462 research outputs found

    Being there: capturing and conveying noisy slices of walking in the city.

    Get PDF
    The practice of walking allows us to engage with the city slowly, through kinaesthetic skill and the multisensorial apparatus of the body. Studying the city through this immersed practice-on-the-move facilitates attention to the direct contact with the urban environment, and hence brings forth analytical orientations that highlight 'being there' on the move. Indeed, if not including immersed experiences of mobility, fluidity, and contingency in the study of the city, we run a risk of losing sight of the actual complex and multiple cities, we live in. The paper explores how immersed and creative visual methods might be used to capture and convey the city through walking. It reports on two field studies, which sought to provide records of walking, contribute to embrace mundane phenomena that tend to be less considered, and support experientially-informed approaches in urban design, planning and decision making. It offers a discussion on the capture and convey of 'noise'—the movement and activity that is often omitted from visual digital accounts, the 'slices' acknowledging the partial and situated nature of the urban records, and the limits of visual methods in the attempt to not only capture and represent, but also animate the city through these methodological accounts

    Virtual humans: thirty years of research, what next?

    Get PDF
    In this paper, we present research results and future challenges in creating realistic and believable Virtual Humans. To realize these modeling goals, real-time realistic representation is essential, but we also need interactive and perceptive Virtual Humans to populate the Virtual Worlds. Three levels of modeling should be considered to create these believable Virtual Humans: 1) realistic appearance modeling, 2) realistic, smooth and flexible motion modeling, and 3) realistic high-level behaviors modeling. At first, the issues of creating virtual humans with better skeleton and realistic deformable bodies are illustrated. To give a level of believable behavior, challenges are laid on generating on the fly flexible motion and complex behaviours of Virtual Humans inside their environments using a realistic perception of the environment. Interactivity and group behaviours are also important parameters to create believable Virtual Humans which have challenges in creating believable relationship between real and virtual humans based on emotion and personality, and simulating realistic and believable behaviors of groups and crowds. Finally, issues in generating realistic virtual clothed and haired people are presente

    High Performance Textiles

    Get PDF
    High-performance or hi-tech textiles represent the keystone of the present and the future for all industrial sectors, which require lightening, flexibility, and the high mechanical resistance as well as thermal stability of the materials. As described within this Special Issue, the applications of these advanced systems are innovative and also highly technological: from water-repellent to stain-resistant fabrics, from being flame-resistant to antibacterial/antifouling, from being insulating to conductive, and from environmental protection systems to smart textiles. High-performance textiles also meet all of the actual requirements of sustainability and environmental protection of modern industry

    New fortuitous materials for luminescence dosimetry following radiological emergencies

    Get PDF
    The effective management of radiological emergencies where members of the public not carrying conventional dosimeter have been exposed to doses of ionising radiation requires individual dose estimates to support medical triage. Biological and physical methods have been developed to address this issue. New materials and techniques have been sought to reinforce preparedness for such emergencies. Alternative materials, such as clothing, shoes, paper, plastic items, nail polish or banknotes were investigated using thermoluminescence (TL) and optically stimulated luminescence (OSL). Most of the materials and fabric tested exhibited either no detectable response to dose using luminescence technique, or a weak response yielding detection limits above 2 Gy, with the exceptions of a blue polyester fabric responding to infra-red stimulated luminescence (IRSL) and some types of polymer-based fabric that were found to have luminescence favourable characteristics for short - term dosimetry and particularly those containing mineral fillers. The most promising were fabrics containing calcium carbonate fillers, where the TL response to β radiations was measured with a detection limit as low as 4 mGy, and a relatively low native signal in the region of interest (≤ 200 °C). The fading was found to be slower for samples stored at -15 °C compared with samples stored at ambient temperature. A blind test was carried out and confirmed the potential of bags containing calcium carbonate fillers to provide reliable dose estimate for radiological triage. Furthermore, the TL signal of calcium carbonate fillers contained in the fabric of bags offers several advantages for accident dosimetry compared with other methods, such as a rapid dose assessment, the low cost value of the material and availability, and the possibility to map radiological doses is the fabric covers sufficient surface

    Life cycle monitoring of composite aircraft components with structural health monitoring technologies

    Get PDF
    Life cycle monitoring could considerably improve the economy and sustainability of composite aircraft components. Knowledge about the quality of a component and its structural health allows thorough exploitation of it’s useful life and offers opportunity for optimization. Current life cycle monitoring efforts can be split in two main fields 1) process monitoring and 2) structural health monitoring with little overlap between them. This work aims to propose an integral monitoring approach, enabling entire life monitoring with the same sensor. First, the state of the art of both composite manufacturing as well as structural health monitoring technologies is presented. Piezoelectric sensors have been ruled out for further investigation due their brittleness. Fiber optical sensors and electrical property-based methods are further investigated. Distributed fiber optic sensors have been successfully used in composite manufacturing trials. Two processes were demonstrated: vacuum assisted resin transfer molding and resin infusion under flexible tooling. Due to their flexibility, optical fibers can survive the loads occurring during manufacturing and deliver valuable insights. It is shown for the first time numerically and experimentally, that fiber bed compaction levels and volume fractions can be calculated from the optical frequency shift measured by the optical fiber sensors. The same sensor was used for subsequent structural health monitoring. This proves that the gap between process monitoring and structural health monitoring can be closed with mutual benefits in both areas. The final chapter presents a novel electrical property-based sensing technique. The sensors are highly flexible and manufactured with a robot-based 3D-printing method. They are shown to reliably work as strain sensors and crack detectors. This work presents a thorough investigation of available and novel sensing technologies for process monitoring and structural health monitoring settings. The results obtained could pave the way to more efficient aircraft structures.Open Acces

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue Geräteklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berührungsempfindlichen Oberflächen berücksichtigen kaum haptische Qualitäten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen Fähigkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische Gegenstände des Alltags digital zu erweitern und anhand geeigneter Designparameter und Entwurfsräume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie Materialität und Digitalität nahtlos ineinander übergehen können. Es soll erforscht werden, wie künftige Benutzungsschnittstellen nützliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden Ansätze wirft jedoch übergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstützen? Für eine systematische Untersuchung stützt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln über visuelle Erweiterungen von Uhrarmbändern bis hin zu neuartigen Prototyping-Tools für intelligente Kleidungsstücke. Um neue Designansätze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-Eingabemodalitäten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu überdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch übergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten

    Bidirectional Texture Functions: Acquisition, Rendering and Quality Evaluation

    Get PDF
    As one of its primary objectives, Computer Graphics aims at the simulation of fabrics’ complex reflection behaviour. Characteristic surface reflectance of fabrics, such as highlights, anisotropy or retro-reflection arise the difficulty of synthesizing. This problem can be solved by using Bidirectional Texture Functions (BTFs), a 2D-texture under various light and view direction. But the acquisition of Bidirectional Texture Functions requires an expensive setup and the measurement process is very time-consuming. Moreover, the size of BTF data can range from hundreds of megabytes to several gigabytes, as a large number of high resolution pictures have to be used in any ideal cases. Furthermore, the three-dimensional textured models rendered through BTF rendering method are subject to various types of distortion during acquisition, synthesis, compression, and processing. An appropriate image quality assessment scheme is a useful tool for evaluating image processing algorithms, especially algorithms designed to leave the image visually unchanged. In this contribution, we present and conduct an investigation aimed at locating a robust threshold for downsampling BTF images without loosing perceptual quality. To this end, an experimental study on how decreasing the texture resolution influences perceived quality of the rendered images has been presented and discussed. Next, two basic improvements to the use of BTFs for rendering are presented: firstly, the study addresses the cost of BTF acquisition by introducing a flexible low-cost step motor setup for BTF acquisition allowing to generate a high quality BTF database taken at user-defined arbitrary angles. Secondly, the number of acquired textures to the perceptual quality of renderings is adapted so that the database size is not overloaded and can fit better in memory when rendered. Although visual attention is one of the essential attributes of HVS, it is neglected in most existing quality metrics. In this thesis an appropriate objective quality metric based on extracting visual attention regions from images and adequate investigation of the influence of visual attention on perceived image quality assessment, called Visual Attention Based Image Quality Metric (VABIQM), has been proposed. The novel metric indicates that considering visual saliency can offer significant benefits with regard to constructing objective quality metrics to predict the visible quality differences in images rendered by compressed and non-compressed BTFs and also outperforms straightforward existing image quality metrics at detecting perceivable differences

    Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus

    Get PDF
    This is an open access book. It gathers the first volume of the proceedings of the 31st edition of the International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2022, held on June 19 – 23, 2022, in Detroit, Michigan, USA. Covering four thematic areas including Manufacturing Processes, Machine Tools, Manufacturing Systems, and Enabling Technologies, it reports on advanced manufacturing processes, and innovative materials for 3D printing, applications of machine learning, artificial intelligence and mixed reality in various production sectors, as well as important issues in human-robot collaboration, including methods for improving safety. Contributions also cover strategies to improve quality control, supply chain management and training in the manufacturing industry, and methods supporting circular supply chain and sustainable manufacturing. All in all, this book provides academicians, engineers and professionals with extensive information on both scientific and industrial advances in the converging fields of manufacturing, production, and automation

    Celebrating and Practicing Aspects from Eastern- and Western-Centric Animation Styles

    Get PDF
    Animation styles in a modern world end up influencing the animation of other regions. This project, through animation, celebrates Eastern and Western differences in their animations. Rather than analyzing story differences, aspects of the habits formed by the region’s animators are analyzed and practiced. The formation of animation in respective cultures represents the local history of these regions. So to understand the aspects & technicalities of how animators animate per region, it is useful to understand how film, TV, & comic styles of an entire community impacted that area’s animatio

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    • …
    corecore