divergence is a function that measures the difference between two 

probability distributions [79]. We describe three well-known /-divergences that are 

used or referred to in following chapters.

The Kullback-Leibler (KL) divergence D KL between two probability distribu

tions n : X  -» R and u : X  —»• R is given by

H{x)'
Dk M W )  = In- (2.36)

u(x)

and measures the information gain when transitioning from v to p. Although it 

can be quite difficult to compute in general (for example, if both distributions are 

Gaussian mixture models [61]), a special case for which a closed form solution exists 

is the KL divergence between two d-dimensional multivariate Gaussian distributions 

/i ~  Si) and v ~  A/"(/i2, E2), which is given by

Dk M W )  = 2
IS I

In | ^ |  + tr [E2 l s J  “  d +  (#*i “  ~ M2) (2.37)

Another special case is of that between two Bernoulli distributions /r ~  B(p, 1) and 

v ~  B(q, 1), which is given by

DkM W )  =  P ln ~ +  (1 - P ) l n ^ (2.38)

Finally, KL divergence is additive. If //, and v can each be decomposed into independent 

distributions /q : X  —» R, /q : Y  —¥ R, v\ : X  —> R, and iq '■ Y  —> R such that

M ^y) =  mi(z)m2(y) and K ^ y )  = ^ f a W y ) . then

=  Dk I[ ) +  Dk l {^2 IN)- (2.39)

Drawbacks to KL divergence include the facts that it is asymmetric and unbounded.



The Jensen-Shannon (JS) divergence is a symmetric divergence based on KL

divergence that compares /x and v to the midpoint distribution r/ =  (p +  v)J%

Aside from being symmetric, JS divergence offers some other advantages. First, it 

ranges from 0 to In 2 . Perhaps more importantly, \ fD js  is a metric, which is a 

consequence [7] of the fact that JS divergence is CND [40].

The squared Hellinger distance between two distributions p and u defined on 

the same u-algebra is defined as

The squared Hellinger distance is symmetric and ranges from 0 (if and only if p  =  u)

seen by definition of H 2 as a sum of squared differences or as a constant minus PD 

kernel through its alternative form

Consequently, H  is a metric [7]. The Hellinger distance is also multiplicative for 

joint independent distributions. If p  and u can each be decomposed into independent

Djsi/i ,  v) =  DKL(p\\rj) +  DKL(i/\\rj). (2.40)

Defined in terms of Shannon entropy,

H(p) = ~ E X̂  [ln/r(x)], (2.41)

one finds that

(2.42)

(2.43)

to 1. In fact, the squared Hellinger distance is CND [57], which can rather trivially be

(2.44)
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distributions /ii : X  -» R, /i2 : Y  —V M, iq : X  —> R, and i/2 : Y 

/i(x,y) = y x{x)y2{y) and 1/(1 , y) =  ui(x)u2(y), then

H 2(y, u) = 1 - J J  y/y i{x)y2{y)ux(x)v2{y)dxdy

= 1 - J  y/ni(x)vi{x)dx J  yj y 2{y)u2(y)dy. 

We may also express H 2 as

H 2(y, v) =  1 -  J  y{x)

such that

(2.45)

' u(x) 
f*(x)

(2.46)

which enables Monte Carlo estimation of H 2 by sampling from y  (or u by a similar 

construction). The squared Hellinger distance between two multivariate Gaussian 

distributions y  ~  Ar(/x1, Si) and v ~  M { y 2, ^ 2) is given by

H 2(y,u)  =  1 -
1 /4  | 1 /4|S i | ‘̂ |S 3

IS.+Sal1/2
I 2 I

exp (Mi -  M2)1
Si + S 2

(#»i -  fh) • (2.47)

2.2.2 The Maximum-Likelihood Principle

Let pmodei(x ; 0) be the probability density or mass function of a family of 

probability distributions parameterized by 0, and let X =  X i,. . .  ,xj be a set of 

samples drawn independently from an unknown distribution Pdata- The maximum  

likelihood principle states that the value of 0 that maximizes the likelihood

L(0;X) =  f j p modei(xj;0) (2.48)
i = 1

of generating X from the family Pmodeb

0 — arg max L(0] X), (2.49)
0

is an asymptotically minimum variance unbiased estimator (subject to some regularity 

conditions). Therefore, maximizing the likelihood is a prudent objective for many
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problems. Often, as a matter of practicality, the log-likelihood is maximized instead 

since the logarithm is monotonic, i.e.

i
0 — argmax logpmode](xj; 0). (2.50)

i=i

We show here that maximum likelihood estimation is closely related to KL divergence 

(Section 2.2.1) (note that the argument is paraphrased from Goodfellow et al. [44]).

The ultimate purpose of pmode\ is to estimate the true probability Pdata- Let 

Pdata be the empirical distribution of the data defined by

Pdata(x) = ylx(x). (2.51)

Since (2.50) is invariant to changes in scale, we can divide the right-hand side by I to 

obtain

0 =  arg max Ex^ data [logpmodei(x; 0)]. (2.52)
e

Now observe the KL divergence between Pdata and pmodeb

LlKI.(Pdata||Pmodel) ~  Ex~pdata [logPdata(x) logPmodel(x, 0)] • (2.53)

Note that since the term on the left does not depend upon 0 but only on the data, 

minimizing (2.53) with respect to 0 is the same as maximizing (2.52).

The rightmost term of (2.53) actually has a special name: cross entropy. The 

cross entropy H  between two probability distributions y  and v generalizes the Shannon 

entropy (2.41) and is given by

H{y, v) = - E x^m [log i/(x)] =  H(y) + DKL(y\\v), (2.54)
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where we can see that H(jt) = H(n,  //,). Therefore, minimizing the negative log- 

likelihood is equivalent to minimizing the cross entropy between the empirical dis

tribution and the model. Many objectives can be placed into this framework. For 

example, mean squared error (or sum of squared errors) is the cross entropy between 

a Gaussian model and the empirical distribution.

2.2.3 E xpectation-M axim ization

An expectation-maximization (EM) algorithm [30] is an iterative method to 

obtain maximum likelihood estimates of a statistical model’s parameters 0 given a set 

of data X generated from the model and latent (unobserved) data Z. The method 

consists of repeating a two-step procedure until convergence. The first step consists 

of calculating the expectation of the log-likelihood L(0\ X, Z) with respect to the 

latent variables given the data and current parameter estimates The second step 

consists of calculating 0^+1  ̂ by maximizing the expected log-likelihood. Both steps 

can be concisely represented by the following equation

0(m) = arg max Ez|x 0(t) [L(0; X, Z)], (2.55)
9

where Ex [V] denotes the expected value of Y  with respect to X.  Practical implemen

tations sometimes consist of calculating the mode Z' of Z|X, 0 ^  and maximizing with 

respect to L(0;X, Z'), which is sometimes called a “hard” EM algorithm. Computing 

the full expectation with respect to all possible values of Z on the other hand is 

sometimes known as a “soft” EM algorithm. Both variants are guaranteed to converge 

to at least locally optimal values of the parameters, although the soft variant is likely to 

be better. The standard k-means clustering algorithm [70] is an example of hard EM
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in which 6 represents the cluster means, X is a collection of points, and Z determines 

the cluster from which each point was drawn.

2.2.4 M arkov Chain M onte Carlo

Markov chain Monte Carlo (MCMC) is a family of techniques used to sample 

from difficult or intractible probability distributions. MCMC works by constructing 

a Markov chain with equilibrium distribution equal to some target density function 

(see below for more details). Many MCMC methods work even if the user only 

knows a function proportional to the true density. Some of the challenge comes from 

constructing a suitable Markov chain, but the majority of the challenge is ensuring 

that the chain reaches equilibrium in a reasonable amount of time. We review here the 

definition and qualities of a Markov chain that are required for MCMC and summarize 

the Metropolis-Hasting algorithm, which is a relatively simple, widely applicable 

MCMC algorithm for constructing a suitable Markov chain. See the technical report 

by Neal [101] for more information.

Recall that a Markov chain is a series of random variables X 0l X i, X 2, . .. 

with the same state space or domain where the t-th variable is only dependent upon 

the immediately preceding one, i.e.

p(Xt I X t^ . . . , X 2, X 1, X Q) = p ( X t I X t - J .  (2.56)

A Markov chain is completely defined by the initial marginal distribution P o { x )  of X 0 

and the conditional probability Tt(x,x')  of transitioning from x to x' at time t. A 

chain is homogenous if Tt is the same for all t. Assume that the state space is discrete 

and finite (not necessary, but it simplifies the following equations and definitions). The
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marginal probability of X t may then be represented by a vector pt, and the transition 

probabilities may be represented by a stochastic (each element is non-negative and 

each row sums to 1) matrix Tt where each row is the conditional distribution for a 

specific element. We then have

p 1+i = r tTp 1= f n r iTJ Po, (2 .57)

where the product is understood to left-multiply as t increases. A distribution it

(represented by vector 7r) is invariant with respect to the chain if for all t

tt -  T Jtt. (2.58)

If the chain satisfies the detailed balance condition for any choice of x and x ', i.e.

7r(x)Tt(x, x') = Tr(x')Tt{x', x), (2.59)

then 7r is an invariant distribution. We also need the Markov chain to be ergodic, i.e. pt 

needs to converge to an invariant distribution—called the equilibrium distribution—as 

t grows regardless of the initial choice of p0. For homogenous chains, one finds that 

the chain is ergodic with respect to an invariant distribution t t  if the probability of 

transitioning from any state x to any x' e  supp (n) is strictly greater than zero, or

min min T ( x , x ' ) >  0. (2.60)
x i 'e su p p (7r)

One therefore just needs to satisfy (2.59) and (2.60) to construct a valid Markov chain 

for MCMC.

The Metropolis-Hastings algorithm provides a generic framework for construct

ing valid Markov chains. The algorithm requires a function p  proportional to the 

desired distribution as well as specification of a proposal distribution Q{x\y) that can
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be used to suggest a candidate sample x j  at each iteration t. Note that a means to 

sample from Q is practically a corequisite. Given an initial sample x0, the algorithm 

proceeds by repreating the following steps at each iteration t:

1. Sample x~[ Q(xt |

2. Calculate the acceptance ratio

3. Accept x l =  x t with probability a. Otherwise, x t — x t_\ .

If Q is symmetric, i.e. Q{x\y) = Q(y\x), then a  simplifies somewhat and the algorithm 

is usually just referred to as the Metropolis algorithm. The intuition of the algorithm 

is that it attempts to randomly move about the sample space with a low probability

option presents itself. As a result, we spend little time in low density areas and a more 

time in high density areas, with a  ensuring that the relative amount of time remains 

proportional to p. Choosing an appropriate proposal density is the primary challenge.

A common, though not entirely justified in theory, post-processing operation 

known as burn-in is to ignore the first m  samples based on the assumption that the 

Markov chain has not converged in the first m  steps and therefore these samples do not 

represent the target distribution. An appropriate burn-in time must be determined 

from experience or various heuristics if burn-in is used at all. For example, starting the 

Markov chain from a mode or otherwise high-density region may render burn-in moot. 

One should always desire that the Markov chain exhibits the rapid mixing property,

a  =  min < 1, (2.61)

of falling “downhill” to a low density area and a guarantee to move “uphill” when the
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which basically states that it reaches equilibrium quickly with high probability. Proving 

that a given chain is rapidly mixing, however, is a challenging problem.

2.3 C onstrained  O ptim ization

In this section, we review the basics of constrained optimization. Please refer

to the text by Griva et al. [50] for a more comprehensive introduction. Solving a

constrained optimization problem usually necessitates the introduction of Lagrange or

Karush-Kuhn-Tucker (KKT) multipliers, which are additional variables that represent

activation of the constraints. To simplify further discussion, we will assume that all

constraints are linear, i.e. we wish to solve

minimize /(x)
(x) (2.62)

subject to Ax < b,

which is known as the primal problem. For each inequality constraint a j x  < bj, where

a j  is the i-th row of A, we introduce a non-negative KKT multiplier A*. For equality

constraints, an unconstrained multiplier is introduced. The objective function /(x ) is 

then replaced with the Lagrangian

LP(x, A) =  /(x ) + AT(Ax -  b). (2.63)

This problem is directly related to what is known as the Lagrangian dual

maximize inf [/(x) +  AT(Ax — b)]
W  (*) (2 _6 4 ^

subject to A > 0.

A concept known as strong duality states that if /  is convex and there exists at least one 

point that satisfies the constraints, then the value of the objective functions of (2.62)
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and (2.64) are equal at their optimal solutions x* and A*. A direct consequence of 

this fact is the condition of complementary slackness, which states that

Ai(a,Tx -  60 =  0 (2.65)

or more concisely A 0 (Ax — b) =  0. Convexity is not necessary for strong duality

to hold, but it is an otherwise useful property in that it guarantees global optimality

of a locally optimal solution. Note that weak duality, which states that the primal

objective is always greater than or equal to the dual objective, always holds between

a primal minimization and dual maximization problem regardless of convexity.

A couple of examples of convex optimization follow. A linear program is a

convex problem that can be written in the canonical form

minimize cTx 
(x)

subject to Ax < b (2.66)

x > 0.

In other words, a linear program is a constrained optimization problem in which the

objective and all of the constraints are linear. A quadratic program differs from a

linear program by adding a quadratic form to the objective and has canonical form

minimize ^x THx + cTx
(x) 2 (2.67)

subject to Ax < b.

The matrix H  is the Hessian, and the problem is convex if and only if H  is positive 

semi-definite.
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2.4 Optimal Transport

Optimal transport is the name given to the study of the optimal transportation 

or allocation of resources. One of the most important topics in optimal transport is 

the Wasserstein distance. Consider two probability distributions on a metric space 

(M, d) with finite p-th moments, p € [1, oo), and probability density functions given 

by p : M  —>■ R and v : M  —> R. The p-th Wasserstein distance between p and v is 

given by

where r(p , v) is the collection of all joint distributions on M  x M  with marginals p 

and u [137]. Note that the p-th Wasserstein distance can also be expressed in terms 

of the joint distribution that minimizes the expectation

The Wasserstein distance can be interpreted as the minimum cost required to transform 

p into v or vice versa. If we consider p and v to represent piles of dirt, then we 

see the intuition behind one of the Wasserstein distance’s commonly known other 

names: the earth mover’s distance (EMD). Under the moniker EMD—first used in 

print by Rubner et al. [116]—the metric has been applied in computer vision for 

comparing color distribution or texture histograms of images for content based image 

retrieval [20, 116, 82, 105, 106].

The Wasserstein distance, however, has a much longer history than its use in 

computer vision would imply. Gaspard Monge [98] originally laid the groundwork 

for EMD, and the problem was reformulated in the mid-20th century by Leonid

(2 .68)

in f  e n , h W U ) ] .
7er(/i,i/)

(2.69)
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Kantorovich [68, 69]. Thus does Wp receive another name, the Monge-Kantorovich 

mass transportation distance, under which it is applied in economics, fluid mechanics, 

meteorology, and partial differential equations (PDEs) [36, 41]. In statistics, the 

metric may also be known as the Mallows distance [76]. The Wasserstein distance is 

also used as a means of evaluating the performance of multiple-object trackers and 

filters [58, 113, 119]. Other names not listed still exist, and for further information 

and a more comprehensive survey of the Wasserstein distance’s history and optimal 

transport in general, the reader is referred to Vershik’s article [138] and Villani’s 

texts [139, 140].

We now turn our focus towards EMD, which often takes a discrete (i.e. 

countable) form. While the choice of the metric space (M, d) can have significant 

implications on the existence and feasibility of computing Wp, the choice has less 

severe implications when M  is discrete as the solution depends on only one algorithm 

regardless of the choice of d. Let the term “ground distance” refer to the metric d. 

Application of EMD requires specification of a ground distance and computation of 

the flow  /(a , b) of mass from x € supp (/r) to y £ supp (u). EMD is then calculated 

as the cost of the minimum-cost maximum flow and is defined to be the solution of 

the linear program

x 6 su p p ( /i)  j/e su p p (i/)

subject to the constraints

EMD(fi , u) -  >V£(//, u) =  mm E E f (x,y)dF(x,y)  (2.70)

(2.71)
j/G supp(i/)
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E  f{ x ,y )  < v{y), (2.72)
x esu p p (* t)

E E /(* ,y )= m in  | e /*(*), E ^} ' (2.73)
x esu p p (M ) y e s u p p (v )  U g M  y e A f  )

The solution to this problem can be found in 0 (n 3 log n) time, where n is the larger 

cardinality of each measure’s support. Several observations can be made from this 

linear program. First, the value of p is irrelevant in computing its solution; one could 

just as well use D = dp (hence the lack of a p subscript or superscript in EMD(p, u)). 

In fact, d does not need to be a metric for the solution to exist and be computable 

in polynomial time. Furthermore, /x and v do not actually need to be probability 

measures and may have different total masses as hinted by (2.73). The downside 

of allowing arbitrary masses is that certain properties of EMD no longer hold. For 

example, EMD is a metric on V{X)  if dp is a metric on X  [116], but EMD is not a 

metric on T (X ) .  In the special case that p(x) — 1 for each x  6 supp (/x) and v{y) — 1 

for each y £ supp (u). then EMD is also known as the assignment problem and can be 

solved in 0 ( n 3) time [34]. As is often the case with the assignment problem, the flow 

/  is sometimes the variable of interest rather than the actual minimum cost.

EMD is usually assumed to possess a Euclidean ground distance, but examples 

of other ground distances exist in the literature. Igbida et al. [62] study EMD in the 

context of PDEs with a discretized version of the Euclidean ground distance rounded 

up to the nearest whole number. Ling and Okada [82] proposed an efficient tree-based 

algorithm for computing EMD with a Manhattan ground distance, and Pele and 

Werman [106] explored the effect of applying a threshold to various ground distances
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and its impact on computation time and accuracy. In the realm of image retrieval, 

EMD is often applied as a metric for nearest neighbor searches.

The computational complexity of EMD is often a hindrance to applying it 

in large problems. The fastest known algorithm to compute EMD exactly (up to 

precision) for a general cost function is 0 ( n 3 log n) [104], However, approximate 

algorithms have been introduced in recent years that are linear in complexity. The 

first such algorithm, the computation of Sinkhorn distances introduced by Cuturi [24], 

adds an entropic term that regularizes the objective and makes it solvable numerically 

via a simple iterated procedure. To be precise, a constraint is placed on the entropy 

of the flow so that it yields the dual

EMD(n, v, A) =  min E E f (x ,  y) [dP(x, y ) -  A log f ( x ,  y )) . (2.74)

Sinkhorn distances parallelize easily, which is a significant advantage over other 

algorithms. Convolutional Wasserstein distances, introduced by Solomon et al. [127], 

improve on Cuturi’s Sinkhorn distance by removing the need to compute pairwise 

distances dp(x,y).  Instead, the convolutional Wasserstein distance algorithm exploits 

the relationship between the heat kernel and the geodesic distance g : M  x M  —>■ R on 

a manifold M,  where the geodesic distance is the shortest path possible between two 

points on the manifold and the heat kernel 7it : M  x M  -> R solves the heat equation 

dtft =  A ft  with initial condition / 0 : M  —> R via

i£supp(/i) yGsupp(i/)

(2.75)
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The exploited relationship is Varadhan’s formula [134], which states that as the time 

goes to zero, the geodesic distance may be recovered from the heat kernel

g2(x,y) = \ im -2 t lo g 'H t(x,y). (2.76)

The intuition behind the formula arises from the fact that the heat equation models 

the diffusion of many particles taking random walks and that as time approaches zero, 

the particles have had less and less opportunity to deviate from the geodesic [22]. Of 

course, the heat kernel must exist and be known as a necessary precondition, and 

therefore the algorithm is primarily useful for only geometric domains such as shape 

interpolation or color manipulation in image processing.

2.5 Filtering

This section introduces the concept of filtering. Filtering solves the problem of 

estimating the state of a dynamic process observed through a noisy signal. The exact 

algorithm used to filter the signal depends on the application, and certain trade-offs 

between efficiency and optimality may be necessary. We focus on the Kalman filter 

and some of its relatives, outlining the theory behind their derivation and use.

2.5.1 The Kalman Filter

The Kalman filter [67] is a recursive two-step procedure for obtaining state 

estimates of a Markov process that is observed through intermittent and possibly 

incomplete measurements. Generally, the model for the state’s evolution over time 

must be known disregarding noise. In fact, for the standard Kalman filter (numerous 

extensions exist including but not limited to the extended [151] and unscented Kalman



46

filters [147]), the process must be linear and described by an equation of the form

xfc+1 =  A kx k + B ku k +  w*, (2.77)

where x k is the state vector at time k, A k is the transition matrix that describes the 

state dynamics, B k is a matrix that relates some external control input u* to the 

state, and v?k is zero-mean Gaussian noise with covariance Qk, known as the process 

noise covariance. The state is observed through measurements y fc, which are related 

to the state according to

y k = Hkx k + v k, (2.78)

where Hk is the measurement matrix and v k is zero mean Gaussian noise with 

covariance Rk, known as the measurement noise covariance. Neither the process nor 

measurement noises at different times are correlated, i.e. Cov (w*, w*) = Cov (vfc, v*) = 

0 for A: ^  I.

The objective of the Kalman filter is to minimize the error between the state 

estimate x  and the true state x, and it does so by minimizing the estimated error 

covariance

Pk = E [(xjt -  x fc)(xfc -  x k)r]. (2.79)

The filter alternates between calculating a priori estimates (predictions of the state 

and its error) and a posteriori estimates (corrections made upon observing the 

measurement). The prediction is based upon the transition function and is given by

x k = A kx k-i,  (2.80)

Pk =  A kPk- \ A y  +  Qk, (2-81)
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where xfc and P y  are the a priori estimates at time k and Xfc_i and Pk-i are

the a posteriori estimates of the previous timestep. A correction based upon the

measurement y k is applied to obtain the a posteriori estimates

xfc = x^ +  K k{ y k -  HkiCk ), (2.82)

Pk =  ( I - K kHk) P ^  (2.83)

where K k is the Kalman gain used to weight the prediction and measurement and is 

calculated as

K k =  Pk Hk'{H kPk Hk' + R k) ~ \  (2.84)

The Kalman gain in (2.84) is optimal in the sense that it minimizes the trace of Pk. 

Note that (2.83) is only valid for the optimal Kalman gain. A more numerically stable 

version that is valid for any value of K k is given by

Pk = (I -  K kHk)Pk (I -  K kHk)J +  K kR K k . (2.85)

In fact, minimizing the trace of the right-hand side of (2.85) with respect to K k yields 

the optimal Kalman gain. For a linear transition and measurement function with 

Gaussian additive noise as defined above, the Kalman filter is optimal in the mean 

squared error sense. In particular, the Kalman filter provides the minimum variance 

unbiased estimator of the state x assuming an unbiased initial estimate Xo-

2.5.2 Bayes Filters

The Kalman filter may also be considered a special case of a recursive Bayesian 

(or B ayes) filter [4]. A recursive Bayesian filter performs similar prediction and 

correction steps, but instead of maintaining an estimate of the state mean and error
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covariance, such a filter maintains the probability distribution of the state when 

considered as a random variable. Let y hk be shorthand for the first k measurements. 

The prediction equation is given by

P(xfc I Yufc-i) = J P ( * k  | x k- i )p (* k - i  | y 1:Jfe_1)dxfc_1, (2.86)

which can be derived using Bayes’ rule on the condition that x is a Markov process.

The correction or update equation is given by

, , \ P( yk 1 x fcM x fc 1 yi:fc-i)
P\^-k yi:fc) r / | \ / | \ j  ’ (2 .87)

J P(Yk I XM X I y l:fc—X ) X

which also largely follows from Bayes’ rule. Although theoretically optimal, Bayes 

filters are often intractable. The Kalman filter is an exception. One can check that a 

Kalman filter is a Bayes filter by using the relations

P(x k I yi:*-i) ~  N { x k , Pk ), (2 .88)

P(*k I y i:fc) ~  AT(xfc, Pk). (2.89)

2.5.3 Extended Kalman Filter

The extended Kalman filter (EKF) [151] is a heuristic applied when the 

transition or measurement equations do not satisfy normal linear assumptions. In 

other words, (2.77) and/or (2.78) are replaced with

x*+i =  /(x*,Ujb,wfc), (2.90)

y k = h(xk, v k), (2.91)



49

where /  and h. are presumed to be differentiable functions. The extended Kalman 

filter operates by replacing (2.80) and (2.81) with

Xfc =  / ( x fc_ i,u fc,0), (2.92)

Pk =  A kPk^ A kJ + WkQkWk\  (2.93)

and replacing (2.82) and (2.84) with

Xfc =  x k +  K k{yk -  h(xk , 0)), (2.94)

K k = Pk Hkt(Hkp - H kJ + VkR kVkJ) ~ \  (2.95)

where A k, Hk, Wk, and Vk are linearizations of /  and h such that

d f
A k = - J - ( x k„l , u*,0), (2.96)

OX-k

=  (2.97)

d f
ITjfc =  — (xjfc_i, u k, ° ) ,  (2.98)

dwfe

Vt 0). (2.99)

One can see that the EKF is only a first order approximation. Consequently, the 

EKF is not an optimal estimator in any sense unless the transition and measurement 

functions are linear and it reduces to the standard filter. Higher order versions based 

upon successive terms of the Taylor series expansions of /  and h are possible, but 

are not typical and are not guaranteed to provide a significant benefit despite the 

increased computational burden.
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2.5.4 Other Filters

Numerous filters have been proposed over the years for a diverse array of 

applications. The unscented Kalman filter [147] is a direct alternative to the EKF 

that applies a deterministic sampling called the unscented transform to the transition 

function that is able to preserve the mean and covariance of the process regardless of 

the nature of the transition. As a result, the unscented Kalman filter does not require 

one to compute partial derivatives for linearization nor even a differentiable transition. 

Nondeterministic Monte Carlo sampling leads particle filters. For the purpose of 

multi-target tracking (e.g. radar systems), the problem is complicated by uncertain 

associations between measurement and state variables. The joint probabilistic data 

association (JPDA) [39] filter, probability hypothesis density (PHD) filters [142], 

and relatives such as that given by Vo and Vo [143] can be used as heuristics to 

solve the problem. A JPDA filter aggregates measurements based upon possible 

assignments between observed and predicted targets. Since the number of assignments 

is combinatorial, the JPDA filter suffers some practical drawbacks. The PHD filter 

avoids sampling and combinatorics by estimating the intensity of the target locations 

instead of the actual locations, where the intensity is a function giving the expected 

number of targets within a given volume. The intensity is normally modeled with a 

Gaussian mixture model, and heuristics regularly prune components with low weight 

in order to avoid an unbounded growth in their number. In Chapter 4, we use a 

modified Kalman filter similar to the JPDA in order to estimate the positions and 

correlations of stationary targets.
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2.6 Support Vector Machines

A support vector machine (SVM) is a binary classifier that assigns positive or 

negative labels to a set of instances by calculating an optimal separating hyperplane 

that separates the positive and negative instances. In the event that the instances are 

not separable, then penalties for each misclassification are incorporated into the calcu

lation of the hyperplane. SVMs are an example of a kernel method (see Section 2.1.4). 

The primary advantage of SVMs is that they are theoretically well-founded. Provided 

with a PD kernel and non-negative misclassification cost C, an SVM finds the globally 

optimal solution to a quadratic programming problem.

Let us derive the quadratic program with a linear kernel (see Burges [13] for a 

more detailed derivation) as it gives some insight into how SVMs operate. Consider a 

set of data X with I elements a set of labels (represented by a vector) y £ {—1,1}; for 

each element of X. Without loss of generality, assume that all of the elements of X 

are vectors Xj £ R71 for some n > 0 and i £ [1, /]. A label yt indicates whether a data 

point belongs to the positive or negative group. Our goal is to determine a hyperplane 

that separates the positive and negative groups of points with the widest margin 

possible, where the margin is defined to be the shortest perpendicular distance from 

the hyperplane to any x ,  £ X. If the groups cannot be separated by a hyperplane, 

then we want to minimize the number of violations. A hyperplane can be defined by a 

vector w normal to its surface and a scalar b that offsets the plane from the origin. The 

(signed) distance of any point x from the hyperplane is given by (wTx + 6)/||w||. We 

require that members of the positive or negative group lie on the positive or negative



side of the plane. This constraint can be represented for all i by

2/t(wTx + b) -  1 + & > 0, (2.100)

where & > 0 is the error incurred by any point Xj on the wrong side of the margin. 

Any point with & > 1 is on the wrong side of the hyperplane. Note that points 

satisfying equality in (2.100) with & =  0 lie on the margin, which means that the 

margin has a magnitude of l/||w ||. Points that lie on (or within) the margin are 

called support vectors. See Figure 2.1 for a visualization. Maximizing the margin 

therefore corresponds to minimizing ||w||2. We also wish to minimize the cost of 

misclassifications given by C]Ci£«> where C  is chosen beforehand.

Figure 2.1: An illustration of a separating hyperplane for a non-separable problem. 
Support vectors are circled. Note that the error £ is with respect to the margin for 
the side of the plane on which the point should ideally be located.

o

o

c

Combining both objectives and introducing Lagrange multipliers for each

constraint yields the desired Lagrangian
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where a* > 0 and //,, > 0 are the Lagrange multipliers for the inequality constraints 

given by (2.100) and & > 0. Recall the definition of the dual (2.64) as a maximization 

with respect to the Lagrange multipliers with the constraint that the partial derivatives

of the Lagrangian with respect to the primal variables must be zero. Let us therefore

note that

= 0 ==► w = (2.102)
X— 1

f)T ^
- g f = 0  =*• (2.103)

i=l

d i p
0 = *  C = Oi + tn. (2.104)

d£i

Applying these equality constraints to the Lagrangian yields the dual objective

i i
L D = ^ 2 a i - Y l  OLiaj yiyj x.iJx j (2.105)

i=l i,j=1

subject to 0 < o t i <C.  The dual is remarkably easier to solve as it has fewer variables 

and simpler constraints, and general or special purpose methods may be used to find 

the solution.

A more significant observation is the fact that the data only appears in the 

dual in the form of dot products, which means that one can replace these dot products 

with kernel evaluations, i.e.

i i
L d  = a i a j y i y j K { ^ * 3 ) ;  (2.106)

t=l i j= l

where K  is a PD kernel and Xj no longer needs to be an element of Rn. A new data 

point z is classified (assigned a label yz) according to the side of the hyperplane on



which it falls, which can be determined by

Vz =  sign 'f a iyiK ( x i,z) + b (2.107)

One can see then that SVMs can be expensive to operate depending on the number

PD, then the solution may only be locally optimal. Many interesting problems are 

characterized by indefinite kernels, and learning SVMs with indefinite kernels is an 

active research area. See Chapter 5 for an example of two indefinite kernel techniques. 

Wc state several facts about the solution. First, due to complementary slackness,

Consequently, cq > 0 only for support vectors, and cq < C  if and only if G = 0 (and 

cq =  C  if and only if & /  0). This fact yields another interpretation for the term 

support vector since support vectors are simply those that have nonzero or non-null 

support over a  considered as a domain. Any vector that is not a support vector has 

no effect on the solution and can be removed from further calculations. Given the 

solution of the dual a*, we can also calculate w using (2.102) and

for any i such that 0 < cq < C. If the data is separable, then C and G can be ignored 

and the primary difference is that each cq is no longer bounded above by C.

of support vectors and the complexity of the kernel. Note that if the kernel K  is not

cq[?/i(wTx +  6) -  1 +  &] =  0, (2.108)

/q£i 0. (2.109)

b =  yi -  ^ P c ^ x /X i  
j = i

(2 .110)
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2.7 Neural Networks and Deep Learning

An artificial neural network (ANN) or simply neural network is a computational 

paradigm designed to emulate the biological neural network found in organisms. In a 

neural network, nonlinear functions emulate the behavior (activity) of neurons, and 

scalar weights emulate the connectivity strength of synapses between the neurons. 

Despite this layer of abstraction, neural networks can often be concisely represented 

as functions of matrices and vectors. Many types of neural networks exist, including 

multi-layer perceptrons (MLPs), recurrent neural networks (RNNs), and convolutional 

neural networks (CNNs), which we will introduce in the following subsections, and 

they have been successfully used in a wide variety of applications including speech 

recognition [49], computer vision [72], and nonlinear control [77]. More advanced 

neural networks including restricted Boltzmann machines and deep belief networks 

(see Bengio [6]) are not covered. In the final subsection, we review the basics of deep 

learning, which may be considered a collection of best practices for ANNs. Unless 

otherwise stated, the main reference for this section is Goodfellow et al. [44], which 

gives the background for an understanding of the current state of the art in neural 

networks and deep learning. The reader is referred to Jain et al. [64] for a simpler 

and much smaller in scope reference.

2.7.1 Multi-layer Perceptrons

The MLP or feed-forward neural network is perhaps the simplest and most 

widely used form of ANN. In an MLP, neurons (or nodes) are organized into n distinct 

layers with directed connections only from neurons in layer i to neurons in layer i + 1.
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See Figure 2.2 for an example of a network with one hidden layer. The symbols in the 

figure are defined in the next two paragraphs.

Figure 2.2: A detailed illustration of a multilayer perceptron with input x, output o, 
and two layers, one of which is hidden. The arrows show the flow of input from left to 
right. During back-propagation in training, the gradient of the error flows backwards 
from right to left. The bias is not shown.

Let n, be the number of neurons in layer i with the input considered layer 0.

Let w represent the connections between layers i and i + 1, where is

the weight of the connection between the j-th  neuron of layer i and the k-th neuron of

r ( * ) belayer i + 1. In addition, let the nt-dimensional vector-valued function — 

the activation function of layer i, where represents the scalar activation function 

of neuron j  in layer i, i.e. for a given n,-dimensional vector v

o M(V) - (2 . 111)

The input of cr^ is found from the output of the previous layer multiplied by the 

appropriate connection weights. Each layer may also have an optional bias that is
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added to its input. The output z* of layer % is then given by

zi = f f ^ ( l V (i)Zi_ 1 + b (<)), (2.112)

= ffW(WF(i)a (i- 1)(Ŵ (i- 1)zi_2 +  b^~^)), (2.113)

= . . .  (lT(2V (1)( t r (1)x +  b (1})))), (2.114)

where x is an input vector provided to the first (input) layer of neurons.

The weights and biases of a network may be simultaneously learned using the 

back-propagation algorithm, which is effectively just an efficiently organized application 

of the chain rule from calculus followed by gradient descent, i.e. the updated value of 

a weight *w^  is given by

=  (2-115)

where a  is a learning rate and il measures the error of the network’s output o. For

example, 0, may be the squared error of the output with respect to some target values

o*, which results in

Sl(o) = i | |o - o * ! |2. (2.116)

Layers in between the input and output layer of neurons are said to be hidden. 

Activation functions are usually assumed to be sigmoidal functions that approximate 

the Heaviside step function, e.g. the logistic sigmoid function

*(*> = r r ^ '  (2-117)

A powerful result [26] states that one hidden layer (with enough neurons) is sufficient 

to model arbitrarily complex functions. Since the input and output layers are always
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presumed to exist, from this point forward let the term n-layer network refer to an 

ANN (not necessarily MLP) with n hidden layers.

2.7.2 Recurrent Neural Networks

An RNN allows the existence of feedback loops or connections from higher to 

lower layers (although it is not necessarily organized into layers). RNNs implicitly 

possess a sort of memory, which allows them to model time-dependent phenomena 

or sequences of variable length. We consider two types of RNNs. The first type is 

considered only for illustration and is a single layer RNN with connections from the 

hidden layer to itself. The second type is more advanced and employs what is known 

as a gated recurrent unit (GRU).

Consider a single layer MLP parameterized by hidden weight matrix W . An 

RNN extends the hidden layer with the introduction of an additional weight matrix 

U that is multiplied by the hidden layers previous output. More formally, let x*, 

t £  [1 ,T] be a sequence of inputs to the network, and let be the output of the 

hidden layer at time t. The hidden layer’s output is computed according to

h t = c { W x t + Uht- l ), (2.118)

where ho = 0 and a is the logistic sigmoid function (see Figure 2.3). The RNN outputs 

a vector at every timestep, but for certain applications only certain timesteps (e.g. the 

last) are of interest. The training and operation of an RNN is more difficult than that 

of an MLP due to either a vanishing or exploding gradient as the number of timesteps 

grows.
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*Q

Delay

Figure 2.3: A block diagram representing a hidden layer in an RNN. The layer’s 
output ht is provided as input to the next layer, which may or may not be recurrent.

GRUs provide a solution to the gradient problem encountered by basic RNNs 

by constructing a more elaborate activation function. A GRUs consists of so called 

update and reset gate vectors zt and rf that control to what degree a layer’s previous 

output h£_i and current input x* contribute to its next output ht. If an element of 

the reset gate is zero, then the corresponding element of h*_i is ignored and that 

part of the network behaves as though the sequence has just started. The update 

gate, on the other hand, controls whether elements of ht_i or the candidate output 

ht are propagated forward in time. The update and reset gates are computed in a

similar manner to the output of a traditional hidden recurrent layer, although they

are parameterized by their own respective weight matrices Wz, Uz and lVr, Ur, i.e.

z t = a{Wzx l + Uih t. 1), (2.119)

rt = o{WryLt + Urh t- l ). (2.120)

The candidate output is the traditional output modulated by the reset gate and is 

given by

h4 = tanh (Wxt + U(rt Q h*_i)). (2.121)

Interpolating h( ] and h* using the update gate provides the next output

ht =  (1 -  zt) © h*_i +  zt 0  ht. (2.122)
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Figure 2.4 provides a block diagram of a GRU. The reader is referred to Chung 

et al. [19] for extra details and an introduction to another type of gated RNN, the 

Long Short Term Memory network, which predates GRUs.

-wtanh

Delay

Figure 2.4: A block diagram representing a GRU. The layer’s output h t is provided 
as input to the next layer, which may or may not be recurrent.

2.7.3 Convolutional Neural Networks

A CNN is a special type of feed-forward neural network designed especially 

for processing images or other regular grids. Inspired by mammalian vision systems 

(especially cats), a CNN consists of tiled or replicated weights that connect to only 

local regions of the input. Weights that are tiled together as a single unit are usually 

referred to as a kernel, but to avoid confusion we will use the term filter. The name of 

this type of network comes from its similarity to the convolution operation between 

two functions / , g : M ->■ E:

/
O O

f ( x )g { t~ x )d x .  (2.123)
-00

In a sense, the input is one function and the weights of the filter are the other. If the 

input has more than one dimension (e.g. a two-dimensional image), then the filter 

is convolved in each dimension separately (see Figure 2.5). A convolutional layer is
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comprised of one or more filters that are convolved with the image to produce an output 

layer of similar shape. Thinking of each entity as a tensor aids the interpretation and 

definition of equations.

'wa+xb \  fwb+xc > 
^ryd+zej \+ye+zf>

'wd ( xe \  fwe+xf ' 
A yg \ zhJ \+yh+ziFilter

Input Output

Figure 2.5: A 2 x 2 filter is convolved with a 3 x 3 input layer to produce a 2 x 2 
output. The output is then given to a nonlinear activation function such as hyperbolic 
tangent. Note that without padding the input, the output will be smaller.

To be more precise, suppose the input is a color image represented by the 

tensor X  where X itj tk is the intensity of the red, green, or blue channel (i = 1, 2, or 3) 

in the j -th row and k-th column. In addition, suppose that we are using an /-channel 

M  x N  filter, where M  and N  are the width and height in pixels of a patch of the 

image on which the filter operates, and let Fij^ i  represent the weight between the 

i-th output channel and j-th  input channel at the k-th row and I-th column of the 

filter’s input patch. Assuming the output is also organized as a two-dimensional grid, 

then the i-th output channel Zitjtk in the j-th  row and fc-th column can be given by

3 M N

^ i , j , k  ^   ̂ ^   ̂ (2.124)
(=1 m= 1 n=l

Multiple filters may be used, and the input may consist of multiple channels at each 

position (e.g. red, green, and blue color channels). Note that near the borders of the 

input, zero-padding may be necessary in order to have the filter cover all possible
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positions. Alternatively, the number of output neurons is simply shrunk based upon 

the width and height of the filter. Filters may also be defined that skip input in 

regular intervals. The stride of a filter is one plus the number of pixels that it skips. 

Note that the size of the output is reduced relative to the input by a factor equal to 

the stride, which can be useful in reducing the computational load of the network.

A convolutional layer is typically composed of three stages: filtering, detecting 

via nonlinear activations, and an important operation known as pooling. Filters serve 

as local, translation invariant feature extractors that are automatically learned during 

training. Increased computational efficiency resulting from the replicated weights is 

a beneficial side-effect. Pooling replaces the output of a layer at a certain location 

with an aggregate function of nearby outputs. The aggregate function may be a max 

function or an average, for example. Aside from reducing the size of the output, 

pooling makes the network largely invariant to small translations of the input. Instead 

of knowing precisely where a feature was located in the input, pooling informs the 

network that the feature exists. Pooling is also an important ingredient in making 

a CNN capable of handling variable-sized input. For example, regardless of the size 

of the image, we may choose to pool each quadrant before passing the output to a 

fixed-size layer.

2.7.4 Deep Learning

Deep learning is the latest name given to the branch of machine learning 

dominated by ANNs, which has garnered renewed interest since massively parallel 

architectures and large datasets have made certain challenging problems feasible.
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CNNs in particular have been very successful in recent years and have played a major 

role in the resurgence of interest in neural networks and the development of deep 

learning. Prom the author’s point of view, deep learning is best thought of as a 

collection of best practices for using neural networks, and we will list some of them 

here.

One of the most significant best practices is to treat a neural network as a 

probabilistic model. A neural network is parameterized by a set of weights and biases 

that can be collectively represented by the vector 0. Let /(x ;0 )  be the function 

representing the output of a neural network parameterized by 0. Since the network is 

a probabilistic model, we choose to train our networks using the maximum likelihood 

principle in order to find the maximum likelihood estimate 0. A common objective or 

loss function when training the network is to minimize squared error as in (2.116). 

When the network is interpreted as a probabilistic model, however, this loss function is 

likely to be inappropriate as it places a Gaussian prior on the output (see Section 2.2.2). 

For example, networks used for classification are often multinomial models with a 

single output per class constrained to be between 0 and 1 by a softmax output layer, 

where the j -th output of a softmax function is defined to be

for x  € M.K. The outputs of the network are then constrained to be probabilities. A 

Gaussian prior is entirely inappropriate for this situation. Instead, the categorical 

cross entropy should be used, which is given by

softmax [x] (2.125)

ff(Pmodeh Pdata) (2.126)
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where pmodei, Pdat&, and x, are defined as in Section 2.2.2 and y7 is the index of the 

output corresponding to the correct classification of x7.

Alternative nonlinear activation functions comprise the second best practice. 

Sigmoidal activations such as the logistic function (2.117) or hyperbolic tangent have 

practical deficiencies that render them unsuitable, especially for networks with many 

layers. The main deficiency is that the gradient tends to vanish outside of a very 

small window, which slows training considerably. Instead of such activations, the 

rectified linear unit (ReLU) should be used. An ReLU is calculated as the element-wise 

maximum of a given vector and 0, i.e. the j -th output is

ReLU[x]j =  max{0, Xj}. (2.127)

Networks employing ReLUs are more efficiently computed than those with sigmoids, do 

not suffer from vanishing gradients, and retain the universal approximation property.

Deep learning also places great emphasis on regularization. Regularization is 

any method that is used with the intention of reducing test or generalization error, 

possibly at the expense of training error. In other words, the goal of regularization is 

to avoid overfitting to the training data. Some types of regularization are listed here.

• Weight decay, also known as regularization, adds the norm of the model’s 

parameter vector to the objective function scaled by a coefficient A. For example, 

if we have a model with parameter vector 0 and loss function £(x; 0), then the 

training objective Vt becomes

Q(0) = £(x; 0) +  A0T0, (2.128)
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where A > 0 controls the influence of the regularization. Note that weight decay 

does not have to be applied to the entire parameter vector. Other lp norms may 

be used for weight decay that have subtle effects on the regularization.

• In dropout [130], units in the neural network are randomly dropped during 

training by setting their outputs to zero. Dropout makes the network more 

robust to noise and is theoretically a means to simulate an ensemble of 2N 

networks, where N  is the number of neurons in the target architecture. In 

addition, dropout reduces codependencies and correlations between weights by 

forcing them to train separately from one another, thus allowing the network 

to learn multiple partial representations of the data. A downside is that the 

network’s size and training time must generally be increased to accommodate 

dropout.

Two similarly themed forms of dropout exist, namely dropconnect [148] and word 

dropout [63]. In dropconnect, individual weights are randomly set to zero rather 

than entire units. Word dropout is a somewhat constrained version of dropout 

that drops out certain subsets of units together. For example, word dropout 

may consist of randomly dropping timesteps in a recurrent neural network.

• Gaussian noise may be added to the input layer during training as a form of 

regularization.

Regularization is not guaranteed to improve generalization error, and applying too 

much or too strong of a regularizer can make the classifier perform worse than without.
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These tools should therefore be used with careful intent. Used correctly, however, one 

can expect a more reliable model in untested situations.



CHAPTER 3

3D HAND POSTURE RECOGNITION FROM SMALL, 
UNLABELED POINT SETS

In this chapter we explore several classification algorithms for identifying hand 

postures using the 3D marker positions reported by Vicon. A natural complication 

arises when choosing features with which to perform classification, and choosing an 

appropriate feature extraction or transformation is challenging. Note that there is no 

context provided for the points other than each other; each frame or set of markers is 

a standalone entity with no external context. For the duration of this chapter, we will 

refer to the positions as raw features. Our comparison will include methods that work 

directly with the raw features as well as those that do not.

Some might think that image or point set registration [8], which aims to align 

several images or point sets via rigid or non-rigid [66] transformations, would yield a 

solution or be a practical step towards one. This intuition would be incorrect. For 

all intents and purposes, we consider our point sets to already be aligned via a rigid 

transformation based upon the distinctive rigid pattern of markers organized on the 

back of the glove in Figure 1.2. Since we are dealing with a small number of points, 

some of which may be missing or occluded, registration under normal assumptions

67
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could lead to spurious alignments, such as the knuckles of one posture being aligned 

with the fingertips of another.

Our main contribution is an analysis and comparison of various methods for 

the classification of relatively sparse, aligned, unlabeled point sets of variable size. As 

stated above, we assume that there is no further context for each point set beyond the 

information contained in the positions themselves. At no point in time do we know 

which marker is the “thumb” or something similar. Note that in this framework, terms 

such as “thumbs up” or “thumbs down” (used by Song et al. [129]) are considered 

synonymous as they correspond to the same posture. By including details such as 

orientation after posture recognition, one can make more refined distinctions (e.g. 

thumbs up at 9 degrees). Any system capable of generating positions corresponding to 

landmarks (e.g. fingertips), especially with respect to some standard reference frame, 

may benefit from our analysis.

3.1 M ethodology

In this section, we describe our dataset and the classification algorithms 

evaluated with it. To our knowledge, there is no public dataset directly related to our 

purpose, i.e. a dataset comprised of instances of small unordered point sets, especially 

for 3D hand gesture or posture recognition. Therefore, we have produced our own. 

Several classification algorithms were evaluated on both the raw data (unordered 

positions) as well as on certain feature transformations.
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3.1.1 Data

We base our analysis on the posture recognition data set described in Section B.3. 

The five postures are fist, pointing with one finger, pointing with two fingers, stop 

(hand flat), and grab (fingers curled) (see Figure B.3). Since each instance is a 

variable-size (due to occlusion) unordered set of 3D points, multiple derivative datasets 

were created to address the lack of structure.

Raw

This dataset is comprised of simply the instances with the minimal preprocessing 

described in the appendix.

Aggregate

We extract aggregate features that do not depend on the points’ order. In 

particular, the following aggregate features were considered: number of markers, mean, 

eigenvalues and vectors of the points’ covariance matrix, and the dimensions of the 

axis-aligned minimum bounding box centered on the mean. The expectation is that 

aggregate features will suffice as long as marker occlusion is not too severe, at which 

stage more locally sensitive features may be beneficial.

Grid Transformation

Although one could rasterize the space, the resolution of the rasterization 

would likely be prohibitive in terms of associated time and space constraints. As an 

alternative, we used a low-resolution pseudo-rasterization based upon a limited 3D 

grid of overlapping spheres. Cubes or diamonds could have alternatively been used by 

changing the spheres’ associated lp metric, but these were not ultimately considered.
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Each sphere contributes one feature to a transformed instance, recording the presence 

of markers within its boundary according to some function of their Euclidean distance 

to the sphere’s center. In this manner, we impose a spatially relevant order on the 

raw features. Step, linear, and Gaussian functions fi(x) of a marker’s distance x from 

the center of a sphere with radius r were considered and are defined as

where o is the number of standard deviations (compared to standard normal) within 

the sphere. Each function is scaled so that it has a value of 1 for x =  0 and a value 

of 0 (or near 0 in the case of the Gaussian with a =  3) for x > r. In a sense, the 

spheres are like neurons in a neural network whose activations are triggered by the 

markers. The activations caused by multiple markers in the same sphere are simply 

aggregated in a summation. One may note that this grid transformation is reminiscent 

of a convolutional layer of a neural network, albeit more hand-crafted.

We first, determined a box in which the user’s hand was expected to lie based 

upon the mean position plus or minus two standard deviations. Supposing there 

are m  spheres per dimension, the spheres are scaled and arranged such that they 

form a regular, densely packed grid spanning the internal volume of the box. Their 

radii are then uniformly scaled by an integer multiple rs such that the entire internal 

volume is covered. The advantage of letting the spheres overlap lies in the implicit

1 if x < r,
/ i W  =  1 (3.1)

0 otherwise

f i ix )  -  max ( l  - (3.2)

(3-3)
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creation of extra detection regions according to their intersections. We considered 36 

transformations based upon the following options: m  £ {3,4,5,6}, rs £ {2,3,4}, and 

f i(x)  with i £ {1,2,3}. See Figure 3.1 for a visualization.

F igure 3.1: A 2D grid transformation with m  = 4, rs = 2, and i = 2. The opacity of
each sphere is proportional to its activation by the top-left marker.

3.1.2 Classifiers

Our classifiers are split into multiple categories based upon the associated type 

of dataset. We will list raw data classifiers first, which require extra explanation, 

before providing the traditional classifiers, e.g. SVM, considered for use with the 

aggregate and transformed data. First, we briefly describe two tools used thoroughly 

in the raw classifiers, GMMs and minimum-cost matchings.

Recall the definition of a GMM given in Section 2.1.6. A GMM is a collection 

of n  multivariate Gaussian distributions, or components, used to estimate an arbitrary 

probability density distribution.
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A minimum-cost matching is a solution to the assignment problem (see Sec

tion 2.4). In our case, we wish to assign the points of one instance to the points of 

another (or to the components of a GMM) such that the summation of costs over 

all matched pairs is minimized. In this scenario, a GMM component’s distribution 

describes the region in which a marker (such as the tip of the thumb) is expected 

to lie. Each component represents the expected location of a certain marker. The 

mixture gains represent the probability of each component being present at all in 

a given instance. A given GMM approximates the shape of a certain posture, and 

therefore we construct one per class.

Five cost functions for matching component Ck to the j-th  position Xj of an 

instance were considered. The first, Ci(cfc,Xj), is simply the Euclidean distance 

between the point and the mean, i.e.

CMcfc.xj) =  ||xj - / i fc||2- (3-4)

The other cost functions measure the probability of observing Xj independently of other 

components and factors. The first of these is a normalized version of the component’s 

probability density function and is calculated according to

C2 (cfc,Xj) =  -  In ( / fc(xj)>/(27r)3|£fc|) , (3.5)

where the negative logarithm is taken so that the minimum-cost matching will maximize 

the product of independent probabilities. Similarly,

C3(cfc,Xj) =  -  In (1 -  x2 ((xj -  ^ ^ ( X j  -  A**))), (3-6)
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where x 2(z ) is the cumulative distribution function of a chi-squared variable of degree

3. Note that 2 in C ^C k ,^ )  is the square of the Mahalanobis distance, which has a 

chi-squared distribution with 3 degrees of freedom [122], We augment C2 and C3 to 

produce the last two cost functions

which account for components that are more or less likely to appear.

For classification based upon a matched GMM, we choose the class correspond

ing to the GMM with the minimum average-cost (per component) matching. An 

unmatched component c*, is given a cost of — In (1 — irk), the probability of it being 

absent in a given instance.

Greedy GMM

The standard algorithm for computing a GMM with a fixed number of compo

nents is the EM algorithm. Since we do not necessarily know how many components 

to expect, we use the greedy algorithm of Verbeek et al. [136]. The GMMs are 

constructed using the greedy algorithm on the union of all training sets I. For 

unmatched classification, we treat each instance I  as a small standalone dataset and 

classify it as the GMM with the highest log-likelihood

Cik't.Xjj = C2(ct,Xj) -  lnjTfc (3.7)

C5(ct ,xj) =  Cs(c*,X|) -  tri 71,: (3.8)

(3.9)
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The classification corresponds to which model’s parameters are more likely given the 

data in I. A matched version uses the same greedy algorithm for construction with 

C4 or C5 for classification.

Heuristic GMM

We also explore alternative heuristics employing minimum-cost matchings 

for constructing the mixtures. The underlying motive for the heuristic GMM is to 

produce a pseudo-naive Bayes classifier where each GMM component contributes an 

independent observation. The algorithm in Figure 3.2 produces pseudo-GMMs that 

respect the constraint where two markers of the same instance cannot belong to the 

same component.

procedure train(7, C E {Ci, C2, C3}, 0  e  {R, E})
Given: Set of instances I, cost function C, option 0
Output: GMM G that approximates I
Initialize G with 0 components
matchInstances(G, I, C)
while G is not converged do

Randomly permute /
if 0  equals R  then

rematchInstances(G, / , C)
else

matchInstances(G, /, C)
end if

end while
Set mixture gains to percentage of I  containing matches

Figure 3.2: The algorithm used to train heuristic GMMs. Convergence depends 
upon O. If R  is used, convergence occurs when the number of markers rematched 
to a different component drops below a threshold. Otherwise, convergence depends 
on the matching cost under C. A maximum number of iterations is allowed before 
convergence.
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The algorithm relies on two sub-procedures: “matchlnstances” and “rematchln- 

stances.” The first procedure merges each instance into an empty (i.e. 0 components) 

or pre-existing GMM according to sequential bipartite matchings and is shown 

in Figure 3.3.

procedure matchInstances(G, /, C)
Given: GMM G , set of instances / , cost function C 
Output: Refined GMM G 
for all instances f in  I  do

Match points of i to components of G according to C 
for all points p of i do

if p is matched to component c then
Merge p into c; update mean and covariance 

else
Add component to G with mean p 

end if 
end for

end for_________________________________________________

Figure 3.3: The sub-procedure used to initialize a heuristic GMM.

The second sub-procedure (Figure 3.4) adjusts a GMM presumably constructed 

by the first sub-procedure by iteratively removing and re-merging each instance based 

upon the assumption that the assignment from points to components used to re-merge 

is more accurate than the assignment previously used in the removal. One of C\, 

C4, or C5 is used for classification. If C\ is chosen, then we ignore the cost of an 

unmatched component as we are not performing a probabilistic classification. Let 

Q(Ci,Cj)  denote a heuristic GMM built with option O and cost function Ci that 

classifies according to Cj. Note that we do not produce a GMM in the strict sense of 

the definition (the mixture gains do not add up to 1). However, GMMs do provide
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a useful vocabulary with which to discuss the classifier. See Chapter 4 for a more 

developed version of this idea.

procedure rernatchlnstances(G , / , C )
Given: GMM G , set of previously matched instances / , cost function C 
Output: Refined GMM G 
for all instances i in I  do

Remove points of i from prior matched components 
Rematch and merge points of i into components of G 

end for______________________________________________________

Figure 3.4: The sub-procedure used to refine a heuristic GMM.

Raw Nearest Neighbor

We use the normalized matching distance of Ramon and Bruynooghe [111]. 

This distance is similar to EMD (Section 2.4) except it is normalized and remains a 

metric on sets of unequal size. As such, it measures the cost of transforming one set 

into the other via a minimum-cost deformation. When applied between two measures

/i and u on a domain X  with bounded metric d, it takes the form

2EMD(n,i>) + | ii{X) — i/(X)|max{d(x, y)}
M U ,  v) = -------------f / v .    . (3.10)

max{fx(X), v(X)}  +  EMDU, v)

A majority vote among the 6 nearest neighbors is used to classify a given query 

instance, with ties broken by the query’s minimum average distance per class of 

neighbor. Chapter 5 shifts this approach to a more theoretically sound kernel setting.

Traditional

Six traditional classifiers are considered for the aggregate and grid transformed 

datasets: naive Bayes, Bayesian networks, MLPs, SVMs, random forests, and A:-NN 

(with k — 6). The implementation and testing of these classifiers is provided by
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WEKA [52]. Grid transformed classifiers employ feature selection (FS) to both reduce

processing time and improve accuracy since many of the spheres in the grid hardly ever 

contain a marker. Aggregate classifiers did not necessarily use FS. Generally, with 

the exception of k in fc-NX, we let WEKA choose default classification parameters.

3.1.3 Evaluation

Due to the streaming nature of the data capture, it is likely that for an instance 

of a given user there will be a duplicate or near duplicate within the user’s dataset. 

Therefore, we adopted a leave-one-user-out evaluation strategy. In addition, this 

strategy allows us to measure the ability of a given classifier to generalize to users it 

has not seen before, just as it would need to do in practice.

We found it prohibitive in terms of time to consider every possible combination 

of grid transformed dataset, traditional classifier, and left out user. Thus, we opted to 

first select the “best” on-average classifier and dataset combination via a reduced user 

set of 4 randomly selected users and 12 randomly selected transformations. The selected 

classifier would then be compared against the raw and aggregate classifiers on the 

remaining 8 users. The “best” on-average grid transformed classifier was determined 

to be the MLP, and it attained its best performance on a transformation with 6 

spheres per dimension, each of radius 4, and the linear function (Equation 3.2).

We used balanced error rate (BER) as our primary metric for evaluating the 

performance of a classifier on c classes with confusion matrix A, which is defined as

(3.11)
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BER weights classes equally regardless of their representation in the dataset. If all 

classes are equally weighted, then it is equivalent to 1 minus the accuracy. Thus, the 

lower the value of this metric, the better our perceived evaluation of the classifier.

3.2 Results

For reference, we report a BER of 0.540 ±  0.123 for a “Simple” naive Bayes 

classifier based upon a single feature, the number of visible markers. This reference 

classifier gives us an idea of the discriminative power that comes just from counting 

markers.

Results for transformed feature classifiers are given in Table 3.1. The other 

traditional classifiers (aside from MLP) were also evaluated on the “best” on-average 

transformation. The transformed classifiers had a wide range of performance. Even 

though the MLP achieved the best on-average performance, the fc-NN classifier 

performed better on the chosen final transformation. Note that increasing the number 

of spheres or sphere radii may yield improved performance. However, this increased 

transformation complexity automatically translates to increased model complexity, 

which potentially complicates training and increases the risk of overfitting.

Table 3.1: The average BERs per user left out and corresponding standard deviations 
for tested transformed feature classifiers. Lower BER is better.

Classifier BER

fc-NN
MLP
SVM
Random Forest 
Bayes-Net 
Naive Bayes

0.158 ±  0.152 
0.183 ±  0.168 
0.204 ±  0.155 
0.241 ±  0.151 
0.353 ±  0.154 
0.375 ±  0.181
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Results for aggregate feature classifiers are given in Table 3.2. Aggregate classi

fiers performed fairly similarly to one another, exhibiting fairly balanced performance 

across the different users. On average, though, they were generally on the higher end 

in terms of BER. FS did not generally yield improvement in average BER, which is 

not particularly surprising given the relatively small number of aggregate features. 

Deviation in BER across users, on the other hand, was generally reduced by FS. Only 

the MLP and Bayesian network noticeably benefited from attribute selection. Many 

of the aggregate classifiers had relatively low deviation, reflective of the smooth nature 

of their features (i.e. they are not prone to overfitting).

Table 3.2: The average BERs per user left out and corresponding standard deviations 
for tested aggregate feature classifiers tested. Lower BER is better.

Classifier B E R
SVM 0.216 ± 0.136
Random Forest 0.221 ± 0.156
SVM (FS) 0.232 ± 0.098
MLP (FS) 0.248 ± 0.098
Naive Bayes 0.273 ± 0.117
MLP 0.289 ± 0.128
Random Forest (FS) 0.292 ± 0.148
Jfe-NN 0.300 ± 0.165
Jfc-NN (FS) 0.301 ± 0.142
Naive Bayes (FS) 0.303 ± 0.202
Bayes-Net (FS) 0.352 ± 0.101
Bayes-Net 0.421 ± 0.187

Table 3.3 provides results for raw feature classifiers. The matched pseudo 

GMMs built using the provided algorithm performed best on average among all 

raw classifiers, in particular the variants that trained with the C\ cost function and 

classified with C4 or C5. The reasoning for this is not completely clear; perhaps using
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the incomplete covariance as in C2 or C3 leads to a feedback loop that augments the 

initial error. On the other hand, ignoring covariance entirely by building and classifying 

with Ci yielded very poor results. Note, however, that the raw nearest neighbor has 

significantly less deviation among the users despite possessing slightly worse on average 

performance. This lower deviation indicates that it generalizes more readily. The 

GMMs are prone to overfitting. The greedy GMMs performed quite poorly, likely due 

to the implicit assumption that a given marker would appear in roughly the same 

place for each user. Since marker constraints were ignored, overlapping distributions 

from each user caused the resulting components to poorly reflect the true distributions 

of individual markers. This problem was magnified in the matched greedy GMMs, 

whose components clearly did not represent the expected locations of the markers.

Table 3.3: The average BERs per user left out and corresponding standard deviations 
for tested raw feature classifiers. Lower BER is better.

Classifier B ER
Unmatched Greedy 0.416 ±  0.183
Matched Greedy ( C 5 ) 0.681 ±  0.155
Matched Greedy ( C 4 ) 0.719 ±  0.134

R{Ci,Cs) 0.192 ±  0.180
R{Cx,Ct) 0.194 ±  0.178
i?(C2,C4) 0.197 ±  0.192
£(C 2,C4) 0.199 ±  0.203
E{Cx,Cb) 0.203 ±  0.179
£(C 3,C5) 0.203 ±  0.190
r (c 3, c 5) 0.216 ±  0.227
E(Ci,Ci) 0.217 ±  0.169
R{C\,Ci) 0.375 ±  0.211
E(CX,CX) 0.383 ±  0.211

k- NN 0.214 ±  0.089
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We also note that some users are inherently harder to classify than others, 

regardless of the chosen algorithm. One user consistently had the highest error when 

left out, even though their rates of marker occlusion were not particularly abnormal 

or even above average. We think that this supports the idea that an online learning 

scheme will inevitably be required for any system that expects users to perform 

natural gestures rather than those precisely dictated by the system. Regardless of the 

initial training set, there will likely be outlying users that require the system to adapt 

automatically or through some form of positive and/or negative feedback.



CHAPTER 4

ESTIMATING THE DISTRIBUTION OF UNLABELED, 
CORRELATED POINT SETS

The specific problem we address in this chapter involves the estimation of 

positions and correlations of multiple unlabeled, presumed stationary targets. The 

goal is to obtain a distribution that describes the expected position of each target, the 

dependencies (captured via a covariance matrix) between the targets, as well as the 

probability that each target will appear or not, assuming independence. A practical 

motivation for this problem is that of the estimation of hand postures from noisy, 

incomplete, and unlabeled point sets that represent positions of certain landmarks 

on the hand as recorded by a motion capture environment. As will be shown, this 

problem bears some relation to /c-means clustering [70] (with constraints), multi

target tracking, and certain optimal transport problems such as the computation of 

Wasserstein barycenters.

We solve the problem through use of the EM algorithm (Section 2.2.3) and 

propose using the Kalman filter (Section 2.5.1) in a manner similar to Einicke et al. [35] 

to provide partial, incremental EM steps with the intention of obtaining better solutions. 

A fundamental problem encountered is the uncertainty in assigning observed targets 

to estimated targets since the targets are unlabeled. One could compute the single

8 2
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(or k ) best assignment(s) based upon current state estimates, yielding a so-called hard 

EM algorithm. Alternatively, one could compute the expectation over all possible 

assignments and obtain a soft EM algorithm. However, sampling such assignments 

effectively can be remarkably difficult due to the constraints and multi-modality of 

the distribution, and literature is rather sparse. We apply a state-of-the-art MCMC 

sampling algorithm [144] and evaluate it against the hard EM approach.

We also propose two modifications of the Kalman filter in order to address 

the uncertainty in observed target identity. In the first modification, we propose 

treating the measurement matrix as a random variable and propagating a Gaussian 

approximation of the true state density. In the; second modification, we present a way 

to iteratively reorder the measurements such that the state estimate improves.

A series of simulations with varying numbers of targets and spreads are 

performed in which a true distribution is known and sampled from to generate 

simulated data. The quality of a computed distribution is assessed through the use 

of the Rand index [112] and a modified Hellinger distance with respect to this true 

distribution. We find that the Kalman-filter-based EM algorithm yields improvements 

in accuracy in the majority of scenarios (for example, see the figures in Section 4.3). 

Similarly, the MCMC sampler is found to usually be better even without careful 

tuning.

4.1 Problem Definition and Related Work

Consider as motivation unlabeled point sets that represent positions on a user’s 

hand of infrared reflective markers (targets) used in motion capture systems. Our



goal is to obtain a statistical description of a posture that includes expected positions, 

deviations, and probabilities of appearance for each marker/target. The estimated 

postures may then be used to classify new point sets, identify users, or simply visualize 

the posture. Given that certain markers are attached to the same finger, we reason 

that the inter-target covariance is significant and worth estimating. Let m  be the 

number of targets, Mi € be the position of the i-th target, 7r* the probability of 

the i-th target appearing or being detected, n  € be a concatenation of these 

positions into a single vector, and S be the covariance of /it. We define a profile

m
P ~ f i f ( f j , , Z ) x l [ B ( n u 1). (4.1)

i = l

We will simplify this by introducing the notation V(pi, £ ,t t)  to represent such a 

distribution. Our goal is to find the maximum likelihood estimates of a profile given 

some data. Note that this parameterization assumes that the probability of each target 

being occluded is independent from other targets, which is not likely to be true in 

practice but avoids the problem of modeling the potentially intractable combinatorial 

relationships between targets.

This work generalizes and formalizes the heuristic GMMs proposed in Chapter 3. 

Otherwise, to our knowledge, this precise parameterization has not been considered 

before. The main ways in which our problem and proposed solution differ from 

existing work is in the explicit consideration of the target covariance and different 

appearance or detection probabilities for each target. For example, if we assumed that 

the targets were independent, then numerous filtering algorithms exist for estimating 

target positions (see Section 2.5.4). On the other hand, if we ignore £  and 7T, then
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what we effectively propose is a constrained £>means clustering algorithm [21] where 

constraints force points to have the same or different clusters. One algorithm for 

constrained A;-means uses Wasserstein barycenters [25], which are conceptually similar 

to a profile. Unlike Wasserstein barycenters in this context, profiles are not equivalent 

to Gaussian mixtures, however, as the targets are not individually weighted. We note, 

though, that our algorithm can benefit from the entropically regularized algorithm 

of Cuturi [24] for computing the Wasserstein distance and Wasserstein barycenters, 

although this would again ignore the covariance between targets and only be an 

approximation of our goal. Adapting Cuturi’s algorithm to handle the quadratic 

program induced by the covariance may be possible, although it is beyond the scope 

of this dissertation and we did not use the algorithm in our experiments.

4.2 The Proposed Algorithm

This section is devoted to defining a fortiori expectation-maximization (AFEM), 

a Kalman-filter-based EM approach to obtaining maximum likelihood estimates of a 

profile. The interpretation of each point set as a performance or sample of a posture 

guides us as we define a Kalman filter that estimates the posture’s profile. Since the 

point sets are inherently unlabeled, there is no a priori association between targets 

measured at different times. Consequently, Hk is unknown. Therefore, we must 

first introduce a modified Kalman filter capable of handling uncertain measurement 

matrices.
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4.2.1 A Kalman Filter for Uncertain Measurement Matrices

Note that as a Bayes filter (Section 2.5.2), the measurement matrix Hk is 

implicitly given in that the Kalman filter actually maintains p(xk\yl.k, Hi:k). We

assume that Hi is independent of Hk for I ^  k, so we simplify this expression to

p(xfc|y1;fc, Hk). Consequently, we must marginalize out Hk in order to obtain p(xfc|y1;fc). 

To do so, note the joint distribution

p(xfc, Hk\y1:k) = p(xfc|y1:fc, Hk)p(Hk |y1:fc) (4.2)

and the marginal distribution

Pfafclyi:*) = J P f a ,  Hk\y1:k)dHk = EHfc|yi:fc [p(x*|yi:fc> Hk)}, (4.3)

where

P(x*|yi:*> Hk) = -^(xfc;x fc, Pk) (4.4)

p{Hk\y1:k) = p { H k\yk,-kk ,Pj^), (4.5)

and ^(xfcjXfc, Pk) is the probability density function of J\f(xk, Pk) evaluated at xfc. A 

similar derivation for unknown filter parameters including A k, Qk, or R k is given by 

Mehra [93].

In practice, p(xfc|y1:fc) is likely to be multimodal and difficult to compute 

depending on the complexity of p(Hk\yhk). We therefore propose to propagate 

the mean and covariance of p(xfc|y1;fc) in an adapted Kalman filter as a Gaussian 

approximation to the true distribution. In order to accomplish this, we observe that
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"Xfclyi:!

for an arbitrary function /(x*,),

i:* [/(x*)] =  J  /(xfcMxfclyiJdxfc

=  J  /(xfc)EWfc|y1:fc [p(xfc|y1:fc, Hk)\ dxfe 

= J /(xfc) J  p(^k\yhk,H k)p(Hk\yl:k)dHk dxi (4.6)

- I I  f ( x k)p(xk\yl:k, Hk)dxk p{Hk\y Vk)dHk

Wc can therefore infer how to adapt our Kalman filter to an uncertain measurement 

matrix by converting (2.82) and (2.83) into expectations, i.e.

x fc — E x fc|y 1:fe [x fc]

= EHk\y1;k [Xfc + K k{yk -  Hkk k)] , 

A  = Exfc|y1:fc [(xfc -  x*)(xfc -  xfc)T]

(4.7)

(4.8)
EHk\yv, (I -  K kHk) Pk

where the Kalman gain is defined normally as a function of Hk. At each step we 

assume that the previous steps of the Kalman filter satisfied the standard assumptions 

for optimality, compute the expected filter output, and then treat the result as a 

typical state estimate. A normal Kalman filter can be considered a special case where 

Hk is distributed as a discrete variable with only one point of nonzero probability mass. 

The proposed Kalman filter is similar to the JPDA filter [39] when Hk is constrained 

to be a permutation matrix. Instead of aggregating measurements, we aggregate a 

posteriori estimates. Depending on the distribution of Hk, specialized algorithms or

Monte Carlo sampling may be necessary for the sake of efficiency.



8 8

4.2.2 A Fortiori Estimates

The fact that measurements are unordered allows us to employ one additional 

heuristic to enhance our filter’s accuracy. By assuming that x*. is a better estimate 

than X; for k I, we reason that a more accurate distribution for Hi would result 

if y; had appeared last. We can simulate this scenario by removing y t from the 

calculation of X*, i.e. reversing a Kalman filter timestep as though y t was the most 

recent measurement, and then repeating the timestep with y; as the observation to 

obtain x k and Pk. We use the term a fortiori to denote the presumably improved 

estimates that result from this process since a fortiori indicates a conclusion with 

stronger evidence than a previously accepted one.

In order to undo a timestep, it suffices to calculate simulated a priori estimates 

and Pff'* given the a posteriori estimates and a measurement. Suppose Hi is 

known. The a priori error covariance can then be calculated using the Sherman- 

Morrison-Woodbury identity [124, 153], which states that for some selection of 

conformable matrices A, U, C, and V,

(.A +  U C V )-1 =  A"1 -  A - l U{C~l +  V A~l U)~xV  A~x. (4.9)

Letting A~x =  Pk \  V  = UJ =  Hi, and C~l =  Ri and examining (2.83), we find

Solving for x j r \  we obtain

x<-> =  ( c y c i r ' c y  ( i t  -  K v i ) ,  f4-11)
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where K'k is the Kalman gain computed with Pk Hi, and Ri and

Ck = I — K'kHi. (4.12)

The a fortiori estimates and Pk follow after a normal correction step with

y ; as the measurement and x j^  and as the a priori estimates. Of course, if Hi 

is known, then x'fc = x*, and P'k = Pk- If Ht is not known, then a procedure similar to 

that of Section 4.2.1 can be used, i.e. calculating the expected values of x jf  ̂ and P ^  

with respect to Hi\yl:l. In practice, one re-uses samples of the measurement matrix 

computed at the I-th timestep. A normal timestep with new samples follows.

4.2.3 Defining the State

A posture is defined to be a translation and rotation invariant static configu

ration of points or targets. We assume that the posture is described within a local 

coordinate system such that translation and rotation are not an issue. Since a posture 

is by definition constant, we resolve the question of process noise by interpreting each 

performance as a measurement of a noiseless state that describes the ideal posture. 

We define the state x of our filter to be the parameter pi of the target profile. The 

discrete-time transition function is then x*,+i = xfc. Note that as a consequence of zero 

process noise and a constant state, the a priori estimates are equal to the previous 

time-step’s a posteriori estimates. Since the state is constant and noiseless at all 

times, we drop the k subscript on x.

4.2.4 Defining the Measurements

Let Y k be a point set, nk its cardinality, and let y k G ]Rnfcd be a concatenation 

of each point’s position vector in an arbitrary order. The measurement equation is
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given by

y k = tffcx +  Hk wfe + v k, (4.13)

where w k and v k are zero-mean white noise with covariances E and R k, respectively. 

The vector w k represents the deviation of the k-th performance from the ideal posture 

and is assumed to have constant covariance, i.e. each performance has the same 

expected deviation. The vector v fc denotes the error due to measurement and is not 

necessarily of constant variance. By hypothesis, we do not know Hk. We can, however, 

constrain Hk with Hk = Bk % Id, where Bk is a binary matrix, which ensures that 

the components of a measurement cannot be assigned to different components of one 

target, e.g. x-axis to 2-axis.

Note that (4.13) assumes that nk < m  and that each observed point corresponds 

to a target, which is not always the case with extraneous targets. In the event that 

extraneous targets are present, one can consider y fc =  Hky k, where Hk is similar 

in structure to Hk in that it selects and possibly permutes elements of the full 

measurement vector y k. Note that Hk and Hk depend upon one another.

The sum HkEHkJ + Rk represents the traditional measurement noise covariance 

given in the Kalman filter’s introduction. We remark here that E plays an almost 

identical role to that of the process noise in a standard Kalman filter except for the 

prediction stage. The main effect is that the estimated error covariance P  does not 

increase in the prediction stage or when a target is not observed, which more accurately 

reflects the notion of a constant state not subject to random walks.
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4.2.5 Uncertain Measurement Matrices

A distribution must be specified for p(Hk\y1:k). The choice of the distribution 

is significant as it reflects the assumptions and constraints on the possible assignments. 

The distribution presented here corresponds to the conditions of our simulations later 

in the chapter. In particular, we keep the constraint that no two observed targets may 

be assigned to the same states. We also discount the possibility of extraneous targets, 

requiring that each target must be assigned an observation (if any are available) 

without violating constraints.

Regardless of the choice of the conditional distribution p(yk\Hk, x k , Pk ), we 

assume that each permutation of targets is equally likely to be observed. Since by 

(4.7) and (4.8) we define the state to be Gaussian,

y k\Hk, x ; , P k ~ N ( H kx k ,S k), (4.14)

where

Sk = Hk(Z + Pk )HkJ + R k. (4.15)

The conditional distribution of Hk given y k and the marginal distribution of y k are 

thus

, Pk ) «  N ( y k, Hkx ; ,  Sk)

Af(yk;Hkx k ,S k)

p(y tl* t. h ‘ ) =  (4.i7)

If the probability of each target being occluded is not the same, then (4.16)

should be augmented with Bernoulli random variables. Let n  be an estimate of the

(4.16)



92

profile’s target occlusion probability vector. Then

p(Hk\yk,Xk,Pk’*) oc-A/Xy*;*W,Sfc)
(4.18)

x 7rB*Tln* ( l m -  ^ lm~BkJlnk \  

where vb represents element-wise exponentiation such that

v - = I R  (419>
i

We see from (4.16) that computation of p(Hk\y\±) (and hence (4.7) and (4.8)) 

involves an intractable sum in the denominator, which rules out exact computations 

for moderately sized problems. The mode or most likely assignment is also difficult to 

compute as it can be shown that maximizing the logarithm of (4.16) yields an NP-Hard 

quadratic program in most situations. We are forced to rely upon approximations 

regardless of whether we wish to perform hard or soft EM.

An approximation of the most likely measurement matrix can be obtained by 

linearizing \ogM{yk\ Hkx k , Sk). The linearization consists of treating each target as 

though it were independent, i.e. as though Sk were block-diagonal and consequently

nk
k\H kx k , S k) = (4.20)

2 =  1

where yk(i) and {Hkx k ](i) represent the coordinates of the z-th observation or target 

and Sk(i) represents the z-th d x d block on the diagonal of the matrix Sk. An 

approximate mode can then be found in 0 ( m 3) time by using algorithms for the 

assignment problem [34]. In fact, approximations for the t best assignments can be 

found using Murty’s ranked assignment algorithm [99].

For estimating expectations according to (4.16) (and indeed any expression 

proportional to p{Hk\yhk)), we turn to MCMC algorithms. MCMC methods for



93

sampling from a probability distribution are advantageous in that they only require 

an expression proportional to the true probability density function. The primary issue 

is one of practicality in that convergence to the true distribution is not guaranteed to 

be fast. Due to the combinatorial constraints on Hk, however, an effective sampler is

matrix permanents and related sub-problems [65], but few algorithms for sampling 

of arbitrarily weighted permutations exist. General purpose combinatorial samplers 

exist [80], but a special purpose sampler is likely to be more efficient. We propose 

using the sequential match sampling algorithm of Volkovs and Zemel [144], which 

is capable of sampling from arbitrary densities on permutations and appears to be 

the state of the art in this regard. The sequential match sampler is a Metropolis- 

Hastings algorithm [17] with a proposal distribution constructed by sampling partial 

assignments item by item. A temperature hyperparameter of the sampler controls 

the proposal distribution in a manner similar to temperature as used in simulated 

annealing in that higher temperatures promote jumps to more dissimilar permutations.

4.2.6 The AFEM Algorithm

The EM procedure to estimate a profile V(p ,  E, 7r) from a collection of N  point 

sets Yi;Ar is outlined by the steps listed below. One may note that the Kalman filter 

fills the role of the expectation step along with the maximization with respect to /i.. 

Setting the Kalman gain to zero yields a more traditional EM algorithm. Maximum 

likelihood estimates at iteration i can be obtained with

difficult to obtain. Samplers have been proposed with special emphasis on calculating

(4 .2 1 )
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t{i) =  jj E E«.lyM [(y» -  H^)(yk -  , (4.22)
fc=i

(4.23)

although each equation comes with some caveats. For example, (4.21) is optional as 

one could just use the final estimate given by the Kalman filter.

Both (4.21) and (4.22) assume that each measurement is complete, which 

is by hypothesis unlikely. If some performances are incomplete, then obtaining a 

maximum likelihood estimate is significantly more complicated. If the positions 

are missing at random [115], then algorithms exist [94] that can obtain maximum 

likelihood estimates of the covariance. Unfortunately, the positions are for the most 

part definitely not missing at random. In motion capture, the probability of a marker 

becoming occluded is mostly dependent upon its position. For example, the finger tips 

become occluded whenever a fist is made. Therefore, since no obvious solution exists to 

obtain biased or unbiased maximum likelihood estimates, we choose to perform random 

imputation by sampling A Random imputation is deemed preferable to 

mean imputation since the latter will certainly underestimate the variance. Regardless 

of the method, note that this estimated covariance E(t) is technically an estimate of 

both the performance and measurement covariance.

Regarding (4.23), Laplace smoothing should be performed since we cannot be 

absolutely certain that a target will or will not appear, which amounts to adding 

fictitious point sets Y), i E [1, m\, such that Y* contains a single point assigned with 

absolute certainty to the i-th target. The steps of the algorithm follow.
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1. Initialize Xg0,0̂ to be a random measurement vector augmented with extra random 

values if needed and set E ^  diagonal.

2. For i — 1,2,3, . . .  until convergence,

(a) Set P0(i’0) =  E(l_1).

(b) Randomly permute Y1:jv to obtain Y^v.

(c) For each measurement in Y^)N, perform a Kalman filter update using (4.7) 

and (4.8) to obtain and P^ 0'1.

(d) For j  =  1,2,3, . . .  until convergence,

i. Set =  x ^ 1’ and P0(tj) =

ii. For each measurement in Y^)N, calculate a fortiori estimates using the 

procedure outlined in Section 4.2.2 to obtain x^j) and

(e) Calculate f f l\  and according to (4.21), (4.22), and (4.23).

(f) Set x j +1’0) =

We make some final remarks to clarify the algorithm. Convergence is guaranteed 

since this is an EM algorithm and is indicated by small changes in the log-likelihood or 

parameter values. Step 2a presents a natural choice for the initial state error covariance 

Pq in that if each measurement set is complete, then K f  = l / {k  + 1). Furthermore, if 

P0 =  aE, then lim^oo K *. =  I jk.

4.3 Experimental Evaluation

This section describes simulations and measures of evaluation for AFEM. In 

particular, we compare our algorithm versus a more traditional (sans Kalman filter) 

EM algorithm. In addition, we compare the MCMC sampler versus linearized optimal
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assignments, which respectively yield approximate soft and hard EM algorithms. The 

expectation is that the MCMC sampler will yield more accurate profile estimates, 

although we need experimental data to verify. To our knowledge, we are the first to 

apply the sampler to this type of problem.

4.3.1 Simulation Description

Since available real-world data does not come with labeled targets, we resorted 

to simulated data to evaluate the algorithm under a variety of conditions. Simulations 

involved independently varying the number and spread of targets sampled from some
4

randomly generated true distribution. The parameters of each simulation included the 

number of targets rn, the dimensionality of each target d, the spread of the targets <r, 

and whether the true distribution’s targets are constrained to be independent or not 

(i.e. whether E is constrained to be block-diagonal or not). Target dimensionalities of 

d =  2 and d = 3 were considered.

For each considered combination of parameters, five random true distributions 

were generated. The m  components for each distribution were drawn uniformly at 

random from within the volume of a d-dimensional hypercube and ranged from m  = 2 

to m  — 18 in steps of 4. If varying the number of targets, the hypercube was scaled 

such that the intensity (the expected number of targets as a function of position) 

was kept approximately constant. To be precise, the length of a side was equal to 

[l00m1/,rfJ . The same side lengths were used to vary the spread when keeping the 

number of components fixed at m  — 10 (that is, 10 targets were placed in volumes 

sized for 2, 6, 10, 14, and 18 targets). The true covariance matrix was sampled from
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a Wishart distribution [103] with md  degrees of freedom and a scale parameter of 

Imd before being multiplied by a factor of 100. The parameters for this Wishart 

distribution were chosen to ensure with high probability that the correlations between 

targets were significant, and the factor of 100 increases the likelihood of target overlap. 

The elements of the true appearance probability vector were independently sampled 

from the uniform distribution on [0,1].

For each distribution thus generated, 400 sets were sampled and their elements 

randomly permuted. Empty sets were kept as they contain information about 7r. 

Three generators or samplers of measurement matrices were considered: the optimal 

(linearized) assignment, the 10 best linearized assignments, and a sequential match 

MCMC sampler with a default temperature of 1. These samplers are denoted in 

figures, respectively, as “Best-1,” “Best-10,”, and “MCMC-1.” Burn-in of 10% was 

used for 1000 samples initialized from a random permutation. All of the remaining 

900 samples were used. Thoroughly tuning the sequential match sampler was not the 

objective of this dissertation.

4.3.2 Comparing Profiles

Even if we know the true distribution, we are faced with a conundrum: which 

target is which? Even if we have perfectly estimated the true parameters, their order 

may be scrambled. We must therefore consider assignments between estimated and 

true targets, and these assignments need to respect the target positions, covariance, 

and appearance probabilities.
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Let us first suppose that the correspondence between targets is known. In such 

a case, we propose using the Hellinger distance (Section 2.2.1) to compare the profiles. 

Since H 2 be computed in closed form for Gaussian densities, it can also be computed 

in closed form for profiles with known correspondence.

There are some issues, however, that make H 2 and similar metrics such as 

KL or JS divergence; less than ideal for comparing profiles. For example, if just oik; 

target’s position is wrong, H 2 tends towards 1. Similarly, differences in the structure

of the covariance matrices can push H 2 towards 1 even if each position is correct.

We therefore propose modifying H 2 in such a way that the comparison of individual 

targets and the covariance is separated. Define the modified squared Hellinger distance 

between profiles P  ~  V ( x , £, 7r) and Q ~  V (x ,  T, r )  as

H2(P,Q) = l - H l ( P , Q ) H 22{P,Q), (4.24)

where

- m

H\(P,Q)  = 1 -  (4.25)
m  '

1 = 1

Hl(P, Q) = 1 -  H2(N{0, E), V (0, r)), (4.26)

x,, Xi are the coordinates of the z-th targets of each profile, and T, are the d x d 

diagonal blocks corresponding to the internal covariance of the i-th targets. One may 

note that W2 calculates the average similarity between individual targets whereas 

Hi(P, Q) calculates the similarity between the overall covariances ignoring positions. 

Note that H 2 is still negative definite.



Negative definiteness is a potentially useful property as it implies that H2 is 

isometric to L2 and can be interpreted in a manner similar to the Euclidean distance 

as the logarithm of some (perhaps Gaussian) probability density function. Hence, one 

could set e“ //2 as the target density for a sequential match sampler that is used to 

approximate the expected value of the Hellinger distance when the correspondence 

between targets is not known. However, H2 comes with an implicit variance and 

should be scaled depending on the application. We chose to compare two profiles using 

the correspondence that maximized H\(P,Q),  which can be computed in polynomial 

time. We did not attempt to directly minimize H2(P, Q) since the objective ends up 

being concave and NP-Hard to solve.

To balance the results that use our custom metric, we also present results 

based upon the Rand index [112], a standard measure of cluster similarity that is less 

affected by target correspondence. The Rand index provides a means to assess the 

accuracy of a clustering without knowing cluster identity. Instead of operating on 

individual clustered points, the Rand index operates on pairs. Let C  = [J^=1 C, and 

D = Uj=i be partitions of a dataset X into disjoint subsets Cl and Dj.  Let a and b 

be the number of pairs of points in X that belong respectively to the same or different 

set in C  and the same or different set in D. The Rand index is then defined to be

=  (4-27)

For our purposes, X =  the clusters are the targets, and points are assigned

to clusters based upon the linearized mode of Hk (i.e. constraints for the data are 

known).
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4.3.3 R esults

Results focus on Tij and 1~C\, which respectively measure the difference between 

individual targets or total covariances, and the Rand index, which measures the 

accuracy of the estimated profile when used as a clustering algorithm. In general, it 

was observed that AFEM tended to lead to better values of each measure regardless of 

the sampler or simulation parameters with few exceptions (for example, see Figure 4.1). 

Differences were more dramatic for three dimensions than for two when comparing 

the EM algorithms and comparing samplers. The primary situations in which the 

algorithm did not usually confer improved measures of accuracy were when the number 

of targets was relatively low (e.g. Figure 4.2) and when the MCMC sampler was used 

for covariance estimation. The MCMC sampler’s occasional poor performance can 

likely be attributed to the fact that it was not carefully tuned for the problem.

0.25
$ 4 Best-1 
I  I  Best-10 
t - f  MCMC-l0.20

0.15

0.05

0.00

-0.05
120 140 160 180 200 220 240 260

Spread

Figure 4.1: The improvement in H \ for each sampler when using AFEM versus 
normal EM as a function of spread for d = 3 and unconstrained true covariance.
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Figure 4.2: The improvement in H \ for each sampler when using AFEM versus 
normal EM as a function of target count for d, = 2 and unconstrained true covariance.

Due to the large number of simulations, only a small subset are shown via 

Figures 4.1, 4.2, 4.3, 4.4, and 4.5. Descriptions of the rest are conveyed through 

general comments and observations. More detailed comments for each measure can be 

found in the following subsections.
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Figure 4.3: The improvement between each pair of samplers in H \ for AFEM as a 
function of the number of targets for d = 3 and unconstrained true covariance.
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Figure 4.4: The improvement between each pair of samplers in log H \ for AFEM as 
a function of the number of targets for d — 3 and unconstrained true covariance.
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Figure 4.5: The improvement in the Rand index for each sampler when using AFEM 
versus normal EM as a function of spread for d = 3 and unconstrained true covariance.

T arget E stim ation

Target accuracy exhibited a fairly clear dependency on the spread in that 

increasing the spread seemed to yield further improvements (see Figure 4.1). The 

MCMC sampler tended to receive the least absolute benefit from the Kalman filter, but
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also tended to yield better estimates than either of the optimal assignment samplers 

for larger target counts (see Figure 4.3). A slight bias in favor of the MCMC sampler 

was also observed for smaller spreads. The optimal assignment sampler performed 

worst overall as should be expected. The MCMC sampler also benefited from the 

extra dimension in d = 3.

Covariance Estimation

Since H% tended to be close to zero, plots show log H% instead. AFEM was 

generally better than traditional EM except when the covariance was constrained, 

in which case the MCMC sampler tended to perform worse. Even though AFEM 

conferred no advantage to the MCMC sampler, MCMC still performed better than 

its peers for larger target counts (m > 10) in nearly all simulations (see Figure 4.4). 

No advantage in the MCMC sampler was observed for varying spread, although this 

may have been due to the target count being too low.

Clustering Accuracy

Results with the Rand index agreed with T-t\ and 1~L\ hi that AFEM generally 

conferred an advantage for each sampler. Since simultaneously observed targets are 

guaranteed to be placed into different clusters, each method is guaranteed to agree 

on a large fraction of b. Differences tended to be relatively small as a result (see 

Figure 4.5).



CHAPTER 5

ON THE DEFINITENESS OF EARTH MOVER’S 
DISTANCE AND ITS RELATION TO SET 

INTERSECTION

Recall the definition of the Wasserstein distance and EMD given in Section 2.4. 

The foundations of EMD’s definiteness as a kernel (Section 2.1.4) are the primary 

topic of this chapter. EMD has been applied in kernel methods for texture and object 

category classification with SVMs [156]. However, it is not known whether kernels 

derived from EMD are actually PD. In fact, there is evidence to the contrary for a 

Euclidean ground distance [100]. Regardless, EMD continues to be used successfully 

for various purposes such as facial expression analysis [117] and EEG classification [27]. 

Methods to ensure PD-ness have been explored [155]. Cuturi [23] suggested using the 

permanent of the transportation polytope, which is guaranteed to be PD although 

difficult to compute. Grauman and Darrell [47] on the other hand proposed a PD 

approximation of a maximum-cost version of EMD that also has the advantage of 

being easier to compute.

In Section 5.2, we propose the PD-preserving transformation (5.4) that can be 

applied to any kernel, and we provide a new proof of the Jaccard index’s PD-ness, 

which has already been the subject of at least two papers [45, 10]. Under certain 

conditions, the transformation may even induce PD-ness. As a corollary, we deduce
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that the biotope transform [31] preserves CND-ness in addition to metric properties. 

In Section 5.3, we show that given certain ground distances, EMD is CND and 

may thus be used to construct PD kernels using standard relations. In particular, 

in Section 5.3.1 we use a set theoretic interpretation of EMD to show how EMD 

generalizes the intersection kernel. With a special emphasis on unnormalized sets, we 

generalize EMD [105] for use as a kernel. In addition, we show in Section 5.3.2 that 

convex, non-negative symmetric ground distances of the form h(x — y) for x, y G M 

and some h yield CND EMD on the real line. On the circle in Section 5.3.3, we find 

that EMD is not in general CND, although a CND approximation can be found by 

substituting the mean for the median in a calculation. In Section 5.3.4, we apply (5.4) 

to transform ground distances to the form P — K  such that CND-ness in EMD is 

induced. Finally, we evaluate EMD and the transformation on a variety of experiments, 

showing that both yield kernels superior to EMD, especially on unnormalized sets. 

Throughout the chapter we find that EMD is related to min-like kernels including 

intersection, Brownian bridge, and the Jaccard index.

The next section presents information including definitions and theorems that 

may be used as a reference for the rest of the chapter.

5.1 Preliminaries

This section provides definitions that are useful for following the rest of the 

chapter. A review of kernels (Section 2.1.4) and measures (Section 2.1.5) is advised. 

In addition, recall the definitions of Jr( X ) and V ( X )  given in Section 2.1.6.
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5.1.1 M ultisets

A multiset generalizes a set by allowing duplicate elements. We use the

terms multiset and set interchangeably with context indicating which is meant in the 

strict sense. By definition, the multiplicity of an element a; is a non-negative integer 

indicating how many copies of x are contained in a given multiset A. We generalize 

this definition by allowing a non-negative real number of “copies.” With this definition, 

we may also include probability distributions and other continuous functions with real 

output.

Let X  be the set of all possible elements under consideration, i.e. the domain. 

Let Xa : X  —> R be the mass density (or multiplicity) function of the multiset A 

that indicates the multiplicity of each x £ X  contained in A. For any element x  not 

contained in A, X a {x ) =  0. The density function completely defines a multiset and is 

similar to a probability density without the restriction that it must sum to 1. When 

we refer to a multiset or density, the other is implied. Note that for a standard set A  

(i.e. not multiset), xa — ^a- The mass density function of A  gives rise to a measure

For discrete sets, (5.1) simplifies to series summation. The support of a multiset is the 

same as the support of its measure. We use the term singleton to denote a multiset A  

with support satisfying supp (A) = supp (p.4) =  {xq} for some fixed element xq £ A.

(5.1)

We generalize the definition of a subset A  C B  in X  to be such that X a { x ) <

X b {x ) for each x £ X .  The density function for the intersection of two multisets A
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and B  is defined as

X a h b {x ) = min { x a { x ) ,  X b (x ) }  , (5.2)

and the union is defined in a similar manner with max instead of min.

Henceforth, we will abuse notation by defining yu(A) =  p^(supp (A)), which 

we will refer to interchangeably as the size, mass, or measure of A. Note that unlike 

histograms, multisets do not imply a finite, countable base set X  from which every set 

draws its support. This distinction allows somewhat more flexible definitions of EMD.

5.1.2 Earth Mover’s Distance

We consider EMD to be a metric on J-'(X) for some set X.  Note that here we 

mean metric as in dissimilarity measure. Based on the equivalency set forth between 

measures and multisets in the previous section, we henceforth consider EMD to act 

directly on the sets as in (5.3) instead of their associated measures. Recall that EMD 

is not a true metric in the sense of Definition 2.1 on T ( X )  but rather on V ( X )  for 

metric ground distance [116]. Violations of identity and triangle inequality are easily 

found when considering subsets and supersets.

Recall that EMD involves calculating the minimum-cost maximum flow via 

the linear program given by (2.70), (2.71), (2.72), and (2.73). Note that our definition 

of EMD differs slightly from that of Rubner et al. [116], which scales (2.70) by the 

inverse of the total flow given in (2.73). For sets of the same size, Rubner’s definition 

is just (2.70) scaled by a constant factor. We say that a collection of multisets is 

normalized if each set is the same size or mass. The sets are unnormalized if any two 

sets are not the same size. Pele and Werman [105] introduced a means to calculate
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EMD between unnormalized sets for use in nearest neighbor calculations and image 

retrieval and defined it as

EMDa(A, B) = EMD (A, B) +  a\fi(A) -  /z(£)|max{d(a, &)}, (5-3)
a ,b (zX

where A and B  are sets, a  > 0 and d is presumed to be bounded. EMDa is a metric 

on F { X )  if EMD is a metric on V ( X )  and a > 0.5 [105]. Schuhmacher et al. [119] 

independently proposed an almost identical version of EMD under the acronym OSPA 

(Optimal Subpattern Assignment). Normalized forms of EMD such as (3.10) have 

also been proposed, although a connection to EMD was not explicitly acknowledged 

by Ramon and Bruynooghe [111]. The transformation of the following section was 

inspired by the search for and study of a normalized form.

5.2 A Definite Preserving Transformation

In this section we propose the PD-preserving transformation

Kr(x,y)  =  — -----k-1 \ <5'4>K(x , x )  + K(y,  y) -  K(x , y)

that normalizes any given PD kernel K.  If K( x , x )  — K(y,y)  =  0, we define 

Kr(x ,y )  =  1. As opposed to the traditional normalization,

K n ( x ' v) = / k ^ T k i  V ( 5 ' 5 )y /K{x , x )K{y , y )

which can be interpreted as a surjective mapping of images <j>(x) in Hilbert space onto 

the unit hypersphere via projection, K t  can be interpreted as an injective mapping 

onto a unit hypersphere of unspecified dimension. Image vectors in Hilbert space
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of different magnitude that share the same direction remain distinguishable post

transformation. Both transformations are nearest neighbor preserving for points on 

the same hypersphere.

Technically, this kernel (or one algebraically equivalent to it) has been proposed 

before as the Tanimoto kernel by Ralaivola et al. [110]. We stress the differences in our 

proposed transformation and how our contributions differ from existing work. First, 

the Tanimoto kernel is equivalent to the Jaccard index and has only been proved PD 

when X  consists solely of binary vectors and K  is the dot product (see the proof given 

by Ralaivola et al,  which hinges on the proof of semi-PD-ness of the Jaccard index 

given by Gower [45]). We prove (see Theorem 5.1) that (5.4) is strictly PD for any K  

if K  is strictly PD (and similarly for semi-definiteness), which is stronger than the 

proof of Ralaivola et al. and more general than both it and the proof of strict PD-ness 

of the Jaccard index given by Bouchard et al. [10]. Since we are not limited to binary 

vectors, the range of (5.4) is not even constrained to be positive. This more general 

view of the transformation also allows us to examine its properties in new situations, 

such as when it is applied to itself or nested.

In fact, the transformation can be nested indefinitely as in

(5.6)

such that

lim K ^ \ x , y )  € {0,1} (5.7)
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where K ^  is the n-th nested transformation with = K.  A closed form expression 

for the n-th nested transformation can be derived and is given by

K ^ H x v) = ______________ K (x ,  y)______________  >
r  Qn - i [ K ( x , x )  +  K ( y , y ) ] - ( * - l ) K { x , y y

From Lemma 2.4, the denominator converges to 2n~l D(x, y). where D(x, y ) = K(x,  ,r)+ 

K(yiy)  ~  2K(x,y) .  Geometrically, we may then loosely interpret the transformation 

as division of the inner product by the distance squared. Note that although we 

focus on n = 1, n  could be considered a continuous hyperparameter within the range 

(—oo, oo) for which (5.8) is PD on the subinterval [0, oc). In fact, if n — 0, then we 

obtain a generalization of the F measure (as interpreted as a kernel by Ralaivola 

et al. [110])

X {Q)(x v ) = ___ 2 K ( x , y )____ . .
K t { X ' V )  K ( x , x )  +  K ( y , y y  (5'9j

In the next section, we will use this transformation to define new EMD-based kernels 

and to define ground distances for which EMD is CND. First, however, we must show 

that the transformation preserves definiteness as claimed.

Theorem 5.1. If K  : X  x X  —> E is PD, then the function K r  as defined by (5-4) is 

also PD.

Proof. Without loss of generality, assume K ( x , x ) — K ( y , y )  = 0 = >  x =

y — p for some p € X  and let us restrict K  in the following discussion to X  \  {p} . The

denominator in (5.4) is positive valued due to a well-known property of PD kernels 

and matrices,

\ K( x , y ) \  <  < K ( x ,x)  +  K( y , y ) .  (5.10)
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The denominator is also CND as it is the sum of two CND kernels: K(x,  x) + K ( y , y) 

(by Proposition 2.6) and —K(x,y)  (by hypothesis). Thus by Proposition 2.7 with 

7 =  1,

Ki(x ,y)  = [K(x,x) + K(y ,y)  -  K(x,y)}~1 (5.11)

is PD. We therefore have the product of two PD kernels

Kr(x , y )  = K { x , y ) K 1(x,y),  (5-12)

which is itself PD by Theorem 2.5.

In order to include the case x = y = p , we note that if (j) : X  —> H is the

kernel’s feature mapping into the Hilbert space H,  then K(p,p)  =  (<p{p), 4>{p)) =

0 = >  4>(p) =  0 , which further implies

K{P, x j  =  (frfa)) =  (0, (j){xt)) = 0 (5.13)

for Xi 7  ̂p. Therefore, K?{xi,p)  =  0 if Xj ^  p. Let xq = p and cq € R. Then K r  is 

PD because

n n
Y  CiCjKT(xi, Xj) = cl + Y j  CiCjKT(xu xj) > 0. (5.14)
i,j=0 i,j=l

□

Corollary 5.2. Let D : X  x X  ^ - R  be a CND kernel, and let p € X .  Then,

n  , \  ______ 2D(x, y) -  D(x, x) -  D{y, y)______
T’p x , y  D{x,p) + D{y,p) + D { x , y ) ~  £  D{ z , z ) ’ (5-15)

z£{x,y,p}

is also CND.
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Proof. We can define a PD kernel K  according to the relation given by 

Lemma 2.4, i.e.

K(x ,y )  = D(x,p) + D{y,p) -  D(x,y)  -  D(p,p).  (5.16)

Using (5.16), note that K ( x , x ) =  2D(x,p)  — D ( x , x ) -  D(p,p).  Furthermore, note 

that

K( x , x )  + K(y ,y)  -  K(x , y)  =  D(x,p) + D(y,p) + D{x ,y )
(5.17)

-  D(x,x)  -  D(y,y)  -  D(p,p).

We see that the denominator of DT is the same as that of K r . Note then that

K T(x,y) + DT,p(x,y) = 1. (5.18)

If x i , . . . ,  xn G X ,  c i , . . . ,  cn e  K, and Y^=i ci ~  0) ^ e n

n n

CiCjDT,P{xu X j )  = ^ 2  cic3 { - K T(xl, X j ) )  < 0. (5.19)
i , j =1 i , j =1

We have thus shown that DT>P is CND. □

If K(x , y )  > 0, then K T(x,y)  G [0,1]. Otherwise, Kr(x ,y )  G [—1/3,1]. 

Consequently, DT,p{x, y) G [0, 4/3] and DTtP(x, y) > 1 if and only if D(x, y) + D(p, p) > 

D(x,p) + D(y,p).  In addition, Theorem 5.1 also holds for strictly PD K.  Using 

Theorem 5.1 with K  as the intersection kernel therefore provides an easy proof for 

the PD-ness of the Jaccard index,

=  ( 5 ' 2 0 )

Note that DT}P generalizes the well-known biotope transform [31], showing that it 

preserves CND-ness in addition to metric properties. As an example, suppose A  and 

B  are sets and D(A, B) = \p(A) -  n{B)\. This kernel is CND. By Corollary 5.2 with
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p = 0 followed by some simplification, we can derive the CND kernel

Z W A  B ) =  (5.21)
max fi(B)}

The transformation K t possesses another interesting property in that it can 

induce PD-ness in addition to preserving it. The following proposition gives a sufficient 

condition under which this phenomenon occurs for nested transformations. We 

hypothesize that the proposition holds simply if X  is finite and K  satisfies the 

equivalence relation

x = y 2K(x ,y)  = K(x , x )  + K(y,y) .  (5.22)

Proposition 5.3. For any symmetric kernel K  : X  x X  —> M where X  is finite and 

x^ f iy  =$■ 2 K(x ,y )  ^  K ( x , x ) + K(y,y)  for x , y  € X ,  there exists a number no such 

that K ^  : X  x X  -» R is PD for all n > n 0.

Proof. Consider the kernel matrix = [KjU\ x u x3)\ for some selection 

of elements x i , . . . , x n G X  with 1 < z, j  < n. Since the definition of a PD kernel 

requires only distinct elements for (2.19), we may without loss of generality assume 

that each element is distinct, i.e. i /  j  = >  x, xy  We now show that 

must eventually become diagonally dominant and thus PD [12] as n  increases, where 

diagonal dominance for a symmetric matrix M  is defined for each row index i by

\M, i \  (5 '2 3 >
j¥=i

We show this by noting that each transformation is effectively a step in a fixed point 

iteration wherein converges to identity. We allow infinite values in (5.4) due to 

division by zero as these can be removed by further transformations described shortly.
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Note that for n > 1, K ^ \ x ,  y) =  1 if and only if x = y, and since K !p \x , x) — 1 

for all x and n > 1,

A•<."+1)(xi,%) =  K̂ t ' X’K - <5-24)

Consequently, repeated transformations with fixed i, j  are effectively identical to fixed 

point iteration with fixed points of 0 and 1, and any sequence K ^ \  K ^ \  . . .  starting at 

Xj) 7  ̂ 1 will converge to 0 [12]. An infinite value in any sequence is followed by 

— 1, obtained by observing the limits at infinity of (5.24). We can then deduce that there 

must exist an m  such that for any n > m  and i \ K ^ ( x i ,  X j ) \  < \ K ^  l\ x l: x3)\. 

Therefore, as the number of nested transformations increases beyond the m-th, the 

diagonal of stays constant at a value of 1 and the absolute value of each off- 

diagonal element decreases. Eventually, must become diagonally dominant and 

hence PD for all n greater than or equal to some finite rtQ > m.  □

5.3 EMD Is Conditionally Negative Definite 
For Certain Ground Distances

In this section, we introduce new results on ground distances and conditions 

under which EMD can be proved to be CND. In some cases, we offer CND approxi

mations.

Since any ground distance is just a special case of EMD between singletons of 

unit mass, EMD is CND only if the ground distance is CND. Unless otherwise noted, 

we will assume that ground distances discussed henceforth are CND.
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5.3.1 E arth  M over’s In tersection: A Set Theoretic In te rp re ta tio n  of EM D

In this section we introduce earth mover’s intersection (EMI), a useful concept 

and PD analog to EMD that computes the similarity between two sets rather than 

their difference for a given ground distance. The name comes from the following 

motivating scenario.

Suppose there are two sets of two-dimensional points where one is a slightly 

perturbed version of the other. According to the strict definition of set intersection 

given by (5.2), their intersection is empty despite the fact that they are clearly related 

by their elements. The inability of set intersection to account for the sets’ inherent 

similarity is a problem. EMD provides a natural solution to this problem, although 

it is proportional to their difference rather than similarity. EMD also reflects the 

qualities of whatever norm is chosen to compare the individual points. We now show 

that EMD and subsequent related functions define smooth (in the sense of strictness 

of equality) generalizations or approximations of classic set operations.

Sets are usually normalized prior to application of EMD by dividing their 

density function by their total mass, an operation analagous to normalizing a vector 

to unit norm. The disadvantage of this method is that sets with differently scaled 

but otherwise identical density functions become indistinguishable post-normalization. 

As a side-effect, one removes an entire dimension of the data (for the most extreme 

case, consider singleton point sets with non-negative mass on the real line). An 

application where this distinction is important is that of multi-object tracking and 

filtering [119, 113]; normalizing set mass can cause one to ignore the fact that the 

incorrect number of objects are being tracked. For our set theoretic interpretation
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of EMD, we prefer to retain the sets’ original mass and transport excess mass to a 

predetermined point p e l ,  referred to as the sink. One could also consider this a 

form of additive normalization by supplementing mass at the point p. EMD then more 

accurately represents the relative magnitudes of set differences as well as distinguishes 

differently scaled sets.

Define the term EMDP to represent the transportation of excess mass from the 

larger of two sets A and B  to some sink p € X ,  i.e.

where D is the ground distance, /* is the optimal flow, and we assume without loss of 

generality that p,(A) < p{B).  The total cost of transforming one set into another is 

then given by

where we have adopted the notation for Pele and Werman’s EMDa. Note that the 

sink does not necessarily have to be in X  (in which case we must replace D with an 

appropriate function in (5.25)). Ideally, though, p is a reserved point that does not 

naturally appear in the sets under consideration. Otherwise, there is a different type 

of potential identity loss.

We define EMI as the kernel resulting from Lemma 2.4 with x$ = $ and 

D =  EMDp, which is

EMDP(A,B)  = X b W - E  /*(“ • i>) j  D ( b , p ) - E M ±  , (5.25)

EMDP(A, B) = EMD(A, B)  +  EMDV(A, B ), (5.26)

EMIP{A, B ) —EMDP(A, 0) +  EMDP(B, 0) -  EMDP(A, B ). (5.27)
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Note that EMI is PD whenever EMD is CND for some collection of sets (and vice 

versa). By assuming p G X ,  we can define a PD kernel Kp according to Lemma 2.4 

with xq — p and D as the ground distance, which we can then use with (5.25) to 

simplify EMI to

Observe that the minimum-cost maximum flow with respect to D is the same as the 

maximum-cost maximum flow with respect to Kp, regardless of the choice of p. As 

a result, EMI can hypothetically be specified in terms of just a PD ground distance 

without explicitly specifying the sink. The definition of EMI also provides some 

insight into the pyramid match kernel [47], which can be viewed as an approximation 

of EMIo on Jr(Mn). We may also consider an alternative definition EMI'p(A, B) = 

EMIP(A, B) + ^2^2  f*(a, b)D(p,p) that is also PD if D(p,p) > 0 and EMD is CND; 

this is equivalent to discarding D(p,p) in (5.25).

As our first example of a situation in which EMI is PD on •F(A) (and 

hence EMD and EMD are respectively CND on J-(X)  and V(X)) ,  consider the 

discrete metric, which can trivially be verified to be CND. Define the discrete kernel 

corresponding to this ground distance to be K q. \ { x , y) =  1 — 5o_\(x,y), which is PD. 

We can show that EMI in this case is equivalent to the intersection kernel.

P roposition  5.4. Let E MI 0~i(A, B) be EMI equipped with the discrete kernel as the 

ground distance on an arbitrary set X . Then EMIo-i is equivalent to the intersection 

kernel.

(5.28)
<z£./4 b£F3
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Proof. The goal is to find the maximum-cost maximum flow subject to 

constraints, and the only way to increase the cost with the discrete kernel is to send 

available mass from a point in one set up to the capacity allowed by the other set at 

the same location. Therefore, f*(a,a) will be saturated up to the available capacity 

at a in each set, i.e.

f*{a,a) = m in{x^(a),xB(a)} . (5.29)

The cost to transport this mass is simply the amount of mass transported. The exact 

mapping of the remaining mass is irrelevant as it costs nothing to move. As a result,

EMI0-i (A,B)  = f*{a,a) = f i { A n B ) .  (5.30)
a e A U B

□

Since the intersection kernel is PD [11], we conclude that EMIo-i is as well. 

One can then deduce that EMDq.\ and EMD0.i give measures of the set difference 

between A  and B.  Specifically, EMD^i  gives the set difference of the larger set from 

the smaller, and EMDq.\ gives the set difference of the smaller set from the larger. 

The sum of both yields the symmetric difference. One may also apply (5.4) with 

K  =  EM Iq-i or (5.15) with D =  EMDq.\ and p = 0 to obtain the Jaccard index and 

distance.

Switching to a ground distance other than the discrete metric is like allowing a 

degree of uncertainty in element identity. The sharper or more concave the comparison 

function, the closer EMD and its derivatives are to their respective binary set operations. 

The point p is used to determine the cost of an unmatched element, which could 

potentially vary if some point is considered more important than another. Practically,
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thresholding a ground distance by some upper bound can be used to artificially induce 

concavity and make comparisons more strict.

Another result that can be derived as a special case of EMI follows.

P roposition  5.5. I f  there exists a function g : X  —> R such that the ground distance 

D(x, y) =  g(x) + g(y), then EMIp = 0 and is trivially PD on F { X )  for any choice of 

P-

Proof. Let / (a, 6) be the maximum-cost maximum flow between sets A  and 

B  with respect to K p defined using Lemma 2.4 with xq — p. Note that in this case, 

K p(x, y) =  0. As a result, EMIP(A, B)  = 0, which is trivially PD. □

If g(p) > 0 and we opt to use EMI' by discarding D(p,p) in (5.25), then

which is simply a scaled version of the min-kernel, which is known to be PD. We now 

explore more complex scenarios.

5.3.2 Transportation on the Real Line

Consider the space of probability distributions on the real line R. Let D : 

R x R —y Rq be a convex, non-negative symmetric function that takes the form 

D(a, b) =  h(a — b), where h : R —> Rq . If D is CND, then one can show that EMD 

equipped with D is CND as well. A well known result [108] states that EMD between 

two probability distributions P(R) with a ground distance such as D can be

written

(5.31)

(5.32)
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where U_1 and V'-1 are the inverse cumulative distribution functions of u and v. In 

essence, the z-th point in ascending order of one distribution maps to the z-th point of 

the other. Since EMD in this form is clearly just the summation of CND functions, 

then EMD must also be CND.

5.3.3 Transportation on the Circle

Transportation on the circle is similar to transportation on the real line. In 

fact, one simply has to find an optimal point at which to cut the circle prior to treating 

it like the real line. In this case, the geodesic distance (i.e. length of arc or angle) is 

used to compare points. If the points x, y are linearly indexed on S 1, the circle with 

radius 1, then

D( x , y) = min{|:r - y \ , 2 i r - \ x -  y\} (5.33)

or equivalently

D( x ,y ) =  arccos cos(y) sin(y)
TN

(5.34)cos(x) sin(x)

which is provably CND by an infinite series expansion [60]. With the given ground 

distance and probability distributions u,v  € V ( S 1), it can be shown that

r2n
EMD(u, v) = \\U — V  — a ||! =  /  \U(s) -  V(s)  -  a|ds, (5.35)Jo

where U and V  are cumulative distribution functions and a  is the weighted median of 

U — V  [29, 108]. Surprisingly, one can empirically show that for arbitrary u and v, 

EMD is not CND on the circle despite its similarity to the line.

The reason that EMD is not CND on the circle is due to the use of the median in 

(5.35). If we approximate the median with the mean (guaranteed by Jensen’s inequality
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to be within 1 standard deviation [90]), then we obtain a CND approximation of EMD. 

Note that substituting the mean in (5.35) yields

which is a sum of CND kernels. If the median can be expressed by a function h as 

a = h(u) — h(v) (perhaps only for certain families of distributions), then EMD is

5.3.4 Transportation on the L 2 Hypersphere

Consider the class of ground distances of the form ft — K,  where @ is a positive 

constant and K  is PD. This class of ground distances coincides with those implied 

by CND EMDq since we may note that Pele and Werman’s EMDa is a special case 

formulation of (5.26) that uses D(a,p) =  «max{J9(a, b)} for every a, 6 € X .  If a 

point p can be found or created such that D(a,p) =  /? for each a € X  \  {p} and D 

is CND, then by Lemma 2.4 we can conclude that D is of the form j3 — K  (in this 

case, /3 =  2a-max D(a, b) — D(p,p)).  A characterization of kernels of this form is 

given by Berg et al. [7]. However, if we add the condition that D satisfies identity 

of indiscernibles, then a geometric interpretation of D is readily forthcoming. In 

particular, the image <t>{X) from K's  feature mapping lies on the hypersphere of radius 

y/P in a Hilbert space centered on the point <p(p) — 0. This follows from the fact 

that K(a,a)  =  3 as a consequence of D(a,a) — 0. In other words, this subclass is 

comprised of normalized kernels and embeds into squared L 2  on the hypersphere.

Ground distances of this form have already appeared in the literature. Rabin 

et al. [108] considered geodesic distances on the circle and used them for color image

(5.36)

CND.
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retrieval and color transfer between images. Zhang et al. [156] used a Euclidean ground 

distance in a high-dimensional space to compare SIFT descriptors for object and 

texture recognition in images. However, they normalized the vectors comprising each 

set’s support, effectively restricting their computations to distance between points on 

the hypersphere. This study provided empirical evidence that EMD tends to be CND 

for this restricted case since no violations were found.

However, the result of Naor and Schechtman [100] states that EMD is indefinite 

on the {0, l}2 C M2 grid with a Euclidean ground distance. We can thus conclude that 

EMD is actually not CND for ground distances of the form f3 — K  in general since one 

can find a subspace of the hypersphere isometric to {0, l}2. Consequently, any ground 

distance must necessarily not include subspaces isometric to {0, l}2 if there is any 

hope for EMD to be CND. We do have one example, though, of a ground distance of 

this form—the discrete metric—where EMD is CND, and we hypothesize that ground 

distances close to discrete in form are also sufficient. More; formally, we hypothesize 

that there exists e > 0 such that if K(x,  x) =  1 for all x  € X  and K(x,  y) < e for all 

x /  y, then EMI equipped with K  is PD. We will now illustrate this notion with a 

method that transforms a ground distance into a nearly discrete form in order to yield 

CND EMD.

Under the following assumptions about the distribution of the sets under 

consideration for use with EMD, we may use Proposition 5.3 to show that there 

exists a transformed ground distance of the form ft — K  that yields CND EMD. The 

assumptions that we make are that the sets are discrete, the collection of sets is finite, 

and that each pair of sets is disjoint. Note that these assumptions form sufficient but
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not necessary conditions for the strategy that follows. We also assume that K  strictly 

satisfies (5.10) for different x , y  but is not necessarily PD. One may then infer that 

there exists a number no for which K ^  is PD for n > n0.

Let X\ ,  X2, . . . ,  X n €1 T ( X )  be subsets of X  discretely supported with support 

cardinalities Sj, i € [l,n]. Let K\  be the .sj x s7 kernel matrix computed between the 

elements of X * and Xj, and let

F{ =  arg max vec (Xf)T vec (/) (5.37)
/

be the x Sj maximum-cost maximum-flow matrix computed between X, and X ?, 

where vec (M)  is the vectorization of the matrix M  made by concatenating columns. 

Note that

E MI (XU Xj)  =  vec ( K f Y  vec ( F / ) . (5.38)

Let H\  be the Schur product of F] and Kf .  Note that HI is diagonal for each i as a 

consequence of (5.10). Additionally, H) =  H f , and

= <5'39>
h=\ fc=l

By an application of the derived subsets kernel [123], we may deduce that EMI is 

PD if the kernel matrix Gh , where the (i, j)-th  block Gu(i , j )  = H\  > PD, i.e. if 

H : X*  x X* -» M is a PD kernel, where X* =  [£=l X4.

There are several ways one may proceed to obtain PD EMI. One may transform 

K  and either keep or recompute the flow. One may also transform H  or EMI itself. 

Since the sets are disjoint and K  satisfies the conditions of Proposition 5.3, then H  and 

EMI satisfy the same conditions. By Proposition 5.3, repeated transformation of H  or
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EMI will eventually become PD. Transforming only K  is slightly more complicated 

to analyze, but one may note by similar reasoning used in the proof of Proposition 5.3 

that Gh  must eventually become PD since the off-diagonals converge to zero and the 

diagonal will be constant after the first transformation. Note that we do not endorse 

this transformation scheme for use with any ground distance, and we hypothesize that 

it is most appropriate for ground distances that are already normalized, i.e. of the 

form (3 — K .  We do not test this idea in our experiments since the kernels that would 

have been candidates for the approach turned out to be PD. An exploration of this 

idea is beyond the scope of this dissertation.

5.4 Experiments

In this section we describe experiments with classification using SVMs (see Sec

tion 2.6) designed to demonstrate the utility of EMD as well as the utility of the definite 

preserving transformation of Section 5.2 with respect to EMD. To our knowledge, 

EMD has not been applied in a kernel setting and we therefore perform the first such 

experiments. In particular, we evaluate the effect of choosing some different values 

of p (the sink to which excess mass is transported in our generalization of Pele and 

Werman’s EMD). For each of the EMD variants, we make use of Theorem 2.3 to 

construct generalized RBF kernels of the form exp (—u D e m d ) ,  where D ^ m d  is an 

EMD-based distance between sets. In order to avoid the overhead of tuning u via 

cross-validation, we assign u to be the inverse of the average value of Demd on the 

training set as suggested by Zhang et al. [156].
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We also show that when using unnormalized sets, especially when the magnitude 

of the mass has semantic significance relevant to classification, that EMD is superior 

to EMD. Since we axe dealing with indefinite kernels, we evaluate the results in the 

context of two techniques designed to address the nonconvex optimization encountered 

in training SVMs with such kernels. The techniques mentioned axe eigenvalue shifting 

of the kernel matrix and the Krein support vector machine (KSVM) recently proposed 

by [87], Both methods were chosen for their relative simplicity of implementation 

as well as the fact that test points (or associated kernel evaluations) do not need to 

be modified. Where appropriate, these methods are balanced against SVMs trained 

directly with the indefinite kernels.

Shift is a heuristic that involves shifting the eigenvalues of the kernel matrix 

to be non-negative (e.g. by adding si to the kernel matrix, where s is the amount to 

shift each eigenvalue and I is the identity matrix). Shifting causes the SVM training 

problem to become convex, assuring a globally optimal solution. Wu et al. [154] show 

that shifting adds a regularization term that penalizes the norm of the support vector 

coefficients. Thus, simply choosing a very large s that guarantees PD-ness is not 

necessarily beneficial as it may constrain possible solutions. The smallest possible s 

(i.e. the magnitude of the least negative eigenvalue) is generally a good default choice. 

Approximations for s that assure PD-ness without requiring an eigendecomposition of 

the kernel matrix can be used. We did not make use of these approximations, however.

On the other hand, KSVM is formulated in the theory of Krein spaces 

(generalizations of Hilbert spaces with indefinite inner products) and may be considered 

a state of the art indefinite kernel technique. Our results certainly reflect its ability to
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compensate for deficiencies in an indefinite kernel. However, KSVM is computationally 

expensive, requiring an eigendecomposition of the entire precomputed kernel matrix 

used for training. Therefore, Loosli et al. [87] also proposed KSVM-L, a more practical 

alternative that uses partial decompositions.

For completeness, we briefly describe the KSVM algorithm. Given a kernel 

matrix GK and label vector y containing ±1 for each respective positive or negative 

instance, one must compute an eigendecomposition of Y G k Y , where Y  — diag (y) 

is an otherwise zero matrix with y on the diagonal. If U and D are the resulting 

eigenvector and eigenvalue matrices satisfying UDUT — Y G ^ Y ,  then one trains 

the SVM using a standard solver with the PD kernel matrix Gk — U S D W , where 

S  = sign (D) and sign (D) is the element-wise sign function of the matrix D that 

yields 1 for each positive element, -1 for each negative, and 0 otherwise. Finally, one 

transforms the resulting support vector coefficients a  (not to be confused with a  in 

EMDa) to obtain support vector coefficients a  =  U S W a  in the original indefinite 

space. The solution is not sparse. One may note that KSVM is equivalent to flipping 

each negative eigenvalue of the kernel matrix to be positive prior to transforming the 

result. We also note that a one-versus-all scheme for multiclass SVMs can have a 

distinct computational advantage over one-versus-one schemes since if y, is the label 

vector treating the i-th class as positive and the remainder negative, Yi — diag (y;), 

and V  contains the eigenvectors of Gk, then t/* =  YtV  provides the eigenvectors 

of YiGkYi. Consequently, only one eigendecomposition is required regardless of the 

number of classes. We take advantage of this fact in our experiments; i.e. all results 

are computed using one-versus-all binary SVMs.
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5.4.1 D atasets

Each considered kernel—EMD with Rubner’s scaling, EMD, and its biotope 

transformation EMDy,p (hereafter referred to as earth mover’s Jaccard distance 

(EMJD))—was evaluated on four datasets: the texture database KTH-TIPS [55], 

the object category database Caltech-101 [37], the handwritten character database 

MNIST [74], and the motion capture hand posture dataset described in Section B.3. 

The Euclidean distance served as the ground distance for each dataset except for 

Caltech-101, for which it was squared.

The KTH-TIPS database consists of 10 texture classes under varying scale, 

pose, and illumination with 81 instances per class. Images are standardized by resizing 

to a horizontal resolution of 480 pixels while preserving aspect ratio. We adopted 

much of the experimental design of Zhang et al. [156], constructing image signatures 

from SIFT descriptors. The SIFT descriptor [88] computes an Ar-bin histogram of 

image gradient orientations for an M  x M  grid of samples in the region of interest, 

resulting in an M  x M  x N  dimensional vector. We used the implementation of the 

SIFT descriptor provided by Vedaldi and Fulkerson [135] with M  = 4 and N  = 8. The 

resulting 128-dimensional vectors were scaled to have a Euclidean norm of 1 to reduce 

the influence of illumination changes. The descriptors were then clustered using a 

7-means algorithm (with k =  40). Each mean was weighted with the percentage of 

descriptors assigned to it, and the means paired with these weights constituted the 

so-called signature for a single image.

A very similar feature extraction procedure was conducted for the Caltech-101 

dataset composed of color images of 101 categories (e.g. face, car, etc.) with varied
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presentation. Instead of SIFT descriptors, the PHOW descriptor implemented by 

Vedaldi and Fulkerson [135] was used to represent images. At a high level, the PHOW 

descriptor is a dense SIFT extractor (the regions of interest are densely sampled in a 

grid) that can operate on multiple color channels instead of just grayscale. However, 

we simply used grayscale. Sets were normalized for both KTH-TIPS and Caltech-101.

The MNIST dataset comprises 28 x 28 grayscale images of handwritten digits 

ranging from zero to nine. Noble’s version [102] of the Harris corner detector [54] was 

used to identify keypoints in the image (implemention again provided by Vedaldi and 

Fulkerson [135]). Images were smoothed with a Gaussian window with a variance of 

1 prior to application of the Harris response function, which also used a Gaussian 

window with a variance of one. Local maxima in the response were interpreted as 

corners. The set of coordinates (scaled to lie between zero and one) of these detected 

corners then constitute the features of the image with the expected number of corners 

and their locations depending upon the digit. The number of detected corners typically 

ranged from 5 to 15.

5.4.2 Design of Experiments

Each experiment on each dataset involves the choice of a different sink p to 

which excess mass is sent. If the ground distance is thresholded and p lies beyond the 

threshold for every point in the training and test sets, then one can use a flat rate 

equal to the threshold as the cost of transporting excess mass. Therefore, we simply 

use the threshold to identify different experiments. The thresholds that were used 

are reported in the next subsection’s tables. One will note that the bottom row of



each table has no threshold (denoted by a dash), and in this case p was generally 

chosen to be the origin with the exception of MNIST, where it was chosen to be the 

center of an image, [0.5,0.5]T. In the case of KTH-TIPS and Caltech-101, choosing 

the origin is not much different than choosing a threshold of 1 since every point lies 

on the surface of a unit hypersphere. The advantage of flat thresholds lies in their 

simplicity of implementation (the precise value of the optimal flow is irrelevant) as 

well as the ability to use faster algorithms [106].

The following data selection schemes were repeated for each experiment 

(threshold) with the exception that the selection of data for experiments with no 

threshold matched that of the highest threshold in order to enable a direct comparison. 

For KTH-TIPS (and Caltech-101), 40 (15) images from each class were randomly 

drawn to be the training set with an equivalently drawn disjoint test set. This random 

selection was repeated five times in order to obtain five training/test set pairs, the 

results of which were averaged. For MNIST, 200 examples from each class were 

randomly chosen and five-fold cross validation was computed for each experiment. For 

the posture recognition dataset, special consideration was required due to the fact that 

there is signficant correlation and even near duplication for samples corresponding 

to a single user. Therefore, a leave-one-user-out approach was employed where each 

of the 12 users served in turn as the test set. As a result, experiments measured the 

generalization of the classifier to new users. The size of the dataset was reduced and 

classes balanced by randomly selecting 75 examples per class per user.



5.4.3 Results and Discussion

For normalized sets contained in KTH-TIPS and Caltech-101 (Tables 5.1 

and 5.2), there is no significant difference between the three kernels. In fact, EMD 

and EMD are the exact same for any two normalized sets since the difference in mass 

is zero.

Table 5.1: Accuracies for texture recognition on normalized sets with KTH-TIPS. 
All kernels were found to be positive definite. Since sets are normalized, EMD is equal 
to EMD.

Threshold EMD (EMD EMJD

0.5 71.45 70.95
± 6 .1 9 ± 6 .1 6

1 74.75 74.55
± 1 .0 0 ± 0 .6 5

\/2 70.70 70.85
± 7 .9 6 ± 8 .0 6

- 70.70 70.80
± 7 .9 6 ± 8 .0 7

Table 5.2: Accuracies for object category classification on normalized sets with 
Caltech-101. All kernels were found to be positive definite. Since sets are normalized, 
EMD is equal to EMD.

Threshold EMD/EMD EMJD

0.5 49.97 49.65
± 0 .9 0 ± 0 .8 0

1 48.77 48.84
± 0 .7 5 ±0 .8 1

2 48.57 48.71
± 1 .3 9 ± 1 .1 9

_ 48.57 48.55
± 1 .3 9 ± 1 .2 6

However, for unnormalized sets (Tables 5.3 and 5.4), EMD and EMJD are 

noticeably better than EMD despite the indefinite kernel techniques. KSVM actually 

improved EMD’s accuracy far beyond what was expected, nearly matching EMD’s 

performance (and surpassing it on the highest thresholds for MNIST). However, this 

state of the art indefinite kernel technique was still unable to bridge the difference in
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all cases, and the results should be balanced by the more computationally practical 

Shift, which was completely unable to compensate for EMD’s indefiniteness.

Table 5.3: Accuracies for handwritten character recognition on unnormalized sets 
with the MNIST derived data.

Indefinite Shift KSVM
Threshold EMD EMD EMJD EMD EMD EMJD EMD EMD EMJD

0.25 34.30
± 5.45

67.80
± 1.36

78.20
±2.22

32.25
±2.36

79.90
± 1 .76

80.65
± 1 .97

75.30
±1.78

78.05
±1.56

79.50
± 1.99

0.5 28.10
± 4 .03

60.30
± 2 .77

73.90
±3.22

28.70
±1.22

78.80
± 1 .90

78.85
± 1 .7 4

75.30
±1.34

76.00
± 0 .98

76.90
±0 .84

1 32.70
± 3 .43

58.65
± 0.38

67.10
± i . n

29.10
±2 .37

77.70
± 2 .19

77.45
± 1 .93

72.15
±1.81

73.65
± 1 .62

74.85
±1.61

\/2 32.75
±2.71

59.90
± 0.72

65.45
±1.81

27.85
±1 .46

77.70
± 2 .03

77.75
± 1.85

76.05
± 2 .00

74.70
± 1 .23

74.65
±1 .72

- 32.75
±2.71

49.60
± 1.56

52.00
±2.05

27.85
±1 .46

75.30
± 1 .6 7

76.85
± 1 .93

76.05
± 2 .00

73.85
± i . i i

74.35
±1.01

Table 5.4: Accuracies for posture recognition on unnormalized sets.

Indefinite Shift KSVM
Threshold EMD EMD EMJD EMD EMD EMJD EMD EMD EMJD

25 37.20
±16.56

80.87
± 1 1 . 1 1

80.53
±10.53

53.31
±15.42

80.64
±11.15

80.53
±10.53

73.00
±13.76

80.67
±10.99

80.53
±10.53

50 38.96
±18.65

90.91
±12.03

90.96
±12.00

42.20
±17.87

91.13
±11.76

90.96
±12.00

87.98
±13.36

90.96
±12 .06

90.96
± 12.00

100 32.80
±20.22

95.02
± 6.37

94.44
±6.63

34.07
±16.94

95.00
±6 .40

94.44
± 6.63

92.93
±10.06

95.00
±6 .12

94.44
±6.63

150 28.96
±22.31

95.47
± 6.40

95.02
± 6 .60

30.69
±16.30

95.00
±6.77

95.02
±6 .60

91.82
±11.92

95.42
±6 .54

95.02
±6 .60

200 29.73
±18 .65

95.09
±6 .73

94.31
±7.17

30.89
±16.82

94.44
±7.20

94.24
± 7.22

92.22
±8 .43

94.60
±7 .22

94.27
±7 .23

- 29.73
±18.65

95.20
± 5.97

95.24
±6.07

30.89
±16.82

95.27
±5.69

95.09
± 6.15

92.22
±8 .43

95.60
±5.77

95.58
± 5.92

Our experiments on KTH-TIPS and Caltech-101 confirmed the report of Zhang 

et al. [156] that the RBF kernel for EMD is PD with this data. However, computation 

of EMI revealed an indefinite kernel matrix, which indicates that only a subset of 

u < 0 from Theorem 2.3 is satisfied and that Zhang et aVs selection strategy for u 

just happens to fall within this subset. The same behavior was observed for EMJD on 

these two datasets. The ground distance’s support for posture recognition and MNIST,
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on the other hand, does not consist of normalized vectors. For posture recognition, 

we noticed that EMJD was more likely to yield a PD RBF using the aforementioned 

selection strategy. For example, observe that the Shift and KSVM results are the 

same as the indefinite results for certain thresholds, with lower threshelds apparently 

increasing the likelihood of generating a PD kernel. Exploration on normalized 

sets (not shown) with both MNIST and posture recognition made this effect more 

pronounced.

Of special note is the fact that EMD and EMJD yield significant improvements 

in accuracy even without applying any indefinite kernel technique. On the posture 

recognition dataset in particular, the effective results are nearly indistinguishable from 

Shift and KSVM. For the MNIST dataset, indefinite EMJD consistently outperformed 

the other two kernels and rivaled Shift and KSVM at the lowest threshold. These 

results indicate that EMD, EMJD, and perhaps the definite preserving transformation 

in general have value on their own without additional indefinite kernel methods.

In general, one can observe that the threshold has a significant effect on the 

quality of the classifier. The highest threshold for each dataset, which matches or 

exceeds the diameter of the ground distance’s support, did not yield the best observed 

results for any dataset. Lower thresholds tended to yield better results (up to a point). 

As the threshold lowers, EMD becomes a closer approximation to the set symmetric 

difference and thus more similar to the intersection kernel. As stated in Section 5.3.1, 

thresholding can be interpreted as a means to induce concavity in the ground distance 

and make it more similar to the discrete metric. This explains why the accuracy 

drops off after a certain minimum threshold (as it becomes too similar to classical
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intersection to associate slightly different elements) as well as its tendency to improve 

prior to the drop off.

Our work raised some open questions. We do not know whether thresholding a 

distance preserves CND properties as it does metric properties [106]. Our experiments 

did not contradict the hypothesis. The choice of the optimal threshold is also open. 

One could always tune the threshold via cross-validation, but we suspect that a decent 

approximation to the optimal threshold would be to use the average or median distance 

between all points. Using no threshold or choosing p to be closer than the threshold 

is also an option to consider as the posture recognition experiments demonstrate.

One unexpected result was KSVM’s poor performance on MNIST relative to 

Shift for EMD and EMJD. This result is at odds with the expectation that KSVM 

should be at least as good as other indefinite kernel techniques, which is fairly well 

justified in its introductory article [87]. We noted that the eigenspectrum of an MNIST 

kernel matrix was much less concentrated than those for the other datasets. Whereas 

performing a partial decomposition with the 50 highest magnitude eigenvalues was 

typically sufficient to retain approximately 95% of the spectrum’s total magnitude on 

the other datasets, as many as 1200 eigenvalues were required to achieve the same 

preservation of the spectrum on MNIST. In fact, the results reported in Table 5.3 

are from a complete eigendecomposition. Additional research may be required to 

determine if this is a peculiarity unique to our treatment of MNIST or some weakness 

of KSVM.

As a final addendum on EMD’s definiteness, we expect there to be many other 

instances of PD kernels based either directly or indirectly of EMD. For example,
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recalling Section 5.3.2, note that Kolouri et al. [71] use D(a,b) =  (a — b)2 to show 

that the sliced Wasserstein kernel, which is calculated between distributions in 

via one-dimensional projections, is PD. Cuturi [24] on the other hand proposed 

a regularized version of EMD via an additional entropic term that yields the PD 

independence kernel when the entropic term’s effect is maximized. One may also 

consider the following special case to reveal similarities to another min-like kernel, the 

Brownian bridge product kernel [128],

K B(x,y) = min{x,y} -  xy. (5.40)

Suppose the ground distance D  is supported by two points p\ ,p2 £ K, and without 

loss of generality assume pi = —p2 =  1. Assuming u, v 6 V({pi ,p2}), let Xu(Pi) = x

and Xv(Pi) = y  so that Xu(P2 ) = 1 — x and XviPt) = 1 — y.  Then for i € {1,2}, the

optimal flow /* satisfies

f*(Pi,Pi) =  min{x„(Pi), Xv(Pi)}, (5.41)

f*(PuP2) + f*(P2,Pi) = 1 -  f*{Pl,Pl) ~  /*(P2,P2). (5.42)

Choosing the sink p = 0 in (5.28), we can determine that 
2

EMI0(u,v) =  ^  f*{pi,Pj)PiP3  = 2(min{x, y} +  min{l -  x , l - y } )  -  I
i,j=1

= K B(x,y) + 2KB( l - x , l - y )

+ min{x,y}  -  x ( l  -  y)

-  y( l  -  x) + (I -  x)(l  -  y), 

which is clearly the sum of two Brownian bridge product kernels and a similarly

structured term.



CHAPTER 6

NEURAL NETWORK ARCHITECTURES 
FOR GESTURE RECOGNITION

In this chapter we propose ANN architectures for posture and gesture recog

nition and evaluate them on the posture and gesture recognition datasets described 

in Appendix B. As a prerequisite, we describe the steps taken to prepare the data for 

processing by neural networks. In order to establish context, consider the diagram 

in Figure 6.1.

Hand Position, 
Orientation

Labeled
Markers

Gesture Class 
Probabilities

Unlabeled
Markers Features

Rigid 
Pattern Tracker

Neural NetworkVicon 
DataStream SDK

Feature
Extraction

Figure 6.1: A high-level diagram of the overall architecture and flow of data from 
the lowest accessible level (Vicon Datastream SDK) to the desired result (probabilities 
for gesture classification).

Some effort should be made to ensure that the data provided to the neural 

networks is consistent and relatively error free. Thus, a preprocessing layer is interjected 

prior to the neural network that filters or otherwise transforms information provided

135
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by the Vicon DataStream SDK. This figure shows that we separate the processing 

of unlabeled markers and the four labeled markers that constitute the pattern on 

the back of the hand (see Figure 1.2). The pattern’s markers, which may be noisy, 

incorrect, or partially occluded, are filtered to produce more reliable estimates of the 

hand’s position and orientation than what the Vicon DataStream SDK provides. As 

in previous chapters, we use the pattern to establish a local coordinate system for the 

hand. We also use the pattern to estimate the position and orientation of the hand, 

which are expected to be important features for gesture recognition. The extraction 

of features from unlabeled markers is not quite as straightforward and is intentionally 

vague; in the figure. However, we; avail ourselves a resource; denied in prior e;hapters 

by exploiting the context of temporally adjacent frames. We consider two general 

approaches to extracting features from unlabeled markers. We either use the positions 

directly by extracting marker identities, or we transform the unlabeled marker sets 

with certain neural network architectures. After features are extracted from both 

labeled and unlabeled markers, the application of an RNN is rather straightforward 

for the considered data.

The chapter is organized as follows. In Section 6.1, we describe an EKF 

(Section 2.5) for tracking an arbitrary rigid pattern. We follow this with a discussion on 

feature extraction from unlabeled markers in Section 6.2 before describing experiments 

to evaluate and compare the proposed architectures in Section 6.3 and their results. 

For a review of neural networks, please refer to Section 2.7. A review of quaternions 

(Section 2.1.2) and EKFs (Section 2.5.3) is also advised for the next section.
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6.1 Tracking a Rigid Pattern

Recall the definition of a rigid pattern given in Section 1.1. In this subsection, 

we define a filter to estimate the position and orientation of an arbitrary pattern. 

Let us formally define a pattern to be a set of m  functions M, : R —> R3, i <E [1, m], 

representing marker positions whose pairwise Euclidean distances are constant over 

time, i.e.

|| M i{ t ) - M j {t)\\ = eij, (6.1)

where each is constant and t is time. In reality, some flexibility in the pattern is 

expected but assumed to be negligible. We use a rigid pattern composed of m  =  4 

markers to determine the location and orientation of the hand. Sometimes the pattern 

becomes partially or completely occluded, corrupted by noise, or misrepresented by a 

completely incorrect measurement reported by Vicon. We therefore need a filter to 

fill in these missing values as well as smooth the measurements. We choose to use an 

EKF (Section 2.5.3). For the remainder of the section, assume that we are sampling 

marker positions at a rate of t -1 H z in order to obtain measurement vectors

y k
T

(6 .2)M i{ k r y i i { k ) M 2( k T y i2(k) . . .  M m(kT)JIm(k)

where Ii(k) = I3 if the i-th pattern marker is visible at time kr  and 0  otherwise.

The state used to represent the pattern should be comprised of a minimal set of 

variables that represent the entire pattern’s dynamics (position, velocity, acceleration, 

etc.). Let us select a marker Mj and assume that the vector-valued functions E ^ t )  = 

Mi(t) -  i y  j ,  are known for t = 0. Without loss of generality, assume j  =  1,

let Ofc = Mi(kr)  and = (0, En(kr)),  and note via (2.13) that for each k > 0 there
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exists a unit quaternion A*, such that

-<£' = A tv 'V (6.3)

In fact, A0 = (1,0). We can therefore conclude that a second order Taylor approxima

tion of the pattern’s dynamics can be represented by the state

xfc = (6.4)OkT OkT OfcT A*1 <j)k «fcT 

where u>k and a k are the angular velocity and acceleration, respectively, each repre

sented as a vector whose direction is the axis of rotation and whose magnitude is the 

angle in radians.

The associated transition function is nonlinear due to the rotation and is given

by

Xfc+1 =  / ( x fc, Ufc,Wfc)

Ofc +  r O k +  O k

O k  +  t O  k

Ok

1 _2.

T " T

Ik ^ k

u k +  r a . k

<*k

+ w*, (6.5)

where 7 fe = quat (7 J  and 7 fc =  TUk +  W 2a k. The measurement function is also

nonlinear and is given by

y k =  h(xk, v k)

h(k)Ok

h{k) Ofc + Im

Im(k) O k +  Im

+ V(. (6.6)
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The linearized transition and measurement matrices are thus given by

Ak =

I 3 r h l T% 0 0 0

0 I 3 r h 0 0 0

0 0 I 3 0 0 0

0 0 0 d \k
d^kXk &yk 

9-yk aik
1 _2 d lkX)
2 37*

0 0 0 0 I 3 r h

0 0 0 0 0 I3

(6.7)

Hk =

h { k )  0 0 0 0 0

£) \ —■(*') \ w
I 2(k)  0 0 h { k )   -*• 0 0

Im (k)  0 0 Im {k)

dXk

o \ kel ' \ k
d \ k 0 0

(6 .8 )

The partial derivatives can be determined via substitution into the equations given 

in Section 2.1.2. The measurement noise covariance R k is simply the identity matrix 

scaled by a factor of, whereas the process noise covariance is based on discretized 

white noise models [5] with the assumption of independence between translation and 

rotation, which yields

Qn 0 

0 Qn{k)

Q k (6 .9)
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where

Qu —

t6/ 36 t5/12 t4j 6 

f5/  12 t4!  4 f3/2 

i 4/ 6  t 3/ 2  t2

' h , (6 .10)

Q22(k) —

t3 d\k r  
6 dXk 13

J
6 d\k 3

T

*2 t
T A3

*2tT  3 ( 6 .1 1 )

tlz th

Afc is a vector with ||Afc|| € [0,2n) such that A* =  quat (A*,),and o2a and a2 are the 

freely chosen respective magnitudes of the translational and rotational covariance.

The measurement noise is not truly normal, although its exact form is unknown. 

Depending on visibility, the quality of marker reconstruction, and the closed source 

algorithm Vicon uses to label markers that belong to a pattern, occasionally a 

completely incorrect measurement is reported. For example, four of the unlabeled 

markers on the fingers may be erroneously labeled as part of or as the entire pattern. 

Aside from the fact that these markers do not represent the pattern, Vicon also 

overrides their positions to force them into the pattern’s shape. The second issue is 

unavoidable if one uses Vicon for labeling. The first issue is addressed by rejecting 

measurements that exceed some threshold distance from the EKF’s prediction. For 

specific details of the threshold used in experiments, please refer to Section 6.3.2.
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6.2 Feature Extraction from Unlabeled Marker Sets

If markers were labeled, then subsequent classification would be trivial. How

ever, if a sufficient percentage of labels are not correct, then we run the risk of 

introducing errors that lower the quality of the classifier, which is especially true if 

we interpolate or extrapolate data based on these labels. Therefore, establishing a 

method that effectively uses the raw unlabeled marker positions could be superior. 

Based on these guidelines, we consider two approaches to extracting a consistent set 

of ordered features from unlabeled markers: extracting marker identities via tracking 

with Kalman filters and unsupervised feature extraction via neural networks. Note 

that this is not an exhaustive list of possible feature extractors, although we think 

that these are among the most promising for practical purposes.

6.2.1 Labeling Markers with Kalman Filters

Labeled markers allow one to consistently order features for a neural network 

or other classifier. We use 11 Kalman filters to track each unlabeled marker separately, 

although there is no a priori label for each filter. Each Kalman filter is similar to 

the rigid pattern tracker described in the previous section albeit with all orientation- 

related variables removed. Global coordinates are used for each filter in order to 

avoid propagation of transient or persistent errors in the pattern tracker. Measured 

unlabeled marker positions are assigned to predicted positions based on a Euclidean 

ground distance (see Section 2.4). Adaptive spherical gates centered on each prediction 

are used to reject infeasible assignments. The radius of each gate varies between a
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minimum of 40 mm and a maximum of 1000 mm, increasing or decreasing by a factor 

of 1.2 whenever a measurement is not or is available.

The purpose of the Kalman filters is to consistently provide 11 markers per 

frame regardless of the amount reported by Vicon. We must then decide which 

a posteriori estimate corresponds to which part of the hand. We determine this 

correspondence on a per-frame basis; labels are not assigned to the filters. We use 

a feed-forward neural network with softmax output to approximate the probability 

p (A | x) that a given position x generates a label A. Let A be the set of labels (e.g. 

thumb tip, knuckle, etc.) and Xk the set of a posteriori estimates produced at time 

k (expressed in local coordinates). Labels are assigned to estimates according to the 

bijection T/>fe : A —> Xk possessing the maximum likelihood, i.e.

The neural network is trained beforehand using data captured in a controlled setting 

and described in Section B.2. Obviously, the quality of the labeling depends on the 

quality of the labeled marker set.

The described procedure for finger tracking and marker labeling is quite similar 

to that proposed by Alexanderson et al. [2]. Whereas Alexanderson et al. use a more 

elaborate configuration of Kalman filters based on multiple potential assignments 

of labels, we use only a single assignment. We also use a neural network instead of 

GMMs to provide label probabilities.

=  arg max (6.12)



143

6.2.2 Architectures for Unlabeled, Unordered Markers

In this section we propose several architectures for handling unlabeled marker 

sets and extracting a fixed-size output from them. Each architecture has different 

advantages and disadvantages and may also be used directly for posture recognition. 

We separate these architectures into two groups—fixed-size and variable-size—that 

indicate the expected format of the input.

Fixed-Size Architectures

Using a fixed-size architecture enables the use of MLPs and certain CNNs. 

Determination of an MLP is straightforward from Section 2.7.1 and thus does not bear 

repeating. When considering CNNs, each coordinate x, y, z is treated as a channel 

of a 1 x n “image,” where n depends on the dataset and is the maximum number of 

markers observed at one time in a sample frame. Frames with fewer than n  markers 

are padded with zeros.

In general, fixed-size architectures are easier to implement and train in the 

sense of requiring fewer epochs and regularization (especially CNNs). However, they 

also possess serious disadvantages. Note that the second dimension on the input is 

not 11 because the dataset may contain extraneous markers, which highlights one 

of the primary issues with a fixed-size architecture. Namely, fixed-size architectures 

cannot handle extraneous markers in a principled manner. If in practice more markers 

appear in an example than the network can accept, then there is no way to classify the 

example without additional heuristics. Since the entire purpose of these architectures 

is to generally minimize the processing of raw data through external means, this
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problem could be significant. A potentially troublesome related issue is the fact that 

the network implicitly uses the number of missing markers as a feature since this 

information is encoded in the number of padded zeros provided as input. The number 

of missing markers may not be a reliable feature as it depends on the quality of 

the camera calibration and physical configuration in addition to the hand’s posture. 

Extraneous markers also inflate the number of markers visible.

Variable-Size Architectures

Variable-size architectures offer a principled manner to address both occluded 

and extraneous markers. These architectures are designed to exploit only the 

information explicitly contained within the markers that are visible.

The first and arguably simplest variable-size architecture we discuss is based 

on deep averaging networks [63] for text classification. A deep averaging network 

takes an arbitrary number h of word embeddings as input (i.e. words converted to 

vectors through some mapping), averages the embeddings, and gives the average to a 

feed-forward network. Whereas the embedding function is typically predetermined, 

we propose to dynamically learn the embedding by representing it as a MLP (see Fig

ure 6.2). We refer to our version of this architecture as a convolutional deep averaging 

network (CDAN) since it is equivalent to consider convolving a 3 x 1 filter with a 3 x h 

image followed by a pooling operation over the entire horizontal axis. Even though 

“averaging” is part of the name, we allow other pooling operations such as max. In 

fact, max-pooling may be preferable as it introduces an additional nonlinearity. The
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primary advantage of a CDAN is that it is invariant to permutations of the input 

markers.

Pooling

MLP

Embedding
MLP

Embedding
MLP

Embedding
MLP

Figure 6.2: An illustration of a CDAN architecture for sets of 3D marker positions, 
arbitrarily ordered. A function represented by an MLP is convolved with the positions 
to produce a dynamically learned embedding in some potentially high-dimensional 
space.

However, the lack of connectivity before the pooling layer also constrains the 

ability of the network to learn. At the cost of giving up permutation invariance, we 

consider each marker set as a time series wherein each marker represents an observation 

at a certain time. RNNs provide a principled solution in this case. We consider two 

types of bidirectional RNN [121], where bidirectional denotes that we have two RNNs 

iterating over the input in opposite directions whose outputs are concatenated at each 

timestep. In the first type, we consider a GRU whose outputs are pooled over the 

entire time duration of the sequence prior to being given to an MLP. In essence, this 

architecture is equivalent to a CDAN if we allowed recurrent connections between the 

filters at each location (see Figure 6.3). For this reason, we refer to this architecture as
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a recurrent deep averaging network (RDAN). The primary advantage of an RDAN over 

a traditional RNN is that the pooling allows earlier timesteps to override later ones. 

For example, an RDAN theoretically allows the detection of a relevant subsequence 

followed by meaningless noise that may otherwise lead the network astray. The second 

type of RNN is simply a GRU network, potentially multi-layer, that provides the 

output at its final time-step to an MLP. Of course, successfully training these networks 

to exploit their theoretical advantages is another matter.

t

Pooling

Embedding Embedding Embedding
MLP MLP MLP

, « k

X y 2 X y z •  •  • y

Figure 6.3: An illustration of a (unidirectional) RDAN architecture for sequences of 
3D marker positions. Embeddings are no longer independent.

6.3 Evaluation

In this section we describe experiments used to evaluate neural networks for 

both posture and gesture recognition. In the case of gesture recognition, we compare 

feature extraction through labeling markers versus the features implicitly represented 

by the output of one of the architectures described in the previous section. We use
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Keras [18] with the Theano [132] backend to implement and test our neural network 

architectures.

When using one of the proposed neural network architectures for unlabeled 

marker sets, the following additional preprocessing is performed to normalize the 

data. Unlabeled markers are lexicographically sorted according to perpendicular 

distance to three hyperplanes defined by linearly independent normal vectors (in local 

coordinates). In experiments, we simply use the basis vectors (1,0,0), (0,1,0), and 

(0, 0,1). Consequently, in practice we effectively just sort by the ^-coordinate from left 

to right since the probability of a tie is extremely low. Sorting minimizes the impact 

of the originally unordered nature of the markers, although it is not guaranteed to sort 

the markers in any consistent manner with respect to their latent labels. In addition, 

we center the markers of each frame on their mean as a form of normalization and 

optionally prepend the mean to the beginning of the sorted sequence. Prepending 

the mean ensures that the input is not invariant to translation of the original marker 

set, although it could potentially provide the networks a greater challenge during 

training. Theoretically, centering the markers is unnecessary as a sufficiently sized 

neural network should be able to learn the classification function without centering. 

Indeed, given enough resources, the proposed architectures are theoretically all equally 

capable. However, we found that centering yielded significant practical benefits.

6.3.1 Posture Recognition

For posture recognition, we considered the dataset described in Section B.3 

and adopted the leavc-one-uscr-out approach as taken in previous chapters with 75
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samples per class per user. We tried to make the different architectures comparable 

by using similar amounts of regularization (see Section 2.7.4). In particular, we used 

weight decay with A = 0.001, applied dropout to weights (not biases) at a 10% rate 

when indicated, and added Gaussian noise with a standard deviation of 20 mm to the 

input. All non-GRU layers used ReLU activations with the exception of a softmax 

layer as the output of each network, which is appropriate for classification. For the 

results reported in this section, the mean was not prepended to the centered marker 

positions.

The fixed-size MLP contained two hidden layers with 36 and 128 nodes, 

respectively. Dropout was applied to each. The fixed-size CNN used a 32 channel 

network-in-network [81] layer (i.e. l x l  filters) followed by a 32 channel 1 x 3  filter. 

No pooling was applied. A dense hidden layer of 128 nodes followed convolution prior 

to the softmax output layer.

For each of the recurrent variable-size architectures, we used two bidirectional 

recurrent layers with 11 neurons each (and in each direction). The CDAN’s embedding 

MLP possessed two layers with 11 neurons each. The MLPs to which these special 

layers feed their output are also two layers with 11 nodes in the first layer and five 

(the number of classes) in the second. Dropout was applied to all hidden layers, and 

max instead of average pooling was used in the CDAN and RDAN.

Results for each user left out as well as the overall average accuracy are listed 

in Table 6.1. The fixed size CNN achieves the best average performance, although 

the RDAN and RNN are not significantly worse. We attribute the slightly inferior 

performance of the recurrent architectures to the fact that they are in general harder
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to train. The CDAN is significantly worse, however, which is due to the fact that it 

possesses less representational capacity for a given number of neurons as well as the 

fact that it is arguably harder to train. A CDAN is handicapped by the fact that 

each marker is considered in isolation prior to pooling. However, CDANs still possess 

potential as indicated by user 10. The MLP performs worse than the CNN, which is 

expected given that a CNN is an MLP with built-in regularization.

Table 6.1: Accuracies for leave-one-user-out classification with the posture dataset.

User M LP CNN CDAN RDAN R N N
1 80.80 91.73 74.40 80.80 94.67
2 85.33 96.00 74.67 94.67 95.47
3 83.73 91.20 70.13 80.00 80.00
4 90.93 93.07 72.27 99.73 99.73
5 98.68 100.00 99.73 99.73 98.93
6 84.80 88.00 67.73 81.07 83.47
7 95.47 99.47 62.13 88.27 86.67
8 88.80 89.60 56.27 86.40 86.93
9 93.60 88.53 68.27 97.33 96.80
10 59.47 82.67 84.80 76.80 74.67
11 78.67 91.47 48.80 92.53 91.47
12 72.53 90.40 82.40 95.20 94.67

Average 84.40 91.84 71.80 89.38 90.29

We also experimented with training the variable-size architectures with fixed- 

size input (shorter sequences padded with zeros), which as stated previously implicitly 

encodes the number of missing markers as a feature. We found that there was no 

significant difference between the resulting accuracies, and so we can conclude that 

the majority of the information about a posture is contained in the markers that are 

present. Given the general disadvantages of a fixed-size architecture and the fact that 

there is no significant difference between the recurrent architectures and the fixed-size
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CNN, we therefore recommend RDAN or RNN for classification tasks with unlabeled 

markers.

6.3.2 Gesture Recognition

For gesture recognition, we considered the dataset described in Section B.4 

and adopted the same leave-one-user-out approach as that taken with the posture 

dataset. Every sample in the dataset was considered, and samples for each class 

underrepresented for a particular user were randomly sampled with replacement from 

within the user’s data so that classes were equally represented. Sequences (i.e. samples) 

that were more than two standard deviations longer than the average sequence length 

were pruned as outliers prior to balancing classes. We compare the supervised and 

unsupervised feature extraction methods given in Section 6.2 to one another and find 

the unsupervised extraction with neural networks to yield superior accuracy.

Let us first describe the remaining characteristics of the rigid pattern tracker 

(Section 6.1), which affect the values of the features provided to the neural networks. 

Values of of =  0.001, =  1000 were chosen for the process and measurement

noise magnitudes. The threshold used for rejecting measurements was based on 

differences between the local coordinate system that would be established using the 

algorithm in Figure B.l for the a priori estimate and the measurement. The maximum 

distance between origins was set to be 40 mm, and the maximum angle between each 

respective axis was set to be 2.5 radians. If 30 consecutive frames were rejected, then 

the EKF was reinitialized with the latest measurement. In order to stop the EKF 

from diverging in scenarios with extended lapses of visibility or rejections, missing and
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rejected measurements were substituted with the prior a posteriori estimate. This 

treatment stalled the estimated movement based upon the expectation that the user’s 

hand was likely to reappear nearby.

Features extracted from the pattern tracker for each sample and timestep of a 

gesture included the global positions of each of the labeled markers, which implicitly 

encode both the position and orientation of the hand, as well as the global angular 

velocity and acceleration vectors. With the exception of the quaternion encoding the 

orientation, these features effectively are just the state of the EKF. We also extracted 

the position of each marker, angular velocity, and acceleration relative to the local 

coordinate system of the previous timestep. These relative features give a rotation 

and translation invariant representation of the hand with respect to itself. Since the 

dataset is relatively small and confined to a small space, we did not use the global 

features in these experiments.

Features extracted from the unlabeled marker set at each timestep were 

concatenated with the features from the pattern tracker and provided to an RNN 

composed of two 100-neuron GRU layers followed by a non-recurrent six node softmax 

layer replicated at each timestep. Weight decay with A = 0.001 was applied to each 

layer. Only the RNN architecture for unlabeled feature extraction was considered as 

an alternative to labeling with Kalman filters, and it shared the same structure as 

the one used for postures except that the softmax function was stripped from the 

network and it possessed 200 neurons per recurrent layer and 100 neurons for both 

dense layers. Eleven neurons per layer was found to be insufficient given the much 

more diverse range of postures implicit to the gesture data. Weight decay applied to
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the internal RNN was increased to A = 0.01, but no Gaussian noise was added to the 

input. Dropout of 10% was applied to all hidden layers. The mean was prepended 

after centering the unlabeled markers. All markers, whether labeled via Kalman filters 

or not, were transformed each timestep to local coordinates using the pattern tracker’s 

state. The gesture recognition results for each left-out user can be found in Table 6.2, 

where accuracy is determined by the classification of the final frame of each sequence.

Table 6.2: Accuracies for leave-one-user-out classification with the gesture dataset.

User Label E xtraction RN N
1 61.51 68.25
2 75.80 90.87
3 67.06 78.97
4 76.98 79.76
5 69.04 72.62
6 60.71 88.00
7 81.35 98.81
8 83.33 79.76
9 57.14 59.13
10 90.08 73.02
11 72.62 74.60
12 69.84 87.70

Average 72.12 78.54

We can clearly see that the unlabeled feature extraction yielded a superior 

gesture classifier, which may seem counterintuitive; at first. However, the results 

illustrate the problem with using supervised features that are not expertly crafted. 

Our supervised features (the labeled marker positions) depend on the quality of the 

labels, which are limited by both our method and our data. Ultimately, we conclude 

that our labeling algorithm introduced errors or inconsistencies in the marker positions 

and labels that were entirely avoided by the ANN-based extraction. We did not



employ the most sophisticated ensemble of Kalman filters possible for tracking the 

markers. More importantly, however, labels were based on data collected from only 

a single user. A need to collect this data for each of the original 12 users was not 

identified until long after the possibility had vanished. This limitation also highlights 

a weakness with a data-driven approach for extracting marker identities in that one 

must collect data for each user, which may not be practical or desirable.



CHAPTER 7

CONCLUSIONS

In this dissertation, we studied means to achieve gesture recognition in a 

motion capture environment. The Wasserstein distance and its derivatives (such as 

EMD and the assignment problem) pervaded nearly every aspect of the dissertation, 

underscoring the challenge induced by unlabeled motion capture markers. Various 

methods to address the fundamental uncertainty in marker identity were proposed. 

In Chapter 3, we explored different classifiers and feature transforms as effective ways 

to represent and characterize the data. We expanded these results in Chapters 4 

and 5. In Chapter 4, we proposed the AFEM algorithm as a means to estimate the 

generative distribution of unlabeled, correlated point sets representing hand postures 

and showed that it was superior to a traditional EM algorithm. In Chapter 5, we 

proposed a generalization of EMD for kernels and explored scenarios under which EMD 

could be guaranteed to yield PD kernels. We also proved that a certain normalizing 

transformation was PD-preserving, described a family of transformed, normalized 

kernels, and implied that the biotope transform preserved CND-ness. Most importantly 

for our primary focus, we found that EMD-based SVMs yielded very accurate posture 

classifiers. Finally, in Chapter 6, we shifted focus to deep learning with neural networks

154
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where we proposed an EKF for tracking rigid patterns along with several architectures 

for posture and gesture recognition with unlabeled markers.

7.1 Discussion

In Chapter 3, we demonstrated the performance of several classification 

algorithms on a variety of data transformations of small unlabeled point sets for 

3D hand posture recognition. We found each data transformation to have inherent 

advantages and disadvantages. Aggregate features led to classification with reduced 

deviation but limited peak performance. Raw feature classifiers tended to the extremes 

in both overall error rate and deviation, likely due to their propensity for overfitting. 

On the other hand, the training objectives also significantly affected performance, 

as indicated by the results of the greedy GMMs. Grid transformed classifiers also 

possessed the potential for overfitting, but were capable of achieving maximum accuracy 

among the algorithms tested. In designing a classifier, one should strike; a balance; 

between global (e.g. aggregate) and local (e.g. individual point coordinates) features.

We presented an EM algorithm in Chapter 4 for estimating the parameters of 

a static distribution from which unlabeled point sets are presumed to be drawn. The 

algorithm consists of using a Kalman filter in the expectation phase of an EM algorithm. 

Modifications to the Kalman filter were proposed to handle intractable distributions 

resulting from unknown point labels and improve the likelihood of the algorithm’s 

output. The algorithm is versatile in that arbitrary probability distributions may 

be assigned to the labels. Simulations found that AFEM had significant advantages 

versus an EM algorithm without the Kalman filter.
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In Chapter 5, we presented proof that PD kernels can be derived from EMD 

and are dependent on the ground distance and the space in which it operates. We set 

our discussions in the context of set theory, providing motivation for our derivations 

and an intuitive interpretation of EMD’s value, namely as a generalization of otherwise 

binary set operations. In doing so, we generalized EMD for kernels. We also proposed 

a PD preserving transformation that normalizes a kernel’s values and showed that the 

Jaccard index is simply the result of this transformation applied to the intersection 

kernel. As a corollary, the biotope transform was shown to preserve CND as well as 

metric properties. Finally, we provided the first assessment of EMD in a kernel setting 

and showed that it and its biotope transform EMJD achieve superior accuracy over 

EMD on experiments with unnormalized sets and a state of the art indefinite kernel 

technique. Indeed, we showed that an indefinite kernel technique may not even be 

necessary. EMJD was found to have more favorable numerical properties than EMD.

In Chapter 6, we proposed neural networks capable of recognizing gestures 

represented by variable-length sequences of motion capture frames. We relied upon 

the rigid pattern on the back of the glove (Figure 1.2) to establish a local coordinate 

system in which our classifiers operated. Our proposed neural network architectures 

were not quite as effective at posture recognition as the SVM considered in Chapter 5, 

although they were much more computationally efficient . We also found that extracting 

features from the raw unlabeled markers using appropriately structured ANNs was 

more effective than a data-driven algorithm for sorting the markers by estimated labels. 

Further refinement of the proposed architectures along with layer-by-layer training
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as stacked denoising autoencoders [141] or with residual learning [56] may yield even 

better results with raw unlabeled markers, especially for the CDAN architecture.

Ultimately, we found evidence that practical hand posture and gesture recogni

tion is possible with motion capture cameras and unlabeled markers. The primary 

factors that control the feasibility and performance of a recognition system are the 

number of cameras, their configuration, and the amount of training data. If there 

are too few cameras or they are poorly placed, then the data used to train gesture 

classifiers will be of poor quality and unlikely to be representative of data encountered 

at a later time. Similarly, if not enough training data exists, then the generalization 

error encountered in practice is likely to be large. Deep learning appears especially 

promising as a potential solution, but these two factors will continue to play a major 

role in any future work.

7.2 Future Work

A significant amount of potential future work exists. The following subsections 

highlight areas of particular importance.

7.2.1 Enhanced Data Collection

Note that despite the variance in the accuracies reported in Tables 6.1 and 6.2, 

we found that the generalization error was consistently low when no users were left 

out. These results indicate that the challenge is not necessarily in the data but 

in generalizing to new users. The simplest way to address this problem is with 

the collection of more data, which is a characteristic common to machine learning 

algorithms.
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In general, the quality of results in this work was highly dependent on the 

quality and amount of data that supported it. We collected data for a limited corpus 

of postures and gestures from 12 users. The number of users and the size of the corpus 

should be increased to assess the scalability of different algorithms and obtain more 

positive results. A camera configuration that allows a wide range of motion during 

capture should also be emphasized. A collection of (manually) labeled data would also 

be very beneficial for developing and evaluating future marker labeling algorithms.

Some needs were not foreseen at the time of collection. For example, gestures 

were captured as isolated segments of a stream of frames, and sequences of motion not 

corresponding to any gesture were ignored. This type of data capture, though useful for 

assessing whether a given classifier is capable of distinguishing gestures, is not entirely 

appropriate for online processing of a stream that may contain multiple gestures. Future 

data collection should aim to be compatible with so-called connectionist temporal 

classification [48], wherein the streams need only be labeled with the sequence of 

gestures they contain without any segmentation.

7.2.2 Constrained /c-Means

In Chapter 4, we noted that the AFEM algorithm implicitly defined a con

strained k-means algorithm. Future work could focus on clarifying this statement 

by rigorously expressing a variant of AFEM as such and evaluating the resulting 

algorithm against other constrained fc-means algorithms. AFEM is also constrained 

by the requirement to know the number of targets beforehand. We believe this 

requirement could be relaxed by adapting the method of Figucircdo and Jain [38]
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for GMM estimation, which uses the minimum message length criterion [146] to 

simultaneously estimate the number of components and their parameters. On a 

related note, the outer loop of the AFEM algorithm can probably be removed by 

shifting the covariance E and occlusion probability vector 7r directly into the state of 

a Bayes filter or smoother.

7.2.3 Improved Online Marker Tracking and Labeling

The marker tracking method proposed in Section 6.2.1 is relatively simple and 

largely dependent on heuristics. The method consists of a filtering phase followed 

by a labeling phase. The AFEM algorithm of Chapter 4 suggests a more principled 

method for filtering based on multiple assignments. Alternatively, a PHD filter [142] 

could be used that avoids assignments in the filtering phase. The labeling phase 

could be improved by employing one or more grid-based filters [4] that maintain the 

discrete label probability distribution for each filter. Grid-based filters form the class 

of closed-form Bayes filters for discrete processes just as Kalman filters form the class 

of closed-form Bayes filters for linear Gaussian processes. The resulting method could 

be compared against Alexanderson et al. [2], which could in fact probably benefit from 

a similar application of a grid-based filter.

7.2.4 MCMC Algorithms for Weighted Permutations

The sequential match sampling algorithm used in Chapter 4 by Volkovs and 

Zemel [144] has a temperature hyperparameter with no clear guidelines for its optimal 

value. We also found that the algorithm could get stuck in low density areas for 

highly skewed distributions and certain temperature ranges. Future work could involve
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designing an improved sampler that avoids getting stuck or investigating efficient rules 

or heuristics for choosing the temperature.

7.2.5 Posture and Gesture Recognition in Global Coordinates

Working in global coordinates tends to add a great deal of complexity as 

classifiers may need to be translation or rotation invariant depending on the posture or 

gesture. Establishing a local coordinate system for the hand based on a rigid pattern 

was an expedient way to resolve this issue. However, this solution also imposes one 

of the greatest limitations on our work as the failure to observe or correctly identify 

the pattern renders many of the proposed methods inapplicable. We believe that 

spatially sparse CNNs [46] or similar networks offer an elegant solution that allows us 

to completely forgo any use of a rigid pattern or local coordinate system. In essence, 

one may consider a high-resolution grid over the entire capture space represented by a 

3D tensor whose elements record the presence or absence of markers at grid locations. 

Exploiting sparse matrix representations [43] allows us to efficiently represent this 

tensor in a manner that scales with the number of visible markers rather than the 

grid’s resolution. Convolutional layers can be implemented to inherit this sparsity, and 

pooling layers can eventually reduce the size of the grid to a fixed, manageable size 

while feeding important features to deeper layers of the network. Convolutions are 

also translation invariant and can be made rotation invariant given enough data and 

the correct structure. A spatial representation via a grid also avoids the combinatorial 

issues of ordering the markers in a list. In some ways, a spatially sparse grid can be
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seen as a scalable, high-resolution descendant of the grid transformation proposed 

in Chapter 3.

7.2.6 Marker Filtering and Labeling with Neural Networks

The role of neural networks can be expanded beyond just classification to 

include marker filtering and labeling, especially with the spatially sparse represen

tation described in the previous subsection. A denoising autoencoder [141] can be 

used to reconstruct missing markers or remove extraneous ones wherein a neural 

network is trained to output an observed sequence of markers (or spatially sparse 

grid representation of them) given a noisy version of the sequence. The denoising 

autoencoder (or a different ANN) could also be trained to simultaneously output the 

label or label probabilities of each marker assuming a dataset of labeled marker sets is 

available.

7.2.7 Kernel M ethods for Gesture Recognition

Despite the shift to neural networks in Chapter 6, SVMs with EMD-based 

kernels are still a promising route to accomplish gesture recognition. The fact that 

labels (or the lack thereof) have no effect on their computation is a tremendous 

advantage. Despite the high accuracy reported in Chapter 5, the practicality of 

EMD-based kernels are limited by their computational complexity. However, with 

the advent of computationally efficient approximations of EMD such as the sinkhorn 

distance [24] and the convolutional Wasserstein distance [127], kernel methods may still 

be competitive with deep learning. Aside from SVMs, these methods also include kernel 

Kalman filters [109] and kernel principal component analysis (PCA) [96]. The former
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can possibly be used as a label-free method to filter unlabeled markers whereas the 

latter could be used to calculate a permutation invariant feature vector representation 

of an unlabeled marker set. The kernel PCA representation could be used in myriad 

ways including but not limited to input to a neural network. Further work more directly 

related to the content of Chapter 5 could explore generalizations to set operations 

involving more than two sets, analyzing connections to rough or fuzzy set theory, a 

more in depth exploration of the proposed kernel transformation, further study on 

the definiteness of EMD, and various applications including the use of EMJD in the 

performance evaluation of multi-object filters.

7.2.8 A Kernel Trick for Optimal Transport

This final subsection on future work is more speculative than the previous 

and focuses on answering the question of whether a heat kernel can be defined and 

computed for CND ground distances. The motivation is to extend the convolutional 

Wasserstein distance of Solomon et al. [127] to CND ground distances, thereby enabling 

its application to a wider class of problems. We base our hypothesis on the facts that 

CND kernels with finite dimensional feature maps are equivalent to high-dimensional 

squared Euclidean distances and that the heat kernel for a flat finite-dimensional 

Euclidean manifold is a function of the distance. These facts form a reasonable basis 

to suggest that the convolutional Wasserstein distance can in fact be applied to certain 

nonlinear, non-geometric domains. The confounding issue is the fact that many CND 

kernels of interest correspond to infinite dimensional Hilbert spaces for which the 

heat kernel may not exist [33]. Furthermore, actual computation of the convolutional



Wasserstein distance may not translate even if the kernel exists. The point cloud 

Laplacian described by Crane [22] and Liu et al. [85] may or may not be sufficient. 

Consequently, based on the author’s current knowledge, the difficulty in resolving this 

problem ranges anywhere from trivial to impossible.
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This appendix serves as a reference for the rest of the dissertation regarding 

notation. Table A.l provides a list of defined mathematical notation, and Table A.2 

provides a list of acronyms used in various chapters.

Table A .l: A list of symbols and notation used throughout the dissertation along 
with definitions and short descriptions.

Notation Description
R, Z Real numbers, integers. R+ (resp. Z+) indicates positive numbers.
[a, b] The closed interval from a to b in R or Z as context indicates.

V A column vector.
VT The transpose of the matrix V.
Vi The z-th coordinate of the vector v.

V,j...A- The i j  . .. Axth element (z-th row, j - th column, etc.) of the tensor V.
IMI The magnitude (2-norm) of the vector v. Equal to

The determinant of the matrix V.
tr [V] The trace of the matrix V.

sn The n x n  matrix of the scalar s, e.g. 0„.
®nxm The n x m  matrix of the scalar s, e.g. 0nxm.

S A  tensor of scalars equal to s whose dimensions match the context.
In The n x n  identity matrix.

Inxm An otherwise zero matrix containing Imin[n,m] in the upper left 
corner.

I An identity matrix whose dimensions match the context.
V X  u The cross product of the 3D vectors v and u.
[vxj The matrix V  =  [vxj  that satisfies V u  = v x u for any vector u.

Q A quaternion.
quat (v) The quaternion constructed from v according to (2.12).
Im (q) The imaginary vector component of the quaternion q.

vec (V ) The vectorization of the matrix V formed by stacking its columns.
diag (v) A diagonal matrix with the elements of v on the diagonal.
V ® W The Kronecker tensor product of V  and W.
w w The Hadamard product of V  and W,  i.e. element-wise 

multiplication.
Ex [y] The expectation of Y  taken with respect to the distribution of the 

random variable X.
x The random variable X  has distribution Y.
Ix(i') Indicator function of the set X.  1 if x e  X,  0 otherwise.

supp (fi) The support of the measure p : X  —> R, i.e. {.x | /z(x) > 0, x £ X}.
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Table A .2: A list of acronyms and their expansions used throughout the dissertation.

Acronym Expansion
AFEM a fortiori expectation-maximization
ANN artificial neural network
BER balanced error rate
CDAN convolutional deep averaging network
CNN convolutional neural network
CND conditionally negative definite
CPD conditionally positive definite
CSV comma separated value
EKF extended Kalman filter
EM expectation-maximization
EMD earth mover’s distance
EMI earth mover’s intersection
EMJD earth mover’s Jaccard distance
FS feature selection
GMM Gaussian mixture model
GRU gated recurrent unit
JPDA joint probabilistic data association
JS Jensen-Shannon
KL Kullback-Leibler
KKT Karush-Kuhn-Tucker
fc-NN A-nearest neighbor
KSVM Krein support vector machine
MCMC Markov chain Monte Carlo
MLP multi-layer perceptron
ND negative definite
PCA principal component analysis
PD positive definite
PDE partial differential equation
PHD probability hypothesis density
RBF radial basis function
RDAN recurrent deep averaging network
ReLU rectified linear unit
RNN recurrent neural network
SVM support vector machine
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This appendix describes the collection, features, and organization of datasets 

gathered for this dissertation. In each case, the Vicon motion capture system described 

in Section 1.2.1 was used to collected the data. Each dataset can be downloaded 

separately as a zip archive of its described file format at h ttp ://w w w 2.latech.edu/ 

- jk an n o /co llab o ra tiv e .htm.

B .l General Remarks

A rigid pattern of markers on the back of the glove is used to establish a local 

coordinate system for the hand, and 11 other markers are attached to the thumb 

and fingers of the glove. Three markers are attached to the thumb with 1 above the 

thumbnail and the other 2 on the interphalangeal and metacarpophalangeal joints (i.e. 

the knuckles). Two markers are attached to each finger with 1 above the fingernail 

and the other on the proximal interphalangeal joints (see Figure 1.2 for a detailed 

view).

The pattern of markers visible in Figure 1.2 on the back of the glove plays 

an important role in establishing a local coordinate system for posture and gesture 

recognition. Four markers comprise the pattern and are given the labels “Origin,” 

“XMarker,” “YMarker,” and “Extra.” Four is the minimum number of markers required 

to define a pattern in Vicon Tracker, although only 3 must be visible in order for 

the pattern to be detected. The axes of the local coordinate system are determined 

according to the pseudocode in Figure B.l, which assumes that the origin is not 

occluded and tries to recover if any of the other markers are not visible.

http://www2.latech.edu/
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procedure getLocalCoordinateAxes 
Given: Origin o, XMarker x, YMarker y, Extra e 
Output: local x-axis x*, y-axis y*, 2-axis z* 
if XMarker is not occluded & YMarker is not occluded then  

X* = x — o 
y* = y -  o 
z* = x* x y* 

else if YMarker is not occluded then  
y* =  y -  o 
z* =  (e — o) x y* 
x* =  y* x z* 

else if XMarker is not occluded then  
X* = x — o 
z* = x* x (e — o) 
y* =  z* x x* 

end if 
X* =  X * / | |x * | |

y* =  y*/lly*ll
z* = z*/|[z* ||

Figure B .l:  Pseudocode for calculating axes of the hand’s local coordinate system 
using labeled markers.

B.2 Labeled Marker Dataset

This section describes the dataset of labeled markers and its associated file

format.

B.2.1 Data Collection and Description

In contrast to the posture and gesture datasets, a single user donated this 

data. The purpose of this dataset is to provide the range of motion for each part of 

the hand/glove to which a marker is attached. This dataset is naturally limited in 

that it cannot apply to all potential users, but it may still serve as a basis for future 

algorithm development.
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In order to be absolutely certain that no confusion between markers was 

possible, only a single unlabeled marker was attached to the glove at a time during 

capture. The user performed a full range of motion with each marker.

The data described here is already preprocessed. First, all markers were 

transformed to the local coordinate system of the record containing them using the axes 

given by the algorithm in Figure B.l. Any record that could not be transformed was 

dropped. Second, each transformed marker with a norm greater than 200 millimeters 

was pruned. Finally, any record that contained more than one marker was dropped. 

Figure B.2 provides a plot the processed data.

'200  
• 150

Figure B.2: The labeled marker dataset after processing (i.e. in local coordinates). 
Some outliers for certain classes are visible.

B .2.2 File Form at

Data is provided as a comma separated value (CSV) file. A header row provides 

the name of each attribute. There are no missing values. Each record corresponds to
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the position of a single labeled marker. The attributes are defined in the following list 

and are enumerated by their names:

• ‘Class’: Integer. The class ID of the given record. Ranges from 1 to 11 with

1 Pinky Finger (Joint),

2 Pinky Finger (Nail),

3 i-» Ring Finger (Joint),

4 i-» Ring Finger (Nail),

5 1-4 Middle Finger (Joint),

6 h4 Middle Finger (Nail),

7 Pointer Finger (Joint),

8 1-4 Pointer Finger (Nail),

9 >-4 Thumb (Metacarpophalangeal Joint),

10 t-4 Thumb (Interphalangeal Joint),

11 Thumb (Nail).

• ‘X’: Float. The x-coordinate of the marker.

• ‘Y’: Float. The y-coordinate of the marker.

• ‘Z’: Float. The z-coordinate of the marker.

B.3 Posture Dataset

This section describes the posture dataset used throughout the dissertation 

and its associated file format. Figure B.3 provides illustrations of instances within the 

dataset.
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•  •

Figure B.3: The glove used to capture data along with a sample from each class of 
posture projected onto the local X Y  plane. The classes are fist (1), stop (2), point 
with one finger (3), point with two fingers (4), and grab (5).

B.3.1 D ata  Collection and D escription

We recorded 12 users performing five hand postures with markers attached to 

a left-handed glove (Figure B.3).

The 11 markers not part of the rigid pattern were unlabeled; their positions 

were not explicitly tracked. Consequently, there is no a priori correspondence between 

the markers of two given records. In addition, due to the resolution of the capture 

volume and self-occlusion due to the orientation and configuration of the hand and 

fingers, many records have missing markers. Extraneous markers were also possible 

due to artifacts in the Vicon software’s marker reconstruction/recording process and 

other objects in the capture volume. As a result, the number of visible markers in a 

record varies considerably.

The data described here is already partially preprocessed in the following 

manner. The data was transformed and pruned in the same manner as the Labeled 

Marker Dataset. Any record that could not be transformed or contained fewer than 

three markers was removed. The processed data has at most 12 markers per record and
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at least three, which implies that at least one record has an extraneous marker. See the 

next subsection for more information on the attributes and file format. Unprocessed 

data in global coordinate is also available, but is not used anywhere in the dissertation 

and therefore an associated file format is not described.

Due to the manner in which data was captured, it is likely that for a given 

record and user there exists a near duplicate record originating from the same user. 

We recommend therefore to evaluate classification algorithms on a leave-one-user-out 

basis wherein each user is iteratively left out from training and used as a test set. One 

then tests the generalization of the algorithm to new users. The ‘User’ attribute is 

provided to accommodate this strategy.

This dataset may be used for a variety of tasks, the most obvious of which is 

posture recognition via classification. One may also attempt user identification. Alter

natively, one may perform clustering (constrained or unconstrained) to discover marker 

distributions either as an attempt to predict marker identities or obtain statistical 

descriptions/visualizations of the postures (for example, the content of Chapter 4).

B .3.2 File Format

Data is provided as a CSV file. A header row provides the name of each 

attribute. An initial dummy record composed entirely of zeros should be ignored 

(this record was included for compatibility with WEKA [52]). A question mark ‘?’ is 

used to indicate a missing value. A record corresponds to a single instant or frame as 

recorded by the camera system. Descriptions of each attribute are provided in the 

following list organized by attribute name:
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• ‘Class’: Integer. The class ID of the given record. Ranges from 1 to 5 with

1 Fist (with thumb out),

2 M- Stop (hand flat),

3 1-4 Point 1 (point with pointer finger),

4 h4 Point2 (point with pointer and middle fingers),

5 t-4 Grab (fingers curled as if to grab).

• ‘User’: Integer. The ID of the user that contributed the record. No meaning 

other than as an identifier.

• ‘Xi’: Float. The x-coordinate of the z-th unlabeled marker position, ‘i’ ranges 

from 0 to 11.

• ‘Yi’: Float. The y-coordinate of the z-th unlabeled marker position, ‘i’ ranges 

from 0 to 11.

•  ‘Zi’: Float. The z-coordinate of the z-th unlabeled marker position, ‘i’ ranges 

from 0 to 11.

Each record is a set. The z-th marker of a given record does not necessarily 

correspond to the z-th marker of a different record. One may randomly permute the 

visible (i.e. not missing) markers of a given record without changing the set that the 

record represents. For the sake of convenience, all visible markers of a given record 

are given a lower index than any missing marker. A class is not guaranteed to have 

even a single record with all markers visible.
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B .4 G esture D ataset

This section describes the gesture dataset used in Chapter 6 and its associated 

file format.

B.4.1 Data Collection and Description

The same 12 users of the posture dataset reprised their roles for this dataset. 

Each user repeated each of six gestures for approximately 30 times.

Since the pattern is not always visible and has noisy or even incorrect obser

vations, a filter should be used to smooth the measurements of the labeled markers. 

Since there are many ways one could define a filter for this purpose, no processing 

has been performed on the data as it could bias subsequent results. As a result of no 

pruning or local transformations, the number of unlabeled markers (i.e. not including 

the pattern) can be as high as 16 due to artifacts of the capture. See Chapter 6 for an 

example of an extended Kalman filter (Section 2.5.3) that simultaneously estimates 

the position and orientation of the pattern.

There is less of an issue with duplicated gestures than with postures, but we 

still advise evaluating the dataset with a leave-one-user-out approach. Once again, a 

’User’ attribute is provided to accommodate this strategy.

B .4.2 File Format

Data is provided as a CSV file. Two header rows provide the name of each 

attribute. The first header row indicates the attributes for an entire sequence of frames 

that together constitute a single gesture. The beginning of a gesture is heralded by 

the word “Start” at the beginning of the first header. The second header indicates
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the attribute names for individual frames. An initial dummy sequence composed 

entirely of zeros is provided immediately after the headers as an example and should 

be ignored. Question marks are used to indicate missing values. Descriptions of each 

attribute are provided in the following list organized by attribute name:

• ‘Class’: Integer. The class ID of the given record. Ranges from 1 to 6 with

1 h-4 Click (or poke with pointer finger),

2 i-4 SwipeLeft (casual backhand as if swiping away),

3 i-4 SwipeRight (opposite motion of SwipeLeft),

4 1-4 TurnGrab (same as grab, but with left-handed

rotation about forearm axis),

5 i—y Grab (hand closes with fingers outstretched),

6 i-4 Release (opposite motion of grab).

• ‘User’: Integer. The ID of the user that contributed the record. No meaning 

other than as an identifier.

• ‘Origin-X’: Float. The x-coordinate of the origin marker of the rigid pattern.

•  ‘Origin-Y’: Float. The y-coordinate of the origin marker of the rigid pattern.

• ‘Origin-Z’: Float. The z-coordinate of the origin marker of the rigid pattern.

• ‘XMarker-X’: Float. The x-coordinate of the X-axis marker of the rigid pattern.

• ‘XMarker-Y’: Float. The y-coordinate of the X-axis marker of the rigid pattern.

• ‘XMarker-Z’: Float. The z-coordinate of the X-axis marker of the rigid pattern.

• ‘YMarker-X’: Float. The x-coordinate of the Y-axis marker of the rigid pattern.

• ‘YMarker-Y’: Float. The y-coordinate of the Y-axis marker of the rigid pattern.
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• ‘YMarker-Z’: Float. The z-coordinate of the Y-axis marker of the rigid pattern.

• ‘Extra-X’: Float. The x-coordinate of the extra marker of the rigid pattern.

• ‘Extra-Y’: Float. The y-coordinate of the extra marker of the rigid pattern.

• ‘Extra-Z’: Float. The z-coordinate of the extra marker of the rigid pattern.

• ‘Xi’: Float. The x-coordinate of the z-th unlabeled marker position, ‘i’ ranges 

from 0 to 15.

• ‘Yi’: Float. The y-coordinate of the z-th unlabeled marker position, ‘i’ ranges 

from 0 to 15.

• ‘Zi’: Float. The z-coordinate of the z-th unlabeled marker position, ‘i’ ranges 

from 0 to 15.

Each record is a set in a sequence of sets. The z-th marker of a given record 

does not necessarily correspond to the z-th marker of a different record. One may 

randomly permute the visible (i.e. not missing) markers of a given record without 

changing the set that the record represents. For the sake of convenience, all visible 

markers of a given record are given a lower index than any missing marker. A class is 

not guaranteed to have even a single record with all markers visible.
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