79 research outputs found

    An automata-based automatic verification environment

    Get PDF
    With the continuing growth of computer systems including safety-critical computer control systems, the need for reliable tools to help construct, analyze, and verify such systems also continues to grow. The basic motivation of this work is to build such a formal verification environment for computer-based systems. An example of such a tool is the Design Oriented Verification and Evaluation (DOVE) created by Australian Defense Science and Technology Organization. One of the advantages of DOVE is that it combines ease of use provided by a graphical user interface for describing specifications in the form of extended state machines with the rigor of proving linear temporal logic properties in a robust theorem prover, Isabelle which was developed at Cambridge University, UK, and TU Munich, Germany. A different class of examples is that of model checkers, such as SPIN and SMV. In this work, we describe our technique to increase the utility of DOVE by extending it with the capability to build systems by specifying components. This added utility is demonstrated with a concrete example from a real project to study aspects of the control unit for an infusion pump being built at the Walter Reid Army Institute of Research. Secondly, we provide a formulation of linear temporal logic (LTL) in the theorem prover Isabelle. Next, we present a formalization of a variation of the algorithm for translating LTL into BĆ¼chi automata. The original translation algorithm is presented in Gerth et al and is the basis of model checkers such as SPIN. We also provide a formal proof of the termination and correctness of this algorithm. All definitions and proofs have been done fully formally within the generic theorem prover Isabelle, which guarantees the rigor of our work and the reliability of the results obtained. Finally, we introduce the automata theoretic framework for automatic verification as our future works

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Linear-Time Temporal Answer Set Programming

    Get PDF
    [Abstract]: In this survey, we present an overview on (Modal) Temporal Logic Programming in view of its application to Knowledge Representation and Declarative Problem Solving. The syntax of this extension of logic programs is the result of combining usual rules with temporal modal operators, as in Linear-time Temporal Logic (LTL). In the paper, we focus on the main recent results of the non-monotonic formalism called Temporal Equilibrium Logic (TEL) that is defined for the full syntax of LTL but involves a model selection criterion based on Equilibrium Logic, a well known logical characterization of Answer Set Programming (ASP). As a result, we obtain a proper extension of the stable models semantics for the general case of temporal formulas in the syntax of LTL. We recall the basic definitions for TEL and its monotonic basis, the temporal logic of Here-and-There (THT), and study the differences between finite and infinite trace length. We also provide further useful results, such as the translation into other formalisms like Quantified Equilibrium Logic and Second-order LTL, and some techniques for computing temporal stable models based on automata constructions. In the remainder of the paper, we focus on practical aspects, defining a syntactic fragment called (modal) temporal logic programs closer to ASP, and explaining how this has been exploited in the construction of the solver telingo, a temporal extension of the well-known ASP solver clingo that uses its incremental solving capabilities.Xunta de Galicia; ED431B 2019/03We are thankful to the anonymous reviewers for their thorough work and their useful suggestions that have helped to improve the paper. A special thanks goes to Mirosaw TruszczyĀ“nski for his support in improving the quality of our paper. We are especially grateful to David Pearce, whose help and collaboration on Equilibrium Logic was the seed for a great part of the current paper. This work was partially supported by MICINN, Spain, grant PID2020-116201GB-I00, Xunta de Galicia, Spain (GPC ED431B 2019/03), RĀ“egion Pays de la Loire, France, (projects EL4HC and etoiles montantes CTASP), European Union COST action CA-17124, and DFG grants SCHA 550/11 and 15, Germany

    Cyclic proof systems for modal fixpoint logics

    Get PDF
    This thesis is about cyclic and ill-founded proof systems for modal fixpoint logics, with and without explicit fixpoint quantifiers.Cyclic and ill-founded proof-theory allow proofs with infinite branches or paths, as long as they satisfy some correctness conditions ensuring the validity of the conclusion. In this dissertation we design a few cyclic and ill-founded systems: a cyclic one for the weak Grzegorczyk modal logic K4Grz, based on our explanation of the phenomenon of cyclic companionship; and ill-founded and cyclic ones for the full computation tree logic CTL* and the intuitionistic linear-time temporal logic iLTL. All systems are cut-free, and the cyclic ones for K4Grz and iLTL have fully finitary correctness conditions.Lastly, we use a cyclic system for the modal mu-calculus to obtain a proof of the uniform interpolation property for the logic which differs from the original, automata-based one

    Games for Modal and Temporal Logics

    Get PDF
    Every logic comes with several decision problems. One of them is the model checking problem: does a given structure satisfy a given formula? Another is the satisfiability problem: for a given formula, is there a structure fulfilling it? For modal and temporal logics; tableaux, automata and games are commonly accepted as helpful techniques that solve these problems. The fact that these logics possess the tree model property makes tableau structures suitable for these tasks. On the other hand, starting with BĆ¼chi's work, intimate connections between these logics and automata have been found. A formula can describe an automaton's behaviour, and automata are constructed to accept exactly the word or tree models of a formula. In recent years the use of games has become more popular. There, an existential and a universal player play on a formula (and a structure) to decide whether the formula is satisfiable, resp. satisfied. The logical problem at hand is then characterised by the question of whether or not the existential player has a winning strategy for the game. These three methodologies are closely related. For example the non-emptiness test for an alternating automaton is nothing more than a 2-player game, while winning strategies for games are very similar to tableaux. Game-theoretic characterisations of logical problems give rise to an interactive semantics for the underlying logics. This is particularly useful in the specification and verification of concurrent systems where games can be used to generate counterexamples to failing properties in a very natural way. We start by defining simple model checking games for Propositional Dynamic Logic, PDL, in Chapter 4. These allow model checking for PDL in linear running time. In fact, they can be obtained from existing model checking games for the alternating free Āµ-calculus. However, we include them here because of their usefulness in proving correctness of the satisfiability games for PDL later on. Their winning strategies are history-free. Chapter 5 contains model checking games for branching time logics. Beginning with the Full Branching Time Logic CTL* we introduce the notion of a focus game. Its key idea is to equip players with a tool that highlights a particular formula in a set of formulas. The winning conditions for these games consider the players' behaviours regarding the change of the focus. This proves to be useful in capturing the regeneration of least and greatest fixed point constructs in CTL*. Deciding the winner of these games can be done using space which is polynomial in the size of the input. Their winning strategies are history-free, too. We also show that model checking games for CTL+ arise from those for CTL* by disregarding the focus. This does not affect the polynomial space complexity. These can be further optimised to obtain model checking games for the Computation Tree Logic CTL which coincide with the model checking games for the alternating free Āµ-calculus applied to formulas translated from CTL into it. This optimisation improves the games' computational complexity, too. As in the PDL case, deciding the winner of such a game can be done in linear running time. The winning strategies remain history-free. Focus games are also used to give game-based accounts of the satisfiability problem for Linear Time Temporal Logic LTL, CTL and PDL in Chapter 6. They lead to a polynomial space decision procedure for LTL, and exponential time decision procedures for CTL and PDL. Here, winning strategies are only history-free for the existential player. The universal player s strategies depend on a finite part of the history of a play. In spite of the strong connections between tableaux, automata and games their differences are more than simply a matter of taste. Complete axiomatisations for LTL, CTL and PDL can be extracted from the satisfiability focus games in an elegant way. This is done in Chapter 7 by formulating the game rules, the winning conditions and the winning strategies in terms of an axiom system. Completeness of this system then follows from the fact that the existential player wins the game on a consistent formula, i.e. it is satisfiable. We also introduce satisfiability games for CTL* based on the focus approach. They lead to a double exponential time decision procedure. As in the LTL, CTL and PDL case, only the existential player has history-free winning strategies. Since these strategies witness satisfiability of a formula and stay in close relation to its syntactical structure, it might be possible to derive a complete axiomatisation for CTL* from these games as well. Finally, Chapter 9 deals with Fixed Point Logic with Chop, FLC. It extends modal Āµ-calculus with a sequential composition operator. Satisfiability for FLC is undecidable but its model checking problem remains decidable. In fact it is hard for polynomial space. We give two different game-based solutions to the model checking problem for FLC. Deciding the winner for both types of games meets this polynomial space lower bound for formulas with fixed alternation (and sequential) depth. In the general case the winner can be determined using exponential time, resp. exponential space. The former result holds for games that give rise to global model checking whereas the latter describes the complexity of local FLC model checking. FLC is interesting for verification purposes since it --- unlike all the other logics discussed here --ā€“ can describe properties which are non-regular. The thesis concludes with remarks and comments on further research in the area of games for modal and temporal logics

    Formal Methods Specification and Analysis Guidebook for the Verification of Software and Computer Systems

    Get PDF
    This guidebook, the second of a two-volume series, is intended to facilitate the transfer of formal methods to the avionics and aerospace community. The 1st volume concentrates on administrative and planning issues [NASA-95a], and the second volume focuses on the technical issues involved in applying formal methods to avionics and aerospace software systems. Hereafter, the term "guidebook" refers exclusively to the second volume of the series. The title of this second volume, A Practitioner's Companion, conveys its intent. The guidebook is written primarily for the nonexpert and requires little or no prior experience with formal methods techniques and tools. However, it does attempt to distill some of the more subtle ingredients in the productive application of formal methods. To the extent that it succeeds, those conversant with formal methods will also nd the guidebook useful. The discussion is illustrated through the development of a realistic example, relevant fragments of which appear in each chapter. The guidebook focuses primarily on the use of formal methods for analysis of requirements and high-level design, the stages at which formal methods have been most productively applied. Although much of the discussion applies to low-level design and implementation, the guidebook does not discuss issues involved in the later life cycle application of formal methods

    Clausal reasoning for branching-time logics

    Get PDF
    Computation Tree Logic (CTL) is a branching-time temporal logic whose underlying model of time is a choice of possibilities branching into the future. It has been used in a wide variety of areas in Computer Science and Artificial Intelligence, such as temporal databases, hardware verification, program reasoning, multi-agent systems, and concurrent and distributed systems. In this thesis, firstly we present a refined clausal resolution calculus Rļæ½,S CTL for CTL. The calculus requires a polynomial time computable transformation of an arbitrary CTL formula to an equisatisfiable clausal normal form formulated in an extension of CTL with indexed existential path quantifiers. The calculus itself consists of eight step resolution rules, two eventuality resolution rules and two rewrite rules, which can be used as the basis for an EXPTIME decision procedure for the satisfiability problem of CTL. We give a formal semantics for the clausal normal form, establish that the clausal normal form transformation preserves satisfiability, provide proofs for the soundness and completeness of the calculus Rļæ½,S CTL, and discuss the complexity of the decision procedure based on Rļæ½,S CTL. As Rļæ½,S CTL is based on the ideas underlying Bolotovā€™s clausal resolution calculus for CTL, we provide a comparison between our calculus Rļæ½,S CTL and Bolotovā€™s calculus for CTL in order to show that Rļæ½,S CTL improves Bolotovā€™s calculus in many areas. In particular, our calculus is designed to allow first-order resolution techniques to emulate resolution rules of Rļæ½,S CTL so that Rļæ½,S CTL can be implemented by reusing any first-order resolution theorem prover. Secondly, we introduce CTL-RP, our implementation of the calculus Rļæ½,S CTL. CTL-RP is the first implemented resolution-based theorem prover for CTL. The prover takes an arbitrary CTL formula as input and transforms it into a set of CTL formulae in clausal normal form. Furthermore, in order to use first-order techniques, formulae in clausal normal form are transformed into firstorder formulae, except for those formulae related to eventualities, i.e. formulae containing the eventuality operator 3. To implement step resolution and rewrite rules of the calculus Rļæ½,S CTL, we present an approach that uses first-order ordered resolution with selection to emulate the step resolution rules and related proofs. This approach enables us to make use of a first-order theorem prover, which implements the first-order ordered resolution with selection, in order to realise our calculus. Following this approach, CTL-RP utilises the first-order theorem prover SPASS to conduct resolution inferences for CTL and is implemented as a modification of SPASS. In particular, to implement the eventuality resolution rules, CTL-RP augments SPASS with an algorithm, called loop search algorithm for tackling eventualities in CTL. To study the performance of CTL-RP, we have compared CTL-RP with a tableau-based theorem prover for CTL. The experiments show good performance of CTL-RP. i ii ABSTRACT Thirdly, we apply the approach we used to develop Rļæ½,S CTL to the development of a clausal resolution calculus for a fragment of Alternating-time Temporal Logic (ATL). ATL is a generalisation and extension of branching-time temporal logic, in which the temporal operators are parameterised by sets of agents. Informally speaking, CTL formulae can be treated as ATL formulae with a single agent. Selective quantification over paths enables ATL to explicitly express coalition abilities, which naturally makes ATL a formalism for specification and verification of open systems and game-like multi-agent systems. In this thesis, we focus on the Next-time fragment of ATL (XATL), which is closely related to Coalition Logic. The satisfiability problem of XATL has lower complexity than ATL but there are still many applications in various strategic games and multi-agent systems that can be represented in and reasoned about in XATL. In this thesis, we present a resolution calculus RXATL for XATL to tackle its satisfiability problem. The calculus requires a polynomial time computable transformation of an arbitrary XATL formula to an equi-satisfiable clausal normal form. The calculus itself consists of a set of resolution rules and rewrite rules. We prove the soundness of the calculus and outline a completeness proof for the calculus RXATL. Also, we intend to extend our calculus RXATL to full ATL in the future

    Achieving while maintaining:A logic of knowing how with intermediate constraints

    Get PDF
    In this paper, we propose a ternary knowing how operator to express that the agent knows how to achieve Ļ•\phi given Ļˆ\psi while maintaining Ļ‡\chi in-between. It generalizes the logic of goal-directed knowing how proposed by Yanjing Wang 2015 'A logic of knowing how'. We give a sound and complete axiomatization of this logic.Comment: appear in Proceedings of ICLA 201

    Simulation and statistical model-checking of logic-based multi-agent system models

    Get PDF
    This thesis presents SALMA (Simulation and Analysis of Logic-Based Multi- Agent Models), a new approach for simulation and statistical model checking of multi-agent system models. Statistical model checking is a relatively new branch of model-based approximative verification methods that help to overcome the well-known scalability problems of exact model checking. In contrast to existing solutions, SALMA specifies the mechanisms of the simulated system by means of logical axioms based upon the well-established situation calculus. Leveraging the resulting first-order logic structure of the system model, the simulation is coupled with a statistical model-checker that uses a first-order variant of time-bounded linear temporal logic (LTL) for describing properties. This is combined with a procedural and process-based language for describing agent behavior. Together, these parts create a very expressive framework for modeling and verification that allows direct fine-grained reasoning about the agentsā€™ interaction with each other and with their (physical) environment. SALMA extends the classical situation calculus and linear temporal logic (LTL) with means to address the specific requirements of multi-agent simulation models. In particular, cyber-physical domains are considered where the agents interact with their physical environment. Among other things, the thesis describes a generic situation calculus axiomatization that encompasses sensing and information transfer in multi agent systems, for instance sensor measurements or inter-agent messages. The proposed model explicitly accounts for real-time constraints and stochastic effects that are inevitable in cyber-physical systems. In order to make SALMAā€™s statistical model checking facilities usable also for more complex problems, a mechanism for the efficient on-the-fly evaluation of first-order LTL properties was developed. In particular, the presented algorithm uses an interval-based representation of the formula evaluation state together with several other optimization techniques to avoid unnecessary computation. Altogether, the goal of this thesis was to create an approach for simulation and statistical model checking of multi-agent systems that builds upon well-proven logical and statistical foundations, but at the same time takes a pragmatic software engineering perspective that considers factors like usability, scalability, and extensibility. In fact, experience gained during several small to mid-sized experiments that are presented in this thesis suggest that the SALMA approach seems to be able to live up to these expectations.In dieser Dissertation wird SALMA (Simulation and Analysis of Logic-Based Multi-Agent Models) vorgestellt, ein im Rahmen dieser Arbeit entwickelter Ansatz fuĢˆr die Simulation und die statistische ModellpruĢˆfung (Model Checking) von Multiagentensystemen. Der Begriff ā€žStatistisches Model Checkingā€ beschreibt modellbasierte approximative Verifikationsmethoden, die insbesondere dazu eingesetzt werden kƶnnen, um den unvermeidlichen Skalierbarkeitsproblemen von exakten Methoden zu entgehen. Im Gegensatz zu bisherigen AnsƤtzen werden in SALMA die Mechanismen des simulierten Systems mithilfe logischer Axiome beschrieben, die auf dem etablierten SituationskalkuĢˆl aufbauen. Die dadurch entstehende prƤdikatenlogische Struktur des Systemmodells wird ausgenutzt um ein Model Checking Modul zu integrieren, das seinerseits eine prƤdikatenlogische Variante der linearen temporalen Logik (LTL) verwendet. In Kombination mit einer prozeduralen und prozessorientierten Sprache fuĢˆr die Beschreibung von Agentenverhalten entsteht eine ausdrucksstarke und flexible Plattform fuĢˆr die Modellierung und Verifikation von Multiagentensystemen. Sie ermƶglicht eine direkte und feingranulare Beschreibung der Interaktionen sowohl zwischen Agenten als auch von Agenten mit ihrer (physischen) Umgebung. SALMA erweitert den klassischen SituationskalkuĢˆl und die lineare temporale Logik (LTL) um Elemente und Konzepte, die auf die spezifischen Anforderungen bei der Simulation und Modellierung von Multiagentensystemen ausgelegt sind. Insbesondere werden cyber-physische Systeme (CPS) unterstuĢˆtzt, in denen Agenten mit ihrer physischen Umgebung interagieren. Unter anderem wird eine generische, auf dem SituationskalkuĢˆl basierende, Axiomatisierung von Prozessen beschrieben, in denen Informationen innerhalb von Multiagentensystemen transferiert werden ā€“ beispielsweise in Form von Sensor- Messwerten oder Netzwerkpaketen. Dabei werden ausdruĢˆcklich die unvermeidbaren stochastischen Effekte und Echtzeitanforderungen in cyber-physischen Systemen beruĢˆcksichtigt. Um statistisches Model Checking mit SALMA auch fuĢˆr komplexere Problemstellungen zu ermƶglichen, wurde ein Mechanismus fuĢˆr die effiziente Auswertung von prƤdikatenlogischen LTL-Formeln entwickelt. Insbesondere beinhaltet der vorgestellte Algorithmus eine Intervall-basierte ReprƤsentation des Auswertungszustands, sowie einige andere OptimierungsansƤtze zur Vermeidung von unnƶtigen Berechnungsschritten. Insgesamt war es das Ziel dieser Dissertation, eine Lƶsung fuĢˆr Simulation und statistisches Model Checking zu schaffen, die einerseits auf fundierten logischen und statistischen Grundlagen aufbaut, auf der anderen Seite jedoch auch pragmatischen Gesichtspunkten wie Benutzbarkeit oder Erweiterbarkeit genuĢˆgt. TatsƤchlich legen erste Ergebnisse und Erfahrungen aus mehreren kleinen bis mittelgroƟen Experimenten nahe, dass SALMA diesen Zielen gerecht wird

    Model Checking Logics of Social Commitments for Agent Communication

    Get PDF
    This thesis is about specifying and verifying communications among autonomous and possibly heterogeneous agents, which are the key principle for constructing effective open multi-agent systems (MASs). Effective systems are those that successfully achieve applicability, feasibility, error-freeness and balance between expressiveness and verification efficiency aspects. Over the last two decades, the MAS community has advocated social commitments, which successfully provide a powerful representation for modeling communications in the figure of business contracts from one agent to another. While modeling communications using commitments provides a fundamental basis for capturing flexible communications and helps address the challenge of ensuring compliance with specifications, the designers and business process modelers of the system as a whole cannot guarantee that an agent complies with its commitments as supposed to or at least not wantonly violate or cancel them. They may still wish to first formulate the notion of commitment-based protocols that regulate communications among agents and then establish formal verification (e.g., model checking) by which compliance verification in those protocols is possible. In this thesis, we address the aforementioned challenges by firstly developing a new branching-time temporal logic---called ACTL*c---that extends CTL* with modal operators for representing and reasoning about commitments and all associated actions. The proposed semantics for ACL (agent communication language) messages in terms of commitments and their actions is formal, declarative, meaningful, verifiable and semi-computationally grounded. We use ACTL*c to derive a new specification language of commitment-based protocols, which is expressive and suitable for model checking. We introduce a reduction method to formally transform the problem of model checking ACTL*c to the problem of model checking GCTL* so that the use of the CWB-NC model checker is possible. We prove the soundness of our reduction method and implement it on top of CWB-NC. To check the effectiveness of our reduction method, we report the verification results of the NetBill protocol and Contract Net protocol against some properties. In addition to the reduction method, we develop a new symbolic algorithm to perform model checking ACTL*c. To balance between expressiveness and verification efficiency, we secondly adopt a refined fragment of ACTL*c, called CTLC, an extension of CTL with modalities for commitments and their fulfillment. We extend the formalism of interpreted systems introduced to develop MASs with shared and unshared variables and considered agents' local states in the definition of a full-computationally grounded semantics for ACL messages using commitments. We present reasonable axioms of commitment and fulfillment modalities. In our verification technique, the problem of model checking CTLC is reduced into the problems of model checking ARCTL and GCTL* so that respectively extended NuSMV and CWB-NC (as a benchmark) are usable. We prove the soundness of our reduction methods and then implement them on top of the extended NuSMV and CWB-NC model checkers. To evaluate the effectiveness of our reduction methods, we verified the correctness of two business case studies. We finally proceed to develop a new symbolic model checking algorithm to directly verify commitments and their fulfillment and commitment-based protocols. We analyze the time complexity of CTLC model checking for explicit models and its space complexity for concurrent programs that provide compact representations. We prove that although CTLC extends CTL, their model checking algorithms still have the same time complexity for explicit models, and the same space complexity for concurrent programs. We fully implement the proposed algorithm on top of MCMAS, a model checker for the verification of MASs, and then check its efficiency and scalability using an industrial case study
    • ā€¦
    corecore