
FORMAL METHODS SPECIFICATION AND ANALYSIS GUIDEBOOK

FOR THE VERIFICATION OF SOFTWARE AND

COMPUTER SYSTEMS

VOLUME II: A PRACTITIONER'S COMPANION

FOREWORD

This volume presents technical issues involved in applying mathematical techniques

known as Formal Methods to specify and analytically verify aerospace and avionics soft-

ware systems. The first volume in this two-part series, NASA-GB-002-95 [NASA-95a],

dealt with planning and technology insertion. This second volume discusses practical

techniques and strategies for verifying requirements and high-level designs for software

intensive systems. The discussion is illustrated with a realistic example based on NASA's

Simplified Aid for EVA (Extravehicular Activity) Rescue [SAFER94a, SAFER94b]. The

volume is intended as a "companion" and guide for the novice formal methods and ana-

lytical verification practitioner. Together, the two volumes address the recognized need

for new technologies and improved techniques to meet the demands inherent in devel-

oping increasingly complex and autonomous systems. The support of NASA's Safety

and Mission Quality ONce for the investigation of formal methods and analytical ver-

ification techniques reflects the growing practicality of these approaches for enhancing

the quality of aerospace and avionics applications.

Both volumes of the guidebook are electronically available at JPL via the

URL http://eis.jpl.nasa.gov/quality/Formal_Methods/. PVS source files for the

SAFER example are available on LaRC's Web server in the directory ftp://atb-

www.larc.nasa.gov/Guidebooks/.

Major contributors to the guidebook include Judith Crow, lead author (SRI Interna-

tional); Ben Di Vito, SAFER example author (V{GYAN); Robyn Lutz (NASA - JPL);

Larry Roberts (Lockheed Martin Space Mission Systems and Services); Martin Feather

(NASA - JPL); and John Kelly (NASA - JPL), task lead. Special thanks go to John

Rushby (SRI International) who provided valuable material and guidance, Sam Owre

(SRI International) who graciously supplied wide-ranging technical expertise, Gerard

Holzmann (Lucent Technologies) and Peter Gorm Larsen (IFAD) both of whom gave

particularly thorough and thoughtful reviews, and Valerie Mathews (NASA - JPL) who

served as guidebook review and publication coordinator. Special acknowledgment is

also extended to NASA sponsors Kathryn Kemp (Deputy Director, NASA IV&V Facil-

ity), George Sabolish (NASA - Ames), Rick Butler (NASA - Langley), and Ernie Fridge

(NASA - Johnson).

This document is a product of NASA's Software Program, an agency-wide program

that promotes continual improvement in software engineering and assurance within

NASA. The goals and strategies of this program are documented in the NASA Software

Strategic Plan [NASA-95b]. Funding for this guidebook was provided by NASA's ONce

of Safety and Mission Assurance. Additional information about this program and its

products is available via the World Wide Web at http://www.ivv.nasa.gov.

111

https://ntrs.nasa.gov/search.jsp?R=19980227975 2020-06-15T22:57:09+00:00Z

iv

Contents

1

2

3

4

Introduction

The

2.1

2.2

2.3

2.4

2.5

2.6

Practical Application of Formal Methods 5
What Are Formal Methods? 5

Roles of Formal Methods 6

Formal Methods: Degree of Formalization and Scope of Use 6
2.3.1 Levels of Formalization 7

2.3.2 Scope of Formal Methods Use 8

Reasonable Expectations for Formal Methods 9

The Method Underlying Formal Methods 10
An Introduction to SAFER 13

Requirements 19

3.1 Requirements and Formal Methods 20

3.1.1 Impact of Requirements Specification on Formal Methods 20

3.1.1.1 Level of Requirements Capture 20

3.1.1.2 Explicitness of Requirements Statement 20

3.1.1.3 Clarity of Delineation between a System and Its Envi-
ronment 20

3.1.1.4 Traceability of Requirements 21

3.1.1.5 Availability of Underlying Rationale and Intuition . . . 21

3.1.2 Impact of Formal Methods on Requirements 22

3.2 Conventional Approaches to Requirements Validation 23

3.3 SAFER Requirements 25

Models 27

4.1 Mathematical Models 27

4.1.1 Characteristics of Mathematical Models 28

4.1.1.1 Abstraction 28

4.1.1.2 Focus 29

4.1.1.3 Expressiveness Versus Analytic Power 29

4.1.1.4 Intuitive Versus Nonintuitive Representation 29

v

vi Table of Contents

4.1.1.5 Accuracy 30
4.1.2 Benefits of Mathematical Models 30

4.1.3 Mathematical Models for Discrete and Continuous Domains . . . 31

4.2 Continuous Domain Modeling 32

4.3 Discrete Domain Modeling 33
4.3.1 Functional Models 34

4.3.2 Abstract State Machine Models 36

4.3.3 Automata-Based Models 39

4.3.3.1 ,-Automata 39

4.3.3.2 w-Automata 39

4.3.3.3 Timed Automata 40

4.3.3.4 Hybrid Automata 40

4.3.4 Object-Oriented Models 41
4.4 A Model for the SAFER Avionics Controller 46

Formal Specification 53

5.1 Formal Specification Languages 54
5.1.1 Foundations 54

5.1.2 Features 56

5.1.2.1 Explicit Semantics 57

5.1.2.2 Expressiveness 57

5.1.2.3 Programming Language Datatypes and Constructions . 57

5.1.2.4 Convenient Syntax 58

5.1.2.5 Diagrammatic Notation 58

5.1.2.6 Strong Typing 58
5.1.2.7 Total versus Partial Functions 59

5.1.2.8 Refinement 60

5.1.2.9 Introduction of Axioms and Definitions 60

5.1.2.10 Encapsulation Mechanism 62

5.1.2.11 Built-in Model of Computation 63

5.1.2.12 Executability 63

5.1.2.13 Maturity 63

5.2 Formal Specification Styles 63

5.3 Formal Specification and Life Cycle 65

5.4 The Detection of Errors in Formal Specification 66

5.5 The Utility of Formal Specification 68

5.6 A Partial SAFER Specification 71

Formal Analysis 79
6.1 Automated Deduction 79

6.1.1 Background: Formal Systems and Their Models 80

6.1.1.1 Proof Theory 80

6.1.1.2 Model Theory 82

NASA- GB-O01-9 7 vii

7

6.1.1.3 An Example of a First-Order Theory 83

A Brief History of Automated Proof 84

Techniques Underlying Automated Reasoning 87

6.1.3.1 Calculi for First-Order Predicate Logic 87

6.1.3.1.1 Normal Forms 87

6.1.3.1.2 The Sequent Calculus 88
6.1.3.1.3 The Resolution Calculus 93

6.1.3.2 Extending the Predicate Calculus 94

6.1.3.2.1 Reasoning about Equality 94

6.1.3.2.2 Reasoning about Arithmetic 96

6.1.3.2.3 Combining First-Order Theories 97

6.1.3.3 Mechanization of Proof in the Sequent Calculus 97

6.1.4 Utility of Automated Deduction 102

6.2 Finite-State Methods 103

6.2.1 Background 103

6.2.1.1 Temporal Logic 104

6.2.1.2 Linear Temporal Logic (LTL) 106

6.2.1.3 Branching Time Temporal Logic 106

6.2.1.4 Fixed Points 109

6.2.1.5 The Mu-Calculus 110

6.2.2 A Brief History of Finite-State Methods 111

6.2.3 Approaches to Finite-State Verification 113

6.2.3.1 The Symbolic Model Checking Approach 113

6.2.3.2 The Automata-Theoretic Approach 116

6.2.3.2.1 Language Containment 116

6.2.3.2.2 State Exploration 117

6.2.3.2.3 Bisimulation Equivalence and Prebisimulation
Preorders 119

6.2.4 Utility of Finite-State Methods 120

6.3 Direct Execution_ Simulation_ and Animation 120

6.3.1 Observational Techniques 121

6.3.2 Utility of Observational Techniques 122

6.4 Integrating Automated Analysis Methods 123

6.5 Proof of Selected SAFER Property 123

6.5.1 The PVS Theory SAFER_properties 124

6.5.2 Informal Argument for Lemma max_thrusters_sel 127

Conclusion 131

7.1 Factors Influencing the Use of Formal Methods 131

7.2 The Process of Formal Methods 132

7.3 Pairing Formal Methods, Strategy, and Task 133

viii Tableof Contents

7.4 Formal Methods and Existing Quality Control and
Assurance Activities 134

7.5 Formal Methods: Verification Versus Validation and Exploration 135

References 137

A Glossary of Key Terms 167

A.1 Acronyms 167
A.2 Terms 168

B Further Reading
B.1

B.2

B.3

B.4

B.5

B.6

B.7

171

Technical Background: Mathematical Logic 171

Specification 172

Model Checking 172

Theorem Proving 173

Models of Computation 173

Applications and Overviews 173

Tutorials 174

C Extended Example: Simplified Aid for EVA Rescue (SAFER) 177
C.1 Overview of SAFER 177

C.1.1 History, Mission Context, and System Description 177

C.1.2 Principal Hardware Components 179

C.1.2.1 Backpack Propulsion Module 179

C.1.2.2 Hand Controller Module (HCM) 179

C.1.2.3 Battery Pack 181

C.1.2.4 Flight Support Equipment 181
C. 1.3 Avionics 181

C.1.4 System Software 182
C.1.4.1 Software Interfaces 182

C.1.4.2 Maneuvering Control Subsystem 184

C.1.4.3 Fault Detection Subsystem 185

C.2 SAFER EVA Flight Operation Requirements 188

C.2.1 Hand Controller Module (HCM) 188

C.2.1.1 Display and Control Unit (DCU) 188

C.2.1.2 Hand Controller Unit (HCU) 189

C.2.2 Propulsion Subsystem 190
C.2.3 Avionics Assemblies 190

C.2.3.1 Inertial Reference Unit (IRU) 190

C.2.3.2 Power Supply Assembly (PSA) 190

C.2.3.3 Data Recorder Assembly (DRA) 191
C.2.4 Avionics Software 191

C.2.5 Avionics Software Interfaces 192

NASA- GB-O01-9 7 ix

C.3 Formalization of SAFER Requirements 193

C.3.1 PVS Language Features 194
C.3.2 Overview of Formalization 195

C.3.2.1 Basic Types 196
C.3.2.2 Hand Controller Module 197

C.3.2.3 Propulsion Module 197
C.3.2.4 Automatic Attitude Hold 197

C.3.2.5 Thruster Selection 197

C.3.2.6 Avionics Model 198

C.3.3 Full Text of PVS Theories 198

C.4 Analysis of SAFER 219

C.4.1 Formulating System Properties 219

C.4.1.1 Formalization of the Maximum Thruster Property . . . 220

C.4.1.2 PVS Theory for Maximum Thruster Property 220

C.4.2 Proving System Properties 222

C.4.2.1 Proof Sketch of the Maximum Thruster Property . . . 223

C.4.2.2 PVS Proof of Maximum Thruster Property 225

x Table of Contents

List of Figures

2.1 The Range of Formal Methods Options Summarized in Terms of (a) Lev-

els of Formalization and (b) Scope of Formal Methods Use 7

2.2 Mechanical Support for Specification and Analysis Phases of FM 13

2.3 Front and back views of SAFER system worn by NASA crewmember. 14

4.1 Implementation of a Full Adder 36
4.2 Abstract State Machine Model 36

4.3 A-7 Model of a Simple Control System 37

4.4 State-Update and Actuator Functions within Control System 38

4.5 Object Model of Cassini Generic Fault Protection Monitor 42
4.6 Functional Model of Cassini Generic Fault Protection Monitor 43

4.7 Dynamic Model of Cassini Generic Fault Protection Monitor 44

4.8 AAH Control System State-Update and Actuator Functions 50

4.9 Labeled AAH Pushbutton State Transition Diagram 51

6.1 Burch et al.'s Mu-Calculus Model Checking Algorithm 114

6.2 A Simple SMV Program [McM93, p. 63] 115

6.3 Dependency Hierarchy for SAFER_properties 128

6.4 Proof Tree for SAFER_properties_max_thrusters_sel 129

6.5 Revised Proof Tree for SAFER_properties_max_thrusters_sel 130

C.1 SAFER use by an EVA crewmember 227

C.2 Propulsion module structure and mechanisms 228
C.3 SAFER thrusters and axes 229

C.4 Hand controller module 230

C.5 Hand controller translational axes 231

C.6 Hand controller rotational axes 232

C.7 SAFER system software architecture 233

C.8 AAH pushbutton state diagram 234

xi

xii

List of Tables

C.1 SAFER sensor complement 183

C.2 Thruster select logic for X, pitch, and yaw commands 186

C.3 Thruster select logic for Y, Z, and roll commands 187

Xlll

xiv

Chapter 1

Introduction

This guidebook, the second of a two-volume series, is intended to facilitate the transfer of

formal methods to the avionics and aerospace community. The first volume concentrates

on administrative and planning issues [NASA-95a], and the second volume focuses on the

technical issues involved in applying formal methods to avionics and aerospace software

systems. Hereafter, the term "guidebook" refers exclusively to the second volume of

the series. The title of this second volume, A Practitioner's Companion, conveys its

intent. The guidebook is written primarily for the nonexpert and requires little or no

prior experience with formal methods techniques and tools. However, it does attempt

to distill some of the more subtle ingredients in the productive application of formal

methods. To the extent that it succeeds, those conversant with formal methods will

also find the guidebook useful. The discussion is illustrated through the development

of a realistic example, relevant fragments of which appear in each chapter.

The guidebook focuses primarily on the use of formal methods for analysis of require-

ments and high-level design, the stages at which formal methods have been most produc-

tively applied. Although much of the discussion applies to low-level design and imple-

mentation, the guidebook does not discuss issues involved in the later life cycle applica-

tion of formal methods. The example provided in the guidebook is based on the control

function for the Simplified Aid for EVA (Extravehicular Activity) Rescue [SAFER94a,

SAFER94b], hereafter referred to as SAFER 1, which has been specified and analyzed

using the PVS specification language and interactive proof checker [ORSvH95]. PVS

has been selected because it has been successfully used on NASA projects, includ-

ing [LR93a, NASA93, LA94, Min95, BCC + 95, HCL95, SM95b, DR96, ML96], and because

it is representative of a class of tools that offers a formal specification language in a

comprehensive environment, including automated proof support. In formalizing the

1SAFER is a descendent of the Manned Maneuvering Unit (MMU) [MMU83]. The main difference
between SAFER and the MMU is that SAFER is a small, lightweight, "simplified" single-string system
for contingency use (self-rescue) only, whereas the MMU is a larger, bulkier, but extremely versatile
EVA maneuvering device. The application of formal methods to SAFER is limited to the example in
this guidebook; formal methods have not been used to support SAFER development or maintenance.

2 Chapter 1

SAFER example, the priorities have been readability and portability to other formal

methods paradigms. Consequently, the discussion is framed in general terms applicable

to most formal methods strategies and techniques.

The guidebook is not a tutorial on formal methods; it does not provide a grounding

in mathematical logic or formal specification and verification, although the appendices

contain references that provide technical background, as well as a glossary of key terms.

Nor is it a formal methods cookbook; there are no recipes that detail the step-by-step

preparation of a formal methods product. Furthermore, the guidebook assumes that

the reader is aware of the potential benefits and fallibilities of formal methods; it does

not dwell on the very real benefits of the appropriate application of formal methods or

the equally real pitfalls of misuse.

The guidebook does contain a fairly detailed account of the technical issues involved

in applying formal methods to avionics and aerospace software systems, including a

well-developed example. In order of presentation, the topics covered in the guidebook

include requirements, models, formal specification, and formal analysis. However, the

application of formal methods is not an essentially linear process. Formal methods are

most productive when they are integrated with existing life cycle processes, and when

they use an iterative strategy that successively refines and validates the formalization,

the requirements, the design, and if desired, critical parts of the implementation.

This guidebook is organized as follows: Chapter 2 reviews technical considerations

relevant to projects considering the use of formal methods, touching briefly on general

elements of the somewhat elusive method underlying formal methods. This chapter also

provides background material on the SAFER example developed in subsequent chapters.

Chapter 3 examines the notion of requirements from a formal methods perspective and

introduces selected requirements for the ongoing SAFER example. The concept of

models and a survey of modeling strategies are introduced in Chapter 4, along with a

formal model for a SAFER subsystem. A fragment of the specification for the SAFER

requirements introduced in Chapter 3 is developed using the model defined in Chapter 4.

Chapter 5 provides a discussion of formal specification, including topics ranging from

specification languages, paradigms, and strategies, to type consistency of specifications.

Again, a discussion of the pertinent step in the development of the SAFER example

appears at the end of the chapter. Chapter 6 considers techniques and tools for formal

analysis, including such topics as the role of formal proof, the impact of specification

strategy on formal analysis, and the utility of various analysis strategies. A discussion

of formal analysis of key properties of the SAFER specification appears at the end of the

chapter. Following concluding remarks in Chapter 7 are three appendices: Appendix A

contains a glossary of key terms and concepts, Appendix B lists material for further

reading, and Appendix C offers an extended discussion of the complete SAFER example.

There are several ways to use this guidebook. The heart of the discussion appears in

Chapters 4, 5, and 6. Readers new to formal methods may want to concentrate on these

key chapters, along with the first three chapters and the conclusion, possibly skipping

Chapter 6 the first time through. In most cases, historical observations and more

NASA- GB-O01-9 7 3

technical material are bracketed with the "dangerous bend" signs: /_'%_... <_ .2 More

experienced practitioners may want to focus on Chapters 5 and 6, or skip directly to

the full treatment of the example in Appendix C. The SAFER example that concludes

each chapter should be used to further clarify the discussion as the reader proceeds,

rather than saved as a finale at the end of the chapter.

2The "dangerous bend" icon was introduced by Knuth [Knu86].

4 Chapter 1

Chapter 2

The Practical Application of
Formal Methods

The practical application of formal methods typically occurs within the context of a

project and, possibly, within a broader context dictated by institutionalized conventions
or criteria. These contexts determine the role of formal methods and the dimensions

of its use. This chapter contains a review of these contextual factors, including a brief

overview of the formal methods process. The discussion moves from the explicitly formal

nature of formal methods to the more elusive methods implied in its use. The chapter also

provides sufficient background information on SAFER to clarify and motivate pertinent

aspects of the formalization and analysis of SAFER that illustrate the discussions in

each of the subsequent chapters.

2.1 What Are Formal Methods?

The term Formal Methods refers to the use of techniques from logic and discrete mathe-

matics in the specification, design, and construction of computer systems and software.

The word "formal" derives from formal logic and means "pertaining to the structural

relationship (i.e., form) between elements." Formal logic refers to methods of reasoning

that are valid by virtue of their form and independent of their content. These meth-

ods rely on a discipline that requires the explicit enumeration of all assumptions and

reasoning steps. In addition, each reasoning step must be an instance of a relatively

small number of allowed rules of inference. The most rigorous formal methods apply

these techniques to substantiate the reasoning used to justify the requirements, or other

aspects of the design or implementation of a complex or critical system. In formal logic,

as well as formal methods, the objective is the same: reduce reliance on human intuition

and judgment in evaluating arguments. That is, reduce the acceptability of an argu-

ment to a calculation that can, in principle, be checked mechanically, thereby replacing

6 Chapter 2

the inherent subjectivity of the review process with a repeatable exercise. Less rigorous

formal methods 1 tend to emphasize the formalization and forego the calculation.

This definition implies a broad spectrum of formal methods techniques, as well as a

similarly wide range of formal methods strategies 2. The interaction of the techniques

and strategies yields many formal methods options, constrained, for any given project,

by the role of formal methods and the resources available for its application. The roles

of formal methods are discussed in the following section. An evaluation of resources as a

factor shaping formal methods can be found in Volume I of this Guidebook [NASA-95a].3

The purpose of the next few sections is to emphasize the versatility of formal methods

and the importance of customizing the use of formal methods to the application.

2.2 Roles of Formal Methods

As noted above, formal methods may be used to calculate. For example, a formal

method may be used to determine whether a certain description is internally consistent,

whether certain properties are consequences of proposed requirements, whether one level

of design implements another, or whether one design is preferable to another. In such

cases, the focus of formal methods use is largely analytical. Formal methods may also

have a primarily descriptive focus, for example, to clarify or document requirements

or high-level design, or to facilitate communication of a requirement or design during

inspections or reviews. Each use reflects a particular formal methods role. Formal

methods may also be used to satisfy standards or to provide assurance or certification

data, in which case the role of formal methods, as well as the analytic or descriptive

content of the formal methods product, is prescribed.

The intended role or roles specified for a particular application of formal methods

serves to constrain the set of techniques and strategies appropriate for that project.

2.3 Formal Methods: Degree of Formalization and Scope

of Use

Formal methods options may be classified in terms of techniques that are differentiated

by degree or level of formalization (Figure 2. l(a)), and strategies that are characterized

by the scope of formal methods use (Figure 2.1(b)). Level of formalization and scope

of use are independent factors that combine to determine the range of formal methods

options, hence their juxtaposition in Figure 2.1.

1Or, equivalently, the use of a rigorous formal method at a lower level of rigor. The extent of
formalization and level of rigor are discussed in Section 2.3.

2As used here and throughout the remainder of the guidebook, "formal methods strategies" refer to
strategems for productively employing the mathematical techniques that comprise formal methods.

3The material in the following sections reflects the type of technical issues typically raised in a general
discussion of formal methods use. More complete exploration of these and related topics can be found,
for example, in [Rus93a, BS93,HB95b].

NASA- GB-O01-9 7 7

Levels of Formalization

1. Mathematical concepts and notation,

informal analysis (if any), no mechanization

2. Formalized specification languages,

some mechanized support

3. Formal specification languages,

comprehensive environment, including

automated proof checker/theorem prover

Scope of FM Use

Life cycle phases:

all/selected

System components:

all/selected

System functionality:

full/selected

Figure 2.1: The Range of Formal Methods Options Summarized in Terms of (a) Levels

of Formalization and (b) Scope of Formal Methods Use.

2.3.1 Levels of Formalization

Formal methods techniques may be defined at varying levels, reflecting the extent to

which a technique formulates specifications in a language with a well-defined semantics,

explicitly enumerates all assumptions, and reduces proofs to applications of well-defined

rules of inference. Increasing the degree of formality allows specifications and assump-

tions to be less dependent on subjective reviews and consensus and more amenable to

systematic analysis and replication. There is a distinction to be drawn between the

terms rigor and formality; it is possible to be rigorous, that is, painstakingly serious

and careful, without being truly formal in the mathematical sense. Since it is difficult

to use a high degree of formality with pencil and paper [RvH93], increasing formality is

associated here with increasing dependence on computer support.

As techniques mature and acquire automated support, their level of formalization

typically changes. The evolution of the A-7 or Software Cost Reduction (SCR) method-

ology illustrates this process. In the late 1970s, Parnas, Heninger, and colleagues at the

Naval Research Laboratory (NRL) defined a tabular method to specify software system

requirements [H+78]. Van Schouwen subsequently formalized the methodology and its

underlying mathematical model [vS90]. Researchers at NRL have continued to work

on the SCR methodology, refining the model, providing a formal semantics, developing

automated tools including consistency and completeness checkers, and, most recently,

exploiting extant model checkers and theorem provers [HBGL95, BH97, AH97].

The levels of formalization are defined below, listed in order of increasing formality

and effort. The purpose of this classification is to identify broad classes of formal

methods. The distinctions underlying the classification are neither hard and fast, nor a

measure of the inherent merit or mathematical sophistication of a technique. Instead,

the distinctions reflect the extent to which a technique is both mathematically well-

defined and supported by mechanized tools, yielding systematic analyses and replicable
results.

8 Chapter 2

. The use of notations and concepts derived from logic and discrete math to de-

velop more precise requirements statements and specifications. Analysis, if any,

is informal. This level of formal methods typically augments existing processes

without imposing wholesale revisions. Examples include early formulations of the

A-7 methodology [H + 78, Hen80, vS90], various case- and object-oriented modeling

techniques [Boo91, CY91b, CY91a, RBP+91, Sys92], and Mills and Dyer's Clean-

room methodology [Mi193, Lin94], although the latter is an exception in that it

supplants rather than augments existing processes.

. The use of formalized specification languages with mechanized support tools

ranging from syntax checkers and prettyprinters to typecheckers, interpreters,

and animators. This level of formality usually includes support for modern

software engineering constructs with explicit interfaces, for example, modules,

abstract data types, and objects. Historically, tools at this level haven't of-

fered mechanized theorem proving, although recent evolution of the following

tools has increased their support for mechanized proof: Larch [wSJGJMW93],

RAISE [Gro92], SDL [BHS91], VDM [Jon90], Z [Spi88, Wor92] and SCR [FC87,

HJL95, HLK95, HBGL95].

. The use of formal specification languages with rigorous semantics and corre-

spondingly formal proof methods that support mechanization. Examples in-

clude HOL [GM93], Nqthm IBM88], ACL2 [KM96], EVES [CKM+91], and

PVS [ORSvH95]. State exploration [Ho191, ID93], model checking [McM93], and

language inclusion [Kur94] techniques also exemplify this level, although these

technologies use highly specialized, automatic theorem provers that are limited to

checking properties of finite-state systems or of infinite-state systems with certain

structural regularities.

One of the maxims of this guidebook is the importance of tailoring the use of formal

methods to the task. In this case, the maxim implies that higher levels of rigor are

not necessarily superior to lower levels. The highest level of formality may not be the

most appropriate or productive for a given application. A project that intends using

formal methods primarily to document the emerging requirements for a new system

component would make very different choices than if they were formally verifying key

properties of an inherently difficult algorithm for a distributed protocol. Implicit in the

discussion is the importance of selecting a formal methods tool appropriate to the task.

A full discussion of factors influencing tool selection can be found in [Rus93a], and a

summary is available in Volume I of this guidebook [NASA-95a].

2.3.2 Scope of Formal Methods Use

The three most commonly used variations in the scope of formal methods application

are listed here; others are certainly possible.

NASA- GB-O01-9 7 9

.

.

.

Stages of the development life cycle

Generally, the biggest payoff from formal methods use occurs in the early life cycle

stages, given that errors cost more to correct as they proceed undetected through

the development stages; early detection leads to lower life cycle costs. Moreover,

formal methods use in the early stages provides precision precisely where it is

lacking in conventional development methods.

System components

Criticality assessments, assurance considerations, and architectural characteristics

are among the key factors used to determine which subsystems or components

to analyze with formal methods. Since large systems are typically composed of

components with widely differing criticalities, the extent of formal methods use

should be dictated by project-specific criteria. For example, a system architecture

that provides fault containment for a critical component through physical or logical

partitioning provides an obvious focus for formal methods activity and enhances

its ability to assure key system properties.

System functionality

Although formal methods have traditionally been associated with "proof of cor-

rectness," that is, ensuring that a system component meets its functional speci-

fication, they can also be applied to only the most important system properties.

Moreover, in some cases it is more important to ensure that a component does

not exhibit certain negative properties or failures, rather than to prove that it has

certain positive properties, including full functionality.

2.4 Reasonable Expectations for Formal Methods

A formal method is neither a panacea, nor a guarantee of a superior product. Realistic

expectations are a function of the designated role(s) and extent of formal methods use

and of the project resources allocated to the formal methods activity. Judicious, skill-

ful application of formal methods can detect faults earlier than standard development

processes, thereby greatly reducing the incidence of mistakes in interpreting, formal-

izing, and implementing correct requirements and high-level designs. Because formal

methods encourage a systematic enumeration and exploration of cases, they encourage

the early discovery of faults in requirements or high-level designs that would otherwise

be discovered only during programming. Of course, the same claim can be made for

pseudocode, dataflow diagrams, or other quasi-formal notations that can be used early

in the life cycle.

The advantage of formal methods is that by concentrating on what is required, they

focus more directly on the topic of interest and avoid the distractions entailed by im-

plementation factors. Stronger claims can even be made for fully formal techniques.

Equally judicious, skillful applications of the most rigorous formal methods can detect

more faults than would otherwise be the case and, in certain circumstances, subject

10 Chapter 2

to certain caveats, they can also guarantee the absence of certain faults. In particu-

lar, by working early in the life cycle, on reasonably abstracted representations of the

hardest part(s) of the overall problem, the highest-level formal methods can validate

crucial elements of the requirements or high-level design. Finally, in contrast to such

techniques as direct execution, prototyping, and simulation, which can explore a large,

but necessarily incomplete set of system behaviors, deductive formal methods and state

exploration techniques support exhaustive examination of all behaviors. 4 The extent

to which a project realizes some or all of the benefits described here depends on the

availability of essential resources, the skill with which formal methods use is tailored

to the application, and the degree to which the expectations fit the dimensions of the

project.

2.5 The Method Underlying Formal Methods

In the context of an engineering discipline, a method describes the way in

which a process is to be conducted. In the context of system engineering, a

method is defined to consist of (1) an underlying model of development, (2)

a language, or languages, (3) defined, ordered steps, and (3) guidance for

applying these in a coherent manner.

Most so-called formal methods do not address all of these is-

sues Indeed, the formal methods community has been slow to address such

methodological aspects. 5 [HB95b, p. 2]

Although the four elements in the preceding definition may be somewhat controver-

sial, the observation that there is a paucity of method in formal methods is not. The

observation focuses in particular on the apparent absence of "defined, ordered steps"

and "guidance" in applying those methodical elements that have been identified. One

reason for the absence of method is that the intellectual discipline involved in modeling,

specification, and verification eludes simple characterization; the intuition that guides

effective abstraction, succinct specification, and adroit proof derives from skill, talent,

and experience and is difficult to articulate as a process.

Exceptions to this observation include specialized methodologies for particular ap-

plication areas, such as the area of embedded systems -- reactive systems that oper-

ate continuously and interact with their environment, including Parnas's "four vari-

able method" [vS90, vSPM93], NRL's Software Cost Reduction (SCR) method [FC87,

HBGL95], the Software Productivity Consortium's Requirements Engineering (CORE)

method [FBWK92], and Harel's Statecharts [Har87, H+90] and its derivatives, such

as Leveson's Requirements State Machine Language (RSML) [LHHR94]. Historically,

4State exploration techniques require a "downscaled" or finite state version of the system and typ-
ically involve a more concrete representation than that used with theorem provers or proof checkers.
These and related topics are discussed in Chapter 6.

5The material quoted here is based on a discussion in [Kro93].

NASA-GB-O01-97 11

the methods developed for reactive systems have provided organizing principles, con-

ceptual models, and in many cases, specification languages, and systematic checks for

well-formedness of specifications. Although many of these methodologies provide some

mechanized analysis and are currently exploring additional mechanized checks, few have

yet to provide the range of analysis available in a true theorem prover or proof checker.

Although the method implied in formal methods has been slow to emerge (with the

exception of the methodologies noted above), broad outlines that effectively constitute

an "underlying model of development" are worth noting. The process of applying formal

methods to a chosen application typically involves the following phases: characterizing

the application, modeling 6, specification, analysis (validation), and documentation. The

distinction between phases is somewhat artificial and should not be taken too literally.

For example, it is difficult and not particularly instructive to determine precisely where

modeling ends and specification begins. Each phase consists of constituent processes.

Again, the enumeration below is suggested, not prescribed, and the overall process (i.e.,

the four constituent phases) is iterative rather than sequential. For example, character-

ization of the application may be influenced by consideration of potential models, the

process of specifying the application may suggest changes to the underlying model, or

the process of verifying a key property may trigger changes to the specification or even to

the underlying model. Ideally, documentation accompanies all the phases summarized
here:

• The Characterization Phase: Synthesize a thorough understanding of the appli-

cation and the application domain.

- Conduct a thorough study of the application, noting key components and sub-

components, interfaces, essential algorithms, fundamental behaviors (nomi-

hal and off-nominal), data and control flows, and operational environment.

- Identify and study related work, if any.

- Acquire additional knowledge of the application domain, as needed.

- Integrate the accumulated knowledge into a working characterization of the

application. Some practitioners, especially those working alone, tend to "in-

ternalize" an application, working strictly from mental notes. Other practi-

tioners produce working documents and notes. The culture in which a project

operates in large part determines the artifacts (if any) of this phase. Still,

the importance of this phase should not be underestimated; total immersion

in an application is crucial for developing insight into the most appropriate

models and the most appropriate specification and validation strategies. In

some cases, such as hardware verification, there is considerable precedent

and there are fairly well-established paradigms. There is also a standard

6As used here, the term "model" refers to the mathematical representation of a system that underlies
the system's specification. In this usage, the "models" checked by state exploration tools o1"model
checkers are viewed as specifications.

12 Chapter 2

paradigm for proving hierarchical specification chains, that is, hierarchies of

specifications at different levels of abstraction (see Section 5.3). However, in

most other cases, there is often little applicable precedent and there are few,

if any, established paradigms.

• The Modeling Phase: Define a mathematical representation suitable for formaliz-

ing the application domain and for calculating and predicting the behavior of the

application in that context. (See Chapter 4.)

- Evaluate potential mathematical representations, considering such general

factors as the level of abstraction, generality, expressiveness, analytical power,

and simplicity, as well as specific factors, such as the computational model,

and explicit (implicit) representation of state and time. Mechanized tool

support, if any, may also be a factor. The logic underlying a tool may

support the use of certain mathematical representations and discourage the
use of others.

- Select the mathematical representation most suitable for the application.

- Model key elements of the application and their relationships. As noted

above, this (sub)process transitions into the specification phase.

• The Specification Phase: Formalize relevant aspects of the application and its

operational environment. (See Chapter 5.)

- Develop a specification strategy, considering such factors as hierarchical (mul-

tilevel) versus single-level specification, constructive versus descriptive spec-

ification style (see Section 5.2), and procedural and organizational issues,

such as developing reusable theories and common definitions, and specifica-

tion chronology.

- Using the chosen model and specification strategy, compose the specification.

- Analyze the syntactic and semantic correctness of the specification.

• The Analysis Phase: Validate the specification. (See Chapter 6.)

- Interpret or execute the specification.

- Prove key properties and invariants.

- Establish the consistency of axioms, if any.

- Establish the correctness of hierarchical layers, if any.

• The Documentation Phase: Record operative assumptions, motivate critical deci-

sions, document the rationale and crucial insights, provide explanatory material,

trace specification to requirements (high-level design), track level of effort, and

where relevant, collect cost/benefit data.

NASA-GB-O01-97 13

• Maintenance and Generalization: Revisit and modify the specification and its

analysis as required, for example, to predict the consequences of proposed changes

to the modeled system, to accommodate mandated changes to the modeled system,

to support reuse of the formal specification and analysis, or to distill general

principles from the formalization and analysis.

Formal methods are supported in the specification and analysis phases with mech-

anized tools that perform the steps shown in Figure 2.2. Tools that support user inter-

action typically provide these steps explicitly, whereas tools that are fully automated

do so implicitly. For example, most state exploration tools are fully automatic and do

not provide user control of the steps that check for syntactic and semantic consistency.

Mechanized support for the modeling phase exists, for example, in some of the infor-

mal object-oriented methodologies and in methods such as SCR. However, mechanized

support for modeling is not (yet) included in most formal methods (FM) systems and

is therefore not represented in Figure 2.2.

FM Phase Tool Tool Function

Specification Parser Checks syntactic consistency

Specification Unparser Translates internal representation

into display and outputs formatted text

Specification Typechecker Checks semantic consistency

Analysis Animator, Exhibits behavior of system modeled

simulator by syntactically and semantically

correct specification

Analysis Proof checker, Performs proof over syntactically

model checker and semantically correct specification

Figure 2.2: Mechanical Support for Specification and Analysis Phases of FM.

Except for documentation and maintenance, all the phases listed above form the

core of subsequent chapters, beginning with the characterization phase. This chapter

concludes with background regarding SAFER drawn from requirements documents and

operations manuals typical of the kind of documentation used for developing an initial

characterization of an application and its domain.

2.6 An Introduction to SAFER

Unless otherwise noted, this section is based on the SAFER Operations Man-

ual [SAFER94a]. A more detailed version of the material, along with all figures cited

in this discussion, can be found in Appendix C.

SAFER, as shown in Figure 2.3, is a small, lightweight propulsive backpack sys-

tern designed to provide self-rescue capability to a NASA space crewmember separated

14 Chapter 2

HAND

coNTROIA-ER
MOOULE

Figure 2.3: Front and back views of SAFER system worn by NASA crewmember.

during an EVA. This could be necessary if a safety tether broke or was not correctly

fastened during an EVA on a space station or on a Space Shuttle Orbiter docked to a

space station. SAFER provides an attitude hold capability and sufficient propellant to

automatically detumble and (manually) return a separated crewmember. A flight test

version of SAFER was flown on STS-64 and STS-76, and production variants have been

used on the initial MIR docking flights.

The SAFER flight unit weighs approximately 85 pounds and folds for launch, land-

ing, and on-orbit stowage inside the Orbiter airlock. SAFER attaches to the underside

of the Extravehicular Mobility Unit (EMU) primary life-support subsystem backpack,

without limiting suit mobility and is controlled by a single hand controller attached to

the EMU display and control module.

The hand controller contains a small liquid crystal display (LCD), two light-emitting

diodes (LEDs), a small control unit with three toggle switches, and the hand controller

grip, as shown in Figure C.4. The displays and switches are visible from all possible

head positions inside the EMU helmet, and the switches are positioned for either left-

or right-handed operation. The functions of the three displays and three switches are
as follows:

1. Liquid Crystal Display: A 16-character, backlit LCD displays prompts, status

information, and fault messages.

2. Light-emitting Diode: A red LED labeled "THR" lights whenever a thruster-on

condition is detected by the control software.

NASA-GB-O01-97 15

3. Light-emitting Diode: A green LED labeled "AAH" lights whenever automatic
attitude hold is enabled for one or more rotational axes.

4. Switch: A three-position toggle switch labeled "PWR" powers on SAFER and
initiates the self-test or activation test functions.

. Switch: A three-position momentary toggle switch labeled "DISP" controls the

LCD display, allowing the crewmember to select the previous or next parameter,

message, or test step. The switch springs back to the center (null) position when
released.

6. Switch: A two-position toggle switch labeled "MODE" selects the hand controller
mode associated with rotation and translation commands.

The hand controller is a four-axis mechanism with three rotary axes and one trans-

verse axis. To generate a command, the crewmember moves the hand controller grip

(mounted on the right side of the hand controller module) from the null center posi-

tion to mechanical hardstops on the hand controller axes. To terminate a command,

the crewmember returns the hand controller to the center position or releases the grip

so that it automatically springs back to the center. Figures C.5 and C.6 illustrate

the hand controller axes for translational and rotational commands, respectively. For

example, Figure C.5 indicates that with the control switch set to translation mode,

+Y commands are generated by pulling or pushing the grip right or left, respectively.

Careful study of these figures reveals that the X translation command and the pitch

rotation command are always available in either mode. A pushbutton switch on the top

of the hand controller grip initiates and terminates automatic attitude hold.

The avionics software processes inputs from the hand controllers and various sensors,

and includes the following components:

1. Control Electronics Assembly (CEA): The CEA microprocessor takes inputs from

sensors and hand controller switches and actuates the appropriate thruster valves.

.

.

.

Inertial Reference Unit (IRU): The IRU senses angular rates and linear accelera-

tions and is central to the attitude hold capability.

Data Recorder Assembly (DRA): The DRA collects flight-performance data, hand

controller and automatic attitude-hold commands, and thruster firings.

Valve Drive Assemblies (VDAs): Each of the four VDAs, located with a cluster

of six thrusters, takes firing commands from the CEA and applies voltages to the
selected valves.

5. Power Supply Assembly (PSA): The PSA produces regulated electrical power for

all SAFER electrical components.

6. Instrumentation Electronics: SAFER instrumentation includes a variety of sen-

sors, all of which are listed in Table C.1.

16 Chapter 2

The avionics software has two principal functions: maneuvering control for both

commanded accelerations and automatic attitude hold actions, and fault detection,

which supports inflight operation, pre-EVA checkout, and ground checkout. A brief

summary of the control function is presented here. Sections C.1.4.2 and C.1.4.3

present a more detailed summary of the maneuvering control function and an account

of the fault detection function, respectively.

The maneuvering-control software commands both rotational and translational ac-

celerations. Translation commands provide acceleration along a single translational axis

and are prioritized so that X is first, Y is second, and Z is third. When rotation and

translation commands are present simultaneously, rotation takes priority and transla-

tions are suppressed. Conflicting input commands result in no output to the thrusters.

Whenever possible, acceleration is provided as long as a hand controller or automatic

attitude-hold command is present.

The SAFER crewmember can initiate (single-click) or terminate (double-click) au-

tomatic attitude hold at any time via the pushbutton on the top of the hand controller

grip. When terminated, automatic attitude hold is disabled for all three rotational

axes. If a crewmember issues a rotational command for a given axis when automatic

attitude hold is active, it is immediately disabled for that axis only. However, to ensure
that a failed-on hand controller command in a rotational axis will not disable automatic

attitude hold on that axis, automatic attitude hold takes precedence over a crewmember-

issued rotational command if the two are initiated simultaneously. Automatic attitude

hold provides an automatic rotational deceleration until all three axis rates are near

zero. These near-zero rates are automatically maintained whenever automatic attitude
hold is active.

Thruster-select logic takes acceleration commands from the hand controller and

from the automatic attitude-hold function, creates a single acceleration command, and

chooses thruster firings to achieve the commanded acceleration. Thruster selection

results in on-off commands for each thruster, with a maximum of four thrusters turned

on simultaneously. Thruster arrangement and designations are shown in Figure C.3.

Tables C.2 and C.3 specify the selection logic.

SAFER has 24 gaseous nitrogen (GN2) thrusters -- four thrusters pointing in each of

the iX, +Y, and -t-Z axes. The thrusters are arranged in four groups of six thrusters

each, located as shown in Figure C.3. As noted, thruster valves open, causing the

thrusters to fire in response to directives from the avionics subsystem, which commands

as many as four thrusters at once to provide six degree-of-freedom maneuvering control

(iX, -bY, +Z, +roll, +pitch, +yaw). The SAFER propulsion system provides a total

delta velocity of at least 10 feet per second with an initial charge. The four GN2

tanks have a relatively small capacity and require several recharges during an EVA.

The recharge station is located in the Orbiter payload bay. When SAFER is not in use

or if a malfunction (such as a failed-on thruster) occurs, the tanks can be isolated via a

manually actuated isolation valve.

NASA-GB-O01-97 17

The SAFER example introduced here is used throughout the guidebook to illustrate

key points in each chapter. Although this example attempts to formalize the actual

SAFER design, pragmatic and pedagogical considerations have inevitably resulted in

differences between the actual design and the formal specification. These differences

do not detract from the presentation of a realistic example that captures the basic

characteristics of a class of space vehicles and the computerized systems that control

them. The fragment of the example chosen for inclusion at the end of each subsequent

chapter focuses on the thruster selection function responsible for creating an integrated

acceleration command from hand controller and automatic attitude-hold inputs.

18 Chapter 2

Chapter 3

Requirements

Requirements define the set of conditions or capabilities that must be met by a system or

system component to satisfy a contract, standard, or other formally imposed document

or description [SE87]. For example, IEEE Standard 1498 [IEEE194, p. 7] defines a

requirement as '% characteristic that a system or software item must possess in order

to be acceptable to the acquirer." Similarly, the NASA Guidebook for Safety Critical

Software Analysis and Development [NASA-96, p. A-18] defines software requirements

as "statements describing essential, necessary, or desired attributes." In the context of

this guidebook, requirements are taken to be a statement of the essence of a system that

is typically produced at or near the beginning of the life cycle and guides and informs

the development, implementation, and maintenance of that system. 1 The number of

steps between requirements, capture, and implementation depends on the life cycle

process for the system. Arguably, the more clearly articulated and differentiated the life

cycle phases are, the more likely it is that the requirements statement will be suitable

for formal analysis. A well-defined life cycle reflects a mature process, including an

appreciation for the role and task of quality assurance. For example, a fairly typical,

mature life cycle process might include requirements definition, system design, high-level

design, low-level design, coding, testing (unit testing, component or function testing,

system testing), user support, and maintenance.

There are many considerations in the elicitation, capture, modeling, specification,

validation, maintenance, traceability, and reuse of requirements, and a burgeoning group

of researchers interested in addressing these and related issues. This activity has led to

the recent emergence of a "discipline" [FF93, p. vii known as "Requirements Engineer-

ing" that attempts to establish "real-world goals for, functions of, and constraints on

software systems" [Zav95, p. 214] and includes researchers in the social sciences as well

as in several areas of computer science. 2

1This and similar remarks in Section 3.1.1 are not meant to suggest a particular life cycle model.
2Representative papers may be found in the proceedings of several new conferences, including the bi-

ennial international symposium first held in 1993 [RE93,RE95] and the biennial international conference
first held in 1994 [ICRE94, ICRE96].

19

20 Chapter 3

3.1 Requirements and Formal Methods

This guidebook takes a less generic interest in requirements, focusing here on require-

ments as objects of formal analysis and, in particular, the characteristics of requirements

that influence the application of formal methods, and conversely.

3.1.1 Impact of Requirements Specification on Formal Methods

The most important characteristics of requirements as objects of formal analysis are the

level at which the requirements are stated, the degree to which they are explicitly and

unambiguously enumerated, the extent to which they can be traced to specific system

components, and the availability of additional information or expertise to provide the

rationale to motivate and clarify the requirements definition (as necessary).

3.1.1.1 Level of Requirements Capture

Requirements for the early stages of the life cycle, that is, up to and including the high-

level design phase, should be reasonably abstract and focus on basic characteristics,

including essential behaviors and key properties of the system. At this level, implemen-

tation considerations and low-level detail tend to distract one from the basic system

functionality. Requirements written at too low a level or with too strong an implemen-

tation bias may require reverse engineering before formal methods can be productively

applied.

3.1.1.2 Explicitness of Requirements Statement

Requirements should also be completely, precisely, and unambiguously stated. At this

level, the idea is to have a clear, precise statement that is reasonably complete and

doesn't admit multiple interpretations. This appears to contradict the previous point,

that the requirements be reasonably abstract and distill only essential behaviors and

properties, but there is really no contradiction. Clarity, precision, and completeness

involve explicitly identifying underlying assumptions and thoroughly enumerating all

relevant cases rather than specifying low-level detail and implementation factors. Am-

biguous requirements that cannot be further clarified may require the formal methods

practitioner to define and explicitly record a set of operative assumptions to initiate the

formal specification and analysis. Ultimately, any operative assumptions, as well as the

requirements specification, should be validated.

3.1.1.3 Clarity of Delineation between a System and Its Environment

Requirements should clearly state the assumptions a system makes about its operat-

ing environment and should clearly delineate the boundary between the system and its

NASA-GB-O01-97 21

operative context. For example, requirements should explicitly identify environmen-

tal quantities that the system measures, controls, or assumes, such as temperatures,

pressures, and user interface assumptions [HB95a, p. 23]. 3

3.1.1.4 Traceability of Requirements

System-level requirements should be traceable to identifiable (functional) subsystems,

components, or interfaces. Requirements that cannot be so traced may prove difficult

to validate insofar as they specify system-level properties or behavior that is too general

or too ill-defined to be formally analyzed.

3.1.1.5 Availability of Underlying Rationale and Intuition

Requirements should also contain background material that motivates and illuminates

the requirements statement. Although such material is typically excluded from require-

ments documents, it is often possible to find domain expertise, project personnel, and

artifacts that provide essential information and insight. Such supplemental material is

crucially important if the requirements statement is low-level, implementation-oriented,

incomplete, or ambiguous.

It is unusual to be handed a set of requirements that is well-suited to formal specifica-

tion and analysis. Although formal methods provide techniques and tools for distilling a

set of requirements from informal or quasi-formal specifications and for exposing missing

or incomplete requirements, formal methods are not a panacea. The practitioner should

factor in the availability and suitability of requirements documents when considering a

formal methods application.

To illustrate, consider briefly the experience recounted in [NASA93], which describes

an attempt to formalize the official Level C requirements for the Space Shuttle Jet-Select

function [Roc91]. Although Space Shuttle flight software is exemplary among NASA

software development projects, the requirements analysis and quality assurance in early

life cycle phases of the Shuttle used then-current (late 1970s and early 1980s) products

and tools. Shuttle software requirements are typically written as Functional Subsystem

Software Requirements (FSSRs) - low-level software requirements specifications written

in English prose and accompanied by secondary material including pseudocode, and

diagrams and flowcharts with in-house notations. Interpreting the Jet-Select FSSR

documents required the combined efforts of a multicenter team for several months and

relied extensively on resident expertise at IBM Federal Systems Division. 4 When a

3This paraphrase of a statement by Parnas, who has been among the most vocal advocates for an

explicit delineation between a system and its environment, was made in the context of computer software

systems, but the remark applies equally to other types of systems.

4The multicenter team consisted of personnel from NASA's Jet Propulsion Laboratory, Langley

Research Center (LaRC), and Johnson Space Center, and included subcontractors from Lockheed Martin

Space Mission Systems (formerly Loral, and, prior to that IBM, Houston) and SRI International. (The

work cited here was completed prior to either the Loral or Lockheed Martin eras, hence the references

to IBM.)

22 Chapter 3

new set of high-level Jet-Select requirements was formalized in the PVS specification

language, it became clear that the Jet-Select function could be stated more simply. To

validate the PVS specification, approximately a dozen lemmas, derived from a list of

high-level Jet-Select properties identified by IBM, were formalized and proven. The

fact that the algorithm and its essential properties are difficult to discern from the

FSSRs illustrates two complementary points: (1) the potential problems of low-level

requirements that only implicitly capture key properties and essential functionality,

and (2) the value of supplemental sources and materials to provide crucial information,

for example, the list of desired Jet-Select properties and the clarifications provided by

IBM domain experts. 5

3.1.2 Impact of Formal Methods on Requirements

The application of formal methods typically produces tangible artifacts, including for-

mal models, specifications, and analyses, that can impact the requirements to which

they are applied. The nature of the impact depends on the strategy used in the require-

ments development process, and in particular, the degree to which formal methods are

integrated into the existing process.

Fraser and his colleagues [FKV94] attempt to classify integration strategies with

respect to the following factors:

1. Does the strategy go directly from the informal requirements to the formalized

specification or does it introduce intermediate and increasingly formal models of

the requirements?

2. If the strategy introduces intermediate (semiformal) models, is the process one of

parallel, successive refinement of the requirements and the formal specification, or

are the formal specifications derived after the (semiformal) requirements models

have been finalized in a sequential strategy?

3. To what extent does the strategy offer mechanized support for requirements cap-
ture and formalization?

The question of mechanized support for requirements capture and formalization re-

mains somewhat academic, since the fully automatic characterization of requirements

still relies primarily on research tools with limited scope and scalability. One exam-

ple is a knowledge-based "specification-derivation system" that uses difference-based

reasoning and analogy mapping to recognize and instantiate schemas and interactively

derive specifications in a language similar to the Larch Shared Language [FKV94, p. 82].

5This example also illustrates the fundamental cost/benefit trade-offs that invariably arise when
substantial reverse engineering is required before formal methods can be applied. These and related
planning issues are discussed in Volume I of this guidebook [NASA-95a].

NASA- GB-O01-9 7 23

Another example is the use of data-flow diagrams and decision tables to develop "Struc-

tured Analysis" specifications that are then translated in VDM specifications by means

of "interactive rule-based algorithmic methods" [FKV94, pp. 84-5]. 6

Of more immediate interest are the strategies that use an iterative approach to the

successive refinement of requirements. An example of the sequential application of the

iterative strategy is the use of formal methods in certain re-engineering projects where

the requirements are mature and well-established. However, it is the parallel application

of the iterative strategy that most substantively impacts the requirements definition.

An example of this type of application includes formalization of immature requirements

or formalization of requirements for ill-defined or ill-structured problem domains. In

these cases, there is the "potential of letting semiformal and formal specifications aid

each other in a synergistic fashion during the requirements discovery and refinement

process" [FKV94, p. 82]. If this synergy is positive, the formal models, specifications,

and analyses may ultimately become (part of) the requirements--a development some

would applaud and others would view with concern. For example, Parnas [HB95a, p. 21]

notes that "Engineers make a useful distinction between specifications, descriptions, and

models of products. This distinction seems to be forgotten in the computer science lit-

erature." This may be similarly applicable to requirements, models, and specifications.

On the other hand, active research into formal semantics and automated reasoning

frameworks for industrially used notations [BS93, p. 191] points toward a coalescence

in some environments of informal requirements with their formalization and analysis.

3.2 Conventional Approaches to Requirements Validation

It is well recognized that identifying and correcting problems in the requirements and

early-design phase avoids far more costly fixes later. It is often said that late life cycle

fixes are 100 times more expensive than corrections during the early phases of software

development [Boe87, p. 84]. Focused arguments for the utility of software-requirements

analysis and validation have become increasingly common. For example, Kelly [KSH92]

documents a significantly higher density of defects found during requirements versus

later life cycle inspections. Lutz [Lut93] notes that of roughly 195 "safety-critical" faults

detected during integration and system testing of the Voyager and Galileo spacecraft,

3 were programming bugs, 96 were attributed to flawed requirements, 48 resulted from

incorrect implementation of the requirements, and the remaining 48 faults were traced
to misunderstood interfaces.

Standard approaches to requirements analysis and validation typically involve man-

ual processes such as "walk-throughs" or Fagan-style inspections [Fag76, Fag86]. The

term walk-through refers to a range of activities that can vary from cursory peer reviews

to formal inspections, although walk-throughs usually do not involve the replicable pro-

cess and methodical data collection that characterize Fagan-style inspections. Fagan's

6The relative immaturity of these particular activities does not reflect on the acknowledged maturity
of formal methods techniques in general. See, for example, [Gla95, McI95].

24 Chapter 3

highly structured inspection process was originally developed for hardware logic, next

applied to software logic design and code, and ultimately successfully applied to arti-

facts of virtually all life cycle phases, including requirements development and high-level

design [Fag86, p. 748]. A Fagan inspection involves a review team with the following

roles: a Moderator, an Author, a Reader, and a Tester. The Reader presents the design

or code to the others, systematically walking through every piece of logic and every

branch at least once. The Author represents the viewpoint of the designer or coder, and

the perspective of the tester is represented, as expected, by the Tester. The Moderator

is trained to facilitate intensive, but constructive and optimally effective, discussion.

When the functionality of the system is well-understood, the focus shifts to a search for

faults, possibly using a checklist of likely errors to guide the process. The inspection

process includes equally intense and highly structured rework and follow-up activities.

One of the main advantages of Fagan-style inspections over other conventional forms of

verification and validation is that they can be applied early in the life cycle, for example,

to requirements and high-level design. Thus potential anomalies can be detected before

they become entrenched in the low-level design and implementation.

NASA supports a process derived from Fagan inspections, called "Software For-

mal Inspections" [NASA-93b, NASA-93a] that uses teams drawn from peers involved

in development, test, user groups, and quality assurance. The seven-step NASA pro-

cess spelled out in [NASA-93b] consists of planning, overview, preparation, inspection

meeting, third hour, rework, and follow-up stages. NASA inspections use checklists,

as well as standardized forms to record product errors and collect metrics associated

with the inspection process. The collection and monitoring of metrics is an integral

part of NASA's inspection process because it documents the progress of a project. If

reinspection is required, several of the steps may be repeated. With small variations,

the NASA inspection process is used at several NASA centers, including the Goddard

Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL) [Bus90], Johnson Space

Center (JSC) 7, Langley Research Center (LaRC), and Lewis Research Center (LeRC).

The current validation process for NASA's Space Shuttle flight software includes close

adherence to the inspection process for requirements, high-level test plans, and source

code [NASA93, p. 21].

Although these processes are considered effective and the quality of NASA shuttle

flight software is among the highest in NASA software development projects, the re-

quirements analysis seems less reliable than the analyses performed on later life cycle

products. For example, [Rus93a, p. 38] notes that "a quick count of faults detected and

eliminated during development of the space shuttle on-board software indicates that

about 6 times as many faults 'leak' through requirements analysis, than leak through

the processes of code development and review." In light of these and similar obser-

vations, the following characteristics of the requirements analysis process have been

noted [NASA93, p. 9, 22]:

7The formal inspections cited here are actually used by Lockheed Martin Space Information Systems

(formerly, Loral and, prior to that, IBM, Houston), the Space Shuttle software subcontractor.

NASA- GB-O01-9 7 25

Current techniques are largely manual and highly dependent on the skill and

diligence of individual inspectors and review teams.

There is no methodology to guide the analysis process and no structured way for

Requirement Analysts (RAs) to document their analysis. There are no completion
criteria.

Although these techniques catch a substantial number of defects, the density of

defects found suggests that some errors escape detection.

NASA projects using currently available techniques have reached a quality ceiling

on critical software subsystems, suggesting that innovations are needed to reach

new quality goals.

These types of issues constitute a significant part of the rationale for exploring the

use of formal methods to complement and enhance existing requirements analysis and

design analysis processes for critical aerospace and avionics software systems.

3.3 SAFER Requirements

The set of SAFER flight operations requirements used in this document are derived

from three official project documents:

• Project Requirements Document [SAFER92]

• Prime Item Development Specification [SAFER94b]

• Operations Manual [SAFER94a]

The derivation of these requirements illustrates challenges that typically confront

efforts to formalize requirements for real-world systems. For example, the Project Re-

quirements Document provided brief characterizations for major components and func-

tions. Requirements at this level, such as those reproduced below, provide background

information, but they are at too high a level to be useful in the development of formal

specifications.

• The SAFER Flight Test Article shall provide six degree-of-freedom manual ma-

neuvering control.

• The SAFER Flight Test Article shall provide crewmember-selectable, three degree-

of-freedom Automatic Attitude Hold (AAH).

The Prime Item Development Specification, while more informative, lacks detail in

certain critical areas. In general, the Operations Manual, which was not intended as a

requirements document, provides the most consistently useful information. Ultimately,

26 Chapter 3

synthesizing the material from two of the three sources was necessary first in order to

characterize a system that could be meaningfully formalized. A subset of the require-

ments from the Prime Item Development Specification was augmented with more details

from the Operations Manual. This inherently subjective process, described here, was

guided by the need for requirements that provided a workable level of detail based on

a well-defined system architecture. If existing requirements documents directly support

the application of formal methods, or if domain expertise is readily available, the process

described here would not be necessary for formalization and analysis.

The subset of the requirements presented here (numbers 37 - 42) focuses on the

thruster-select function of the avionics software. Only the requirements that directly

specify thruster selection have been included; those indirectly involved, such as the

requirements that specify components providing thruster-selection input (the hand con-

troller unit) and output (the propulsion subsystem), appear in Section C.2, which con-

tains the full set of SAFER requirements.

Requirements 37 - 42 below specify the two basic thruster-select functions: (1)

integrating the input from the hand controller and automatic attitude hold (AAH) into

a single acceleration command and (2) selecting the set of thrusters to accomplish the

command. This functionality is specified through a combination of high-level "shall"

statements and lower-level tables that define the thruster-select logic. The numbers

associated with each requirement correspond to those used in Appendix C.

37. The avionics software shall disable AAH on an axis if a crewmember rotation

command is issued for that axis while AAH is active.

38. Any hand controller rotation command present at the time AAH is initiated shall

subsequently be ignored until a return to the off condition is detected for that axis
or until AAH is disabled.

39. Hand controller rotation commands shall suppress any translation commands that

are present, but AAH-generated rotation commands may coexist with translations.

40. At most one translation command shall be acted upon, with the axis chosen in

priority order X, Y, Z.

41. The avionics software shall provide accelerations with a maximum of four simul-

taneous thruster firing commands.

42. The avionics software shall select thrusters in response to integrated AAH and

crew-generated commands according to Tables C.2 and C.3.

Chapter 4

Models

The term model is used in two different, albeit related, ways in the context of formal

methods. On the one hand, "model" is used to refer to a mathematical representation

of a natural or man-made system. This is consistent with the usage in science and engi-

neering, where mathematical representations are used to predict or calculate properties

of the systems being modeled. The statistical models used to analyze and predict me-

teorological phenomena and the models of planetary motion used to calculate satellite

launch trajectories and orbits are examples of these types of mathematical models, as

are the state machine models used to explore the behavior of complex hardware and

software systems.

A second usage of the term "model" derives from precise terminology in formal logic

and refers to a mathematical representation that satisfies a set of axioms. Exhibiting a

model for a set of axioms demonstrates that the axioms are consistent. For example,

one way to show that a specification is consistent is to show that its axioms have a

model, as discussed in Chapter 6.

This chapter surveys characteristics of the types of mathematical models used in for-

mal methods and concludes with a discussion on modeling the SAFER thruster selection
function.

4.1 Mathematical Models

While there is no ambiguity about the meaning of the term "model" in the formal logic

sense, and little confusion about its informal use in the real world of concrete objects,

there is residual confusion surrounding the informal use of the term to refer to mathe-

matical objects. For example, when speaking of real products, such as jet planes, there

is no problem in distinguishing the notions of model, prototype, specification, and de-

scription. A model of a 747 may or may not be flightworthy and fit on a desk. 1 A

prototype, on the other hand, would be one of the first 747s built and would exhibit

1jackson [Jac95, pp. 120-122] follows Ackoff [Ack62] in distinguishing three kinds of model: iconic,
analogic, and analytic. Using this three-way distinction, the model of the 747 is iconic, that is, the

27

28 Chapter 4

most, if not all, key properties of the actual 747 aircraft, including the ability to ac-

commodate 350 passengers. A specification of the 747 would capture certain important

properties of the 747, possibly including the property that dimensions of the wing stand

in a certain relationship to the overall dimensions of the plane. A description is the

least constrained representation and may even include such useless detail as the fact

that the plane has a rather bulbous profile. 2 On the other hand, Parnas' definition of a

model as '% product, neither a description nor a specification." [Par95, p. 22] explicitly

acknowledges a confusion in the context of formal methods, where models and specifi-

cations are frequently conflated. Concurrency provides a case in point. "It's not that

one usually wants to specify concurrency, but rather to study the properties of a model

of concurrency resulting from a specification of a system." [CS89, p. 89]

4.1.1 Characteristics of Mathematical Models

In the context of formal methods, the most useful models tend to be abstract represen-

tations that focus on essential characteristics expressed in reasonably general terms and

formalized in judiciously chosen mathematics, that is, in mathematical representations

that are suitably expressive and provide sufficient analytic power. Of course, accuracy

with respect to the system being modeled is also essential.

4.1.1.1 Abstraction

Exploring the relationship between modeling and specifying a concrete (physical) object,

such as the 747, yields insight into desirable characteristics of abstract (mathematical)

models. For example, while it is possible to build a full-scale model of the 747, it is

almost certainly more useful to abstract away less important or less relevant features of

the 747 and concentrate on the simplest or most general expression of essential features

of interest. Two highly desirable consequences of creating suitably abstract models are

the elimination of distracting detail and the avoidance of premature implementation

commitments. For example, imagine using a desk-size model to discuss properties of

the overall design, that is, the layout and proportions of the aircraft, and of certain

components, such as the shape of the fore and aft sections of the wing, while ignoring

properties relating to the aircraft's size or to the structural materials used to build it.

The choices of mathematical representation and level of abstraction carry inher-

ent implications that must be explicitly considered. For example, Hayes describes the

implications of certain choices for modeling a simple symbol table.

"We are describing a symbol table by modeling it as a partial function

Here ... we use it [the function] to describe a data structure. There may be

many possible models that we can use to describe the same object. Other

747 model is an icon of a real plane. See Section 4.1.1.3 for a brief discussion of analogic and analytic
models.

2The 747 example is based on a discussion in [Par95].

NASA- GB-O01-9 7 29

models of a symbol table could be a list of pairs of symbol and value, or a

binary tree containing a symbol and value in each node. But these other

models are not as abstract, because many different lists (or trees) can rep-

resent the same function. And we would like two symbol tables to be equal

if they give the same values for the same symbols." [Hay87, p. 39]

4.1.1.2 Focus

A model defines the space that can be explored by virtue of the (concrete or abstract)

representation choices it reflects, but it does not prescribe the exploration per se, which

is the role of the specification. The desk-size model of the 747 facilitates certain kinds

of questions and precludes others. These limitations are a direct consequence of the

nature of the model, reflecting choices with respect to both focus and mathematical

representation. For example, the desk-size 747 does not lend itself to a study of either

the safety properties of the airplane's fly-by-wire system or the tensile properties of

production-grade materials. The same type of caveat applies to the abstract models

used in formal methods. "As with any model, we will have to determine what aspects

of reality we deem important and will have to ignore others. We must be quite clear,

therefore, on the boundaries of our models" [CS89, p. 94].

4.1.1.3 Expressiveness Versus Analytic Power

There is inevitably a tension between expressiveness and analytic power, as noted in

the following quote [CHJ86, p. 9].

"...in general, the larger the class of systems that can be described,

the less is analytically decidable about them. This unfortunate property of

mathematics means that great care and mathematical sophistication must

be applied to the design of models, especially if a lower level of sophistication

is to be expected of the engineers who use them."

Although the author of this quote is talking somewhat pessimistically about engineer-

ing models used to compute stresses, mass, friction, and so forth and appears to equate

expressiveness and descriptive generality, his observation about the tension between ex-

pressiveness and analytic potential is worth noting. In the context of formal methods,

expressiveness is typically used to refer to the ability to naturally and effectively char-

acterize a behavior or property of interest. Although generality certainly plays a role, it

is not the only hallmark of expressiveness. The analytic potential of a model is crucial

in formal methods applications because it is precisely the ability to analyze, that is to

calculate and predict, that confers the power and utility of formal methods.

4.1.1.4 Intuitive Versus Nonintuitive Representation

A further consideration can be characterized as naturalness of expression, that is, the

extent to which a model should be intuitively similar to the physical object it represents.

30 Chapter 4

Jackson [Jac95, pp. 120-122] cites the example of an electrical network used to model

the flow of liquid through a network of pipes. The example is due to Ackoff lAck62],

who terms it an analogic model; the wires are analogous to the pipes, and the flow of

current is analogous to the flow of liquid. Ackoff also identifies a class of models that he

terms analytic, by which he appears to mean that the model embodies an analysis. For

example, a set of differential equations describing how prices change is analytic because

it expresses the economist's analysis of the relevant part of the economy. This is a

somewhat different use of the term "analytic" than that of Cohen (above) and most

of the literature on formal methods. Although Ackoff's classification is not necessarily

advocated here, the notions of analogic and analytic content of models are useful.

4.1.1.5 Accuracy

Finally, it is important to be aware not only of the limitations of models used for formal

methods, but also of their accuracy. Just as specification and analysis are constrained

by the nature of the model, the ultimate utility and validity of the specification and

analysis are limited by the degree to which the model is an accurate representation of

the system modeled.

4.1.2 Benefits of Mathematical Models

The advantages conferred by mathematical models are effectively those associated with

the more rigorous levels of formal methods, namely

Mathematical models are more precise than an informal description written in

natural language or in quasi-formal notations, such as pseudocode, diagrammatic

techniques, and many CASE notations. One aspect of precision is the need to ex-

amine and make explicit all underlying assumptions; hence, mathematical models

also tend to force a more thorough analysis.

Mathematical models can be used to calculate and predict the behavior of the

system or phenomenon modeled.

Mathematical models can be analyzed using established methods of mathematical

reasoning. The axiomatic method that provides a discipline for proving properties

and for deriving and predicting new behaviors from those already known is an

example of one such method, in this case drawn from mathematical logic. 3

Gries and Schneider [GS93, pp. 2-3] use the discovery of the planet Neptune to

illustrate some of these benefits of mathematical models. Since it is a particularly nice

example of the calculative and predictive power of mathematical models, the story is

recounted here. In the early 1800s, it was noted that there were discrepancies between

observations of the planet Uranus and the extant mathematical models of planetary

3See Chapter 6.

NASA-GB-O01-97 31

motion -- largely those formulated by Kepler, Newton, and others beginning in the

seventeenth century. The most likely conjecture was that the orbit of Uranus was being

affected by an unknown planet. In 1846, after two to three years of feverish manual

calculation, motivated in part by a prize offered by the Royal Society of Sciences of

GSttingen in Germany, scientists converged on the probable position of the unknown

planet. That same year, using telescopes, astronomers discovered Neptune in the posi-

tion predicted by the models.

4.1.3 Mathematical Models for Discrete and Continuous Domains

In an introductory chapter to his classic history of mathematics viewed through the

lives and achievements of the great mathematicians, E. T. Bell notes that

"... from the earliest times, two opposing tendencies, sometimes helping

one another, have governed the whole involved development of mathemat-

ics. Roughly these are the discrete and the continuous." ...The discrete

struggles to describe all nature and all mathematics atomistically, in terms

of distinct, recognizable individual elements, like the bricks in a wall, or the

numbers 1,2,3, The continuous seeks to apprehend natural phenomena--

the course of a planet in its orbit, the flow of a current of electricity, the rise

and fall of the tides, and a multitude of other appearances " [Be186, p. 13]

This dichotomy is, of course, reflected in the mathematical models used to explore

the respective domains. The introductory comments in earlier sections of this chapter

have been chosen to apply equally to both discrete and continuous models, thereby

emphasizing the commonality between the fundamental role of models in both math-

ematical domains. Recently, a growing interest in hybrid systems -- that is, systems

composed of continuous components selected, controlled, and supervised by digital com-

ponents -- has led to an integration of discrete and continuous models. The resulting

models integrate the differential-difference-type equations used in classical models of

continuous physical systems with the mathematical logic and discrete mathematics used
in conventional models of digitial systems. 4

For most of this chapter, the focus will be the discrete domain models typically used

in formal methods. While the mathematics exploited in models for discrete domains

is generally simpler than that for continuous domain models, it is also less familiar to

those with engineering backgrounds. With this in mind, a small example from control

theory is presented first. The technical details of the example are not important; the

focus here is not on advanced control theoretic methods, but on modeling techniques.

4Representative papers may be found in the proceedings of several recent workshops, includ-
ing [GNRR93, AKNS95, AHS96].

32 Chapter 4

4.2 Continuous Domain Modeling

This discussion illustrates the use of continuous mathematics to model an example

drawn from spacecraft attitude control. The example was chosen to allow the reader

to compare and contrast the continuous model with the discrete model used for the

SAFER example, both of which derive from the domain of spacecraft attitude control.

In both cases the goals are the same: rigorous description and prediction of behavior.

What differs are the character of the underlying mathematics and the techniques used
for calculation.

A rigid body or spacecraft in a stable orbit may experience rotational motions that

require correction or hulling. A fixed or slowly rotating attitude, pointing the spacecraft

at a specific target or in a specific direction, is typically desired. Solving this problem

requires a model of rigid body dynamics and, once a control strategy is adopted, a model

of the expected behavior under the desired control regime. The mathematical basis for

such models is invariably that of differential equations, which offer a well-understood

theory to support calculation and prediction.

Following Bryson [Bry94], the rotational motions of a rigid body in space can be

modeled as follows: let the angular velocity vector _ be defined with respect to the

center of mass and principal body axes, making the products of inertia zero. Let _ _ /_

be the unit vectors along the x, y, z principal body axes so that

= p_+ qf+ rf_ (4.1)

Denote by Ix, Iy, Iz the moments of inertia, and by Qx, Qy, Qz the body-axis compo-

nents of the external torque. The equations of motion describing the body rotations are

then given by

Ixp -- (Iy -- Iz)qr = Qx

_ry4- (_rz- _rx)rp = Qy (4.2)
Izi _ - (Ix - Iy)pq = Qz

where the time derivative of quantity v is denoted _). The resultant external torque (_

includes any intentionally applied torques as well as disturbance torques from sources

such as gravitational or magnetic fields.

Consider the problem of achieving attitude hold, that is, applying a time-varying

torque to hold a rigid body's rotation at zero or near-zero levels with respect to inertial

space. Assume first that any disturbance torques present are small compared to the

applied torques and hence may be ignored. This situation exists for "fast attitude

control" based on the use of thrusters. Assume further that the mass properties of the

rigid body are sufficiently symmetric about the axes so that the axes may be regarded

as decoupled and control can be achieved for each axis independently. Finally, assume

that appropriate sensors are available to sense both attitude and attitude rate for the

axes of interest. For purposes of this discussion, consider a single axis only, the principal
y-axis, whose attitude deviation is denoted by 0 and attitude rate by 0, where 0 equals

q from equations (4.1) and (4.2).

NASA- GB-O01-9 7 33

If the thrusters are proportional, that is, they can be throttled to provide variable

amounts of thrust, then attitude control can be achieved using a simple linear control

law. The applied torque is derived by feeding back a linear combination of attitude
deviation and attitude rate:

(4.3)

Motion will be stabilized as long as D > 0 and K > 0.

Proportional gas jets for attitude control are impractical, however, and the more

typical method is to use thrusters whose valves are either completely open or completely

closed. This leads to what is often termed "bang-bang" control. In pure bang-bang

control, thrust is switched between one thruster and its opposing jet, exactly one of

which is on at all times. Thus, the control torque has only two values, QT and --QT.

Attitude deviation can be reduced through nonlinear control to nearly zero by ap-

plying the torque

Q = -QT sgn(0 + _-0) (4.4)

where

1 ifx>Osgn(x) = -1 otherwise (4.5)

and _- is a constant making 0 + _-0 a linear switching function, thereby defining a line in

the 0-0 phase plane across which thrust reversal occurs. Using this control logic results

in the following relationship between Q and the attitude quantities:

I -2/02 2Q 0-00+ (4.6)

The model predicts a convergence process that drives both 0 and 0 toward zero, where

they will eventually enter a limit cycle surrounding 0 = 0 = 0.

A further refinement in a practical design would add a "dead zone" around the

desired attitude where no thruster firing occurs. Such a scheme is used in the SAFER

system described in Appendix C. Hysteresis is typically also incorporated, resulting in

control laws with additional nonlinearities. In such cases, the model shown for pure

bang-bang control is embellished to capture the more elaborate limit cycle behavior.

The focus now shifts from continuous domain modeling techniques to those of dis-

crete domain modeling.

4.3 Discrete Domain Modeling

This discussion of discrete domain models is intended to be representative rather than

exhaustive. To that end, the discussion is framed in terms of four broad classes of dis-

crete domain models: functional, abstract state machine, automata-based, and object-

oriented. Of course, there are variants and shadings both within and between these

34 Chapter 4

classes, so that the four categories represent a descriptively useful, but somewhat arti-
ficial classification.

As the application of techniques from logic and discrete mathematics to problems of

interest in computer (hardware and software) systems, formal methods inherently con-

cern computation. By the same token, one of the ways in which formal methods usually

differ from traditional uses of logic and discrete mathematics is that they incorporate a

model of computation. The model of computation may be built in, that is, implicit, as it

is in Hoare logic [Hoa69] and its variants, such as VDM [Jon90] and Z [Spi88, Wor92]--

meaning that there is a built-in notion of program state, and a set of constructs for

composing operations that affect the state. Or it may be constructed on top of an

"ordinary" logic as Hoare logic may be defined within higher-order logic [Gor89]. The

advantage of the built-in approach is obvious when the built-in model is appropriate

to the task at hand. The advantage of the "constructed" approach is that it is possi-

ble to tailor the model to suit the circumstances of a given application. For example,

adding concurrency to a sequential Hoare logic is not easy--it generally cannot be done

within the logic, but requires metalogical adjustments--whereas various models of par-

allel computation can be encoded in higher-order logic.

One of the key decisions in developing models for formal methods applications is the

relevance, if any, of the underlying model of computation, that is, the extent to which

the underlying computational paradigm should be explicitly modeled. It is useful to

keep this in mind during the discussion of discrete-domain models.

4.3.1 Functional Models 5

A functional model is one that employs the mathematical notion of function in a pure

form, often in conjunction with an implicit and very simple computational model. A

surprisingly wide variety of algorithms can be adequately described as recursive func-

tions, assuming the most elementary model of computation, namely, the operation of

function composition. For example, one of the crucial insights in the specification and

analysis of the Byzantine Agreement protocols [Rus92] was the observation that a sim-

ple functional model of computation is sufficient, that is, it is not necessary to explicitly

model the (inherently complex) distributed computational environments in which these

protocols normally execute. 6 For a more concrete example, consider a functional model

for a simple synchronous hardware circuit, such as a binary (full) adder that takes three

one-bit inputs x, y, and c_i (carry-in) and produces sum and carry-out bits s and c_o,

respectively. In the functional model, a block with several outputs is modeled by several

5Models for synchronous hardware circuits are used to illustrate many of the ideas in this section.
Although these hardware models suggest lower-level, more architectural issues than those discussed
elsewhere in this guidebook, the simple hardware models provide more concise, transparent examples of
the modeling techniques in question than are typically available with requirements-level specifications.

6John Rushby provided this observation, which he credits, in turn, to Bill Young [BY90].

NASA- GB-O01-9 7 35

functions, one for each output, 7 and "wiring" is modeled by functional composition. Us-

ing this functional model, the binary adder would be then be specified by two functions,
one each for s and c_o:

s(x, y, c_i) = (x + y + c_i) rem 2

c_o(x, y, c_i) = (x + y + c_i) div 2

The relational model, first popularized by Mike Gordon for hardware verifica-

tion IGor86], is a variant of the functional model that exploits the more general notion

of mathematical relation. In the relational model, a functional block is represented by

a single relation on the input and output "wires" that specifies the overall input-output

relation. For example, using the relational model, the adder might be specified by the

following relation:

adder(x, y, c_i, s, c_o) =

(s = (x + y + c_i) rem 2 AND c_o = (x + y + c_i) div 2) 8

In the relational model, composition is accomplished by identifying "wires" with vari-

ables, conjoining the relations representing the individual blocks, and using existential

quantification "to hide" the internal wires.

For example, the implementation of a full adder in terms of half adders and a hand 9

gate can be accomplished by the circuit shown in Figure 4.1. A half adder takes two

inputs a and b, and produces sum (s) and (complemented) carry (c) bits satisfying

half_adder(a, b, s, c): bool = (2 * (l-c) + s = a + b)

while a nand gate produces an output (o) that is 0 if the sum of its inputs is two, and
1 otherwise:

nand(x, y, o): bool = (o = IF x + y = 2 THEN 0 ELSE i ENDIF)

The "wiring diagram" of Figure 4.1 is then specified by the formula

EXISTS p, q, r :

half_adder(x, y, p, q) AND half_adder(p, c_i, s, r) AND hand(r, q, c_o)

7In a language such as PVS, that has tuple-types, a single function that produces a tuple, that is,

bundle, of values could be used.

SA more "requirements" oriented version would be adder(x, y, c_i, s, c_o) = (2 * c_o + s =

x + y + c_i) (with type constraints restricting all variables to the values 0 and 1).

9Nand is also known as the Sheffer stroke and symbolized as "1". As the name suggests, nand is

defined as the negation of the and (A) operation. Using De Morgan's laws, the A and V (or) operations,

and Boolean variables x and y, nand is defined

The nand and nor (not or) operations played an important role in logical design because each is func-

tionally complete, that is, every switching function can be expressed entirely in terms of either of these

two operations.

36 Chapter 4

ci

x

Y

Half
Adder

Half
Adder

q

Nand

. 8

b CO

Figure 4.1: Implementation of a Full Adder.

The advantage of the functional approach is that it can lead to very simple and ef-

fective theorem proving--basically just term rewriting, and can be "executed" to yield a

"rapid prototype." The advantages of the relational approach are that it directly corre-

sponds to wiring diagrams (variables correspond exactly to wires, relations to functional

blocks), and that it can cope with feedback loops. It is often possible to combine the

methods, as in the first of the relational "adder" examples above, where the conjuncts to

the relation correspond directly to the functions of the functional model. The combined

approach may additionally involve an explicit representation of state.

4.3.2 Abstract State Machine Models

A state machine model typically consists of an abstract representation of system state

and a set of operations that manipulate the state to effect a transition from the current

to the next state. Figure 4.2 illustrates a basic abstract state machine model. The

Inputs
State

Machine
Transition
Function

Outputs

State

Figure 4.2: Abstract State Machine Model.

state machine transition function is a mathematically well-defined function that takes

input values and current-state values, and maps them into output and next-state values.

NASA- GB-O01-9 7 37

Representing each of these values as a vector, this function, M, can be characterized as

follows, where I and O are inputs and outputs, respectively, and S is a set of states. Note

that this formalization does not explicitly represent the distinction between current- and

next-state values.

M:IxS-+[OxS]

M can be used to capture the functionality of a given system, as well as to for-

malize abstract properties about system behavior. For example, if sequences I(n) =

i:,...,in _ and O(n) -- < o:,...,on _ denote the flow of inputs and outputs that

would occur if the state machine were run for n transitions, then a property about the

behavior of M could be expressed as a relation P between I(n) and O(n). Ultimately,

it would be possible to formally establish that the property P does indeed follow from

the formal specification M.

The A-7 methodology [H+78, Hen80, vSg0, Pargl, PMgl] developed for describing

the requirements for control systems illustrates how the state machine model can be

specialized to accommodate a particular type of application. In this case, the basic idea

is that a control system can be modeled as a control function plus a state. The system

evolves in time: at each iteration or frame it reads the values of certain monitored vari-

ables, that is, it samples sensors, consults the current values of its state variables, and

computes a function that yields a pair of results: new values for the state variables and

output values for the control variables. The dataflow diagram in Figure 4.3 illustrates

the basic A-7 model for a system with one monitored variable x_m, one control variable

y_c, and a single state variable z, which is denoted z_s and z_f according to whether

it is being read from, or written to, the local state. The purpose of a requirements

specification in this context is to specify the box labeled "control."

x_In

z_s

state control

z_f

y_c

Figure 4.3:A-7 Model of a Simple Control System.

To specify this model of computation explicitly, the variables x_m and so on would

be modeled as traces: functions from time (that is, frame number) to the type of the

38 Chapter 4

value concerned. For example, x_m(t) is the value of monitored variable x_m at time

(frame number) t. It is then possible to specify how the outputs are computed and

how the renaming of _f variables to _s variables occurs by means of the set of recursive

equations:

y_c(t) = f(x_m(t), z_s(t))

z_f(t) = g(x_m(t), z_s(t))

z_s(t) : z_f(t-i)

where f is a function that specifies the computation for the control output and g is a

function that specifies how the local state value is updated (see Figure 4.4). In general,

there will be many monitored, controlled, and state values, and those values themselves

can be vectors of values or arbitrary data types.

x..m

z_s

z_f -_- g

control

F_C

Figure 4.4: State-Update and Actuator Functions within Control System.

On the other hand, if there is no need to reason about the evolution of the system

over time, a far simpler representation that uses pure functions on simple values rather

than traces may suffice to specify how the "new" values of the various state and output

variables are derived in terms of the monitored and "old" values. The conceptual model

NASA- GB-O01-9 7 39

used to formalize the Jet Select function of the Space Shuttle flight software [NASA93]

provides an example of this approach. Jet-Select is a low-level Orbit DAP control

function that is responsible for selecting which Reaction Control System jets to fire to

achieve translational or rotational acceleration in a direction determined by higher-level

control calculations or crew input. In the pilot study cited, the behavior of a component,

such as the rotation compensation module, would be represented by a function that

models the external interface to the function. Note the explicit representation of prior-

and next-state values in the signature of the function, f.

f : external inputs x prior state inputs --+ [external outputs, next state outputs]

4.3.3 Automata-Based Models

An automaton is a finite-state transition system consisting of a set of states and a set

of state-to-state transitions that occur on input symbols chosen from a given alphabet.

4.3.3.1 ,-Automata

Automata may be deterministic, meaning that there is a unique transition from a given

state on a given input, or nondeterministic, meaning that there are zero, one, or more

such transitions. Formally, a deterministic finite automaton is defined as a 5-tuple

(S, E, 6, so, F), where S is a finite set of states, E is a finite input alphabet, so is the

initial state, F C_S is the set of final states, and 6, the transition function, maps S x E

to S. A nondeterministic finite automaton is similarly defined as a 5-tuple, the only

difference being that _ is a map from S x E to the power set of S, written P(S). In

other words, _(s, a) is the set of all states s I such that there is a transition labeled a

from s to J. A thorough introduction to finite automata may be found in [Per90].

Conventional or ,-automata accept only finite words and can express state invariants,

that is, safety properties or properties "at a state", but not eventualities or fairness

constraints [Kur94, p. 13]. 1°

4.3.3.2 w-Automata

To accommodate eventualities, it is necessary to use a class of automata that accepts

infinite words (sequences), the so-called w-automata. Like a conventional automaton,

an w-automaton consists of a set of states, an input alphabet, a transition relation, and

a distinguished initial state. The difference between the two classes of automata occurs

in the definition of acceptance. Acceptance for a conventional automaton is defined in
terms of a final state. Since the notion of final state is not useful for a class of machines

that accepts infinite words, acceptance must be defined in some other way. Various

1°Fairness constraints specify, for example, that certain actions or inactions do not persist indefinitely
or that "certain sequential combinations of actions are disallowed" [Kur94, p. 57]. Anticipating the
discussion in Section 6.2.1.1, a fairness property can be defined as an LTL property (p) of the type
GF(p). This definition uses CTL* syntax; the definition could also be written using LTL operators.

40 Chapter 4

acceptance conditions have been given for w-automata [CBK90, p. 104], two of which

are given below. The definitions that follow are based on a discussion in [CBK90].

A (nondeterministic) w-automaton is a 5-tuple (S, E, 6, s0,5), where S, E, and so are

as defined above, 5 is an acceptance condition, and _ : S x E _ P(S) is a transition

relation. The automaton is deterministic if for every state s E S and every a E E,

I_(s, a) _< 11. A comprehensive survey of w-automata appears in [Tho90].

The following definitions, again taken from [CBK90], are necessary for defining par-

ticular instances of 5. A path in an w-automaton, M, is an infinite sequence of states

so sl s2... E S that begins in so and has the following property: Vi _> 1, 3ai E _ :

(_(si, ai) _ si+l. A path so sl s2... E S w in M is a run of an infinite word ala2... E E W

if Vi _> 1 : (_(si, ai) _ si+l. The infinitary set of a sequence so sl s2... E S W, written

inf(sosl ...), is the set of all states that appear infinitely many times in the sequence.

A Biichi automaton M is an w-automaton where the acceptance condition, 5, is

defined as follows. F C_S is a set of states (as in the case of a ,-automaton) and a path

p is accepted by M if inf (p) MF ¢ O. The acceptance condition of a Muller automaton

is a set F C_ P(S) of sets of states. A path is accepted by a Muller automaton if

inf(p) E F. Other w-automata that appear in the literature are Rabin, Streett, L, and

V- automaton. Although acceptance conditions for these automata are not defined here,

it is worth noting that "an infinite word is accepted by a Biichi, Muller, Rabin, Streett,

or L automaton if it has an accepting run in the automaton. An infinite word is accepted

by a V-automaton if all its possible runs in the automaton are accepted." [CBK90, p. 106]

4.3.3.3 Timed Automata

Timed automata are a generalization of w-automata and are used to model real-time

systems over time. Like w-automata, timed automata generate (accept) infinite se-

quences of states. However, timed automata must also satisfy timing requirements and

produce (accept) timed state sequences. Timed automata may be given various se-

mantic interpretations, including point-based strictly-monotonic real-time (the original

interpretation), interval-based variants, interleaving, fictitious clock, and/or synchronic-

ity [AH91]. An excellent discussion of the theory of timed automata and its application

to automatic verification of real-time requirements of finite-state systems may be found

in [AD91].

4.3.3.4 Hybrid Automata

Hybrid automata extend finite automata with continuous activities and are used to

model systems that incorporate both continuous and digital components. Hybrid au-

tomata may be viewed as "a generalization of timed automata in which the behavior of

variables is governed in each state by a set of differential equations." [ACHH93] There

NASA-GB-O01-97 41

are various classes of hybrid automata, including linear hybrid automata and hybrid

input/output automata. Linear hybrid automata require the rate of change with time

to be constant for all variables (although the constant may vary from location to loca-

tion) and the terms used in invariants, guards, and assignments to be linear. 11 Alur et

al. [ACHH93] provides a good introduction to hybrid automata and [AH95] describes

a symbolic model checker for linear hybrid systems. Hybrid input/output automata

(HIOA) focus on the external interface of a modeled hybrid system through distinctions

in the state variables -- which are partitioned into input, output, and internal variables

-- and the transition labels -- which are similarly partitioned into input, output, and

internal actions. Lynch [LSVW96] gives a useful introduction to HIOAs and [AHS96]

contains several papers, including [Lyn96], describing the use of HIOAs to model and

analyze automated transit systems.

4.3.4 Object-Oriented Models

Object-oriented models represent systems as structured collections of classes and ob-

jects with explicit notions of encapsulation, inheritance, and relations between ob-

jects. Several informal object-oriented analysis and design methodologies are cur-

rently popular, including Booch [Boo91], Coad and Yourdon [CY91a, CY91b], Rum-

baugh [RBP+91, RB91], Shlaer and Mellor [SM91], Goldberg [Sys92, RG92] and most

recently, Unified Modeling Language (UML) [Rat97]. These methodologies offer a useful

and easily assimilated approach for structuring an application based on multiple dia-

grammatic views of the underlying system. UML, which represents a unification of the

Booch, Rumbaugh, and Jacobson methods, employs static structure, use case, sequence,

collaboration, state, activity, and implementation diagrams. Rumbaugh's Object Mod-

eling Technique (OMT) [RBP+91] method, which is used in the following example,

employs three separate modeling techniques: entity-relationship-type diagrams, state

machines or Statecharts [Har87, HN96], and data flow diagrams, yielding a composite

model whose components are typically linked rather than integrated or unified.

The following fragment of a design-level OMT representation of a generic fault pro-

tection monitor based on a study of the Cassini spacecraft [LA94, AL95] illustrates the

use of object-oriented techniques for modeling spacecraft systems. The OMT represen-

tation is generic in that it attempts to explicitly document the functionality and at-

tributes shared by all the Cassini fault protection monitors. In the context of spacecraft

systems, the term "monitor" refers to software that periodically checks for system-level

malfunctions and invokes recovery software as appropriate. There are eighteen moni-

tors in the system-level fault protection onboard the Cassini spacecraft, including eight

"over temperature" monitors. The other ten monitors detect loss of commandability

lit timed automaton is a special case of linear hybrid automaton in which each continuously chang-
ing variable is an accurate clock whose rate of change with time is 1. In a timed automaton, all
terms involved in assignments are constants and all invariants and guards compare clock values with
constants [ACHH93].

42 Chapter 4

(uplink), loss of telemetry (downlink), heartbeat loss (that is, loss of communication

between computers), overpressure, undervoltage, and other selected failures.

The OMT approach provides three viewpoints: the object model, the functional

model, and the dynamic model. Figures 4.5, 4.6, and 4.7 illustrate these three models

for the Cassini fault monitor at the design level.

1

Sensor Data Input

Measured values

Valid-range filters

Test data validity

Monitor

Enabled Flag

Active Flag

Response-Requested

Priority

Activate

Enable out mt

Disable c_1tpnt

Valid Data

Fault status

Prior status

Fault threshold

Commanded state

Detect fault

Vote on fault

Fault Indications

Persistence counter

Persistence limit

Detect fault persistence

Test output enabled

Request response

Update flags, counters

Figure 4.5: Object Model of Cassini Generic Fault Protection Monitor.

Figure 4.5 reproduces the object model, a static representation of the system that

reflects four attributes and three operations that define the monitor class (activate,

enable output, and disable output). The class is further decomposed into three object

classes: sensor data, valid data, and fault indicators. The attributes and operations for

these three classes define the interfaces between the monitor class and the rest of the

system.

Figure 4.6 reproduces the functional model, which represents the computation that

occurs within a system and is presented as a series of data flow diagrams. The top-

level diagram documents the interfaces between the fault protection manager and the

NASA- GB-O01-9 7 43

Sensor 1

input

Sensor n

input

Filters

Test for

valid

data

Test for

valid

data

Valid

data

Valid

data

Thresholds/

commanded

P°ilti°ns

Fault

indica

Test for tion

fault

Fault
indica
tion

Test for

fault

State flags

Vote on

presence

of fault

Persistence counter

Fault Test

for fault

Request

_lse

Figure 4.6: Functional Model of Cassini Generic Fault Protection Monitor.

monitor. The manager activates the monitor and processes the monitor's request for

a fault response. The monitor receives data from the hardware sensors ("measured

state"), from the "commanded state" that is stored in memory, and from the updates

to the state made by previous executions of the monitor itself, and uses the information

to determine an appropriate fault response.

Figure 4.7 reproduces the dynamic model that specifies the flow of control, interac-

tions, and sequencing of operations. These dynamic aspects are modeled in terms of

events and states using standard state diagrams (that is, graphical representations of

finite state machines). The behavior of the Cassini fault protection monitors is highly

sequential. The state transition model provides a clear and intuitively straightforward

representation of the typical six-state sequence followed by an active monitor in the

presence of a fault that requires a recovery response.

While the types of informal object-oriented models illustrated here have considerable

utility, their usefulness in the context of formal methods is limited because they do not

have an underlying mathematical basis and therefore lack a precise semantics and the

ability to support formal reasoning. More general caveats expressed in regard to some

or all of these informal object-oriented methods include the following [Jac95, p. 137]: (1)

objects belong to fixed classes--the rigidity of these class structures precludes transition

or metamorphosis of objects; (2) objects typically inherit properties and behavior from a

single class at the next hierarchical level; this notion of single inheritance precludes many

44 Chapter 4

• _ Passes _ Passes ff_'_ Passes

actlvated___ __

Figure 4.7: Dynamic Model of Cassini Generic Fault Protection Monitor.

naturally occurring inheritance patterns involving shared and multiple inheritance; (3)

objects are inherently reactive and typically cannot initiate activity of any kind. AI-

though these three caveats are now addressed in many object-oriented programming

languages, for example, through multiple inheritance, dynamic object classification, and

concurrency, the popular methodologies that support the earlier stages of development

do not typically address these issues. A fourth caveat is that the lack of integration in

composite models often makes it difficult to reason effectively about system behavior.

Historically, object-oriented ideas evolved from the notions of classes and objects

in Simula 67. In the following quote, Ole-Johan Dahl discusses this evolution in the

context of formal techniques.

"Object orientation, as it appears in Simula 67, was motivated by two

main concerns: To achieve good structural correspondence between discrete

event simulation programs and the systems being modelled. And to provide

language mechanisms for the construction of reusable program components

while maintaining good computer efficiency.... Object orientation has proved

to be a successful structuring strategy also outside the area of simulation.

This is due to the fact that objects are useful general purpose tools for

concept modelling, and can lead to better program decomposition in general,

as well as new kinds of reusable program components. It is worth noticing

that the class concept of Simula 67 is used to represent "modules" and

"packages" as well as object classes." [Dah90]

Object-oriented ideas share this ancestry with algebraic specification; the classes

of objects and "prefixing" central to Simula 67 ultimately led to object-oriented pro-

gramming languages and to the theory of algebraic specifications [Bre91]. Algebraic

specifications treat data structures and program development concepts, such as refine-

ment, in an axiomatic logical style and use high-level descriptions of data types known

NASA- GB-O01-9 7 45

as abstract data types. Abstract data types are manipulated by similarly high-level

operations that are specified in terms of properties, thereby avoiding implementation-

dependent data representations. As Abadi and Cardelli note in their book on the

(formal) foundations of object-oriented programming languages [AC96, p. 8], "... data

abstraction alone is sometimes taken as the essence of object orientation." This his-

torical connection is of interest because the frameworks of algebraic specification and

of object-oriented programming languages have each contributed to ongoing attempts

to provide a mathematical basis for the concepts underlying object-oriented models. 12

This research has taken many directions, including those summarized below. In keeping

with the focus of this guidebook, the examples included in this discussion suggest the

variety of the work in this area, but are by no means exhaustive.

One approach is to take a model generated by one of the informal object-oriented

methodologies and formalize it using a novel or existing formal description technique.

For example, Moreira and Clark [MC94] describe a technique for producing a formal

object-oriented analysis model that integrates the static, dynamic, and functional prop-

erties of an object-oriented model created using one of the informal object-oriented

methodologies. 13 The formal model uses LOTOS (Language of Temporal Ordering

Specification) [ISO88], which has a precise mathematical semantics and represents the

system as a set of communicating concurrent objects. 14 An object is represented as

the instantiation of a LOTOS process, and communication among objects takes the

form of message passing, which is modeled by objects synchronizing on an event during

which information may be exchanged. In this approach, the dynamic aspects of a class

template are modeled as a LOTOS process and the static properties as abstract data

types.

Another approach is to take notation from one of the informal methodologies and

formalize it, thereby providing a formal semantics for the informal notation. For ex-

ample, Hayes and Coleman [HC91] use Objectcharts 15 [CHB92] and a derivative of

VDM [Jon90] to provide a coherent set of formal models corresponding to the mod-

els generated by a subset of OMT. Briefly, Hayes and Coleman introduce an object

structure model, linking the formal representations of the informal OMT models (ob-

ject, dynamic and functional) to provide traceability and consistency checking. The

informal OMT functional model is replaced by VDM-style pre-post condition specifica-

tions over the object structure model, the informal dynamic model is formalized using

Objectcharts, and the object model uses the formalized entity-relationship notation de-

12See, for example, recent proceedings from conferences such as ECOOP (European Conference on

Object-Oriented Programming [TP94, Olt95]) and OOPSLA (Object-Oriented Programming Systems,

Languages, and Applications) [ACM94].

13 [MC94] actually describe a Rigorous Object-Oriented Analysis (ROOA) method that combines

object-oriented analysis and formal description techniques. This discussion focuses only on their mod-

eling approach.

14That is, a set of communicating processes. The approach is based on process algebra, drawing on

elements from CCS [Mi189] and from CSP [Hoa85].

15An Objectchart is an extended form of Statechart [Har87, HN96] used to specify object classes.

46 Chapter 4

scribed in [FN86]. There has also been work integrating formal and object-oriented

methods using VDM++ and OMT [LG96]. VDM++ is an object-oriented extension of

VDM designed to support parallel and real-time specification.

Ongoing work at the Michigan State University Software Engineering Research

Group [BC94, CWB94] is yet another variant on this approach. Their prototype system

uses algebraic specifications to formalize a subset of the OMT object-modeling nota-

tion appropriate for modeling requirements. Again, the formalization is based on the

straightforward mapping between object-oriented software concepts and abstract data

types. 16

The CoRE method [FBWK92] for specifying real-time requirements provides a fur-

ther example of the coherent integration of object-oriented and formal models. CoRE

is an amalgam of the CASE Real-Time Method (which is itself an amalgam of Real-

Time Structured Analysis [WM85] and object-oriented concepts) and the four-variable

model [vS90, vSPM93] developed by Parnas and his colleagues. CoRE interprets the

three basic structural elements of the CASE Real-Time method: information, process,

and behavior pattern, in terms of object-oriented concepts. Processes correspond to

object classes and interprocess connections to interactions between objects. The state

machines used to encode the behavior-pattern view are partitioned to correspond to the

states of an object class. The formal model underlying object definition and decompo-

sition is based on the standard mathematical model of embedded-system behavior used

by the four-variable method. The resulting amalgam retains the graphical notation

and notions of abstraction, encapsulation, separation of concerns, and nonalgorithmic

specification associated with object-oriented approaches, within a mathematically well-

defined model contributed by the four-variable method.

There have also been formalizations in Z of the three OMT notations [Spi88, Wor92],

as well as object-oriented extensions to Z. The collection of papers in [SBC92] contains

accounts of both approaches, including a summary of Hall's object-oriented Z specifica-

tion style, which is also described in Hall [Hal90].

4.4 A Model for the SAFER Avionics Controller

The SAFER avionics controller described in Section 2.6 exhibits several characteristics

that strongly influence the choice of a model for its formalization. The basic function-

ality of the controller requires a representation that captures the mapping from input

and sensor values to outputs. The model must also be able to capture the dependency

of current events on prior events, necessitating the use of a state- or trace-based model,

or other representation with similar facility for preserving values from one "cycle" to

16The graphical environment prototype generates Larch specifications [CWB94]. Although current
versions of Larch are not inherently algebraic, the implementation cited supports only algebraic lan-
guages although it is general enough to accommodate most algebraic languages that have a well-defined
grammar. It appears that "object model" has replaced the previously used phrase analysis object
schemata (a-schemata) in recent publications [BC95b].

NASA- GB-O01-9 7 47

another. The fact that the controller maintains and updates its own internal status,

including Hand Controller Module (HCM) display and Automatic Attitude Hold (AAH)

status, provides additional motivation for an explicit representation of state. In fact,

the SAFER avionics controller provides a nice illustration of a system that can be quite

naturally modeled as a state machine (see Section 4.3.2), that is, as a model consisting

of a system state and a transition function that maps inputs and current-state val-

ues into outputs and next-state values. Arguably, a variant of the basic state machine

model, such as the A-7 [H + 78, Hen80, vS90, Par91, PM91], which is specialized for control

systems, would provide a representation that differentiates inputs, outputs, and state

values by explicitly identifying monitored, control, and state variables (see Figure 4.3).

Although the differences between these two models are small, the choice between a

basic state machine model and a specialized state machine model illustrates the type

of trade-off that typically enters into modeling decisions. In this case, the trade-off is

the relative simplicity of the basic state machine model versus the additional expres-

siveness of the specialized A-7 model, where finer-grained distinctions among variables

potentially provide a clearer mapping between informal description, requirements, and

the formal specification. On the other hand, the level of description and the (primarily)

pedagogical role of the SAFER example motivate the use of the simpler model presented

here. Nevertheless, the reader is encouraged to consider the similarities between the ba-

sic state machine model developed here and A-7-type models, in particular the notion

of the state transition function defined as a control function with monitored (that is,

sensor) and state variables as input and control and state variables as output.

A final consideration concerns the representation of time. Since the basic function-

ality of the controller can be captured within a single frame or cycle, there is no need

to reason about the behavior or evolution of the system over time or to introduce the

additional complexity required for an explicit representation of time. The trade-off here

is the simplicity of the model versus a loss of analytical power. Without an explicit

representation of time, there is no way to explore certain types of properties, including

safety and liveness properties that establish (roughly) that nothing bad ever happens

and something good eventually happens, respectively. For example, without an explicit

representation of time, it would be impossible to demonstrate that an HCM translation

(rotation) command eventually results in thruster selection. 17 Although the models

presented in this chapter do not incorporate a notion of time, a time- or trace-based

model could be added, as needed, on top of the state-based model presented here.

Having identified the underlying model as a basic state machine, the next step is

to define the control (transition) function. The transition function for the top-level

controller model is comprised of functions representing its constituent modules and
assemblies. Of interest here are the AAH and thruster selection functions. Thruster

selection maps HCM and AAH commands into an integrated six degree-of-freedom

command that determines the corresponding (thruster) actuator commands. This two-

17Whether the thruster selection is correct with respect to the thruster select logic is an important
property, but not a liveness issue.

48 Chapter 4

phase functionality can be modeled simply as the composition of the two functions,

roughly

selected_actuators o integrated_command

The AAH model cannot be so simply discharged, because the automatic attitude

hold capability maintains internal state information to implement the AAH control law

and to track whether the AAH is engaged or disengaged and which, if any, of the three

rotational axes are under AAH control. AAH control law is implemented in terms of a

complex feedback loop that monitors inertial reference unit (IRU) angular rate sensors

and temperature sensors (one for each of the three rate sensors), and generates rotation

commands. Although this account is necessarily simplified, it suggests a fairly complex

control system with clearly differentiated variable types and a well-defined internal state.

The rationale for considering an A-7-type interpretation of a basic state machine model

for the top-level avionics controller applies equally to the AAH. The AAH state machine

model is shown in Figure 4.8.

A closer look at the AAH button transition function further illustrates the type

of issues that invariably arise in developing models for formal specification. The state

transition diagram for this function shown in Figure 4.9 represents the single-click,

double-click engagement protocol described in Section 2.6, where nodes represent AAH

states and arcs represent the two button positions (up or down) and the two operative

constraints (timeout or all three rotational axes removed from AAH control), is

For example, if the AAH is engaged and the AAH pushbutton switch is depressed,

the AAH enters a state ("pressed once") that is exited only when the pushbutton is

released, at which point the AAH transitions to a state that may be exited in one of

two ways: either the 3-axes-off constraint becomes satisfied and the AAH is disengaged

or the pushbutton is depressed for a second time and the AAH enters a twilight state

("pressed twice") prior to button release and disengagement. Several interesting ques-

tions arise with respect to this model, largely because of undocumented behaviors. For

example, the Operations Manual [SAFER94a] doesn't mention the case represented by

the two 3-axes-off arcs, where the axis-by-axis disabling (resulting from explicit rotation

commands issued while AAH was engaged) effectively disengages the AAH. The two op-

tions are either to leave AAH nominally active with all three rotational axes off or to

explicitly inactivate the AAH. The AAH model presented here reflects the second option,

which is more straightforward and avoids the possibility of misleading a crewmember

into thinking that the AAH is engaged when in fact all three axes have been disabled.

There are also modeling issues, including those surrounding the representation of the 3-

axes-off transitions. In the model diagrammed above, the 3-axes-off transition emanates

only from the "AAH on" and "AAH closing" states, although logically, it can be argued

that 3-axes-off transitions should also emanate from the "pressed-once" and "pressed-

twice" states. In other words, the model should explicitly reflect that fact that if AAH

lSThe diagram actually represents a combination of pushbutton and implied events. For example,
although the 3-axes-off transition reflects one or more previous HCM commands, it does not represent
an explicit pushbutton event, such as AAH enable/disable.

NASA- GB-O01-9 7 49

is engaged and all three axes have been disabled, AAH is terminated. The rationale

for the given model is that the behavior of the resulting system is cleaner if the "AAH

off" state is entered only after the pushbutton switch is released ("up"). Otherwise the

button would be depressed and cause an immediate transition to "AAH started" on the

next pass. Similarly, although it is arguably preferable to omit the 3-axes-off transition

from "AAH closing" and allow the double click to complete, if the crewmember forgets

the second click, another ill-defined situation results.

So far, the discussion has focused on modeling SAFER's functionality rather than

its physical components. Although many of SAFER's physical features fall below the

level of abstraction chosen for the formalization, certain features such as the thrusters

must be modeled. SAFER has 24 thrusters arranged in four groups (quadrants) of
six thrusters each. Consistent with the intermediate level of detail chosen to make the

guidebook example easier to understand, the thrusters are modeled by enumerating each

of the 24 thrusters by name and providing a function that maps a thruster name to a

full thruster designator. The thruster designator is a triple consisting of elements that

represent the direction of acceleration yielded by firing the thruster, its quadrant, and

its physical location as shown in Figure C.3. For example, thruster F1 would be mapped

to the designator (FD, 1, RR) and thruster L3R would be mapped to the designator

(LT, 3, RR). Possible values for the three designator components are as follows:

• Direction: up, down, back, forward, left, right

• Quadrant: 1, 2, 3, 4

• Location: forward, rear

It is instructive to consider a more abstract model of the SAFER thrusters. For example,

a considerably higher-level model might simply provide primitive (uninterpreted) ele-

ments called thrusters, some of which accelerate up, others down, back, forward, right,

or left. These distinctions are disjoint, that is, a thruster accelerates in exactly one
direction and there are no other kinds of accelerations. The exact number of thrusters

and their physical positions with respect to quadrant and location are irrelevant at this

level of abstraction, although it would certainly be possible to specify an upper bound

on the number of thrusters. The advantage of this highly abstract model is that it is

not obscured by (arguably irrelevant) detail and it is general enough to be applicable

to new designs or future modifications.

50 Chapter 4

m

A

A

H

S

t

a

t

e

m

IRU Senso15

Propulsi]n Sensors

AAH

Control Law

't

AAH

Transition Flmction

-[

AAH Eng tge Button

AAH I51shbutton

Transition Function

Control Function

Rotation Command

Figure 4.8: AAH Control System State-Update and Actuator Functions.

NASA-GB-O01-97 51

down

up

down

3 axes

off

up

3 axes

off

up

up down

timeout

up

dowll

down

up

Figure 4.9: Labeled AAH Pushbutton State Transition Diagram.

52 Chapter 4

Chapter 5

Formal Specification

A formal specification is a characterization of a planned or existing system expressed in

a formal language. The characterization typically consists of a collection of axioms and

definitions whose meaning and consequences are determined by the precise mathematical

basis of the formal language and its rules of inference. In this context, "consequences"

denotes all the formulas that can be derived from the axioms and definitions using for-

mal deduction (as prescribed by the inference rules). These derivations are also referred

to as proofs, and the set of formulas constitutes the theory defined by the specification.

The act of formalizing a specification does not necessarily make it relevant, coherent,

or true. There are several ways to increase the certainty that a specification expresses

the intentions of its author and that what it says is true, including--in ascending order

of rigor--parsing, typechecking, animating, or executing all or part of the specifica-

tion, well-formedness checking for definitions 1, demonstrating consistency for axiomatic

specifications 2, and developing and proving theorems entailed by the specification. Of

course, there is no way to completely guarantee that a formal specification is correct

or accurately represents reality; the various checks and tools cited here can reduce, but

never totally eliminate, the possibility of human error. Nevertheless, there are very real

benefits to be gained from formal specification, benefits that are not diminished by the

impossibility of definitive correctness.

This chapter focuses exclusively on formal specification, leaving issues of formal

analysis and proof to Chapter 6. The discussion covers specification languages and

styles, as well as the checks and tools mentioned above with the exception of theorem

proving, which, as already noted, is deferred until Chapter 6. The discussion also touches

on the utility of formal specification in the absence of formal proof and continues the

ongoing example with a partial specification of SAFER, using the model developed at

the end of Chapter 4.

1That is, assuring conservative extension; see Section 5.1.2.9 for a discussion of this and related
topics.

2For example, exhibiting a model; see Section 6.1.1.

53

54 Chapter 5

5.1 Formal Specification Languages

A formal language consists of a collection of symbols drawn from an alphabet and a set

of syntactic rules that govern which combinations of symbols constitute valid expres-

sions in the language. In purest form, a formal language and the rules for manipulating

it are referred to as a (mathematical) logic. The propositional and predicate calculi are

examples of this type of formal system. Although some formal specification languages

use pure logics, many enrich the underlying logic with modern programming language

concepts and constructs such as type systems, encapsulation, and parameterization,

thereby increasing the expressiveness of the formal language while retaining the precise

semantics of the underlying logic. As these remarks suggest, the distinction between

a specification language and a programming language is somewhat blurred. The same

can be said for their respective artifacts. Although a program can be viewed as a

specification, a specification is typically not a program and often contains such noncom-

putational constituents as high-level constructs and logical elements (e.g., quantifiers).

The basic difference is one of focus: a program specifies completely how something is to

be computed, whereas a specification expresses constraints on what is to be computed.

As a result, a specification may be partial or "incomplete" and still be meaningful, but

an incomplete program is generally not executable [Win90, p. 8] [OSR93a, p. 2].

There is a wide variety of formal specification languages, far too many to be con-

sidered here. Rather than focus on a representative sample of these languages, the

discussion concentrates instead on general characteristics and features of specification

languages, the rationale being that discussion of foundational issues, general features

of, and desiderata for formal specification languages will provide the reader with back-

ground and access to a wide range of formal specification languages. Although mecha-

nized support for formal systems is not discussed, one of the additional benefits of a high

degree of formalization is that specifications written in a formal language are amenable

to mechanical analysis and manipulation. Most formal specification languages are sup-

ported by mechanized syntax analysis tools, and many also enjoy some level of mecha-

nized semantic analysis, as well as deductive apparatus in the form of theorem provers

and proof checkers. Although most systems are designed around a particular specifica-

tion language and its proof rules, there are also generic systems such as Isabelle [Pau88]

that support a variety of logics and notations. Volume I of this guidebook [NASA-95a]

includes an extensive list of formal methods tools, as well as a description of approxi-

mately 15 of the most widely used of these systems.

5.1.1 Foundations 3

As noted earlier, a formal specification language is grounded in a mathematical logic.

There are, of course, a wide variety of logics: simple propositional logics (either classical

or intuitionistic), equational logics, quantificational logics, model and temporal logics,

3The material in this section is based largely on a discussion in [Rus93b].

NASA- GB-O01-9 7 55

set theory, and higher-order logic, although this by no means exhausts the possibilities.

These and other logics were developed by mathematicians to explore issues of concern

to them. As Rushby [Rus93b, p.214] notes:

"Initially, those concerns were to provide a minimal and self-evident foun-

dation for mathematics; later, technical questions about logic itself became

important. For these reasons, much of mathematical logic is set up for

metamathematical purposes: to show that certain elementary concepts al-

low some parts of mathematics to be formalized in principle, and to support

(relatively) simple proofs of properties such as soundness and completeness."

On the other hand, formal specification languages are developed primarily to be used,

that is, to formalize requirements, designs, algorithms, and programs and to provide an

efficient and effective basis for reasoning about these artifacts and their properties.

Predictably, the languages developed by mathematicians are not necessarily well-suited

to the needs of those engaged in formal specification and analysis. This is particularly

true when mechanization of specification and analysis is considered.

Although there are specialized uses for some of the logics mentioned above--for ex-

ample, a propositional or modal logic can provide a basis for efficient determination

of certain properties of finite state machines--the logical foundation for an expressive,

general-purpose specification language is generally either axiomatic set theory or higher-

order logic. Historically, these approaches were developed in response to Russell's Para-

dox, which exposed a fundamental inconsistency in Frege's logical system on the eve of

its publication and frustrated Frege's attempts to provide a consistent foundation for the

whole of mathematics. 4 Axiomatic set theory avoids contradictions by restricting the

rules for forming sets--basically, new sets may be constructed only from existing sets.

There are different axiomatizations, characterizing distinct set-theories; the best known

of these is called Zermelo-Fraenkel or simply ZF, after its founders [FBHL84, Hal84].

ZF contains eight axioms, all of which express simple, intuitive truths about sets. ZF

set theory provides the logical framework for several well-known specification languages,

including Z [Spi88] and Verdi, the language of the Eves system [CKM+91]. The main

issues surrounding the use of axiomatic set theory as the basis for a specification lan-

guage are unconstrained expressiveness, the difficulty of providing semantic checking for

an inherently untyped system, and the challenge of providing efficient theorem proving

for a system in which functions are inherently partial.

In the context of logics, the suffix "-order" refers to the elements over which the

logic permits quantification. The standard progression is as follows. The propositional

4Actually, Frege, Cantor, and Dedekind were greatly disillusioned by the contradictions that plagued
their set theoretical foundation for the real numbers, continuity, and the infinite and quit the field, leav-
ing the development of a consistent set theory to others. The intellectual history of this period, as well as
the mathematics, is fascinating, but well beyond the scope of the guidebook. Rushby [Rus93b, pp. 254-
5] offers a brief sketch of the issues based on material in [Hat82, Lev79, FBHL84, Sho78a, And86, BP83,
vBD83, Haz83]. The last chapter of Bell [Be186]provides an equally brief history of the personalities as
well as the mathematics.

56 Chapter 5

calculus does not allow quantification and is effectively "zero-order." The predicate

calculus, which allows quantification over individuals, is referred to as "first-order" logic.

Similarly, "second-order" logic provides quantification over functions and predicates on

individuals, and "third-order" provides quantification over functions and predicates on

functions. The enumeration continues up to w-order, which allows quantification over

arbitrary types and is therefore generally equated with type theory or higher-order logic.

Axiomatic set theory assumes a fiat universe; individuals, sets, sets of sets, ..., are

undifferentiated with respect to quantification, which is inherently first-order. Further-

more, axiomatic set theory admits only two predicates: (E and =).5 In type theory,

the universe is ordered with respect to a type hierarchy and quantification must respect

the type distinctions. In other words, quantifiers apply to typed elements and the type

distinctions must be consistently maintained throughout the scope of the quantifier.

In highly simplified terms, simple type theory avoids the logical paradoxes by ob-

serving a strict type discipline that prevents paradoxical circular constructions (also

called impredicative definitions). 6 The simple theory of types has been used as the ba-

sis for several formal methods and theorem proving systems, including HOL [GM93],

PVS [ORSvH95], and TPS [AINP88]. As a foundation for formal specification lan-

guages, type theory offers several advantages, such as strong, mechanized typechecking

that confers early and effective error detection; expressive power of quantification and

higher-order constructions; and the potential for mechanized theorem proving facilitated

by the total functions that typically underlie simple type theory.

5.1.2 Features

The previous discussion of mathematical foundations suggests that the mathematical

basis of a specification language figures importantly in determining such features as

expressiveness and mechanizability. This section briefly considers expressiveness and

other basic features of specification languages. As noted previously, mechanization

issues generally lie outside the scope of this guidebook, which is aimed at the practitioner

rather than the provider of formal methods tools or systems. 7

5Although ZF reconstructs functions and predicates within set theory as sets of pairs, this set the-
oretic approach is arguably less suitable for formal methods because it tends to be less expressive and
less easily mechanized.

6The account presented here is very sketchy. Rushby [Rus93b, pp. 270-278] presents a somewhat
more thorough discussion, based on material in Andrews [And86], Hatcher [Hat82], Benacerraf and
Putnam [BP83], van Bentham and Doets [vBD83], and Hazen [Haz83]. Barwise and Etchemendy [BE87]
have published a very readable analysis of the semantic paradox known as "The Liar," using an extension
of ZF set theory.

7See, for example, Rushby [Rus96], which touches on the implications of specification language design
for automated deduction while advocating an integrated approach to automated deduction and formal
methods.

NASA- GB-O01-9 7 57

5.1.2.1 Explicit Semantics

To provide a basis for mathematically well-defined, credible specifications, as well as a

standard framework for understanding the specifications, a specification language must

itself have a mathematically secure basis. Ideally, the language should have a complete

formal semantics, although languages built on standard logics without significant exten-

sions typically don't have or need a completely formal semantics. On the other hand,

specification languages that are not based on standard logics or that employ novel or

nonstandard constructions should provide a formal semantics that has undergone some

form of peer review or collegial scrutiny. Spivey's formal semantics for Z [Spi88] is an

example of this kind of formal semantic account.

5.1.2.2 Expressiveness

As noted earlier, first-order predicate calculus with equality is generally considered

the minimum foundation for a reasonably expressive specification language. On the

other hand, more restricted bases may be appropriate for particular applications and

more powerful bases (such as set theory and higher-order logic) are desirable for most

applications. Of course, there are several dimensions to the notion of expressiveness,

including flexibility, versatility, and convenience and economy of expression. Some of

these derive from other features; for example, a rich type system facilitates more succinct

specification since much of the specification can be embedded in the types, as illustrated

in the two versions of the claim, cl (below), that the sum of two even integers is even.

The property of being an even integer is characterized by the predicate even?.

x, y: VAR int
cl: CLAIM even?(x) AND even?(y) IMPLIES even?(x + y)

Alternatively, the constraint maybe embedded in the type, so that variables x and y

are declared to be elements ofthe type consisting (only) of even integers.

x, y: VAR {z: int I even?(z)}

cl: CLAIM even?(x + y)

Similarly, the availability of familiar programming language datatypes and construc-

tions confers considerable convenience and clarity when dealing with such structures as

arrays, records, lists, and sequences. There are also trade-offs; for example, in the case

of executable specification languages, finiteness constraints imposed by executability

can compromise expressiveness.

5.1.2.3 Programming Language Datatypes and Constructions

Most specification languages support at least some of the familiar programming language

datatypes, such as records, tuples, and enumerations, as well as constructions that

58 Chapter 5

update these structured types, s Some also support abstract data types, including "shell"

mechanisms for introducing recursively defined abstract data types, such as lists and

trees, and similar mechanisms for inductively defined types and functions.

5.1.2.4 Convenient Syntax

There are basically two aspects to the question of syntactic convenience: familiarity and

ease of expression, and utility for documentation and review. The latter is somewhat

less important if the language is used in an environment that includes typesetting for

documentation. The former hinges on whether the language accommodates the user

- for example, providing infix operators for standard arithmetic operations and famil-

iar forms of function application including the use of delimiters and punctuation - or

whether the user must accommodate the language, adjusting, for example, to Lisp-style

prefix notation.

5.1.2.5 Diagrammatic Notation

Diagrammatic notation, including graphic notations as found, for example, in

Statemate [H+90], and tabular notations, as found in Parnas's "four variable

method" [vSPM93], SCR [HJL95], and RSML [LHHR94], provide a specification for-

mat that can be readily understood and easily communicated. These notations typically

support an underlying methodology for specification and refinement. The challenge is

to provide the benefits of a diagrammatic style with sufficient underlying formality to

support a range of formal analysis techniques.

5.1.2.6 Strong Typing

Strong typing is often considered a significant asset in specification languages as well

as in programming languages. The difference is that specification languages can have

much richer type systems than programming languages because the types do not have to

be directly implementable. 9 The benefits of strong typing include economy and clarity

of expression, a discipline that encourages precision, and an effective basis for mecha-

nized typechecking. A typechecker is a program that checks that the type discipline is

maintained throughout the specification; entities must match their declarations and be

combined only with other entities of the same (or a compatible) type. Predictably, the

actual utility of the typechecker (for detecting faults, inconsistencies, and omissions)

depends both on the logical foundation underlying the specification language and on

the diligence and skill of its implementors. For example, it is difficult to provide strict

SUpdating or constructing new values of structured types from existing values in a purely functional
way (analogous to assignment to array elements or record fields in imperative programming languages)
is also referred to as overriding.

9There are exceptions, such as the abstract or virtual class constructs in C + +, but the generalization
is nevertheless a useful one.

NASA- GB-O01-9 7 59

typechecking for languages based on set theory without sacrificing some of the flexibil-

ity of these languages because set theory doesn't provide an intrinsic notion of type.

On the other hand, type theory (higher-order logic) is an inherently typed system, and

languages based on higher-order logic readily support strict typechecking.

Nevertheless, there are certain caveats. Lamport has argued against the unques-

tioned use of typed formalisms, noting that types are not harmless - they potentially

compromise the simplicity and elegance of mathematics and complicate formal systems

for mathematical reasoning [Lam95]. Strongly typed languages that do not provide

overloading and type inference can be notationally complex and frustrating to use. For

example, in many specification languages, addition on integers is often a different func-

tion from addition on the reals, but by "overloading" the symbol + and exploiting

context to "infer" the correct addition function, the burden of the complexity falls on

the system rather than on the user. The sophistication of type inference mechanisms

varies; systems based on higher-order logic that provide rich type and modularization

facilities require particularly sophisticated type inference mechanisms for effective user

support.

If a rich type system is supported by mechanized typechecking integrated with the-

orem proving so that typechecking has access to theorem proving, the expressiveness of

the language can be further enhanced. For example, much of the expressive power of

the PVS language is achieved through the use of predicate subtypes where a predicate

is used to induce a subtype on a parent type. However, the introduction of subtypes

makes typechecking undecidable, requiring the typechecker to generate proof obligations

(known as Type-Correctness Conditions (TCCs)) that must be discharged before the

specification can be considered type correct} °

5.1.2.7 Total versus Partial Functions

A total function maps every element of its domain to some element in its range, whereas

a partial function maps only some elements of its domain to elements of its range,

leaving others undefined. While most traditional logics incorporate the assumption

that functions are total, partial functions occur naturally in the kinds of applications

undertaken with formal methods. Given that most logics assume that functions are

total, providing a logical basis for a specification language that admits partial functions

tends to be problematic. Although some recent logics (including those of VDM [Jon90],

RAISE [Gro92], three-valued logics [Urq86, RT52, Res69, KTB88], and Beeson's logic of

partial terms [Bee86]) allow partial functions, they typically formalize partial functions

1°The standard PVS example is that of the division operation (on the rationals), which is specified

by / : [rational, nonzero_rational --+ rational] where nonzero_rational:type = {x:rational I

x # 0} specifies the nonzero rational numbers. The definition of division constrains all uses of the

operation to have nonzero divisors. Accordingly, typechecking a formula such as x # y D (y-x) / (x-y)

< 0 generates the TCC x _ y D (x-y) _ 0 to ensure that the occurrence of the division operation

is well-typed. Note the use of the "context" (x _ y) as an antecedent in the TCC. Most (true) TCCs

generated in the PVS system are quickly and automatically discharged by the prover during typechecking
without user intervention.

60 Chapter 5

at the expense of complicating theorem proving for all specifications, even those that

do not involve partiality. On the other hand, treating all functions as total in languages

with only elementary type systems also has undesirable consequences, in particular, the

awkwardness of having to specify normally undefined values (for example, having to

specify division by zero). Total functions are less problematic in languages that support

subtypes and dependent types, as illustrated previously by the PVS specification of

division on the rationals as a total operation on the domain consisting of arbitrary

numerators and nonzero denominators, where the latter was defined by the predicate

subtype, nonzero_rational.

5.1.2.8 Refinement

Specification languages that support refinement provide an explicit formal basis for the

hierarchical mappings used to verify successive steps in the development from abstract

requirements and high-level specification to code. Although most specification languages

allow refinement to be expressed, if somewhat painfully, explicit support for refinement

confers a distinct advantage for describing the systematic and provably correct "imple-

mentation" of a higher-lever specification by a lower-level one. 11

5.1.2.9 Introduction of Axioms and Definitions

In the introduction to this chapter, it was noted that a specification typically con-

sists of a collection of axioms and definitions. Axioms can assert arbitrary properties

over arbitrary (new or existing) entities. Definitions are axioms that are restricted to

defining new concepts in terms of known ones. This difference has important impli-

cations; axioms can introduce inconsistencies, whereas well-formed definitions cannot.

Specification languages differ with respect to facilities for introducing axioms and def-

initions, including the rigor with which they guarantee that axioms are consistent and

definitions well-defined. Some specification languages do not allow the introduction of

axioms. Although this avoids the problem of inconsistency, it can create others. For

example, axioms are particularly useful for stating assumptions about the environment

and the inability to define such constraints axiomatically can present a considerable

drawback. On the other hand, the ability to introduce axioms should always be off-

set by a method (and, ideally, mechanical support) to demonstrate their consistency.

While some languages prohibit arbitrary axiomatizations, others offer little or no as-

surance that definitions are well-formed, that is, constructed according to a definitional

principle appropriate to the given (specification) language. The role of this principle is

to ensure what is referred to as a conservative extension to a theory.

"A theory A is an 'extension' of a theory B if its language includes that

of B and every theorem of B is also a theorem of A; A is a 'conservative'

llRefinement is a topic that is not covered in this volume. A representative sample of the work in
this area, including both model-based and algebraic approaches, may be found in the proceedings of
recent workshops on refinement, including [dBdRR89, MW90], as well as in [BHL90].

NASA-GB-O01-97 61

extension of B if, in addition, every theorem of A that is in the language of

B is also a theorem of B [Rus93b, p. 58]."

The richness of the underlying logic, the strength of the definitional principle, and

the degree and power of the associated mechanization determine the nature and extent

of the concepts that may be defined in a language. Recursive definitions are an exam-

ple. The problem with recursive definitions is that they may not terminate on certain

arguments, that is, they may be partial rather than total. There are various strategies

for extending a definitional principle to recursive definitions. One strategy is to provide

a fixed template for recursive definitions along with a meta-proof that establishes that

all correct instantiations of the template terminate. The strategy used in PVS is to

prove well-foundedness using a technique based on a "measure" function whose value

decreases across recursive calls and is bounded from below. 12 The classic example, fac-

torial, is defined in PVS as follows, where the MEASUREclause specifies a function to be

used in the termination proof. In this case, the measure is simply the (generic) identity

function supplied by the PVS prelude.

factorial(x:nat): RECURSIVE nat =

IF x = 0 THEN i else x * factorial(x-l) ENDIF

MEASURE id

This definition generates a type well-formedness condition that must be discharged

before the definition is considered type correct. The condition states that for all natural

numbers, x, either x = 0 or x - 1 is strictly less than x.

Another type of definitional principle, called a "shell", provides a compact way to

specify new structured types in terms of constructors, recognizers, and accessors that

respectively construct new elements of the type, recognize bona fide (sub)elements of the

type, and access (sub)elements. 13 This concise specification is expanded schematically

to generate the axioms necessary to establish the consistency of the definition, and

(in some cases) to provide other useful constructs such as induction schemes. The

consistency of the axioms is assured by a meta-proof on the shell principle. Boyer

and Moore make extensive use of the shell principle, axiomatizing fundamental objects

including the natural numbers, literal atoms, and ordered pairs, as well as new types.

PVS uses a similar, but somewhat more sophisticated shell mechanism to define abstract

data types [Sha93]. The ubiquitous example of a pushdown stack can be very concisely

specified in PVS.

stack[t: TYPE]: DATATYPE

BEGIN

empty: emptystack?

push(top: t, pop: stack): nonempty_stack?

END stack

12The template approach is more restrictive, but easier to implement; it does not require theorem

proving to establish the well-definedness of a definition as does the measure function strategy.

13The name "shell" was first introduced by Boyer and Moore [BM79, pp. 35-40], who note that their

shells were inspired by Burstall's "structures" [Bur69].

62 Chapter 5

empty and push are the constructors, empty_stack? and nonempty_stack? are the

recognizers for the corresponding constructors, and top and pop are the accessors for

nonempty stacks. When stack is typechecked, a new PVS theory, stack_adt, is gener-

ated that consists of approximately a page and a half of PVS and provides the axioms

and induction principles to ensure that the datatype is well-formed.

The distinction between definitional versus axiomatic specification is revisited in

Section 5.2, where the implications of the two styles are discussed. The point of this

somewhat long excursion has been to underscore the utility of both approaches; pow-

erful definitional principles and arbitrary axiomatizations each have a role in formal

specification, and a specification language that provides both accompanied by suitable

mechanization is a potentially more productive tool than a language that effectively

supports one approach to the exclusion of the other.

5.1.2.10 Encapsulation Mechanism

Mechanisms that provide the ability to modularize and encapsulate are as important

in specification languages as they are in programming languages. Mechanisms that not

only support modularization, but also allow parameterization of the modules provide

even greater utility because they encourage reuse. For example, a sorting module can

be defined generically and parameterized by the type of entity to be sorted and the

ordering to be used, thereby allowing a single module to be (re)used to sort entities of

different types according to different ordering relations. In PVS, such a module (called

a THEORY) might appear as follows, where the idea is to sort sequences of type T with

respect to the ordering relation <=. The signature of this relation indicates that <= takes

two elements of type T and returns a Boolean value.

sort [T:TYPE , <=: [T,T-> bool]] : THEORY

To ensure that instantiations are appropriate, for example, that the values provided to

the ordering relation in fact constitute an appropriate ordering, semantic constraints

are associated with the instantiations. There are various mechanisms for accomplishing

this, including attaching assumptions to the formal parameters of the module, as in

PVS. For example, it may be useful to constrain <= to be a preorder (that is, reflexive

and transitive). 14

sort[T:TYPE, <=: [T,T -> bool]: THEORY

BEGIN

ASSUMING

pre_order: ASSUMPTION pre_order?(<=)
ENDASSUMING

END sort

This assumption must be discharged whenever the module sort is instantiated.

lnpre_order? is a predicate defined in the PVS prelude [OSR93a].

NASA- GB-O01-9 7 63

5.1.2.11 Built-in Model of Computation

Most applications of formal methods involve reasoning about computational processes.

In the discussion of discrete domain models (Section 4.3), it was noted that some spec-

ification languages have a built-in model of computation, for example, in the form of

a process algebra as in LOTOS [ISO88] or certain programming-language construc-

tions, such as the concurrency mechanisms offered in Gypsy [GAS89]. If a model of

computation is present in a language, it is important to ensure that the computational

model is suitable for the application at hand. For example, a study of synchronization

algorithms cannot very well be performed in a notation based on synchronous com-

munication [Rus93b, p. 162]. On the other hand, many specification languages do not

incorporate a model of computation, or incorporate only a very elementary model, such

as functional composition. Using functional application and composition, almost any

logic can represent sequential computation. Languages such as PVS that are based

on classical higher-order logic are typically rich enough to specify more complex com-

putations, such as those involving imperative, concurrent, distributed, and real-time

algorithms. For example, important properties of distributed systems can often be

described and analyzed using recursive functions [LR93b].

5.1.2.12 Executability

Executability provides a pragmatic approach to exploring and debugging specifications,

and to developing and evaluating test cases. Further discussion of executability may be
found in Sections 5.4 and 6.3.

5.1.2.13 Maturity

The advantages of a mature specification language are similar to those of a mature

programming language: documentation is reasonably accessible and complete, tool sup-

port is available and generally reliable, there is a reasonably large body of associated

literature and applications, and there is some measure of standardization so that a

specification written in the language provides an unambiguous and generally accepted

description.

5.2 Formal Specification Styles

Specification style has various implications, ranging from readability to ease of proof.
As Srivas and Miller note in reference to the formal verification of a commercial mi-

croprocessor (arguably the most ambitious microprogram verification undertaken to

date) [SM95a, p. 31]: "One of the more important lessons learned during this project

was to more carefully consider the trade-offs between ... styles of specification." Sri-

vas and Miller are specifically referring to a constructive versus a descriptive style of

64 Chapter 5

specification, also known as model-oriented versus property-oriented, respectivelyJ 5 A

constructive or model-oriented style is typically associated with the use of definitions,

whereas a descriptive or property-oriented style is generally associated with the use of

axioms. For example, consider the rood function, which returns the remainder when one

natural number is divided by another, rood can be specified constructively by defining a

recursive function that returns the appropriate value, or descriptively by axiomatizing

certain of its number theoretic properties [SM95a, p. 28]. The descriptive style encour-

ages underspeeifieation--specifying less rather than more, and doing so as abstractly as

possible--thereby avoiding the tendency to focus on how a concept is realized rather

than simply what is required of it, whereas the constructive style tends to promote

overspeeifieation--specifying more rather than less and doing so in greater detail and

specificity than necessary--thereby allowing an implementation bias to creep in ear-

lier than warranted. On the other hand, descriptive or axiomatic specifications can

introduce inconsistencies and can be less easily read and understood by the uniniti-

ated reader than constructive specifications. Constructive specifications also tend to

correspond more naturally to the procedural requirements used in many applications.

Ultimately, the trade-offs between the two styles must be arbitrated by the application

and by the options provided by the specification language used. Again, Srivas and

Miller's experience is instructive.

"It became evident that [the descriptive style was] in many ways a prefer-

able style of specification.., more readable, simpler to validate, and ... closer

to what a user wanted to know Using this style would have made spec-

ifying the core set of 13 instructions much simpler. However, doing so also

would have made it easier to introduce inconsistencies in the specification.

... The declarative [sic, that is, descriptive] style of specification is better-

suited for reasoning with complex instruction sets [SM95a, pp. 30-31]."

Many applications can benefit by the judicious use of both styles. One approach is to use

a property-oriented axiomatization as a top-level specification and introduce a suitable

number of specification layers between the property-oriented requirements statements

and increasingly detailed, (provably consistent) model-oriented descriptions, possibly

culminating in an implementation-level specification. The idea is to establish that the

implementation satisfies the requirements. Few analyses elaborate multiple layers--the

example documented in [BHMY89, Bev89] and summarized in Section 5.3 is a notable

exception; for most applications, more cost-effective strategies focus on key properties

early in the life cycle.

There are other considerations that may be viewed as stylistic, including the trade-

offs between a functional style of specification versus one in which the notion of state is

explicitly represented, for example, using "Hoare sentences" to express pre- and post-

15Other terminology is also found in the literature; for example, the term "prescriptive" is sometimes
used to refer to a constructive style of specification and "declarative" to a descriptive style.

NASA- GB-O01-9 7 65

conditions on a state. 16 Some specification languages support both styles, while others

support only an implicit notion of state. If the notion of state is implicit, the model of

computation may be more or less explicit. For example, if the specification of a control

system must support the analysis of properties characterizing the evolution of the sys-

tem over time, the (monitored, controlled, and state) variables are typically represented

as traces, that is, functions from "time" to the type of value concerned, where time

represents a frame, cycle, or iteration count. Purely functional specifications are in-

trinsically closer to ordinary logic and therefore tend to support more effective theorem

proving than specifications that involve state. In general, specifications involving state

tend to be unnecessarily constructive for earlier life cycle applications; functional style

specifications are often adequate for the requirements and high-level design phases.

5.3 Formal Specification and Life Cycle

One approach to integrating formal specification with system development is to con-

struct a hierarchy of specifications at different levels of abstraction, each level corre-

sponding to a different phase of the software life cycle and each level elaborating or

"refining" the immediately preceding level. Using formal proof to establish that each

level of the design is a correct implementation of its immediate ancestor, it is possible

to develop a proof chain that automatically demonstrates that required properties are

satisfied at all levels - from the requirements specification down through the imple-

mentation (code level). Such proofs typically use a mapping function that relates the

objects of one level with the objects of the immediately preceding level and prove that

the mapping is preserved through all possible executions. Needless to say, hierarchical

specification over multiple levels is an arduous and costly undertaking. The "CLI short

stack" [Bev89] - a mechanical verification of a multilevel system from an applications

program in a high-level language down through the gate-level design of a microprocessor

with intermediate levels including a compiler, assembler, and linker - exemplifies this

approach. The LaRC verification of a reliable computing platform for real-time control

is another of the few extant examples [BDH94].

Formal specification is typically most cost-effective early in the life cycle of a system.

This is true for several reasons, notably the effectiveness of conventional verification and

validation activities later in the life cycle versus earlier, when there is an acknowledged

dearth of effective strategies and tools, and the difficulty of formal specification during

the later life cycle, in the context of highly detailed, implementation-specific models.

This rationale dovetails nicely with the largely pragmatic considerations that have fo-

cused most applications of formal methods on critical or key properties rather than on

"total correctness." As a result, formal specification is most productively used as an

16As an antidote to then-current program verification approaches that generated verification condi-
tions (VCs) from programs annotated with logical assertions, yielding VCs that were difficult to map
back to the original program (and the user's intuition), Hoare extended the logic to include program
elements, thereby allowing the user to reason directly about programs [Hoa69].

66 Chapter 5

integral part of the iterative development of requirements and high-level design, rather

than as a one-time, benedictory activity at the end of the process.

5.4 The Detection of Errors in Formal Specification

There are several potential sources of error in a formal specification:

• It can say too little or underspecify, that is, be incomplete

• It can say too much or overspecify, that is, be overly prescriptive, thereby unnec-

essarily constraining later phases of the life cycle

• Or, it can be wrong, that is, it can be internally inconsistent or it can specify

something anomalous or unintended.

Overspecification is difficult to detect mechanically and typically requires considerable

experience to recognize and avoid. 17 The other faults are generally more amenable to

the types of fault detection discussed below. Including formal proof, there are basically

five regimens for detecting anomalies in a specification. The last four of these can be

effectively mechanized and typically occur in the order given, since there is no point in

attempting proofs on a specification that is not syntactically and semantically correct.

By the same token, there is no point in checking for semantic anomalies in a specification

that is not syntactically well-formed. On the other hand, each of these techniques has

a particular utility, and an integrated approach that exploits the strength of each is

undeniably the most effective. In some cases, this integration is inherent in a system,

for example, cooperating decision procedures in a theorem prover, or the tight coupling

of a typechecker and a proof checker to provide strict typechecking in the presence of non

trivially decidable properties. In other cases, the integration is achieved by judicious

use of available techniques, for example, "prototyping" a potentially difficult and costly

proof by using model checking, simulation, or animation to examine a finite case before

attempting the more general proof with a theorem prover or proof checker. In any

case, the utility of the fault-detection techniques discussed below can be significantly

enhanced by exploiting the potential synergy created by their judicious combination.

Inspection: Inspections run the gamut from informal peer review to well-defined, for-

malized procedures. The Fagan-style inspections discussed in Section 3.2 are among the

most frequently used quasi-formal inspections. In theory, these manual inspections can

detect all the error types noted above, although in practice, manual inspections are not

as effective as mechanized tools in detecting subtle or deep-seated anomalies, such as

logical inconsistencies and (unintended) implications, or in consistently locating seman-

tic or even syntactic errors in specifications. Nevertheless, Fagan-style inspections and

17Jones characterizes a notion of overspecification or implementation bias for constructively defined
specifications. Briefly, a specification is biased with respect to a given set of operations "if there exist
different elements of the [underlying] set of states which cannot be distinguished by any sequence of the
operations." [Jon90, pp. 216-219].

NASA- GB-O01-9 7 67

other similarly exacting inspection methods can effectively complement formal methods,

and vice versa. The AAMP5 microprocessor project illustrates this point nicely. Miller

and Srivas note the surprising

"extent to which formal specifications and inspections complemented

each other. The inspections were improved by the use of a formal nota-

tion, reducing the amount of debate over whether an issue really was a

defect or a personal preference. In turn, the inspections served as a useful

vehicle for education and arriving at consensus on the most effective styles

of specification. This is reflected in ... the lower number of defects recorded

in the later inspections [MS95, p. 9]."

As this quote suggests, the symbiotic relationship between formal methods and conven-

tional inspection techniques provides a natural medium for technology transfer.

Parsing: Parsing is a form of analysis that detects syntactic inconsistencies and anoma-

lies, such as misspelled keywords, missing delimiters, or unbalanced brackets or paren-

theses. Parsing guarantees (only) that a specification conforms to the syntactic rules of

the formal specification language in which it is written.

Typechecking: Typechecking is a form of analysis that detects semantic inconsis-

tencies and anomalies, such as undeclared names or ambiguous types. As noted in

Section 5.1.2, formal specification languages based on higher-order logic admit effec-

tive typechecking, while in general, those based on set theory do not. When available,

strict typechecking is an extremely effective way of determining whether a specification

makes semantic sense. Again as noted in Section 5.1.2, the type system of a specification

language may not be trivially decidable, in which case typechecking is similarly unde-

cidable and proof obligations must be generated and discharged before the specification

is considered typechecked.

Execution (Simulation/Animation): Direct execution, simulation, and animation

offer further options for detecting errors in a specification. If a formal specification

language is directly executable, or contains a directly executable subset, execution and

animation can be accommodated in the same formally rigorous context in which the

specification is developed. If not, the formal specification must be reinterpreted into

high-level, dynamically executable program text that bears no formal relation to the

original specification (see [MW95, Chapter 5] for an example of the latter). Some lan-

guages offer both, that is, a directly executable subset, as well as the option of user- or

system-defined program text to drive animation of nonexecutable parts of the specifica-

tion. The concrete representation of algorithms and data structures required by most

finite-state enumeration and model-checking methods (see below) makes them directly

comparable to direct execution techniques, as found, for example, in the VDM-SL Tool-

box [VDM]. In some cases, model checkers also provide simulation. For example, the

reachability analysis strategy used by state-exploration model checkers can also be used

to "simulate" system behavior by exploring a single path (rather than all possible paths)

through the state space. Both Mur¢ [DDHY92, ID93] and SPIN [Ho191] can simulate

68 Chapter 5

the execution of models written in their respective languages. The type of errors found

by direct execution techniques varies, depending on other error detection techniques,

if any, used prior to simulation or animation. For example, [MW95, p. 92] animated

a specification that had previously undergone only syntactic analysis and weak type

analysis (essentially limited to arity checking on function and operation calls). In their

case, animation detected two type errors in addition to errors due to misinterpretation

of the requirements, incorrect specification of requirements, and erroneous translation

from the specification into the simulation language. Executability also supports the de-

velopment and systematic evaluation of test suites, thereby potentially exposing flaws

and oversights in a test regime, as well as in the corresponding specification.

Theorem Proving, Proof Checking, and Model Checking: Theorem proving,

proof checking, and model checking are all forms of analysis that can be used to detect

logical anomalies and subtle infelicities in a formal specification. Although historically

these forms of validation were used to prove correctness of programs and detailed hard-

ware designs, they are now typically used for fault detection and design exploration,

where they are arguably most effective, as well as for verifying correctness. The analy-

sis provided by theorem proving, proof checking, and model checking not only involves

the specification, but also its logical consequences, that is, all formulas that can be

proved from the original specification using formal deduction. There are several issues

in the validation of formal specifications. One is the issue of internal consistency, that is,

whether the specification is logically consistent. If not, the specification fails to say any-

thing useful. Another is the issue of meaningfulness, that is, whether the specification

means what is intended. A third is the issue of completeness. Although various notions

of completeness have been proposed, the general idea is that a specification should iden-

tify all contingencies and define behavior appropriate to eachJ s The type of testing and

error detection offered by theorem proving, proof checking, and modeling is in many

ways analogous to traditional testing regimes; the theorem prover, proof checker, or

model checker "executes" the specification, allowing the practitioner to explore design

options and the implications of design choices.

5.5 The Utility of Formal Specification

A specification may serve many different functions. Lamport [Lam89, p. 32] has sug-

gested that a formal specification functions as % contract between the user of a system

and its implementer. The contract should tell the user everything he must know to

use the system, and it should tell the implementer everything he must know about the

system to implement it. In principle, once this contract has been agreed upon, the

user and the implementer have no need for further communication." Lamport's simile

highlights three issues. First, as noted earlier, one of the most important functions of a

formal specification is analytic; using the deductive apparatus of the underlying formal

lSRushby [Rus93b, pp. 69-71] cites several specialized definitions, including characterizations of com-
pleteness for abstract data types and for real-time process-control systems.

NASA- GB-O01-9 7 69

system, a formal specification serves as the basis for calculating, predicting, and (in

the case of executable specifications) testing system behavior. However, a formal spec-

ification may also serve an important descriptive function, that is, provide a basis for

documenting, communicating, or prototyping the behavior and properties of a system.

Second, a (completed) specification represents the formalization of a consensus about

the behavior and properties of a system. Diverging somewhat from Lamport's descrip-

tion and focusing on the early life cycle, we prefer to view a formal specification as a

contract between a client, a requirements analyst (and possibly also a designer), and a

formal methods practitioner. Third, while in principle, a finalized contract precludes

the need for further communication among the interested parties, in practice, moving

from informal requirements to a formal specification and high-level design is an iterative

rather than a linear process; issues exposed in the development of the formal specifica-

tion may need to be factored back into the requirements, and similarly, issues raised by

the high-level design may percolate back to impact either the formal specification, the

requirements, or both.

Although a specification that has not been validated through proof can be aptly

compared to a program that has not been debugged, there are nevertheless real benefits

to be gained from modeling and formally specifying requirements and high-level designs,

including the following.

• Clarify Requirements and High-Level Designs: A formal specification provides a

concise and unambiguous statement of the underlying requirements and design,

thereby exposing fundamental issues that tend to be obscured by lengthy informal

statements. The formalization of the requirements for the recent optimization of

Space Shuttle Reaction Control System Jet Selection (JS) [NASA93, Appendix B]

recounted here in Section 3.1.1 illustrates this point nicely.

• Articulate Implicit Assumptions: Formalisms can help identify and express im-

plicit assumptions in requirements and design. For example, the concept of state

variables is not explicitly mentioned in Space Shuttle requirements; their existence

must be inferred from context by noting the function and persistence of local vari-

ables. Explicitly modeling and specifying state variables can significantly increase

the precision and perspicuity of the requirements, as illustrated by the partial

specification of the new Space Shuttle Global Positioning System (GPS) navi-

gation capability [DR96]. Identifying undocumented assumptions is particularly

important in the context of an evolving system design.

Another aspect of requirements and high-level design that frequently contains im-

plicit assumptions is the interaction of the system with the environment or context

in which it is assumed to operate, including the input space. Making input con-

straints and environmental assumptions explicit often exposes requirements and

design-level issues that have been overlooked. 19 The specification of the Space

19The A-7 Methodology [vS90], among others, has paid particular attention to the explicit enumera-
tion of relevant environmental variables.

70 Chapter 5

Shuttle Heading Alignment Cylinder Initiation Predictor and Position Error Dis-

plays Change Request (HAC CR) is a good example of the value of the process

of formalization for identifying and capturing undocumented, domain-specific as-

sumptions. Quoting from the report for the HAC CR formal methods project:

"Capturing such [domain-specific] knowledge and documenting it as rationale with

the specification is valuable [RB96, p. 17]."

Expose Flaws: The process of formalization invariably exposes significant flaws

in requirements and high-level design, even without the benefit of analysis or

proof. In the case of strongly typed specification languages, typechecking can pro-

vide a potent tool for revealing anomalies in the specification, as well as potential

anomalies in the requirements and design, and doing so early in the life cycle while

errors are far less costly to correct. The previously mentioned GPS project [DR96]

provides a nice example of the utility of specification for revealing anomalies in

immature requirements for large, complex systems, especially among subsystem

interfaces. Executing a specification provides another productive means of expos-

ing flaws, as noted in [MW95].

Identify Exceptions: The discipline involved in formalizing requirements and high-

level design also serves to identify "end cases" and exceptions and to encourage

more thorough consideration of these exceptional cases, as illustrated in [LFB96].

Evaluate Test Coverage: An executable specification may also be used to run and

evaluate proposed test suites, yielding a measure of test coverage relatively early

in the life cycle.

The utility of formal specification also extends to work in program transformation

and synthesis, that is, the mechanical application of a series of transformations that

derives a program from its specification. This approach differs from traditional com-

pilation of high-level languages insofar as it seeks to bridge a far larger language gap

between input (specification) and output (program). To make this feasible, the scope

of the specification language must be severely constrained, and/or the transformation

process must be guided by a skilled programmer. The techniques rely on a set of

correctness-preserving transformations that guarantee that the resulting program will

exhibit the same behavior as its specification. Ideally, the transformation also confers

additional (desired) properties such as efficiency. Suggestive, but by no means exhaus-

tive, examples of this broad spectrum of techniques are the following:

• Problems expressed in a specification-oriented language (for example, pure Lisp)

typically exhibit clarity and simplicity, but lack the efficiency and portability that

comes from a conventional programming language (for example, FORTRAN and

C). Boyle has pursued a transformational approach to bridging this gap [Boy89]

that involves successive decomposition into a series of steps that can be accom-

plished by the automatic application of a set of special-purpose, but straightfor-

NASA- GB-O01-9 7 71

ward transformations. Examples include the use of a succinct functional speci-

fication to derive a FORTRAN implementation of an algorithm for solving one-

dimensional hyperbolic partial differential equations [BH91].

A certain class of problems can be solved by a carefully programmed instance

of a general algorithmic technique, for example, search problems can be solved

by a divide-and-conquer strategy. KIDS (Kestrel Interactive Development Sys-

tem) [Smi90] provides tools for deductive inferencing, algorithm design, expres-

sion simplification, finite differencing, partial evaluation, data type refinement and

other general transformations that allow a user " to synthesize complex codes em-

bodying algorithms, data structures, and code-optimization techniques that might

be too difficult to produce manually [SG96, p.31]." The approach is interactive; the

user guides the system in the application of powerful correctness-preserving trans-

formations. KIDS has been applied to a variety of domains, including schedul-

ing, combinatorial design, sorting and searching, computational geometry, pattern

matching, and mathematical programming.

The class of finite functions, including for example, finite state transitions, lends

itself to tabular representations that can be manipulated to perform various consis-

tency and completeness checks and, in some cases, to generate code and documen-

tation. For example, the decision table, '% tabular format for specifying a complex

set of rules that choose among alternative actions" [HC95, p. 97] provides the basis

for the Tablewise tool [HC95, HGH96] that tests these tables for consistency and

completeness, performs a limited form of structural analysis, and generates Ada

code implementing the table, as well as English-language documentation.

If an application domain is suitably restricted, it is possible to develop a com-

pletely automatic process for synthesizing a program from its specification. The

AMPHION system [LPPU94] illustrates this approach for the domain of solar

system kinematics. The user specifies a problem via a graphical user interface

portraying the domain's astronomical objects and desired configuration. The sys-

tern then selects components from a preexisting FORTRAN subroutine library

and synthesizes the "glue" code that assembles these components into a complete

solution. The system applies constructive theorem proving to perform its selection

and synthesis. The end user, however, operates purely at the specification level

and need never interact with this underlying mechanism.

5.6 A Partial SAFER Specification

The PVS specification of SAFER is constructive in style and retains the explicit notion of

state represented in the SAFER models developed at the end of Chapter 4. To facilitate

readability and emphasize the mapping between informal description, requirements, and

the PVS formalization, the specification also preserves the bias toward representative

72 Chapter 5

rather than abstract formalization introduced into the models of the preceding chapter.

The complete PVS specification is presented in full in Section C.3.3. The fragment

discussed below continues the focus on thruster selection. This discussion is intended to

be self-contained; if additional information on the relatively few PVS language features

necessary to understand the formal specification can be found in Section C.3.1. Full

PVS documentation is available in [OSR93b].

The PVS specification of thruster selection is a straightforward elaboration of

the underlying functional model developed in Chapter 4. Accordingly, the skele-

ton of the PVS theory for thruster selection shown below consists of three func-

tions: integrated_commands, which forms an integrated, six degree-of-freedom com-

mand from the HCM and AAH inputs; selected_thrusters, which takes an inte-

grated command and selects the thrusters necessary to achieve the command; and

selected_actuators, which acts as an interface function and consists of the composi-

tion of integrated_commands and selected_thrusters. Each of these functions is pa-

rameterized by from one to three parameters denoted by a parameter name followed by

a type name. The type definitions for these types are not reproduced here, but are avail-

able in subsequent discussion and in Appendix C either in the theory avionics_types

or in the theory most closely associated with the object in question. For example, the

types six_dof_command and rot_command are defined in the theory avionics_types,

while the type AAH_state is defined in the theory automatic_attitude_hold. The type

actuator_commands is defined as a thruster_list. Thruster selection is formalized as

a PVS theory aptly named thruster_selection. The theory is the basic organizational

concept in PVS and provides the modularization and encapsulation familiar in modern

programming languages; theories may export to and import from other theories.

thruster_selection: THEORY

BEGIN

integrated_commands((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): six_dof_command = ...

selected_thrusters(cmd: six_dof_command): thruster_list = ...

selected_actuators((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): actuator_commands =

selected_thrusters(integrated_commands(HCM, AAH, state))

END thruster_selection

Fleshing out the skeleton of thruster_selection introduces a type definition

(thruster_list) and five additional functions. However, the first thing to notice about

NASA- GB-O01-9 7 73

this elaborated version is the IMPORTING clause, which allows visible entities introduced

in the theories avionics_types, propulsion_module, and automatic_attitude_hold

to be imported and used in the theory thruster_selection.

IMPORTING avionics_types, propulsion_module, automatic_attitude_hold

For example, this importing clause brings in several type declarations, including those

mentioned above for six_dof_command and rot_command. The importing clause is fol-

lowed by a local declaration of the type thruster_list, which is defined as a list of

thruster_names. 2° The type thruster_names is in turn imported from the theory

propulsion_module.

thruster_list: TYPE = list[thruster_name]

The next declaration introduces the Boolean-valued function rot_cmds_present,

whose signature includes one parameter of type rot_command.

rot_cmds_present(cmd: rot_command): bool =

(EXISTS (a: rot_axis): cmd(a) /= ZERO)

The declaration for rot_command defines a function from type rot_axis to type
axis_command.

rot_axis:

axis_command:

rot_command:

TYPE = {roll, pitch, yaw}

TYPE : {NEG, ZERO, POS}

TYPE = [rot_axis -> axis_command]

rot_axis is an enumerated type corresponding to the three rotation axes: roll, pitch,

yaw. axis_command is an enumerated type with three values corresponding to the HCM

or AAH command values: negative, zero, or positive. The notation cmd(a) denotes a

function that maps a rotation axis (one of." roll, pitch, yaw) to the command associated

with that axis (one of." NEG, ZERO, POS). rot_cmds_present returns the value of

the existentially quantified formula shown above. That value is true if there is at least

one rotational axis whose associated (HCM or AAH) command is nonzero, and false
otherwise.

The next function, prioritized_tran_cmd, specifies the requirement that there is

at most one translation command at a given cycle and that translation axis commands

are prioritized with X-axis commands having highest priority and Z-axis commands

lowest priority. The encoding takes the form of a nested-if expression and uses a PVS

override expression to derive a new value from null_tran_command, which is written

as an unnamed function or lambda expression. The result of an override expression

2°The thruster_list declaration actually uses the built-in list datatype provided in the PVS pre-

lude [OSR93a, pp. 39-41,78-80], [Sha93].

74 Chapter 5

is a function 21 that is exactly the same as the original, except that it takes on new

values at the specified arguments. A tran_command does the analogous mapping for

the translation axes, X, Y, and Z that the rot_command does for the rotation axes.

Accordingly, in the first branch of the nested-if expression, if an X-axis command is

present (the value of tran(X) is not equal to ZERO), null_tran_command takes on the

value of tran (X) for the argument X, and similarly for the other branches of the nested-if,

which handle the cases for Y- and Z-axis updates.

tran_axis: TYPE = {X, Y, Z}

tran_command: TYPE = [tran_axis -> axis_command]

null_tran_command: tran_command = (LAMBDA (a: tran_axis): ZER0)

prioritized_tran_cmd(tran: tran_command): tran_command =

IF tran(X) /= ZERO

THEN null_tran_command WITH [X := tran(X)]

ELSIF tran(Y) /= ZER0

THEN null_tran_command WITH [Y := tran(Y)]

ELSIF tran(Z) /= ZER0

THEN null_tran_command WITH [Z := tran(Z)]

ELSE null_tran_command

ENDIF

The function combined_rot_cmds transforms rotation commands from the HCM and

the AAH and returns a "combined" rotation command that inhibits HCM commands

at the time AAH is initiated (ignore_HCM), but otherwise gives nonzero HCM rotation

commands precedence over AAH rotation commands. The argument ignore_HeM is a

predicate, that is, a function with range type Boolean. Note the use of the lambda

expression to map over the three rotation axes.

rot_predicate: TYPE = [rot_axis -> bool]

combined_rot_cmds((HCM_rot: rot_command),

(AAH: rot_command),

(ignore_HCM: rot_predicate)): rot_command =

(LAMBDA (a: rot_axis):

IF HCM_rot(a) = ZER0 0R ignore_HCM(a)

THEN AAH(a)

ELSE HCM_rot(a)

ENDIF)

Using the preceding definitions, integrated_commands is elaborated as shown below.

The only new bit of PVS that requires explanation is the record structure used to specify

21Or record; a PVS record may also be modified by an override expression.

NASA- GB-O01-9 7 75

the integrated six degree-of-freedom command. In PVS, record types take the form

[# al :h,---a_ :t_ #]

where the ai are the accessors and the ti are the component types. Record access in

PVS uses functions and functional notation, for example, ai(r), rather than the more

usual "dot" notation r.ai. Elements of the PVS record type (or, equivalently, record

constructors) have the form

(# al :h,---a_ :t_ #)

For example, the record type six_dof_command has two accessors, one each of type

tram_command and type rot_command. In other words, an integrated six degree-of-

freedom command has two components representing the commanded acceleration in

the translational and rotational axes. Since both components are modified, record con-

structors rather than override expressions are used. Details of the AAH_state record

type have been suppressed below, but appear in full in Appendix C. The requirement

that HCM rotation commands suppress HCM translation commands, but HCM trans-

lation commands may coexist with AAH rotation commands, is specified by the two

branches of the if-expression.

rot_cmds_present(cmd: rot_command): bool =

(EXISTS (a: rot_axis): cmd(a) /= ZERO)

six_dof_command: TYPE = [# tran: tran_command, rot: rot_command #]

AAH_state: TYPE = [# ignore_HCM: rot_predicate, ... #]

integrated_commands((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): six_dof_command =

IF rot_cmds_present(rot(HCM))

THEN (# tran := null_tran_command,

rot := combined_rot_cmds(rot(HCM), AAH,

ignore_HCM(state)) #)

ELSE (# trail := prioritized_tran_cmd(tran(HCM)),

rot := AAH #)

ENDIF

Astute readers may have noticed that this version of integrated_commands does

not take into account the additional requirement that AAH is disabled on an axis if a

crewmember rotation command is issued for that axis while AAH is alive, resulting in the

possibility reflected in the model in Chapter 4 as the transition "three axes off," where all

three axes have been disabled in this way. Actually, the version of integrated_commands

76 Chapter 5

presented above is slightly simplified; the full version in Appendix C does handle this
case.

The next two functions,BF_thrusters and LRUD_thrusters, specifythe thruster

selectlogicpresentedin the tablesin FiguresC.2 and C.3, respectively.The details

are omitted here,but the fullversioninAppendix C specifiesthesetablesusingnested

PVS tablesthatyieldadmirable traceabilitybetween the documentation and the spec-

ification.

BF_thrusters(X_cmd, pitch_cmd, yaw_cmd: axis_command): thruster_list = ...

LgUD_thrusters(Y_cmd, Z_cmd, roll_cmd: axis_command): thruster_list = ...

The elaborated version of selected_thrusters reveals somewhat more about how

an integrated six degree-of-freedom command is mapped into a vector of actuator com-

mands. The specification uses a PVS let expression, a syntactic convenience that

allows the introduction of bound variable names to refer to subexpressions. In this

case, the bound variables refer to the back/front (BF) and the left/right/up/down

(LRUD) thrusters defined by the thruster select logic (specified as BF_thrusters and

LRUD_thrusters) to implement the commanded translational and rotational accelera-

tions. The resulting list of thrusters is formed by appending the BF and LRUD thruster
lists.

selected_thrusters(cmd: six_dof_command): thruster_list =

LET BF_thr =

BF_thrusters(tran(cmd)(X), rot(cmd)(pitch), rot(cmd)(yaw)),

LgUD_thr =

LRUD_thrusters(tran(cmd)(Y), tran(cmd)(Z), rot(cmd)(roll))

IN append(BF_thr, LgUD_thr)

Once again, the function presented here is a somewhat simplified version of the

specification in Appendix C. In this case, the simplification has been to omit the logic

corresponding to the rightmost two columns of Figures C.2 and C.3, which specify

the use of two additional thrusters for certain commanded accelerations if the given

constraints are satisfied. For example, the thruster select logic for "-X, -pitch, -yaw"

(first row of the table in Figure C.2) specifies thruster B4 and, conditionally, thrusters

B2 and B3; B2 and B3 are selected only if there is no commanded roll.

The final function in theory thruster_selection is the interface function

selected_actuators, which was previously introduced as it appears in Appendix C.

The somewhat abbreviated version of the full theory discussed here is collected in full

below. Note that type declarations from other theories reproduced above to facilitate

the discussion do not explicitly appear, but are implicitly "visible" via the IMPORTING
clause.

NASA- GB-O01-9 7 77

thruster_selection: THEORY

BEGIN

IMPORTING avionics_types, propulsion_module, automatic_attitude_hold

thruster_list: TYPE = list[thruster_name]

rot_cmds_present(cmd: rot_command): bool =

(EXISTS (a: rot_axis): cmd(a) /= ZER0)

prioritized_tran_cmd(tran: tran_command): tran_command =

IF tran(X) /= ZERO

THEN null_tran_command WITH [X := tran(X)]

ELSIF tran(Y) /= ZER0

THEN null_tran_command WITH [Y := tran(Y)]

ELSIF tran(Z) /= ZER0

THEN null_tran_command WITH [Z := tran(Z)]

ELSE null_tran_command

ENDIF

combined_rot_cmds((HCM_rot: rot_command),

(AAH: rot_command),

(ignore_HCM: rot_predicate)): rot_command =

(LAMBDA (a: rot_axis):

IF HCM_rot(a) = ZER0 0R ignore_HCM(a)

THEN AAH(a)

ELSE HCM_rot(a)

ENDIF)

integrated_commands((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): six_dof_command =

IF rot_cmds_present(rot(HCM))

THEN (# tran := null_tran_command,

rot := combined_rot_cmds(rot(HCM), AAH,

ignore_HCM(state)) #)

ELSE (# tran := prioritized_tran_cmd(tran(HCM)),

rot := AAH #)

ENDIF

78 Chapter 5

BF_thrusters(X_cmd, pitch_cmd, yaw_cmd: axis_command): thruster_list = ...

LRUD_thrusters(Y_cmd, Z_cmd, roll_cmd: axis_command): thruster_list = ...

selected_thrusters(cmd: six_dof_command): thruster_list =

LET BF_thr =

BF_thrusters(tran(cmd)(X), rot(cmd)(pitch), rot(cmd)(yaw)),

LRUD_thr =

LRUD_thrusters(tran(cmd)(Y), tran(cmd)(Z), rot(cmd)(roll))

IN append(BF_thr, LRUD_thr)

selected_actuators((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): thruster_list =

selected_thrusters(integrated_commands(HCM, AAH, state))

END thruster_selection

Chapter 6

Formal Analysis

Formal analysis refers to a broad range of tool-based techniques that can be used singly

or in combination to explore, debug, and verify formal specifications, and to predict,

calculate, and refine the behavior of the systems so specified. These analysis techniques,

which differ primarily in focus, method, and degree of formality, include direct execution,

simulation, and animation; finite-state methods (state exploration and model checking);

and theorem proving and proof checking.

This chapter describes each of these techniques and suggests strategies for their

productive combination. It also examines the role of proof in theory interpretation,

proofs of properties, and enhanced typechecking, as well as the utility of the proof

process for calculation, prediction, and verification. The issue of mechanized support

for formal analysis is presented, albeit in a suggestive rather than exhaustive discussion.

The chapter closes with the specification and proof of the SAFER requirement that

describes the maximum number of thrusters that can be fired simultaneously.

6.1 Automated Deduction

Automated deduction or theorem proving refers to the mechanization of deductive rea-

soning. Deductive methods provide a foundation for reasoning about infinite-state sys-

terns and are typically preferred for abstract, high-level specifications and data-oriented

applications. There are a variety of approaches to mechanizing formal deduction, re-

flecting the relative maturity of the field of mechanical theorem proving. This section

begins with background material on formal systems and their models, followed by a his-

tory of automated deduction, a survey of techniques underlying automated reasoning,

and concluding remarks on their utility.

79

80 Chapter 6

6.1.1 Background: Formal Systems and Their Models

The material in this section provides technical background that some readers may prefer

to skip the first time through, or to detour altogether. Dangerous bend signs bracket

the most technical parts of the section.

6.1.1.1 Proof Theory

A formal system consists of a nonempty set of primitives--typically a set of finite strings

taken from an alphabet of symbols; a set of axioms, that is, statements, taken as given,

involving the primitives; and a set of inference rules or other means of deriving further

statements, called theorems. 1 The axioms and rules of inference of a formal system are

referred to as its deductive system. A set of axioms, together with all the theorems

derivable (provable) from it and from previously derived theorems, is called a theory. A

proof of a theorem in a formal system is simply a series of transformations that conform

to the rules of inference of that system. As such, the notion of proof is strictly syntactic.

The symbol L- (read "turnstile") is used to express this notion of proof. Thus L-L ¢,

read "¢ is provable in logic L" (or, equivalently L- ¢ if the logic is unambiguous from

the context), means that ¢ is a theorem in the given logic, that is, ¢ is provable using

the axioms of L without further assumptions. In general, the relationship between

a sentence ¢ and the set of sentences, _/0,---,_n, assumed for its proof is expressed

as _/0,---,% L- T, where each _/i is either an axiom, an additional assumption 2, or a

previously proved theorem.

The notion of formal system sketched thus far is purely syntactic, describing what

is generally referred to as an uninterpreted calculus or simply a calculus. The study

of the purely formal or syntactic properties of an uninterpreted calculus, including de-

ducibility, consistency, simple completeness, and independence, is called proof theory.

The three notions of consistency, completeness, and independence are not equally impor-

tant. Consistency is of fundamental importance because it provides a minimal condition

of adequacy on any set of (nonintentionally self-contradictory) axioms. A formal sys-

tem is consistent if it is not possible to derive from its axioms both a statement and the

denial (negation) of that statement. The notion of completeness has many different in-

terpretations, all of which share the idea that a formal system is complete if it is possible

to derive within it all statements satisfying a given criterion. In general, completeness

1In this section, the terms sentence, statement, and well-formed formula are used interchangeably,
avoiding subtle distinctions sometimes made in the literature. In the context of fu'st-order logic, these
terms are synonymous with closed formula and denote a formula in which there are no free (unbound)
variables.

2Assumptions are statements assumed to be true without proof. Axioms are assumptions whose

truth is assumed to be "self-evident," empirically discoverable or, in any case, stipulated for the sake
of argument, rather than proved using the given rules of inference. There are logical and nonlogical
axioms. The latter deal with specific aspects of a domain, for example, Peano's axioms (postulates)
which are interpreted with respect to a domain of numbers, whereas logical axioms deal with general
logical properties of the given calculus, for example, the axioms of propositional calculus.

NASA-GB-O01-97 81

has theoretical importance for logicians, but less importance for those working in formal

methods. It is quite difficult to establish completeness for systems of any complexity,

and many interesting and even important formal systems are provably incomplete. A

formal system S is said to be simply complete if and only if, for every closed, well-formed

formula, A, either A or _A is a theorem of S, that is, A can either be proved or dis-

proved in S. Other terms for proof-theoretic notions of completeness include deductively

complete, syntactically complete, and complete with respect to negation. 3 The notion of

independence refers to whether any of the axioms or rules of inference of a system are

superfluous, that is, can be derived from the remaining deductive system. Indepen-

dence is largely a matter of "elegance." Although economy is a desirable characteristic

of an axiom system, its absence does not necessarily impact the ultimate acceptibility

or utility of the system.

A formal system, S, is decidable if there is an effective procedure (algorithm) for

determining whether or not any closed, well-formed formula, ¢, of S is a theorem of

S. Simple completeness can also be defined in terms of decidability. A formal system,

S, is simply complete if it is consistent and if every closed, well-formed formula in S is

decidable in S [Sho67, p. 45]. A formal system, S, is semidecidable if there is an algo-

rithm for recognizing the theorems of S. If given a theorem, the algorithm must halt

with a positive indication. If given a nontheorem, the algorithm need not halt, but if it

does, it must give a negative indication. S is undecidable if it is neither decidable nor

semidecidable. The propositional (statement) calculus is decidable. The predicate cal-

culus is semidecidable, although there are subsystems of first-order predicate logic, such

as monadic predicate logic (so-named because predicates can take only one argument),
that are decidable.

In the logical tradition, the distinction between syntax and semantics largely reflects

the distinction between formal systems and their interpretations, as studied by proof

theory and its semantic analog, model theory, respectively. An interpretation consists

of a (nonempty, abstract or concrete) domain of discourse and a mapping relative to

that domain that assigns a semantic value or meaning to each well-formed sentence

of the calculus, as well as to every well-formed constituent of such a sentence. For

example, an interpretation for a predicate calculus would assign a value to function and

predicate symbols, constants, and variables. The meaning or semantic value assigned

to a syntactically well-formed sentence of the predicate calculus would be a truth value,

either true or false, depending on the values assigned to its constituent parts. If the

description of a formal system includes semantic rules that systematize an interpretation

for each syntactically well-formed constituent, the calculus is said to be interpreted. 4

3GSdel's proof that arithmetic is incomplete if consistent used a proof-theoretic notion of complete-

ness.

aCarnap [Car58, pp. 102-3] defines a calculus as "a language with syntactical rules of deduction," an

interpreted language as "a language for which a sui_icient system of semantical rules is given," and an

interpreted calculus as % language for which both syntactical rules of deduction and semantic rules of

interpretation are given."

82 Chapter 6

6.1.1.2 Model Theory

An interpretation is a model for a formal system if all the axioms of the formal system

are true in that interpretation. Similarly, an interpretation is a model for a theory or

for a set of sentences if it is a model for the formal system in which the theory or the

set of sentences are expressed and all the sentences in the given theory or the given set

of sentences also valuate to true in that model. If a theory has an axiomatic charac-

terization, a model for the theory is necessarily a model for the axioms of the theory.

Most interesting theories have unintended (nonstandard) models, as well as intended

(standard) ones. For example, plane geometry is the standard model of the Euclidean

axioms, but not, as was believed before the discovery of the non-Euclidean geometries,

the only model. Similarly, the natural numbers are the standard or intended model

of the Peano axioms, although, again, not the only model [Kay91]. The fact that an

inconsistent system cannot have a model provides both a syntactic and semantic char-

acterization of consistency that can be usefully exploited. For example, it is typically

easier to demonstrate syntactically that a system is inconsistent, deriving a contradic-

tion from the axioms, than to use a meta-level argument to prove that the system has

no models. Conversely, it is generally easier to demonstrate semantically that a sys-

tern is consistent by exhibiting a model, than to show the impossibility of deriving a

contradiction from the given axioms.

Model theory is the study of the interpretations of formal systems. Of particular

importance are the concepts of logical consequence, validity, completeness, and sound-

hess. Definitions of these notions reveal the rich interplay between proof theory and

model theory. Let I be a set of interpretations for a calculus and ¢ be a sentence of the

calculus. ¢ is satisfiable (under I) if and only if at least one interpretation of I valuates

¢ to true. ¢ is (universally) valid, written _- ¢, if and only if every interpretation in I

valuates ¢ to true. 5 If every model of a set of sentences, S, is also a model of a sentence,

¢, then S is said to entail ¢, written S _- ¢.

Let ¢ be a sentence and F be a set of sentences ¢1,---, Cn of a formal system, S. S

is semantically complete with respect to a model M (weakly semantically complete) if

all (well-formed) sentences of S that are true in M are theorems of S. A formal system,

S, is sound if F _- ¢ whenever F L- ¢, that is, if the rules of inference of S preserve

truth. Semantic completeness is the converse of soundness; soundness establishes that

every sentence provable in S is true in S relative to M, and (semantic) completeness

establishes that every sentence true in S relative to M is provable in S. Both the

propositional calculus and the predicate calculus are sound and complete.

There is also a semantic characterization of independence. A given axiom, ¢, of a

formal system, S, is independent of the other axioms of S if the system, S', that results

from deleting ¢ has models that are not also models of (the whole system) S. Ideally,

5Arguably, for the purposes of formal methods, only those interpretations that make the theorems
of a formal system true, that is, only the models of the system are of interest. With this in mind, the
definitions of satisfiability and validity can be stated in terms of models rather than interpretations, as
done in [Rus93b, p. 223].

NASA- GB-O01-9 7 83

the syntactic and semantic notions of independence are provably equivalent for a given

system S. As noted with respect to the proof- and model-theoretic characterizations

of consistency, a semantic argument may be easier in some cases and a syntactic one

in others. However, it is apparently still an open question as to what properties a

system must possess to ensure that the syntactic and semantic characterizations of

independence are equivalent.

6.1.1.3 An Example of a First-Order Theory

Shoenfield's classical axiom system for the natural numbers, N, provides a nice illustra-

tion of a class of formal system known as a first-order theory [Sho67, pp. 22,3]. In the

following definition, A, B, and C are formulas and x and y are (syntactic) variables in

the given first-order language, f is an n-ary function symbol, and p is an n-ary predicate

symbol. A formal system, T, is defined as

• a first-order language

• the following logical axioms, as well as certain further nonlogical axioms

- propositional axiom: _A V A

- substitution axiom: Axial --+ 3xA

- identity axiom: x -- x

- equality axiom: xl = yl --+ ... --+ Xn = Yn _ fxl... Xn = fYl... Yn or

xl = Yl --+ • • • --+ xn = Yn _ pxl • • • Xn _ PYl • • •Yn

• the following rules of inference 6

- expansion rule: infer B V A from A

- contraction rule: infer A from A V A

- associative rule: infer (A V B) V C from A V (B V C)

- cut rule: infer B V C from A V B and _A V C

- 3-introduction rule: if x is not free in B, infer 3xA --+ B from A --+ B

The definition of T provides the logical apparatus necessary for specifying a (first-

order) theory. The only additions required are a specification of the theory's nonlogical

symbols and its nonlogical axioms. For example, Shoenfield's axiomatization of the

natural numbers is specified as a theory, N, with the following nonlogical symbols and

axioms [Sho67, p. 22].

• nonlogical symbols: the constant 0, the unary function symbol S (denoting the

successor function), the binary function symbols + and •, and the binary predicate

symbol <.

6An occurrence of x in A is bound in A if it occurs in a part of A of the form 3xB; otherwise, it is
free in A [Sho67, p. 16].

84 Chapter 6

nonlogical axioms

N1. Sx¢O

N2. Sx = Sy ---+x = y

N3. x+0=x

N4. x + Sy = S(x + y)

N5. x-0=0

N6. x . Sy = (x . y) + x

N7. _(x < 0)

N8. x<Sye+x<yVx=y

Ng. x<yVx=yVy<x

6.1.2 A Brief History of Automated Proof

The automation of mathematical reasoning coincides with the emergence of the field

of Artificial Intelligence (AI), whose early pioneers embarked on a program to (me-

chanically) simulate human problem solving. 7 By 1960, theorem provers for the full

first-order predicate calculus had been implemented by Paul Gilmore [Gil60] and by

Hao Wang [Wan60b, Wan60a] in the United States, and by Dag Prawitz [PPV60] in

Sweden. Although this mechanization constituted an important proof of concept, the

practical utility of the theorem provers was limited, due to the combinatorial explo-

sion of the search space encountered in proofs of anything other than relatively simple
theorems.

Following Shankar's exposition [Sha94], it is useful to distinguish three approaches

in the subsequent development of automatic theorem proving and proof checking: res-

olution theorem provers, nonresolution theorem provers, and proof checkers. This dis-

cussion focuses solely on developments in Europe and the United States. There is

also significant work in automated theorem proving in the region formerly known as

the USSR and in the People's Republic of China. The Chinese have been particularly

active in the area of decision procedures for geometrical applications [BB89, p. 27].

The first efficient mechanization of proof grew out of work done by Alan Robinson

in the early 1960s and published in 1965 [Rob65]. Robinson combined procedures inde-

pendently suggested by Davis and Putnam and by Prawitz to automate a significantly

more efficient proof procedure for the first-order predicate calculus known as resolution.

The key notion from Prawitz was unification, an algorithm that gives the unique, most

general substitution that creates a complementary pair of literals P and _P. Reso-

lution is a complete refutation procedure for first order logic (see Section 6.1.3.1.3).

After its introduction in the mid 1960s, resolution was a focal point for activity in au-

tomated theorem proving, yielding numerous extensions and optimizations. By 1978,

7MacKenzie [Mac95] and Bl£sius and Biirckert [BB89] provide interesting histories of post-Euclidean
developments in automated reasoning.

NASA- GB-O01-9 7 85

Loveland's textbook on automated theorem proving documented some 25 variants of

resolution [Mac95, p. 14]. Despite this considerable activity and a steady increase in

computing power, the early resolution theorem provers suffered from the same limi-

tation that had plagued the previous generation of mechanical proof procedures: the

combinatorial explosion of the proof search space.

The 1970s also witnessed the emergence of logic programming, originally attributed

to Kowalski and Colmerauer [Kow88]. Colmerauer and his colleagues implemented a

specialized resolution theorem prover called Prolog (abbreviating the French "Program-

mation en Logique") that implemented Kowalski's procedural interpretation of Horn

clause logic s. The result was a theorem proving system that could be used as a pro-

gramming language [SS86].

Despite a decline in the 1970s due largely to disappointing performance, research

in resolution theorem proving continued. Although unification remained the crucial

algorithm, resolution provers added sophisticated heuristics, data structures, and opti-

mizations to manage combinatorial explosion. The result has been increasingly efficient,

powerful systems. In the 1970s and early 1980s, research in resolution theorem prov-

ing existed primarily at Argonne National Laboratory, where Robinson had originally

been introduced to automatic theorem proving. Argonne's Aura (Automated Reasoning

Assistant) and, more recently, Otter [WOLB92] systems have successfully proven not

only known theorems, but also open conjectures in several fields of mathematics. In

addition to Otter, current state-of-the-art resolution provers include SETHEO [LSB92]

and PTTP [Sti86]. Paulson characterizes Otter, SETHEO, and PTTP as "automatic

theorem proving at its highest point of refinement" [Pau97] and notes their extremely

high inference rates, their efficient use of storage, and their ability to prove many of the

toughest benchmark problems.

Resolution methods yield proofs that are not readily understood by humans. This

perceived weakness, as well as the difficulty of combining resolution with nonlogical

inference techniques such as induction, led researchers to pursue other approaches, in-

cluding various levels of human interaction and a renewed interest in heuristics. In the

1970s, Woody Bledsoe and his colleagues at the University of Texas began work in "non-

resolution theorem-proving," pursuing proof procedures that yielded more natural and

powerful proofs for mathematical theorems, as well as heuristics (like those of the early

AI pioneers) that produced human-like proofs. Although Bledsoe initially developed an

automated prover for set theory that combined both resolution and heuristics, he later

replaced resolution with a more "natural" procedure, augmented with a "limit heuris-

tic" for calculus proofs, algebraic simplification, and linear inequality routines. The

resulting prover successfully proved theorems in elementary calculus that had stymied

existing resolution-style provers [Mac95].

Robert Boyer and J Strother Moore have collaborated on several influential theorem

provers that use heuristics to develop proofs by induction and rewriting. The Nqthm

series of provers [BM79,BM88], and its successor ACL2 [KM94,KM96], are highly auto-

SA clause is Horn if it has at most one positive literal, for example, '_P(x) V '_Q(x) v R(x).

86 Chapter 6

mated, but require user guidance to accomplish difficult proofs. In the hands of skilled

practitioners, the Boyer-Moore prover has been used to prove program and hardware

correctness [BHMY89, Hun87], as well as mathematical theorems, including the auto-

mated proof of G5del's incompleteness theorem undertaken by Shankar for his doctoral

dissertation [Sha94].

Other productive approaches to automatic theorem proving have included condi-

tional rewriting as found in the Rewrite Rule Laboratory (RRL) system [KZ89] and

matings as used by Andrews and his colleagues to develop a theorem prover for higher-

order logic [AMCP84].

The distinction between theorem provers and proof checkers is tenuous, typically

reflecting the intended use of the system or the degree of automation relative to other

systems, rather than hard and fast differences. 9 Nevertheless, certain systems are more

consistently identified as proof checkers. Automath, developed by de Bruijn and his

colleagues at the Technische Hogeschool in Eindhoven, The Netherlands, was one of

the earliest and most influential proof checkers, originating ideas subsequently used by

several modern languages and inference systems [Sha94, p. 19]. Automath provided a

grammar whose rules encoded mathematics in a way that allowed mechanized checks of

correctness for Automath statements, as illustrated in [vBJ79].

The LCF (Logic for Computable Functions) system is another influential proof

checker. In LCF, axioms are primitive theorems, inference rules are functions from

theorems to theorems, and typechecking guarantees that theorems are constructed only

by axioms and rules [Pau91, p. 11]. There are higher-order functions known as tactics

and control structures known as tacticals (see Section 6.1.3.3), yielding a programmable

system in which the user determines the desired level of automation. LCF has been

used to verify program properties [GMW79] and to check the correctness of a unifica-

tion algorithm [Pau84]. Several well-known systems have evolved from LCF, including

HOL, Nuprl, and Isabelle. HOL (Higher-Order Logic) is a widely used system with

extensive libraries that is employed primarily for verification of hardware and real-time

systems. Nuprl is based on constructive type theory and was developed at Cornell Uni-

versity by Joseph Bates and Robert Constable as a mechanization of Bishop's program

of constructively reconstructing mathematics [Sha94, p.19]. The Nuprl system has been

used primarily as a research and teaching tool in the areas of constructive mathematics,

hardware verification, software engineering, and computer algebra. Isabelle is a generic,

interactive theorem prover based on the typed lambda calculus, whose primary infer-

ence rule is a generalization of Horn-clause resolution. Isabelle supports proof in any

logic whose inference rules can be expressed as Horn clauses [Pau97]. Isabelle represents

a synthesis between two largely distinct traditions in automated reasoning: resolution

theorem proving and interactive theorem proving.

9For example, Shankar variously identifies both Nqthm [Sha94] and PVS [SOR93] as theorem provers
and proof checkers.

NASA- GB-O01-9 7 87

6.1.3 Techniques Underlying Automated Reasoning

The preceding discussion identified major proving traditions including resolution, equa-

tional or rewrite systems, constructive type theory methods, Boyer-Moore-style systems,

and a variety of other methods loosely characterizable as interactive. The resulting sys-

tems can be classified in various ways, including the interelated dimensions suggested by

Gordon IGor]: type of logic supported, extensibility, degree of automation, and close-

ness to underlying logic. Generic theorem provers can be configured for a variety of

logics while specialized theorem provers exploit a particular application-oriented logic

(for example, temporal logic model checkers) or contain features optimized for selected

applications. There are several variations on extensibility; a theorem prover may not

be extensible, or it may offer a metalogic (allowing the user to program the underlying

logic), an extendable infrastructure (allowing the user to program sequences of proof

steps), a reflective capability (allowing the prover to reason about its own soundness

and thereby the soundness of proposed extensions), or a customizable syntax (ranging

from alternative notations to parser support). In general, specialized systems such as

model checkers are more automatic than generM-purpose provers, all of which use some

degree of automation. Degree of automation is also influenced by the closeness of proof

to the underlying logic. Systems in which theorem proving differs little from the process

of formal proof in the underlying logic tend to be more automated than those in which

the difference is greater.

6.1.3.1 Calculi for First-Order Predicate Logic

In principle, inference rules may be used in one of two ways [BB89]. Starting from the

logical axioms, inference rules may be applied until the formula to be proven (valid or

unsatisfiable, depending on whether the calculus is positive or negative, respectively) is

derived. This approach is called a deductive calculus. Alternatively, starting from the

formula whose validity or unsatisfiability is to be shown, inference rules may be applied

until logical axioms are derived. This second approach is termed a test calculus. The

relationship between deductive and test calculi is analogous to that between forward and

backward chaining state transition systems. As these remarks suggest, there is a variety

of different calculi for first-order predicate logic, each offering a different perspective on

the nature of validity [BE93]. The Gentzen calculus, including the variant known as the

sequent calculus, is a positive deductive calculus, whereas Robinson's resolution calculus

is a negative test calculus. These two calculi are introduced following a brief discussion

of normal forms for predicate logic formulas. A survey of logical calculi may be found

in [BE93].

6.1.3.1.1 Normal Forms

Normal forms are standardized formats intended to make predicate logic formulas

easier to understand and manipulate. This section considers two such forms: prenex

normal form and skolem normal form. Valid formulas of the form A _ B, including

88 Chapter 6

important (tautological) equivalences such as the laws of quantifier distribution and

the laws of quantifier movement, may be used (in conjuction with a variable renaming

rule to avoid unintentional variable binding) as value-preserving transformations. These

transformation rules yield a logically equivalent prenex form in which all quantifiers oc-

cur on the left, in front of the quantifier-free matrix [BB89]. Skolemization, named after

the Norwegian mathematician Thoralf Skolem, yields a normal form that is particularly

useful because it explicitly represents quantificational dependencies of assignments to

variables. Following an explanation in [BB89], a formula Vxl,..., xn3y5 in prenex form

may be transformed into Vxl,..., xnS*, where jr, is obtained from jr by replacing each

free occurrence of y with a Skolem function, fy, of the form fy(Xl,..., xn). The process

of skolemization is not model-preserving, that is, a formula and its skolemized form are

not equivalent. However, a formula is satisfiable (unsatisfiable) just in case its skolem-

ized form is. Since only universal quantifiers remain after skolemization, the quantifiers

are often implicitly assumed, yielding formulas of the form jr,.

There are various skolemization strategies. The method described here begins with

a formula in prenex form, but it is also possible to skolemize a formula that is not in

prenex form by keeping track of the essential "parity" of the quantifier. Parity refers

to the number of negations in whose scope the quantifier occurs. Almost all mechanical

theorem provers use some form of skolemization.

6.1.3.1.2 The Sequent Calculus

The sequent calculus is a variant of the deductive calculus developed for his disserta-

tion by the German logician Gerhard Gentzen [Gen70]. Gentzen was interested in using

syntactic inference rules to model mathematical reasoning, and he defined the sequent

calculus to make the assumptions on which a formula depended more transparent. This

tranparency yields a calculus that is particularly suited to computer-assisted proof be-

cause the information relevant to a given part of the proof is localized. Two additional

advantages attributed to the sequent calculus include the intuitively plausible nature of

its inference rules and their symmetric construction, yielding relatively systematic and

natural proof construction.

A sequent is written F F A, meaning AF D VA, where F is a (possibly empty) list

of formulas {AI,..., Am} and A is a (possibly empty) list of formulas {BI,..., Bn}. In

a sequent F F A, the formulas in F are called the antecedents and the formulas in A

are called the succedents or consequents. Intuitively, the conjunction of the antecedents

should imply the disjunction of the succedents, that is, A1 A ... A A m D B1 V ... V B n.

A sequent calculus proof can be viewed as a tree of sequents whose root is a sequent of

the form F A, where A is the formula to be proved and the antecedent of the sequent is

empty. The proof tree is generated by applying inference rules of the form

F1 l- A1 "'" F n l- A n
N

FFA

NASA- GB-O01-9 7 89

Intuitively, the rule named N takes a leaf node of a proof tree of the form F F A

and adds the n new leaves specified in the rule. If n is zero, that branch of the proof
tree terminates.

The propositional inference rules consist of the Propositional Axiom and rules for

conjunction (A), disjunction (V), implication (D), and negation (9). The Propositional

Axiom rule applies when the same formula appears in both the antecedent and succe-

dent, corresponding to the tautology (F A A) D (A V A), where F and A consist of the

conjunction and disjunction, respectively, of their elements.

Ax

F, A P A, A

There are two rules for each of the propositional connectives and for negation, cor-

responding to the antecedent and consequent occurrences of these connectives. The

negation rules simply state that the appearance of a formula in the antecedent is equiv-

alent to the appearance of its negated form in the succedent, and vice versa.

FFA, A ,p F, AFA p_
F, _AFA FF_A, A

The inference rules _ F and F _ are often referred to as the rules for "negation on the

left" and "negation on the right," respectively. Negation on the left rule can be derived

as follows. Using the identity (X D Y) -- (_X V Y), the antecedent can be written

_F V (A V A), which is equivalent to (_F V A) V A, and to _(_F V A) D A. Invoking

one of De Morgan's Laws (_(X V Y) -- (_X A _Y)), _(_F V A) D A is equivalent to

(F A _A) D A, which is an interpretation of the succedent.

The same symmetric formulation and naming conventions are used for the other

rules, including those for the binary connectives. The rule for conjunction on the left

is a consequence of the fact that the antecedents of a sequent are implicitly conjoined;

the rule for conjunction on the right causes the proof tree to divide into two branches,

requiring a separate case for each of the two conjuncts.

A, B, FFA FFA, A FFB, A
AI- I-A

AAB, FFA F k AAB, A

The rules for disjunction are duals of those for conjunction.

A, FFA B, FFA FFA, B, A
VF FV

AVB, FFA F FAVB, A

The rule for implication on the right is a consequence of the implication "built in"

to the interpretation of a sequent. The rule for implication on the left splits the proof

into two branches analogous to the two cases encountered with the rules for conjunction

on the right and disjunction on the left. Note that one case of the implication on the

left rule requires the antecedent to the implication be proved and the other case allows

the consequent of the implication to be assumed.

90 Chapter 6

FFA, A B, FFA F, AFB, A
DF FD

ADB, FFA FFADB, A

To illustrate propositional reasoning in the sequent calculus, consider the following

proof of

(P _ Q _ n) _ (P AQ _ n).

reproduced from [Rus93b, pp. 231-233]. The implies symbol D associates to the right

and binds less tightly than A. This formula is actually an instance of the law of expor-
tation.

The first step is to contruct the goal sequent

(P _ Q _ n) _ (P AQ _ n).

and then seek an applicable inference rule. There is only one choice in this case: the

rule for implication on the right (with [A +-- (P D Q D R), B +-- (P A Q D R)] and F

and A empty).

(P _ Q _ n) _ (P AQ _ n)
FD

I- (PDQDR) D (PAQDR)

Considering the sequent above the line

(P _ Q _ n) e (P AQ _ n)

there are two choices for the next step: implication on the left or implication on the

right. Implication on the left will cause the proof tree to branch. Since it is usually best

to delay branching as long as possible, implication on the right is the best option (this

time with [F +-- (P D Q D R), A +-- P A Q, B +-- R] and A empty)

(P _ Q _ n), (P AQ) e n
(P _ Q _ n) e (P AQ _ n)

I-D

Focusing once again on the sequent above the line

(P _ Q _ n), (P AQ) e n

there are two options: implication on the left or conjunction on the left. As in the last

step, the strategy of delaying branching as long as possible narrows the choice. Applying

conjunction on the left yields

(P D O D R),P,Q F R

(P _ Q _ n), (P AQ) _ n
AF

Now the sequent above the line is

(P D O D R),P,Q F R

NASA-GB-O01-97 91

and the only choice is to use the rule for implication on the left

(P D Q D R),P,Q F-R
Dr-

The right branch can be closed immediately 1°

Ax

P,Q_P,R

The left branch requires another application of the rule for implication on the left:

R,P, QeR P,Q eQ, R

(Q _ n),p,Q _ n
Dr-

The left and right branches can then be closed:

Ax

R,P, QeR

Ax

P, QI-Q,R

Since all the branches are closed, the theorem is proved.

The preceding steps can be collected into the following "proof tree" representation:

Ax Ax
R,P, QF-R P, QF-Q,R

DI-
(Q _ n),p,Q _ n

(P _ Q _ n),p,Q _ n
At-

(P _ Q _ n), (P AQ) _ n
I-D

(P _ Q _ n) _ (P AQ _ n)

(P _ Q _ n) _ (P A Q _ n)

Ax

P,Q_P,__

_-D

First-order sequent calculus extends the propositional sequent calculus presented

above with inference rules for universal and existential quantification and with an in-

ference rule for nonlogical axioms, u In the statement of the quantifier rules, a is a new

constant (that is, a constant that does not occur in the consequent of the sequent) and
t is a term.

l°Strictly speaking, it is first necessary to use an Exchange rule to reorder the formulas in the an-

tecedent, and similarly for closure of the left branch, below. The Exchange rules are introduced at the

end of this section.

llTechnically, it is also convenient to modify the propositional axiom to allow not only for the case

where the formula in the antecedent is the same as that in the consequent, but also for the case of two

syntactically equivalent formulas, that is, formulas that are the same modulo the renaming of bound

variables.

92 Chapter 6

r, A[x t] V r A[x a], V
r, (W: A) r (W: A),

F, A[x +- a] P A 3 p r P A[x +- t], A p3
F, (3x: A) P A F P (3x: A), A

The quantifier rules are the sequent calculus analog of skolemization (cf. Sec-

tion 6.1.3.1.1). The basic idea is that to prove a universally quantified formula, it

is sufficient to show that the formula holds for an arbitrary constant (a), and to prove

an existentially quantified formula, it is only necessary to show that the formula holds

for a given term (t). The four quantifier rules reflect the underlying duality between

universal and existential quantification.

The rule for nonlogical axioms is used to terminate a branch of the proof tree when

a nonlogical axiom or previously proved lemma appears in the consequent of a sequent.

F P A, A Nonlog-ax

where A is a nonlogical axiom or previously proved lemma.

For convenience in developing proofs, it is useful to provide an additional rule called

"cut" as a mechanism for introducing a case-split or lemma into the proof of a sequent

F P A to yield the subgoals F,A P A and F P A, A. The subgoals are equivalent

to assuming A along one branch and having to prove it on the other. Alternatively,

applying the rule for negation on the right, the subgoals are equivalent to assuming A

along one branch and _A along the other.

A, FPA FPA, A

FPA
Cut

The Cut rule can be omitted; a well-known result in proof theory, the Cut Elimi-

nation Theorem (also known as Gentzen's Hauptsatz), establishes that any derivation

involving the cut rule can be converted to another (possibly much longer proof) that

does not use cut. Since cut is the only rule in which a formula (A) appears above the

line that does not also appear below it, it is the only rule whose use requires "inven-

tion" or "insight"; thus, the cut elimination theorem provides the foundation for another

demonstration of the semi-decidability of the predicate calculus [Rus93b, p. 244].

Finally, there are four structural rules that simply allow the sequent to be rearranged

or weakened. These rules have the same status as the Cut rule; they can also be omitted.

The Exchange rules allow formulas in the antecedent and consequent to be reordered.

F_, B, A, F2 P A F I- A1, B, A, A2
XP PX

F1, A, B, F2 P A F I-A1, A, B, A2

NASA- GB-O01-9 7 93

The Contraction rules allow multiple occurrences of the same sequent formula to be

replaced by a single occurrence. 12

A,A, FPA CP FPA, A, A p C
A, FPA FPA, A

6.1.3.1.3 The Resolution Calculus

The resolution calculus is a negative test calculus for formulas in clausal forml3; it

contains a single logical axiom and uses only one rule of inference, the resolution rule.

The single axiom is an elementary contradiction denoted by the empty clause ([_). In

its simplest form, the resolution rule may be viewed as a special instance of the cut rule

(of the sequent calculus) in which all single formulas are literals [BB89, p. 56]. Using

notation from [BB89], the resolution rule is defined as follows.

clause1 : L, K_,... ,K n

clause2 : _L, M1,..., Mm

resolvent : K1,...,Kn M1,...,Mn

where clauses 1 and 2 are referred to as the parent clauses of the resolvent and L and
_L are the resolution literals.

A generalization of this rule allows an instantiation of the formulas in terms of

a substitution that maps variables to terms uniformly across both resolution literals.

Using the same notation, the general resolution rule is expressed as shown below, where

a represents a substitution that makes the atoms L and L I equal, that is, aL = aLI.

clause1 : L, KI,..., Kn

clause2 : _L I, M1,..., Mm

resolvent : aK1,...,aKn aM1,...,aMn

If a substitution, a exists for two expressions, the expressions are said to be unifiable and

the substitution is called a unifier for the two expressions. Given a pair of expressions,

there are distinguished unifiers, known as the most general unifiers from which all other

unifiers may be derived by instantiation.

The following examples are taken from [BB89]. The terms x and f(y) are unifiable.

The substitution {x +-- f(y), y +-- a} is a unifier for x and f(y), although it is not a

most general one, since it can be obtained from the most general unifier {x +-- f (y)} by

further instantiating y with a. There are two equivalent most general unifiers for the

pair of terms f(x,g(x)) and f(y,g(y)): {x +-- y} and {y +-- x}, which differ only with

respect to variable names. The terms x and f(x) are not unifiable. Neither are the

terms g(x) and f (x).

12The structural rules (Contraction and Exchange) are sometimes formulated in terms of a single

weakening rule.

13That is, a disjunction of literals, where a literal is a proposition or a negated proposition. Quan-

tifiers are not permitted. Universal quantifiers are implicit, and existential quantifers are replaced by

Skolem functions as described in Section 6.1.3.1.1. For example, in clausal form, Vx3yR(x,y) becomes

R(x, f(x)).

94 Chapter 6

Resolution is a complete refutation procedure for first-order logic. If a sentence is

false under all interpretations over all domains--that is, unsatisfiable, then resolution

will terminate with the empty clause indicating a contradiction has been derived. If

the negation is unsatisfiable, the original theorem is true. If the original theorem is

not true, resolution may not terminate. The proof of the completeness of resolution

is based on a result from Jacques Herbrand's 1930 dissertation. Roughly, Herbrand's

theorem states that in proving a set of clauses, S, unsatisfiable, the only substitutions

that need to be tried are those drawn from the set, H, of all variable-free terms formed

from the functions (including constant functions) occurring in S. The set, H, is known

as the Herbrand Universe of S. Since H is always either finite or countably infinite, a

contradiction, if one exists, will always be found [CL73].

Resolution theorem provers can be highly effective in some domains. In general,

they have not been used in formal methods because it has been difficult to combine res-

olution with induction and with the additional first-order theories necessary for formal

methods applications. Furthermore, resolution methods do not readily support proof

exploration and typically yield proofs that are not easily understood by humans. Nev-

ertheless, fundamental techniques from resolution-based provers, such as highly efficient

unification algorithms, have been incorporated in most modern theorem provers.

6.1.3.2 Extending the Predicate Calculus

The predicate calculus is not sufficient for most applications of formal methods, which

typically require the addition of first-order theories such as equality, arithmetic, simple

computer science datatypes (lists, trees, arrays, and so forth), and set theory. These

four theories are basic to most applications. Particular applications may benefit (sig-

nificantly) from the inclusion of additional first-order theories. Formal methods also

require support for induction. In general, methods for automating inductive proofs are

less well-developed, and user guidance is typically required for such proofs. A discussion
of the current status of automated induction and the role of induction in formal meth-

ods appears in [Rus96]. The discussion includes an interesting fragment drawn from a

specification of Byzantine fault-tolerant clock synchronization.

The next three sections summarize some of the issues involved in developing first-

order theories for equality and arithmetic, and introduce the topic of combinations of
theories.

6.1.3.2.1 Reasoning about Equality

The fundamental notion of equality is that if x and y are equal, then x and y have

all properties in common, that is, x -- y if and only if, x has every property that y

has and, conversely, y has every property that x has. This idea was first formulated by

Leibniz and is also referred to as "Leibniz's Law" [Tar76, p. 55]. Equality is reflexive,

symmetric, and transitive and is therefore an equivalence relation. However, equality

also satisfies the property of substitutivity (that is, equals may always be substituted

for equals) and is thereby distinguished from mere equivalence relations.

NASA- GB-O01-9 7 95

A model for a first-order theory with equality that interprets "=" as the identity

relation on the domain of interpretation is referred to as a normal model. Since it is

possible to show that a first-order system with equality has a model if and only if it

has a normal model, nothing is lost by restricting the focus to a normal model. An

initial model is one without "confusion" or "junk," where confusion and junk may be

informally defined as the ability to assign elements to terms in a way that simultaneously

preserves as distinct those terms not required to be equal by the axioms (no confusion)

and leaves no element unassigned (no junk).

The sequent calculus rules for equality directly encode the axiom for reflexivity

(that states that everything equals itself) and Leibniz's rule. The rules of transitivity

and symmetry for equality can be derived from these rules. The notation A[e] denotes

occurrences of e in A in which no free occurrences of variables of e appear bound in A[e]

and, similarly, for A[e]. mathbfRefl additionally requires that a and b be syntactically

equivalent, that is, a - b,

a = b,r[b] Zx[b]
F L- a b, A Refl if a -- b= a = b, r[a] _- A[a] nepl

Reasoning about equality is so basic that most theorem provers use very efficient

methods to handle the chains of equality reasoning that invariably arise in automated

theorem proving. Examples include efficient algorithms for computing the congruence

closure relation on the graph representing the terms in a ground formula 14 [Sho78b,

DST80, NO79].

Equations also commonly arise in the form of definitions, such as that for the absolute
value functionl5:

Ixl=ifx<0then -x elsex.

One way to prove a theorem such as la + bI _< lal + Ibl is to expand the definitions

and then perform propositional and arithmetic reasoning. "Expanding a definition"

involves finding a substitution for the left side of the definition that causes it to match

a term in the formula (for example, [x +-- a + b] will match Ixl with la + bl) , and then

replacing that term by the corresponding substitution instance of the right side of the

given definition--for example,

la+b I=ifa+b<0then -(a+b) elsea+b.

Expanding definitions is a special case of the more general technique of rewriting. "The

basic idea is to impose directionality on the use of equations in proofs; ...directed

equations are used to compute by repeatedly replacing subterms of a given formula

with equal terms until the simplest form possible is obtained." [DJ90] The notion of

directed equation refers to the fact that although equations are symmetric--a = b

means the same thing as b = a--rewriting imposes a left-to-right orientation, hence

14A ground formula is one in which there are no occurrences of free variables.

15This and the following example are reproduced from [Rus93b].

96 Chapter 6

equations viewed with this orientation are generally called rewrite rules. Rewriting

may be used with arbitrary equations provided the free variables appearing on the

right side of each equation are a subset of those appearing on its left. The process of

identifying substitutions for the free variables in the left side of the formula of interest

as a prerequisite to rewriting is called matching. Matching is sometimes referred to as

"one way" unification; although the process is essentially the same, only substitutions

for the variables in the equation being matched are of interest.

Rewriting may be automated or performed by the user. Two desirable properties

of rewrite rules are finite termination and unique termination, also known as Church-

Rosser. A set of rewrite rules has the finite termination property if rewriting always

terminates. A set of rewrite rules is Church-Rosser if the final result after rewriting

to termination is independent of the order in which the rules are applied. There are

effective heuristic procedures for testing for the finite and unique termination properties,

including Knuth-Bendix completion [KB70, DJ90], which can often be used to extend

a set of rewrite rules that is not Church-Rosser into one that is. A theory that can be

specified by a set of rewrite rules with both the finite and unique termination properties

may be used as a decision procedure for that theory. Moreover, any such decision

procedure is sound and, for ground formulas, complete. However, deducing disequalities

is sound and complete only for the initial model. Therefore, systems that use rewriting

to normal form as their primary or only means of deduction typically use an initial

model semantics, whereas systems that use rewriting in conjuction with other methods

typically use a classical semantics and (only) infer disequalities axiomatically.

There are several variations on rewriting, including order-sorted rewriting, condi-

tional rewriting, priority rewriting, and graph rewriting. A description of these variants

appears in the comprehensive survey of rewrite systems provided in [DJ90].

Term rewriting is highly effective, and essential to the productive use of theorem

proving for formal methods applications. It serves as the primary means of deduction

in Affirm [GMT+80, Mus80], Larch [wSJGJMW93], and RRL [KZ89] and is one of the

most important techniques in the Boyer-Moore provers IBM88, KM96]. Rewriting may

also be used for computation [GKK+88]. The paramodulation techniques [RW69] used

in resolution are similar to rewriting.

6.1.3.2.2 Reasoning about Arithmetic

Formal methods applications typically involve arithmetic expressions and relations

over both real and natural numbers, and both interpreted and uninterpreted function

symbols. The ubiquity and often the complexity of this arithmetic make efficient deduc-

tive support for arithmetic essential to the productive use of formal methods [Rus96].

Integer arithmetic is sufficiently important that some formal methods systems include

decision procedures for the quantified theory of integer arithmetic, often referred to

as Presburger arithmetic after the Polish mathematician who first studied these arith-

metics in the late 1920s. The decidable fragment essentially includes linear arithmetics

with addition, subtraction, multiplication, equality, the "less than" predicate (<), and,

NASA- GB-O01-9 7 97

by simple constructions, the predicates >, _<, _>. Classic Presburger arithmetic, which

contains neither function symbols nor anything other than simple constants, is decid-

able. However, given the importance of function symbols and the fact that they may be

introduced into formulas in which they do not originally appear through the process of

skolemization, it is easy to appreciate the tension between efficiency (decidability) and

expressiveness. Tools for formal methods often opt to restrict the arithmetic decision

procedures to the ground (that is, propositional) case, where the combination of linear

arithmetic with uninterpreted function symbols is decidable [CLS96].

6.1.3.2.3 Combining First-Order Theories

One of the challenges in designing a truly useful theorem prover or proof checker is

combining decidable theories both with one another and with user interaction. There

are algorithms dating back to the late 1970s for combining decision procedures, includ-

ing Nelson-Oppen [NO79] and Shostak [Sho78b, CLS96]. The Nelson-Oppen algorithm

combines decision procedures for two disjoint ground theories (for example, linear arith-

metic and lists) by "introducing variables to name subterms and iteratively propagating

any deduced equalities between variables from one theory to another" [CLS96]. Shostak

combines theories that are canonizable (that is, can be converted to a canonical or nor-

mal form) and algebraically solvable using an optimized implementation of the congru-

ence closure algorithm for ground equality over uninterpreted function symbols [CLS96].

Since Shostak's approach appears to be very efficient, but is restricted to algebraically

solvable theories, there is some interest in combining it with Nelson-Oppen.

Most automated theorem provers and proof checkers minimally contain implementa-

tions of decision theories for propositional logic, equality, and linear arithmetic. Cyrluk

et al. note that the method used to combine decision procedures is more critical to

the overall efficiency of the system than the efficiency of any single decision proce-

dure [CLS96]. Therefore, it is important that new decision procedures, such as those

that arise in response to needs identified in formal methods applications, work effectively
in combination with other theories.

6.1.3.3 Mechanization of Proof in the Sequent Calculus

This section illustrates how the proof of (P D Q D R) D (P A Q D R) from Sec-

tion 6.1.3.1.2 might proceed with the help of an interactive theorem prover built on the

sequent calculus style of reasoning. The presentation assumes that the formula has been

introduced to the toolset and given the name "theorem_l." Invoking a proof attempt on

this theorem places the user at the theorem prover's interactive interface. Intermediate

sequents developed during the course of the proof are displayed, allowing the user to

guide the proof at each step.

Beginning proof of "theorem_l":

Antecedents:

98 Chapter 6

None

Consequents:

Formula i: (P => (Q => R)) => ((P _ Q) => R)

The imaginary prover used in this example displays sequents in the format shown above.

Actual provers use similar formats, although they are usually less verbose.

The theorem proveffs interaction style is based on the user's entry of a command to

invoke a proof step, and the proveffs display of the results of that command. Application

of inference rules is the main type of command, with various supporting utility functions,

such as proof status and proof display commands, provided as well.

Step i: apply-rule "implies-right"

Applying rule "implies-right" to the current sequent yields:

Antecedents:

Formula i:

Consequents:

Formula i:

P => (O => R)

(P _ Q) => R

The user would type the command after the "Step 1:" prompt shown above. In this

case, the inference rule causes a new sequent to be generated, as shown.

Step 2: apply-rule "implies-right"

Applying rule "implies-right" to the current sequent yields:

Antecedents:

Formula i: P => (O => R)

Formula 2: P _ O

Consequents:

Formula i: R

A second application of the "implies-right" rule creates multiple antecedents. De-

pending on the formulas involved, this might mean future commands could apply to

more than one formula. The prover would have to pick one by default or require the

user to specify the formula.

Step 3: apply-rule "and-left"

NASA- GB-O01-9 7 99

Applying rule "and-left" to the current sequent yields:

Antecedents:

Formula 1: P => (Q => R)

Formula 2: P

Formula 3: Q

....... >

Consequents:

Formula i: R

At this point, the proof has progressed without branching, but case splitting will

now be required. The next rule application causes branching in the proof tree, for which

the prover supplies suitable node numbers to keep track of current and future locations.

Step 4: apply-rule "implies-left"

Applying rule "implies-left" to the current sequent produces

two cases, the first of which, case 4.1, is as follows:

Antecedents:

Formula i: Q => R

Formula 2: P

Formula 3: Q

Consequents:

Formula i: R

Only one branch can be pursued at a time. The prover will automatically return to the

second branch after the current one is completed.

Case 4.1, step i: apply-rule "implies-left"

Applying rule "implies-left" to the current sequent produces

two cases, the first of which, case 4.1.1, is as follows:

Antecedents:

Formula i: R

Formula 2: P

Formula 3: Q

Consequents:

Formula i: R

100 Chapter 6

A second application of the same rule causes further case splitting. Systematic naviga-

tion of the proof tree helps the user keep his or her bearings.

The current branch can be terminated by applying the Propositional Axiom that

acknowledges when the sequent is a tautology. Normally, a user need not explicitly

invoke this rule; most provers will recognize such opportunities and apply the rule

automatically.

Case 4.1.1, step 1: apply-rule "prop-axiom"

Applying rule "prop-axiom" to the current sequent completes the

proof of case 4.1.1.

Resuming with case 4.1.2:

Antecedents:

Formula 1: P

Formula 2: O

Consequents:

Formula i: O

Formula 2: R

After dispensing with one branch of case 4.1, the prover presents the user with the other

branch, and the "prop-axiom" rule applies again.

Case 4.1.2, step 1: apply-rule "prop-axiom"

Applying rule "prop-axiom" to the current sequent completes the

proof of case 4.1.2. This also completes the proof of case 4.1.

Resuming with case 4.2:

Antecedents:

Formula 1: P

Formula 2: O

Consequents:

Formula 1: P

Formula 2: R

After finishing all of case 4.1, the prover pops back up to case 4.2 to finish off the

only remaining branch of the proof.

NASA-GB-O01-97 101

Case 4.2, step 1: apply-rule "prop-axiom"

Applying rule "prop-axiom" to the current sequent completes the

proof of case 4.2. This also completes the proof of "theorem_l"

Q.E.D.

Recognizing that all branches of the tree have resulted in valid proofs, the prover an-

nounces the successful completion of the overall proof.

Although this example has been cast in terms of a fictitious theorem prover, many

actual provers follow a similar style of interaction. Level of automation, and therefore

the nature of the interaction, varies considerably from one prover to another. For

example, the level of automation may make it unnecessary to invoke rules at the level of

detail presented here. Although the prover typically builds the full proof tree, the user

generally sees only those portions of the tree requiring user guidance. Trivial cases are

typically not displayed, although there may be a facility for revisiting both the implicit

and explicit steps of a proof. On first attempt, most putative theorems attempted are

incorrect, that is, they are not in fact theorems. Therefore it is at least as important

that an automated deduction system facilitate the discovery of error, as that it should

efficiently prove true theorems.

In addition to mechanizing routine manipulations, automated deduction systems

should reduce the low-level interaction and repetitive tedium involved in large proofs.

To this end, many interactive provers provide higher-order functions known as tactics

and control structures known as tacticals that allow simple tactics to be combined into

more complex ones. Paulson [Pau92, p. 456] notes that ideally tactics should capture the

control structures typically used in describing proofs. He also remarks that, in practice,

tactics often do not work at the level of proof description, but rather at a somewhat

lower level. Nevertheless, tacticals potentially allow the user to perform hundreds of

inferences with a single command. The concept and implementation of tactics and

tacticals varies from prover to prover, but all share the idea that a theorem prover

should be programmable. The challenge in using any automated reasoning system is to

learn to use the automation effectively by exploiting the system's strengths and realizing
its limitations.

Given the number and diversity of automated reasoning systems, the question invari-

ably arises as to which system is most appropriate for a given application. Young [You95]

suggests the use of benchmark problems to facilitate comparison of system performance

within specific areas. Although standard benchmarks have yet to be identified, there

are problems, such as the railroad gate controller [HL94] in the area of safety-critical

systems, that have been attempted on a variety of systems.

102 Chapter 6

6.1.4 Utility of Automated Deduction

Deductive techniques support more varied and more abstract models, more expressive

specification, more varied properties, and more reusable verifications than finite state

verification techniques. The essential utility of theorem proving or proof checking in-

cludes the following. With the exception of establishing the consistency of axioms, these

benefits are self-explanatory and are listed with little additional comment.

Guarantee Type Correctness: The type correctness of some specification languages

is undecidable. In such cases, theorem proving or proof checking may be used to

discharge obligations incurred during typechecking, thereby establishing that a

specification is type-correct. As noted in Chapter 5, significant benefit accrues

from typechecking alone.

Establish (Relative) Consistency of Axioms: A specification can be shown to be

consistent by demonstrating that its axioms have a model. In the context of

mechanical verification, this is accomplished via theory intepretations that re-

late a source specification (the one to be shown consistent) to a target speci-

fication whose consistency has presumably already been established 16. This is

accomplished by defining a mapping from the types and constants of the source

specification to those of the target specification and proving that the axioms of

the source specification expressed in terms of that mapping are provable theo-

rems of the target specification. The proof demonstrates relative consistency;

that is, if the target specification is consistent, the source specification is consis-

tent. [ORSvH95, p. 111] cites an example that underscores the need to validate

axiomatic specifications by exhibiting an intended model.

Challenge Underlying Assumptions: One of the benefits of formal specification

is the explicit statement of underlying assumptions. Once formalized, these as-

sumptions may be challenged by formulating and proving conjectures that exer-

cise them. Design implications of new or modified assumptions may be similarly

probed in this way.

Establish the Correctness of Hierarchical Layers: Theory interpretations may also

be used to demonstrate the correctness of hierarchical development, that is, to

prove that a more concrete specification is a satisfactory implementation of a

more abstract one, as illustrated in [Bev89, BDH94]. The approach is similar to

that previously mentioned in the context of establishing the consistency of a set
of axioms.

• Confirm Key Properties and Invariants: System properties and constraints may

be precisely stated and deductively verified.

16For example, by specifying the target specification definitionally in a system that guarantees con-
servative extension.

NASA- GB-O01-9 7 103

Predict and Calculate System Behavior: System behavior may be predicted or

calculated by formulating and proving challenges or putative theorems that char-

acterize the behavior or functionality of interest.

Facilitate Replication and Reuse: Reusing and adapting extant proofs, as well as

formulating new challenges, provides a systematic exploration of the implications

of changes and extensions, as well as an effective vehicle for generalizing results for

later reuse. Automation is the key to faithfully replicating or reusing a detailed

deduction. The LaRC bit vectors library [BMS+96] illustrates many of the issues

involved in developing general and effectively reusable formal analyses.

The use of proof as a form of absolute guarantee is not included in this list for reasons

outlined in Section 7.5, and succinctly captured in the following quote from [RvH93]: "A

mechanical theorem prover does not act as an oracle that certifies bewildering arguments

for inscrutable reasons, but as an implacable skeptic that insists on all assumptions being

stated and all claims justified."

6.2 Finite-State Methods

The state space of a system can be loosely defined as the full range of values assumed

by the state variables of the program or specification that describes it. The behaviors

that the system can exhibit can then be enumerated in terms of this range of values. If

the state space is finite and reasonably small, it is possible to systematically enumerate

all possible behaviors of the system. However, few interesting systems have tractable

state spaces. Furthermore, the state space of a formal specification can be infinite, for

example, if it uses true mathematical integers as values for state variables. Nevertheless,

there are various techniques for "downscaling" or reducing the state space of a system,

while preserving its essential properties. Finite-state methods refer to techniques for

the automatic verification of these finite-state systems or of infinite-state systems that

can be similarly "reduced" by virtue of certain structural symmetries or uniformities.

Given a formula specifying a desired system property, these methods determine its truth

or falsity in a specific finite model (rather than proving its validity for all models). For

linear-time and branching-time logics, the model checking problem is computationally

tractable, whereas the validity problem is intractable.

6.2.1 Background

This section provides background information useful for an understanding of finite-state

systems, including a brief introduction to temporal logics, fixed point characterizations,
and the modal mu-calculus.

104 Chapter 6

6.2.1.1 Temporal Logic

Temporal logic (also known as tense logic) [Pnu77,Bur84] augments the standard opera-

tors of propositional logic with tense operators that are used to formalize time-dependent

conditions. The simplest temporal logic adds just two operators: the (weak) future op-

erator, F, and the (weak) past operator, P. The formula Fq is true in the present if q

is true at some time in the future and, similarly, the formula Pq is true in the present

if q is true at some time in the past. These operators can be combined to assert quite

complex statements about time-dependent phenomena. For example, q ::_ FPq can be

interpreted as "if q holds in the present, than at some time in the future q will have

held in the past." [McM93, p. 13] The duals of these operators, _F_, usually abbre-

viated G and =P=, usually abbreviated H, yield the corresponding strong future and

past operators. Gq - =F=q means that q is true at every moment in the future, and

Hq -- =P=q means that q is true at every moment in the past.

A temporal logic system consists of a complete set of axioms and inference rules

for proving all valid statements in the logic relative to a given model of time. Some

of the more commonly used models include partially ordered time, linearly ordered

time, discrete time, and branching (nondeterministic) time. Linear time corresponds

to commonly held notions of time as a linearly ordered set measured with either the

real or natural numbers. Discrete time refers to a model in which time is represented

as a discrete sequence measured by the integers, as commonly found in engineering.

Interval Temporal Logic [Mos85] is based on discrete time. Branching time is a model

in which the temporal order < defines a tree that branches toward the future; every

instant has a unique past, but an indeterminate future [McM93, p. 15]. Temporal
logic and the closely related dynamic logic :7 have been used to express program prop-

erties such as termination, correctness, safety, deadlock freedom, clean behavior, data

integrity, accessibility, responsiveness, and fair scheduling [Bur84, p. 95]. Duration Cal-

culus [CHR92], a notation used to specify and verify real-time systems, is an extension

of interval temporal logic that uses a notion of durations of states within a time inter-

val, but without explicit mention of absolute time. Temporal logics, and modal logics

in general, are typically given a model theoretic semantics known as possible worlds

semantics. A model in this semantics is usually referred to as a Kripke model, after

Saul Kripke, one of the first mathematicians to give a model-theoretic interpretation of

modal logic [Kri63a, Kri63b, Kri65]. The basic idea of Kripke semantics is to relativize

the truth of a statement to temporal stages or states. Accordingly, a statement is not

simply true, but true at a particular state. The states are temporally ordered, with the

type of temporal order determined by the choice of axioms.

17The term "dynamic logic" refers generically to logical systems used to reason about computer
programs. The basic premise is that certain classical logical systems that are inherently "static" can be
extended quite naturally to reason about "dynamics." In addition to its application to computational
systems, the study of dynamic logic and related topics has more general philosophical and mathematical
implications as a natural extension of modal logic to general dynamic situations [Hat84].

NASA- GB-O01-9 7 105

For example, the so-called minimal tense logic, Kt, is defined by van Benthem as

follows [vB88, p. 7].

• Axioms:

1. all propositional tautologies

2. G(¢ -+ ¢) -+ (G¢ -+ G¢)

3. g(¢ --+ _b) --+ (go --+ g_b)

4. ¢--+ HF¢

5. ¢ --+ape

• Definition:

1. F¢ +-+_G_¢

2. PC +-+_H_¢

• Rules of Inference:

1. 05,05-+ _b/_b (Modus Ponens)

2. if 05is a theorem, then so are GO5, H05 ((Temporal) Generalization)

Various axioms may be added to Kt to characterize further assumptions on the

temporal order, such as transitivity and antisymmetry (which together yield a partial

order), as well as density, linearity, and so forth. In the context of finite state methods,

the notions of linear time and branching time are of particular interest.

The set of states in an interpretation represents not only past states, but all accessible

(possible) future states. Furthermore, truth is persistent. Intuitively, this means that a

sentence true at a given state will always be true at later states. The following definitions

are due to Burgess [Bur84, pp. 93-4]. A Kripke frame is composed of a nonempty set

S, equipped with a binary relation R. A valuation in a frame (S, R) is a function, V,

that assigns to each variable, Pi, a subset of S, and each (syntactically well-formed)

sentence a truth value. Intuitively, S represents the set of states and R represents the

earlier-later relation. A formula, c_ is valid in a frame (S, R) if V(c_) = X for every

valuation V in (X, R). c_ is satisfiable in (X, R) if V(c_) # 018 for some valuation V in

(S, R), or, equivalently if _c_ is not valid in (S, R). In addition, c_ is valid over a class,

/C, of frames if it is valid in every (S, R) E/C, and is satisfiable over/C if it is satisfiable

in some (S, R) E/C or, equivalently, if _c_ is not valid over/C.

The interaction of universal and existential quantification with temporal operators

is complex, introducing both philosophical and technical difficulties. Burgess [Bur84,

180 denotes the empty set.

106 Chapter 6

p. 131] notes that the philosophical issues include "identity through changes, continuity,

motion and change, reference to what no longer exists or does not exist, essence and

many, many more" and the technical issues include "undecidability, nonaxiomatizability,

undefinability or multidimensional operators, and so forth." Thoughtful discussion of

these issues can be found in [Gar84] and [Coc84].

6.2.1.2 Linear Temporal Logic (LTL)

Linear time corresponds to the usual notion of time as a linearly ordered set, measured

either with the real or the natural numbers. The temporal order relation < is total, that

is, antisymmetric, transitive, and comparable. Comparability means that for all states

sl and s2 in the same execution sequence, either sl < s2 or s2 < sl or sl = s2). The

extension of Kt obtained by adding the following two axioms (of right- and left-linearity,

respectively) characterizes the linear temporal frames.

1. (F¢ A F¢) --+ F(¢ A F¢) V F(¢ A ¢) V F(¢ A F¢)

2. (PC A PC) --+ P(¢ A PC) V P(¢ A ¢) V P(¢ A PC)

Alternatively, the following, somewhat more intuitive axioms can be used to char-

acterize total orders [Bur84, p. 104].

1. (FP¢) --+ (PC V ¢ V F¢)

2. (PF¢) --+ (PC V ¢ V F¢)

Linear temporal logic is typically extended by two additional operators, the until

operator and the since operator, abbreviated U and S, respectively.

The following definitions are based on a discussion in [McM93, p. 14] and assume

that all subscripted states, s.., are comparable. ¢ U_ is true in state sj if there is some

state sk such that sj < sk and ¢ is true in sk, and for all si, such that sj < si < sk,

¢ is true in state si. Intuitively, _ holds at some time in the future, until which time

¢ holds. Similarly, ¢S¢ is true in state sj just in case there is some state sk such that

sk < sj and _ is true in sk, and for all si, such that sk < si < sj, ¢ is true in state si.

Informally, _ held at some time in the past, since which time ¢ has held.

6.2.1.3 Branching Time Temporal Logic

A treelike or branching frame is one in which the temporal order defines a tree that

branches toward the future. Treelike frames represent ways in which things can evolve

NASA- GB-O01-9 7 107

nondeterministically; every moment or state has a unique, linearly ordered past, but an

indeterminate future. Following Thomason [Tho84, p. 142], a treelike frame for a tense

logic consists of a pair (T, <), where T is a nonempty set and < is a transitive ordering

on T such that if tl < t and t2 < t, then either tl = t2 or tl < t2 or t2 < tl. The

tree-ordered frames can be characterized by dropping the axiom

(PF¢) --+ (PC V ¢ V F¢)

from the axioms of linear time logic. A branch through t E T is a maximal linearly

ordered subset of T containing t.

The semantics for branching time temporal logic are somewhat problematic. As

Thomason [Tho84, p. 142] notes, interpreting future tense in these treelike structures

can be perplexing. For example, take a simple structure with three moments, the root,

to, and two branches labeled tl and t2, respectively. Assume ¢ true at to and tl and

false at t2. Is F¢ true at to? It is hard to say. The answer involves technical issues that

revolve around the reconciliation of tense with indeterminism. The logical argument for

determinism claims that it is not possible to provide a correct definition of satisfaction

for these structures, that is, to provide a definition that does not generate validities

that are incompatible with the intended interpretation. Thomason [Tho84] presents

an interesting discussion of strategies advanced by indeterminists to circumvent these
claims.

The propositional branching time temporal logics that provide the foundation for one

of the principal approaches to finite state verification of concurrent systems are called

Computational Tree Logics. There are basically two variants: CTL and CTL*. The

logic CTL* combines both branching-time and linear-time operators. A (computational)

path quantifier, either A or E, denoting all or some paths, respectively, can prefix

assertions composed of arbitrary combinations of the linear time operators G, F, U,

and the "nexttime" operator, X (see below). There are two types of formulas in CTL*:

state formulas that are true in a given state and path formulas that hold along a given

path. The following definitions are taken from [CGK89, pp. 83-84]. Let AP be the set

of atomic proposition names.

A state formula is either:

• A, ifAEAP.

• If f and g are state formulas, then _f and f V g are state formulas.

• If f is a path formula, then E(f) is a state formula.

A path formula is either:

• A state formula.

108 Chapter 6

• If f and g are path formulas, then _f, f V g, Xf and fUg are path formulas.

CTL* is the set of formulas generated by the above rules. CTL is a restricted subset

of CTL* that permits only branching-time operators. CTL is obtained by limiting the

syntax for path formulas to the following rule.

• If f and g are state formulas, Xf and fUg are path formulas.

The following abbreviations are also used in writing CTL* and CTL formulas:

• fAg-_(_fV_g)

• A(f) - _E(_f)

• F(f) -- trueUf

• G(f) - _F_f

The semantics of CTL* are defined with respect to a (finite Kripke) structure K ---

(W, R, L), where

• W is a set of states or worlds.

• R C W × W is the transition relation.

(Wl, W2) E ir_-

R is total. Wl -'_ W2 indicates that

• L : W --+ P(AP) is a function that labels each state with a set of atomic proposi-
tions true in that state.

Let fl and f2 be state formulas, gl and g2 be path formulas. A path in K is defined

as a sequence of states 7r = w0, Wl, •• • such that for every i >_ O, wi --+ Wi+l. 7ri denotes

the suffix of 7r starting at wi. K, w _ f means that f holds at state w in structure K.

Similarly, if g is a path formula, K, 7r _- g means that g holds along path 7r in structure

K. The relation _- is inductively defined as follows.

ow_=

ow_=

ow_=

o+_

o+_

A IFF A • L(w).

_fl IFF it is not the case that w _- fl-

flV f2 IFF w _- fl or w _- f2-

E(gl) IFF there exists a path 7r starting with w such that 7r _- gl-

fl IFF w is the first state of 7r and w _- fl-

_gl IFF it is not the case that 7r _- gl-

NASA-GB-O01-97 109

• 71- _- gl V g2 IFF _ _- gl or 71- _- g2-

• 71- _- Xgl IFF 711 _ gl-

• 71- _- glUg2 IFF

k, 71-j _ gl-

there exists a k > 0 such that 7rk _- g2 and for all 0 < j <

6.2.1.4 Fixed Points

A functional is a function that maps functions to functions, that is, a function that

takes functions as arguments and returns functions as values. A functional may be

denoted by a lambda expression,)_x.f, where x is a variable and f is a formula. The

variable x is effectively a place holder. When the functional is applied to a parameter,

p, p is substituted for all instances of x in f.19 For example, if _- =)_x.(x A y), then

_-(true) = true A y = y. A functional _/is monotonic if p C_q --+ _/(p) C__/(q).

The following definition and example are taken from a discussion in [McM93, p. 19].

A fixed point of a functional 7 is any p such that 7(P) = P- For example, if _- is defined

as above, then x A y is a fixed point of _-, since _-(x A y) = (x A y) A y = x A y.

A monotonic functional has a least fixed point and a greatest fixed point, also referred

to as extremal fixed points. The least (greatest) fixed point was defined by Tarski [Tar55]

as the intersection (union) of all the fixed points of the functional. The least and greatest

fixed points of a functional)_x.f are denoted px.f and _x.f, respectively. Assuming

the functional is continuous, the extremal fixpoints can be characterized as the limit of

a series defined by iterating the functional.

The following definitions are also taken from [McM93, p. 19]. A functional, 3',

is union-continuous (intersection-continuous) if the result of applying 3' to the union

(intersection) of any nondecreasing infinite sequence of sets is equal to the result of

taking the union (intersection) of 3' applied to each element of the sequence. Tarski

showed that if a functional is monotonic and union-continuous, the least fixed point of

the functional is the union of the sequence generated by iterating the functional starting

with the initial value false, that is, for any such functional, 3', the least fixed point is

Ui3,i(false). Similarly, the greatest fixed point of a monotonic, intersection-continuous

functional, 3', is Ni3,i(true).

Any monotonic functional is necessarily continuous (that is, union-continuous and

intersection-continuous) over a finite set of states [McM93, p. 19]. Fixed points of func-

tionals have been used to characterize CTL operators, resulting in efficient algorithms

19The discussion assumes the usual restrictions on lambda-conversion that ensure that variables oc-

curring free in p are not bound by operators or quantifiers in f.

110 Chapter 6

for temporal logic model checking. The standard reference for fixed point characteriza-

tions of CTL formulas is [EL86].

6.2.1.5 The Mu-Calculus

The mu-calculus is a logic based on extremal fixed points that is obtained by adding

a recursion operator, #, to first-order predicate logic (FOL) or to propositional logic.

In the context of FOL, the # operator can be viewed as an "alternative quantifier for

relations" that replaces the standard quantifiers V and 3 on relations (but not on in-

dividuals) [Par76, p. 174], while in propositional logic, the # operator provides new

n-ary connectives. Kozen [Koz83] credits Scott and De Bakker [SB69] with originat-

ing the mu-calculus and Hitchcock and Park [HP73], Park [Par70], and De Bakker

and De Roever [BR73] with inititially developing the logic. Park [Par76, p. 173] notes

that the mu-calculus was a natural response to the inability of first-order predicate

logic "to express interesting assertions about programs" in a reasonable way. The mu-

calculus is "strictly intermediate" in expressive power between first- and second-order

logics [Par76]. There are several different formulations of the mu-calculus. Some, like

those of [BR73, HP73], present the calculus as a polyadic relational system that sup-

presses individual variables and replaces existential quantification (3) on individuals

with a composition operator on relations [Par76]. Others, like the version below re-

produced from [McM93, pp. 114-115] and based on [Par76], retain the more traditional

system of predicate logic.
There are two kinds of mu-calculus formulas: relational formulas and Boolean formu-

las, and, correspondingly, two kinds of variables: relational variables (for example, the

transition relation, R) and individual variables (for example, the state, x). A model for

the mu-calculus is a triple M = (S, ¢, ¢), where S is a set of states, ¢ is the individual

interpretation function that maps every individual variable to an element of S, and ¢ is

the relational interpretation that maps every n-ary relational variable onto a subset of

S n. The syntax of Boolean formulas is defined as follows, where p and q are syntactic

variables representing Boolean formulas, x is an individual variable, (xl,..., Xn) is a

vector of individual variables, and R is an n-ary relational formula.

• true and false are Boolean formulas.

• p V q and _p are Boolean formulas.

• 3x.p is a Boolean formula.

• R(xl,..., xn) is a Boolean formula.

The formula 3x.p is true just in case there exists a state x in S such that p is true in

x. Similarly, the formula R(x, y) is true just in case the pair (_b(x), _b(y)) is a member

of ¢(n).

NASA-GB-O01-97 111

The relational formulas are defined as follows, where, in addition to the definitions

given above, F is an n-ary relational formula that is formally monotonic in R.

• Every n-ary relational variable R is an n-ary relational formula.

• A(Xl,..., Xn).p is an n-ary relational formula.

• pR.F and uR.F are relational formulas. 2°

In a given model (S, ¢, ¢),

• The relational variable R is identified with the relation ¢(R).

• A(Xl,..., x_).p denotes the set of all n-tuples (Xl,..., x_) such that p is true.

• The formulas pR.F and uR.F stand for the least fixed point and greatest fixed

point (of _- = AR.F), respectively.

6.2.2 A Brief History of Finite-State Methods

Finite-state methods grew out of several independent developments in the mid to late

1970s, including early work on temporal logic and early activity in protocol specification

and verification. Pnueli first proposed the use of temporal logic to reason about concur-

rent and reactive programs [Pnu77]. Formalization of safety properties for concurrent

systems followed shortly thereafter. Pnueli's early proofs were largely manual, as were

the initial techniques used to verify protocols. The realization that many concurrent

programs can be viewed as communicating finite-state machines combined with results

in reachability analysis and the realization of their applicability to protocol analysis

soon led to techniques for automatic verification of correctness properties. 21

The first such techniques arose in the context of protocol validation [BJ78, Haj78,

WZ78,RES0]. Shortly thereafter, in the early 1980s, Sifakis and his students at Grenoble

University in France began work on the French validation system Cesar [Que82, QS82],

and Harvard colleagues Clarke and Emerson introduced temporal logic model check-

ing algorithms [CES1] that subsequently led to the work by Clarke and his students

at Carnegie Mellon University (CMU) on the Extended Model Checker (EMC) sys-

tem [CES86]. Although Cesar and EMC represent independent developments, both

systems used algorithms for the branching-time logic CTL. The CMU system also in-

corporated slight modifications to CTL to accommodate fairness constraints [BCM+90].

The first general protocol verifier, built by Holzmann and based on reachability analysis,

also appeared in the early 1980s [HolS1]. Holzmann's initial protocol verifier employed

a simple process algebra, but his subsequent systems use standard automata theory. In

all three cases, this early work led to currently important systems: Holzmann's work

2°v may be defined in terms of # (_,R.F[R] = --,#R.--,F[--,R]) o1"specified as a (primitive) _xpoint
operator as shown here.

21Initially, safety properties. Liveness and fairness followed later.

112 Chapter 6

culminated in SPIN, the Grenoble effort produced Cesar and several specialized variants,
and CMU's EMC evolved into SMV.

Research in model checking for verifying network protocols and sequential circuits

quickly led to the realization that application of model checking techniques to nontrivial

systems required viable approaches to the so-called state explosion problem. The term

refers to the fact that in the worst case, the number of states in the global state graph

for a system with N processes may grow exponentially with N. There has been a great

deal of work on the computational complexity of model checking algorithms, as well

as on techniques to address the state explosion problem. One of the earliest and most

important techniques for CTL-based model checking systems is a symbolic, rather than

an explicit, representation of the state space. That is, the set of states is represented

by a logical formula that is satisfied in a given state if and only if the state is a member

of the set, rather than by a labeled global state graph. Similarly significant benefits for

LTL-based model checking have been obtained with partial order techniques [God90,

Va190, Pe193, GPS96]. For certain applications, both techniques can reduce exponential

growth of the state space to linear or sublinear growth [Hol].

To provide further economies for CTL-based model checking, symbolic representa-

tions capable of exploiting structural regularities and thereby avoiding explicit construc-

tion of the state graphs of modeled systems have been sought. The representation that is

currently most widely used is a canonical, but highly compact form for Boolean formulas

known as ordered binary decision diagrams or OBDDs [Bry86]. 22 An OBDD is similar

to a binary decision tree, except that its structure is a directed acyclic graph rather than

a tree and a strict order governs the occurrence of variables. Bryant [Bry86] has shown

that there is a unique minimal OBDD for a given formula under a given variable order-

ing. Variable ordering is thus critical for determining the size of the minimal OBDD

for a given formula. Although the use of symbolic representation allows significantly

larger systems to be modeled, the state explosion problem persists as a computational

barrier restricting the size and complexity of systems that can be verified using finite
state methods.

Other strategies have been and continue to be proposed to address this prob-

lem. These include exploiting structural symmetries in the systems to be veri-

fied [CFJ93, ES93, ID93], using hierarchical [MC85] and compositional [CLM89, GS90]

techniques, applying abstraction methods [CGL92, Kur94], and employing on-the-fly

intersection techniques [Ho184, CVWY92, FMJJ92]. For LTL-based model checking,

efficient on-the-fly techniques have been a significant development because on-the-fly

verification algorithms require only that part of the graph structure necessary to prove

or disprove a given property, rather than the entire Kripke structure (for example, as

required by fixpoint algorithms). Compositionality and abstraction exemplify a "divide-

and-conquer" strategy that attempts to reduce the verification problem to a series of

22OBBD is sometimes written simply as BDD, although as McMillan notes [McM93, p. 32], the
variable ordering (which is crucial to obtaining the canonical reduced form) is what distinguishes OBDDs
from the more general class of BDDs.

NASA-GB-O01-97 113

potentially more manageable subproblems [God96, p. 17], whereas partial order and

on-the-fly methods attempt to reduce the size of the checked state space and the extent

of the search, respectively. Some of these techniques may be usefully combined. Par-

tial order and on-the-fly methods are a good example, as noted in [Pe194]. Others are

complementary. Compositional and abstraction methods, for example, are essentially

orthogonal - and thereby complementary to - partial order techniques [God96, p. 17].

6.2.3 Approaches to Finite-State Verification

As noted earlier, finite-state verification techniques emerged in the late 1970s and early

1980s from two independent developments: temporal logic model checking [CE81,Que82]

and protocol analysis [Haj78, Wes78]. Subsequent developments can be classified with

respect to several dimensions, reflecting factors such as representation strategy, type

of algorithm, and class of system addressed. The distinctions made by representa-

tion strategy are broad and therefore well-suited to the general discussion offered here.

Representation strategy distinguishes approaches that use a finite state representation

for the system model and a logical calculus for the specification--the symbolic model

checking approach, from techniques that use finite state machines to represent both

the system model and the specification--the automata-theoretic approach. In practice,

verification systems for asynchronous systems (software) are largely automata-based,

exploit on-the-fly techniques, and support LTL, while systems for synchronous systems

(hardware) are based either on fixpoint algorithms or symbolic methods, and support

CTL, CTL*, or propositional mu-calculus [Hol].

6.2.3.1 The Symbolic Model Checking Approach

In the symbolic model checking approach, verification means determining whether a

given logic formula f is valid in a given Kripke model M, that is, determining which

states S in a finite Kripke structure M = (S, R, L) satisfy f. Initially, the temporal

logics CTL, CTL*, and LTL were used. Later algorithms typically characterize the

CTL (LTL) operators (or more precisely, the interpretation of CTL (LTL) operators in a

Kripke model) in the Mu-calculus, a logic of extremal fixed points that has been shown to

be strictly more expressive than CTL [EL85].23 The Mu-calculus is attractive because it

can be used to express a variety of properties of transition systems and provides a general

framework for describing model checking algorithms. A model checking algorithm for

the Mu-calculus taken from [BCM+90, p. 7] is presented in Figure 6.1.

Verification systems that perform temporal logic model checking are generally re-

ferred to as model checkers, reflecting the fact that the basic function of these systems

is to decide whether a given finite model (that is, a Kripke model) satisfies a formula

in a given logic. Models are expressed in suitable languages, and assertions about the

model are specified in a different language, typically a temporal logic. In the context of

23A language L_ is strictly more expressive than a language L if there are formulas that can be
expressed in L_ but not in L, and all formulas expressable in L are also expressable in L_.

114 Chapter 6

function Bdd_f(f: formula, I_p: rel-interp) : BDD;

case

f:

f : of the

return

f: of the

return

f : of the

return

f : of the

return

end case;

an individual variable

return Bdd_Atom(f);

form fl AND f2

Bdd_And(Bdd_f(fl, l_p), Bdd_f(f2, l_p));

form NOT fl

Bdd_Negate(Bdd_f(fl, I_p));

form EXISTS x [fl]

Bdd_Exists(x, Bdd_f(f, I_p);

form Z(xl xn)

Bdd_R(Z, l_p)(dl <- xl)...(dn <- xn);

function Bdd_R(R: rel-term, I_p: rel-interp) : BDD;

case

R: a relational variable

return I_p(R);

R: of the form LAMBDA xl,...,xn [f]

return Bdd_f(f, I_p)(xl <- dl)...(xn <- dn);

R: of the form MU Z [Rl]

return FixedPoint(Z, R1, I_p, FalseBdd);

end case;

function FixedPoint(Z: rel-var, R: rel-term,

I_p: rel-interp, T_i: BDD)

let T_i+l = Bdd_R, R_p(Z <- T_i);

if T_i+l = T_i return T_i

else return FixedPoint(Z, R, I_p, T_i+l);

: BDD;

Figure 6.1: Burch st al.'s Mu-Calculus Model Checking Algorithm.

model checking, a suitable language is a reasonably expressive, high-level language, with

a precise mathematical semantics that defines its translation to Boolean formulas (OB-

DDs) or other forms suitable for symbolic model checking. 24 There are several varieties

of model checkers, the most common being LTL model checkers that verify linear-time

24Although BDDs are still the most widely used symbolic representation for finite state verification,

other representations have been used instead of or in addition to BDDs. For example, LUSTRE is a

synchronous dataflow language stylistically similar to the SMV language. Verimag's POLKA system

(one of several systems to evolve from Cesar) is used to verify LUSTRE [HCRP91, HLR92, HFB93]

programs with integer variables. POLKA uses convex polyhedra to represent linear constraints. Re-

cently, a new data structure named Queue-content Decision Diagram (QDD) has been introduced for

representing (possibly infinite) sets of queue-contents. QDDs have been used to verify properties of

communication protocols modeled by finite-state machines that use unbounded first in, first out (FIFO)

queues to exchange messages [BG96]. QDDs have also been used in combination with BDDs to improve

the efficiency of (BDD-based) symbolic model-checking techniques [GL96].

NASA-GB-O01-97 115

properties of finite Kripke models, and CTL model checkers that verify branching-time

properties of finite Kripke models.

For example, the SMV system [McM93, CMCHG96], one of several CMU systems to

evolve from EMC, uses a synchronous dataflow language (also called SMV) with high-

level operations and nondeterministic choice. The transition behavior of an SMV pro-

gram, including its initial state(s), is determined by a collection of parallel assignments,

possibly involving a unit of delay. Asynchronous systems may be modeled by introducing

processes that have arbitrary delay. The SMV language supports modular hierarchical

descriptions, reuse of components, and parameterization [CMCHG96, p. 420]. An SMV

program consists of a Kripke model and a CTL specification. The state of the model is

defined as the collection of the program's state variables, and its transition behavior is

determined by the collective effect of the parallel assignment statements. Variables are

restricted to finite types, including Boolean, integer subrange, and enumerated types.

The SMV program in Figure 6.2 for a very simple protocol illustrates the basic idea.

The example is from McMillan [McM93].

MODULE main

VAR

request: boolean;

state: {ready,busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready _ request : busy;

i : {ready,busy};

esac;

SPEC

AG(request -> AF state = busy)

Figure 6.2: A Simple SMV Program [McM93, p. 63].

Values are chosen nondeterministically for variables that are not assigned a value or

whose assigned value is a set. For example, the variable request is not assigned in the

program, but chosen nondeterministically by the SMV system. Similarly, the value of

the variable state in the next state is chosen nondeterministically from the values in the

set {ready, busy}. 25 The specification states that invariantly, if request is true, then

the value of state is busy. An SMV program typically consists of reusable modules.

SMV processes (not illustrated here) are module instances introduced by the keyword

process. Safety and liveness properties are expressed as CTL specifications. Fairness

25Like uninterpreted types, nondeterminism can be useful for describing systems abstractly (where

values of certain variables are not determined) or at levels that leave design choices open (to the

implementor).

116 Chapter 6

is specified by means of fairness constraints that restrict the model checker to execution

paths along which a given CTL formula is true infinitely often.

6.2.3.2 The Automata-Theoretic Approach

In the automata-theoretic approach, verification means comparing the externally visible

behaviors of the finite state machine representing a system model with the finite state

machine representing its specification. The method of comparison varies, depending on

the technique and the particular class of system for which it was developed.

6.2.3.2.1 Language Containment

In the language intersection approach first described by [VW86], verification con-

sists of testing inclusion between two w-automata, where one automaton represents the

system that is being verified and the other represents its specification or task. Inclusion

denotes the strict subset relation between the languages of the two automata. For a

process P modeling a system to be verified and a task T that P is intended to perform,

verification consists of the test £(P) C £(T), where £(P) denotes the set of all "be-

haviors" of the modeled system and £(T) denotes the set of all "behaviors" consistent

with the performance of the modeled task or specification. Typically, P is a system

of coordinating processes modeled by the product process P -- ®Pi, where each Pi is

an w-automaton? 6 This semantic model accommodates specific reduction algorithms

that provide one response to the computational complexity problems associated with

more general model checking. The basic idea is to replace a computationally expen-

sive test £(P) C £(T) with a computationally cheaper test £(P') C £(T'), such that

£(P') C £(T') ::_ £(P) C £(T). P' and T' are derived from P and T, respectively, by

homomorphisms on the underlying Boolean algebraY

The reduction of P is relative to T, that is, relative to a given task or specification;

each task induces a different reduction. Kurshan [Kur94] develops the theory underlying

such reductions.

S6For purposes of this discussion, the distinction between finite state machines o1" generators (of
behavior) and finite state automata or acceptors (of behavior) has been glossed over. The former is
most convenient for modeling a system and the later for modeling its properties. Interested readers
should see [VWSq or [Tho90].

STA Boolean algebra is a set closed under the Boolean operations A, V, 9. A homomorphism is a

mapping (function) from one algebraic structure to another that is defined in terms of the algebraic
operations on the two structures. In the case of two Boolean algebras, B and B', a map ¢ is a
homomorphism just in case

¢(x A y) = ¢(x) A ¢(y)

¢(x v _) = ¢(x) v ¢(_)

¢(_x) = _¢(x)

NASA-GB-O01-97 117

The verification system typically associated with the language-inclusion approach

is COSPAN (Coordination Specification Analyzer) 28. COSPAN's native language is

S/R, a data-flow language based on the selection/resolution model of coordinating pro-

cesses. S/R distinguishes state variables from combinational variables, the latter being
dependent variables whose values are functions or relations of the state variables. The

S/R language provides nondeterministic, conditional ("if-then-else") variable assign-

ments; bounded integer, enumeration, Boolean, array, record, and (array and record)

pointer types; and integer and bit-vector arithmetic. S/R also supports modular hi-

erarchal development, scoping, parallel and sequential execution, homomorphism dec-

laration, general w-automaton fairness (acceptance), and (w-regular) property specifi-

cation [HHK96, p. 425]. COSPAN provides both symbolic- (that is, BDD-based) and

explicit-state enumeration algorithms.

6.2.3.2.2 State Exploration

The terms "state exploration" and "reachability analysis" refer to finite-state ver-

ification techniques that begin with an initial state and explicitly enumerate or con-

struct the reachable state space of a system model, typically using standard search

algorithms--such as depth-first or breadth-first search--that have been optimized to

alleviate state-space explosion. The state exploration approach contrasts with BDD-

based techniques, which use a symbolic (implicit) representation of the state space.

SPIN [HP96] and Mur¢ [Di196] exemplify this approach. Both verifiers use an asyn-

chronous, interleaving model of execution in which atomic operations from a collection

of processes execute in an arbitrary order.

SPIN. SPIN is automata-based and has full LTL model-checking capability. Each

process of the model is translated into a finite automaton. Properties to be checked

are represented as Biichi automata that correspond to a never claim, so-called because

these claims formalize behavior that should never occur. In other words, never-claims

correspond to violations of given correctness properties. A model is checked against its

required properties by calculating the intersection of the property automaton and the

process automata. A nonempty intersection indicates a possible correctness property

violation. SPIN uses a verification procedure based on reachability analysis of a model

by means of optimized graph traversal algorithms. This approach is also referred to as

state exploration.

The SPIN model checker uses a nondeterministic, guarded command language called

PROMELA that was developed to specify and validate protocols by modeling process

interaction and coordination. PROMELA provides variables and general control-flow

structures in the tradition of Dijkstra's guarded command language [Dij76] and Hoare's

language CSP [Hoa85]. Correctness criteria are formalized in PROMELA in terms of

assertions that capture both local assertions and global system invariants, labels that

can be used to define frequently used correctness claims for both terminating and cyclic

2ScOSPAN is also used as the "verification engine" in the commercial hardware verification tool
FormaICheck, a trademark of the Bell Labs Design Automation center [HHK96].

118 Chapter 6

sequences (for example, deadlock, bad cycles, and liveness (acceptance and progress)

properties), and general temporal claims that define temporal orderings of properties

of states expressed either as never-claims or as LTL formulas (that SPIN translates into

PROMELA never-claims) [Ho191,HP96].

SPIN uses depth-first search and a single-pass, on-the-fly verification algorithm cou-

pled with partial order reduction techniques to reduce the state explosion problem.

On-the-fly algorithms attempt to minimize the amount of stored information, comput-

ing the intersection of the process and property automata only to the point necessary

to establish the nonemptiness of the resulting (composite) automaton. Partial order

reduction algorithms exploit the observation that the order in which concurrent or in-

dependently executed events are interleaved typically has no impact on the checked

property. It follows that instead of generating all execution sequences, it is sufficient to

generate a reduced state space composed of representatives for classes of sequences that

are not distinguishable with respect to execution order. The reduction must be shown

to preserve safety and liveness properties, but this is accomplished in the course of the
verification.

Mur¢. The name "Mur¢" refers both to a verifier developed to analyze finite-state

concurrent systems such as protocols and memory models for multiprocessors, and to

its language. The Mur¢ description language is a guarded-command language based

on a Unity-like formalism [CM88] that includes user-defined datatypes, procedures, and

parameterized descriptions. A Mur¢ description consists of a collection of constant and

type declarations, variable declarations, transition rules (guarded commands), start

states, and invariants. Predefined data types include subranges, records, and arrays.

Mur¢ statement types include assignment, condition, case selection, repetition (for- and

while-loops), and procedure calls. Mur¢ rules consist of a condition and an action. A

condition is a Boolean expression on the global variables, and an action is an arbitrarily

complex statement. Each rule is executed atomically, that is, without interference from
other rules.

Correctness requirements are defined in Mur¢ in terms of invariants written as predi-

cates or conditions on the state variables. Invariants are equivalent to error statements,

which may also be used to detect and report an error, that is, the existence of a sequence

of states beginning in a start state and terminating in a state in which a given invari-

ant fails to hold. In addition to invariant violations, error statements, and assertion

violations, Mur¢ can check for deadlock and, in certain versions, liveness properties.

Mur¢ uses standard breadth- or depth-first search algorithms to systematically gen-

erate all reachable states, where a state is defined as the current values of the global

variables. State reduction techniques, including symmetry reduction, reversible rules,

replicated component abstraction, and probabilistic algorithms are exploited to alle-

viate state explosion [Di196]. Symmetry reduction uses structural symmetries (in the

modeled system) to partition the state space into equivalence classes, thereby signif-

icantly reducing the number of states generated in applications such as certain types

of cache coherence protocols [ID93]. Reversible rules are rules that preserve informa-

NASA-GB-O01-97 119

tion and can therefore be executed "backwards," yielding an optimization that avoids

storing transient states [ID96a]. Systems with identical replicated components can be

analyzed using explicit state enumeration in an abstract state space in which the exact

number of replicated components is treated qualitatively (for example, zero, one, or

more than one replicated components) rather than quantitatively (the exact number

of replicated components) [ID96b]. The combination of symmetry reduction, reversible

rule exploitation, and replicated component abstraction has been reported to yield mas-

sive reductions in the state explosion problem for cache coherence protocols and similar

applications [Di196, p. 392]. Probabilistic verification algorithms are being explored as

a way of reducing the number of bits in the hash table entry for each state [SD96].

6.2.3.2.3 Bisimulation Equivalence and Prebisimulation Preorders

Bisimulation equivalence provides a logical characterization of when two systems

are equivalent and is used to check statewise isomorphism between two finite Kripke

models. Prebisimulation preorders similarly provide a logical characterization of when

one system minimally satisfies another. Informally, this means that bisimulation pro-

vides a notion of behavioral equivalence: two systems are equivalent if they exhibit the

same behavior, whereas prebisimulation provides a notion of behavioral relatedness: one

system exhibits at least certain behaviors exhibited or required by the other. In both

cases, a more abstract or higher-level system serves as a specification of a lower-level

one. Verification consists of showing that the lower-level model or "implementation"

satisfies its specification by establishing the given relation between the two models.

For example, the correctness of a protocol can be established by showing that it is se-

mantically equivalent to its service specification by modeling both the protocol and its

specification as finite state machines and using equivalence-checking verification to es-

tablish the statewise, transition-preserving correspondence between the two finite-state

models. Various formal relationships have been proposed. In general, these relations

are either equivalences (bisimulations) or preorders (prebisimulations) [CH89].

Milner's Calculus of Communicating Systems (CCS 29) [Mil89] forms the basis for

several of the most visible equivalence-checking verifiers for concurrent systems. Pro-

cesses are defined as CCS agents that are given an operational semantics defined in

terms of transition relations. CCS processes may define an arbitrary number of subpro-

cesses, in which case the transition graph may have infinitely many states. Although

some properties may be decidable in such cases, most interesting properties are unde-

cidable on agents that correspond to graphs with infinite state spaces. Automated tools

for analyzing networks of finite-state processes defined in CCS include the NCSU Con-

currency Workbench [CS96] and its predecessor, the (Edinburgh) Concurrency Work-

bench [CPS93], and the Concurrency Factory [CLSS96]. Both versions of the Concur-

rency Workbench support equivalence checking, preorder checking, and model checking

(for the modal mu-calculus). The NCSU Concurrency Workbench also provides diag-

nostic information if two systems fail to be related by either semantic equivalence of

29CCS and related approaches are also referred to as process algebras.

120 Chapter 6

preorder, and language flexibility that allows the user to change the system description

language [CS96]. The Concurrency Factory is also an integrated toolset, but focuses

on practical support for formal design analysis of real-time current systems. This is

achieved in part through a graphical design language (GCCS), a graphical editor, and

a graphical simulator [CLSS96]. In addition to a CCS-based semantics, GCCS has a

structural operational semantics [CLSS96, p. 400].

6.2.4 Utility of Finite-State Methods

The various approaches to finite-state verification outlined earlier are in theory very sim-

ilar and in many cases inter-definable, as noted in [VW86, CGK89, CBK90]. In practice,

the approaches have led to the development of tools with often overlapping capabilities,

but different foci and strategies. For example, SPIN has been developed for modeling dis-

tributed software using an asynchronous process model; Mur¢ and SMV have focused on

hardware verification--Mur¢ on asynchronous concurrent systems using explicit state

exploration and SMV on both synchronous and asynchronous systems using symbolic

model checking; and COSPAN has been driven by a top-down design methodology im-

plemented through successive refinement of (fundamentally) synchronous models and

has been used for both software and hardware design verification. In some cases, the

capabilities are complementary, and there is work on integrating different finite-state

verification strategies as done in COSPAN, which offers either symbolic- (BDD-based)

or explicit state enumeration algorithms, as well as on integrating different approaches

in a single tool, as done in both versions of the Concurrency Workbench, which offer

equivalence checking, preorder checking, and model checking.

Finite-state methods offer powerful, automated procedures for checking temporal

properties of finite-state and certain infinite-state systems (Kripke models). They also

have the ability to generate counterexamples--typically in the form of a computation

path that establishes, for example, the failure of a property to hold in all states, and

witnesses--in the form of a computation path that establishes the existence of one

or more states in which a property is satisfied. Finite-state methods are least ef-

fective on large, unbounded state spaces, high-level specifications, and data-oriented

applications--areas in which deductive methods are more appropriate. For this rea-

son, there has been increasing interest in integrating finite-state methods and deductive

theorem proving. This topic is revisited in Section 6.4.

6.3 Direct Execution, Simulation, and Animation

Direct execution, simulation, and animation are techniques used to observe the behav-

ior of a model of a system. Formal analysis, on the other hand, is used to analyze

modeled behavior and properties. In many cases, there are fundamental differences be-

tween these observational and analytical methods, including the models they use and

their expected performance. Typically, models used for verification cannot expose their

NASA-GB-O01-97 121

own inaccuracy and, conversely, models used for conventional simulation cannot con-

firm their own correctness [Lan96, p. 309]. Models used for simulation of large systems

must be able to handle realistic test suites fast, since these suites may literally run for

weeks. This kind of efficiency is not a reasonable expectation in executable specifica-

tion languages. Formal verification techniques generally treat the notion of time as an

abstraction and largely avoid probabilities, whereas more concrete representations of

time and probabilistic analyses play an important role in observational methods. Fi-

nally, direct execution, simulation, and animation show behavior over a finite number

of cases, whereas formal analysis can be used to explore all possibilities, the former

offering statistical certainty and the latter, mathematical certainty. Although some of
these differences are attenuated when "simulation" is considered in the context of for-

mal specification languages (for example, the models used for execution and simulation

typically coincide), others persist (for example, verification still proceeds by extrapola-

tion from a finite number of cases, rather than by mathematical argumentation over all

possible cases). The remainder of this section summarizes the notions of executability,

simulation, and animation in the context of formal methods. 3°

6.3.1 Observational Techniques

Some formal specification languages are directly executable, or contain a directly ex-

ecutable subset, meaning that the specification itself can be executed or run and its

behavior observed directly. For example, a logic based on recursive functions, such as

that used in Nqthm [BM88] and ACL2 [KM94], supports direct execution and "simu-

lation" on concrete test cases because it is always possible to compute the value of a

variable-free term or formula in the executable subset of these logics. The following

quote from [KM94, p. 8] describes the role of executability in the formalization of a

model of a digital circuit (the FM9001) in Nqthm.

[The Nqthm model] can be thought of as a logic simulator (without,

however, the graphic and debugging facilities of commercial simulators).

... Running [the model] on a concrete netlist 31 and data involves simulating

in the proper sequence the input/output behavior of every logical gate in

the design ...

The specification language for the Vienna Development Method (VDM), VDM-SL, also

has a large executable subset, as well as tool support for dynamically checking type

invariants and pre and post conditions, and for running test suites against a VDM-

SL specification [VDM]. Similarly, the concrete representation of algorithms and data

structures required by most finite-state enumeration and model-checking methods (see

3°Planning and administrative trade-offs involving, for example, cost, available resources, criticality
of the system, and desired levels of formality, are discussed in the first volume of the guidebook [NASA-
95a].

31The "netlist" is an Nqthm constant that describes a tree of hardware modules and their intercon-
nections via named input/output lines.

122 Chapter 6

Section 6.2) make them comparable to direct execution techniques. Certain finite state

verification tools also provide "simulation," by exploring a single path through the state

space rather than all possible paths [Ho191, DDHY92, ID93].

The dynamic behavior of specifications written in nonexecutable languages may be

studied indirectly, by reinterpreting the specification in a (high-level) programming lan-

guage. Execution of the resulting program is referred to as an emulation or animation of

the specification. Some formal specification languages offer both a directly executable

subset and the option of user- or system-defined program text to drive animation of

nonexecutable parts of the specification. Specifications written in a nonexecutable lan-

guage using a constructive functional style may be "executed" by exploiting a rewrite

facility (assuming one is available) to rewrite function definitions, starting from a par-

ticular set of arguments. This amounts to writing an emulator for the system being

modeled and may not be either possible or desirable. For example, making an entire

specification executable typically precludes using axioms to dispense with those parts

of a system or its environment that are not of interest or do not warrant verification.

Direct execution, simulation, and animation are not alternatives to more rigorous

formal analysis, but rather effective complements. For example, during the requirements

and(or) high-level design phase, executability can be used to probe the behavior of a sys-

tern on selected test cases, and deductive theorem proving can be used to exhaustively

establish its general high-level properties. In this type of strategy, executability pro-

vides an efficient way to avoid premature proof efforts and, conversely, to focus the more

rigorous (and thereby more expensive) proof techniques on the most appropriate behav-

iors and properties. This symbiotic use of different techniques is nicely illustrated in the

development of a formal specification of the Synergy File System using ACL2 [BC95a].

In this application, formalization of an ACL2 executable model, execution of the model,

and proof of an invariant about transitions in the model each revealed significant errors.

6.3.2 Utility of Observational Techniques

The main advantages of executability are that it allows the specification and underly-

ing model to be "debugged," and it allows the specification to serve as a "test oracle"

relatively early in the life cycle. Animation and emulation confer similar benefits. A

further advantage of executability is that it allows behavior to be observed and explored

in the same formally rigorous context as that in which the specification is developed.

Other documented roles for executability include post-implementation testing, as illus-

trated, for example, in post-fabrication execution of the FM9001 specification to test

the fabricated devices for conformance to the (verified) design [KM94, p. 9]. Although

this example represents a somewhat novel use of executability, it is potentially an im-

portant technique by means of which formal methods can make a unique contribution

to conventional testing regimes. The technology transfer potential of executability,

animation, and emulation is also worth noting. Because simulation, animation, and em-

ulation are techniques familiar to analysts and engineers, they offer an effective vehicle

for integrating formal methods into ongoing system development activities. The VDM-

NASA-GB-O01-97 123

SL study carried out at British Aerospace provides an interesting example of the role

of executability in the integration of formal specification in a traditional development

process [LFB96].

6.4 Integrating Automated Analysis Methods

No single technique is effective across a wide range of applications or even across a sin-

gle application with disparate components or algorithms. Industrial-strength examples

typically require a variety of approaches, currently used as standalone systems, as illus-

trated, for example, in [MPJ94]. Rushby [Rus96] argues that effective deductive support

for formal methods requires not standalone, but integrated techniques effective across

a broad range of applications. Shankar [Sha96] makes a similar argument, noting that

the "sheer scale" of mathematics necessary for formal methods argues for a unification

of verification techniques.

The three analysis techniques surveyed in this chapter--automated deductive meth-

ods, finite-state methods, and simulation methods--have complementary strengths and

there is increasing interest in the synergistic integration of these techniques within a

uniform framework. Synergistic integration simply means that the resulting system

should be more than the sum of its parts. Logical frameworks, such as Isabelle [Pau88],

support the definition and construction of deductive tools for specialized logics, but do

not provide systematic support for coherent integration of different capabilities [Sha96].

The Stanford TEmporal Prover (STEP) [Man94], which integrates model checking with

algorithmic deductive methods (decision procedures) and interactive deductive meth-

ods (theorem proving) to support verification of reactive systems, is an example of one

strategy in the search for effective integration. The STEP system is interesting because

it also combines powerful algorithmic and heuristic techniques to automatically gen-

erate invariants. A different approach has been used to integrate model checking and

automated proof checking in PVS [RSS95], where a BDD-based model checker for the

propositional mu-calculus is integrated as an additional decision procedure within the

proof checker.

The notion of integrated verification techniques introduced here provides a glimpse

of the direction verification technology is heading. One implication of this discussion

is the relative maturity of existing formal methods techniques, which offer effective

specification and analysis options for aerospace applications.

6.5 Proof of Selected SAFER Property

The property that no more than four thrusters may be fired simultaneously follows

directly from the detailed functional requirements of the SAFER system. Thruster

selection is a function of the integrated hand grip and AAH-generated commands.

The thruster select logic specified in Tables C.2 and C.3 is used to choose appropri-

ate thrusters based on a given integrated command. An initial survey of these tables

124 Chapter 6

might suggest that as many as four thrusters can be selected from each table, resulting

in as many as eight thrusters chosen in all. However, several additional constraints

render certain command combinations invalid. Furthermore, the table entries them-

selves are interrelated in ways that limit the thruster count for multiple commands.

The four-thruster maximum follows directly from the combination of these two types of
constraint.

The four-thruster max property is fundamental and is explicitly captured as Re-

quirement 41, one of the avionics software requirements (see Sections 3.3 and C.2):

41. The avionics software shall provide accelerations with a maximum of four simul-

taneous thruster firing commands.

The four-thruster max property can be expressed as a PVS theorem as shown here.

max_thrusters: THEOREM

FORALL (a_in: avionics_inputs), (a_st: avionics_state):

length(prop_actuators(output(SAFER_control(a_in, a_st)))) <= 4

The theorem asserts that for any input and state values, the outputs produced by

the SAFER controller, which include the list of thrusters to fire in the current frame,

obey the maximum thruster requirement. This claim applies to any output that can be

generated by the model.

6.5.1 The PVS Theory SAFER_properties

Proof of the max_thrusters theorem requires several supporting lemmas. These lemmas

and the theorem itself are packaged as the PVS theory SAFER_properties, which is

reproduced here.

NASA-GB-O01-97 125

SAFER_properties: THEORY

BEGIN

IMPORTING avionics_model

A,B,C:

tr:

HCM,cmd:

AAH:

state:

thr,U,V:

act:

BF,LRUD:

VAR axis_command

VAR tran_command

VAR six_dof_command

VAR rot_command

VAR AAH_state

VAR thruster_list

VAR actuator_commands

VAR thruster_list_pair

%% Only one translation command can be accepted for thruster selection.

only_one_tran(tr): bool =

(tr(X) /= ZER0 IMPLIES tr(Y) = ZER0 AND tr(Z) = ZERO)

AND (tr(Y) /= ZER0 IMPLIES tr(Z) = ZERO)

only_one_tran_pri: LEMMA

only_one_tran(prioritized_tran_cmd(tr))

only_one_tran_int: LEMMA

only_one_tran(tran(integrated_commands(HCM, AAH, state)))

%% All categories of selected thrusters (BF vs. LRUD and mandatory

%% vs. optional) are bounded in size by two, which follows directly

%% from inspection of the tables.

max_thrusters_BF: LEMMA

length(proj_l(BF_thrusters(A, B, C))) <= 2 AND

length(proj_2(BF_thrusters(A, B, C))) <= 2

max_thrusters_LRUD: LEMMA

length(proj_l(LRUD_thrusters(A, B, C))) <= 2 AND

length(proj_2(LRUD_thrusters(A, B, C))) <= 2

126 Chapter 6

ZZ Absence of translation commands implies no optional thrusters

_ will be selected.

no_opt_thr_BF: LEMMA

tr(X) = ZERO IMPLIES length(proj_2(BF_thrusters(tr(X), B, C))) = 0

no_opt_thr_LRUD: LEMMA

tr(Y) = ZERO AND tr(Z) = ZERO IMPLIES

length(proj_2(LRUD_thrusters(tr(Y), tr(Z), C))) = 0

_ Top level theorems establishing bounds on number of selected thrusters:

max_thrusters_sel: LEMMA

only onetran(tran(cmd)) IMPLIES

length(selectedthrusters(cmd)) <= 4

max_thrusters: THEOREM

FORALL (a in: avionics inputs), (a st: avionics state):

length(prop actuators(output(SAFER control(a in, a st)))) <= 4

END SAFERproperties

The SAFER_properties theory depends on other theories in the SAFER specifica-

tion, as shown in the graph of the dependency hierarchy in Figure 6.3. Only the depen-

dency on the theory avionics_model is explicitly represented (in the IMPORTING clause

in SAFER_properties). The remaining dependency chains are established through sim-
ilar clauses in the other theories.

The lemmas in SAFER_properties differ in import. Some are used to decompose

the proof. Others express general properties of the problem domain that are likely

to be useful in the proof of additional SAFER properties as well as in the proof of

max_thrusters. Annotations (indicated by the PVS comment character Y,) indicate

whether the lemma represents an intermediate proof step or a general property.

The mechanically assisted proof of the SAFER_properties theory consists of a

proof of the top-level theorem, max_thrusters, whose proof follows from the lemmas

max_thrusters_sel and only_one_tran_int. Each of these lemmas is, in turn, proved

in terms of other lemmas from this theory. The PVS theorem prover employs a sequent

calculus similar to that sketched in Section 6.1.3.1.2, but mechanized at a considerably

higher level than that reflected in the proof in Section 6.1.3.3. Section C.4.2.2 shows a

transcript from the proof of theorem max_thrusters. The proof contains only five steps

in the PVS theorem prover. Proofs of the remaining lemmas are similarly straightfor-

ward and require only a few steps. The single exception is max_thrusters_sel, whose

proof involves a case analysis.

NASA-GB-O01-97 127

6.5.2 Informal Argument for Lemma max_thrusters_sel

Consider, first, an informal argument for the max_thrusters_sel lemma. At most two

mandatory and two optional thrusters can be selected from each of the two thruster

tables. The argument proceeds by cases defined in terms of possible commands.
The first case concerns a translation command for the X axis.

• Case 1: No X command present. Inspection of Table C.2 shows that there will

be no optional thrusters selected in this case. There are two subcases, depending

on the presence of a pitch or yaw command.

- Case 1.1: No pitch or yaw commands. Inspection of Table C.2 shows
that no thrusters at all are selected in this case. At most four can come from

Table C.3. Hence, the max thruster property holds.

- Case 1.2: Pitch or yaw command present. Inspection of Table C.3

indicates that no optional thrusters are chosen from this table. Hence, only

mandatory thrusters from each table are chosen, and, again, the number
selected cannot exceed 4.

• Case 2: X command present. Because only one translation command is

allowed, it follows that no Y or Z command can appear. This, in turn, implies

that no optional thrusters are chosen from Table C.3. The subcases take into

account the possibility of a roll command.

- Case 2.1: No roll command. Without a roll command, no thrusters are

selected from Table C.3. Hence, the max thruster property holds.

- Case 2.2: Roll command present. A roll command implies that Ta-

ble C.2 yields no optional thrusters. This leaves only mandatory thrusters

from each table, and the bound of four thrusters is satisfied.

The case analysis sketched in this informal proof can be directly formalized in PVS.

The resulting proof is quite lengthy, as shown in the proof tree in Figure 6.4. As noted

earlier, the level of automation represented in this figure is higher than that illustrated
in Section 6.1.3.3.

Although it is certainly possible to use mechanized proof tools to verify informal

proofs in this way, it is often far more productive to exploit the strengths of a particular

tool to make the proof more automatic, more comprehensible, or more optimal with

respect to other desired metrics. This kind of optimization follows quite naturally as

one of the later steps in the inherently iterative process of developing and refining

a proof. Figure 6.5 shows a considerably simpler and more automated proof for the

max_thrusters_sel property. This second proof exploits the high-level PVS GRIND

command that packages many lower-level commands, thereby automating most of the

proof of max_thrusters_sel.

128 Chapter 6

SAFER_properties

avionics model

data recor ;M_display

thr

hand controller module p! inertial reference unit

avionics_types

Figure 6.3: Dependency Hierarchy for SAFER_properties.

NASA-GB-O01-97 129

F-

........._............ l........ _,

Figure 6.4: Proof Tree for SAFER_properties_max_thrusters_sel.

130 Chapter 6

(skosimp*)

(auto-rewrite . . .)

(expand ...)

(use "max thrusters BF")

(use "max_thrusters_LRUD")

(use "no_opt thr BF")

(use "no_opt_thr_LRUD")

(grind ...)

....... i,, " " - -- . . . -

(expand "LRUD_thrusters")

(assert)

(expand "BF l_thrusters") (expand "BF l_thrusters")

F

 ass rt, ass rt,

Figure 6.5: Revised Proof Tree for SAFER_properties_max_thrusters_sel.

Chapter 7

Conclusion

This guidebook has presented a discussion of the technical issues involved in the use of

formal methods. The focus has been on using formal methods to analyze requirements

and high-level designs, that is, on a spectrum of activities that apply mathematical

techniques to formalize, explore, debug, validate, and verify software and hardware

systems. The development of the SAFER specification has exemplified the process of

applying formal methods to aerospace applications.

The guidebook characterizes formal methods as an iterative process whose broad

outlines are determined by contextual factors. Effective use of this process involves

judiciously pairing formal methods with an application and its careful integration with

existing quality control and assurance activities.

7.1 Factors Influencing the Use of Formal Methods

Two types of factors influence the use of formal methods: administrative factors and

technical factors. Administrative factors--including project scale and staffing, inte-

gration of formal methods with traditional processes, and general project guidelines:

training, specification and documentation standards and conventions, and so on--are

discussed in Volume I of this Guidebook [NASA-95a]. Technical factors--including

the type, size, and structure of the application; level of formalization; scope of formal

methods use; characteristics of available documentation, and choice of formal methods

tool--have been the subject of this second volume of the guidebook. These technical
factors are summarized here.

• Type, Size, and Structure of the Application Formal methods are best suited

to the analysis of complex problems, taken singly or in combination, and less suited

for numerical algorithms or highly computational applications. Applications of

moderate size with a coherent structure that can be decomposed into subsystems

or components are typically most appropriate.

131

132 Chapter 7

Level of Formalization Formal methods can be productively applied at vari-

ous levels of formality or rigor, ranging from the occasional use of mathematical

notation to exclusive use of semantically well-defined specification languages with

mechanized proof support.

Scope of Formal Methods Use Formal methods can be effectively applied in a

variety of ways depending on which stages of the developmental life cycle, which

system components, and what system functionality are formalized.

Documentation Formal methods benefit from the availability of adequate docu-

mentation. The most important characteristics are the level at which the require-

merits (high-level design) are stated, the degree to which they are explicitly and

unambiguously enumerated, the extent to which they can be traced to specific

system components, and the availability of additional information or expertise to

motivate and clarify their definition.

Tool(s) Formal methods typically involve some level of mechanical support. The

choice of formal methods tool, if any, is determined by administrative factors and

the preceding technical factors (excepting documentation). Information on formal

methods tools is available from several databases, including those maintained by

Jonathon Bowen, Larry Paulson, and Carolyn Talcott, respectively [Bowen, Pauls,

Talco].

7.2 The Process of Formal Methods

Contextual factors determine the broad outlines of formal methods use for a given appli-

cation. The substance of the formal methods process has been characterized in previous

chapters of this volume as a discipline composed of the following activities: character-

izing, modeling, specifying, analyzing, documenting, and maintaining/generalizing.

Characterizing Synthesizing a thorough understanding of the application and

the application domain, resulting in a working characterization of the application

and relevant parts of its environment.

Modeling Selecting a mathematical representation expressive enough to formalize

the application domain, while providing sufficient analytical power to explore,

calculate, and predict the behavior of the system.

Specifying Developing a specification strategy, formalizing the application in

terms of the underlying model and articulated strategy, and checking the syntactic

and semantic correctness of the specification.

Analyzing Predicting and calculating system behavior, challenging underlying

assumptions, validating key properties and invariants, establishing the consistency

of axioms, and establishing the correctness of hierarchical layers.

NASA-GB-O01-97 133

• Documenting Recording underlying assumptions, motivating critical decisions,

documenting rationale and crucial insights, providing additional explanatory ma-

terial, tracing specification to requirements (high-level design), tracking level of

effort, and collecting cost/benefit data.

• Maintaining/Generalizing Revisiting and, as necessary, modifying the specifi-

cation and analysis to predict the consequences of proposed changes to the mod-

eled system, to reflect mandated changes to the modeled system, to accommodate

reuse of the formal specification and analysis, or to distill general principles from
the formalization.

Although this linearization of the process is informative, it is important to keep two

additional facts in mind. First, applying formal methods is an iterative process. A

specification, like a conventional program, must be methodically developed, explored,

modified, and refined through many iterations until the result is free of syntactic and

semantic errors and captures desired characteristics and behaviors in a concise and easily

communicated form. Second, the list is not prescriptive. Each project necessarily selects

the most appropriate subset of the activities listed above, namely those most consistent

with its mandate and the resources at its disposal.

7.3 Pairing Formal Methods, Strategy, and Task

Formal methods offer a diverse set of techniques appropriate for a wide variety of ap-

plications. Moreover, there are many ways to use these techniques to model systems

and to calculate and explore their properties. The implications of this rich repertoire

of techniques and strategies is that the effective use of formal methods involves judi-

cious pairing of method, strategy, and task. For example, control-intensive algorithms

for small finite systems, such as mode sequencing algorithms, are often most effectively

analyzed using state exploration, while general properties of complex algorithms, such

as Byzantine fault-tolerant clock synchronization, typically require eflicient deductive

support for arithmetic in the form of arithmetic decision procedures. When an optimal

pairing of methods, strategy, and task is not readily apparent, a rapid prototype of

an aggressively downscaled or abstracted model that preserves essential properties of

interest can help to focus the selection. Precedence, that is, techniques or strategies

successfully applied to similar tasks, can also serve as a guide in these cases.

A complex application is typically decomposable into subtasks. In such cases, it may

be productive to apply a combination of methods, or to apply a "lightweight" method

such as model checking, animation, or direct execution to specific or reduced cases of

all or part of a specification before attempting a more rigorous and costly analysis. For

example, [HS96] reports the analysis of a communications protocol using a combination

of finite state exploration, theorem proving, and model checking. The protocol was first

manually reduced to finite state to allow certain safety properties to be checked using

finite state exploration. These properties were then verified for the full protocol using

134 Chapter 7

deductive theorem proving. The invariant used for the proof had to be strengthened

through additional conjuncts discovered incrementally during the proof process. Each

proposed new conjunct was checked in the reduced model, using state exploration before

it was used in the evolving proof. This iterative process eventually yielded an invariant

composed of 57 conjuncts. Exploiting the knowledge gained in this exercise, a finite-state

abstraction of the original protocol was developed and mechanically verified. Finally,

properties of the abstraction were verified, using a model checker for the propositional

mu-calculus (see Chapter 6, Section 6.2.1.5). Although this particular example reflects

a demanding exercise carried out by expert practitioners, it is a nice illustration of the

productive interaction of combinations of techniques and strategies that are available

to expert and nonexpert alike.

7.4 Formal Methods and Existing Quality Control and

Assurance Activities

Formal methods complement, but do not replace, testing and other traditional quality

control and assurance activities. 1 This symbiotic relationship between formal methods

and traditional quality control and assurance methods derives from the fact that formal

methods are most effectively used early in the life cycle, on suitably abstract repre-

sentations of traditionally hard problems, 2 in order to provide complete exploration

of a model of possible behaviors. Conversely, traditional quality control and assurance

methods have proven highly effective late in the life cycle on concrete (implemented) so-

lutions to hard problems, in order to establish the correctness of detailed and extensive,

but necessarily finite behavioral scenarios.

There are many ways to exploit the complementarity between formal methods and

existing quality control and assurance activities. Some of these directly target formal

methods' products. For example, [CRS96, SH94] describe a fully automatable structural

("black box") specification-based testing technique that complements implementation-

based testing. This technique derives descriptions of test conditions from a formal

specification written in a predicate logic-based language. The test conditions guide

selection of test cases and measure the comprehensiveness of existing test suites. Recent

conference proceedings, for example [COMP95, ISSTA96], attest to current interest in

developing automated methods that use formal specifications to generate test artifacts

for concrete implementations.

Other approaches reflect a more indirect use of formal methods. For example, formal,

or even quasi-formal models developed during the application of formal methods can be

used to facilitate traditional safety analyses. Leveson et al. report [MLR+96, p. 14] that

1Following Rushby [Rus93b, p. 144], quality control denotes "methods for eliminating faults" and
quality assurance denotes "methods for demonstrating that no faults remain."

2Including, but not limited to, fault tolerance, concurrency, and nondeterminism, where capabilities
distributed across components must be synchronized and coordinated, and where subtle interactions,
for example, due to timing and fault status, must be anticipated.

NASA-GB-O01-97 135

"... the state abstraction and organization [of their state-transition models] facilitated

... fault tree analysis." A further input to traditional safety analyses might involve

the formal specification and analysis of key safety properties. For example, it can be

demonstrated that a particular formal model satisfies (or fails to satisfy) given safety

properties, that proposed system modifications captured in a model fail to preserve

desired safety properties, or that an executable specification fails to satisfy a given test

suite. The results of these and other formal analyses can, in turn, be used to expose

areas of potential concern and, thereby, concentrate conventional testing activities. If

the results of the testing are then iterated back into the formal analysis, the increasingly

focused iteration can be used to refine requirements or high-level designs. The examples

cited here are suggestive, only. In general, the tighter the integration of formal and

conventional methods, the more productive the interplay between formal techniques

and traditional quality control and assurance activities.

7.5 Formal Methods: Verification Versus Validation and

Exploration

The real value of formal methods lies not in their ability to eliminate doubt, but in

their capacity to focus and circumscribe it. 3

The use of formal methods is often seen as a form of absolute guarantee--a proof

of total correctness. However, as Rushby [Rus93b, pp. 74-75] notes, equating formal

verification with total correctness is doubly misleading in that it overestimates the

guarantee conferred by formal verification while it underestimates the value of the formal

verification process, per se.

The guarantee conferred by formal verification assures the mutual consistency of

the specifications at either end of a chain of verification, but necessarily fails to address

the adequacy of the underlying model, the extent to which the highest-level specifica-

tion captures the requirements, or the fidelity with which the lowest-level specification

captures the behavior of the actual system. The potentially contentious issue of the ad-

equacy of the model is typically resolved through extensive use, challenge, and review,

although there have been a few interesting attempts to characterize and automate the

selection of "adequate" models of physical systems [Nay95]. The fidelity of the upper-

and lowermost specifications in a chain of verification is established through validation.

The value of the process of formal verification lies not only, or even primarily, in the

end product--that is, in a proof of correctness, but rather in the benefits accumulated

along the way. These benefits include many of those discussed in previous chapters of

this guidebook.

• A detailed enumeration of all the assumptions, axioms, and definitions that pro-

vide the underlying basis for the verification and characterize the requirements and

3Paraphrase of a comment from John Rushby.

136 Chapter 7

properties whose satisfaction or utility in the physical world must be empirically
validated.

• The validation of these assumptions and properties (for example, through proof

checking or model checking).

The (early) detection of inconsistent requirements or of design faults. Most verifi-

cations fail, at least initially, and the information gained from these failed attempts

reveals unstated assumptions, missing cases, and other errors of interpretation or

omission. Although some of these errors would probably be caught by conven-

tional techniques, others are quite subtle and less likely to be exposed by informal

techniques or sampled behaviors.

The ability to explore readily and reliably the consequences of additional or mod-

ified assumptions, requirements, and designs, reinforcing and informing the nec-

essarily iterative process of developing large and complex systems.

The ability to identify and develop reusable formal methods techniques, strategies,

and products, contributing to a cost-effective approach to the development of large

and complex systems.

The improved understanding and identification of better solutions derived from

the intense scrutiny and discipline involved in the process of formalization and

formal analysis.

In summary, formal methods do not focus exclusively or even primarily on "proving

correctness"--the verification activities associated with software implementations and

hardware layouts--but rather on exploring, debugging, and validating artifacts, such as

requirements and high-level designs, leading to a deeper understanding of their proper-

ties and assumptions, an earlier capability for calculating and predicting their behavior,

and a fuller appreciation of the consequences of modifying their structure, properties, or

environment. This guidebook has attempted to provide formal methods practitioners

with the information and insight essential to the productive use of formal methods.

References

[AC96]

[ACHH93]

[Ack62]

[ACM94]

[AD91]

[AH91]

[AH95]

[AH96]

[AH97]

[AHS96]

M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Com-

puter Science. Springer-Verlag, New York, NY, 1996.

R. Alur, C. Courcoubetis, T. A. Henzinger, and Pei-Hsin Ho. Hybrid

Automata: An Algorithmic Approach to the Specification and Verifica-

tion of Hybrid Systems. In Grossman et al. [GNRR93], pages 209--229.

R. L. Ackoff, editor. Scientific Method: Optimizing Applied Research

Decisions. John Wiley and Sons, 1962.

Ninth Annual Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA '9_), Portland, Oregon, Octo-

ber 1994. ACM/SIGPLAN(in SIGPLAN Notices Vol 29, No. 10, Octo-

ber 1994).

R. Alur and D. Dill. The Theory of Timed Automata. In de Bakker

et al. [dBHdRR91], pages 45--71.

R. Alur and T. A. Henzinger. Logics and Models of Real Time: A

Survey. In de Bakker et al. [dBHdRR91], pages 74--106.

R. Alur and Pei-Hsin Ho. HYTECH: The Cornell HYbrid TECHnology

Tool. In Antsaklis et al. [AKNS95], pages 265--293.

Rajeev Alur and Thomas A. Henzinger, editors. Computer-Aided Veri-

fication, CA V '96, volume 1102 of Lecture Notes in Computer Science,

New Brunswick, New Jersey, July/August 1996. Springer-Verlag.

M. Archer and C. Heitmeyer. Verifying Hybrid Systems Modeled as

Timed Automata: A Case Study. In Proceedings of the International

Workshop on Hybrid and Real-Time Systems (HART'97), Grenoble,

France, March 1997.

Rajeev Alur, Thomas Henzinger, and Eduardo Sontag, editors. Hybrid

Systems III, Verification and Control, volume 1066 of Lecture Notes in

Computer Science, New York, NY, 1996. Springer-Verlag.

137

138 References

[AINP88]

[AKNS95]

[AL95]

[AMCP84]

[And86]

[BB89]

[BC94]

[BC95a]

[BC95b]

[BCC+95]

[BCM+90]

Peter B. Andrews, Sunil Issar, Daniel Nesmith, and Frank Pfenning.

The TPS Theorem Proving System. In Lusk and Overbeek [LO88],

pages 760-761.

Panos Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry, editors.

Hybrid Systems II, volume 999 of Lecture Notes in Computer Science,

New York, NY, 1995. Springer-Verlag.

Y. Ampo and R. Lutz. Evaluation of Software Safety Analysis Using

Formal Methods. In Foundation of Software Engineering Workshop,

Hamana-ko, Japan, December 1995.

P. B. Andrews, D. A. Miller, E. L. Cohen, and F. Pfenning. Automating

Higher-Order Logic. In Automated Theorem Proving: After 25 Years,

pages 169-192. American Mathematical Society, 1984.

Peter B. Andrews. An Introduction to Logic and Type Theory: To Truth

through Proof. Academic Press, New York, NY, 1986.

Karl Hans Bliisius and Hans-Jiirgen Biirckert. Deduction Systems in

Artificial Intelligence. Ellis Horwood Series in Artificial Intelligence.

Ellis Horwood Limited, Chichester, West Sussex, UK, 1989. Distributed

in the U.S. by Halsted Press: a division of John Wiley and Sons.

R. Bourdeau and B. Cheng. A Formal Semantics of Object Models.

Technical Report MSU-CPS-94-6, Department of Computer Science,

Michigan State University, East Lansing, Michigan, January 1994.

William R. Bevier and Richard M. Cohen. An Executable Model of

the Synergy File System. Technical report, Computational Logic, Inc.,

May 1995.

R. Bourdeau and B. Cheng. A Formal Semantics for Object Model

Diagrams. IEEE Transactions on Software Engineering, 21(10):799-

821, October 1995.

Ricky W. Butler, James L. Caldwell, Victor A. Carreno, C. Michael

Holloway, Paul S. Miner, and Ben L. Di Vito. NASA Langley's Re-

search and Technology Transfer Program in Formal Methods. In Tenth

Annual Conference on Computer Assurance (COMPASS 95), Gaithers-

burg, MD, June 1995.

J. R. Burch, E. M. Clarke, K. L McMillan, D. L. Dill, and L. J.

Hwang. Symbolic Model Checking: 1020 States and Beyond. In 5th

Annual IEEE Symposium on Logic in Computer Science, pages 428-

439, Philadelphia, PA, June 1990. IEEE Computer Society.

NASA-GB-O01-97 139

[BDH94]

[BE87]

[BE93]

[Bee86]

[Be186]

[Bev89]

[BG96]

[BH91]

[BH97]

[BHL90]

[BHMY89]

Ricky W. Butler, Ben L. Di Vito, and C. Michael Holloway. Formal

Design and Verification of a Reliable Computing Platform for Real-

Time Control: Phase 3 Results. NASA Technical Memorandum 109140,

NASA Langley Research Center, Hampton, VA, August 1994.

Jon Barwise and John Etchemendy. The Liar: An Essay in Truth and

Circularity. Oxford University Press, New York, NY, 1987.

W. Bibel and E. Eder. Methods and Calculi for Deduction. In Handbook

of Logic in Artificial Intelligence and Logic Programming, volume 1:

Logical Foundations, pages 68-182. Oxford, 1993.

Michael J. Beeson. Proving Programs and Programming Proofs. In In-

ternational Congress on Logic, Methodology and Philosophy of Science

VII, pages 51-82, Amsterdam, 1986. North-Holland. Proceedings of a

meeting held at Salzburg, Austria, in July 1983.

E. T. Bell. Men of Mathematics. A Touchstone Book. Simon & Schuster,

Inc., New York, NY, 1986. First published in 1937.

William R. Bevier. Kit and the Short Stack. Journal of Automated

Reasoning, 5(4):519-530, December 1989.

Bernard Boigelot and Patrice Godefroid. Symbolic Verification of Com-

munication Protocols with Infinite State Spaces Using QDDs. In Alur

and Henzinger [AH96], pages 1-12.

J.M. Boyle and T.J. Harmer. Functional Specifications for Mathemat-

ical Computations. In B. MSller, editor, Constructing Programs from

Specifications, pages 205-224. North-Holland, 1991. Proceedings of the

IFIP TC2/WG 2.1 Working Conference on Constructing Programs from

Specifications, Pacific Grove, CA, USA, 13-16 May 1991.

R. Bharadwaj and C. Heitmeyer. Verifying SCR Requirements Speci-

fications using State Exploration. In First A CM SIGPLAN Workshop

on Automatic Analysis of Software, Paris, France, January 1997. Asso-

ciation for Computing Machinery.

D. Bj0rner, C.A.R. Hoare, and H. Langmaack, editors. VDM '90:

VDM and Z - Formal Methods in Software Development, volume 428 of

Lecture Notes in Computer Science, Kiel, FRG, April 1990. Springer-

Verlag.

William R. Bevier, Warren A. Hunt, Jr., J Strother Moore, and

William D. Young. An Approach to Systems Verification. Journal

of Automated Reasoning, 5(4):411-428, December 1989.

140 References

[BHS91]

[BJ78]

[BM79]

[BM88]

[BMS+96]

[Boe87]

[Boo91]

[Bowen]

[Boy89]

[BP83]

[BR73]

[Bre91]

[Bry86]

F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Pro-

tocol Specification. BCS Practitioner Series. Prentice Hall International

Ltd., Hemel Hempstead, UK, 1991.

D. Brand and W. H. Joyner, Jr. Verification of Protocols Using Sym-

bolic Execution. Computer Networks, 2:351-360, 1978.

R. S. Boyer and J S. Moore. A Computational Logic. Academic Press,

New York, NY, 1979.

R. S. Boyer and J S. Moore. A Computational Logic Handbook. Aca-

demic Press, New York, NY, 1988.

Ricky W. Butler, Paul S. Miner, Mandayam K. Srivas, Dave A. Greve,

and Steven P. Miller. A Bitvectors Library for PVS. NASA Technical

Memorandum 110274, NASA Langley Research Center, Hampton, VA,

August 1996.

B. Boehm. Industrial Software Metrics Top 10 List. IEEE Software,

4(5):84-85, September 1987.

G. Booch. Object-Oriented Design with Applications. Ben-

jamin/Cummings Series in Ada and Software Engineering. Ben-

jamin/Cummings Inc., Redwood City, CA, 1991.

http://www.comlab.ox.ac.uk/archive/formal-methods.html. Follow the

link "individual notations, methods and tools".

J.M. Boyle. Abstract Programming and Program Transformations -

An Approach to Reusing Programs. In T. J. Biggerstaff and A. J.

Perlis, editor, Software Reusability, Volume I, pages 361-413. ACM

Press, Addison-Wesley Publishing Company, 1989.

Paul Benacerraf and Hilary Putnam, editors. Philosophy of Mathe-

matics: Selected Readings. Cambridge University Press, Cambridge,

England, second edition, 1983.

J. W. De Bakker and W. De Roever. A Calculus for Recursive Program

Schemes. In M. Nivat, editor, Automata, Languages, and Programming,

pages 167-196, Amsterdam, 1973. North Holland.

Algebraic Specification Techniques in Object Oriented Programming

Environments, volume 562 of Lecture Notes in Computer Science.

Springer-Verlag, 1991.

R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipu-

lation. IEEE Transactions on Computers, C-35(8), 1986.

NASA-GB-O01-97 141

[Bry94]

[BS93]

[Bur69]

[Bur84]

[Bus90]

[BY90]

[Car58]

[CBK90]

[CE81]

[CES86]

Arthur E. Bryson, Jr. Control of Spacecraft and Aircraft. Princeton

University Press, Princeton, New Jersey, 1994.

Jonathan Bowen and Victoria Stavridou. The Industrial Take-up of

Formal Methods in Safety-Critical and other Areas: A Perspective. In

J. C. P Woodcock and P. G. Larsen, editors, FME '93: Industrial-

Strength Formal Methods, pages 183-195, Odense, Denmark, April

1993. Volume 670 of Lecture Notes in Computer Science, Springer-

Verlag.

R. Burstall. Proving Properties of Programs by Structured Induction.

Computing Journal, 12(1):41-48, 1969.

John P. Burgess. Basic Tense Logic. In Gabbay and Guenthner [GG84],

chapter II.2, pages 89-133.

Marilyn Bush. Improving Software Quality: The Use of Formal In-

spections at the Jet Propulsion Laboratory. In 12th International Con-

ference on Software Engineering, pages 196-199, Nice, France, March

1990. IEEE Computer Society.

W. R. Bevier and W. D. Young. Machine-Checked Proofs of a Byzan-

tine Agreement Algorithm. Technical Report 55, Computational Logic

Incorporated, Austin, TX, June 1990.

Rudolf Carnap. Introduction to Symbolic Logic and Its Applications.

Dover Publications, Inc., New York, NY, 1958. English translation of

Einfiihrung in die symbolische Logik, 1954.

E. M. Clarke, I. A. Browne, and R. P. Kurshan. A Unified Approach

for Showing Language Containment and Equivalence Between Various

Types of w-Automata. In A. Arnold, editor, CAAP '90, 15th Collo-

quium on Trees in Algebra and Programming, pages 103-116, Copen-

hagen, Denmark, May 1990. Volume 431 of Lecture Notes in Computer

Science, Springer-Verlag.

E. M. Clarke and E. A. Emerson. Characterizing Properties of Parallel

Programs as Fixpoints. In 7th International Colloquium on Automata,

Languages and Programming. Volume 85 of Lecture Notes in Computer

Science, Springer-Verlag, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of

Finite-State Concurrent Systems using Temporal Logic Specifications.

A CM Transactions on Programming Languages and Systems, 8(2):244-

263, April 1986.

142 References

[CFJ93]

[CGK89]

[CGL92]

[CH89]

[CHB92]

[CHJ86]

[CHR92]

[CK90]

[CKM+91]

[CL73]

E. M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal

Logic Model Checking. In Courcoubetis [Cou93].

E. M. Clarke, O. Grumberg, and R. P. Kurshan. A Synthesis of Two Ap-

proaches for Verifying Finite State Concurrent Systems. In A. R. Meyer

and M. A. Taitslin, editors, Logic at Botik '89, Symposium on Logi-

cal Foundations of Computer Science, pages 81-90, Pereslavl-Zalessky,

USSR, July 1989. Volume 363 of Lecture Notes in Computer Science,

Springer-Verlag.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Check-

ing and Abstraction. In 19th ACM Symposium on Principles of Pro-

gramming Languages, pages 343-354, Albuquerque, NM, January 1992.

Association for Computing Machinery.

Rance Cleaveland and Matthew Hennessy. Testing Equivalence as a

Bisimulation Equivalence. In International Workshop on Automatic

Verification Methods for Finite State Systems, Grenoble, France, June

1989. Volume 407 of Lecture Notes in Computer Science, Springer-

Verlag.

D. Coleman, F. Hayes, and S. Bear. Introducing Objectcharts or How

to Use Statecharts in Object-Oriented Design. IEEE Transactions on

Software Engineering, 18(1):9-18, January 1992.

B. Cohen, W. T. Harwood, and M. I. Jackson. The Specification of

Complex Systems. Addison-Wesley, Wokingham, England, 1986.

Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A Calculus of Dura-

tions. Information Processing Letters, 40(5):269-276, 1992.

E. M. Clarke and R. P. Kurshan, editors. Computer-Aided Verifica-

tion, CA V '90, volume 3 of DIMA CS Series in Discrete Mathematics

and Theoretical Computer Science. American Mathematical Society and

Association for Computing Machinery, June 1990.

Dan Craigen, Sentot Kromodimoeljo, Irwin Meisels, Bill Pase, and

Mark Saaltink. EVES: An Overview. In S. Prehn and W. J. Toetenel,

editors, VDM '91: Formal Software Development Methods, pages 389-

405, Noordwijkerhout, The Netherlands, October 1991. Volume 551 of

Lecture Notes in Computer Science, Springer-Verlag. Volume 1: Con-
ference Contributions.

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and

Mechanical Theorem Proving. Computer Science and Applied mathe-

matics. Academic Press, New York, NY, 1973.

NASA- GB-O01-9 7 143

[CLM89]

[CLS96]

[CLSS96]

[CM88]

[CMCHG96]

[Coc84]

[COMP95]

[Cou93]

[CPS93]

[CRS96]

[CS89]

E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional Model

Checking. In _th Annual IEEE Symposium on Logic in Computer Sci-

ence, pages 353-362, Asilomar, Pacific Grove, CA, June 1989. IEEE

Computer Society.

David Cyrluk, Patrick Lincoln, and N. Shankar. On Shostak's Decision
Procedure for Combinations of Theories. In M. A. McRobbie and J. K.

Slaney, editors, Automated Deduction--CADE-13, pages 463-477, New

Brunswick, N J, July/August 1996. Volume 1104 of Lecture Notes in

Artificial Intelligence, Springer-Verlag.

Rance Cleaveland, Philip Lewis, Scott Smolka, and Oleg Sokolsky. The

Concurrency Factory: A Development Environment for Concurrent

Systems. In Alur and Henzinger [AH96], pages 398-401.

K. Mani Chandy and Jayadev Misra. Parallel Program Design: A

Foundation. Addison-Wesley, Reading, MA, 1988.

E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen.

Symbolic Model Checking. In Alur and Henzinger [AH96], pages 419-
422.

Nino B. Cocchiarella. Philosophical Perspectives on Quantification in

Tense and Modal Logic. In Gabbay and Guenthner [GG84], chapter

II.6, pages 309-353.

COMPASS '95 (Proceedings of the Ninth Annual Conference on Com-

puter Assurance), Gaithersburg, MD, June 1995. IEEE Washington
Section.

Costas Courcoubetis, editor. Computer-Aided Verification, CA V '93,

volume 697 of Lecture Notes in Computer Science, Elounda, Greece,

June/July 1993. Springer-Verlag.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Con-

currency Workbench: A Semantics-Based Tool for the Verification of

Concurrent Systems. A CM Transactions on Programming Languages

and Systems, 15(1):36-72, January 1993.

J. Chang, D. Richardson, and S. Sankar. Structural Specification-Based

Testing with ADL. In ISSTA [ISSTA96], pages 62-70.

Dan Craigen and Karen Summerskill, editors. Formal Methods for

Trustworthy Computer Systems (FM89), Halifax, Nova Scotia, Canada,

July 1989. Springer-Verlag Workshops in Computing.

144 References

[CS96]

[CVWY92]

[CWB94]

[CY91a]

[CY91b]

[Dah90]

[dBdRR89]

[dBHdRR91]

[DDHY92]

[Dij76]

[Di194]

Rance Cleaveland and Steve Sims. The NCSU Concurrency Workbench.

In Alur and Henzinger [AH96], pages 394-397.

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yanakakis. Memory-

Efficient Algorithms for the Verification of Temporal Properties. In

Formal Methods in System Design 1, pages 275-288. Kluwer, 1992.

B. Cheng, E. Wang, and R. Bourdeau. A Graphical Environment for

Formally Developing Object-Oriented Software. In IEEE International

Conference on Tools with AI, San Diego, CA, November 1994.

P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press

Computing Series. Prentice Hall, Englewood Cliffs, N J, 1991. Second
Edition.

P. Coad and E. Yourdon. Object-Oriented Design. Yourdon Press Com-

puting Series. Prentice Hall, Englewood Cliffs, N J, 1991.

Ole-Johan Dahl. Object Orientation and Formal Techniques. In

D. Bjorner, C.A.R. Hoare, and H. Langmaack, editors, VDM'90: VDM

and Z, pages 1-11. Number 428 in Lecture Notes in Computer Science,

Springer-Verlag, 1990.

J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors. Step-

wise Refinement of Distributed Systems, volume 430 of Lecture Notes in

Computer Science, REX Workshop, Mook, The Netherlands, May/June

1989. Springer-Verlag.

J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg,

editors. Real Time: Theory in Practice, volume 600 of Lecture Notes

in Computer Science, REX Workshop, Mook, The Netherlands, June

1991. Springer-Verlag.

David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Proto-

col Verification as a Hardware Design Aid. In 1992 IEEE International

Conference on Computer Design: VLSI in Computers and Processors,

pages 522-525. IEEE Computer Society, 1992. Cambridge, MA, Octo-
ber 11-14.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood

Cliffs, N J, 1976.

D. L. Dill, editor. Computer-Aided Verification, CAV '9_, volume 818 of

Lecture Notes in Computer Science, Stanford, CA, June 1994. Springer-

Verlag.

NASA- GB-O01-9 7 145

[Di196]

[DJg0]

[DN89]

[DR96]

[DSTS0]

[EL85]

[EL86]

[ES93]

[Fag76]

[Fag86]

[FBHL84]

[FBWK92]

D. Dill. The Mur¢ Verification System. In Alur and Henzinger [AH96],

pages 390-393.

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In van Leeuwen

[vL90], chapter 6, pages 243-320.

J. Daintith and R. Nelson, editors. The Penguin Dictionary of Mathe-

matics. Penguin, London, UK, 1989.

Ben L. Di Vito and Larry W. Roberts. Using Formal Methods to As-

sist in the Requirements Analysis of the Space Shuttle GPS Change Re-

quest. NASA Contractor Report 4752, NASA Langley Research Center,

Hampton, VA, August 1996.

P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common

Subexpressions Problem. Journal of the A CM, 27(4):758-771, October
1980.

E.A. Emerson and C.L. Lei. Efficient Model Checking in Fragments of

the Propositional Mu-Calculus. In Proceedings of the lOth Symposium

on Principles of Programming Languages, pages 84-96, New Orleans,

LA, January 1985. Association for Computing Machinery.

E. Allen Emerson and Chin-Laung Lei. Efficient Model Checking in

Fragments of the Propositional Mu-Calculus. In 2nd Annual IEEE

Symposium on Logic in Computer Science, pages 267-278. IEEE Com-

puter Society, June 1986.

E.A. Emerson and A. Prasad Sistla. Symmetry and Model Checking.

In Courcoubetis [Cou93].

M. E. Fagan. Design and Code Inspections to Reduce Errors in Program

Development. IBM Systems Journal, 15(3):182-211, March 1976.

M. E. Fagan. Advances in Software Inspection. IEEE Transactions on

Software Engineering, SE-12(7):744-751, July 1986.

A. A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of Set Theory,

volume 67 of Studies in Logic and the Foundations of Mathematics.

North-Holland, Amsterdam, The Netherlands, second printing, second

edition, 1984.

Stuart Faulk, John Brackett, Paul Ward, and James Kirby, Jr. The

CoRE Method for Real-Time Requirements. IEEE Software, 9(5):22-

33, September 1992.

146 References

[FC87]

[FF93]

[FKV94]

[FMJJ92]

[FN86]

[Gar84]

[GAS89]

[Gen70]

[GG83]

[GG84]

[Gil60]

[GKK+88]

S. Faulk and P. Clements. The NRL Software Cost Reduction (SCR)

Requirements Specification Methodology. In Fourth International

Workshop on Software Specification and Design, Monterey, CA, April

1987. IEEE Computer Society.

Stephen Fickas and Anthony Finkelstein. Requirements Engineering

1993. In RE IRE93], pages v-vi.

M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Strategies for Incorporat-

ing Formal Specifications in Software Development. Communications

of the ACM, 37(10):74-86, October 1994.

J. Fernandez, L. Mounier, C. Jard, and T. Jeron. On-the-fly Verification

of Finite Transition Systems. In Formal Methods in System Design 1,

pages 251-273. Kluwer, 1992.

A. Furtado and E. Neuhold. Formal Techniques for Data Base Design.

Springer-Verlag, 1986.

James W. Garson. Quantification in Modal Logic. In Gabbay and

Guenthner [GG84], chapter II.5, pages 249-307.

D.I. Good, R.L. Akers, and L.M. Smith. Report on Gypsy 2.05. Tech-

nical Report 1, Computational Logic Inc., Austin, TX, January 1989.

Gerhard Gentzen. Collected Papers, edited by M. E. Szabo. Studies in

Logic. North Holland, New York, NY, 1970.

Dov M. Gabbay and Franz Guenthner, editors. Handbook of Philosophi-

cal Logic-Volume h Elements of Classical Logic, volume 164 of Synthese

Library. D. Reidel Publishing Company, Dordrecht, Holland, 1983.

Dov M. Gabbay and Franz Guenthner, editors. Handbook of Philo-

sophical Logic-Volume Ih Extensions of Classical Logic, volume 165 of

Synthese Library. D. Reidel Publishing Company, Dordrecht, Holland,
1984.

P. C. Gilmore. A Proof Method for Quantification Theory: Its Justi-

fication and Realization. IBM Journal of Research and Development,

4:28-35, 1960.

J. Goguen, C. Kirchner, H. Kirchner, A. M6grelis, J. Meseguer, and

T. Winkler. An Introduction to OBJ3. In Proceedings of the Conference

on Conditional Term Rewriting, pages 258-263, Orsay, France, 1988.

Number 308 in Lecture Notes in Computer Science, Springer-Verlag.

NASA- GB-O01-9 7 147

[GL96]

[Gla95]

[GM93]

[GMT+80]

[GMW79]

[GNRR93]

[God90]

[God96]

[Gor]

[Gor86]

[Gor89]

P. Godefroid and D. E. Long. Symbolic Protocol Verification with

Queue BDDs. In 11th Annual IEEE Symposium on Logic in Computer

Science, pages 198-206, New Brunswick, New Jersey, July 1996. IEEE

Computer Society.

James Glanz. Mathematical Logic Flushes Out the Bugs in Chip De-

signs. Science, 267:332-333, January 20, 1995.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:

A Theorem Proving Environment for Higher-Order Logic. Cambridge

University Press, Cambridge, UK, 1993.

S. L. Gerhart, D. R. Musser, D. H. Thompson, D. A. Baker, R. L.

Bates, R. W. Erickson, R. L. London, D. G. Taylor, and D. S. Wile.

An Overview of Affirm: A Specification and Verification System. In

S. H. Lavington, editor, Information Processing '80, pages 343-347,

Australia, October 1980. IFIP, North-Holland Publishing Company.

M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF:

A Mechanised Logic of Computation, volume 78 of Lecture Notes in

Computer Science. Springer-Verlag, 1979.

Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel,

editors. Hybrid Systems, volume 736 of Lecture Notes in Computer

Science, New York, NY, 1993. Springer-Verlag.

P. Godefroid. Using Partial Orders to Improve Automatic Verification

Methods. In Clarke and Kurshan [CK90], pages 321-339.

Partial-Order Methods for the Verification of Concurrent Systems, An

Approach to the State-Explosion Problem, volume 1032 of Lecture Notes

in Computer Science. Springer-Verlag, 1996.

M. J. Gordon. Varieties of Theorem Provers. Unpublished manuscript.

M. Gordon. Why Higher-Order Logic is a Good Formalism for Speci-

fying and Verifying Hardware. In G. Milne and P. A. Subrahmanyam,

editors, Formal Aspects of VLSI Design, pages 153-177. Elsevier, 1986.

Reprinted in Yoeli [Yoe90, pp. 57-77].

Michael J. C. Gordon. Mechanizing Programming Logics in Higher-

Order Logic. In G. Birtwistle and P. A. Subrahmanyam, editors, Cur-

rent Trends in Hardware Verification and Theorem Proving, pages 387-

439, New York, NY, 1989. Springer-Verlag.

148 References

[GPS96]

[Gro92]

[GS90]

[GS93]

[H+78]

[H+90]

[Ha j78]

[Hal84]

[Hal90]

[Har84]

[Har87]

[Hat82]

Patrice Godefroid, Doron Peled, and Mark Staskauskas. Using Partial-
Order Methods in the Formal Validation of Industrial Concurrent Pro-

grams. IEEE Transactions on Software Engineering, 22(7):496-507,

July 1996.

RAISE Language Group. The RAISE Specification Language. BCS

Practitioner Series. Prentice Hall, Hemel Hempstead, UK, 1992.

Susanne Graf and Bernhard Steffen. Compositional Minimization of

Finite-State Systems. In E. M. Clarke and R. P. Kurshan, editors,

Computer-Aided Verification, CA V _90, pages 186-196, New Brunswick,

N J, June 1990. Volume 531 of Lecture Notes in Computer Science,

Springer-Verlag.

David Gries and Fred B. Schneider. A Logical Approach to Discrete

Math. Texts and Monographs in Computer Science. Springer-Verlag,

New York, NY, 1993.

K. L. Heninger et al. Software Requirements for the A-7E Aircraft.

NRL Report 3876, Naval Research Laboratory, November 1978.

D. Harel et al. STATEMATE: A Working Environment for the Devel-

opment of Complex Reactive Systems. IEEE Transactions on Software

Engineering, 16(4):403-414, April 1990.

J. Hajek. Automatically Verified Data Transfer Protocols. In Proceed-

ings of the 4th ICCC, pages 749-756, Kyoto, Japan, 1978.

Michael Hallett. Cantorian Set Theory and Limitation of Size. Num-

ber 10 in Oxford Logic Guides. Oxford University Press, Oxford, Eng-

land, 1984.

A. Hall. Using Z as a Specification Calculus for Object-Oriented

Systems. In D. Bjorner, C.A.R. Hoare, and H Langmaack, editors,

VDM'90: VDM and Z, pages 290-318. Number 428 in Lecture Notes

in Computer Science, Springer-Verlag, 1990.

David Harel. Dynamic Logic. In Gabbay and Guenthner [GG84], chap-

ter II.10, pages 497-604.

D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci-

ence of Computer Programming, 8(3):231-274, 1987.

William S. Hatcher. The Logical Foundations of Mathematics. Perga-

mort Press, Oxford, UK, 1982.

NASA- GB-O01-9 7 149

[Hay87]

[Haz83]

[HB95a]

[HB95b]

[HBGL95]

[HC91]

[HC95]

[HCL95]

[HCRP91]

[Hen80]

[HFB93]

[HGH96]

Ian Hayes, editor. Specification Case Studies. Prentice Hall Interna-

tional Ltd., Hemel Hempstead, UK, 1987.

Allen Hazen. Predicative Logics. In Gabbay and Guenthner [GG83],

chapter 1.5, pages 331-407.

M. G. Hinchey and J. P. Bowen, editors. Applications of Formal Meth-

ods. Prentice Hall International Ltd., Hemel Hempstead, UK, 1995.

International Series in Computer Science.

M. G. Hinchey and J. P. Bowen. Applications of Formal Methods FAQ.

[HB95a], pages 1-15.

Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw.

SCR*: A Toolset for Specifying and Analyzing Requirements. In COMP

[COMP95], pages 109-122.

F. Hayes and D. Coleman. Coherent Models for Object-Oriented Anal-

ysis. In OOPSLA '91 (Object-Oriented Programming Systems, Lan-

guages, and Applications 1991) Conference Proceedings, Phoenix, AZ,
October 1991. Communications of the ACM.

D. N. Hoover and Zewei Chen. Tablewise, a Decision Table Tool. In

COMP [COMP95], pages 97-108.

David Hamilton, Rick Covington, and Alice Lee. Experience Report

on Requirements Reliability Engineering Using Formal Methods. In IS-

SRE '95: International Conference on Software Reliability Engineering,

Toulouse, France, 1995.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous

Dataflow Programming Language Lustre. Proceedings of the IEEE,

79(9):1305-1320, September 1991.

K. L. Heninger. Specifying Software Requirements for Complex Sys-

tems: New Techniques and Their Application. IEEE Transactions on

Software Engineering, SE-6(1):2-13, January 1980.

N. Halbwachs, J.-C. Fernandez, and A. Bouajjanni. An executable

temporal logic to express safety properties and its connection with the

language Lustre. In Sixth International Symposium on Lucid and In-

tensional Programming, ISLIP'93, Quebec, April 1993.

D. N. Hoover, David Guaspari, and Polar Humenn. Applications of For-

mal Methods to Specification and Safety of Avionics Software. NASA

Contractor Report 4723, NASA Langley Research Center, Hampton,

VA, April 1996. (Work performed by Odyssey Research Associates).

150 References

[HHK96]

[HJL95]

[HL94]

[HLK95]

[HLR92]

[HN96]

[Hoa69]

[Hoa85]

[Hol]

[Ho181]

[Ho184]

R. Hardin, Z. Har'E1, and R. Kurshan. COSPAN. In Alur and Hen-

zinger [AH96], pages 423-427.

Constance Heitmeyer, Ralph Jeffords, and Bruce Labaw. Tools for An-

alyzing SCR-Style Requirements Specifications: A Formal Foundation.

Technical Report 7499, Naval Research Laboratory, Washington DC,

1995. In press.

Constance Heitmeyer and Nancy Lynch. The Generalized Railroad

Crossing: A Case Study in Formal Verification of Real-Time Systems.

In Real Time Systems Symposium, pages 120-131, San Juan, Puerto

Rico, December 1994. IEEE Computer Society.

Constance Heitmeyer, Bruce Labaw, and Daniel Kiskis. Consistency

Checking of SCR-Style Requirements Specifications. In International

Symposium on Requirements Engineering, York, England, March 1995.

IEEE Computer Society.

N. Halbwachs, F. Lagnier, and C. Ratel. Programming and Verifying

Real-Time Systems by Means of the Synchronous Data-Flow Program-

ming Language Lustre. IEEE Transactions on Software Engineering,

Special Issue on the Specification and Analysis of Real-Time Systems,

September 1992.

D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts.

ACM Transactions on Software Engineering Methodology, 5(4):293-

333, 1996.

C. A. R. Hoare. An Axiomatic Basis of Computer Programming. Com-

munications of the ACM, 12(10):576-580, October 1969.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall

International Series in Computer Science. Prentice Hall, Hemel Hemp-

stead, UK, 1985.

G. Holzmann. Personnal communication.

G. Holzmann. A Theory for Protocol Validation. In Proceedings of the

First IFIP PSTV Conference on Protocol Specification, Testing, and

Verification, pages 377-391, Teddington, UK, 1981. Also appeared in

IEEE Transactions on Computers, C-31(8):730-738, August 1982.

G. Holzmann. Backward Symbolic Execution of Protocols. In Proceed-

ings of the Fourth IFIP PSTV Conference on Protocol Specification,

Testing, and Verification, pages 19-30, Skytop, PA, 1984.

NASA-GB-O01-97 151

[Ho191]

[HP73]

[HP96]

[HS96]

[Hun87]

[ICRE94]

[ICRE96]

[ID93]

[ID96a]

[ID96b]

[ISSS194]

[IS088]

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice

Hall Software Series. Prentice-Hall, 1991.

P. Hitchcock and D. Park. Induction Rules and Termination Proofs.

In M. Nivat, editor, Automata, Languages, and Programming, pages

225-251, Amsterdam, 1973. North Holland.

G. Holzmann and D. Peled. The State of SPIN. In Alur and Henzinger

[AH96], pages 385-389.

Klaus Havelund and N. Shankar. Experiments in Theorem Proving and

Model Checking for Protocol Verification. In Formal Methods Europe

FME '96, pages 662-681, Oxford, UK, March 1996. Number 1051 in

Lecture Notes in Computer Science, Springer-Verlag.

Warren A. Hunt, Jr. The Mechanical Verification of a Microprocessor

Design. Technical Report 6, Computational Logic Incorporated, Austin,

TX, 1987.

ICRE '94 (Proceedings of the First International Conference on Re-

quirements Engineering), Colorado Springs, CO, April 1994. IEEE

Computer Society.

ICRE '96 (Proceedings of the Second International Conference on Re-

quirements Engineering), Colorado Springs, CO, April 1996. IEEE

Computer Society.

C. Norris Ip and David L. Dill. Better Verification through Symmetry.

In CHDL '93: 11th Conference on Computer Hardware Description

Languages and their Applications, pages 87-100. IFIP, 1993. Ottawa,
Canada.

C. Norris Ip and David L. Dill. State Reduction Using Reversible Rules.

In Proceedings of the 33rd Design Automation Conference, pages 564-

567, Las Vegas, NV, June 1996.

C. Norris Ip and David L. Dill. Verifying Systems with Replicated

Components in Murphi. In Alur and Henzinger [AH96], pages 147-158.

Software Development, IEEE Standard 1498. IEEE Publications Office,

Los Alamitos, CA, March 1994. Interim Standard.

LOTOS--A Formal Description Technique Based on the Temporal

Ordering of Observational Behavior. International Organization for

Standardization--Information Processing Systems--Open Systems In-

terconnection, Geneva, Switzerland, September 1988. ISO Standard
8807.

152 References

[ISSTA96]

[Jac95]

[Jon90]

[Kay91]

[KB70]

[KM94]

[KM96]

[Knu86]

[Kow88]

[Koz83]

[Kri63a]

[Kri63b]

ISSTA '96 (Proceedings of the 1996 Symposium on Software Testing and

Analysis), San Diego, CA, January 1996. Association for Computing

Machinery.

M. Jackson. Software Requirements and Specifications, a lexicon of

practice, principles and prejudices. ACM Press Books. Addison-Wesley,

Reading, MA, 1995.

Cliff B. Jones. Systematic Software Development Using VDM. Prentice

Hall International Series in Computer Science. Prentice Hall, Hemel

Hempstead, UK, second edition, 1990.

Richard Kaye. Models of Peano Arithmetic. Number 15 in Oxford Logic

Guides. Oxford University Press, Oxford, England, 1991.

D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal

Algebras. In Computational Problems in Abstract Algebra, pages 263-

297. Pergamon Press, Oxford, UK, 1970. Reprinted in Automation of

Reasoning 2 (Springer-Verlag, Berlin, 1983) 342-376.

Matt Kaufmann and J Strother Moore. Design Goals for ACL2. Tech-

nical Report 101, Computational Logic, Inc., Austin, TX, August 1994.

Matt Kaufmann and J Strother Moore. ACL2: An Industrial Strength

Version of Nqthm. In COMPASS '96 (Proceedings of the Eleventh An-

nual Conference on Computer Assurance), pages 23-34, Gaithersburg,

MD, June 1996. IEEE Washington Section.

Donald Knuth. Computers _ Typesetting/A: The TEXbook. Addison-

Wesley, Reading, MA, 1986.

R. A. Kowalski. The Early Years of Logic Programming. Communica-

tions of the ACM, 31(1):38-42, 1988.

Dexter Kozen. Results on the Propositional #-Calculus. Theoretical

Computer Science, 27:333-354, 1983.

Saul Kripke. Semantical Analysis of Modal Logic I, Normal Proposi-

tional Calculi. Zeitschrift fiir Mathematische Logik und Grundlagen der

Mathematik, 9:67-96, 1963. VEB Deutscher Verlag der Wissenschaften,
Berlin.

Saul Kripke. Semantical Considerations on Modal Logic. Acta Philo-

sophica Fennica, 16:83-94, 1963.

NASA-GB-O01-97 153

[Kri65]

[Kro93]

[KSH92]

[KTB88]

[Kur94]

[KZ89]

[LA94]

[Lain89]

[Lain95]

[Lan96]

[Lev79]

Saul Kripke. Semantical Analysis of Modal Logic II, Non-Normal Modal

Propositional Calculi. In J. W. Addison, L. Henkin, and A. Tarski,

editors, The Theory of Models, pages 206-220. North-Holland, Amster-

dam, 1965.

K. KronSf, editor. Method Integration: Concepts and Case Studies.

John Wiley & Sons, New York, NY, 1993.

John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An Analysis of De-

fect Densities Found During Software Inspections. Journal of Systems

Software, 17:111-117, 1992.

B. Konikowska, A. Tarlecki, and A. Blikle. A Three-Valued Logic

for Software Specification and Validation. In R. Bloomfield, L. Mar-

shall, and R. Jones, editors, VDM'88: VDM -- The Way Ahead, pages

218-242. Number 328 in Lecture Notes in Computer Science, Springer-

Verlag, 1988.

Robert P. Kurshan. Computer-Aided Verification of Coordinating Pro-

cesses. Princeton Series in Computer Science. Princeton University

Press, Princeton, N J, 1994.

D. Kapur and H. Zhang. An Overview of Rewrite Rule Laboratory

(RRL). In Proceedings of the Third International Conference on Rewrit-

ing Techniques and Applications, pages 559-563, Chapel Hill, NC, 1989.

Number 355 in Lecture Notes in Computer Science, Springer-Verlag.

R. Lutz and Y. Ampo. Experience Report: Using Formal Methods

for Requirements Analysis of Critical Spacecraft Software. In Proceed-

ings of the Nineteenth Annual Software Engineering Workshop, NASA

Goddard Space Flight Center, Greenbelt, MD, December 1994.

Leslie Lamport. A Simple Approach to Specifying Concurrent Systems.

Communications of the ACM, 32(1):32-45, January 1989.

Leslie Lamport. Types are not Harmless, July 1995.

http://www.research.digital.com/SRC/tla/tla.html (under Related

Issues).

Christopher Landauer. Discrete Event Systems in Rewriting Logic. In

J. Meseguer, editor, First International Workshop on Rewriting Logic

and its Applications, pages 309-320. Elsevier Science B.V., September

1996. Electronic Notes in Theoretical Computer Science, Volume 4.

Azriel Levy. Basic Set Theory. Perspectives in Mathematical Logic.

Springer-Verlag, Berlin, Germany, 1979.

154 References

[LFB96]

[LG96]

[LHHR94]

[Lin94]

[L088]

[LPPU94]

[LR93a]

[LR93b]

[LSB92]

[LSVW96]

[Lut93]

[Lyn96]

Peter Gorm Larsen, John Fitzgerald, and Tom Brookes. Applying For-

mal Specification in Industry. IEEE Software, 13(3):48-56, May 1996.

K. Lano and S. Goldsack. Integrating Formal and Object-Oriented

Methods: The VDM++ Approach. In 2nd Methods Integration Work-

shop, Leeds, UK, 1996. To appear in Springer-Verlag EWTC Series.

Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and

Jon Damon Reese. Requirements Specification for Process-Control

Systems. IEEE Transactions on Software Engineering, 20(9):684-707,

September 1994.

Richard Linger. Cleanroom Process Model. IEEE Software, 11(2):50-

58, March 1994.

E. Lusk and R. Overbeek, editors. 9th International Conference on Au-

tomated Deduction (CADE), volume 310 of Lecture Notes in Computer

Science, Argonne, IL, May 1988. Springer-Verlag.

M. Lowry, A. Philpot, T. Pressburger, and I. Underwood. A Frame-

work for Distributed System Designs. In Proceedings, KBSE '9_, The

Ninth Knowledge-Based Software Engineering Conference, pages 48-57,

Monterey, California, September 1994. IEEE Computer Society Press.

Patrick Lincoln and John Rushby. Formal Verification of an Algorithm

for Interactive Consistency under a Hybrid Fault Model. NASA Con-

tractor Report 4527, NASA Langley Research Center, Hampton, VA,

July 1993.

Patrick Lincoln and John Rushby. Formal Verification of an Algorithm

for Interactive Consistency under a Hybrid Fault Model. In Courcou-

betis [Cou93], pages 292-304.

R. Letz, J. Schumann, and S. Bayerl. SETHEO: A High-Performance

Theorem Prover. Journal of Automated Reasoning, 8(2):183-212, 1992.

N. Lynch, R. Segala, F. Vaandrager, and H. B. Weinberg. Hybrid I/O

Automata. In Alur et al. [AHS96], pages 496--510.

Robyn R. Lutz. Analyzing Software Requirements Errors in Safety-

Critical Embedded Systems. In IEEE International Symposium on Re-

quirements Engineering, pages 126-133, San Diego, CA, January 1993.

N. Lynch. Modeling and Verification of Automated Transit Systems,

using Timed Automata, Invariants, and Simulations. In Alur et al.

[AHS96], pages 449--463.

NASA-GB-O01-97 155

[Mac95]

[Man94]

[MC85]

[MC94]

[McI95]

[McM93]

[Mi189]

[Mi193]

[Min95]

[ML96]

[MLR+96]

[MMU83]

[Mos85]

Donald MacKenzie. The Automation of Proof: A Historical and Socio-

logical Exploration. IEEE Annals of the History of Computing, 17(3):7-

29, Fall 1995.

Z. Manna. Beyond Model Checking. In Dill [Di194], pages 220-221.

B. Mishra and E. M. Clarke. Hierarchical Verification of Asynchronous

Circuits Using Temporal Logic. Theoretical Computer Science, 38:269-

291, 1985.

A. Moreira and R. Clark. Combining Object-Oriented Analysis and

Formal Description Techniques. In Tokoro and Pareschi [TP94], pages
344-364.

A. McIver. Why Be Formal. New Scientist Magazine, pages 34-38,

1995. 26 August.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic

Publishers, Boston, MA, 1993.

R. Milner. Communication and Concurrency. Prentice Hall Interna-

tional Series in Computer Science. Prentice Hall, Hemel Hempstead,

UK, 1989.

H. D. Mills. Zero Defect Software: Cleanroom Engineering. In Advances

in Computers, volume 36, pages 1-41. 1993.

Paul S. Miner. Defining the IEEE-854 Floating-Point Standard in PVS.

NASA Technical Memorandum 110167, NASA Langley Research Cen-

ter, Hampton, VA, June 1995.

Paul S. Miner and James F. Leathrum, Jr. Verification of IEEE Compli-

ant Subtractive Division Algorithms. In Mandayam Srivas and Albert

Camilleri, editors, Formal Methods in Computer-Aided Design (FM-

CAD '96), pages 64-78, Palo Alto, CA, November 1996. Volume 1166

of Lecture Notes in Computer Science, Springer-Verlag.

F. Modugno, N. Leveson, J. Reese, K. Partridge, and S. Sandys. In-

tegrated Safety Analysis of Requirements Specifications. Draft, May
1996.

MMU Systems Data Book. NASA MMU-SE-17-73, revision: Basic edi-

tion, June 1983. Volume 1 of MMU Operational Data Book.

Ben Moszkowski. A Temporal Logic for Multilevel Reasoning about

Hardware. IEEE Computer, 18(2):10-19, 1985.

156 References

[MPJ94]

[MS95]

[Mus80]

[MWgO]

[MW95]

[NASA-92]

[NASA-93a]

[NASA-93b]

[NASA-95a]

[NASA-95b]

[NASA-96]

[NASA93]

Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interac-

tion of Formal Design Systems in the Development of a Fault-Tolerant

Clock Synchronization Circuit. Technical Report 405, Computer Sci-

ence Department, Indiana University, Bloomington, IN, April 1994.

Steven P. Miller and Mandayam Srivas. Formal Verification of the

AAMP5 Microprocessor: A Case Study in the Industrial Use of Formal

Methods. In WIFT '95: Workshop on Industrial-Strength Formal Speci-

fication Techniques, pages 2-16, Boca Raton, FL, 1995. IEEE Computer

Society.

D. R. Musser. Abstract Data Type Specification in the ANrm System.

IEEE Transactions on Software Engineering, 6(1):24-32, January 1980.

Carroll Morgan and J. C. P. Woodcock, editors. Springer-Verlag Work-

shops in Computing, January 1990.

P. Mukherjee and B. Wichmann. Formal Specification of the STV Al-

gorithm. In Hinchey and Bowen [HB95a], pages 73-96.

NASA Software Assurance Standard. NASA ONce of Safety and Mis-

sion Assurance, November 1992.

NASA Software Formal Inspections Standard. NASA Engineering Di-

vision Publication, 1993.

NASA Software Formal Inspections Guidebook. NASA ONce of Safety

and Mission Assurance, August 1993.

Formal Methods Specification and Verification Guidebook for Software

and Computer Systems, Volume I: Planning and Technology Insertion.

NASA ONce of Safety and Mission Assurance, Washington, DC, July

1995. NASA-GB-002-95, Release 1.0.

NASA Software Strategic Plan. National Aeronautics and Space Ad-

ministration, July 1995.

NASA Guidebook for Safety Critical Software Analysis and Develop-

ment. NASA ONce of Safety and Mission Assurance, April 1996.

Formal Methods Demonstration Project for Space Applications - Phase

I Case Study: Space Shuttle Orbit DAP Jet Select. Multi-Center NASA

Team from Jet Propulsion Laboratory, Johnson Space Center, and Lan-

gley Research Center, December 1993. NASA Code Q Final Report

(Unnumbered).

NASA-GB-O01-97 157

[Nay95]

[NO79]

[Olt95]

[ORSvH95]

[OSR93a]

[OSR93b]

[Par70]

[Par76]

[Par91]

[Par95]

[Pau84]

[Pau88]

P. Pandurang Nayak. Automated Modeling of Physical Systems. ACM

Distinguished Theses. sv, Berlin, Germany, 1995.

G. Nelson and D. C. Oppen. Simplification by Cooperating Decision

Procedures. A CM Transactions on Programming Languages and Sys-

terns, 1(2):245-257, 1979.

Walter Olthoff, editor. 9th European Conference on Object-Oriented

Programming (ECOOP '95), volume 952 of Lecture Notes in Computer

Science, _arhus, Denmark, August 1995. Springer-Verlag.

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.

Formal Verification for Fault-Tolerant Architectures: Prolegomena to

the Design of PVS. IEEE Transactions on Software Engineering,

21(2):107-125, February 1995.

S. Owre, N. Shankar, and J. M. Rushby. The PVS Specification Lan-

guage. Computer Science Laboratory, SRI International, Menlo Park,

CA, February 1993. A new edition for PVS Version 2 is expected in
1997.

S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS

Specification and Verification System. Computer Science Laboratory,

SRI International, Menlo Park, CA, February 1993. Three volumes:

Language, System, and Prover Reference Manuals; A new edition for

PVS Version 2 is expected in late 1997.

D. M. R. Park. Fixpoint Induction and Proofs of Program Properties.

Machine Intelligence, 5, 1970.

David Park. Finiteness is Mu-Ineffable. Theoretical Computer Science,

3:173-181, 1976.

David L. Parnas. Proposed Standard for Computers in the Safety

Systems of Nuclear Power Stations. Telecommunications Research

Institute of Ontario (TRIO), Queen's University, Kingston, Ontario,

Canada, March 1991.

D. L. Parnas. Using Mathematical Models in the Inspection of Critical

Software. In Hinchey and Bowen [HB95a], pages 17-31.

L. C. Paulson. Verifying the Unification Algorithm in LCF. Technical

Report 50, University of Cambridge Computer Laboratory, Cambridge,

UK, 1984.

Lawrence C. Paulson. Isabelle: The next seven hundred theorem

provers. In Lusk and Overbeek [LO88], pages 772-773.

158 References

[Pau91]

[Pau92]

[Pau97]

[Pauls]

[Pe193]

[Pe194]

[Per90]

[PM91]

[Pnu77]

[PPV60]

[QS82]

[Que82]

L. C. Paulson. ML for the Working Programmer. Cambridge University

Press, Cambridge, UK, 1991.

Lawrence C. Paulson. Designing a Theorem Prover. In S. Abramsky,

Dov M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in

Computer Science; Volume 2 Background: Computational Structures,

pages 415-475. Oxford Science Publications, Oxford, UK, 1992.

L. C. Paulson. Generic Automatic Proof Tools. In R. Veroff, editor,

Automated Reasoning and Its Applications. The MIT Press, 1997. To

appear.

http://www.cl.cam.ac.uk/users/lcp/hotlist#Systems.

D. Peled. All from One, One for All, on Model-Checking Using Repre-

sentatives. In Courcoubetis [Cou93], pages 409-423.

D. Peled. Combining Partial Order Reductions with On-the-fly Model-

Checking. In Dill [Di194], pages 377-390.

Dominique Perrin. Finite Automata. In van Leeuwen [vL90], chapter 1,

pages 1-57.

David L. Parnas and Jan Madey. Functional Documentation for

Computer Systems Engineering (Version 2). Technical Report TRIO-

CRL 237, Telecommunications Research Institute of Ontario (TRIO),

Queen's University, Kingston, Ontario, Canada, September 1991.

A. Pnueli. The Temporal Logic of Programs. In Proc. 18th Sympo-

slum on Foundations of Computer Science, pages 46-57, Providence,

RI, November 1977. ACM.

D. Prawitz, H. Prawitz, and N. Voghera. A Mechanical Proof Proce-

dure and its Realization in an Electronic Computer. Journal of the

Association for Computing Machinery, 7:102-128, 1960.

J. P. Queille and J. Sifakis. Specification and Verification of Concurrent

Systems in Cesar. In Proc. 5th International Symposium on Program-

ruing, pages 337-351, Turin, Italy, April 1982. Volume 137 of Lecture

Notes in Computer Science, Springer-Verlag.

J. P. Queille. Le Syst_me Cdsar: Description, Spdcification et Analyse

des Applications R@arties. PhD thesis, Computer Science Department,

Universitd de Grenoble, June 1982.

NASA-GB-O01-97 159

[Rat97]

[RBgl]

[RB96]

[RBP+91]

[RE80]

[RE93]

[RE95]

[Res69]

[RG92]

[Rob65]

[Roc91]

UML Documentation. Rational Software Corporation, Santa Clara,

CA, 1997. Several documents, including "UML Summary", "UML

Notation Guide", and "UML Semantics" are available via the URL

http://www.rational.com/uml.

J. Rumbaugh and M. Blaha. Tutorial Notes: Object-Oriented Modeling

and Design. In OOPSLA _91 (Object-Oriented Programming Systems,

Languages, and Applications 1991) Conference Proceedings, Phoenix,

AZ, October 1991. Communications of the ACM.

Larry W. Roberts and Mike Beims. Using Formal Methods to Assist in

the Requirements Analysis of the Space Shuttle HAC Change Request

(CR90960E). JSC Technical Report, Loral Space Information Systems,

Houston, TX, September 1996.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,

and William Lorensen. Object-Oriented Modeling and Design. Prentice

Hall, Englewood Cliffs, N J, 1991.

B. Razouk and G. Estrin. Modeling and Verification of Communica-
tion Protocols in SARA: the X.21 Interface. IEEE Transactions on

Computers, C-29(12):1038-1052, 1980.

RE '93 (Proceedings of the IEEE International Symposium on Require-

ments Engineering), San Diego, CA, January 1993. IEEE Computer

Society.

RE '95 (Proceedings of the IEEE International Symposium on Require-

ments Engineering), York, England, March 1995. IEEE Computer So-

ciety.

N. Rescher. Many-Valued Logic. McGraw-Hill, New York, NY, 1969.

K.S. Rubin and A. Goldberg. Object Behavior Analysis. Communica-

tions of the ACM, 35(9):48-62, September 1992.

J. A. Robinson. A Machine-Oriented Logic Based on the Resolu-

tion Principle. Journal of the Association for Computing Machinery,

12(1):23-41, January 1965.

Space Shuttle Orbiter Operational Level C Functional Subsystem Soft-

ware Requirements: Guidance Navigation and Control--Part C Flight

Control Orbit DAP. Rockwell International, Space Systems Division,

OI-21 edition, February 1991.

160 References

[RSS95]

[RT52]

[Rus92]

[Rus93a]

[Rus93b]

[Rus96]

[RvH93]

[RW69]

[SAFER92]

[SAFER94a]

[SAFER94b]

[SB69]

S. Rajan, N. Shankar, and M.K. Srivas. An Integration of Model-

Checking with Automated Proof Checking. In Pierre Wolper, editor,

Computer-Aided Verification, CAV '95, pages 84-97, Liege, Belgium,

June 1995. Volume 939 of Lecture Notes in Computer Science, Springer-

Verlag.

J. B. Rosser and A. R. Turquette. Many-Valued Logics. North-Holland,

Amsterdam, Holland, 1952.

John Rushby. Formal Verification of an Oral Messages Algorithm for

Interactive Consistency. Technical Report SRI-CSL-92-1, Computer

Science Laboratory, SRI International, Menlo Park, CA, July 1992.

Also available as NASA Contractor Report 189704, October 1992.

John Rushby. Formal Methods and Digital Systems Validation for Air-

borne Systems. Federal Aviation Administration Technical Center, At-

lantic City, N J, 1993. Forthcoming chapter for "Digital Systems Vali-

dation Handbook," DOT/FAA/CT-88/10.

John Rushby. Formal Methods and Digital Systems Validation for Air-

borne Systems. Technical Report SRI-CSL-93-7, Computer Science

Laboratory, SRI International, Menlo Park, CA, December 1993. Also

available as NASA Contractor Report 4551, December 1993.

John Rushby. Automated Deduction and Formal Methods. In Alur and

Henzinger [AH96], pages 169-183.

John Rushby and Friedrich von Henke. Formal Verification of Algo-

rithms for Critical Systems. IEEE Transactions on Software Engineer-

ing, 19(1):13-23, January 1993.

G. Robinson and L. Wos. Paramodulation and Theorem-Proving in

First Order Theories with Equality. In Machine Intelligence, Edin-

burgh, Scotland, 1969. Volume 4, Edinburgh University Press.

Project Requirements Document for the Simplified Aid for EVA Rescue

(SAFER) Flight Test Project, December 1992. NASA JSC-24691.

Simplified Aide for EVA Rescue (SAFER). NASA JSC-26283, Septem-

ber 1994. Operations Manual.

Simplified Aid for EVA Rescue (SAFER) Flight Test Project - Flight

Test Article Prime Item Development Specification, July 1994. NASA
JSC-25552.

D. Scott and J. W. De Bakker. A Theory of Programs. Unpublished

Manuscript. IBM. Vienna, 1969.

NASA-GB-O01-97 161

[SBC92]

[SD96]

[SE87]

[SG96]

[SH94]

[Shag3]

[Shag4]

[Shag6]

[Sho67]

[Sho78a]

[Sho78b]

Susan Stepney, Rosalind Barden, and David Cooper, editors. Object

Orientation in Z. Workshops in Computing. Springer-Verlag, 1992.

Ulrich Stern and David L. Dill. A New Scheme for Memory-Efficient

Probabilistic Verification. In Proceedings of the IFIP TC6/WG6.1 Joint

International Conference on Formal Description Techniques for Dis-

tributed Systems and Communications Protocols, and Protocol Specifi-

cation, Testing and Verification, 1996. To appear.

Software Engineering Standards. Institute of Electrical and Electronics

Engineers, Inc., New York, NY, 1987.

D.R. Smith and C.C. Green. Toward Practical Applications of Soft-

ware Synthesis. In FMSP'96, The First Workshop on Formal Methods

in Software Practice, pages 31-39, San Diego, CA, January 1996. As-

sociation for Computing Machinery.

S. Sankar and R. Hayes. Specifying and Testing Software Components

Using ADL. Technical Report SMLI TR-94-23, Sun Microsystems Lab-

oratories, Inc.(SMLI), Mountain View, CA, April 1994.

N. Shankar. Abstract Datatypes in PVS. Technical Report SRI-CSL-

93-9, Computer Science Laboratory, SRI International, Menlo Park,

CA, December 1993.

N. Shankar. Metamathematics, Machines, and G5del's Proof. Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University

Press, Cambridge, UK, 1994.

Natarajan Shankar. Unifying Verification Paradigms. In Bengt Jon-

sson and Joachim Parrow, editors, Formal Techniques in Real-Time

and Fault-Tolerant Systems, pages 22-39, Uppsala, Sweden, September

1996. Volume 1135 of Lecture Notes in Computer Science, Springer-

Verlag.

Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading,

MA, 1967.

J. R. Shoenfield. Axioms of Set Theory. In Jon Barwise, editor, Hand-

book of Mathematical Logic, volume 90 of Studies in Logic and the Foun-

dations of Mathematics, chapter B1, pages 321-344. North-Holland,

Amsterdam, Holland, 1978.

Robert E. Shostak. An Algorithm for Reasoning about Equality. Com-

munications of the ACM, 21(7):583-585, July 1978.

162 References

[SM91]

[SM95a]

[SM95b]

[Smi90]

[SOR93]

[Spi88]

[SS86]

[Sti86]

[Sys92]

[Talco]

[Tar55]

[Tar76]

S. Shlaer and S. Mellor. Object-Oriented Systems Analysis: Modeling

the World in Data. Yourdon Press Computing Series. Prentice Hall,

Englewood Cliffs, N J, 1991.

Mandayam Srivas and Steven P. Miller. Formal Verification of a Com-

mercial Microprocessor. Technical Report SRI-CSL-95-4, Computer

Science Laboratory, SRI International, Menlo Park, CA, February 1995.

Also available under the title Formal Verification of an Avionics Mi-

croprocessor as NASA Contractor Report 4682, July, 1995.

Mandayam K. Srivas and Steven P. Miller. Formal Verification of the

AAMP5 Microprocessor. In Hinchey and Bowen [HB95a], chapter 7,

pages 125-180.

D.R. Smith. KIDS: A semiautomatic program development sys-

tem. IEEE Transactions on Software Engineering, SE-16(9):1024-1043,
1990.

N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A

Reference Manual. Computer Science Laboratory, SRI International,

Menlo Park, CA, February 1993. A new edition for PVS Version 2 is

expected in late 1997.

J. M. Spivey. Understanding Z: A Specification Language and its For-

mal Semantics. Cambridge Tracts in Theoretical Computer Science 3.

Cambridge University Press, Cambridge, UK, 1988.

Leon Sterling and Ehud Shapiro, editors. The Art of Prolog. MIT Press

Series in Logic Programming. The MIT Press, 1986.

M. E. Stickel. A Prolog Technology Theorem Prover. In J. H. Siekmann,

editor, 8th International Conference on Automated Deduction (CADE),

pages 573-587, Oxford, England, July 1986. Volume 230 of Lecture

Notes in Computer Science, Springer-Verlag.

ParcPlace Systems. Object-Oriented Methodology Course Notes. Parc-

Place Systems, Inc., Sunnyvale, CA, 1992.

http://www-formal.stanford.edu/clt/ARS/ars-db.html. Follow the link

"Existing systems, related fields/pages, archives, ".

Alfred Tarski. A Lattice-Theoretical Fixpoint Theorem and its Appli-

cations. Pacific Journal of Mathematics, 5:285-309, 1955.

Alfred Tarski. Introduction to Logic and to the Methodology of Deductive

Sciences. Oxford University Press, New York, NY, third edition, 1976.

First published 1941.

NASA-GB-O01-97 163

[Tho84]

[Tho90]

[TP94]

[Urq86]

[Val90]

[vB88]

[vBD83]

[vBJ79]

[VDM]

[vL90]

[vS90]

[vSPM93]

Richmond H. Thomason. Combinations of Tense and Modality. In

Gabbay and Guenthner [GG84], chapter II.3, pages 135-165.

Wolfgang Thomas. Automata on Infinite Objects. In van Leeuwen

[vL90], chapter 4, pages 133-187.

M. Tokoro and R. Pareschi, editors. 8th European Conference on Object-

Oriented Programming (ECOOP '93), volume 821 of Lecture Notes in

Computer Science, Bologna, Italy, July 1994. Springer-Verlag.

A. Urquhart. Many-Valued Logic. In Dov M. Gabbay and Franz

Guenthner, editors, Handbook of Philosophical Logic-Volume IIh Al-

ternatives to Classical Logic, Synthese Library, pages 71-116. D. Reidel

Publishing Company, Dordrecht, Holland, 1986.

A. Valmari. A Stubborn Attack on State Explosion. In Clarke and

Kurshan [CK90], pages 25-42.

Johan van Benthem. Time, Logic and Computation. In J.W. de Bakker,

W.-P. de Roever, and G. Rozenberg, editors, Linear Time, Branching

Time and Partial Order in Logics and Models for Concurrency, pages

1-49, Noordwijkerhout, The Netherlands, May/June 1988. Volume 354

of Lecture Notes in Computer Science, Springer-Verlag.

Johan van Bentham and Kees Doets. Higher-Order Logic. In Gabbay

and Guenthner [GG83], chapter 1.4, pages 275-329.

L. S. van Benthem Jutting. Checking Landau's 'Grundlagen' in the Au-

tomath System. Technical report, Mathematical Centre, Amsterdam,
1979. Mathematical Centre Tracts.

http://WWW.ifad.dk/vdm/vdm.html.

Jan van Leeuwen, editor. Handbook of Theoretical Computer Science,

volume B: Formal Models and Semantics. Elsevier and MIT press,

Amsterdam, The Netherlands, and Cambridge, MA, 1990.

A. John van Schouwen. The A-7 Requirements Model: Re-Examination

for Real-Time Systems and an Application to Monitoring Systems.

Technical Report 90-276, Department of Computing and Information

Science, Queen's University, Kingston, Ontario, Canada, May 1990.

A. John van Schouwen, David Lorge Parnas, and Jan Madey. Documen-

tation of Requirements for Computer Systems. In IEEE International

Symposium on Requirements Engineering, pages 198-207, San Diego,

CA, January 1993.

164 References

[VW86]

[Wan60a]

[Wan60b]

[WB93]

[WB94]

[Wes78]

[Win90]

[WM85]

[WOLB92]

[Wor92]

[wSJGJMW93]

[wz78]

[Yoe90]

M. Vardi and P. Wolper. An Automata-Theoretic Approach to Auto-

matic Program Verification. In lstAnnual IEEE Symposium on Logic

in Computer Science, Boston, MA, June 1986. IEEE Computer Society.

H. Wang. Proving Theorems by Pattern Recognition. Communications

of the ACM, 4(3):229-243, 1960.

H. Wang. Toward Mechanical Mathematics. IBM Journal of Research

and Development, 4:2-21, 1960.

Trevor Williams and David Baughman. Exploiting Orbital Effects for

Short-Range Extravehicular Transfers. In AAS/AIAA Spaceflight Me-

chanics Meeting, Pasadena, CA, 1993. American Astronautical Society.

Trevor Williams and David Baughman. Self-Rescue Strategies for EVA

Crewmembers Equipped with the SAFER Backpack. In Proceedings

of the Goddard Flight Mechanics/Estimation Theory Symposium, May

1994. Paper 28.

C. H. West. General Technique for Communications Protocol Valida-

tion. IBM Journal of Research and Development, 22(3):393-404, 1978.

J. M. Wing. A Specifier's Introduction to Formal Methods. IEEE

Computer, 23(9):8-24, September 1990.

P. T. Ward and S. J. Mellor. Structured Development for Real-Time

Systems. Prentice Hall, Englewood Cliffs, N J, 1985.

Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated

Reasoning: Introduction and Applications. McGraw-Hill, New York,

NY, second edition, 1992. Includes a copy of the Otter theorem prover
for IBM-PCs.

J. B. Wordsworth. Software Development with Z. Addison-Wesley,

Wokingham, England, 1992.

John V. Guttag and James J. Horning with S. J. Garland, K. D. Jones,

A. Modet, and J. M. Wing. Larch: Languages and Tools for Formal

Specification. Texts and Monographs in Computer Science. Springer-

Verlag, 1993.

C. H. West and P. Zafiropulo. Automated Validation of a Communi-

cations Protocol: the CCITT X.21 Recommendation. IBM Journal of

Research Development, 22(1):60-71, 1978.

Michael Yoeli, editor. Formal Verification of Hardware Design. IEEE

Computer Society, Los Alamitos, CA, 1990.

NASA-GB-O01-97 165

[You95]

[Zav95]

William D. Young. Modelling and Verification of a Simple Real-Time

Railroad Gate Controller. In Hinchey and Bowen [HB95a], chapter 8,

pages 181-201.

Pamela Zave. Classification of Research Efforts in Requirements Engi-

neering. In RE IRE95], pages 214-216.

166 References

Appendix A

Glossary of Key Terms

This appendix contains an alphabetized list of the acronyms and key terms used in the

body of the Guidebook.

A.1 Acronyms

AAH: Automatic Attitude Hold

CEA: Control Electronics Assembly of the MMU

CTL: Computational Tree Logic

DCU: Display and Control Unit

DRA: Data Recorder Assembly

EMU: Extravehicular Mobility Unit

EVA: Extravehicular Activity

FOL: First-Order (Predicate) Logic

FSSR: Functional Subsystem Software Requirements

GPS: Global Positioning System
HCM: Hand Controller Module

HCU: Hand Controller Unit

HHMU: Hand Held Maneuvering Unit
IRU: Inertial Reference Unit

LCD: Liquid Crystal Display

LED: Light Emitting Diode

LTL: Linear Temporal Logic
MIR: Mode Identification and Reconstruction

MMU: Manned Maneuvering Unit

OMT: Object Modeling Technique

PLSS: Primary Life Support Subsystem

PSA: Power Supply Assembly

PVS: Prototype Verification System
RHC: Rotational Hand Control of the MMU

167

168 Appendix A

ROT: Rotational

SAFER: Simplified Aid for EVA

SCR: Software Cost Reduction (Methodology)

TCC: Type Correctness Conditions
THC: Translational Hand Control of the MMU

TRAN: Translational

VDA: Valve Drive Assemblies

A.2 Terms I

assurance: Those activities that demonstrate the conformance of a product or

process to a specified criterion such as a functional requirement. Quality assurance

refers to those activities that focus particularly on conformance to standards or

procedures [NASA-92].

axiom: A statement or well-formed formula that is stipulated or assumed rather than

proved to be true through the application of rules of inference. The axioms and the

rules of inference together provide a basis for proving all other theorems. Axioms

are typically identified as logical or nonlogical. The latter deal with specific domain

information, while the former characterize logical properties. A given formal system

may have several (different) axiomatizations.

formal logic: The study of deductive argument that focuses on the form, rather than

the content of the argument. The central concept of formal logic is that of a valid

argument: if the premises are true, the conclusion must also be true.

formal methods: A varied set of techniques from formal logic and discrete mathemat-

ics used in the design, specification, and verification of computer systems and software.

function: A rule f that assigns to every element x of a set X, a unique element y of a

set Y, written y = f(x). X is called the domain and Y the range (or codomain). For

example, the area of a circle, y, is a function of the radius, x, written y = f(x) = 7rr2.

A function with domain X and range Y is also called a mapping or map from X to Y,

written f : X --+ Y. A function that maps every element of its domain to an element

in its range is said to be total. A function that maps some elements of its domain to

elements of its range, leaving others undefined, is said to be partial.

functional: A function that takes a set of functions as domain and a set of functions

as range. For example, the differential operator d/dx is a functional of differentiable

1Material from [DN89] has been used in some of the following definitions.

NASA-GB-O01-97 169

functions f(x).

model: (1) In logic, an interpretation, I, of a set of well-formed formulas of a formal

language such that each member of the set is true in I. (2) A system of definitions,

assumptions, and equations set up to represent and discuss physical phenomena and

systems.

model theory: The study of the interpretations (models) of formal systems, especially

the notions of logical consequence, validity, completeness, and soundness.

mu-Calculus: The p-calculus is a quantified Boolean logic with least and greatest

fixed-point operators.

parsing: A form of analysis that detects syntactic inconsistencies and anomalies,

including misspelled keywords, missing delimiters, and unbalanced brackets or paren-
theses.

power set: The power set of a set A is the set of all sets included in A. If a set has

n elements, its power set will have 2n elements. For example, if a set S -- {a, b}, then

the power set of S, P(S), is the set {0, {a}, {b}, {a, b}}.

proof: A chain of reasoning using rules of inference and a set of axioms that leads to
a conclusion.

proof theory: The study of proofs and provability in formal languages, including no-

tions of deducibility, independence, simple completeness, and, particularly, consistency.

quantifier: A logical operator that binds a variable in a logical formula and is used to

indicate the quantity of a proposition, for example, the univeral quantifier V (read "for

all"), and the existential quantifier 3 (read "there exists").

requirements: The set of conditions or essential, necessary, or desired capabilities

that must be met by a system or system component to satisfy a contract, standard, or

other formally implied document or description.

rule of inference: A rule in logic that defines the reasoning that determines when

a conclusion may be drawn from a set of premises. In a formal system, the rules of

inference should guarantee that if the premises are true, then the conclusion is also true.

specification (formal): A characterization of a planned or existing system expressed

in a formal language.

170 Appendix A

testing: Process of exercising or evaluating software by manual or automated means

to demonstrate that it satisfies specified requirements or to identify differences between

expected and actual results [NASA-92].

trace: A function from time to a given type of value, where time represents, for

example, a frame, cycle, or iteration count.

typechecking: A form of analysis that detects semantic inconsistencies and anomalies,

including undeclared names and ambiguous types.

validation: The process by which a delivered system is demonstrated to satisfy its re-

quirements by testing it in execution. Informally, demonstrating that the requirements

are right.

verification: The process of determining whether each level of a specification, and the

final system itself, fully and exclusively implements the requirements of its superior spec-

ification. Informally, demonstrating that a system is built according to its requirements.

Appendix B

Further Reading

This appendix contains suggestions for further reading, arranged by topic.

B.1 Technical Background: Mathematical Logic

Peter B. Andrews. An Introduction to Logic and Type Theory: To Truth through

Proof. Academic Press, New York, NY, 1986.

• Jon Barwise. "An Introduction to First-order Logic." In Jon Barwise, editor,

Handbook of Mathematical Logic, Volume 90 of Studies in Logic and the Foun-

dations of Mathematics, Chapter A1, pages 5-46. North-Holland, Amsterdam,

Holland, 1978.

• H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

• David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Texts

and Monographs in Computer Science. Springer-Verlag, New York, NY, 1993.

• Dov M. Gabbay and Franz Guenthner, editors. Handbook of Philosophical Logic-

Volume I: Elements of Classical Logic, volume 164 of Synthese Library. D. Reidel

Publishing Company, Dordrecht, Holland, 1983.

• Dov M. Gabbay and Franz Guenthner, editors. Handbook of Philosophical Logic-

Volume II: Extensions of Classical Logic, volume 165 of Synthese Library. D.

Reidel Publishing Company, Dordrecht, Holland, 1984.

• Elliott Mendelson. Introduction to Mathematical Logic. D. Van Nostrand Com-

pany, The University Series in Undergraduate Mathematics, 1964.

• Mark Ryan and Martin Sadler. "Valuation Systems and Consequence Relations."

In S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, editors, Handbook

of Logic in Computer Science; Volume 1 Background: Mathematical Structures,

pages 1-78. Oxford Science Publications, Oxford, UK, 1992.

171

172 Appendix B

• Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, MA, 1967.

• Johan van Bentham and Kees Doets. Higher-order Logic. In Dov M. Gabbay and

Franz Guenthner, editors. Handbook of Philosophical Logic-Volume I: Elements

of Classical Logic, Chapter 1.4. Synthese Library, D. Reidel, 1983, pages 275-329.

Specification

J. P. Bowen. Formal Specification and Documentation Using Z. International

Thomson Computer Press, 1996.

• Dines Bj_rner and Cliff B. Jones. Formal Specification and Software Development.

Prentice Hall International Series in Computer Science, 1986.

• John V. Guttag and James J. Horning with S. J. Garland, K. D. Jones, A. Modet,

and J. M. Wing. Larch: Languages and Tools for Formal Specification. Texts and

Monographs in Computer Science. Springer-Verlag, 1993.

• Ian Hayes, editor. Specification Case Studies. Prentice Hall International Ltd.,
1987.

• Michael Hinchey and S. A. Jarvis. Concurrent Systems: Formal Development in

CSP. McGraw-Hill International Series in Software Engineering, 1995.

• Cliff B. Jones. Systematic Software Development Using VDM. Prentice Hall In-

ternational Series in Computer Science, second edition, 1990.

• Kevin Lano. The B Language and Method: A Guide to Practical Formal Devel-

opment. Springer-Verlag FACIT Series, May 1996.

• J. M. Spivey. Understanding Z: A Specification Language and its Formal Seman-

tics. Cambridge Tracts in Theoretical Computer Science 3. Cambridge University

Press, 1988.

Model Checking

Edmund Clarke and Robert Kurshan. "Computer-Aided Verification." IEEE

Spectrum, Volume 33, No. 6, June 1996, pages 61-67.

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall

Software Series, 1991.

Robert P. Kurshan. Computer-Aided Verification of Coordinating Processes.

Princeton Series in Computer Science. Princeton University Press, 1994.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

NASA-GB-O01-97 173

B.4 Theorem Proving

R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.

R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
1988.

Alan Bundy. The Computer Modelling of Mathematical Reasoning. Academic

Press, 1983.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem

Proving Environment for Higher-Order Logic. Cambridge University Press, 1993.

Lawrence Paulson. "Designing a Theorem Prover." In S. Abramsky and Dov M.

Gabbay and T. S. E. Maibaum, Handbook of Logic in Computer Science; Volume

2 Background: Computational Structures. Oxford Science Publications, Oxford,

UK, 1992, pages 415-475.

Larry Wos and Ross Overbeek and Ewing Lusk and Jim Boyle. Automated Rea-

soning: Introduction and Applications, McGraw-Hill, 1992.

B.5 Models of Computation

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Interna-

tional Series in Computer Science, 1985.

• K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.

Addison-Wesley, 1988.

• E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

• D. Gries. The Science of Programming. Springer-Verlag, 1981.

• R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

• Zohar Manna and Richard Waldinger. The Deductive Foundations of Computer

Programming. Addison-Wesley, 1993.

B.6 Applications and Overviews

• Edmund Clarke and Jeannette Wing. Formal Methods: State of the Art and Future

Directions. Report of the ACM Workshop on Strategic Directions in Computing

Research, Formal Methods Subgroup. Available as Carnegie Mellon University

Technical Report CMU-CS-96-178, August 1996.

174 Appendix B

Dan Craigen, Susan Gerhart, and Ted Ralston. An International Survey of In-

dustrial Applications of Formal Methods; Volume 1: Purpose, Approach, Analysis

and Conclusions; Volume 2: Case Studies. National Institute of Standards and

Technology, NIST GCR 93/626, 1993.

C. Neville Dean and Michael Hinchey, eds. Teaching and Learning Formal Meth-

ods. Academic Press, International Series in Formal Methods, 1996.

M. G. Hinchey and J. P. Bowen, editors. Applications of Formal Methods. Prentice

Hall International Series in Computer Science, 1995.

IEEE Computer, Special Issue on Formal Methods. Volume 23, Number 9,

September, 1990.

IEEE Software, Special Issue on Formal Methods. Volume 7, Number 5, Septem-

ber, 1990.

IEEE Transactions on Software Engineering, Special Issue on Formal Methods in

Software Engineering. Volume 16, Number 9, September, 1990.

H. Saiedian, ed. "An Invitation to Formal Methods." IEEE Computer, Volume

29, Number 4, April 1996, pages 16-30.

B.7 Tutorials

Ricky W. Butler. An Introduction to Requirements Capture Using PVS: Specifi-

cation of a Simple Autopilot. NASA Langley Research Center, NASA Technical

Memorandum 110255, 1996.

J. Crow and S. Owre and J. Rushby and N. Shankar and M. Srivas. "A Tu-

torial Introduction to PVS." Presented at IEEE Computer Society Workshop

on Industrial-Strength Formal Specification Techniques (WIFT'95), Boca Raton,

Florida, 1995.

Stuart R. Faulk. Software Requirements: A Tutorial. Naval Research Laboratory.

NRL Memorandum Report No. 5546-95-7775, November, 1995.

Chris George. "The RAISE Specification Language: A Tutorial," In VDM '91:

Formal Software Development Methods, S. Prehn and W. J. Toetenel, editors.

Springer-Verlag Lecture Notes in Computer Science, Volume 552, October 1991,

pages 238-319.

John Rushby and David W. J. Stringer-Calvert. A Less Elementary Tutorial

for the PVS Specification and Verification System, SRI, International Technical

Report No. SRI-CSL-95-10, July 1996.

NASA-GB-O01-97 175

• V. Stavridou and A. Boothroyd and P. Bradley and B. Dutertre and L. Shackleton

and R. Smith. "Formal Methods and Safety Critical Systems in Practice." In High

Integrity Systems, Volume 1, No. 5, 1996, pages 423-445.

• Debora Weber-Wulff. "Proof Movie--A Proof with the Boyer-Moore Prover." In

Formal Aspects of Computing, Volume 5, No. 2, 1993, pages 121-151.

176 Appendix B

Appendix C

Extended Example: Simplified

Aid for EVA Rescue (SAFER)

The example presented in this appendix is based on NASA's Simplified Aid for EVA

Rescue (SAFER). SAFER is a new system for free-floating astronaut propulsion that is

intended for use on Space Shuttle missions, as well as during Space Station construction

and operation. Although the specification attempts to capture as much as possible

of the actual SAFER design, certain pragmatically motivated deviations have been

unavoidable. Nevertheless, the SAFER example contains elements typical of many

space vehicles and the computerized systems needed to control them.

C.1 Overview of SAFER

SAFER is a small, self-contained, backpack propulsion system enabling free-flying mo-

bility for a crewmember engaged in extravehicular activity (EVA) that has evolved as

a streamlined version of NASA's earlier Manned Maneuvering Unit (MMU) [MMU83].

SAFER is a single-string system designed for contingency use only. SAFER offers suf-

ficient propellant and control authority to stabilize and return a tumbling or separated

crewmember, but lacks the propellant capacity and systems redundancy provided with

the MMU. Nevertheless, SAFER and the MMU share an overall system concept, as well

as general subsystem features. The description that follows draws heavily on the SAFER

Operations Manual [SAFER94a] and on the SAFER Flight Text Project development

specification [SAFER94b], excerpts of which have been included here as appropriate.

C.1.1 History, Mission Context, and System Description

SAFER is designed as a self-rescue device for a separated EVA crewmember in situations

where the Shuttle Orbiter is unavailable to effect a rescue. Typical situations include

whenever the Orbiter is docked to a large payload or structure, such as the Russian Mir

Space Station or the International Space Station Alpha. A SAFER device would be worn

177

178 Appendix C

by every crewmember during these types of EVAs. As noted in [WB94], a crewmember

engaged in EVA, who becomes separated from an Orbiter or a space station, has three

basic options: grappling the Orbiter or station immediately using a "shepherd's crook"

device, rescue by a second crewmember flying an MMU (Manned Maneuvering Unit) 1

or self-rescue using a propulsive system. The first option is not realistic in all situations;

it assumes a near-optimal response by a tumbling astronaut. The second option is also

unrealistic, in this case because it assumes constant availability of both the MMU and

the second crewmember during all EVA, since reaction time is critical to successful

rendezvous with a drifting crewmember. The third option, a propulsive self-rescue

system, is the most viable and therefore the one ultimately selected.

As described in [WB93], the simplest self-rescue system is the Hand-Held Ma-

neuvering Unit (HHMU) or "gas gun" flown on Gemini and Skylab, and the "Crew

Propulsive Device," a redesign of the Gemini HHMU flown on the STS-49. Tests on

these units indicated that the HHMUs were adequate for short translations, but re-

quired the crewmember to visually determine and effectively nullify tumble rates about

all three axes - a challenging proposition even with good visual cues. As a result, rec-

ommendations based on the STS-49 tests included an automatic detumble capability
for all self-rescue devices.

While the HHMU lacked automatic detumble and other capabilities necessary for a

general-purpose self-rescue system, the MMU was too well-endowed. The MMU per-

formed the first self-propelled untethered EVA during the STS-41B mission in 1984,

participated in the Solar Maximum Mission spacecraft repair on a subsequent 1984

shuttle flight, and was used to capture the Palapa B-2 and the Westar-VI communi-

cations satellites on yet another shuttle flight that same year [WB94, p. 4]. However,

the MMU's versatility, redundancy, and physical bulk made it unsuited as a general-

purpose self-rescue device. Nevertheless, so many MMU features have been incorpo-

rated into SAFER (ranging from the hand controller grip design to the gaseous-nitrogen

(GN2) recharge-port quick-disconnect and the GN2pressure regulator/relief valve), that

SAFER has been described as a "mimimized derivative" of the MMU [WB94, p. 2].

SAFER fits around the Extravehicular Mobility Unit (EMU) primary life support

subsystem (PLSS) backpack without limiting suit mobility (Figure C.1). SAFER uses

24 GN2thrusters to achieve six degree-of-freedom maneuvering control. A single hand

controller attached to the EMU display and control module is used to control SAFER

operations. Propulsion is available either on demand, that is, in response to hand con-

troller inputs, or through an automatic attitude hold (AAH) capability. Hand controller

inputs can command either translations or rotations, while attitude hold is designed to

bring and keep rotation rates close to zero. SAFER's propulsion system can be recharged

during an EVA in the Orbiter payload bay. The SAFER unit weighs approximately 85

pounds and folds for launch, landing, and on-orbit stowage inside the Orbiter airlock.

1Or, similarly, by a robotic-controlled MMU. However, such a system has apparently not yet been

developed and is not likely to be available in the near-term.

NASA-GB-O01-97 179

C.1.2 Principal Hardware Components

The SAFER flight unit consists of three assemblies: the backpack propulsion module, the

hand controller module (HCM), and a replaceable battery pack. SAFER also requires

several items of flight support equipment during a Shuttle mission. For the purpose of

this discussion, only the propulsion and hand controller modules need be included.

C.1.2.1 Backpack Propulsion Module

The propulsion module is the primary assembly of the SAFER system, attaching directly

to the EMU PLSS backpack. Figure C.2 shows the structures and mechanisms contained

within the propulsion module. Four subassemblies are identified: main frame structure,

left and right tower assemblies, and the avionics box. A lightweight, aluminum-alloy

frame holds SAFER components, while external surfaces are formed by an outer alu-

minum skin. With the exception of the upper thrusters mounted to the tower assemblies,

all propulsion subsystem components are housed in the main frame.

The tower assemblies have hinge joints that allow them to be folded for stowage.

Towers are unfolded and attached to PLSS interfaces in preparation for an EVA. Latches

on the towers hold SAFER firmly to the PLSS. Hinge joints accommodate GN2 tubing,

electrical power, and signal routing to the upper thrusters.

Housed in the avionics box are the control electronics assembly, inertial reference

unit, data recorder assembly, and power supply assembly. The avionics box is attached

to the bottom of the main frame, as depicted in Figure C.2. Data and power connectors

provide an interface to the main frame. Connectors are also provided for the HCM

umbilical and ground servicing equipment.

Within the main frame, high-pressure GN2 is stored in four cylindrical stainless-steel

tanks. Pressure and temperature sensors are placed directly adjacent to the tanks and

these parameters are displayed to the SAFER crewmember on the HCM. Other com-

ponents attached to the main GN2 line are a manual isolation valve, a quick-disconnect

recharge port, an integrated pressure regulator and relief valve, and downstream pres-

sure and temperature sensors.

After passing through the regulator/relief valve, GN2 is routed to four thruster man-

ifolds, each containing six electric-solenoid thruster valves. A total of 24 thrusters is pro-

vided, with four thrusters pointing in each of the ±X, ±Y, and ±Z directions. Thruster

valves open when commanded by the avionics subsystem. When a valve opens, GN2

is released and expanded through the thruster's conical nozzle to provide a propulsive

force. The avionics subsystem can command as many as four thrusters at a time to

provide motion with six degrees of freedom (±X, ±Y, ±Z, ±roll, ±pitch, and ±yaw).

Figure C.3 illustrates the thruster layout, designations, and directions of force.

C.1.2.2 Hand Controller Module (HCM)

A SAFER crewmember controls the flight unit and monitors its status by means of the

hand controller module (HCM). Two distinct units are found in the HCM: a display

180 Appendix C

and control unit, and a hand controller unit. Both units are mounted together, as shown

in Figure C.4, with an internal connector joining the two units electrically.

Various displays and switches are located on the display and control unit and po-

sitioned so that they can be viewed from any head position within the EMU helmet.

These displays and switches include

1. Liquid crystal display. A 16-character, backlit LCD displays prompts, status

information, and fault messages to the crewmember.

2. Thruster cue light. A red LED lights whenever a thruster-on condition is

detected by the control software. This light is labeled "THR."

3. Automatic attitude hold light. A green LED labeled "AAH" lights whenever
attitude hold is enabled for one or more rotational axes.

. Power/test switch. A three-position toggle switch labeled "PWR" is used to

power on the flight unit and initiate self-test functions. The three positions are

"OFF," "ON," and "TST."

. Display proceed switch. A three-position, momentary-contact toggle switch is

used to control message displays on the LCD. This switch, which is labeled "DISP"

on the HCM, is normally in the center null position. When pushed up/down, the

switch causes the LCD to display the previous/next parameter or message.

. Control mode switch. A two-position toggle switch is used to configure the
hand controller for either rotational or translational commands. This switch is

labeled "MODE," with its two positions labeled "ROT" and "TRAN."

The hand controller grip is compatible with an EMU glove. It is mounted on the

right side of the HCM with an integral push-button switch for initiating and terminating

AAH mode. A four-axis mechanism having three rotary axes and one transverse axis is

the heart of the hand controller. A command is generated by moving the grip from the

center null position to mechanical hardstops on the hand controller axes. Commands

are terminated by deliberately returning the grip to its center position or by releasing

the grip so that it automatically springs back to the center.

As shown in Figure C.5, with the control mode switch in the TRAN position, iX,

±Y, ±Z, and ±pitch commands are available, iX commands are generated by rotating

the grip forward or backward, ±Y commands by pulling or pushing the grip right or left,

and ±Z commands by rotating the grip down or up. ±pitch commands are generated

by twisting the grip up or down about the hand controller transverse axis.

As shown in Figure C.6, with the control mode switch in the ROT position, ±roll,

-t-pitch, -t-yaw, and iX commands are available. -t-roll commands are generated by

rotating the grip down or up (same motion as the +Z commands in TRAN mode).

+yaw commands are generated by pulling or pushing the grip right or left (same motion

NASA-GB-O01-97 181

as the ±Y commands in TRAN mode). The ±pitch and iX commands are generated

as in TRAN mode, thus making them available in both TRAN and ROT modes.

An electrical umbilical connects the HCM to the propulsion module, attaching to a

connector on the avionics box. This umbilical is connected prior to launch and is not

intended to be disconnected in flight.

C.1.2.3 Battery Pack

The battery pack, which provides power for all SAFER electrical components, connects

to the bottom of the propulsion module, as shown in Figure C.2. Two separate battery

circuits are found in the battery pack, both containing multiple stacks of 9-volt alkaline

batteries. One battery circuit powers the thruster valves, offering 30-57 volts to the

power supply assembly, which produces a 28-volt output for opening valves in pulses

of 4.5 milliseconds duration. Energy capacity is sufficient to open the thrusters 1200

times and thereby drain the GN2 tanks four times. The other battery circuit powers the

avionics subsystem (i.e., the remaining electrical components), producing 16-38 volts

for the power supply for a cumulative power-on time of 45 minutes. A temperature

sensor in the battery pack is used for monitoring purposes. Flight procedures allow for

battery pack changing during an EVA.

C.1.2.4 Flight Support Equipment

Besides the SAFER flight unit, several types of flight support equipment are needed

during SAFER operations. These items include a special plug to attach the hand

controller module to the EMU display and control module, a recharge hose for GN2 tank

recharging during an EVA, the Orbiter's GN2 system to provide GN2 via the recharge

hose, a SAFER recharge station having handrails and foot restraints to facilitate the

recharging procedure, an airlock stowage bag for storing SAFER when not in use, and

a battery transfer bag for storing extra battery packs during an EVA. None of these

support items will be considered any further in this appendix.

C.1.3 Avionics

SAFER's avionics subsystem resides mostly in the backpack module beneath the propul-

sion components. Included are the following assemblies:

1. Control Electronics Assembly (CEA). Found in the avionics box, the CEA

contains a microprocessor that takes inputs from sensors and hand controller

switches, and actuates the appropriate thruster valves. The CEA has a serial

bus interface for the HCM umbilical as well as an interface for ground support

equipment.

2. Inertial Reference Unit (IRU). Central to the attitude hold function, the

IRU senses angular rates and linear accelerations. Three quartz rate sensors, rate

182 Appendix C

.

.

.

.

noise filters, and associated rate measurement electronics provide angular rate

sensing up to ±30 degrees per second. A separate sensor exists for each angular

axis (roll, pitch, yaw). In addition, a temperature sensor is paired with each of

the three rate sensors, enabling the avionics software to reduce rate sensor error

caused by temperature changes. An accelerometer senses linear acceleration up

to ±1 g along each linear axis (X, Y, Z). These accelerations are recorded by the

data recorder assembly for post-flight analysis.

Data Recorder Assembly (DRA). SAFER flight performance data is collected

by the DRA. Saved parameters include data from rate sensors, accelerometers,

pressure and temperature transducers, and battery voltage sensors. The DRA

also records hand controller and AAH commands and thruster firings. Data may

be recorded at one of three rates: 1 Hz, 50 Hz, or 250 Hz. A suitable rate is chosen

automatically based on which control mode is in use.

Valve Drive Assemblies (VDAs). Four valve drive assemblies are used to

actuate the GN2 thrusters. A VDA is located with each cluster of six thrusters

(in each tower and on the left and right sides of the propulsion module main frame).

VDAs accept firing commands from the CEA and apply voltages to the selected

valves. VDAs also sense current flow through the thruster solenoids, providing a

discrete signal to the CEA acknowledging thruster firing.

Power Supply Assembly (PSA). Regulated electrical power for all SAFER

electrical components is produced by the PSA. Two battery circuits provide input

power, and the PSA serves as a single-point ground for all digital and analog signal
returns.

Instrumentation Electronics. A variety of sensors is included in the SAFER

instrumentation electronics. A subset of the sensed parameters is available for

display by the crewmember. Table C.1 lists all the SAFER sensors.

C.1.4 System Software

The avionics software is responsible for controlling the SAFER unit in response to

crewmember commands. Two principal subsystems comprise the system software: the

maneuvering control subsystem and the fault detection subsystem. Maneuvering control
includes both commanded accelerations and automatic attitude hold actions. Fault

detection supports in-flight operation, pre-EVA checkout, and ground checkout.

C.1.4.1 Software Interfaces

Digital interfaces to SAFER components enable the CEA's microprocessor to achieve

control. Four classes of inputs are monitored and accepted by the avionics software:

NASA-GB-O01-97 183

Parameter measured Sensor type Displayed?

GN2 tank pressure

GN2 tank temperature

GN2 regulator pressure

GN2 regulator temperature
Roll rate

Pitch rate

Yaw rate

Electronics battery volts

Valve drive battery volts

Battery temperature

X acceleration

Y acceleration

Z acceleration

Roll rate sensor temperature

Pitch rate sensor temperature

Yaw rate sensor temperature

Pressure

Temperature
Pressure

Temperature

Angular rate

Angular rate

Angular rate

Voltage

Voltage

Temperature

Linear acceleration

Linear acceleration

Linear acceleration

Temperature

Temperature

Temperature

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

Table C.I: SAFER sensor complement.

1. Hand controller switches. Indications of switch operation cover both toggle

switches and those embedded within the hand grip mechanism.

2. Avionics transducers. Sensor inputs are converted from analog to digital form

before software sampling.

3. Thruster-on discrete. This input is a binary indication of at least one thruster

valve being open.

4. Serial line. Ground checkout operations send data through this input.

Similarly, four classes of outputs are generated by the avionics software:

1. Hand controller displays. Both LEDs and a 16-character LCD display are

included to present status to the crewmember.

2. Thruster system. Digital outputs are delivered to the valve drive assemblies to
actuate individual thruster valves.

3. Data recorder system. Selected data items are recorded for post-flight analysis

on the ground.

4. Serial line. Ground checkout operations receive data through this output.

184 Appendix C

C.1.4.2 Maneuvering Control Subsystem

Figure C.7 breaks down the SAFER software architecture in terms of its primary mod-

ules. Those modules comprising the maneuvering control subsystem collectively realize

SAFER's six degree-of-freedom propulsion capability. Both rotational and translational

accelerations will be commanded by the software. Rotations resulting from the AAH

function are invoked automatically by the software in response to rotation rates sensed

by the inertial reference unit. Special cases result from the interaction of the AAH

function and explicitly commanded accelerations.

Translation commands from the crewmember are prioritized so that only one trans-

lational axis receives acceleration, with the priority order being X, Y, and then Z.

Whenever possible, acceleration is provided as long as a hand controller or AAH com-

mand is present. If both translation and rotation commands are present simultaneously,

rotation takes priority and translations will be suppressed. Conflicting input commands

result in no output to the thrusters.

The SAFER crewmember can initiate AAH at any time by depressing or "clicking"

the pushbutton on the hand controller grip. Whenever AAH is active in any axis the

green LED on the HCM illuminates. When the button is double clicked (two clicks

within a 0.5 second interval), AAH is disabled for all three rotational axes. If AAH

is active, and the crewmember issues a rotational acceleration command about any

axis, AAH is immediately disabled on that axis. When this occurs, the remaining axes

remain in AAH. On the other hand, if AAH is initiated simultaneously with a rotational

command from the hand controller, the rotational command will be ignored and AAH

will become active in that axis. This feature is necessary so that a failed-on HCM

rotational command cannot permanently disable AAH on the affected axis.

AAH implements an automatic rotational deceleration sufficient to reduce axis rates

to near-zero levels. Continuous thruster firings are commanded to reduce rotation about

an axis whenever its rate is sensed to be above 0.2 degree per second. Once the rates

have fallen below 0.3 degree per second, thrusters are fired only as needed to maintain

attitude within approximately ±5 degrees. Thrusters are not fired when attitude is

within a ±2 degree deadband.

Rate sensors, rate noise filters, and associated rate measurement electronics exhibit

significant offset errors, which are largely a function of rate sensor temperature. Offset

reduction is used to minimize the negative effects of rate offset errors. Temperature

measurements are periodically sampled and net offset errors estimated. Such estimates
are subtracted from the noise filter rate measurements to minimize rate offset errors.

Net offset errors are independent for each axis, reaching an average of 0.2 degree per

second and resulting in an average drift of the same magnitude.
Acceleration commands from the hand controller and from the AAH function are

combined to create a single acceleration command. Thruster select logic is provided to

choose suitable thruster firings to achieve the commanded acceleration. Thruster selec-

tion results in on-off commands for each thruster, with a maximum of four thrusters

turned on simultaneously. Thruster arrangement and designations are shown in Fig-

NASA-GB-O01-97 185

ure C.3, while Tables C.2 and C.3 specify the selection logic. These tables are specified

in terms of three possible command values for each axis: negative thrust, positive thrust,
or no thrust at all.

C.1.4.3 Fault Detection Subsystem

The fault detection subsystem performs four testing functions: a self test, an activation

test, a monitoring function, and a ground checkout function. The fault detection sub-

system also manages the display interface, performing the computation of parameters

and construction of messages for the HCM LCD.

The self test provides an overall functional test of the SAFER flight unit without

using any propellant or external equipment. To carry out the test, the crewmember is

led through a checklist of prompts displayed on the HCM LCD. If a particular test is

unsuccessful, a failure message is displayed. The following tests are performed during
self test:

1. Thruster test

2. Hand controller controls and display test

3. Rate sensor function test

The activation test checks the functionality of the SAFER flight unit in an opera-

tional mode, being invoked to check the function of the pressure regulator. A minimal

amount of propellant is used and no external equipment is required. The test con-

sists of commanding 20 millisecond thruster pulses in translational and rotational axis

directions, with opposing thrusters fired as well so no net acceleration results.

A continuous fault check of the SAFER subsystems is performed by the monitoring

function, comprising the following tests:

1. Leak monitoring

2. Battery voltage checks

3. Tank pressure and temperature checks

4. Regulator pressure and temperature checks

5. Battery pack temperature check

Status information resulting from continuous monitoring is displayed on the HCM LCD

during SAFER flight. The following items are displayed in order:

1. Default display, showing GN2 and power percent remaining

2. Pressure and temperature

3. Rotation rate

186 Appendix C

X

+

+

+

+

+

+

Pitch

+

+

+

+

+

+

+ +

+ +

+ +

Yaw

+

+

+

+

+

+

+

+

+

Always turned on

B4

B3 B4

B3

B2 B4

B1 B4

B1 B3

B2

B1 B2

B1

B4 F1

B4 F2

B3 F2

B2 F1

B3 F4

B2 F3

B1 F3

B1 F4

F1

F1 F2

F2

F1 F3

F2 F3

F2 F4

F3

F3 F4

F4

On if no roll command

B2 B3

B1 B4

B2 B3

B1 B4

B2 B3

F2 F3

F1 F4

F1 F4

F1 F4

F2 F3

Table C.2: Thruster select logic for X, pitch, and yaw commands.

NASA-GB-O01-97 187

Y Z Roll

- +

NA

NA

NA

- + - NA

- + NA

- + + NA

- +

+

+

+ +

+ - - NA

+ - NA

+ - + NA

L1R

L1R

L3R

U3R

U3R

U4R

Always turned on

L1R

R2R

D2R

DIR

DIR

+ - R4R

+ R2R

+ + R2R

+ + - NA

+ + NA

+ + + NA

L3R

U4R

R4R

L3R

D2R

R4R

On if no pitch or yaw

LIF L3F

LIF L3F

LIF L3F

U3F U4F

U3F U4F

U3F U4F

DIF D2F

DIF D2F

DIF D2F

R2F R4F

R2F R4F

R2F R4F

Table C.3: Thruster select logic for Y, Z, and roll commands.

188 Appendix C

4. Angular displacement

5. Battery voltage

6. High rate recorder status

7. Message display (error queue)

The fault detection system also provides for ground checkout of the SAFER flight

unit. This function processes commands for data requests or avionics tests from ground

support equipment connected to the CEA's ground servicing serial port.

C.2 SAFER EVA Flight Operation Requirements

The full SAFER system has requirements that cover flight operations as well as support

procedures such as pre-EVA checkout, propellant recharging, and battery pack changing.

Our SAFER example focuses on a subset of the full requirements, namely, those covering

flight operations during an EVA. Furthermore, several requirements are incorporated in

modified form to better suit the purposes of the example. The most significant change

is that the controller samples switches and sensors on every frame rather than accepting

change notifications via a serial line interface. This leads to the conceptually simpler

architecture of a pure sampled-data control system.

C.2.1 Hand Controller Module (HCM)

The HCM provides the controls and displays for the SAFER crewmember to operate
SAFER and to monitor status.

(1)

(2)

The HCM shall comprise two units, the Hand Controller Unit (HCU) and the

Display and Control Unit (DCU).

The HCM shall provide the controls and displays for the SAFER crewmember to

operate SAFER and to monitor status.

C.2.1.1 Display and Control Unit (DCU)

The DCU provides displays to the crew and switches for crew commands to power the

SAFER, to select modes, and to select displays.

(3)

(4)

The DCU shall provide a red LED and shall illuminate it whenever an electrical

on-command is applied to any one of the SAFER thrusters.

The DCU shall provide a green LED and shall illuminate it whenever automatic

attitude hold (AAH) is enabled for one or more SAFER rotational axes.

(5) The DCU shall provide a 16-character, backlit liquid crystal display (LCD).

NASA-GB-O01-97 189

(6) The DCU shall display SAFER instructions and status information to the SAFER
crewmember on the LCD.

(7)

(8)

(9)

(10)

The DCU shall provide a three-position toggle switch to power the SAFER unit
on and to control the SAFER test functions.

The power toggle switch shall be oriented towards the crewmember for "TST," in

the center position for "ON," and away for "OFF."

The DCU shall provide a three-position, momentary toggle switch to control the

LCD display.

The display toggle switch shall remain in the center position when not being used

and shall be oriented so that positioning the switch towards or away from the
crewmember will control the LCD menu selection.

(11) The DCU shall provide a two-position toggle switch to be used to direct hand
controller commands for either full rotation or full translation control mode.

(12) The mode select toggle switch shall be positioned to the crewmember's left for the

Rotation Mode and to the crewmember's right for the Translation Mode.

C.2.1.2 Hand Controller Unit (HCU)

The HCU provides those functions associated with the hand controller and the auto-

matic attitude hold (AAH) pushbutton switch.

(13) The HCU shall provide a four-axis hand controller having three rotary axes and

one transverse axis, operated by a side-mounted hand grip as depicted in Fig-
ure C.4.

(14) The HCU shall indicate primary control motions when the grip is deflected from

the center or null position to mechanical hard-stops.

(15) The grip deflections shall result in six degree-of-freedom commands related to

control axes as depicted in Figures C.5 and C.6.

(16) The HCU shall terminate commands when the grip is returned to the null position.

(17) The HCU shall provide a pushbutton switch to activate and deactivate AAH.

(18) The pushbutton switch shall activate AAH when depressed a single time.

(19) The pushbutton switch shall deactivate AAH when pushed twice within 0.5 second.

190 Appendix C

C.2.2 Propulsion Subsystem

SAFER thrusters are actuated by the control electronics assembly (CEA) using the

valve drive assemblies (VDAs).

(20)

(21)

(22)

(23)

(24)

The propulsion subsystem shall provide 24 gaseous nitrogen (GN2) thrusters ar-

ranged as shown in Figure C.3.

The VDAs shall accept thruster firing commands from the CEA and apply appro-

priate voltages to the selected thrusters.

The VDAs shall have the capability of sensing current flow through the thruster

solenoids and providing discrete signals to the CEA indicating such an event.

The propulsion subsystem shall provide two transducers to monitor tank pressure

and regulator outlet pressure.

The propulsion subsystem shall provide two temperature sensors to measure tank

temperature and regulator outlet temperature.

C.2.3 Avionics Assemblies

The avionics subsystem includes several assemblies housed within the backpack propul-

sion module, each having a digital interface to the CEA.

C.2.3.1

(25)

(26)

(27)

Inertial Reference Unit (IRU)

The IRU shall provide angular rate sensors and associated electronics to measure

rotation rates in each angular axis (roll, pitch, yaw).

The IRU shall provide a temperature sensor for each angular rate sensor to allow

temperature-based compensation.

The IRU shall provide accelerometers to measure linear accelerations in each trans-

lation axis (X, Y, Z).

C.2.3.2

(28)

(29)

(30)

Power Supply Assembly (PSA)

The power supply shall provide a voltage sensor to measure the valve drive battery

voltage.

The power supply shall provide a voltage sensor to measure the electronics battery

voltage.

The power supply shall provide a temperature sensor to measure battery pack

temperature.

NASA-GB-O01-97 191

C.2.3.3 Data Recorder Assembly (DRA)

(31) The DRA shall accept performance data and system parameters from the CEA

for storage and post-flight analysis.

(32) The DRA shall write formatted data on nonvolatile memory devices.

C.2.4 Avionics Software

Executing on a microprocessor within the control electronics assembly (CEA), the

SAFER avionics software provides the capability to control SAFER flight maneuvers,

to check out functionality and detect faults in SAFER, and to display SAFER fault

conditions and general health and consumable status.

(33) The avionics software shall reference all commands and maneuvers to the coordi-

nate system defined in Figure C.3.

(34) The avionics software shall provide a six degree-of-freedom maneuvering control

capability in response to crewmember-initiated commands from the hand con-
troller module.

(35) The avionics software shall allow a crewmember with a single command to cause

the measured SAFER rotation rates to be reduced to less than 0.3 degree per
second in each of the three rotational axes.

(36) The avionics software shall attempt to maintain the calculated attitude within ±5

degrees of the attitude at the time the measured rates were reduced to the 0.3

degree per second limit.

(37) The avionics software shall disable AAH on an axis if a crewmember rotation
command is issued for that axis while AAH is active.

(38) Any hand controller rotation command present at the time AAH is initiated shall

subsequently be ignored until a return to the off condition is detected for that axis
or until AAH is disabled.

(39) Hand controller rotation commands shall suppress any translation commands that

are present, but AAH-generated rotation commands may coexist with translations.

(40) At most one translation command shall be acted upon, with the axis chosen in

priority order X, Y, Z.

(41) The avionics software shall provide accelerations with a maximum of four simul-

taneous thruster firing commands.

(42) The avionics software shall select thrusters in response to integrated AAH and

crew-generated commands according to Tables C.2 and C.3.

192 Appendix C

(43)

(44)

(45)

The avionics software shall provide flight control for AAH using the IRU-measured

rotation rates and rate sensor temperatures.

The avionics software shall provide fault detection for propulsion subsystem leak-

age in excess of 0.3% of GN2 mass per second while thrusters are not firing.

The avionics software shall provide limit checks for battery temperature and volt-

ages, propulsion tank pressure and temperature, and regulator pressure and tern-

perature.

C.2.5 Avionics Software Interfaces

The avionics software accepts input data from SAFER components by sampling the state

of switches and digitized sensor readings. Outputs provided by the avionics software to

SAFER components are transmitted in a device-specific manner.

(46) The avionics software shall accept the following data from the hand controller
module:

(47) The
tem:

+ pitch, - pitch

+X,-X

+ yaw or + Y, - yaw or - Y

+ roll or + Z, - roll or - Z

Power/test switch

Mode switch

Display proceed switch

AAH pushbutton

avionics software shall accept the following data from the propulsion subsys-

• Tank pressure and temperature

• Regulator pressure and temperature

• Thruster-on signal

(48) The avionics software shall accept the following data from the inertial reference
unit:

• Roll, pitch, and yaw rotation rates

• Roll, pitch, and yaw sensor temperatures

• X, Y, and Z linear accelerations

(49) The avionics software shall accept the following data from the power supply:

NASA-GB-O01-97 193

• Valve drive battery voltage

• Electronics battery voltage

• Battery pack temperature

(50) The avionics software shall provide the following data to the HCM for display:

• Pressure, temperature, and voltage measurements

• Alert indications

• Rotation rates and displacements

• Crew prompts

• Failure messages

• Miscellaneous status messages

(51) The avionics software shall provide the following data to the valve drive assemblies
for each of the 24 thrusters:

• Thruster on/off indications

(52) The avionics software shall provide the following data to the data recorder assem-

bly:

• IRU-sensed rotation rates

• IRU-sensed linear accelerations

• IRU rate sensor temperatures

• Angular displacements

• AAH command status

C.3 Formalization of SAFER Requirements

A PVS formalization of the SAFER system described thus far is presented below 2. A

subset of the SAFER requirements has been chosen for modeling that emphasizes the

main functional requirements and omits support functions such as the ground check-

out features. Even within the flight operation requirements some functions have been

represented only in abstract form.

2The PVS source files for the SAFER example are available on LaRC's Web server in the directory

ftp://atb-www.larc.nasa.gov/Guidebooks/

194 Appendix C

C.3.1 PVS Language Features

Only a few PVS language features need to be understood to read the formal specifi-

cation that follows. PVS specifications are organized around the concept of theories.

Each theory is composed of a sequence of declarations or definitions of various kinds.

Definitions from other theories are not visible unless explicitly imported.

PVS allows the usual range of scalar types to model various quantities. Numeric

types include natural numbers (nat), integers (int), rationals (rat), and reals (real).

Nonnumeric types include booleans (bool) and enumeration types ({el, C2, ...}).

Subranges and subtyping mechanisms allow derivative types to be introduced. Uninter-

preted, nonempty type are of type TYPE+.

Structured data types or record types are used extensively in specifications. These

types are introduced via declarations of the following form:

record_type: TYPE = [# vl: type_l, v2: type_2, ... #]

The first component of this record may be accessed using the notation vl (R). A record

value constructed from individual component values may be synthesized as follows:

(# vl := <expression l>, v2 := <expression 2>, ... #)

Similar to records are tuples, introduced via declarations of an analogous form:

tuple_type: TYPE = [type_l, type_2, ...]

The first component of a tuple may be accessed using the notation proj_l (T). A tuple

value constructed from individual component values may be synthesized as follows:

(<expression 1>, <expression 2>, ...)

An important class of types in PVS is formed by the function types. A declaration
of the form:

fun_type: TYPE = [type_l-> type_2]

defines a (higher-order) type whose values are functions from type_l to type_2. Func-

tion values may be constructed using lambda expressions:

(LAMBDA x, y: <expression of x, y>)

Logical variables are introduced to serve as arguments to functions and to express

logical formulas or assertions:

x, y, z: VAR vat_type

Local variable declarations also are available in most cases. Global variable declarations

apply throughout the containing theory but no further.

A named function is defined quite simply by the following notation:

NASA-GB-O01-97 195

fn (arg_l, arg_2, ...): result_type = <expression>

Each of the variables arg_i must have been declared of some type previously or given

a local type declaration. The function definition must be mathematically well-defined,

meaning its single result value is a function of the arguments and possibly some con-

stants. No "free" variables are allowed within the expression. In addition, the type of

the expression must be compatible with the result type.

Besides fully defining functions, it is possible to declare unspecified functions using
the notation:

fn (arg_l, arg_2, ...): result_type

In this case, the function's signature is provided, but there is no definition. This is often

useful when developing specifications in a top-down fashion. Also, it may be that some

functions will never become defined in the specification, in which case they can never

be expanded during a proof.

One type of expression in PVS is particularly useful for expressing complex functions.

This feature, known as a LET expression, allows the introduction of bound variable

names to refer to subexpressions.

LET vl = <expression i>, v2 = <expression 2>, ...

IN <expression involving vl, v2, ...>

Each of the variables serves as a shorthand notation used in the final expression. The

meaning is the same as if each of the subexpressions were substituted for its correspond-

ing variable.

Finally, PVS provides a tabular notation for expressing conditional expressions in

a naturally readable form. For example, an algebraic sign function could be defined as
follows:

sign(x): signs = TABLE %

l[x<0

%

i -i

%

ENDTABLE

I x = 0 I x > 0]1

%

I o I i I

%

C.3.2 Overview of Formalization

The formal model uses a state machine representation of the main control function.

The controller is assumed to run continuously, executing its control algorithms once per

frame, whose duration is set at 5 milliseconds. In each frame, sensors, switches and the

hand grip controller are sampled to provide the inputs to the control functions for that

frame. Based on these inputs and the controller's state variables, actuator commands

196 Appendix C

and crew display outputs are generated, as well as the controller's state for the next
frame.

Eleven PVS theories are used to formalize the requirements:

• avionics_types

• hand_controller_module

• propulsion_module

• inertial_reference_unit

• automatic_attitude_hold

• thruster_selection

• power_supply

• data_recorder

• self_test

• HeM_display

• avionics_model

The full text of these theories is presented in Section C.3.3. The theories have been

typechecked by PVS, and all resulting TCCs (type correctness conditions) have been

proved.

Construction of the PVS specifications proceeded in a mostly top-down manner

initially, but once parsing and typechecking of the PVS source was begun, the lower-

level portions needed to be provided. For this reason, basic types tend to be done early

during specification development and many of the definitions "meet in the middle" as

both the upper and lower layers of the hierarchy are pushed toward completion. The

following paragraphs point out some highlights of a subset of the theories, serving to

annotate the PVS specifications of Section C.3.3.

C.3.2.1 Basic Types

A few common type definitions are provided for use elsewhere within the specification.

Sensor readings are all modeled as real numbers. Several enumeration types are intro-

duced to model translation and rotation commands. The six_dof_command type is a

record that integrates all six axis commands. A few constants are also included to give

names and values to null commands.

NASA-GB-O01-97 197

C.3.2.2 Hand Controller Module

The HCM switches are modeled in this theory as is the hand grip mechanism. The

derivation of a six degree-of-freedom command from the four-axis hand controller based

on current mode is defined here. Basic types for the LEDs and character display are

included as well. A display buffer is modeled as an array of character_display values.

A buffer pointer selects which element is currently being displayed. The pointer is

updated when the previous state of the display proceed switch is neutral and the switch

makes a transition in the up or down direction.

C.3.2.3 Propulsion Module

Thruster names are introduced via an enumeration type for the full complement of 24

thrusters. A more elaborate type called thruster_desig represents thruster designa-

tions in terms of their three component parts. This makes use of an advanced feature of

the PVS language known as dependent types, where the type of later components of a

record or tuple may depend on the value of earlier components. A mapping from names

to designations is also provided. Finally, lists of thrusters are used to model actuator

commands, where those thrusters to be fired are included in the list. Lists in PVS are

analogous to the concept of lists in the Lisp programming language and its descendants.

C.3.2.4 Automatic Attitude Hold

A moderately complex part of the SAFER model revolves around the attitude hold

feature. The hand grip pushbutton for engaging AAH mode is scanned to detect tran-

sitions that should be acted upon. The single-click, double-click engagement protocol is

represented by the state diagram shown in Figure C.8, where the arcs are labeled with

the switch values sensed in the current frame. The type AAg_engage_state denotes the

states in this diagram, while the function button_transition models the diagram's
transitions.

Several state components are modeled for managing AAH and its special require-

ments. The actual control law is not defined, but unspecified functions are provided to

indicate where such processing fits in. The overall AAH transition function is defined

by the PVS function AAH_transition, taking into account the conditions for activating

and deactivating AAH on each axis, as well as the timeouts necessary for detecting

double clicks of the AAH pushbutton.

C.3.2.5 Thruster Selection

Thruster selection takes place in two major steps: forming an integrated six degree-of-

freedom command from the HCM command and AAH command, and then taking the

integrated command and chosing individual thrusters to fire. Three functions take care

of the first part by capturing the logic for prioritizing translation commands, merging

198 Appendix C

rotation commands, and forming the correct aggregate command under the various con-
ditions. Two functions called BF_thrusters and LRUD_thrusters formalize the thruster

selection logic in Tables C.2 and C.3. These functions are defined using triply nested

tables to avoid problems with cumbersome TCCs (type correctness conditions). A more

readable form of the tables using triples of the axis commands resulted in large and in-

tractable TCCs so the less pleasing form was necessary. This is an example of the trade-

offs that must be made occasionally when working with formal specifications. Finally,

the theory concludes with the functions selected_thrusters and selected_actuators

that integrate the results of the preceding functions to produce the final list of chosen

thrusters.

C.3.2.6 Avionics Model

This top-level theory pulls together all the separate portions of the formalization. The

overall state machine model for the SAFER controller is captured in the form of type

definitions for the inputs, outputs, and state values, as well as the main state transition

function called SAFER_control. Note the use of a LET expression to define most of the

separate pieces that are merged to form the final outputs and next-state components.

An initial state constant is also provided in this theory.

C.3.3 Full Text of PVS Theories

7.7.
7'7'

7'7'
7'7'

7'7'
7'7'

7'7'
7'7'

7'7'

7'7'
7'7'

7'7'
7'7'

7'7'
7'7'

7'7'
7'7'

7'7'

The following PVS theories comprise a formal model of a subset

of the control system functional requirements for an EVA

propulsion system. This example is heavily based on NASA's

Simplified Aid for EVA Rescue (SAFER), developed at the Johnson

Space Center (JSC). For pedagogical reasons, the requirements

deviate somewhat from the actual SAFER system. Furthermore, the

SAFER system is still under development. As a result, the model

that follows does not necessarily reflect the actual SAFER

requirements as maintained by JSC.

References:

i. Simplified Aid for EVA Rescue (SAFER) 0perations Manual.

NASA report JSC-26283, Sept. 1994.

2. Simplified Aid for EVA Rescue (SAFER) Flight Test Project,

Flight Test Article Prime Item Development Specification.

NASA report JSC-25552A, July 1994.

NASA-GB-O01-97 199

avionics_types: THEORY

BEGIN

pressure:

temperature:

voltage:

TYPE = real

TYPE = real

TYPE = real

angular_rate:

linear_accel:

TYPE = real

TYPE = real

axis_command: TYPE = {NEG, ZERO, POS}

tran_axis:

rot_axis:

TYPE = {X, Y, Z}

TYPE = {roll, pitch, yaw}

tran_command:

rot_command:

TYPE = [tran_axis -> axis_command]

TYPE = [rot_axis -> axis_command]

rot_predicate: TYPE = [rot_axis -> bool]

six_dof_command: TYPE = [# tran: tran_command, rot: rot_command #]

null_tran_command: tran_command = (LAMBDA (a: tran_axis): ZERO)

null_rot_command: rot_command = (LAMBDA (a: rot_axis): ZERO)

null_six_dof: six_dof_command = (# tran := null_tran_command,

rot := null_rot_command #)

END avionics_types

%%

%% The hand controller module (HCM) consists of a set of switches,

%% a hand grip controller with integral pushbutton, and a set of

%% crew displays. A six degree-of-freedom command is derived from

%% four-axis hand grip inputs and the control mode switch position.

%% It is assumed that switch debouncing is provided by a low-level

%% hardware or software mechanism so that switch transitions in this

%% model may be considered clean.

%%

%%

200 Appendix C

hand_controller_module: THEORY

BEGIN

IMPORTING avionics_types

power_test_switch: TYPE = {OFF, ON, TST}

display_proceed_switch: TYPE = {PREV, CURR, NEXT}

control_mode_switch: TYPE = {ROT, TRAN}

AAH_control_button: TYPE = {button_up, button_down}

HCM_switch_positions: TYPE = [#

PWR: power_test_switch,

DISP : display_proceed_switch,

MODE : control_mode_switch,

AAH : AAH_control_button

#]

%% The hand grip provides four axes for command input, which are

_ multiplexed by the control mode switch into the required six axes.

hand_grip_position: TYPE =

[# vert, horiz, trans, twist: axis_command #]

grip_command((grip: hand_grip_position),

(mode: control_mode_switch)): six_dof_command =

(# tran := null_tran_command WITH [

X := horiz(grip),

Y := IF mode = TRAN THEN trans(grip) ELSE ZER0 ENDIF,

Z := IF mode = TRAN THEN vert(grip) ELSE ZER0 ENDIF],

rot := null_rot_command WITH [

roll := IF mode = R0T THEN vert(grip) ELSE ZER0 ENDIF,

pitch := twist(grip),

yaw := IF mode = ROT THEN trans(grip) ELSE ZER0 ENDIF]

#)

%% The HCM display mechanism is centered around a 16-character LCD.

NASA-GB-O01-97 201

char_display_index: TYPE = {n: nat I i <= n & n <= 16} CONTAINING i

character_display: TYPE = [char_display_index -> character]

blank_char_display: character_display =

(LAMBDA (i: char_display_index): char(32))

HeM_display_set : TYPE = [#

LCD : character_display,

THR: bool,

AAH : bool

#]

_% Multiline messages are stored in a buffer and viewed one line

%% at a time.

HCM_buffer_len: above[0] %% Any integer > 0

HCM_buffer_index: TYPE = {n: nat I i <= n & n <= HCM_buffer_len}

CONTAINING i

HeM_display_buffer: TYPE = [HeM_buffer_index -> character_display]

blank_display_buffer: HCM_display_buffer =

(LAMBDA (i: HCM_buffer_index): blank_char_display)

%% The current pointer in the display state identifies which line to

%% display, and the pointer can be moved up and down using the display

%% proceed switch.

HCM_display_state: TYPE = [#

switch: display_proceed_switch,

buffer : HCM_display_buffer,

current : HCM_buffer_index

#]

next_disp_pointer((new_sw: display_proceed_switch),

(display: HeM_display_state)): HeM_buffer_index =

IF switch(display) = CURR AND new_sw /= CURR

THEN IF new_sw = PREY

THEN max(l, current(display) - i)

202 Appendix C

ELSE min(HCM_buffer_len, current(display) + i)

ENDIF

ELSE current(display)

ENDIF

END hand_controller_module

%%

%%
%%

%%

%%
%%
%%

The propulsion module provides a number of sensors and a set of

actuators to control the 24 thrusters, which are grouped into

four clusters or quadrants.

propulsion_module: THEORY

BEGIN

IMPORTING avionics_types

propulsion_sensors: TYPE = [#

tank_press : pressure,

tank_temp : temperature,

reg_press : pressure,

reg_temp : temperature,

thruster_on: bool

#]

thruster_name: TYPE =

{BI, B2, B3, B4, FI, F2, F3, F4,

LIR, LIF, R2R, R2F, L3R, L3F,

DIR, DIF, D2R, D2F, U3R, U3F,

R4R, R4F,

U4R, U4F}

_ Thruster designators are triples of the form

_ (thrust direction, cluster no., forward/rear location)

_ Not all combinations of these values are possible so a dependent

_ type is used to represent the constraints.

thruster_direction: TYPE = {UP, DN, BK, FD, LT, RT}

thruster_quadrant: TYPE = {n: nat I i <= n & n <= 4} CONTAINING 1

thruster_location: TYPE = {FW, RR} _ forward, rear

NASA- GB-O01-9 7 203

valid_quadrant ((d: thruster_direction),

(q: thruster_quadrant)) : bool =

COND d = UP -> q = 3 0R q = 4,

d = DN -> q = i 0R q = 2,

d = LT -> q = i 0R q = 3,

d = RT -> q = 2 0R q = 4,

ELSE -> true

ENDCOND

% Thrusters BI-B4 and FI-F4 are not normally written with a

forward/rear location tag, but they are supplied below to fit

the type declaration scheme.

thruster_desig: TYPE = [

dir: thruster_direction,

{quad: thruster_quadrant l valid_quadrant(dir, quad)},

{loc: thruster location l

(dir = BK => loc = FW) AND (dir = FD => loc = RR)}

]

thruster_map(thruster: thruster_name): thruster_desig =

TABLE thruster

] B1

I B2

I B3

I B4

Z

[FI

[F2

[F3

[F4

%

[LIR

[ElF

[R2R

[R2F

%
[L3R

[L3F

(BK, 1, FW)

(BK, 2, FW)

(BK, 3, FW)

(BK, 4, FW)

(FD, i, RR)

(FD, 2, RR)

(FD, 3, RR)

(FD, 4, RR)

(LT, i, RR)

(er, i, FW)

(RT, 2, RR)

(RT, 2, FW)

(LT, 3, RR)

(LT, 3, FW)

204 Appendix C

I R4R

I R4F

%
I DIR

I DIF
I D2R

I D2F
%
I U3R

I U3F

I U4R

I U4F

%
ENDTABLE

(RT, 4, RR)

(RT, 4, FW)

(DN, i, RR)

(DN, i, FW)

(DN, 2, RR)

(DN, 2, FW)

(UP, 3, RR)

(UP, 3, FW)

(UP, 4, RR)

(UP, 4, FW)

thruster_list:

actuator_commands:

_% Actuator commands are modeled as a list of thrusters to be fired.

TYPE = list[thruster_name]

TYPE = thruster_list

null_actuation: actuator_commands = (: :)

END propulsion_module

%%

%%

%% Sensing for angular rotation rates and linear acceleration is

%% provided by the inertial reference unit (IRU).

%%
%%

inertial_reference_unit: THEORY

BEGIN

IMPORTING avionics_types

inertial_ref_sensors: TYPE = [#

roll_rate: angular_rate,

pitch_rate: angular_rate,

NASA- GB-O01-9 7 205

yaw_rate :

roll_temp :

pit ch_temp :

yaw_t emp :

X_accel :

Y_accel :

Z_accel :

#]

angular_rate,

temperature,

temperature,

temperature,

linear_accel,

linear_accel,

linear_accel

END inertial_reference_unit

%%

%% An automatic attitude hold (AAH) capability may be invoked to

%% maintain near-zero rotation rates. A pushbutton mounted on the

%% hand grip engages AAH with a single button click, and disengages

%% with a double click. Internal state information is maintained

%% to observe the button pushing protocol, keep track of status for

%% each axis, and implement the attitude hold control law.

%%
%%

automatic_attitude_hold: THEORY

BEGIN

IMPORTING avionics_types, hand_controller_module,

inertial_reference_unit, propulsion_module

click_timeout: nat = i00 %% At most 0.5 second between button

%% pushes for a double click.

AAH_engage_state: TYPE = {AAH_off, AAH_started, AAH_on,

pressed_once, AAH_closing, pressed_twice}

AAH_control_law_state: TYPE+

AAH_state: TYPE = [# active_axes: rot_predicate,

ignore_HCM: rot_predicate,

toggle: AAH_engage_state,

timeout: nat,

control_vars: AAH_control_law_state #]

206 Appendix C

all_axes_off(active: rot_predicate): bool =

(FORALL (a: rot_axis): NOT active(a))

_ 0n each frame, the sampled value of the AAH engage button is

_ checked to determine whether AAH is engaging or disengaging.

_ This function implements the AAH engagement state diagram.

button_transition((state: AAH_engage_state),

(button: AAH_control_button),

(active: rot_predicate),

(clock: nat),

(timeout: nat)): AAH_engage_state =

state , button

%

TABLE

AAH_off

AAH_started

AAH_on

pressed_once

AAH_closing

pressed_twice

%

ENDTABLE

WHERE state_A =

I[button_down button_up

AAH_started

AAH_started

pressed_once

pressed_once

pressedtwice

pressedtwice

AAH_off

AAH_on

state_A

AAH_closing

state_B

AAH_off

%
]

%

%

IF all_axes_off(active) THEN AAH_off ELSE AAH_on ENDIF,

state_B =

IF all_axes_off(active) THEN AAH_off

ELSIF clock > timeout THEN AAH_on ELSE AAH_closing

ENDIF

_ The control law used to implement attitude hold is represented by two

_ functions that map sensor inputs and control law state into next state

_ and output values.

AAH_control_law((IRU_sensors: inertial_ref_sensors),

(prop_sensors: propulsion_sensors),

(AAH_state: AAH_state)): AAH_control_law_state

NASA- GB-O01-9 7 207

AAH_control_out((IRU_sensors: inertial_ref_sensors),

(propsensors: propulsionsensors),

(AAH_state: AAH_state)): rot_command

initial_control_law_state: AAH_control_law_state

%% AAH state information is updated in every frame. Key transitions in

%% the engage-state diagram cause various state variables to be set.

AAH_transition((IRU_sensors: inertial_ref_sensors),

(propsensors: propulsionsensors),

(button_pos: AAH_control_button),

(HCM_cmd: six_dof_command),

(AAH_state: AAH_state),

(clock: nat)): AAH_state =

LET engage = button_transition(toggle(AAH_state),

button_pos,

active_axes(AAH_state),

clock,

timeout(AAH_state)),

starting = (toggle(AAH_state) = AAH_off AND engage = AAH_started)

IN (# active axes := (LAMBDA (a: rot axis):

starting 0R

(engage /= AAH_off AND

active_axes(AAH_state)(a) AND

(rot(HCM_cmd)(a) = ZERO OR

ignore_HCM(AAH_state)(a)))),

ignore_HCM := (LAMBDA (a: rot axis):

IF starting

THEN rot(HCM_cmd)(a) /= ZERO

ELSE ignore_HCM(AAH_state)(a)

ENDIF),

toggle := engage,

timeout := IF toggle(AAH_state) = AAH_on AND

engage = pressed_once

THEN clock + click_timeout

ELSE timeout(AAH_state)

ENDIF,

control_vars := AAH_control_law(IRU_sensors,

prop_sensors,

AAH_state)

208 Appendix C

#)

END automatic_attitude_hold

ZZ
ZZ

ZZ
ZZ

ZZ
ZZ

ZZ

ZZ
ZZ

Thruster selection logic is formalized in the following theory.

Hand controller and AAH commands are merged together in accordance

with the various priority rules, yielding a six degree-of-freedom

command. Thruster selection tables are consulted to convert the

translation and rotation components to individual actuator

commands for opening suitable thruster valves.

ZZ

thruster_selection: THEORY

BEGIN

IMPORTING avionics_types, propulsion_module, automatic_attitude_hold

rot_cmds_present(cmd: rot_command): bool =

(EXISTS (a: rot_axis): cmd(a) /= ZERO)

ZZ At most one translation is allowed, in priority order X, Y, Z.

prioritized_tran_cmd(tran: tran_command): tran_command =

IF tran(X) /= ZERO

THEN null_tran_command WITH [X := tran(X)]

ELSIF tran(Y) /= ZERO

THEN null_tran_command WITH [Y := tran(Y)]

ELSIF tran(Z) /= ZERO

THEN null_tran_command WITH [Z := tran(Z)]

ELSE null_tran_command

ENDIF

%% Hand grip rotation commands take precedence over AAH commands

%% unless inhibited at the start of AAH.

combined_rot_cmds((HCM_rot: rot_command),

(AAH: rot_command),

(ignore_HCM: rotpredicate)): rot_command =

(LAMBDA (a: rot_axis):

NASA- GB-O01-9 7 209

IF HeM_rot(a) = ZERO OR ignore_HeM(a)

THEN AAH(a)

ELSE HCM_rot(a)

ENDIF)

ZZ Hand grip rotations suppress translations but AAH rotations do not.

integrated_commands((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): six_dof_command =

IF all_axes_off(active_axes(state))

THEN IF rot_cmds_present(rot(HCM))

THEN (# tran := null_tran_command,

rot := rot(HCM) #)

ELSE (# tran := prioritized_tran_cmd(tran(HCM)),

rot := null_rot_command #)

ENDIF

ELSE IF rot_cmds_present(rot(HCM))

THEN (# tran := null_tran_command,

rot := combined_rot_cmds(rot(HCM), AAH,

ignore_HCM(state)) #)

ELSE (# tran := prioritized_tran_cmd(tran(HCM)),

rot := AAH #)

ENDIF

ENDIF

ZZ Selection of back and forward thrusters results in a pair of

_ thrusters lists, the first of which gives mandatory thrusters

ZZ and the second gives optional thrusters. This function represents

ZZ the selection table for X, pitch, and yaw commands.

thruster_listpair: TYPE = [thruster_list, thruster_list]

BF_thrusters((A, B, C: axis_command)): thruster_list pair =

TABLE A

I NEG I TABLE B

I NEG I TABLE C

Z Z

I NEG I ((: B4 :), (: B2, B3 :)) II

I ZERO I ((: B3, B4 :), (: :)) II

210 Appendix C

i ZERO

[POS

ENDTABLE

i ZERO i TABLE B

i NEG

[ZERO

[POS

ENDTABLE

i POS i TABLE B

[POS

ENDTABLE

TABLE C

] NEG

] ZERO

I POS

ENDTABLE

TABLE C

I NEG

I ZERO

I pos

%,
ENDTABLE

I

TABLE C

i NEG

I ZERO

I pos

ENDTABLE

TABLE C

I NEG

I ZERO

I pos

ENDTABLE

TABLE C

I NEG

I ZERO

I pos

ENDTABLE

I

((: B3 :), (: BI, B4 :)) 11

((: B2, B4 :), (: :)) 11

((: B1, B4 :), (: B2, B3 :)) II

((: B1, B3 :), (: :)) II

%

((: B2 :), (: B1, B4 :)) II

((: B1, B2 :), (: :)) [[

((: B1 :), (: B2, B3 :)) 11

((: B4, F1 :), (:

((: B4, F2 :), (:

((: B3, F2 :), (:

:)) II

:)) II
:)) II

((: B2, F1 :), (:

((: :), (:

((: B3, F4 :), (:

:)) II
:)) II

:)) II

((: B2, F3 :), (:

((: BI, F3 :), (:

((: BI, F4 :), (:

:)) II
:)) II

:)) II

NASA-GB-O01-97 211

ENDTABLE

l NEG l TABLE C

%

l NEG

l ZERO

l P0S

Z

ENDTABLE

l ZERO l TABLE C

%

[NEG

[ZERO

l P0S

Z

ENDTABLE

l P0S l TABLE C

Z

l NEG

l ZERO

l P0S

Z

ENDTABLE

ENDTABLE [[

Z

((: F1 :), (: F2, F3 :)) II

((: F1, F2 :), (: :)) II

((: F2 :), (: F1, F4 :)) II

,%

'Z

((: F1, F3 :), (: :)) [[

((: F2, F3 :), (: F1, F4 :)) [[

((: F2, F4 :), (: :)) [[

%

Z

((: F3 :), (: F1, F4 :)) [[

((: F3, F4 :), (: :)) [[

((: F4 :), (: F2, F3 :)) [[

,%

ZZ Selection of left, right, up, and down thrusters resulting from

_ Y, Z, and roll commands.

LRUD_thrusters((A, B, C: axis_command)): thruster_list_pair =

TABLE A

] NEG [TABLE B

l NEG l TABLE C

Z

] NEG

] ZERO

I POS

Z

ENDTABLE

[ZERO [TABLE C

%

[NEG

[ZERO

Z

((: :), (: :)) It

((: :), (: :)) It

((: :), (: :)) It

Z

Z

((: L1R :), (: L1F, L3F :)) [[

((: L1R, L3R :), (: L1F, L3F :)) [[

212 Appendix C

[POS

ENDTABLE

[ZER0 [TABLE B

[NEG

[ZERO

[POS

[POS

ENDTABLE

[TABLE B

I NEG

((: L3R :), (: L1F, L3F :))

ENDTABLE [

TABLE C

Z
[NEG

[ZERO

I P0S

((: :), (: :))
((: :), (: :))

((: :), (: :))

ENDTABLE [

I

TABLE C

I NEG I ((: U3R :), (: U3F, U4F :))

[ZERO I ((: U3R, U4R :), (: U3F, U4F :))

I POS I ((: U4R :), (: U3F, U4F :))

ENDTABLE II

TABLE C

Z
[NEG

[ZERO

[P0S

((: L1R, R4R :), (:

((: :), (:

((: R2R, L3R :), (:

:))

:))
:))

ENDTABLE

TABLE C

[NEG

[ZER0

I POS

((: D2R :), (: DiF, D2F :))

((: DiR, D2R :), (: DiF, D2F :))

((: DIR :), (: DiF, D2F :))

ENDTABLE

t

TABLE C

1
-Z

[NEG

[ZERO

[POS

Z

.Z

I
I

I
Z

ENDTABLE

Z
I

I
I

Z

Z
1

1
1

Z

((: :), (: :)) II

((: :), (: :)) II

((: :), (: :)) II
'Z

'Z

NASA-GB-O01-97 213

ENDTABLE

i ZERO i TABLE C

Z
i NEG

i ZERO

i P0S

Z
ENDTABLE

i P0S i TABLE C

Z
i NEG

i ZERO

i P0S

Z
ENDTABLE

ENDTABLE [[

Z

((: R4R :), (: R2F, R4F :)) [[

((: R2R, R4R :), (: R2F, R4F :)) [[

((: R2R :), (: R2F, R4F :)) [[

Z

Z

((: :), (: :)) II

((: :), (: :)) II
((: :), (: :)) II

Z

ZZ An integrated six degree-of-freedom command is mapped into a vector

ZZ of actuator commands. Selection tables provide lists of thrusters

ZZ and both mandatory and optional thrusters are included as appropriate.

selected_thrusters(cmd: six_dof_command): thruster_list =

LET (BF_mandatory, BF_optional) =

BF_thrusters(tran(cmd)(X), rot(cmd)(pitch), rot(cmd)(yaw)),

(LRUD_mandatory, LRUD_optional) =

LRUD_thrusters(tran(cmd)(Y), tran(cmd)(Z), rot(cmd)(roll)),

BF_thr = append(IF rot(cmd)(roll) = ZER0

THEN BF_optional

ELSE (: :)

ENDIF,

BF_mandatory),

LRUD_thr = append(IF rot(cmd)(pitch) = ZER0 AND

rot(cmd)(yaw) = ZER0

THEN LRUD_optional

ELSE (: :)

ENDIF,

LRUD_mandatory)

IN append(BF_thr, LRUD_thr)

selected_actuators((HCM: six_dof_command),

214 Appendix C

(AAH: rot_command),

(state: AAH_state)): actuator_commands =

selected_thrusters(integrated_commands(HCM, AAH, state))

END thruster_selection

ZZ
ZZ

%% Several sensors are provided by the power supply to support

%% the fault monitoring functions.

ZZ

power_supply: THEORY

BEGIN

IMPORTING avionics_types

power_supply_sensors: TYPE = [#

elect_batt : voltage,

valve_batt : voltage,

batt_t emp : temperature

#]

END power_supply

ZZ
ZZ

ZZ A data recorder module is provided to record SAFER performance

ZZ data for later analysis.

ZZ

ZZ

data_recorder: THEORY

BEGIN

IMPORTING avionics_types, propulsion_module,

inertial_reference_unit, power supply,

automatic_attitude_hold

data_recorder_packet: TYPE+

NASA-GB-O01-97 215

data_packet((prop_sensors: propulsion_sensors),

(IRU_sensors: inertial_ref_sensors),

(power sensors: powersupplysensors),

(AAH_state: AAH_state),

(thrusters: actuator_commands)): datarecorderpacket

END data_recorder

ZZ
ZZ

ZZ Continuous fault monitoring and consumables monitoring is

ZZ provided by the self-test function.

ZZ
ZZ

self_test: THEORY

BEGIN

IMPORTING avionics_types, propulsion_module,

inertial_reference_unit, power supply,

automatic_attitude_hold

self_test_state: TYPE+

initial_self_test_state: self_test_state

ZZ The monitoring function is provided by the following.

SAFER_monitoring((prop_sensors: propulsion_sensors),

(IRU_sensors: inertial_ref_sensors),

(power_sensors: power_supply_sensors),

(self_test: self_test_state)): self_test_state

END self_test

ZZ
ZZ

ZZ Data from the various SAFER modules is collected for crew display

ZZ through the HCM character display.

ZZ
ZZ

216 Appendix C

HCM_display: THEORY

BEGIN

IMPORTING avionics_types, hand_controller_module, self_test

%% The HCM display buffer is constructed and updated by the following.

display_buffer((self_test:

(HCM_display:

self_test_state),

HCM_display_buffer)): HCM_display_buffer

initial_display_buffer: HCM_display_buffer

END HCM_display

The top level state machine model of the controller is presented

in the following theory. A transition function describes the

effects of the controller's actions during a single frame. A

5 msec frame period is assumed (200 Hz sampling rate).

avionics_model: THEORY

BEGIN

IMPORTING avionicstypes, hand_controller_module,

propulsion module, thruster selection,

inertial_reference_unit, automatic_attitude_hold,

data recorder, power supply, self test, HCM_display

%% Controller inputs from SAFER modules and components.

avionics_inputs: TYPE = [#

HCM_switches : HCM_switch_positions,

grip_command: hand_grip_position,

prop_sensors: propulsion_sensors,

IRU_sensors : inert ial_ref_sensors,

power_sensors : power_supply_sensors

#]

NASA-GB-O01-97 217

%% Controller outputs to SAFER modules and components.

avionics_outputs: TYPE = [#

HCM_displays : HCM_display_set,

prop_actuators : actuator_commands,

data_recorder : data_recorder_packet

#]

%% Internal state variables maintained by the controller.

avionics_state :

msg_display :

AAH_state :

clock :

self_test :

#]

TYPE = [#

HCM_display_state,

AAH_state,

nat,

self_test_state

avionics_result: TYPE = [# output: avionics_outputs,

state: avionics state #]

%% The top level state machine transition function represents one

%% frame of controller operation (once around the main control loop).

SAFER_control ((avionics_inputs: avionics_inputs),

(avionics state: avionics state)): avionics result =

LET switches

raw_grip

= HCM_switches(avionics_inputs),

= grip_command(avionics_inputs),

prop_sensors = prop_sensors(avionics_inputs),

IRU_sensors = IRU_sensors(avionics_inputs),

power_sensors = power_sensors(avionics_inputs),

AAH_state

AAH_active

display

clock

self_test

= AAH_state(avionics_state),

= NOT all_axes_off(active_axes(AAH_state)),

= msg_display(avionics_state),

= clock(avionics_state),

= self_test(avionics_state),

grip_cmd

AAH_cmd

= grip_command(raw_grip, MODE(switches)),

= AAH_control_out(IRU_sensors, prop_sensors,

218 Appendix C

IN

AAH_state),

thrusters = selected_actuators(grip_cmd, AAH_cmd, AAH_state),

monitoring = SAFER_monitoring(prop_sensors, IKU_sensors,

power sensors, self test),

disp_window = buffer(display)(current(display)),

disp_buffer = display_buffer(monitoring, buffer(display)),

disp_pointer = next_disp_pointer(DISP(switches), display)

(# output := (# HCM_displays :=

(# LCD := disp_window,

THR := thruster_on(prop_sensors),

AAH := AAH_active #),

prop_actuators := thrusters,

data_recorder :=

data_packet(prop_sensors, IRU_sensors,

power_sensors, AAH_state,

thrusters)

#),

state := (# msg_display :=

(# switch := DISP(switches),

buffer := disp_buffer,

current := disp_pointer #),

AAH_state :=

AAH_transition(IRU_sensors, prop_sensors,

AAH(switches), grip_cmd,

AAH_state, clock),

clock := i + clock,

self_test := monitoring

#)

#)

ZZ The controller is assumed to be powered up into the following

ZZ initial state.

initial_avionics_state: avionics_state =

(# msg_display := (# switch := CURR,

buffer := initial_display_buffer,

current := i

NASA-GB-O01-97 219

AAH_state

clock

self_test

#)

END avionics_model

#),
:= (# active_axes

ignore_HCM

toggle
timeout

:= (LAMBDA (a: rot_axis): false),

:= (LAMBDA (a: rot_axis): false),

:= AAH_off,

:= 0,

control_vars := initial_control_law_state

#),

:= 0,

:= initial_self_test_state

C.4 Analysis of SAFER

Having produced a formalized version of the SAFER requirements, several types of

rigorous analysis are possible. Precisely stated requirements models have consequences

that can themselves be precisely stated. By expressing various properties of the system

or selected subsystem behavior, it is possible to analyze requirements, in a limited way,

for well-formedness and compliance with desired characteristics. Once expressed in this

manner, it is further possible to formally prove that the properties follow from the

definitions given in the requirements model.

C.4.1 Formulating System Properties

From a basic model of the SAFER controller, there are many possible aspects of system

behavior one might wish to investigate or verify. Some aspects might result from higher-

level requirements or desired system characteristics. Examples of such properties are as
follows:

• When AAH is inactive and no hand grip commands are present there should be

no thruster firings.

• SAFER should never fire more than four thrusters simultaneously.

• No two selected thrusters should oppose each other, that is, have cancelling thrust

with respect to the center of mass.

• Once AAH is turned off for a rotational axis it remains off until a new AAH cycle
is initiated.

Properties such as these identify behavior that designers expect or require the system

to have if it is to satisfy their expectations. These properties must logically follow

220 Appendix C

as consequences of the definitions contained in the system model. Thus, if a mistake

was made in deriving the requirements or formalizing them, attempts to express and

prove these properties will help detect the error. This approach then constitutes a

rigorous method of analyzing requirements. It becomes possible to definitively answer

questions about system behavior, reducing the chances of error from miscalculation,

interpretation, or engineering judgment.

C.4.1.1 Formalization of the Maximum Thruster Property

To illustrate the process of formalizing system properties, it is instructive to take one

of the suggested properties mentioned above and capture it formally using PVS. Let

the Maximum Thruster Property be the requirement that SAFER should never fire

more than four thrusters simultaneously. This condition was expressed as an explicit

requirement in Section C.2. It can be shown that it follows as a direct consequence of

the more detailed functional requirements.

Thruster selection is a function of the hand grip command and any AAH-generated

commands. Tables C.2 and C.3 are used to choose appropriate thrusters based on which

commands appear. Examining the tables, it can be seen that as many as four thrusters

can be selected from each, resulting, at first glance, in as many as eight thrusters chosen

from both. Clearly, some other conditions are needed to reduce the possibilities. Several

restrictive conditions make some command combinations invalid. In addition, the table

entries themselves are interrelated in ways that limit the thruster count for multiple

commands. Taking these restrictions and the table structure into account, the four-
thruster maximum can be derived.

Expressing the Maximum Thruster Property in PVS is straightforward:

FORALL (a_in: avionics_inputs), (a_st: avionics_state):

length(prop_actuators (output (SAFER_control(a_in, a_st)))) <= 4

This formula asserts that for any input and state values, the outputs produced by the

SAFER controller, which include the list of thrusters to fire in the current frame, obey

the maximum thruster requirement. This is a strong statement because it applies to

any output that can be generated by the model.

Section C.4.1.2 presents a PVS theory containing the desired property and support-

ing lemmas needed to prove it. The property appears at the end of the theory, expressed

as the PVS theorem called max_thrusters. All the preceding lemmas in this theory are

used to construct the proof of max_thrusters. Some lemmas were drafted specifically

to decompose the overall proof into manageable pieces, thus representing intermediate

steps. Other lemmas, however, express various facts about the problem domain that

are useful in their own right and might find application in other proof efforts.

C.4.1.2 PVS Theory for Maximum Thruster Property

NASA-GB-O01-97 221

ZZ
ZZ

%% Some properties of the SAFER controller are formalized in the

_ following PVS theory. The top level theorem, max_thrusters,

_ asserts that for any input and current state values, the SAFER

_ controller will issue no more four thruster firing commands.

_ The theorems and lemmas stated below have all been proved using

_ the PVS interactive proof checker.

ZZ
ZZ

SAFER_properties: THEORY

BEGIN

IMPORTING avionics_model

A,B,C:

tr:

HCM,cmd:

AAH:

state:

thr,U,V:

act:

BF,LRUD:

VAR axis_command

VAR tran_command

VAR six_dof_command

VAR rot_command

VAR AAH_state

VAR thruster_list

VAR actuator_commands

VAR thruster_list_pair

ZZ A simple list property is needed to support thruster selection proofs.

length append: LEMMA

length(append(U, V)) = length(U) + length(V)

ZZ 0nly one translation command can be accepted for thruster selection.

only_one_tran(tr): bool =

(tr(X) /= ZER0 IMPLIES tr(Y) = ZER0 AND tr(Z) = ZER0)

AND (tr(Y) /= ZER0 IMPLIES tr(Z) = ZERO)

only_one_tran_pri: LEMMA

only_one_tran(prioritized_tran_cmd(tr))

only_one_tran_int: LEMMA

222 Appendix C

only_one_tran(tran(integrated_commands(HCM, AAH, state)))

ZZ All categories of selected thrusters (BF vs. LRUD and mandatory

ZZ vs. optional) are bounded in size by two, which follows directly

_ from inspection of the tables.

max_thrusters_BF: LEMMA

length(pro3_l(BF_thrusters(A, B, C))) <= 2 AND

length(pro3_2(BF_thrusters(A, B, C))) <= 2

max_thrusters_LRUD: LEMMA

length(pro3_l(LRUD_thrusters(A, B, C))) <= 2 AND

length(pro3_2(LRUD_thrusters(A, B, C))) <= 2

ZZ Absence of translation commands implies no optional thrusters

ZZ will be selected.

no_opt_thr_BF: LEMMA

tr(X) = ZERO IMPLIES length(pro3_2(BF_thrusters(tr(X), B, C))) = 0

no_opt_thr_LRUD: LEMMA

tr(Y) = ZERO AND tr(Z) = ZERO IMPLIES

length(proj_2(LRUD_thrusters(tr(Y), tr(Z), C))) = 0

%% Top level theorems establishing bounds on number of selected thrusters:

max_thrusters_sel: LEMMA

only_one_tran(tran(cmd)) IMPLIES

length(selectedthrusters(cmd)) <= 4

max_thrusters: THEOREM

FORALL (a in: avionics inputs), (a st: avionics state):

length(prop_actuators(output(SAFER_control(a_in, a_st)))) <= 4

END SAFERproperties

C.4.2 Proving System Properties

Merely expressing anticipated _cts about a system model may be sufficient to flush out

errors or lead to the discovery of other noteworthy issues. To obtain further benefit

NASA-GB-O01-97 223

from the formalization, a proof may be performed to make a highly convincing case

for the absence of undesirable system behavior. While informal proofs could suffice

in many cases, fully formal proofs with mechanical assistance offer the highest degree

of assurance. Carrying out proofs within a system such as PVS can yield very high

confidence in any results established, subject to the assumptions made about the system

environment during the modeling effort.

C.4.2.1 Proof Sketch of the Maximum Thruster Property

The argument for why four thrusters is the maximum is as follows. In both of the

thruster selection tables, there can be at most two mandatory thrusters and at most two

optional thrusters selected. Consider whether there is a translation command present
for the X axis.

• Case 1: No X command present. Inspection of Table C.2 shows that there

will be no optional thrusters selected in this case. Next consider whether there is

a pitch or yaw command present.

- Case 1.1: No pitch or yaw commands. Inspection of Table C.2 shows
that no thrusters at all are selected in this case. At most four can come from

the other table. Hence, the bound holds.

- Case 1.2: Pitch or yaw command present. Table C.3 shows that no op-

tional thrusters are chosen from this table. Hence only mandatory thrusters

from each table are chosen, which number at most four.

• Case 2: X command present. Because only one translation command is

allowed, it follows that no Y or Z command can appear. This, in turn, implies

that no optional thrusters are chosen from Table C.3. Now consider whether there
is a roll command.

- Case 2.1: No roll command. Without a roll command, no thrusters at
all result from Table C.3. Thus the bound holds.

- Case 2.2: Roll command present. A roll command implies that Ta-

ble C.2 yields no optional thrusters. This leaves only mandatory thrusters

from each table, and the bound of four thrusters is upheld.

The foregoing proof sketch is the case analysis used to tackle the formal proof carried

out using PVS.

In the theory SAFER_properties from Section C.4.1.2, max_thrusters is the

top level theorem whose proof is based on the lemmas max_thrusters_sel and

only_one_tran_int. Each of these lemmas is, in turn, proved in terms of other lemmas

from this theory, max_thrusters_sel had the most complex proof of the group; its

proof involved the case analysis outlined above.

224 Appendix C

Section C.4.2.2 shows a transcript from the proof of theorem max_thrusters. This

proof contained only five steps, each of which requires the user to supply a prover

command. The notation of PVS proofs is based on a sequent representation. A sequent

is a stylized way of normalizing a logical formula that has a convenient structure with

useful symmetries. In a sequent, a (numbered) list of antecedent formulas is meant to

imply a (numbered) list of consequent formulas:

[-2] <antecedent 2>

[-1] <antecedent 1>

I

[1] <consequent 1>

[2] <consequent 2>

The antecedents are considered to form a conjunction and the consequents form a dis-

junction. Every user-supplied prover command or inference rule causes one or more new

sequents to be generated that moves the proof closer to completion.

In the proof of max_thrusters, the five steps are as follows:

. Rule: (skosimp*). This rule merely eliminates the outer universal quantifiers

(from the FORALL expression) and simplifies the result. This is a commonly used

command at the start of many proofs.

2. Rule: (expand "SAFER_control"). The cited function is expanded in place by

this rule, with all actual arguments propagated to their proper place.

3. Rule: (expand "selected_actuators"). Another case of function expansion is
used here.

. Rule: (use "only_one_tran_int"). One of the lemmas from the containing the-

ory is imported for later use. The lemma's variables are automatically instantiated

with terms that appear to be useful, which is easy to do in this case.

. Rule: (forward-chain "max_thrusters_sel"). Forward chaining is the appli-

cation of a lemma of the form P => Q when formula P appears in the antecedent

list. In this case, the whole sequent is actually an instance of the cited lemma, so

invoking the forward chain rule finishes off the proof immediately.

Proofs of the remaining lemmas were all carried out within PVS in a similar fashion.

Most required only a few steps. The exception was max_thrusters_sel, which required

a more elaborate proof because of the case analysis mentioned above. This proof con-

tained around 40 steps, resulting from several case splits and the subsequent equality

substitutions to use the facts generated by the case splitting.

NASA-GB-O01-97 225

C.4.2.2 PVS Proof of Maximum Thruster Property

max_thrusters :

I

{1} FORALL (a_in: avionics_inputs), (a_st: avionics_state):

length(prop_actuators(output(SAFER_control(a_in, a_st)))) <= 4

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,

this simplifies to:

max_thrusters :

I

{1} length(prop_actuators(output(SAFER_control(a_in!l, a_st!l)))) <= 4

Rule? (expand "SAFER_control")

Expanding the definition of SAFER_control,

this simplifies to:

max_thrusters :

I
{1} length(selected_actuators(grip_command(grip_command(a_in!l),

MODE

(HCM_switches(a_in!l))),

AAH_control_out(IRU_sensors(a_in!l),

prop_sensors(a_in!1),

AAH_state(a_st!l)),

AAH_state(a_st!l)))

<=4

Rule? (expand "selected_actuators")

Expanding the definition of selected_actuators,

this simplifies to:

max_thrusters :

I
{1} length

(selected_thrusters

(integrated_commands(grip_command(grip_command(a_in!l),

MODE

(HCM_switches(a_in!l))),

226 Appendix C

AAH_control_out(IRU_sensors(a_in!l),

prop_sensors(a_in!l),

AAH_state(a_st!l)),

AAH_state(a_st!l))))

<=4

Rule? (use "only_one_tran_int")

Using lemma only_one_tran_int,

this simplifies to:

max_thrusters :

"[-1}

I
[1]

only_one_tran(tran(integrated_commands(grip_command(grip_command(a_in!1),

MODE

(HCM_switches(a_in!l))),

AAH_control_out

(IRU_sensors(a_in!l),

prop_sensors(a_in!1),

AAH_state(a_st!l)),

AAH_state(a_st!l))))

length

(selectedthrusters

(integrated_commands(grip_command(grip_command(a_in!l),

MODE

(HCM_switches(a_in!l))),

AAH_control_out(IRU_sensors(a_in!l),

prop_sensors(a_in!1),

AAH_state(a_st!l)),

AAH_state(a_st!l))))

<=4

Rule? (forward-chain "max_thrusters_sel")

Forward chaining on max_thrusters_sel,

O.E.D.

Run time = 4.03 secs.

Real time = 73.92 secs.

NASA-GB-O01-97 227

Figure C.1: SAFER use by an EVA crewmember.

228 Appendix C

Figure C.2: Propulsion module structure and mechanisms.

NASA-GB-O01-97 229

I

Typical Thruster Designation:

-Number to left of dash denotes 8 schematic find number

(1 thru 24) and is used only for schematic purposes.
-Letters and numbers to right of dash denote the thruster

identification with the following characteristics:
• First letter indicates diroclicn of thrusler fome on SAFER

(U-Up, D-Down, B-Back, F-Forward, P-Pert, S-Starboard).

• Number Indic_os thruster quadrant (1-Upper Starboard,

2- Upper Port, 3,,Lower Starboard, 4-Lower Port).

• Second letter is used when necessary to distinguish

Forward (F) and Rear (R) thrusters lit dual thruster locations.

+pitch +roll

Figure C.3: SAFER thrusters and axes.

230 Appendix C

HAND CONTROLLER MODULE

OlBPLAY MOOE /---CONTROl_ MOOE SF_LECT B_IVITON

SWITCH --__

._--POWE_/TEST SWITCH

DIS{:__.Ay & CC_TROL L_IT_ I -

I _ "I II _-- AUTOkIAT IC ATT ITUOE

l _ _-- HAND CONTROLLER

DCI_ LOADL II_ITER AS_LY _ _-- HAND -COI_:rROLLER UN I_

Figure C.4: Hand controller module.

NASA-GB-O01-97 231

Figure C.5: Hand controller translational axes.

232 Appendix C

m

/
Aft C-x) 1

Roll _ight (-'_.o _L1)

Fore C-X)

P_tch Da,vn C-Pitch_

Figure C.6: Hand controller rotational axes.

NASA-GB-O01-97 233

A

m

L,

I|

D

%-.,

El

@

Figure C.7: SAFER system software architecture.

234 Appendix C

down

up

down

started

3 axes

off

up

down

timeout

up

3 axes

off

up

up

down

down

up

Figure C.8: AAH pushbutton state diagram.

