
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Summer 8-31-2005

An automata-based automatic verification environment An automata-based automatic verification environment

Yi Meng
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Meng, Yi, "An automata-based automatic verification environment" (2005). Dissertations. 731.
https://digitalcommons.njit.edu/dissertations/731

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/731?utm_source=digitalcommons.njit.edu%2Fdissertations%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

ΑN AUTOMATA-BASED AUTOMATIC VERIFICATION ENVIRONMENT

by
Vi Meng

With the continuing growth of computer systems including safety-critical computer control

systems, the need for reliable tools to help construct, analyze, and verify such systems also

continues to grow. The basic motivation of this work is to build such a formal verification

environment for computer-based systems.

An example of such a tool is the Design Oriented Verification and Evaluation

(DOVE) created by Australian Defense Science and Technology Organization. One of

the advantages of DOVE is that it combines ease of use provided by a graphical user

interface for describing specifications in the form of extended state machines with the rigor

of proving linear temporal logic properties in a robust theorem prover, Isabelle which was

developed at Cambridge University, UK, and TU Munich, Germany. Α different class of

examples is that of model checkers, such as SPIN and SMV. In this work, we describe

our technique to increase the utility of DOVE by extending it with the capability to build

systems by specifying components. This added utility is demonstrated with a concrete

example from a real project to study aspects of the control unit for an infusion pump being

built at the Walter Reid Army Institute of Research. Secondly, we provide a formulation of

linear temporal logic (LTL) in the theorem prover Isabelle. Next, we present a formalization

of a variation of the algorithm for translating LTL into Bϋchi automata. The original

translation algorithm is presented in Gerth et al and is the basis of model checkers such as

SPIN. We also provide a formal proof of the termination and correctness of this algorithm.

All definitions and proofs have been done fully formally within the generic theorem prover

Isabelle, which guarantees the rigor of our work and the reliability of the results obtained.

Finally, we introduce the automata theoretic framework for automatic verification as our

future works.

AN AUTOMATA-BASED AUTOMATIC VERIFICATION ENVIRONMENT

by
Vi Meng

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2005

Copyright © 2005 by Vi Meng

ALL RIGHTS RESERVED

APPROVAL PAGE

AN AUTOMATA-BASED AUTOMATIC VERIFICATION ENVIRONMENT

Vi Meng

Elsa L. Gunter, Dissertation Advisor 	 Date
Associate Professor of Computer Science Department, University of Illinois, Urbana -
Champaign

Narain Gehani, Committee Member 	 Date
Professor of Computer Science Department, New Jersey Institute of Technology

ιt 	 Member	 Date
Ρrofessor of compυter Science Department, New Jersey Institute of Technology

Marvin K. Nakayama, Committee Member	 Date
Associate Professor of Computer Science Department, New Jersey Institute of
Technology

Konrad Slind, Committee Member	 Date
Assistant Professor of School of Computing, University of Utah

BIOGRAPHICAL SKETCH

Author:	 Vi Meng

Degree:	 Doctor of Philosophy

Date:	 August 2005

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2005

• Bachelor of Science in Information Management and Information System,
Beijing Institute of Machinery, Beijing, China, 2001

Major:	 Computer Science

Presentations and Publications:

Elsa Gunter and Vi Meng, "Extending DOVE with Product Automata" in Proceedings of
Victor A. Carreńo and Cesar Α. Muńoz and Sοβέne Tahar's Theorem Proving in
Higher Order Logics, 15th International Conference, Hampton, VA, Supplemental
Proceedings TPHOLs 2002, August 2002.

Vi Meng, "Design Oriented Verification and Evaluation Extension", Presentation
at Theorem Proving in Higher Order Logics (TPHOLs), 15th International
Conference, Hampton, VA, August 2002.

iv

Το my parents, Lina and Xianchen

ν

ACKNOWLEDGMENT

I would like to take this opportunity to express my gratitude to a number of people without

whom I could never have completed this dissertation.

First of all, I sincerely thank my supervisor, Prof. Elsa L. Gunter. Without

her encouragement, advice, and support, I would have neither begun nor finished this

dissertation. I am deeply impressed with the thoroughness with which she read through

the submitted version of this dissertation in a matter of days, providing valuable comments

at a very detailed level.

I am also grateful to Prof. Narain Gehani, Prof. Ali Mili, Prof. Marc Q. Ma, Prof.

Marvin K. Nakayama, Prof. Konrad Slind, Prof. Mengchu Zhou for being in my PhD

proposal or dissertation committee and their contribution to this dissertation.

I also thank Dr. Ronald Kane, the Dean of Graduate Studies and Clarisa Gonzalez-

Lenahan, the Associate Director of Graduate Studies of New Jersey Institute of Technology

for helping me review this dissertation.

My thanks also goes to all the members of the Computer Science Department at the

New Jersey Institute of Technology, for making my study in NJIT very enjoyable.

vi

TABLE OF CONTENTS

Chapter

1 INTRODUCTION 	

	

1.1	 Motivation 	

	

1.2	 Overview of the Dissertation 	

2 FOUNDATIONS 	

Page

1

1

4

6

2.1 Preliminaries 	 6

2.1.1 Sets, Functions and Relations 	 6

2.1.2 Behavior 	 9

2.1.3 Linear Temporal Logic 	 13

2.1.4 Bϋchi Automata 	 15

2.2 DOVE 	 17

2.3 A Introduction to Isabelle 	 19

2.3.1 Higher Order Logic in Isabelle 	 20

2.3.2 Reasoning in Isabelle 	 24

2.3.3 Isabelle System and Interface 	 28

3 TECHNIQUES 	 29

3.1 System Modeling and Verification in DOVE 	 29

3.1.1 Safety Properties Verification using DOVE 	 29

3.1.2 Formal Definitions of Automata and Products 	 32

3.1.3 Extending DOVE with Products 	 40

3.1.4 Applications 	 43

3.2 Formulating LTL in Isabelle 	 51

3.2.1 Embedding LTL in Isabelle 	 51

3.2.2 Axiomatization of LTL 	 53

3.2.3 System Properties Specification using LTL 	 54

3.3 Formalizing the Translation of LTL Formulae to Bϋchi Automata 	 55

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.3.1 Translating LTL into Bϋchi Automata 	 56

3.3.2 Termination Proof of the Algorithm 	 62

3.3.3 Correctness Proof of the Algorithm 	 66

4 CONCLUSION AND OUTLOOK 	 80

4.1 Summary 	 80

4.2 Related Work 	 81

4.3 Future Work 	 83

APPENDIX A PROGRAMS 	 85

REFERENCES 	 86

viii

LIST OF TABLES

Table Page

2.1 Function Type and Description on nelist 	 10

2.2 Function Type and Description on behavior 	 11

2.3 Some Function Definitions on behavior. 	 12

2.4 Theorems About behavior	 13

2.5 Syntax of HOL 	 22

2.6 Grammar of HOL. 	 23

2.7 The HOL Rules. 	 25

2.8 Derived Rules for HOLD 	 26

2.9 More Derived Rules for HOLD. 	 27

3.1 Functions for Splitting LPL Formulae. 	 57

3.2 Proof Script for Base Case for Lemma 3.5. 	 79

ix

LIST OF FIGURES

Figure Page

2.1 A Βϋchi Automaton. 	 17

3.1 A simple plug monitor in DOVE 	 45

3.2 Property Proof in DOVE. 	 47

3.3 A Monitor for Checking Values in DOVE. 	 48

3.4 Product of P1ugln and Value Monitor 	 49

3.5 Property Proof in DOVE Prover. 	 49

3.6 Result of Topology in DOVE Prover. 	 50

3.7 Finished Proof. 	 50

3.8 The LTL Translation Algorithm. 	 59

3.9 The Modified LTL Translation Algorithm. 	 68

χ

CHAPTER 1

INTRODUCTION

This chapter provides an overview of this dissertation. We start with the motivation of our

work and proceed with presenting the main goal and desired results. It is followed by a

description of the outline of subsequent chapters.

1.1 Motivation

During the past two decades, the importance of computer-based systems has been growing

enormously. Computer-based systems are everywhere; airplanes, medical equipment,

banks, and so on, are all computerized. The reliability of such systems has become a big

issue in computer science. With the growth of their scale and functionality, the probability

to introduce design faults increases. Design faults can lead to expensive system errors.

Design faults of computerized systems can cause loss of time, money, or sometimes human

life. Thus, there is a clear need for reliable tools which can analyze the design of the

complicated computer systems for logical errors.

A major goal of software engineering is to enable developers to create high quality

systems. There are many approaches which aim to remove mistakes from software

development; one of the most promising one is formal methods [1, 2, 3, 4] . Formal methods

offer rigorous ways to model, design, and analyze systems by using specification and

verification techniques based on mathematical formalisms, such as logic [5], automata [6]

and graph theory [7]. By applying formal methods, we could reduce the number of

errors and hence be more confident that our systems do what they are supposed to do.

However, formal methods are not widely used mainly because of lack of user-friendly

and powerful tools. Such tools should be able to increase system quality and reliability

and simultaneously raising productivity. With these tools, all persons involved in a

1

2

software project should be able to do operations like developing and entering specifications,

debugging, checking consistency, refinement, verification and validation, simulation and

testing.

Two well-developed approaches to formal verification are model checking [8, 9, 10]

and theorem proving. Model checking is a model-based verification method. That means,

it's a technique to build a finite model of a system and check some desired properties hold

in that model. Proving the correctness of the system is thus performed as an exhaustive

state space search. Model checking is guaranteed to terminate since the model is finite.

There are two major paradigms to model checking. The first one is to give system

specifications in a temporal logic and describe the system as an extended state transition

system. Model checking is performed as a check of whether the given extended state

transition system is a model for the specification. The second way is to use automata to

describe both the system itself and system specification. Model checking is performed

by comparing the two automata to determine whether or not the system conforms to its

specification.

The advantage of model checking [11] over interactive theorem proving is that it

is largely automatic. It only require the user's effort in modeling the system, stating

the specification, and deciding what abstraction is needed, if any. Compared to other

verification methods, the user's part is rather small. Model checking provides useful

counterexamples when certain properties fail to hold. These counterexamples can be used

for system debugging. The main limitations of model checking are the state explosion

problems and the limited expressive power of the various temporal logics used in model

checking. Usually, model checking tools are restricted to finite-state systems with relatively

small state spaces. There are several strategies that attempt to reduce this problem, such

as use of Binary Decision Diagrams(BDD) [12, 13], Partial Order Reduction [14, 15],

Symmetry [16], Abstraction [17], and so on. In Chapter 3, we will present our attempt [18]

to reduce the state explosion problem via the introduction of modular reasoning. Prominent

3

model checking systems are, MV [19], SPIN [20], STOP [21], Maude [22], and Murphy

[23], etc.

Theorem proving is a technique where both the system and its desired properties are

expressed as formulas in some mathematical logic. It is the process of finding a proof of

a property from the axioms or rules of the logic. Although proofs can be constructed by

hand, we will only focus on machine-assisted theorem proving.

In contrast to model checking, theorem proving can deal directly with infinite

domains by using techniques like structural induction. Theorem proving can be done

either automatically or interactively with users. Recently, interactive theorem provers

based on higher-order logic have become more mature. The most popular theorem proving

verification tools are HOLD [24], Isabelle [25, 26], PVS [27, 28], and ACLU [29]. In our

works, we choose Isabelle as our platform because Isabelle is more generic, flexible and

more highly developed automation than HOLD and PVS. However, theorem proving is a

highly time consuming process and usually requires a great deal of expertise. Theorem

proving is a much slower process than model checking.

Model checkers and theorem provers can be used to classify different sources of

failure and perform the checks for logical faults in the system design, where the design fails

to guarantee the user requirements. Both model checking and theorem proving have their

advantages and their weaknesses [30, 31]. Therefore, we propose as a long-term project to

combine the complementary technologies of model checking and theorem proving methods

in some degree to benefit from the advantage of both techniques. This thesis presents the

first major steps in this project.

Our work is mainly motivated by the paucity of high quality, user friendly tools

for the formal verification of computer-based systems. The main goal of our work is to

improve the quality of certain tools used to preform the checks for design errors. We

improved the functionality of DOVE by adding the ability to compose Extended State

Machines as the product of constituent ESNs, after having preformed the theoretical work

4

to assure that it was a logically sound extension. We extended the class of problems that

can be handled by model checkers to include properties that distinguish between finite and

infinte behaviors. We improved the level of confidence that can be placed in LTL-based

model checkers using the LTL to Bϋchi automata translation algorithm, by having given

a rigorous proof of the algorithm underlying them. We use the theorem prover Isabelle,

which is a state-of-the-art interactive theorem prover for higher-order logic. Higher-order

logic theorem provers incorporate much automation, but at their core must be interactive,

because of the undecidability of higher-order logic.

1.2 Overview of the Dissertation

Chapter 2 presents some preliminary background from mathematics and some tools used

in our work. We start with an introduction to set theory, relations and functions. We

interpret linear temporal logic (LTL) [32] on both finite and infinite sequences. Behavior,

which is a disjoint sum of non-empty lists over an arbitrary type α and mapping functions

from the natural numbers to c, is defined to contain both finite and infinite sequences. Α

variant of Bϋchi automata [33] that is slightly different from traditional Bϋchi automata is

introduced with the ability to accept both finite and infinite words. The new Bϋchi automata

have separate accepting conditions for finite and infinite words. Two verification tools we

used in this work are also briefly described. Design Oriented Verification and Evaluation

(DOVE) [34] is a modeling and verification tool based on state machines. Isabelle [25]

is a generic theorem proving environment developed at Cambridge University and BTU

Munich. It allows us to express mathematical formulae in a formal language and prove

these formulae in a logical calculus.

Chapter 3 is a concise description of our approaches. We start with system modeling

and verification using DOVE and a method to address the state explosion problem in

DOVE. Then we introduce the formulation of LTL into Isabelle. Α variant of a widely

used model checking algorithm [35] for translating LTL formulae into Bϋchi automata is

5

also formulated in Isabelle. The termination and correctness proofs of the algorithm are

formally presented.

Chapter 4 concludes with a summary and pointers to further work and gives the

evaluation of our work; the advantages and weaknesses of our work are also given. We

consider that our approach in this work is a potentially practical method for software

verification.

CHAPTER 2

FOUNDATIONS

Software verification methods are based on mathematical principles [36, 37]. Thus, it is

necessary to introduce some mathematical material before we start our techniques. In this

chapter, we focused on the mathematical foundations of our work. We present the basic

concepts and theories that are used later in this thesis. Two modeling and verification tools,

DOVE and Isabelle, will be introduced briefly.

2.1 Preliminaries

2.1.1 Sets, Functions and Relations

Set theory [38, 39, 40] is one of the most important and fundamental concepts in modern

mathematics. It provides the basic language in which much other mathematics is expressed.

Set theory also plays a principle role in formal methods.

A set is a finite or infinite well-defined collection of objects. Sets in our work are

typed [41, 42]. Every element in a set has the same type. Traditionally, finite sets can be

defined by explicitly listing its elements between curly braces, e.g. { 1, 3, 5, 6}. Another

notation for sets is to give some restriction on the possible values of its elements, e.g. {x

x<8}. Two sets are equal if they have same elements.

A finite set is a set containing a finite number of elements. The cardinality of a finite

set Α is the number of elements it contains, denoted by Ι Α . A infinite set is a set containing

an infinite number of elements, e.g. the set of all natural numbers. One special set is the

empty set, denoted Ο, that does not contain any element. The cardinally of the empty set

is 0. The empty set seems trivial, but it is a very important element in set theory.

6

7

If a set Α contains an element x, we say x is belong to the set A, i.e. x Ε A. If x is

not an element of the set A, then x does not belong to set A, i.e. x Α. So, for example,

If every element in the set Α it is also an element of the set B, then Α is said to be

a subset of B, written Α C B. From the definition of the subset, we know that Α = B if

and only if A C B and B C A. If Α is a subset of B and Α B, then Α is a proper subset

of B, written Α C B. For example, if Α = {1, 3, 5, 6} and B = {1, 5, 6}, then we have

B C A. In fact, we also have B C Α because B Α. Notice that, for all sets A, ί C Α

and Α C Α.

Several operations to construct new sets can be performed on existing sets. The

intersection of two sets Α and B, written as Α Π B, is the set that consists all elements

occurring in both sets. For example, if A = {1, 3, 5, 6} and B = {1, 5, 6}, then Α Π B =

{1, 5, 6}. If two sets do not share any elements, then their intersection is empty and Α and

B are said to be disjoint. Some basic properties of intersections are, Α Π B = B Π A,

The union of two sets Α and B, denoted by AU B, is the set that contains all elements

occurring in either set. For example, if A = {1, 3, 5, 6} and B = {4, 7, 8}, then A U B =

{1, 3, 4, 5, 6, 7, 8}. Some basic properties of union are,

The difference of two sets A and B, denoted by Α — B, is the set that contains

all elements occurring in set A but not in set B. For example, if Α = {1, 3, 5, 6} and

The power set of a set A, denoted Powered), is the

set of all subsets of A, including Α itself. For example, Power]

An ordered pair is a collection of two elements such that one can be distinguished

as the first element and the other as the second element. Two ordered pairs are equal

if and only if their first elements are equal and their second elements are also equal. The

Cartesian product of two sets Α and B, denoted by Ax B, is the set of ordered pairs whose

first element is an member of Α and whose second element is an member of B. For example,

if A = {Κο , a 1 } and Β = {b0 , b 1 }, then A x Β = {(aο , b0), (aο , b 1), (a1, b0), (a1, b 1)}. We

can extend the definition of Cartesian product more generally to sets of ordered n-tuples

for any positive integer n by repeatly apply Cartesian product for two sets.

Α relation of arity n is a set of n-tuples over a collection of domains. Each n-tuple

contains exactly n ordered elements. Α binary relation is a special case of relation where

n is set to be 2. Α binary relation is a set of ordered pairs. The well-known relation "<" is

an example of a binary relation.

The converse of a relation R, denoted by R-1 ,

The composition operator o of two relations is define ,

The transitive closure of a binary relation R, written as R*, is defined

as follows: if there exists a sequence zο , ... , zn such that (zi , zZ+ι) Ε R for Ο < i < n, with

zo = x and zn = y , then we say (x, y) Ε R*.

Α function of arity n can be defined as a relation of arity n + 1, where the first n

elements uniquely determines the value of the (n + 1)st elements. The terms "function" and

"mapping" are usually used synonymously. The set of input values of a function f is called

the domain of f, and the set of possible output values, is called the codomain. The image

of f is the set of all actual outputs. Notice that the codomain and image are distinguished

by possible and actual values.

Α function can be injective, surjective and bijective. A function f is said to be

injective (one-to-one) if and only if for two members x 1 and x2 in the domain of f, f (x 1) _
A function f is surjective (onto) if and only if for each element y in

the codomain of f, there exists an element x in the domain of f such that

function is said to be bijective if and only if it is both injective and surjective.

9

2.1.2 Behavior

In this section, we introduce an approach behavior for presenting both finite and infinite

sequences. Α similar data structure is mentioned previously by Chou and Peled [14].

Behavior will later be used as a sequence on which to interpret LTL. 	.

Behavior is the theory of a new type (α)behavior, which is defined as the disjoint

sum of finite non-empty lists ((α)nelist) over an arbitrary type α and functions of type

(flat ct), where nat is the domain of natural numbers and α is a codomain of arbitrary

type, FinBe and InfBe are constructors for the disjoint union:

The reason for having a unified type of both finite and infinite sequences is that some

system behaviors can be either finite or infinite, depending on the context, and some system

operations are more easily defined on behavior than they could be on other types.

The type of non-empty lists over a given type has already been defined in Isabelle and

used by the DOVE system to interpret LTL [34,43]. Elements of the type of non-empty lists

are either singleton elements from the underlying type, or sequences formed by adjoining

a new element to the head of an existing non-empty list.

Some basic operations to manipulate nelist are listed in Table

We also need some basic operations to manipulate behavior. The types and

definitions of the basic operations on behavior are described in Table 2.2 and Table 2.3:

10

11

12

13

The successor function Suc takes a natural number n and returns the natural number

n + 1. The function the takes a variable of option type and returns the value of the variable,

if there is one, and returns an unknown element of the correct type otherwise. In total,

about 25 functions are defined and 68 theorems are proved in the theorem prover Isabelle

on behavior. We do not list them all here because of the space constraints. Some examples

of principle rules about behavior are given as follow in Table 2.4. We do not provide the

proof for these theorems also because of the space constraints.

2.1.3 Linear Temporal Logic

Linear Temporal Logic(LTL), introduced by Pnueli in 1977 [32, 44, 45], is one of the most

popular specification formalisms for reasoning about reactive and concurrent systems. LTL

is now commonly used in the area of formal verification, particularly in conjunction with

model checking. It is often used to specify properties of interleaving sequences, and model

the executions of a program. In this work, LTL is defined on top of propositional logic.

Given a propositional logic P, the syntax of LTL is as follows:

The first line in the semantics definition states that a formula from the propositional

logic is interpreted in the first state of the behavior. The next three lines are the

interpretations of Boolean operators negation, conjunction, and disjunction.

The operator Q is called next. The formula Ο holds in a behavior σ when σ is not

a singleton and the suffix of σ starting from the second member satisfies φ. The operator

Qφ, called weaknext, is a weak version of Οφ. Where Qcφ means there is a next state

15

and the suffix starting from the next state satisfies φ , Εφ means either there is no next

state, or the suffix starting from the next state satisfies φ. Notice we have that

The operator U is called until. The formula U ψ holds when φ holds until

some point where ψ holds. The operator eventually is a special case of until, i.e.,

Οφ = true U φ. The operator V is called release. The formula V ψ holds in a behavior

σ if either ψ holds for all suffixes of σ, or ψ holds until some suffix of σ where both φ and

hold. always is a special case of release, i.e., ❑φ = false V φ. Also, ψ = ψ if and

only if for all σ, σ 	 φ if and only if σ = ψ. A recursive equations about U is useful for

The formula Οφ eventually holds in a behavior σ if there is a suffix of σ where φ

holds. The formula ❑ gyp always holds in a behavior σ when all the suffixes of σ satisfy

φ . The operators eventually and always may be treated as syntactic sugar, or equally well

as derived constructs, using the until (U) and release (V) operators and the equivalences

In a similar fashion, we may eliminate all applications of negation except to the base

propositions. That is, we may consider all formulae to be in negation normal form, and

negation of general formulae to be a derived construct, defined using the LPL equivalences

2.1.4 Bauchi Automata

Automata theory [6] is widely used in many fields in computer science. It has been

successfully applied into the domain of specification and verification of computer systems.

Finite automata are basically state machines over finite transition systems. Finite

automata over infinite words, i.e. automata, can be used to describe the behavior of a

16

system. Also, the system properties can be described using w-automata or translated into

w-automata from other formalisms. Automatic verification can be performed using some

graph algorithms if both the checked systems and their properties are described using the

same graph representations.

One of the simplest classes of w-automata over infinite words is that of Βϋchi

automata [33]. Usually, automata have labels on their transitions rather than on their states

and have only one set of accepting states. In this work, we describe a variant, where labels

are defined on states and two sets of accepting states are given. A Bϋchi automaton is a

An execution ρ of A is a finite or infinite behavior over S, p: behavior = S such

that

• (behd p) Ε I. The first state is an initial state.

• For all i > 0, moving from the ith state in the execution to the ill st state is consistent

with the transition relation Δ, i.e., (behd(benthsuffix i ρ), behd(benthsuffix (i +1)

ρ))ΕΔ.

17

Τ at ότι Γ η) Κα Atha cat if states that appear infinitely often Αη the execution η where

state that appears in p infinitely often. A finite execution p of a Βϋchi automaton Α is

accepting when beast ρ Ε F. A finite word of A, v = (A0 , ν ι , A2 , ... , ντ), is accepted by Α

if and only of there exists a finite accepting execution ρ = (s0 , s 1 ... , sn) and Ai Ε L(si)

for all Ο < i < n. A infinite word, v = (A0 , A 1 , A2 , ...) Ε K ', is accepted by Α if and only

if there exists an infinite accepting execution p such that AA Ε L(s) for all i > Ο where

sib is the element in p. The language L(A) C KW of a Bϋchi automaton Α consists

of all the words accepted by A. For the automaton in Figure 2.1 over K = {oil, β, 7}, we

have S = {so , s 1 , 8 2 }, I = {s0 }, Δ = {{s o , s 2 }, {s^, S i }, {S i , 8 2 }, {s 2 , s2 }}. An execution

must start with state so since it is the only initial node. An transition from a state to another

must follow the transition relation Δ. A word ccβ·χ is accepted by the automaton. This

is because there exists an execution sosos1s2 that accepts the word, Ε I and s 2 Ε F.

The language of the automaton in Figure 2.1 can be denoted using the regular language

expression α+βγ+ when extended to denote both finite and infinite words.

Design Oriented Verification and Evaluation(DOVE) [34] was designed by the Australian

Defense Science and Technology Organization under the direction of Tony Cant. It

18

is primarily a tool for producing high-assurance system designs. It provides tools for

constructing, presenting and reasoning about formal design models. DOVE is built in layers

with a graphical user interface that is used for constructing and examine the design-models,

and an underlying layer using the theorem prover Isabelle. The graphical interface of

DOVE is written using Tcl/Tk [46] script language.

Design assurance in DOVE consists of three components: modeling, animation,

and verification. The modeling component allow users to describe real-world system in

DOVE. Animation is the activity of simulating a design model and checking its behavior.

Verification is the process of proving the design model meets its requirements. Verification

is a very effective way to provide design assurance and discover design errors.

DOVE uses a state-machine mechanism to model the specification of system

behavior. A state machine in DOVE introduces the notion of memory at each state, which is

updated by each consecutive transition which describes how to evolve the memory between

states. The state machine graph consists of nodes and edges which represent states and

transitions. There must be at least one node in the state machine and exactly one node

defined as the initial state. Each transition has three parts: Let, Guard and Act. The Let

part is used to simplify the other two parts of the transition definition. The transition is

only performed if the guard is satisfied in the current memory. The Act, referring to action,

defines how the memory is changed by the transition.

Three components are used for state machine designs. The editor provides a

graphical interface for constructing state machine designs. The transition graph of a state

machine is built by laying nodes and edges on a grid. Nodes and edges can also be moved,

modified, or deleted by user. Relations between transition edges and state nodes are also

created during the state machine design. The graph layout provided by the editor is very

useful for the user to comprehend and analyze the system design. In the animator, the user

can do certain simulations and experiments about the system. Animation in DOVE begins

by setting initial values for the heap variables, and then is carried out by clicking edges of

19

the state machine graph and calculating new values for the heap variables in accordance

with the corresponding transition definitions. This symbolic feature provides a useful way

to check whether all variables are updated as expected and whether the transition, which

is protected by the guard definition, is performed correctly. Thus, animation can be used

as a system validation tool. By using it, we can increase our confidence for the system

design. However, the animation only gives a simple assurance of correctness of the design

of the state machine. Α higher level of assurance can be gained by proving whether the

design satisfies given requirements. The prover is able to formally verify the properties

of state machine designs. Requirements of the system are expressed in a formal language,

which is designed to support the description of system behaviors. The prover checks these

properties against the system state machines. The state machine graph is used to give the

user visual feedback about the current proof state.

Verification in DOVE provides powerful facilities to express properties and to prove

the system satisfies system requirements. The system requirements must be translated from

informal natural language into a particular version of temporal logic supported by DOVE.

DOVE then provides a collection of proof rules and tactics specialized for proving these

temporal logic properties.

One of the advantages of DOVE is that it combines the ease of use provided by a

graphical user interface for describing specifications in the form of extended state machines

with the rigor of proving temporal logic properties in a robust theorem prover. We will

provide more details about DOVE in Chapter 3.

2.3 Α Introduction to Isabelle

Isabelle [36, 47, 48] is an interactive theorem prover being developed at Cambridge

University, UK, and BTU Munich, Germany. It allows mathematical formulas to be

expressed in a formal language and provides tools for proving formulas in a logical

calculus. Isabelle is used in a broad range of applications: proof of the correctness of

20

computer hardware and software, properties proof of computer languages and protocols,

formalising mathematics, program development.

Isabelle is a generic theorem prover. That means it is more flexible than other similar

tools. Most other proof assistants are built around a single formal calculus. Isabelle

family embraces various logics. It represents rules as propositions and builds proofs by

combining rules. These operations constitute a meta-logic in which the object-logics

are formalized. It provides useful proof procedures for Constructive Type Theory [49],

various first-order logics [50], Zermelo-Fraenkel set theory [51], and higher-order logic of

computable functions [52]. Some logics are constructive, and some are classical. Some

are based on sets, some are on types and functions and domains. This big family is not

static. Some logics are added in, some become more mature, some are disappearing. In

this work, we use Isabelle's, which is the specialization of Isabelle for Higher-Order

Logic (HOLD) [53].

2.3.1 Higher Order Logic in Isabelle

Isabelle has a meta-logic, which is a part of higher order logic. Formulae in the meta logic

are built using only implication >, universal quantification Λ and equality -. Other

object-logics, such as first-order logics, Zermelo-Fraenkel set theory, and higher-order

logic, are all formalized within Isabelle meta-logic.

Here we will concentrate on higher-order logic (HOLD) [54]. HOLD uses the typed

calculus [5] and functional programming [55, 56] as bases. Functions are curried by

default. The symbol % is used to represent λ-abstraction. To apply the function f of type

^l Τ2 = τ3 to two arguments a and b, we write f a b. Therefore, for example, a function

equiv to test if two natural numbers are equal can be declared as equip :: " [neat, neat] =
boil" and defined as equiv_def f : "equip a b == (a = b)" .

Isabelle logics are hierarchies of theories. The root is the Pure theory, which

implements the meta-logic. It provides all concepts and operations used in all object-logics.

21

Working with Isabelle is a procedure of defining theories. Each theory is like a module that

contains types, terms, formulae, theorems, tactics, proof commands, etc. A new theory can

be defined on existing theories along with its new declarations, definitions and proofs.

The types include basic types, function types and types built using type constructors.

The type of truth values biit and the type of natural numbers neat are examples of basic

types. Function types can be presented using = , e.g. τι τ2 = τ3 . Note that the =

associates to the right. Α postbox type constructor can be used to build a new type using

existing types. For example, we can build a list of natural number by (nal)list. Α new

datatype can be defined using the form:

where C. are distinct constructor names, t is the type constructor, c are distinct type

variables and τΑ are types.

The terms are those terms from the typed λ-calculus. They are embedded in the

syntax of object-logics. If f is a function of type Τι = τ2 and τ is a term of type τι then

f x is a term of type τ2. Terms in Isabelle's are strongly typed. If a type mismatch is

found, Isabelle will print an error message.

The formulae are terms of type biit. Formulae can be constructed from basic

constants True and False using logical connectives: Λ, V, and --i. Note that Λ, V,

and —* all associate to the right. Equality can be expressed by the infix function = of type

αα bail. In formulae x = y, x and y have to be terms of the same type. Quantifiers

are written as Ex. P and]χ. P. Nested quantifications are written as Ex y z. P. The syntax

and grammar of HOLD are presented in Table 2.5 and Table 2.6. Isabelle HOLD combines

aspects of all the other object-logics. It is too large for us to present the whole detail of

HOLD here. More details about HOLD in Isabelle can be found in [24].

22

23

24

2.3.2 Reasoning in Isabelle

Isabelle proof mechanism is based on natural deduction [57, 58]. Every goal consists of

B. Now we introduce some basic methods that Isabelle uses to work on the above goal

g. In Isabelle, theorems and inference rules all have the same syntax. The method rule

unifies B with the current subgoals, replacing it by n new subgoals,

method erule unifies B with current subgoal and unifies the first assumption Α 1 with some

assumption. The method erule deletes an assumption and replaces the subgoals with n — 1

new subgoals. The method erule is often used for elimination rules. Method drule unifies

the first assumption Α 1 with some assumption and deletes it. The subgoals is replaced by

the n — 1 subgoals of Α2i ...; Α,, and a nth subgoal with an instantiation of Β. The method

drule is usually used for destruction rules. The method frule is like drule but it will keep the

matching assumption Α 1 in the assumption list. Proofs are contracted using introduction,

elimination and other inference rules.

Introduction rules. An introduction rule can be used to introduce a logical

connective in a formula containing a specific logical symbol. For example, the disjunction

introduction rule says that if we have P or we have Q then we have P V Q. As inference

rules:

The rule introduces the disjunction symbol) in its conclusion. We are mainly dealing

with backwards proof in Isabelle. So when we apply this rule, the subgoal already has the

form of a disjunction; the proof step will make the disjunction disappear. We only need

to prove P or Q in next step. To apply an introduction rule, we simple need to use the

command rule or rule Jac, e.g., apply (rule disj11). Two disjunction introduction rules are

defined in Isabelle:

25

Elimination rules. Elimination rules work in the opposite way from introduction rules.

They describe how to destruct logical symbols in a formula. For example, the conjunction

elimination rule says if we have P Λ Q and from P and Q we can conclude R, then we

have R The rule is ας fnllnwς

The rule eliminates the conjunction symbols) in its conclusion replacing it with the two

new hypotheses of P and Q separately. To apply elimination rules, we use the command

erule or erule_icic. The conjunction elimination rule is defined in Isabelle as:

In Isabelle, there are also some other kinds of rules: destruction, unification and

substitution, quantifiers, etc. Some basic Inference rules in HOLD are listed in Table 2.7,

Table 2.8 and Table 2.9

Table 2.7 The HOLD Rules.

Table 2.8 Derived Rules for HOLD.

26

Table 2.9 More Derived Rules for HOLD.

27

28

2.3.3 Isabelle System and Interface

Isabelle is implemented in ML [55]. The standard user interface is shell-based. But Isabelle

also provide a friendly Emacs-based Proof General [59] interface. We used the Proof

General interface in this work.

Isabelle is an interactive theorem prover. Thus, unlike automatic theorem provers,

Isabelle is directed by the user during a proof. After starting a goal, the user directs Isabelle

by some operations on the goal, called tactics at each step. Isabelle provides various kinds

of tactics for rewriting, simplification, resolution, assumption, induction and so on. By

using the tactics, the user tries to solve the goal. Tactics may lead to subgoals. After

solving all the subgoals, the user has a formal proof of the goal. Once a theorem has been

proved it becomes a derived rule of inference for use with tactics in proving new theorems.

Isabelle provides good notational support. New notations can be introduced using

normal mathematical symbols. Proofs can be written in a structured notation based upon

traditional proof style, or more straightforwardly as sequences of commands. Definitions

and proofs may include TeX source, from which Isabelle can automatically generate typeset

documents.

Isabelle has also proven useful for doing large proofs, having many tools that allow

the automation of difficult and tedious details. Thus it is particularly suitable for embedding

other formalisms and developing verification systems.

CHAPTER 3

TECHNIQUES

This chapter presents our main approaches. We start with a description of system modeling

and verification in DOVE and the method to address the state explosion problem. In the

second part, we will talk about a formulation of Linear Temporal Logic in Isabelle [60].

Finally, we describe the automatic verification framework and an application using our

approaches.

3.1 System Modeling and Verification in DOVE

The DOVE tool is used to provide support for high-level system modeling, design,

and formal reasoning about state machine design for computer-based systems. We will

introduce safety properties [61] verification using DOVE and discuss how DOVE is

extended with product automata [18].

3.1.1 Safety Properties Verification using DOVE

DOVE comprises three main components: the graphical editor for drawing state machines

as specifications of systems, the animator for exploring various execution paths, and a

prover, built on Isabelle, for verifying temporal logic properties of state machines.

State machine definitions have two parts: a topology or state transition diagram part

and a transition definition part. The presence of a transition between two states in the

diagram indicates the possibility that the state machine may undergo a transition between

them. The definition of the transition determines if, and how, such a transition can occur.

The Edit Mode is used to specify state machine designs by providing the means for laying

out the state transition graph of a machine; declaring types, constants, variables and inputs;

defining the associated transitions; and checking occurrences of variables, e.g. variables

29

30

declared and not used, or identifiers used and not declared. The ability to model a system

using the graphical editor substantially speeds up the process and increases the confidence

level, when compared to describing the system as expressions in a language.

The Animation Mode is used to observe how variables and terms evolve during

execution of the state machine. The basis of animation is the animation path, which is

a path in the transition graph of the machine. Animations are carried out using the graph by

selecting a final or initial node, proceeding through intermediate edges via back substitution

or forward animation and finishing at some initial or final state. The ability to explore

sample executions through animation helps the user to deepen his understanding of the

state machine and to do a limited degree of testing. The highest degree of assurance is

provided by stating and proving the needed properties of the system using the prover.

Proof Mode provides the means for defining, editing and browsing machine properties,

including a check of the consistency of properties with different versions of machine

specifications, and interactively proving a property. Once a state machine definition has

been saved, all its transitions are translated into definitions in Isabelle automatically and a

proof can be commenced.

In DOVE, only safety properties can be checked. A safety property asserts the

absence of undesirable states, i.e., no bad things happened so far. For this reason,

the behaviour of the state machine is interpreted finite sequences of configurations. A

past fashion temporal logic is used as the language of system properties. The syntax of the

temporal logic is defined datatypes of temporal formulae as follows:

31

The stated and transition are the Isabelle types of states and transitions. The

input and heaped are the types of various input variables and heap variables. Then the

overall configuration type is then defined to be the cross product of the four component

types.

32

3.1.2 Formal Definitions of Automata and Products

Before introducing the method to extend DOVE, we will give a formal definition in higher-

order logic of the type of the extended state automata used in DOVE, their semantics of

execution, and how we extend this with product automata.

Extended State Machines Informally, an extended state machine (or automaton) is a

duple of a set of states, a set of labeled transitions, and an initial state. In DOVE, the states

are augmented with memory when executed. A transition is a directed edge between a pair

of states coupled with a guarded action to be committed when that transition is executed.

The transition may be executed only in the case that the guard holds in the memory of

the originating state of the transition, and in which case the action yields the memory of

the terminating state. Memory is an association of values to variables. The guards are

expressed as propositions over the variables in the memory, and the actions are expressed

as assignments of values to those variables.

This notion for state machine is similar to those discussed in the literature, and a

typical example can be found in Chapter 4 of [62]. One way in which DOVE extends this

notion is by separating the variables into two categories, which in DOVE are referred to as

input variables and heap variables. Input variables are read-only in that no transition may

alter their values. Their values are considered to be supplied by the environment. As such,

when defining an execution, we must assume that their values may change at any point

during a sequence of transitions. While this is manifest in the proof rules in Isabelle for

proving temporal formulas for state machines defined in DOVE, it is a subtle point which

complicates the definition of an execution and warrants highlighting.

When users define a state machine in DOVE, they do so using a graphical user

interface. This is used to generate a description in Isabelle of the extended state machine

and properties that the user wishes to prove. This description of the extended state machines

in Isabelle is a shallow embedding in the sense that the variables of the extended state

33

machine are modeled as variables of Isabelle, as opposed to introducing a separate syntax

for variables. Such a lightweight embedding is advantageous when the goal is exclusively

proving properties in the model. However, it limits the ability to express meta-properties

in the logic, such as stating what an extended state machine is, or what the product of two

extended state machines is. Therefore, in this section, we will adopt a deeper embedding.

The definition we will give has been rendered in higher-order logic. However, as in the

informal description above, it is desirable to express things using set-theoretic notation. In

all formal definitions below, such set-theoretic notations should be interpreted as using a

standard rendering of naive set theory in higher-order logic, such as one given by sets as

predicates.

In attempting to formally define what an extended state machine is, we have to decide

how to represent the writable variables versus the read-only variables. Our ultimate goal

is to define a product for composing automata, and in such a composition variables which

may be read-only in one component may need to be writable in some other. Therefore, we

will represent these two classes of variables as disjoint subsets of a single type of variables.

For our purposes, the precise type used for representing variables does not matter, so we

will use a type variable for this, allowing it later to be specialized to integers or strings or

perhaps some other complex structures. Having made this choice, we will need to be able to

express the requirement on transitions that they only involve the variables associated with

the particular extended state machine. We will capture this notion of restricted dependence

by the following definitions:

That is, two functions are the same on given domain if they have the same values on all

elements of that domain.

34

Α function on functions only depends on a subset s if it always returns the same value

when applied to functions that are the same on s. The motivation for this definition is that

our memories are functions assigning values to variables, but the guards and actions are

only allowed to depend on that part of the memory that corresponds to the writable and

read-only variables.

Α transition is well-formed with respect to a set of writable variables and a set of

read-only variables provided that the guard depends only on the union of the writable and

the read-only variables, the action depends only on the writable variables, and the action

does not assign any new values to the non-writable variables.

We are now in a position to give a formal definition of an extended state machine:

35

Α duple of states, transitions, writable variables, read-only variables, initial state, and initial

condition is a state machine if

• the writable variables and the read-only variables are disjoint,

• the transitions are well-formed with respect to the writable and read-only variables,

• the start and end states of each transition are among the states of the machine,

• transitions with the same label have the same guarded actions,

• the initial state is one of the states of the machine,

• the initial condition only depends on the writable variables.

Execution Up to now we have defined what it means to be an extended state machine;

we have in effect described its syntax. We are still left with describing how to execute an

extended state machine; that is we are left with describing its semantics. The semantics

of an extended state machine is the set of all it executions. So what is an execution?

Informally, it is a sequence of moves through the state machine starting from a memory that

satisfies the initial condition of the state machine, and then follows consecutive transitions.

More formally, an execution is a pair of an initial memory and a sequence of pairs of

transitions and resulting memories, where the start state of each transition is the end state

of the previous transition. However, this is not a complete description. We need to be more

precise about what we mean by resulting memories and enabled by the previous memory.

DOVE is only capable of dealing with properties that are provable in finite time

(safety properties), so we will use lists for sequences. It would not be fundamentally

different if we extended to both finite and infinite sequences.

For the sake of readability, we shall make a couple of short definitions.

36

The last state in a list of pairs of labeled transitions and memories is the initial state if the

list is empty, and otherwise is the end state of the transition at the head of the list.

(Iast_memory initial_memory [] = initial_memory) Λ

The last memory in a list of pairs of labeled transitions and memories is the initial memory

(for the intended execution) if the list is empty, and otherwise is the memory at the head of

the list.

An execution in an extended state machine starting from an initial memory is a list of

pairs of labeled transitions from the extended state machine and memories such that either

the list is empty or

• the tail of the list is an execution

• the last state of the tail of the execution is the start state of the next transition

• the guard is enabled in some memory that is the same as the previous end memory

on the writable variables (we allow the read-only variables to change) and in that

memory we execute the action to acquire the new memory.

executions (statues, transitions, writable_vars, read_only_vars,

initial_state, initial_cinditiin) initial_memory con f fig_list =

ίs_esm(states, transitions, writable_vars, read_only_vars,

initial _states, initial_cinditiin) Λ

initial_condition initial_memory Λ

37

We do not intend to go into the details of the particular temporal logic used in DOVE

in this work, but briefly a state machine is said to satisfy a given temporal logic formula

provided every sequence of memories derived from the executions of the state machine

satisfies the formula.

Product Automata Having defined the syntax and semantics of extended state machines,

we are in a position to give the definition of the product of two state machines. Using the

labels on the transitions, our product will allow synchronization of transitions having the

same label. The states of the product is the subset of the product of the states that occurs

in the set of transitions of the product (together with the product of the two initial states,

if it is not already there). The transitions are effectively the merging of those transitions

from the two automata that have the same label, pinioned with the remaining transitions

lifted to the product states. The writable variables are just the union of each set of writable

38

variables. The readable variables are the union of each set of readable variables, minus any

that are in the union of the writable variables. The variables that are in the intersection of

the union of the writable variables and the union of the readable variables are those that

are communicating values between the automata. The initial state is just the product of the

two original initial states, and the initial condition is the intersection of the original initial

conditions.

Τ 'f t1-" of ι try 	 fι'ι'c hρΡ i1- 0 ctorf cfQf , ιιιi itch ρΡr1ι^inπΡ Qt1t

The product is defined as

39

It follows from this definition that the product of two extended state machines is again an

extended state machine, provided their writable variables are disjoint. Note that if the

writable variables of the first automaton are disjoint from the second automaton, then

ιι 1 o a2 = a2 o al(for all a l and a2 in the definition of the transitions in the product

automaton above). Therefore, the product of two automata in one order is isomorphic

to the product in the other order.

Given an execution sequence, we can project that execution sequence to an execution

sequences of each of the component automata.

We can prove that if a given initial memory and sequence of transition-memory

pairs is an execution of the product automaton, then the same initial memory together

with the projection of that sequence is an execution of the corresponding component

automaton. Therefore, for every sequence of memories derived from an execution in the

product automaton, there exists an almost identical sequence of memories derivable from

a sequence in the component automaton. (The original sequence may have additional

memories that are the same as their immediate predecessors in the sequence on the

writable variables of the component automaton.) Therefore, for an appropriate class of

temporal logic formulae (those that only involve the writable variables of the component

automaton, and are stuttering invariant), if a formula holds of the component automaton,

it automatically also holds of the product automaton. It is our hope in future work on this

system to be able to incorporate into DOVE an ability to automatically transfer appropriate

theorems from component automata to the corresponding product automata.

40

3.1.3 Extending DOVE with Products

In the previous section we described the mathematics of the product of two automata.

In this section we will discuss our method of implementing the construction of product

automata as an extension to DOVE. Our current approach is to add an external tool that can

parse files produced by DOVE, analyze the contents of those files to determine the details

of the component automata to be composed, construct the product automaton, determine

layout information for it, and finally output all this information into a new file that can be

input into DOVE.

In the course of a DOVE session, various local files are created, such as an smg file,

a thy file, an kw file, etc. The smg file, which stands for state machine graph file (for

example, plugin.smg), contains all of the information required to describe the extended

state machine. This file includes not only the construction and layout information about

the state machine graph, but also the information to define variables, state conditions and

transitions between states.

An smg file is a sequence of lines, each beginning with a keyword, followed by data

relevant to the item being added. Firstly, the smg file gives some preferences for the display

of the state machine. The global variable grid tells us the canvas is gridded by being set

to 1, and not gridded by being set to 0. The variable SetGridSize says the size of the grid.

The nodes in the smg file are defined using the keyword file RestoreNode followed

by the node number, node coordinates and node name. For example, in the plugin state

machine graph file, we define theWait state by

The node number of Wait is 0 and it is located at (20.0, 10.0). The edges in the plugin

smg file are created by the keyword RestoreEdge followed by the edge number, the number

of the starting node, the number of the ending node, their directions, some coordinates it

41

travels through, and the location of the label and its name. For example, the edge Plugin in

the plugging smg file is defined as follows:

In this example, its edge number is 0, it comes out from the north of the node 0 and

goes into the south of node 1, its label, Plugin, is at (20.0, 13.0), and it travels through the

path of [(20.0, 11.0), (20.0, 12.0), (20.0, 13.0), (20.0, 14.0), (20.0, 15.0)].

The smg file gives two kinds of variables: heap variables and input variables. The

heap variables are defined using the keyword dvd_def. It is followed by information about

their names, types, status and some comments on them. Also we define input variables by

dtr_defs followed by the same information as the heap variables.

As for the definition of the transitions, the smg file use dtr_defs. It gives a list of

all the transitions followed by details of individual transitions. These details include the

comments, status and the content of the transitions. The content of a transition has guard

and act definitions in it.

The smg file also should have an initial state which is defined by the variable

di_startState. The initial condition is given by setting the variable di_predicate. Moreover,

we can add some comments on the initial state by di_description.

In addition, the smg file contains some optional information about the extended state

machine. For example, if the state machine has been checked and there are no syntax errors,

the variable dchksmgChecked is set to be 0, otherwise it equals 1.

From all the information above, we already know enough information to construct

the state machine. Any modifications of the smg file will directly change the state machine

in DOVE. By creating a new smg file, we can generate a new extended state machine

without starting up the DOVE. We can construct the extended state machine which is the

42

composition of more than one component in one model without the need to interact with

DOVE.

Using the above information, we parse the smg files of component automata to extract

information to reconstruct the automata. From this, we build the product automaton. For

this, we follow quite closely the mathematical description given in the previous section.

The code was written in SML [55], a functional programming language similar to the typed

lambda calculus. SML data types and functions are used to compute the constructions

previously given as mathematical formulas. After constructing the product, we still need to

generate layout information before we can generate a smg file to add the product automaton

to DOVE.

In DOVE, layout information is generated from interactions with the user. The user

places nodes at various locations on the drawing canvas and draws edges between the

various nodes, indicating curvature by the path of the mouse. The layouts may be altered

by clicking and dragging the various entities to be changed. DOVE does some work to

generate a decent presentation of the graph, but the basic layout information comes from the

user. When we automatically generate the product automata, we must also automatically

generate some positioning for the components; to make the user generate this information

would be almost tantamount to making the user create the product in the first place. To

generate this information, we make use of the graph visualization tool dot [63]. Dot is

applied to a file that lists the nodes and edges of a directed graph, together with any desired

labeling of the nodes and edges, and the desired shape (and color) of the nodes. For each

node, dot adds the size (height and width) of the circle and the position of its center. Each

edge is extended with path information, consisting of the position and direction of the

terminating arrowhead follow by a sequence of coordinates that the edge will pass through,

and the coordinates of the left edge of the label.

We must parse the information returned from dot and combine it with the non-

graphical information for the product automaton. Also, the graphical information produced

43

by dot is not completely suitable for directly inputting into an smg file. We need to

perform scaling, and better layouts seem to be given by thinning the points for layout of the

transitions. Once we adjust the information from dot and combine it with the non-graphical

information, we can finally produce an smg file that describes the product automaton to

DOVE. Once this file exists, the user can start up DOVE with it, and proceed to state and

prove properties about it.

We began this project because we were attempting to use DOVE to reason about a

medium-sized real-world safety-critical system. This system could be naturally decomposed

into a hierarchy of subsystems communicating through limited interfaces of input and output

variables. In attempting to use DOVE, we found ourselves attempting to compose these

subsystems by hand. The work described above outlines a way to build the interactive

components into one extended state machine by extending DOVE with product automata.

By using the information we get from parsing the smg file in DOVE, we can create a new

state machine graph externally without have to use DOVE to create it interactively.

With future extensions of this tool, we should be able to reason about the various

components and then have those results automatically carried over to the product when the

product is formed or its theory is subsequently updated.

3.1.4 Applications

The example given below is intended to monitor the behavior of another device. This

example consists of two components: a component for monitoring, whether the device is

plugged in and receiving adequate power, and a component for monitoring when the device

is adequately powered, whether it is producing values within an acceptable range.

Figure 3.1 shows a screen snapshot of the DOVE canvas for the Plugln Monitor

component of the system. The gridded canvas is the DOVE state machine window which is

used for designing the machine. The three nodes representing the three states in the Plugln

Monitor model are Wait, CheckPlugin and CheckUnplug. The edges with appropriate

44

labels are transitions between these states. Several variables are needed. The heap variable

Pluggedln represents whether the machine is plugged in. The input variable Volt is supplied

by the environment and is monitored to trace when the device is properly plugged in.

Finally, an initial state Wait should be defined in which the machine is unplugged.

The system checks whether the device is plugged in before going from the Wait to

the CheckPlugIn mode. We have the variable Volt as the guard for the three transitions:

Plugin, Unplug and Plugin. At each transition, if the guard conditions are meet, the

corresponding transition will be taken, and the variables will be updated. In the initial

state, if the device is plugged in and receiving a voltage greater than 10 volts, the transition

Plugln will be taken and Pluggedln will be set to true. The plug monitor will stay in the

CheckPlugin state unless the voltage drops below 10 volts. In that case, it will enter the

CheckUnplug state and Pluggedln will be updated to false. Once the device is unplugged

in and receiving more than 10 volts, it will reenter the CheckPlugin state. The monitor

will keep running in this loop infinitely. Here, the Plugin Monitor is correctly and clearly

modeled in DOVE.

Now we can formally prove some safety properties of the Plugin Monitor using the

DOVE Property Manager. One important requirement of the Plugin Monitor is that if the

value of Volt is dropped under 10 then the variable Pluggedln is set to be false. Verification

in DOVE corresponds to proving that all executions of a state machine satisfy a certain

property. This property can be represented using the turnstile (" -") operator. For example,

the above property can be written as,

The basic idea of proof in DOVE is to use induction on the execution of the state

machine. Suppose the initial state satisfies the property and every transition of the state

machine also preserves the property, then the property holds for all executions on the state

machine.

Figure 3.1 Α simple plug monitor in DOVE.

45

46

Figure 3.2 shows the DOVE Prover. We proved the above property by three steps,

Topology, BackSubstitute and MasterBlast.

However, the Plugln Monitor is just a simple example of modeling a system. Life

is not always so easy. When dealing with a bigger project in which some models

interact with each other, some problems come up. The Value monitor is a component in

which the variable Value shows the status of the value variable. The state machine

of Value Monitor is showed as Figure 3.3. The three states Wait, CheckValueOk and

CheckValueFault are defined in the Value Monitor state machine. Six transitions connect

these states and update variables if the guard of the transition is satisfied.

In the initial state of Wait, once the variable Pluggedln becomes true, the variable

Value will be set to true. The device will enter the CheckValueOk state. This can

happen in one of two ways. When the system being monitored first starts up, the Plugln

Monitor and the Value Monitor synchronize on beginning to monitor it's state. Thereafter,

if the power drops below a certain threshold, then the Value Monitor returns to its Wait

state, and reenters CheckValueOk when it detects that the Plugln Monitor has determined

that the power has returned to an acceptable level. Once in the CheckValueOk state, if the

input variable Test is shown to be below 5, Value is set to false, the device will enter

the CheckValueFault state. If variable Test is set back to greater than 5, Value is set

back to true, and the CheckValueOk state will be reentered. In both CheckValueOk and

CheckValueFault states, if the device is unplugged, the device will go back to initial Wait

state.

Between these two models, the Value Monitor uses the Pluggedln variable, which is

written by the Plugln Monitor, as an input variable. Unfortunately, with the current DOVE

tools, these two interactive components could not be composed into one single model. In

order to conquer this, we need to extend DOVE with product automata.

Figure 3.2 Property Proof in DOVE.

47

48

Figure 3.3 A Monitor for Checking Values in DOVE.

We have started the DOVE with the product state machine graph file produced from

the Plugln and Value Monitor components. Figure 3.4 shows a screen snapshot of DOVE

with the product in editing mode.

Now we can prove some properties concerning both the Plugln and Value monitors

in the product automaton. In the Value monitor, the variable Value is set to be true if and

only if the value of Pluggedln is true and the value of Value is greater than or equal to 5

in the previous state. The value of Pluggedln is set to be true if the value of Volt is greater

than or equal to 10 in the previous state. For example, we have the following property:

- Previously ((Previously Volt=12) And Value)) — Value = True

We state the temporal property in the DOVE proof manager and graphic prover as in

Figure 4.1. By using topology, the property is split into cases uniquely determined by the

graph information from the graph. Figure 3.6 shows the result after using topology tactic.

The tactic topology produces 16 subgoals. They clearly describe what are the

previous states, what must be true in each previous state in order to get the current state,

Figure 3.4 Product of Plugln and Value Monitor.

49

Figure 3.5 Property Proof in DOVE Prover.

50

Figure 3.6 Result of Topology in DOVE Prover.

and what is needed to be proved in current state. We use DIVE'S back-substitute to

replace occurrences of variable names in the corresponding temporal Sequent with the values

assigned to them by the last transition. Finally, tactic MasterBlast can be used to prove the

subsoil for the initial state. Then the temporal property is proved as shown in Figure 3.7.

Figure 3.7 Finished Proof.

51

3.2 Formulating LTL in Isabelle

Work on embedding temporal logics has been done by Agerhoim and Skjodt [64], Clarke

and Emerson [65], and Schneider and Hoffmann [66]. In this chapter, we present a formal

formulation of linear temporal logic (LTL) in the lsabelle theorem prover. The syntax and

semantics of LTL are formally defined. Also, the axioms and proof rules are provided for

the complete axiomatization of LTL. Later in this chapter, we introduces how LTL is used

for system specifications [67, 68, 69].

3.2.1 Embedding LTL in Isabelle

In this work, LTL is built on propositional logic [70]. We chose Isabelle Higher-Order

Logic as the object logic to build the embedding of LTL since HOLD is a well developed

logic with many tools and extensions built on it.

We use the facilities in the Isabelle system for embedding different logics to present

a formulation of LTL. Isabelle has also proved useful for doing large proofs, having many

tools that allow the automation of difficult and tedious details. Thus it is particularly

suitable for both implementing LTL as well as actually using it to develop proofs in LTL.

ln Chapter 2, we already gave the syntax and semantics definition of LTL. This

embedding of LTL in Isabelle is very close to the syntax and semantics we gave in Chapter

2 with one bit of expansion. We add the logical atoms true and false. These are logically

equivalent to the propositions True and False. However, by separating them out, the

algorithm is capable of producing a smaller automaton when these LTL versions of true and

false are used instead of the propositions True and False. As a concession to efficiency,

we have added these two atoms in to the lsabelle definition of LTL formulae. To capture

normal form LTL formulae, we have defined in lsabelle the following datatype:

datatype α lt! = ltl_True

Base "α propsi"
Until "α lt" "α lt"
Or "α lt" "α lt"
Next "α lt"

ltl_False

Neg "α propsi"

Release "α lt" "α lt"
And "α lt" "α lt"
Weak_Next "α lt"

52

where α props = α = boil.

The modalities Ενentually::(α ltl=ο lt1), Always::(α ltl=α lt1), /ΙΙ_Νοt::(α ltΙ= c

lt1), and Imply(—)::([αα lt1, α lt1] =c lt1) are defined as syntactic sugar.

Eventually φ 	= Until ltl_True φ

Always φ 	 = Relapse ltLFalse φ

ltl_Not ltl_True	 = ltLFalse

ltl_Not ltl_False = ltl_True

ltl_Not (Base φ) = Neg φ

ltl_Not (Neg φ) = Base φ

φ - ψ	= Or (ltl_Not φ) ψ)

The semantics of LTL formula are given using the satisfiability predicate:

_ 	 _ :: (α) behavior 	 α lt1 = boil

The notation ξ 	 φ means that a behavior ξ satisfies the LTL formula φ. Thus, for

each behavior ξ we have ξ 	 ltl_True. Also, we observe that φ —k ψ if and only if

ξ ψ,andξ ψif andonlyifξ φΡ—^ ψαηdξ In

addition to the equations we give in Chapter 2, we also have (φ V ψ) = -n((-Ι φΡ) Λ (-ίψ)),

(φ —> ψ) _ (-,φα) V ψ, ❑φ = -ι(ρ(-Ίφ)). Parentheses can often be omitted by defining

priority on logical connectives. Priority for operators in LTL are, by descending order,

0, 0, Ο, ❑ , U, V. The operator U is associate to right, e.g., ιρ U Ψ UΦ _ (φU(ΨU Φ)).

The operator V is associate to left, e.g., Φ V Ψ V Φ = ((V Ψ) V ψ). Some examples of

LTL formulae and their meaning are listed below:

These theorems are the basis of a sound and complete relative to a complete system

for propositional logic. The soundness of a system assure that only correct assertions can

be proved. It is proved by showing all the theorems can be proved from our definitions. Α

system is called complete if it is capable to prove all correct formula that can be expressed

using the system. These theorems can be used as the basis of a proof system. They are

not proved here because we are not providing a formal proof system here. However, the

54

following is a list of theorems derivable from Al — A9 and the rule for implication without

resorting back to the definition of =:

3

.2.3 ιο system ιι υννιΝινJJιιlιιιαιιυll υ ιιgAl L

Specifying the system itself and specifying its properties are different activities. Although,

the system and its properties can be given with same formalism, automata, for example. In

many cases, they are expressed by different formalisms. The system can be described using

transition systems or automata. The system modeling was addressed in part in DOVE and

is not closely related to our work here. The system properties, on the other hand, can be

given in a logical formalism. In our work, we choose LTL as such a formalism because

the simple formalism of LTL is surprisingly powerful when specifying properties of inter

55

leaving sequences and modeling the execution of a program. As we mentioned in Chapter

2, Linear Temporal Logic has been deemed expressive enough for most purposes [72],

while retaining a relatively simple syntax and semantics.

Let P be a system that admits multiple executions. Such a system can be described

using a transition system or an automaton. Each execution of P is represented by a

behavior, which is a finite or infinite sequence of states. Let Γ be a set of behaviors

generated for the system P and φ be any LTL formulae. If all the behaviors of system

P satisfies φ, we write P cp. If not all the behaviors of system P satisfies φ, then we

write P φ. Notice that P 1 φ does not mean P — φ; sometimes when P (70, some

of behaviors do satisfy gyp.

We are particularly interested in two kinds of system properties: safety properties

[73] and liveness properties [74, 75]. Safety properties asserts the absence of undesirable

states during a certain time. In another words, nothing bad will happen, e.g. a television

system will not shut off itself without a user pressing the power off button. Likeness

properties assert some desirable state will eventually be reached. Unlike safety properties,

liveness properties require something good will happen, e.g. the television will change the

channel if a user pushes the change channel button.

In our work, one of the reason we interpret LTL on behaviors instead of only finite

sequences is that both safety properties and liveness properties can be easily expressed.

3.3 Formalizing the Translation of LTL Formulae to Bauchi Automata

The algorithm for translating LTL formulae into Bϋchi Automata is widely used in model

checking field. In this work, we present a formulation of the translation algorithm from

Berth et al. [35]. The translation algorithm has been improved by Daniel and Giunchiglia

and Mardi [76], Schneider and Hoffmann [66], Couvreur [77], Bastin and Oddoux [78],

Giannakopoulou and Lerda [79], Somenzi and Bloom [80], and Thirioux [81].

56

3.3.1 Translating LTL into Bauchi Automata

In this section, we present our algorithm for translating an LTL formula μ into an automaton

that accepts exactly all words satisfying μ. We modify the algorithm presented in [35] by

Berth eta!. and [82] by Gunter and Pealed. The algorithm in [35] can only produce automata

that accept infinite words. The algorithm in [82] can only output automata that accept

finite words. We merger these two algorithms to a new version that can produce automata

that accept both finite and infinite words. We also use a variation of Bϋchi Automata we

introduced in Chapter 2, B = (K, S, Δ, I, L, Fset, F). The new version of automata is

defined by us to accept both finite and infinite words.

The algorithm takes an LTL formula φ as input and constructs a graph with states and

transitions as the output automaton. The algorithm decomposes the formula φ according

to its boolean structure and temporal operators. The following data structure is used by the

algorithm as a graph node for the generated automaton B:

Name. A unique identifier of the node.

Incoming. A set of the identifiers of nodes with edges that point to the current

node.

New. A set of subformulae of φ that must hold at the current node and have

not been processed yet.

Old. A set of subformulae of φ that must hold at the current node and have

already been processed.

Next. A set of subformulae of φ that must hold at every immediate successors

57

of the current state.

Strong. Α flag showing whether the current node must not be the last one in

the sequence.

The Strong field is originally introduced in [82] by Gunter and Pealed to indicate when

the current state cannot be the last one in the sequence. We also keep a set Nodes_Set of

nodes, each having the same fields above. The set Nodes^Set is initially empty and will

contain all the nodes we need to build the automaton once the algorithm terminates.

The main idea of the algorithm is to separate the LTL formulas into two parts: one

that holds in the current state, and the other that holds in the next state, using:

Several small functions used by the algorithm are defined. The function newname()

generates a new unique name for each new created node. The functions New], New,

Next are defined in Table 3.1:

Table 3.1 Functions for Splitting LTL Formulae.

where β ranges over basic propositions and φ and ψ range over LTL formulae. Another

function max_SF is defined based on the function SF. Given a set of LTL formulae A,

max_SF returns a single formula φ from A such that for all ψ in A, the cardinally of SF φ

is less than or equal to the cardinally of SF ψ.

The algorithm for translating an LTL formula into a generalized Bitch automata [83]

is presented in Figure 3.8. To translate the LTL formula μ, the algorithm starts with a single

node (line 42-45) that has a single incoming edge from a dummy special node knit. The

new field of the node contains the formula μ and has empty old and next fields. And the

result set Nodes_Set is initialized to be empty.

The algorithm works recursively. For the current node s, the algorithm checks if

there are formulae to be processed in the field New in s (line 4). If the field New is

empty, then the node is completely processed. We need to check if it should be adds to the

Nodes_Set. If there is a node r in Nodes_Set what has the same formulae as s in its Old

and Next fields and has the same Strong field (lines 5-6), then we do not need to add s into

Nodes^Set. Instead, the set of Incoming of s are added to the Incoming of r (line 7). If there

59

60

is no such node r in Nodes _Set, then s is added to Nodes_Set and a new node s' is created

(lines 9-11). A fresh name is given to s'. The Incoming field of s' contains the name of s.

The Next field of s is the New field of s'. Also the Old and Next fields of s' are initialized

to be empty.

On the other hand, if the field New is not empty, we use the function maxSF to

select a formula η in New and remove it from New. In the original Berth algorithm, and

in the Gunter-Peled algorithm, the choice of the formula η is non-determinism. In our

algorithm, we use the function maxSF to eliminate the non-determinism by choosing the

maximal formula η instead of choosing an arbitrary formula because this is helpful for us

to prove the termination of the algorithm later on.

If η is a literal and ιη in Old, then the current node is discarded since it contains a

contradiction(lines 16-17). Otherwise, η is added to Old, if it is not already there.

If η is not a literal, s is processed according to the outmost operator of η as follows:

7

are added to the New of s'. Both Strong fields of s 1 and s 2 are set to be

String's).

The fiction create_graph is the start of the whole translation algorithm. creategraph

takes an LTL formula μ as input and calls the expand fiction. The first argument of the

expand is a node with μ in its New field, knit in its Incoming field. The Old and Next fields

of the node are set to be empty. The second argument of expand is an empty node set.

The above description of the algorithm for translating an LTL formula into a Bϋchi

automaton is imperative, in keeping with the spirit of the algorithm presented by Bertha et al.

in [35]. In order to reason about this algorithm in Isabelle it was necessary to functionalism

it. In place of updates to fields of existing nodes, we have to create new elements. ln

place of updating the Incoming filed of existing nodes in Nodes Set, we must create a new

Nodes Set with the node to be "updated" removed and a new node with increased Incoming

field added. Similarly, the functions such as newname upon which expand depends must

also be fictionalized.

Once the algorithm terminates, we can convert the set of nodes Nodes_Set into a

• The alphabet Σ consists of sets of sets of negated and non-negated propositions that

appear in the translated formula φ.

• The set of states S consists of the nodes in Nodes Set.

3.3.2 Termination Proof of the Algorithm

The algorithm of Bertha et al. [35] has been used for many tools in pracme, e.g., the model

checker SPIN [84]. However, a formal proof the termination of the algorithm does not exist

in the literature. It's critical that a verification algorithm itself to be proved to be correct.

The termination is a fundamental requirement for the correctness of the algorithm. Thus,

here we propose a method to define the algorithm in a generic theorem prover, Isabelle and

give the formal proof of the termination.

The translation algorithm works recursively. Proving termination of a recursive

algorithm can be achieved by finding a well-founded relation R on the inputs to the function

and showing that the recursive calls decrease under the relation R [85, 86].

Each total recursive function defined in Isabelle must specify a well-founded relation

to justify the termination of the function. Formally, the relation - is well-founded if it

admits no infinite descending chains

63

Isabelle provides theorems for constructing a well-founded relation. We use a way to

specify a measure function f into the natural numbers, where

However, in the translation algorithm, there is no obvious single well-foided relation on

the arguments to the algorithm such that the argument decreases for every recursive call.

In each recursive call, not all the arguments are necessarily decreasing under the usual

measures.

To find a useful well-founded relation, we observe that, at the outermost level, we do

two different kinds of recursive calls. The first kind of recursive call will add a new node

to Nodes .Set and start processing Next as New. The second kind of recursive call is when

there are formulae in New, and the recursive call is made to a new node structure where one

of the formulae in New has been broken up.

In the first case, the remaining nodes we can create from the original formula is

decreasing, although not strictly. The nodes in Nodes_Set are uniquely determined by their

Old and Next components. The New field must be empty. We never put two different nodes

with the same Old and Next into Nodes Set, but instead merge their Incoming fields, and

throw away one of the names. So the calculation of the number of nodes that are already in

Nodes Set can be simplified to the calculation of the number of elements in the set:

64

The fiction SFset is used to calculate the set of subformulae that a set of formulae can

create. When a node q is updated into a new version q', then the following holds:

These two equations can be proven directly from the algorithm and the definition of

LPL. Thus, when we insert a node into Nodes_Set, the subformula in the Old and Next are

all from the original formula. The translation process does not create new formulae.

From the above we see that there is an upper bound for the number of nodes left to be

created by the current node that can be inserted into Nodes_Set. Also, the number of nodes

we are creating is increasing, although not strictly at each step. Moreover, the number of

possible nodes to create is boided, so every time we insert a node into Nodes_Set, the

distance to the upper boid is decreasing. The following relation remainnodes can be

used to calculate the distance:

The function card is the cardinally function for finite sets.

However, the remainnodes fiction does not decrease strictly during every

reclusive call. This makes it difficult to use it as a well-founded relation to prove

termination. Now we consider what is happening when the distance to the boid stays

constant. The second kind of recursive call will not insert a node into Nodes_Set. It will

repeatedly break up New by selecting a formula in New using the function maxSF itil

it is empty. In this case, the complexity of New is decreasing. For defining the complexity

of New, we use the function maxSF to select a maximal subformulae, one that is not a

subformulae of any other. Then when we remove it from New and put it into Old. The total

number of subformulae in New will go down by at least 1. The relation complex_new is

65

Το combine these two relations to work together, we use the lexicographic product

(<*Rex*>) of two well-foided relations. Given relations rag and rb, the lexicographic

product is formally defined as follows:

The lexicographic product decreases if either its first component decreases or its first

component stays the same and the second component decreases. It is also proved that

if two given relations are well-foided, their lexicographic product is also well-foided.

The following relation is built to serve as the total well-founded relation to prove the

termination of the translation algorithm:

Isabelle's less_than is defined as a relation, which is a set of pairs of natural

numbers, i.e., ((i, y) Ε less_than) = (x < y). The mv_image is used to generalismd the

This relation is defined in Isabelle and its well-foundedness is proved by Isabelle

classical reasoner. The termination of the algorithm is also proved in Isabelle by case

analysis. We do the case analysis on whether the New field of the input node is empty first.

If it is empty, we prove that after the algorithm inserts a node into Nodes et, the remaining

nodes it can create that can be inserted into Nodes Set has decreased. In the case that the

input New field is not empty, we do a case analysis on what the maximal formula in the

New field is. The complexity of the New field is proved to be decreasing. This termination

proof is carried out in an interactive fashion in Isabelle. In our case, the termination of the

66

algorithm can not be proved by an automated theorem prover. This is because the measure

function we derived here is not syntactically suggested from the function definition. There

can not exist an algorithm that can prove or disprove the termination of a fiction by only

given the recursive definition of a general recursive function. It is generally impossible to

always compute the necessary induction principle to prove a theorem. Some attempts to

do so are generally driven by syntax. This falls in the scope of what inductive theorem

provers [87, 88]. In parmular, it is beyond what rippling can do.

3.3.3 Correctness Proof of the Algorithm

In this section, we present a formal correctness proof of the LTL to Bϋchi Automata

translation algorithm. An informal proof has essentially already been given by Berth et

al. in [35], but we feel that the level of proof discourse in that work is at a high enough

level with enough details omitted that the proof would benefit from the intense scrutiny

afforded by a formal proof within a theorem prover such as Isabelle. Formalizing their

proof poses new challenges. Several lemmas about the expand fiction are claimed to be

true "by construction". Particularly given that expand is a rather complex general recursive

function, it is not clear what it means for a fact about it to be true "by construction". In

our proof, these results follow as corollaries of results proved by induction, and that the

inductive results have a general assume-guarantee nature to them: if a fact holds of the

state (or that portion of the input representing the state) before the function is executed,

then it will hold of the resulting state after the execution. Also, since we extended their

algorithm for accepting finite words, we need to provide the proof for finite case.

In the algorithm for translating LTL formulae into BLichi Automata, we first use the

fiction creategraph to get a set of nodes Nodes^Set from an LTL formula η. Then

we translate the Nodes^Set into a Bϋchi Automata. The algorithm in Figure 3.8 works

recursively. The fiction expand is actually doing two things. If the New field is not

empty, expand splits the node into two or refines it into a new version. If the New field is

67

empty, expand insert the node into Nodes^Set and start with a new node. Thus, to prove

the correctness of the algorithm, we can break the fiction expand into two fictions:

splits and grow. The modified algorithm is shown in Figure 3.9. The recursive function

splits takes a node s as input and repeated splits or refines node. The output of splits is a

list of nodes that are split or refined (line 6-10) from the original node s. If the New field

of the s is empty, then splits returns an empty list(line 4). The input of the fiction grow

is a list of nodes, which usually are the result of splits , and a set of nodes Νοdes_Set . The

fiction grow checks the node at the head of the node list against ΝοdesSet (line 46-48).

If there exists a node in Nodes Set that has the same Old and Next fields, then grow only

updates the Incoming field of that node and goes on process the tail of the node list(line

49). If there is no such node in Νοdes_Set, then grow inserts the node into Νοdes^Set

and starts with a new node, where the new New field is set to be the old Next field(line

50-52). The function get_graph is simply the start of the algorithm with the LTL formula

μ. The fiction get_graph starts with a LTL formula μ and calls the splits and grow. The

arguments of splits are initially set to be an node which contains μ in its New field and knit

in its Incoming field. The arguments of grow are set to be the result of grow and an empty

Νοdes_Set .

Theorem 3.1 guarantees the modification of the algorithm will not change the result.

Thus, the correctness proof of creategraph can be reduced to the correctness proof of

get_graph.

Theorem 3.1 Given the same LTL formula η, the two functions creategraph and

get_graph will produce the same result.

Proof: To prove two fictions are the same, we prove that if they are given the same

LTL formula η as input, then they produce the same result. To show this, we show that

if a node s is in the output node set of creategraph, it is also in the output node set of

getgraph, and vice versa. This can be proved by induction on both fictions. ■

68

69

Now, we can prove the correctness of the algorithm by proving the modified

algorithm using get_graph. The theorem 3.2 is the main goal we want to prove:

Theorem 3.2 The automaton A constructed by the algorithm from an LTL formula μ

accepts exactly the behaviors that satisfy μ.

Proof. Lemma 3.6 and Lemma 3.12 prove this theorem in two directions.	 ■

ln what follows, let ξ be a behavior consisting of propositions, and let σ be a behavior

consisting states of A, the automaton that is constructed from an LTL formula μ. If the node

n is a member of node list returned by splits), then we say n is a terminal descendant of

s and s is an ancestor of n. Also, let ΕΞ denote the conjunction of a set of formulae

the conjunction of the empty set is set to be True. A fiction max_SF selects a maximal

formula from a set of formulae, which is not a formula of any other formulae.

Lemma 3.1 If New (s) is not empty, then for all nodes n, where n is a terminal descendant

of s, we have max_SF(New (s)) Ε Old (n).

Proof ln the definition of the splits, every recursive call on a node s will remove the

max_SF(New(s)) from New field and add it to Old field(line 6). When a node s is split into

s 1 and sl(line 12-28), max_SF(New(s)) is inserted into both Old(sl and Old(sl). When a

node s is refined to sl(line 8-11 and 29-40), max_SF(New(s)) is also inserted into Old(sll).

Also, we notice that the Old field oned grows. Once some formula is added into Old field,

it will never get out. There is no operation to remove formula from the Old field in the

fiction splits. If we start with splits), max_SF(New(s)) goes to the Old field and stays

there till the end of fiction splits. Thus, by induction we have for all nodes n in splits),

max_SF(New(s)) Ε Old (n). ■

Lemma 3.2 For all n, where n is a terminal descendant of s, if there are no two nodes with

both the same Old and Next fields in Nodes_ Set, then there exists one and only one node

r in grow(splits(s), Nodes_Set)) such that Incoming(n)Clncoming(r), Old(n)=Old(r) and

70

Next(n)=Next(r). Moreover, for all r Ε grow(splits(s), Nodes_Set)) such that Incomings)

C Incoming), either r is in Nodes_Set, or there exists a terminal descendant n of s such

that Incoming(n)Clncoming(r), Old(n)=Old(r) and Next(n)=Next(r).

Proof By induction on the fiction grow. If the input node list is not empty, the

function grow checks the node n at the head of the node list against the nodes in the

Nodes_Set. If there is a node r in Nodes_Set with the same Old and Next fields, then r

satisfies the conclusion. This is because once a node is added into Node_Set, we can only

update its Incoming field. We can not change its Old and Next fields or remove it from

Nodes_Set. If there is no such node in Nodes_Set with the same Old and Next fields, then

n is inserted into Nodes_Set and n will be the node to satisfy the conclusion. The reason is

same as the first case. Every node n in the input node list will eventually be checked against

the Node_Set. Thus, there exists one and only one node r in grow(splits(s), Nodes_Set))

Also, there are two ways that a node r can be in grow(splits(s), Nodes_Set)). First,

it is already in Node_Set, then there will be a node with the same Old and Next fields in

the final Node_Set. We already proved this above. Second, it is added into Node_Set in line

52. This is the only point where a node can be added into Node_Set. And once added into

Node_Set, there will be a node in the final Node_Set with same Old and Next fields for the

reason above. ■

Lemma 3.2 describes the relationship between the result of the fiction Splits and

the node set Node_Set, which is very useful for connecting the original input LPL formulae

and the final output Node_Set. Also, a very important property about Node_Set is given. If

the input Node_Set does not have two nodes with the same New field and Old field, then

there are no such pair of nodes in the output Nodes_Set. This is the basis of several lemmas

we proved below.

71

Proof. A node of an automaton can be an initial state if and only if it has knit in

its Incoming field. One fact about the splits fiction is that splits does not change the

Incoming field when splitting and refining nodes, i.e., all terminal descendants have the

same Incoming field with their ancestor. This is because from the definition of the function

splits, we know that splits never add or remove to Incoming field of any nodes. From

Lemma 3.1, if we start from the initial node s = [Name = new_nameO, Incoming =

, then every nodes that is in the result

node list of splits) has knit in its Incoming field and μ in its Old field. Also, the result of

splits) contains all the nodes that can have knit in it since every call to grow will change

the Incoming fields. From Lemma 3.2, for all terminal descendants n of s, there is one and

only one corresponding node in the grow(splits(s), {}) with the same Old and Next fields

and knit in its Incoming field. For all nodes in grow(splits(s), {}) with knit in its Incoming

field, there exists a terminal descendant n of s that has knit in its Incoming field and has the

same Old and Next fields since we started with an empty Node_Set. There is a one-to-one

relationship between all terminal descendants n of s and all nodes r in grow(splits(s), {})

for Incοming(n)Clncοming(r), Old(n)=Old(r) and Next(n)=Next(r). Thus, for every initial

state q Ε I of an automaton constructed from the LTL formula μ, we have μ Ε Old(q). •

Lemma 3.4 Let σ be an execution that is accepted by A, which is constructed from an LTL

formula μ. Let σ, denote behd(benthsuff^x i σ), the itch state in the execution, and let σο be

the initial state and η be an LTL formula in Old(σο). Then, by case analysis on η, one of

the following holds:

72

Proof Note that cases ltl_True and Beg φ are similar with the Base case. LPL formula

ltl_False can not be in Old field since the algorithm will terminate once a formula ltl_False

is met. This lemma can be proved by the induction. We only provide the proof for Until

case. Other cases can be proved similarly and were done in the Isabelle proof.

When the algorithm is processing a formula n= U spline 6), the node is split into

two nodes. For the first copy, φ is inserted into the New field and ςο U ψis inserted into

the Next field. For the second copy, ψ is inserted into the New field. The formula Αρ U Ψis

inserted to the Old field of both copies. We also know that φ and ψ will eventually go to

their own Old field. This can be proved by induction on the function splits. If our path goes

to the second copy, then the conclusion

Old(σ;) will be satisfied by choosing j=0. If our path goes to the first copy, we have φ and

ςο Uψin theOldfield. When this node is fuled processed, the algorithm starts with a new

node. The New field of the new node is set to be the old Next field, which contains U 0 in

it. The algorithm repeats this procedure if we always choose the path to the first copy until

the second copy is chosen sometime later. Since the execution σ satisfies the acceptance

conditions of the automaton A, there must exists some state that has ψ in its Old field.

■

The fiction BEis_singleton is used to test if a sequence is a singleton. If a sequence

σ is infinite, then BEis_singleton) is set to be false.

73

Lemma 3.5 Let σ be an execution of A constructed from an LTL formula μ and σ denote

behd(benthsujix i σ), the i trs state in the execution. Let η be an LTL formula in Old(σj.

Proof By induction on ψ. The base case is for formulae of the form p, where p is

a proposition. The base case can be proved directly from the construction. We will only

show the Until induction case. According to Lemma 3.4, we have j > 0. EA < i <

Other cases are treated similarly. 	 ■

Corollary 3.1 Let σ be an execution of constructed from an LTL formula μ and σ0 be the

initial state. Let ξ be a word that is accepted by σ. Then for all LTL formula ψ in 01d(σ 0),

ξ ψ.

Proof: By Lemma 3.5 and set i to be 0. 	 ■

Lemma 3.6 Let σ be an execution of the automaton A constructed from the LTL formula

Proof Let qo be an initial state of σ. From Lemma 3.3, we have μ Ε Old(qo). From

Lemma Corollary 3.1 we have for all LTL formula ψ in Old(qo), ξ ψ. Thus, we have

Lemma 3.7 For all nodes n in an automaton A constructed from an LTL formula μ,

Strongman) is uniquely determined the its Old field.

Proof Initially, the construction starts with a node s containing μ in its New field.

The Strong field indicates the current node must not be the last state in a sequence, i.e.,

there is something that needs to happen and has not yet happened so far. Only two forms of

LTL formulae force something to happen in the future states. One is Until, the other is Next.

74

The Strongmans) field is set to be true oned for these two cases and the String's) field is set

to be false if and only if either there exists φΡ Ε Olds) or there exists ΟφΡUΨΕ Olds),

but ψ Olds). If an LTL formula ΟφΡUψis met during the construction(line 12),φ UΨ

is inserted into both Old fields and φΡ is inserted into the New field. We already proved that.

will eventually go to the Old fields. Note that there is no operation to change the Strong

field back to false. Once the Strong field of a node is set to be true, it will always be true.

If an LTL formula Οφ is met during the construction(line 33), Οφ is inserted into the Old

field. Thus, there are oned two cases for the Strong field of a node n in an automaton A to

be true. The first is that n contains an LTL formula of form ΟφΡUψin itsOldfields. The

second is that n contains an LTL formula of form φΡ in its Old field. ■

Lemma 3.7 guarantees there is no two nodes in an automaton Α constructed from an

LTL formula μ that have some Old and Next field but have different Strong field. Thus, we

only need to check the Old and Next fields in line 47.

Α fiction VarNext is defined to choose Next or Weaki'Jext according to the Strong

field of a node. If the Strong field is true, we choose Next, otherwise we choose WeaklVext.

The function VarNext is defined as follow:

75

Lemma 3.8 guarantees every recursive call preserve conjunction of the formulae

among New, Old and Next fields. No new formulae will be added in or removed from New,

Old and Next fields.

Proof Let Nodes_Set = grow(splits(q),{}). From Lemma 3.2, we knοω that for each

qj , there will be a corresponding node in Νοdes_Set with the same Old and Next field and

all nodes in Nodes _Set are coming from the result of splits. The result of splits can be used

as nodes in Νοdes_Set if only Old and Next field are concerned. Thus, using Lemma 3.8,

this lemma can be proved by induction on the construction. If a node qi contains U Ψ in

its Old field, then there are two cases, either qi has Εφ in its Old field, or Ai has ψ in its Old

in the Old field, it is chosen as the maximal formula sometime before(line

was inserted into Old field, the node is split into two-line 12-20), one has

^^^ ^^J ι γ Old and the other has ψ in its New field. We also knοω that formulae in New

field will eventually go to the Old field. Thus, if a node qi contains U ψ in its Old field,

then there are two cases, either A i has ιρ in its Old field, or qi has ψ in its Old field. And if

ξ ψ, we only have the second case, where ψ in the Old field. ■

Proof In the construction, when a node q is finished and inserted into Node^Set(line

50-52), a new node ql is created with New(qll) = Next(q). We know that (benthsu f fix 1 ξ)

New(qll). Once ql is fully processed, New(qll) goes to Old(qll). This can be proved

by induction. Using Lemma 3.9, we can get (benthsu f f i

(VarNext Strongly) Ε Neatly)). Lemma 3.9 also guarantees there is a q' that will

satisfies the acceptance conditions. For the finite case, if' is a singleton, then q is the last

node in the execution. If ξ is not a singleton, this case can be proved similarly with the

infinite case. And eventualed, there will be node ql that either there is not formula in its Old

field has Until form or for each formula U ψ Ε Oldlyll) with ξ ψ, ψ is also in Old(qll).

■

Lemma 3.11 can be used to find the successor during the construction of an execution

in lemma 3.12. In the infinite sequence case, it guarantees the existence of the successor.

In finite case, it guarantees the existence of the successor or the completion of the

construction.

77

constructed satisfies the acceptance conditions for both finite and infinite words. ■

Now we will give an example to illustrate how proof is formally done in Isabelle.

We will only give one proof because there is no enough space to present all proofs for

these lemmas. Lemma 3.5 indicate that if σ is an execution of A constructed from an LTL

formula μ and σ denote behd(benthsuffix i σ), the itch state in the execution. And let σ be

the itch state in σ and η be an LTL formula in Old-σ i). Then, for all i, -benthsuffix i σ) η.

This lemma is formally stated in Isabelle as follow:

The function ns2ba is defined to translate the result of get_graphma1 into a Bϋchi

automaton. The function accept_exec_beh takes a Bϋchi automaton, an execution, and a

word as arguments. If the execution is accepted by the Bϋchi automaton and accepts the

word, then accept_exec_beh returns true. Otherwise it will return false. To prove lemma

run_wοrd_cοmpatible, we do an induction on η. The base case is for formulae of form

ltl_True, ltl_False, Base p, and Beg p. We give an example proof for case Base p here. The

proof script is shown in Table 3.2. The case of form Κο U ψ can be defined as:

78

Lemma unt i 1 _c ompa t i b 1 e is proved using the fact stated in Lemma 3.4. We

are not providing the proof script because of the space constraint. All lemmas for the

correctness proof of the algorithm have been defined and formally proved in Isabelle.

Again, some intermediate lemmas are omitted because we don't have enough space here.

79

CHAPTER 4

CONCLUSION AND OUTLOOK

4.1 Summary

In this work, we have enhanced verification techniques based on novel combinations of

theorem proving and model checking. Our contribution includes an extension of DOME

with product automata and their application, formulation of LTL in Isabelle, and formal

proof of correctness of the algorithm for translating LTL formulae into Βϋchi Automata.

The work extending of DOME gained us a lot of experiences for doing the verification

on real-life problems. We studied the formal verification tool DOME, learned its strengths

and weaknesses, and extended it with product automata to reduce the burden of the state

explosion problem for the designer.

The formulation of the algorithm for translating LTL formulae into Bϋchi Automata

in a formal logic earned us a chance to experience the formal proof of a nontrivial

algorithm. During the proof, we learned the length of the proof, the mathemamal theories

needed, the level of expertise in the theorem prover required, and the time required to

carry out such a proof. Our formulation of the algorithm and its correctness proof result

more than 9,500 lines of Isabelle code. One lesson is that formal algorithm proof requires

nontrivial human expertise and time. We also nomed the difference between the formal

and informal proof, doing proof with the theorem prover Isabelle forces us to be honest

in our arguments. Informal proof such as, "obvious", "directly from", and "immediately

from" do not work. We learned that some trivial claims in the informal proof are actually

nontrivial.

The main contribution of this dissertation is the improvement of the easy of use

and reliability of tools for formal verification. We have increased the automation of an

interactive tool while giving mathematical justification for it. We have increased the

80

81

confidence level in a class of model checkers by formaled verifying one of the core

algorithms use by them. And we have increased automation in the domain of fully

expansive interactive proof and we have increased the confidence level of fuled automated

tools by subjecting one of their central algorithms to the rigor of fully expansive proof.

4.2 Related Work

As is well known, verification techniques based on automata theory and temporal logic

always draw a lot of attentions.

DOME [34] is tool to provide support for the formal analysis of state machine designs.

In DOME, the modelling and reasoning activities can be driven directly from the state

machine in a graphical framework. Merification in DOME is carried out by doing inductive

proofs over automata instead of model checking. DOME can oned deal with finite sequences

and can only handle safety properties. The algorithm is embedded in the theorem prover as

a family of tactics. In DOME, the correctness is guaranteed one example at a time, by its

embedding in Isabelle.

The translation algorithm we modified was presented in the Berth et al. [35]. They

described a tableau-based algorithm for obtaining an automaton from a linear temporal

logic formula. The algorithm is to be used in model checking in an "on-the-fly" fashion.

That means the automaton can be constructed simultaneously along with the generation of

the model. The algorithm can be used to check the validity of the linear temporal logic

properties by only constructing part of the model and part of the automaton. However, the

algorithm can oned be used to translate temporal logic interpreted on infinite sequences.

In our work, the algorithm is enriched with the ability to work on both finite and infinite

sequences by defining linear temporal logic on a special sequence behavior. Also, we

provided a formal proof of the termination of the algorithm, which is a crucial part of the

correctness of a recursive algorithm.

82

Combining mechanical theorem proving and model checking has been a hot topic

in recent years. Several other related works draw attention. In the Chou [14], they

formaled verified a meta-theory of model checking using mechanical theorem proving.

Ha case study is carried out using the mechanical theorem prover HOLD to verify the

correctness of a partial-order reduction technique for reducing the state search performed

by model checkers. There is a lot of similar infrastructure in our work and their proof

work. Moreover, their experience with verifying nontrivial algorithms in HOLD helped us to

employ our proof in Isabelle.

Model checking for temporal logic properties can give counter examples if the

properties fail to hold for the checked system. The counter example will be used as a

certificate of system failure. On the other hand, if the check succeeds, no such certificate

will be given. In the Namjoshi [89], they gave a deductive proof of the reason why

the model checking is successful. They created a deductive proof system for verifying

branching time properties expressed in the μ-calculus and showed how to generate a proof

in the system from a successful model checking ri. Basically, we are all aiming to prove

that the algorithm is correct. While their work is side-stepping whether the algorithm is

always correct by having it generate a proof that it is correct in each specific example.

In [82], Gunter and Pealed suggested a new application for temporal logic, as a way

of assisting the debugging of a concurrent or sequential program. They defined temporal

logic over finite sequences as the specification formalism for the automatic verification of

extended state systems. Halso, they described a debugging tool based on the idea which can

be used for finding paths to assisting in building test suites and hence be more confident

about the correctness of the system. In that paper, they describe a variant of the algorithm in

Berth et al. that applies to LPL formulae interpreted over finite sequences. Our work in this

paper merges the two algorithms. The algorithm here has ability for handling both infinite

and finite sequences of program behaviors and has nontrivial proof about the termination

of the algorithm while both of these features are absent in that work.

83

4.3 Future Work

So far, in previous chapters, we presented some techniques for formal specification and

verification. Our ultimate goal is to create a tool for automatic verification. In this section,

we present some possible future works. We will introduce the automata framework for

building an environment in Isabelle for model checking LTL specifications, i.e., checking

whether a modeled system presented as Βϋchi automata satisfies a given LTL specification.

The automata theorem framework was proposed by Kurshan [90], Mardis and Wolper [91],

and Halpern and Scheider [92].

Has we mentioned in Chapter 2, one of the advantages of using automata is that both

a modeled system and its specification can be presented in the same way. We use Βϋchi

This means all accepted word of A are allowed by B. If the intersection is empty, the

system model A satisfies the specification B. If the intersection is not empty, elements in it

are counterexamples [93]. Checking for the emptiness of the language obtained from two

automata is simpler than checking for language inclusion.

84

However, if the specification automaton is translated from an LTL formula φ, we can

translate the negation of the formula φ into an automaton B directly rather than translate φ

into an automaton B and then complement it.

Han important property of Bϋchi automata is their closure under intersection, union

and complementation [62]. This means that there exists an automaton that accepts exactly

the intersection or the union of the language of two given automata, or the complementation

language of a given automaton. These properties enable us to do some constructions on

automata without lose any information.

We give the following formal description of the automatic verification method. Given

the system automaton A and specification expressed using LTL formula φ: First, we need

to normalism the LTL formula -ίιρ. Then we need to translate normal form φ into a

generalized Bϋchi automaton B, and then convert the generalismd B'iichi automaton into a

simple Bϋchi automaton B. Next, we also need to build the product automaton A x B and

check the emptiness of A x B. If the intersection is empty, the specification holds for A. If

the intersection is not empty, any elements in it are counterexamples.

APPENDIX A

PROGRAMS

This appendix include programs in Isabelle and the SAL programming language. We put

out programs in: http : / /ωωω- f Faculty . Bs . uiuB . edu/—egunter instead of here

because of the space constraint.

85

REFERENCES

[1] H. Saiedian, "Han invitation to formal methods," IEEE Computer, viol. 29, no. 4, pp. 16-30,
Hapr. 1996, a "roidtable" of short articles by several authors.

[2] Formal Methods Specification and Analysis Guidebook for the Verification of Software and
Computer Systems, Volume II: A Practitioner's Companion, NHaSHa Office of Safety
and Mission Hassurance, Washington, DC, May 1997.

[3] Ε. Μ. Clarke and J. Μ. Wing, "Formal methods: state of the art and future directions,"
ACM Computing Surveys, vol. 28, no. 4, pp. 626-643, 1996.

[4] R. E. Bloomfield, D. Cragged, F. Boob, A. Ullmann, and S. Wittmann, "Formal methods
diffusion: Past lessons and future prospects." in SAFECOMP, 2000, pp. 211-226.

[5] H. P. Barendregt, "Lambda calculi with types," Handbook of logic in computer science
mavol. 2): background: computational structures, pp. 117-309, 1992.

[6] J. E. Hopcroft, M. Motwani, Motwani, and J. D. Ullman, Introduction to Automata Theory,
Languages and Computability. Boston, MHa: Haddison-Wesley Longman Publishing
Co., Inc., 2000.

[7] T. H. Carmen, C. Stein, M. L. Rivest, and C. E. Leiserson, Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.

[8] Ε. Μ. Clarke and S. Benzin, "Model checking: Historical perspective and example," in
Automated Reasoning with Analytic Tableaux and Related Methods, International
Conference, TABLEAUX'98, ser. Lecture Notes in Computer Science, H. de Swart,
Ed., vol. 1397. Springer Verlag, May 1998, pp. 18-24.

[9] J. Edmund Μ. Clarke, O. Grumberg, and D. Ha. Pealed, Model checking. Cambridge, MHa:
MIT Press, 1999.

[10] W. Misser, D. Havelund, G. Brat, and S.-J. Park, "Model checking programs," in Proc. of
the 15th IEEE International Conference on Automated Software Engineering, 2000.

[11] E.M. Clarke, O. Grumberg, and D. Yamaguchi, "Hanother look at LPL model checking,"
in Proceedings of the sixth International Conference on Computer-Aided Verification

CAVE, David L. Dill, Ed., viol. 818. 	 Sandford, California, USHa: Springer-Merlag,
1994, pp. 415-427.

[12] J.M. Burch, ELM. Clarke, D.L. McMillan, D.L. Dill, and L.J. Hwang, "Symbolic Model
Checking: 10 20 States and Beyond," in Proceedings of the Fifth Annual IEEE
Symposium on Logic in Computer Science. Washington, D.C.: IEEE Computer
Society Press, 1990, pp. 1-33.

86

87

[13] E. L. Gunter and D. Pealed, "Unit checking: Symbolic model checking for a unit of code."
in Verification: Theory and Practice, 2003, pp. 548-567.

[14] C.-T. Chou and D. Pealed, "Formal verification of a partial-order reduction technique for
model checking." Journal of Automated Reasoning, viol. 23, no. 3-4, pp. 265-298,
1999.

[15] R. alur, R. D. Brayton, T. Ha. Henzinger, S. deer, and S. D. Rajamani, "Partial-order
reduction in symbolic state space exploration," in Computer Aided Verification, 1997,
pp. 340-351.

[16] E. Ha. Emerson and Ha. P. Sistla, "Symmetry and model checking," Formal Methods System
Design, vol. 9, no. 1-2, pp. 105-131, 1996.

[17] C. Dawns and S. Teriyakis, "Model checking of real-time leachability properties using
abstractions," in TACKS '98: Proceedings of the 4th International Conference on
Toils and Algorithms for Construction and Analysis of Systems. 	 London, UD:
Springer-Verlag, 1998, pp. 313-329.

[18] E. Gunter and Y. Meng, "Extending DOVE with product automata," in Theorem Proving
in Higher Order Logics, 15th International Conference - Supplemental Proceedings,
TPHOLs 2002, V. Ha. Carrel, C. Ha. Munoz,, and S. Mahar, Ads., Hampton, VHa, Haugust
2002.

[19] D. L. AcMillan, "Symbolic model checking: an approach to the state explosion problem,"
PhD. dissertation, Carnegie Mellon University, Pittsburgh, PHa, 1992.

[20] G. J. Holzmann, "The model checker SPIN," Software Engineering, viol. 23, no. 5, pp.
279-295, 1997.

[21] Z. Manna, N. Burner, Ha. Browne, E. Y. Chang, M. Colon, L. de Halfaroo, H. Devarajan,
Ha. Kapur, J. Lee, H. Sigma, and T. E. Uribe, "Step: The Danford temporal prover," in
TAPSOFT, 1995, pp. 793-794.

[22] S. Esker, J. Meseguer, and Ha. Sridharanarayanan, "The Maude LPL model checker," in
Fourth Workshop on Rewriting Logic and its Applications, WRAP '02, ser. Electronic
Notes in Theoretical Computer Science, F. Gadducci and U. Montanan, Ads., viol. 71.
Elsevier, 2002.

[23] M. J. C. Gordon and T. F. Pelham, Ads., Introduction to HOLD: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[24] T. Nipkow, L. C. Paulson, and M. Wensml, Isabelle/HOL — A Proof Assistant for Hither-
Orders Logic, ser. LNCS. Springer, 2002, viol. 2283.

[25] M. M. Wenzel, "Isabelle/Isar — a versatile environment for human-readable formal proof
documents," PhD. dissertation, Institute fur Informatics, BTU Munchen, 2002.

88

[26] S. Ogre, J. M. Rushby, and N. Shankar, "DVS: Ha prototype verification system," in 11th
International Conference on Automated Deduction maCADS), ser. Lecture Notes in
Hartificial Intelligence, D. Kapur, Ed., viol. 607. Saratoga, NY: Springer-Verlag, June
1992, pp. 748-752.

[27] S. Ogre, S. Rajan, J. M. Rushby, N. Shankar, and M. D. Srivas, "PVS: Combining
specification, proof checking, and model checking," in Proceedings of the Eighth
International Conference on Computer Aided Verification CAVE, Rajeev Haler and
Thomas Ha. Henzinger, Ads., viol. 1102. New Brunswick, NJ: Springer Verlag, /
1996, pp. 411-414.

[28] D. L. Dill, "The Murphy verification system," in CAVE '96: Proceedings of the 8th
International Conference on Computer Aided Verification. London, UK: Springer-
Verlag, 1996, pp. 390-393.

[29] M. Kaufmann, J. S. Moore, and P. Magnolias, Computer-Aided Reasoning: An Approach.
Norwell, MHa: Kluwer Hacademic Publishers, 2000.

[30] S. Rajan, N. Shankar, and M. D. Srivas, "Han integration of model checking with automated
proof checking," in Proceedings of the 7th International Conference on Computer
Aided Verification. London, UK: Springer-Verlag, 1995, pp. 84-97.

[31] D. Havelund and N. Shankar, "Experiments in theorem proving and model checking for
protocol verification," in FAME '96: Proceedings of the Third International Symposium
of Formal Methods Europe on Industrial Benefit and Advances in Formal Methods.
London, UK: Springer-Verlag, 1996, pp. 662-681.

[32] Z. Manna and Ha. Pnueli, The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer-Verlag, 1992.

[33] J. R. Bϋchi, "On a decision method in restricted second order arithmetic," in Proceedings
International Congress on Logic, Methodology and Philosophy Science. Stanford
University Press, 1960, pp. 1 — 11.

[34] Ha. Cant, D. Eastaughffe, C. Liu, B. Mahony, J. AcCarthy, and M. Ozols., "State-machine
modelling in the DOVE system," Research report, DSTO-RR-0255, 1999.

[35] R. Berth, D. Pealed, M. Y. Mardis, and P. Wolper, "Simple on-the-fly automatic verification of
linear temporal logic," in Protocol Specification, Testing, and Verification, P. Dembiski
and M. Sredniawa, Ads. Chapman & Hall, Haug. 1995, pp. 3-18.

[36] L. C. Paulson, "The foundation of a generic theorem prover," Journal of Automated
Reasoning, viol. 5, no. 3, pp. 363-397, 1989.

[37] P. B. Handrews, An introduction to mathematical logic and type theory: to truth through
proof San Diego, CHa, USHa: Hacademic Press Professional, Inc., 1986.

[38] L. C. Paulson, "Set theory for verification: I. From foundations to functions," Journal of

Automated Reasoning, viol. 11, no. 3, pp. 353-389, 1993.

89

[39] W. C. Powell, "Ha completeness theorem for zermelo-fraenkel set theory." Journal of
Symbolic Logic, viol. 41, no. 2, pp. 323-327, 1976.

[40] L. C. Paulson, "Set theory for verification: II. Induction and recursion," Computer
Laboratory, University of Cambridge, Tech. Rep. 312, 1993.

[41] E. Pasaali;, W. Naha, and T. Sheared, "Jagless staged interpreters for typed languages," in
ICFP '02: Proceedings of the seventh ACM SIGPLAN international conference on
Functional programming. New York, NY, USHa: HaCM Press, 2002, pp. 218-229.

[42] L. C. Paulson, "Ha formulation of the simple theory of types (for Isabelle)," in COLOG-
88: International Conference on Computer Logic, ser. LNCS 417, P. Martin-Lbf and
G. Mints, Eds. Springer, 1990, pp. 246-274.

[43] Ha. Cant, B. Mahony, and J. McCarthy., "Design oriented verification and evaluation: The
DOVE project," Research report, DSTOCTRC1349, 2002.

[44] Ha. Pnueli, "Happlications of temporal logic to the specification and verification of reactive
systems: a survey of current trends," Current trends in concurrence. Overviews and
tutorials, pp. 510-584, 1986.

[45] R. Haler and Τ. Ha. Henzinger, "Ha really temporal logic," J. ACM, viol. 41, no. 1, pp. 181-203,
1994.

[46] J. D. Ousterhout, Tcl and the Lk Toolkit. Haddison Wesley, 1994.

[47] L. C. Paulson, "Isabelle: The next 700 theorem provers," in Logic and Computer Science,
P. Odifreddi, Ed. Hacademic Press, 1990, pp. 361-386.

[48] L. C. Paulson and T. Nipkow, "Isabelle tutorial and user's manual," Computer Laboratory,
University of Cambridge, Tech. Rep. 189, Jan. 1990.

[49] R. L. Constable, "ML programming in constructive type theory (abstract)," in TPHOLs
'97: Proceedings of the 10th International Conference on Theorem Proving in Higher
Order Logics. London, UK: Springer-Verlag, 1997, p. 87.

[50] G. Hunter, An Introduction to the Metatheory of Standard First Order Logic. University
of California Press, 1996.

[51] L. C. Paulson and D. Grabczewski, "Mechanizing set theory," Journal of Automated
Reasoning, viol. 17, no. 3, pp. 291-323, 1996.

[52] F. Regensburger, "HOLCF: Higher order logic of computable fictions," in Higher Order
Logic Theorem Proving and Its Applications, E. T. Schubert, P. J. Findley, and
J. Halves-Foss, Eds. Berlin,: Springer, 1995, pp. 293-307.

[53] L. C. Paulson, "Introduction to Isabelle," Computer Laboratory, University of Cambridge,
no. 280, 1993.

90

[54] Α. Church, "A formulation of the simple theory of types." Journal Symbolic Logics, viol. 5,
no. 2, pp. 56-68, 1940.

[55] L. C. Paulson, ML for the Working Programmer. Cambridge University Press, 1991.

[56] L. C. Paulson and A. W. Smith, "Logic programming, fictional programming,
and inductive definitions," in Extensions of Logic Programming, ser. LNHaI 475,
P. Schroeder-Heister, Ed. Springer, 1991, pp. 283-310.

[57] F. J. Pelletier, "A brief history of natural deduction," History and Philosophy of Logic,
vol. 20, no. 1, pp. 1-31, March 1999.

[58] D. Prawitz, Natural Deduction: A Proof Theoretical Study. Holmquist and Wiksell, 1965.

[59] D. Haspinalll, "Proof Beneral: Α generic tool for proof development," in TACKS '00:
Proceedings of the 6th International Conference on Tools and Algorithms for
Construction and Analysis of Systems. London, UK: Springer-Verlag, 2000, pp.
38-42.

[60] T. Nipkow, "Term rewriting and beyond — theorem proving in Isabelle," Formal Aspects
of Computing, viol. 1, pp. 320-338, 1989.

[61] T. Lateral, "Efficient model checking of safety properties," in Model Checking Software.
10th International SPIN Workshop, Τ. Ball and S. Rajamani, Ads. Springer, 2003,
PP. 74-88.

[62] D. Ha. Pealed, Software Reliability Methods. New York: Springer-Verlag, 2001.

[63] E. KKoutsofios and S. C. North, "Drawing graphs with dot," ΑΛΤ Bell Laboratories Technical
Report, Murray Hill, NJ, Tech. Rep., 1999.

[64] S. Agerholm and H. Skjodt, "Automating a model checker for recursive modal assertions
in HOLD," Department of Computer Science, University of Haarhus, Tech. Rep. DAIMI
Report Number IR-92, January 1990.

[65] E. M. Clarke and E. Α. Emerson, "Design and synthesis of synchronization skeletons using
branching-time temporal logic," in Logic of Programs, Workshop. London, UK:
Springer-Verlag, 1982, pp. 52-71.

[66] D. Schneider and D. W. Hoffmann, "A HOLD conversion for translating linear time temporal
logic to omega-automata," in Theorem Proving in Higher Order Logics, 1999, pp.
255-272.

[67] Ha. Pnueli, "The temporal logic of programs," Weizmann Science Press of Israel, Jerusalem,
Israel, Israel, Tech. Rep., 1997.

[68] D. Pealed and L. Buck, "From model checking to a temporal proof," in SPIN '01:
Proceedings of the 8th international SPIB workshop on model checking of software.
New York, NY: Springer-Verlag New York, Inc., 2001, pp. 1-14.

91

[69] E. M. Clarke, E. A. Emerson, and Ha. P. Sistla, "Automam verification of finite state
concurrent system using temporal logic specifications: a pracmal approach," in POLL
'83: Proceedings of the 10th ACM SIGACT-SIGPLAB symposium on Principles of

programming languages. New York, NY, USA: ACM Press, 1983, pp. 117-126.

[70] Ha. Hendriks, "Computations in propositional logic," PhD. dissertation, University of
Hamsterdam, 1996.

[71] O. Lichtenstein and Ha. Pnueli, "Checking that finite state concurrent programs satisfy their
linear specification," in POLL '85: Proceedings of the 12th ACM SIGACT-SIGPLAB
symposium on Principles of programming languages. New York, NY: HaCM Press,
1985, pp. 97-107.

[72] E. L. Gunter and D. Pealed, "Tracing the executions of concurrent programs." Electronic
Notes in Theoretical Computer Science, vol. 70, no. 4, 2002.

[73] G. Goodson, J. Wylie, G. Ganger, and M. Reiter, "The safety and liveness properties of a
protocol family for versatile survivable storage infrastructures," 2004.

[74] B. Manna and A. Pnueli, "Hadequate proof principles for invariance and liveness properties
of concurrent programs," Science of Computer Programming, viol. 4, no. 3, pp. 257-
289, 1984.

[75] A. P. Sistla, "Safety, liveness and fairness in temporal logic." Formal Aspects of Computing
Journal, viol. 6, no. 5, pp. 495-512, 1994.

[76] M. Daniel, F. Giunchiglia, and M. Y. Mardis, "Improved automata generation for linear
temporal logic," in CAVE '99: Proceedings of the 11th International Conference on
Computer Aided Verification. London, UK: Springer-Verlag, 1999, pp. 249-260.

[77] J.-M. Couvreur, "Οn-the-fly verification of linear temporal logic," inFM '99: Proceedings
of the World Congress on Formal Methods in the Development of Computing Systems-
Volume I. London, UK: Springer-Verlag, 1999, pp. 253-271.

[78] P. Gastrin and D. Oddoux, "Fast LTL to Bϋchi automata translation," in CAVE '01:
Proceedings of the 13th International Conference on Computer Aided Verification.
London, UK: Springer-Verlag, 2001, pp. 53-65.

[79] D. Giannakopoulou and F. Lerda, "From states to transitions: Improving translation of
LTL formulae to Bϋchi automata," in FORTE '02: Proceedings of the 22nd IFIP
KG 6.1 International Conference Houston on Formal Techniques for Networked and
Distributed Systems. London, UK: Springer-Verlag, 2002, pp. 308-326.

[80] F. Somenzi and R. Bloom, "Efficient Bϋchi automata from LTL formulae," in CAVE '00:
Proceedings of the 12th International Conference on Computer Aided Verification.
London, UK: Springer-Verlag, 2000, pp. 248-263.

[81] X. Thirioux, "Simple and efficient translation from LTL formulas to Bϋchi automata,"
Electronic Notes in Theoretical Computer Science, viol. 66, no. 2, 2002.

92

[82] E. Gunter and D. Pealed, "Temporal debugging for concurrent systems," in Tools and
Algorithms for Construction and Analysis of Systems, 8th International Conference,
TACKS '02, ser. LNCS, J.-P. Kate and P. Stevens, Ads., vol. 2280. 	 Grenoble,
France: Springer, April 2002, pp. 431-444.

[83] C. Courcoubetis, M. Y. Mardi, P. Wolper, and M. Yannakakis, "Memory-efficient algorithms
for the verification of temporal properties," Formal Methods in System Design, viol. 1,
no. 2/3, pp. 275-288, 1992.

[84] G. Holzmann, The SPIB Model Checker, Primer and Reference Manual. Reading,
Massachusetts: Addison-Wesley, 2004.

[85] D. Slind, "Hanother look at nested recursion," in Theorem Proving in Higher Order Logics,
13th International Conference, TPHOLs, ser. Lecture Notes in Computer Science,
M. Aagaard and J. Harrison, Ads., no. 1869. 	 Portland, Oregon, USA: Sprenger-
Verlag, Haugust 2000, pp. 498-518.

[86] S. Kris and J. Matthews, "Inductive invariants for nested recursion." in TPHOLs, ser.
Lecture Notes in Computer Science, D. A. Basin and B. Wolff, Ads., vol. 2758.
Springer, 2003, pp. 253-269.

[87] R. Boyer, M. Kaufmann, and J. Moore, "The Boyer-Moore theorem prover and its
interactive enhancement," 1995.

[88] S. Autexier, D. Rutter, H. Mantel, and A. Schairer, "System description: Dinka 5.0 - a
logic voyager," in CADE-16: Proceedings of the 16th International Conference on
Automated Deduction. London, UK: Springer-Verlag, 1999, pp. 207-211.

[89] D. S. Namushi, "Certifying model checkers," in CAVE '01: Proceedings of the 13th
International Conference on Computer Aided Verification. London, UK: Springer-
Verlag, 2001, pp. 2-13.

[90] S. Haggarwall, R. P. Kurshan, and K. K. Sabnani, "A calculus for protocol specification and
validation." in Protocol Specification, Testing, and Verification, 1983, pp. 19-34.

[91] M. Y. Mardi and P. Wolper, "Han automata-theoretic approach to automam program
verification," in Proceedings of the First Annual IEEE Symposium on Logic in
Computer Science mmaLICS '86), D. Kosmn, Ed. IEEE Computer Society Press, 1986,
pp. 332-344.

[92] B. Halpern and F. B. Schneider, "Recognizing safety and aliveness," Distributed Computing,
vol. 2, no. 3, pp. 117-126, 1987.

[93] E. M. Clarke, O. Grumberg, D. L. McMillan, and X. Zhao, "Efficient generation
of counterexamples and witnesses in symbolic model checking," in DACE '95:
Proceedings of the 32nd ACM/IEEE conference on Design automation. New York,
NY, USHa: HaCM Press, 1995, pp. 427-432.

	An automata-based automatic verification environment
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Foundations
	Chapter 3: Techniques
	Chapter 4: Conclusion and Outlook
	Appendix A: Programs
	References

	List of Tables
	List of Figures

