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Abstract
As one of its primary objectives, Computer Graphics aims at the simulation of fabrics’

complex reflection behaviour. Characteristic surface reflectance of fabrics, such as high-

lights, anisotropy or retro-reflection arise the difficulty of synthesizing. This problem can

be solved by using Bidirectional Texture Functions (BTFs), a 2D-texture under various

light and view direction. But the acquisition of Bidirectional Texture Functions requires

an expensive setup and the measurement process is very time-consuming. Moreover, the

size of BTF data can range from hundreds of megabytes to several gigabytes, as a large

number of high resolution pictures have to be used in any ideal cases.

Furthermore, the three-dimensional textured models rendered through BTF rendering

method are subject to various types of distortion during acquisition, synthesis, compres-

sion, and processing. An appropriate image quality assessment scheme is a useful tool

for evaluating image processing algorithms, especially algorithms designed to leave the

image visually unchanged.

In this contribution, we present and conduct an investigation aimed at locating a robust

threshold for downsampling BTF images without loosing perceptual quality. To this

end, an experimental study on how decreasing the texture resolution influences perceived

quality of the rendered images has been presented and discussed.

Next, two basic improvements to the use of BTFs for rendering are presented: firstly,

the study addresses the cost of BTF acquisition by introducing a flexible low-cost step

motor setup for BTF acquisition allowing to generate a high quality BTF database taken

at user-defined arbitrary angles. Secondly, the number of acquired textures to the percep-

tual quality of renderings is adapted so that the database size is not overloaded and can

fit better in memory when rendered.

Although visual attention is one of the essential attributes of HVS, it is neglected

in most existing quality metrics. In this thesis an appropriate objective quality metric

based on extracting visual attention regions from images and adequate investigation of

the influence of visual attention on perceived image quality assessment, called Visual

Attention Based Image Quality Metric (VABIQM), has been proposed.

The novel metric indicates that considering visual saliency can offer significant ben-

efits with regard to constructing objective quality metrics to predict the visible quality

differences in images rendered by compressed and non-compressed BTFs and also out-

performs straightforward existing image quality metrics at detecting perceivable differ-

ences.
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Kurzfassung
Eines der Hauptziele der Computergrafik ist die Simulation komplexer Reflexionsver-

halten von Stoffen. Die charakteristische Oberflächenreflexion von Stoffen, wie z. B.

Lichterscheinungen, Anisotropie oder Retroreflexion, führen zu Schwierigkeiten bei der

Synthese. Dieses Problem kann durch die Verwendung von Bidirektionalen Texturfunk-

tionen (BTF) gelöst werden, welche eine 2D-Textur unter verschiedenen Licht- und

Blickrichtungen ist. Die Akquisition von Bidirectional Texture Functions erfordert je-

doch teure Roboter-Apparate/Konfigurationen. Der Messvorgang ist sehr zeitaufwendig.

Darüber hinaus kann die Größe von BTF-Daten von hunderten von Megabytes bis zu

mehreren Gigabytes reichen, da im idealen Fall eine große Anzahl von Bildern mit ho-

her Auflösung verwendet werden soll. Darüber hinaus, während der Erfassung, Synthese,

Komprimierung und Verarbeitung, unterliegen die dreidimensional texturierten Model-

le, die durch das BTF-Rendering-Verfahren gerendert werden, verschiedenen Arten der

Verzerrung. Ein geeignetes Bildqualitätsbewertungsschema ist ein nützliches Werkzeug

zur Bewertung von Bildverarbeitungsalgorithmen. Insbesondere von Algorithmen, die

entworfen sind, um das Bild visuell unverändert zu lassen.

In diesem Beitrag haben wir eine Untersuchung vorgestellt und beschrieben, die dar-

auf abzielt, eine robuste Schwelle für die Heruntertaktung von BTF-Bildern zu finden,

ohne die Wahrnehmungsqualität zu verlieren. Zu diesem Zweck wurde eine (experimen-

telle) Studie durchgeführt mit dem Ziel, den Einfluss (von) der Verringerung der Tex-

turauflösung auf die wahrgenommene Qualität der gerenderten Bilder zu kontrollieren.

Als nächstes wurden zwei grundlegende Verbesserungen der Verwendung von BTFs

für das Rendering vorgestellt: Erstens befasst sich die Studie mit den Kosten der BTF-

Akquisition durch Nutzung flexibler kostengünstiger Schrittmotoren für die benutzer-

definierte und Winkel genaue BTF-Akquisition (um eine qualitativ hochwertige BTF-

Datenbank zu generieren). Zweitens wurde die Anzahl der erfassten Texturen an die

Wahrnehmungsqualität von Renderings angepasst, so dass die Datenbank bei Größe

nicht überlastet wird und beim Rendern besser in den Speicherplatz passt.

Obwohl die visuelle Aufmerksamkeit eine der wesentlichen Eigenschaften des

menschlichen Sehsystems ist, wird sie in den meisten existierenden Qualitätsmetriken

vernachlässigt. In dieser Arbeit wurde eine geeignete objektive Qualitätsmetrik, ba-

sierend auf dem Extrahieren von visuellen Aufmerksamkeitsregionen aus Bildern und

adäquater Untersuchung des Einflusses der visuellen Aufmerksamkeit auf die wahrge-

nommene Bildqualität vorgeschlagen, die als Visual Attention Based Image Quality Me-

tric (VABIQM) bezeichnet wird.

Die neuartige Metrik zeigt an, dass die Berücksichtigung der visuellen Ausprägung
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Kurzfassung

signifikante Vorteile in Bezug auf die Konstruktion objektiver Qualitätsmetriken bieten

kann, um die sichtbaren Qualitätsunterschiede in Bildern, die durch komprimierte und

nicht-komprimierte BTFs wiedergegeben werden, vorherzusagen und übertrifft direkt

existierende Bildqualitätsmetriken bei der Erkennung wahrnehmbarer Unterschiede.

vii



Acknowledgments
First and foremost, I would like to thank my first advisor Professor Doctor Charles A.
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Chapter 1

Introduction

”Science never solves a problem without creating ten more.”
(George Bernard Shaw)

As one of its primary objectives, Computer Graphics aims at the simulation of real

world materials’ complex reflection behaviour. Among different types of materials, par-

ticular importance is allotted to fabrics. Graphical simulation of fabrics is used not only

in interior design and architecture, but also increasingly in clothing, car, film, and com-

puter game industries. The art of rendering a virtual piece of cloth consists of two tasks:

the computation of the geometrical shape which consists of issues like draping, fric-

tion or collision detection; and modeling the reflection behaviour of the cloth. While

3D geometric modeling has advanced significantly in recent years, the measurement and

modeling of material appearance still remain as one of the strong challenges in todays

computer graphics research.

In obtaining highly realistic material rendering, the reflectance of a surface must be

simulated accurately. The exact description of how light reflects off a surface has long

been a topic of research in computer graphics.

Fabrics possess highly complex reflection behaviour, as reflection of the incoming

light changes dramatically from material to material, depending, among other factors, on

meso- and micro-structures of the thread and on the type of weaving, which influences

the position of the thread in the fabric, the interreflections between the components of

the fabric, and the surface and subsurface scattering of light. Fabrics exhibit not only

simple reflection characteristics, such as diffusion and specular reflection, but are char-

acterized also by thread-dependent highlights and self-shadowing, as well as anisotropic

reflections.

As a result of these effects, the surface reflectance of a material must be conducted

through a six-dimensional function and is neither easy to design nor easy to evaluate .

Bidirectional Texture Functions (BTFs), introduced by Dana et al. (1996), represent

an alternative solution to exact rendering: instead of implementing the complex model-

ing, pictures of the fabric taken at different illumination and viewing angles are used as
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Chapter 1 Introduction

textures for rendering, implicitly integrated into the rendering step and the reflectance

properties of the surface. A BTF contains all information on reflectance of a set of points

of a surface under a particular lighting and viewing condition.

In practice, BTFs use large collections of digitally acquired pictures of a material taken

at discretely varying illumination and viewing angles. When a simulation of the material

needs to be computed for rendering, the viewing and illumination vectors are used to

pick matching textures from the collection of scanned textures, and, if the angles do not

match the angles of the corresponding textures, neighbouring textures are interpolated at

the point to be rendered.

1.1 Motivation
The reasons why the usage of ordinary 2D textures is still more widespread is that the

state-of-the-art measurement devices require expensive robotic setups, and that the mea-

surement process is extremely time-consuming as direction-dependent parameters (light-

and view-direction) have to be controlled accurately, or poor data shall be yielded as the

final result. Moreover, the size of BTF data can range from hundreds of megabytes to

several gigabytes, as a large number of high resolution pictures have to be used in any

ideal cases.

For real-time rendering, this is a considerable disadvantage, as either the entire collec-

tion of pictures needs to be kept in the computer memory, or computationally expensive

methods have to be used to intelligently load/unload the textures.

Various past projects have therefore focused on efficient compression methods for

BTFs (including reflectance models based on linear factorization and pixel-wise bidirec-

tional reflection distribution functions, in short BRDFs, which are the general reflection

models from which BTFs are derived (Filip and Haindl (2009)).

While the existing approaches are often technically well motivated, we believe that,

before determining how compressed the BTF data must be, it makes sense to first take a

step back and see how many measured samples at what resolution are required to have the

same perceived quality when rendered, instead of using a complete database at the high-

est possible resolution, and how human observers perceive and judge compressed and

non-compressed BTF textures in comparison tasks . Specifically, we look at BTF-based

synthetic renderings of three-dimensional objects and explore under what circumstances

it makes sense to use high-resolution textures as high resolutions lead to a perceived

increase in texture quality, and also when one can do so with lower resolution textures

without any perceived loss in quality.

Furthermore, the three-dimensional textured models rendered through BTF rendering

method are subject to various types of distortion during acquisition, synthesis, compres-

sion, and processing. An appropriate image quality assessment scheme is a useful tool

for evaluating image processing algorithms, especially algorithms designed to leave the

image visually unchanged.

2
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Due to the fact that human observers are the ultimate users in most image-generating

applications, the most certain way of assessing the quality of an image is through

Subjective Quality Metrics. However, subjective evaluations are expensive and time-

consuming, rendering them impractical in real-world applications. Moreover, subjective

experiments are further complicated by many factors including viewing distance, dis-

play device, lighting condition, subjects vision ability, and subjects mood. Therefore,

it is necessary to design mathematical models that are capable of predicting the quality

evaluation of an average human observer.

To solve the problem properly, Objective Quality Metrics have been introduced. The

goal of these metrics is to design mathematical models that are able to predict the quality

of an image accurately and automatically. An ideal method should be able to mimic the

quality predictions of an average human observer. But there is still a lack of a rapid,

but pixel-precise approach, providing an acceptable and applicable measure of texture

similarity. Most of the image quality metrics deal with distortion in all sub-regions or

pixels equally. Whereas humans usually focus on highly salient regions in an image, our

sensitivity to distortions is significantly reduced outside these areas. Accordingly, distor-

tion occurring in any other area that does not gain viewers’ attention is less annoying and

may have a lower impact on the overall perceived quality. As a consequence, integrating

visual saliency and perceptual distortion features may be crucial for improving existing

image quality metrics.

1.2 Contribution
In this thesis, we present and conduct an investigation aimed at locating a robust thresh-

old for downsampling BTF images without loosing perceptual quality. Information about

the location of such a threshold is not only of importance to a better understanding of vi-

sual perception of textures, especially in object comparison tasks, but also of importance

for developing novel data compression methods in synthetic rendering.

Next, two basic improvements to the use of BTFs for rendering are presented: firstly,

the study addresses the cost of BTF acquisition by introducing a flexible low-cost step

motor setup for BTF acquisition allowing to generate a high quality BTF database taken

at user-defined arbitrary angles. Secondly, the number of acquired textures to the percep-

tual quality of renderings is adapted so that the database size is not overloaded and can

fit better in memory when rendered.

Additionaly, the study explores the applicability of image quality metrics to predict

levels of perception degradation for compressed BTF textures. To confirm the validity

of our study, the outcome of an experimental study on how decreasing the BTF texture

resolution influences the perceived quality of the rendered images is compared with the

results of the applied image quality metrics. Although visual attention is one of the es-

sential attributes of the Human Visual System (HVS), it is neglected in most existing

quality metrics, which is particularly rooted in the lack of methods with low computa-

3
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tional complexity for simulating visual attention mechanisms.

This thesis also proposes an appropriate objective quality metric based on extracting

visual attention regions from images, and investigates adequately the influence of vi-

sual attention on perceived image quality assessment. We expect that considering visual

saliency can offer significant benefits to constructing objective quality metrics for predic-

tion of visible quality differences in images rendered by compressed and non-compressed

BTFs.

1.3 Thesis Outline
The remainder of this thesis is structured as follows:

• Chapter 2 provides an overview on the techniques used in this work and intro-

duces radiometry and appearance of materials as functions of material interaction

with light.

• Chapter 3 covers the anatomical structure and the perceptual behavior of human

visual system and provides an overview on the general philosophy of two popular

and widely-used metrics for image quality assessment.

• In Chapter 4 presents and discuss an experimental study on how decreasing the

texture resolution influences perceived quality of the rendered images and deter-

mine the optimal downsampling of BTF data without significant loss of their per-

ceived visual quality.

• Chapter 5 presents a new low-cost programmable device for the rapid acquisition

of BTF datasets. Additionally, it will exhibit that using smaller resolution textures

and decreasing the samples in parameter space does not lead to a loss of picture

quality.

• Chapter 6 investigates the applicability of image quality metrics in predicting

levels of perception degradation for compressed BTF textures.

• Chapter 7 proposes an appropriate objective quality metric to predict the visible

quality differences in images rendered by compressed and non-compressed BTFs.

• Chapter 8 concludes the thesis and offers recommendations for further research.

4



Chapter 2

Reflectance Models of Textiles
The way an object is perceived is not only determined by its shape and position but

also by the illumination and its reflectance properties. Textiles represent a particular

challenge in realistic rendering. The main task while visualizing fabrics is to reconstruct

this highly complex reflection behavior. The reflection properties change from material

to material and are influenced by inter-reflections, surface and subsurface scattering. In

the following sections these effects will be explained in more detail.

To make the discussion more concrete, first the physical principles related to light

transport and common notations and definitions in radiometry will be introduced. Then

the different phenomena observed when light interacts with matter will be discussed. In

the end the reflectance representations such as the Bidirectional Reflectance Distribution

Function (BRDF) and the Bidirectional Texture Function (BTF) will be introduced.

2.1 Radiometry
Digital images synthesis is strongly related to the physics describing the transport of

light in space. Therefore some of basic radiometric terms and quantities needed for the

accurate description of light and shading models. At first the physical quantities are

defined that can be used to describe radiant energy transport, radiant energy, radiant flux

and radiant intensity.

Radiant Energy Q[J]

Radiant energy is the basic unit of radiometry. Max Planck showed that each photon

carries a discrete amount of energy which is proportional to its wavelength. The radiant

energy of a photon is Q = hv, where h is Plancks constant and v is the frequency of

radiation. The total radiant energy is the contribution of all photons over all wavelengths.

Radiant Flux φ [W ]

Radiant flux is the energy per time or power of radiation:

5
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φ =
dQ
dt

(2.1)

Radiant Intensity I[Wsr]

Radiant intensity is the radiant flux per unit solid angle:

I =
dφ
dw

(2.2)

Irradiance E[W/m2]

Irradiance is a special case of radiant intensity that describes the radiant energy per unit

area incident onto a differential surface pointx:

E(x) =
∫

Ω
Li(x,−→w )cosθd−→w =

dφ
dA

(2.3)

Radiosity B[W/m2]

Radiosity is another special case of radiant intensity that describes the radiant energy per

unit area leaving the surface at a differential surface point x:

B(x) =
∫

Ω
LO(x,−→w )cosθd−→w =

dφ
dA

(2.4)

Radiance L[W/(m2sr)]

Radiance is defined as the radiant energy traveling at some point in a given direction, per

projected unit area in this direction, per unit time, per unit solid angle. Radiance can be

expressed by the radiant flux:

L(−→x , ŵ) =
d2φ

cosθdwdA
(2.5)

where θ denotes the angle between the surface normal at point −→x and the direction

ŵ. For shading computation, radiance is one of the most important quantities since it

describes how many photons per time arrive at a differential area on a surface from a

specific direction.

2.2 Reflection Properties of Textiles
This section will take a closer look at the reflection properties of textiles, which are very

important for the realistic visualization of real word materials.
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Mesoscopic level 

Microscopic level 

Figure 2.1: Meso- and micro-structures of a woollen fabric.

2.2.1 Micro-geometry
The Micro-geometry of a textile is one of the major factors influencing its reflection

properties. At a close view the fine scale geometry of a textile becomes visible. At such

a close range the loops and weaves of the cloth are similar to hills and valleys, caused by

the interlocking of loops; even small holes can be recognized. It is also possible to deter-

mine the structure of the yarn, or even point out small fibers. As Lalonde and Fournier

(1997) stated, reflection effects of a surface cannot be captured by a single technique,

but should in fact be represented at different scales using a hierarchy consisting of three

levels: the microscopic level, the mesoscopic level and the macroscopic level (see Figure

2.1).

While the microscopic level encompasses all the very fine surface irregularities, e.g.

colored pigments and very small bumps, the mesoscopic level, consists of all larger,

visible surface irregularities which can be resolved and lead to spatial variation. Finally,

the macroscopic level represents large surface structures captured by the geometry of

object. The microgeometry of an object is important for the design of reflection models

for textiles, because its shape determines the interaction of light with the textile surface.

The radiance at a point depends on the points surface normal, as well as on visibility

information. Both the normal and the visibility of a surface are purely geometric terms

which can be calculated from detailed knowledge about the micro-geometry. In the next

section some complex reflection effects will be described which are typically exhibited

by textiles and therefore need to be accounted for.

7
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Figure 2.2: Shadowing and masking effects.

2.2.2 Shadowing and Masking
A point lies in shadow if an object occludes the light source from it. In other words, a ray

cast from the point in the direction of the light source will intersect the blocker before it

intersects the light source. Similarly, masking occurs if the ray cast from a point in the

direction of the viewer or camera intersects a blocker first. Seen from the cameras point

of view, the blocker is occluding the point. Both effects, shadowing and masking, play a

very important role in textiles.

There are two cases of shadowing. The first one is global shadowing effects. Global

shadowing effects occur if any general object casts shadows onto a textile, for instance a

tree casts shadows onto the sweater of the person in its shadow or if parts of the macroge-

ometry of the garment shadow other parts, for instance a sleeve casts a shadow onto the

front of a sweater. These shadows can be detected and handled just by considering the

garment’s geometry and the relative locations of objects and light sources. Algorithms

like shadow mapping can be used to compute these shadows. The second effect can be

called local shadowing, which are due to the height differences of the micro-geometry of

the textile. Local shadowing effects can occur when surface irregularities cast shadows

onto other parts of the micro-geometry (see Figure 2.2).

Obviously, these effects cannot be detected by a general shadowing algorithm with-

out any information about the textiles micro-geometry. Analogously, some parts of the

micro-geometry can be occluded by other parts from the viewpoint (Figure 2.2 on the

right). Occlusion of micro-geometry can have dramatic effects in certain regular weaves

where two colors of yarn are used side by side. At more gazing angles the yarn lying in

8
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Figure 2.3: Subsurface Scattering.

front will nearly completely obscure the yarn next to it, which leads to color shifts.

2.2.3 Subsurface Scattering
Some types of materials are not totally opaque at the surface, so light is not only re-

flected by the surface. Instead, some light also penetrates the surface and is reflected a

number of times at irregular angles inside the material, taking on the color of the insides

and emerging back out to blend with the surface reflection (Figure 2.3). This property

causes the substrate of the material to become visible. Furthermore, a characteristic of

subsurface scattering is that the angle of light which strikes the surface will not be equal

to the angle of reflection.

2.3 Reflectance Models
The following descriptions of the reflectance quantities mostly follow the convention of

Nicodemus et al. (1977). Similar descriptions can be found in Suykens et al. (2003),

Pharr et al. (2016) and Pont and Koenderink (2005).
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Figure 2.4: Geometry of surface reflection.

2.3.1 Bidirectional Scattering Surface Reflectance Distribution
Functions

Generally, when light interacts with matter, a photon strikes the surface and a photon

is leaving the surface. Each photon can be described by six parameters: the radiation

flux incident on a surface from the direction (θi, φi ), within the element of solid angle

dwi[sr]. The portion of the incident flux which hits an element of area dAi[m2] centered

at the point (xi, yi) will be denoted by dφi[w]. The incident flux is then reflected and

scattered before leaving the surface. Due to multiple (subsurface) scattering, the reflected

radiance may leave the surface at any location. The radiation flux leaves the surface in

the direction (θo,φo) and at a certain location (xo,yo). Let the time of interaction at

position (x,y) be t and the specific wavelength considered λ . To describe the general case

a twelve-dimensional function is needed (Figure 2.4).

(xi,yi,θi,φi, ti,λi)→ (xo,yo,θo,φo, to,λo) (2.6)

To simplify this function the dependency on time can be ignored, by assuming that

the photon is reflected instantaneously. A second simplification can be done by assum-

ing that the interaction of light with the material does not affect the wavelength of the

photon. Consequently the reflectance function is reduced to eight-dimensional. The re-

flected radiance, which comes from dφi, will be called dLo and is directly proportional

to dφi which equals Li ·Cosθidωi ·dA (Equation (2.7)). Although the exact form of light

transport is unspecified, dLo and dφi should be linearly related due to the linear nature of

reflections:
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Figure 2.5: The parameters of general light-material interaction.

dLo = S ·dφi = S ·Li · cosθidωi ·dA. (2.7)

The factor S depends on the location as well as the directions of the incoming and

outgoing rays, and is therefore an eight-dimensional quantity. The quantity S is called

the bidirectional scattering-surface reflectance distribution function (BSSRDF):

SBSSRDF8 = S(θi,φi,xi,yi,θo,φo,xo,yo). (2.8)

The BSSRDF describes the relationship between incoming irradiance and outgoing

radiance on a general surface and its unit is per steradian per meter squared [1/m2sr].
Given S and a complete description of incoming radiance from all directions, the out-

going radiance at every point of the surface can be completed. The BSSRDF is a very

general property of a surface and captures shadowing, masking and subsurface scattering.

But, its high dimensionality makes it very difficult to measure and use.

2.3.2 Bidirectional Reflectance Distribution Function
Assuming that the material is uniform, the BSSRDF S and the differential outgoing ra-

diance dLo will both be independent of the position (xo , yo). Without loss of generality,

the point of outgoing radiance (xo , yo) can be equal to (xi , yi). See Figure 2.5. We

assume here that the entire surface is irradiated by radiance Li (θi, φi), from direction (θi,

φi) over the solid angle element dwi:
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Lo(θi,φi,θo,φo)

=
∫

Ai

S(θi,φi,xi,yi,θo,φo) ·Li · cosθidωi ·dAi (2.9)

= Li · cosθidωi

∫
Ai

S(θi,φi,xi,yi,θo,φo)dAi.

Nicodemus et al. (1977) define the bidirectional reflectance distribution function

(BRDF) as:

ρ1(θi,φi,θo,φo) =
∫

Ai

S(θi,φi,xi,yi,θo,φo)dAi (2.10)

In this formula, the BRDF sums up all scattering contribution over the entire area.

Substituting into Equation (2.7) we obtain:

ρ1(θi,φi,θo,φo) =
dLo(θi,φi,θo,φo)

Li · cosθidωi
(2.11)

Intuitively, the BRDF relates the outgoing radiance at a particular location to the in-

coming irradiance on a nearby flat surface patch. Given the incoming irradiance over the

full hemisphere, the BRDF fully specifies the outgoing radiance in all directions. Since

the intensity of scattered rays falls off very quickly for many materials, one way to sim-

plify the BSSRDF is to completely ignore contributions from the neighborhood. In this

case, the BRDF can be seen as a part of the BSSRDF:

ρ2(θi,φi,θo,φo) = S(θi,φi,θo,φo) (2.12)

Bidirectional reflectance distribution functions can be classified into two classes,

namely anisotropic BRDFs and isotropic BRDFs.

Anisotropic BRDF

Schlick (1993) introduced the term Anisotropic BRDF with the following words. ”A

surface is called anisotropic when the BRDF is a function of the orientation of the sur-

face along its normal (i.e. the BRDF depends on angle φ )”. An anisotropic BRDF does

not remain constant when the incoming and outgoing angles are rotated. In this case, a

full four-dimensional function is necessary to characterize the behavior of the surface.

Anisotropic materials are frequently encountered when the surface has a strongly direc-

tional structure at small scale: brushed metals are one example of such materials.
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Even textiles with a spatially invariant BRDF will often have an anisotropic BRDF,

which is due to the microgeometry of woven or knitted clothing. A very good example

for this behavior is the satin weave. The structure of this weave is dominated by long

flowing weft threads. Clearly, these threads lie in a preferred direction, resulting in a non-

uniform distribution of the normal directions over the azimuth angles, and consequently

in an anisotropic BRDF.

Isotropic BRDF

As defined by Schlick (1993): ”when the BRDF at a point p does not change while the

surface is rotated around its normal vector at p (i.e. the BRDF does not depend on angle

φ ), the surface is called isotropic”. Some, but not all, BRDFs have this property, they are

unchanged if the incoming and outgoing vectors are rotated by the same amount around

the surface normal, which is in contrast to anisotropic BRDF. In this case, there is a

useful simplification that may be made: the BRDF is really a 3-dimensional function and

depends only on the difference between the azimuthally angles of incidence and exitance.

ρ2(θi,φi,θo,φo) = S(θi,θo,φo −φo) (2.13)

2.3.3 Bidirectional Texture Function
Dana et al. (1996, 1999) introduced the term bidirectional texture function (BTF) to

represent spatially-varying reflectance. With the BTF non-local subsurface scattering

effects are ignored or pre-integrated Lehtinen (2007). It encodes all other effects such as

shadowing, masking and multiple scattering. The BTF is a 6D quantity R(θi, φi,θo, φo,

x , y). Again it can be defined as the BSSRDF integrated over the incident locations or

simply a slice of the BSSRDF:

R1(θi,φi,θo,φo,x,y) =
∫

Ai

S(θi,φi,xi,yi,θo,φo,x,y)dAi

R2(θi,φi,θo,φo,x,y) = S(θi,φi,xi = x,yi = y,θo,φo,xi = x,yi = y)
(2.14)

Figure 2.6 shows the taxonomy of object appearance descriptions with different lev-

els of abstraction. Methods exist for interactive editing of measured BTF Kautz et al.
(2007), which enable us to change materials properties by several physically nonplausi-

ble operators.
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Figure 2.6: Taxonomy of appearance measurement (Rusinkiewicz and MARSCHNER

(2000)).
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2.4 Representation of Spatial Variation using 2D
Structures

Often the reflection properties of a surface cannot be modeled by a single, homogeneous

BRDF, because the reflection of the surface varies locally. In this section, methods will be

introduced which are able to capture spatial variation of the reflectance function. These

variations can be caused on the one hand by micro-geometry of the surface and on the

other hand by color variations.

The most simple example is standard texture mapping, where different surface loca-

tions map to different colours. Bump mapping (Blinn (1978)) simulates the effect of

surface roughness by perturbing the surface normal. Horizon mapping ( Max (1988) and

Sloan and Cohen (2000)) enhances bump mapping by handling self shadowing effects.

Heidrich et al. (2000) further improve micro-geometry rendering by efficient interreflec-

tion estimation using precomputed visibility. Displacement mapping Cook (1984) is typ-

ically not considered a reflectance technique since it changes the underlying geometry.

However, recent extensions (Wang et al. (2003a, 2016)) to displacement maps are ap-

plied at shading time. Occlusion and shadowing are precomputed to allow for interactive

rendering. While the above techniques offer different trade offs between computation

cost and quality, they all depend on accurate descriptions of the micro-geometry which

usually are unavailable and often difficult to acquire from real materials in most cases.

As a result, these techniques are often only applied to render synthetic materials.

2.4.1 View-Dependent Texture Mapping
While panoramas and mosaics are more tailored to allow free movement within an envi-

ronment, the following techniques concentrate more on the inspection of an object from

different viewpoints. Debevec et al. (1996) model architectural scenes from airborne

photo-graphs. The appearance of a surface is captured for a number of directions, stor-

ing a texture and its corresponding direction for each view. During rendering, the views

associated with the textures are compared to the current viewing direction, and the three

textures with the nearest views are selected. The appearance of the surface is recon-

structed by blending these three textures. The authors used photographs of buildings

to add surface detail onto fairly simple geometrical models and to capture their view-

dependent appearance.

Different metrics have been proposed to blend the pictures of multiple view-points

(Pulli et al. (1997) and Debevec et al. (1998)) to obtain the final image. Recently Matusik

et al. (2002) introduced a technique called image-based visual hulls. In their approach a

dynamic 3D model is captured using eight video cameras. Based on silhouette informa-

tion they infer 3D geometry to which view dependent texturing is applied. This method

is well suited for structured surfaces with a planar base geometry, as the reconstruction

of the relative viewing direction is easy for the planar case. For non-planar geometry,
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however, both the acquisition process, as well as the rendering process would become

more complex. View-dependent textures do not represent the dependency of the surface

appearance on the light direction.

2.4.2 Bidirectional Texture Functions
A very similar data structure, which additionally accounts for the light direction is Bidi-

rectional Texture Functions (BTFs). The Bidirectional Texture Functions was first intro-

duced by Dana et al. (1997) and has gained popularity recently. It describes the relation-

ship between incoming and outgoing radiance, without prescribing the means of light

transport inbetween. As a result, it is directly measurable and can be applied directly to

synthetic scenes. For a number of different sample surfaces, the authors acquired images

for varying combinations of light and viewing directions and published the results in the

Columbia-Utrecht Reflectance And Texture Database (1999) (CUReT).

BTFs are a very effective data structure to represent reflectance data. They are espe-

cially well suited to capture the appearance of real-world surfaces. However, the process

of acquiring a BTF for a real surface is extremely tedious. Firstly, the data needs to

be captured for a sufficiently large number of light and viewing directions, which often

requires several hours per surface sample.

After that, the image data usually needs to be edited before it can be used for render-

ing, because the images contain area foreshortened skewed versions of the texture, which

most rendering algorithms cannot handle. Liu et al. (2001) tackle the first problem by

introducing a method which uses a sparse BTF data set to synthesize images for miss-

ing light and viewing directions. Because of the large size of BTF data even at a low

sampling, there has been a great deal of previous work on compression methods. The

methods can be roughly divided into two groups.

While the first group treats the BTF as a spatially-varying BRDF, the second group

considers BTF as a general six-dimensional function and applies linear basis decompo-

sition for compression. McAllister et al. (2002) fit Lafortune et al. (1997) to each Texel

separately. The compressed data is very compact but the method is limited as a BRDF

model is not suitable for the complex shadowing and masking effects typical in a BTF.

To better handle the mesostructure, Daubert et al. (2001) add an extra multiplicative

view-dependent term to the Lafortune lobes. Meseth et al. (2004) further improve the

compression quality at the expense of space by fitting separate Lafortune lobes to the

BTF per pixel per view.

The other group of methods compresses BTF by basis decomposition or factorization.

Matusik et al. (2002) compress six-dimensional reflectance fields by applying principal

component analysis (PCA) on image blocks. Kautz and McCool (1999) factorize BTF

into product of 2D textures. Koudelka et al. (2003a) apply principal component analysis

(PCA) to the full six-dimensional matrix. Vasilescu and Terzopoulos (2004) arranged

the BTF into a 3-mode tensor and applied 3-mode SVD (singular value decomposition).

This allows for a more flexible compression by reducing view and light dimensions in-
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dependently. Compared to PCA this method leads to a higher root-mean-squared error,

but the authors claim that their method provides perceptually more satisfactory results.

BTFs are straightforward to be incorporated into both offline and online rendering

systems. For offline systems, the BTF represented as a collection of textures can be used

directly provided there is enough memory to hold the textures.

All the compression techniques mentioned previously can be used for interactive ren-

dering. The reduced data, either in the form of parameters for spatially-varying BRDFs,

or coefficients of linear bases, are stored in the texture units of the graphics hardware.

BTF shading can then be implemented in the programmable pixel shader.

Both view-dependent texturing and BTFs capture a surface’s view-dependent ap-

pearance by projecting the micro-geometry along the viewing direction onto a two-

dimensional texture.

This approach is well suited for capturing small and fairly flat surface structures. At

the silhouettes, however, artifacts will be clearly visible, especially for larger surface ir-

regularities, because both methods are incapable of reproducing the height of the surface

irregularities.

One of the major aims of this thesis is to build a new BTF measurement device which

allows acquiring images of a material from all possible angles of illumination and of

camera perspective. The acquired data can be applied directly to synthetic scenes. In

Chapter 5 we will introduce in detail all implementation steps from designing the device

until saving results in a tabulated BTFs database.
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Chapter 3

Perceptual Quality Metrics
As visual data are intended to be observed by humans, a knowledge of different aspects

of the anatomy and psychophysical features of the Human Visual System (HVS) can be

used to improve the performance of various computer graphics algorithms. This chapter

reviews the anatomy and relevant aspects of the human visual system that bear a sig-

nificant influence on visual perception, such as glare due to the eye optics, luminance

adaptation, contrast sensitivity and visual masking. It finally offers an overview of the

general philosophy of two popular and widely used metrics for image quality assessment.

Considering that all models in this thesis are luminance based, the aspects of human vi-

sion related to color perception are excluded in this section. This part of the thesis is

largely based on vision science books authored by Palmer (1999) and Wandell (1995),

which are recommended for a more complete and detailed description of the foregoing

issues.

3.1 The Human Visual System
Vision is a complex process that involve the interaction of numerous components of the

human eye and brain. Figure 3.1 illustrates the main components of the human eye,

namely; the iris, the lens, the pupil, the cornea, the retina and the optic nerves.

In the first stage the reflected rays of light pass through the eye and reach the retina.

The retina contains the neuron component of the eye. When light reaches the back of

the eye, it enters the cellular layer of the retina. The cells of the retina that detect and

respond to light are known as photoreceptors and are located at the back of the retina.

There are two types of photoreceptors; rods and cones.

Rods are extremely sensitive to light and dominate the low luminance scotopic vision,

whereas cones are responsible for color vision at high (photopic) levels. It explains why

we are able to have a high visual acuity and color perception under indoor lighting or

sunlight, albeit during the night we are highly sensitive to luminance difference. Both

rods and cones are responsible for vision at the mesopic range (see Figure 3.2).

Rods provide peripheral vision and are achromatic, but cones are tuned to see colors

under normal lighting condition. The fovea is the area of the retina with density packed

cones that provide the highest acuity vision that is at the center of human gaze. As the
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Figure 3.1: Anatomy of the eye.

distance from the fovea increases, the density of cones drops sharply, and the number of

rods increases.

Light activates the photoreceptors, which modulate the activity of bipolar cells. Bipo-

lar cells interconnect with ganglion cells located at the back of retina. Axons of ganglion

cells from the optic nerve carry information to the brain. Two types of neurons, hori-

zontal cells and amacrine cells, are primarily responsible for reaction within retina. The

bipolar cells and ganglion cells are organized in such a way that each cell responds to

the small circular patch of photoreceptors, which defines the cells’ respective field. The

respective field of ganglion cells consists of a roughly circular central area and a sur-

rounding ring. Ganglion cells have two types of receptive fields: on-center-off-surround

and off-center-on surround. The center and its surroundings are always antagonistic and

intend to cancel one another’s activity. When no light falls on the receptive field, a spon-

taneus level of activity is recorded from ganglion cells. But when the light enters the

surrounding region of the on-center ganglion cells, the level of activity recording in the

cell decreases. Conversely a spot of light in the center of the receptive field increases the

response rate. A maximum response of an on-center ganglion cell is achieved when the

entire center of the receptive field is illuminated. Likewise if only the surroundings is

illuminated by a ring of light, then the ganglion cell is maximally inhibited.

It is worth to note that if both regions are illuminated, then the response is just above

the base-line. This occurs as the effects on center are stronger then those on the sur-

roundings. The off-center on-surround behaves conversely, as illustrated in Figure 3.4.

As observed, the uniform illumination of the visual field is less effective as activating a

ganglion cell. This configuration makes the ganglion cells sensitive to different levels of
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Figure 3.2: The range of luminance in the natural environment and associated visual

parameters. From Ferwerda et al. (1996).

illumination crossing the receptive field or what is called contrast. The photo preceptor

cells are connected to ganglion cells, whose task is to transmit signals through the optic

nerve to lateral geniculate nucleus (LGN) before they are relayed to the visual cortex.

The human cortex is divided into six layers. The connection between these layers is

shown in Figure 3.3.

Primary visual cortex or the V1 layer is directly connected with LGN, and as observed,

this layer is responsible for the most complex visual processing and a large number of

neurons in V1 are highly specialized for processing information about static and moving

objects and are adapted to visual stimuli with specific spatial location, frequency, and

orientation.

V2 has many properties in common with V1: Cells are tuned to simple properties

such as orientation, spatial frequency, and color. The responses of many V2 neurons

are also modulated by more complex properties, such as the orientation of illusory con-

tours, binocular disparity (Von Der Heyclt et al. (1984); von der Heydt et al. (2000)) and

whether the stimulus is part of the figure or the background.

These areas then project to distinct higher-level areas of cortex: orientation to V3,

color to V4, motion to V5/MT, and depth to V6.

3.2 Psychophysical HVS Features
Despite the similarities between eyes and cameras in terms of optical phenomena, the

first and the foremost difference between an eye and a camera is in terms of perception.

Visual perception concerns the acquisition of knowledge, that is, vision is a fundamen-

tally cognitive activity ( Palmer (1999)), distinct from purely optical processes such as

photographic ones.
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Figure 3.3: The range of luminance in the natural environment and associated visual

parameters. From Ferwerda et al. (1996).

3.2.1 Luminance Adaptation
The human visual system is much more sensitive to relative differences in luminance

than the absolute luminance level. Our sensation is determined by the percentage of

difference in the luminance of a surface relative to its background. The luminance of

the background signal can mask the visibility of the difference signal. Light adaptation

allows the HVS to encode the contrast of the visual stimulus instead of the absolute light

intensity.

The image contrast is the ratio of the local intensity and the average image intensity.

The minimum contrast necessary for an observer to detect a change in intensity is called

a threshold contrast and is defined as

K =
ΔL
LB

,

ΔL = LO −LB,

(3.1)

where LO is the luminace of object and LB is the luminance of background and K is

also referred to in the psychophysical literature as the Weber fraction. Weber’s law holds

true over a wide range of background luminance and is not valid only at very low or high

light conditions.
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Figure 3.4: Retinal ganglion cell responses and contrast sensitivity function

3.2.2 Contrast Sensitivity
Figure 3.4 illustrates the neuronal response to cosinusoidal stimuli with various spatial

frequencies. In the first case (a), the spatial frequency is low, and the light falling on the

entire receptive field is almost constant. As a result, the neuron’s response will be low.

In the second case (b), the spatial frequency is high, and as a result, both positive and

negative parts of the cosinusoidal stimulus fall onto both the excitatory and inhibitory

regions, effectively cancelling each other out. The third case (c) shows that the highest

response is generated when the size of the grating matches a single region of the receptive

field. The overall change in sensitivity with respect to spatial frequency is plotted in
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Figure 3.4-left, and is known as the contrast sensitivity function (CSF).

The CSF describes how sensitive an observer is to sine wave gratings as a function of

their spatial frequency. Michelson contrast is defined as

C =
Lmax −Lmean

Lmean
, (3.2)

where Lmax and Lmean refer to the maximum and mean luminance.

The HVS is most sensitive to an intermediate range of spatial frequencies (around 4-

6 cycles/degree), and is less sensitive to spatial frequencies both lower and higher than

this. For foveal vision, the spatial CSF is typically modeled as a space invariant band-

pass function.

3.2.3 Visual Masking
Masking and Facilitation are other important aspects in modeling the HVS, which model

the interactions between different image components present at the same spatial location.

It has been observed in psychophysical experiments, that the presence of one image com-

ponent (known as mask) decreases or increases the visibility of another image component

(known as signal). The presence of the mask generally reduces the visibility of the test

signal. However, the opposite is also possible: the presence of a mask may sometimes

facilitate detection as well making as it easier to be seen. Usually, the masking effect is

strongest when the mask and the test signal have similar frequency content, orientations

and color (Winkler (2005)). Usually most of image quality metrics integrate one model

of masking or the other, while some incorporate facilitation as well (Lubin (1995)).

3.2.4 Visual Attention
The most important function of selective visual attention is directing gaze rapidly towards

objects of interest in the visual environment. This ability to orientate rapidly towards

salient objects in a cluttered visual scene is of evolutionary significance as it allows the

organism to quickly detect possible preys, mates or predators in the visual world.

The most important function of Visual Attention (VA) is to direct our gaze to the

objects of interest in the visual scene, which is facilitated using rapid, saccadic eye

movements. The attentional shift is guided by two main cues, namely, bottom-up and

top-down. The former is fast, saliency driven, and independent for a particular task. It

is understood that the bottom-up VA is performed in a pre-attentive manner across the

visual field (Itti and Koch (2001)). It is thus driven ’automatically’ by certain low-level

features that are experienced as visually salient. Top-down attention, on the other hand,

is highly dependent on the viewing task and as such, it is typically slower and requires

a voluntary effort to shift the gaze. Top-down attention is considered to have a mod-

ulatory effect on bottom-up attention (Treue (2003)) and as such, the two mechanisms
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together reach a point where the most relevant information is continuously favoured at

the expense of less relevant information.

Visual attention is guided by a large number of different low-level and high-level

attributes (Wolfe and Horowitz (2004)). Low-level attributes include, amongst others,

colour, shape, size, and the motion of objects. High-level attributes are based on seman-

tic information and include, for instance, faces and written text (Cerf et al. (2009)). An

earlier work suggests that the pre-attentive, salient features are predominant in guiding

attention (Wolfe et al. (1989)): however, more recent work indicates that higher-level

objects in fact have a stronger impact on VA (Einhäuser et al. (2008)).

Besides the visual attributes, VA has also been found to be highly dependent on the

viewing task (Castelhano et al. (2009)). For instance, if a visual scene is observed with-

out any task given, then the viewing behaviour is different as compared to the case where

a particular search goal is followed. In the context of visual quality assessment, such a

search may aim at the detection of visible distortions in natural scenes.

Top-down attention, which mainly accounts for the task influence (Betz et al. (2010)),

has been investigated less in comparison with bottom-up attention, and is thus not un-

derstood as well. This is partly due to top-down cues being strongly driven by higher

cognitive processes, whereas the saliency of the visual stimulus considerably supports

the understanding of bottom-up attention.

It is well known that what we look at does not necessarily represent what we set our

focus onto (Wolfe and Horowitz (2004)). We can, for instance, gaze at a particular point

in a visual field, but consciously attend another point in the periphery. Despite this fact,

eye tracking and VA were found to be strongly interlinked (Itti and Koch (2001)) and

thus, eye tracking experiments (Findlay and Kapoula (1991)) are widely used to measure

overt VA of human observers. Saliency maps (SM) created from eye tracking data are

instrumental as a ground truth for the design and validation of VA models.

3.2.5 Foveal Vision
Bottom-up approaches to image quality assessment are directly connected with the char-

acteristics of the HVS; while most of them concentrate on Foveal Vision, just a few

of them incorporate Peripheral Vision (Lubin (1993), Lubin (1995), Wang and Bovik

(2001)). Foveal vision is responsible for high- resolution vision, while peripheral vision

is a part of vision that occurs outside the fixation area. During the fixation of a human

observer at a point in his environment, the region around the fixation point is resolved

with the highest spatial resolution, while the resolution decreases with distancing from

the fixation point.

On the other hand, the contrast can be assessed only locally for a particular spatial

frequency. The difference between the details in images could be observed if they are

situated close to each other, but the difficulty increases by distinguishing the brighter

details from the darker ones if they are distant in observer’s field of view. This feature

can be explained by the structure of the retina, in which the foveal region responsible
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for the vision of the details spans only about 1.7 visual degrees, while the parafoveal

vision can span over 160 visual degrees, with almost no ability to process high frequency

information (Wandell (1995)).

3.3 Objective Image Quality Metrics
Due to the fact that human observers are the ultimate users in most image-processing

applications, the most reliable way of assessing the quality of an image is through Sub-
jective Quality Metrics. However, subjective evaluations are expensive and time con-

suming, which makes them impractical in real-world applications. Moreover, subjective

experiments are further complicated by many factors including viewing distance, display

device, lighting condition, the subjects’ vision ability, and the subjects’ mood. Therefore,

it is necessary to design mathematical models that are capable of predicting the quality

of an average human observer’s evaluation.

To solve the problem properly, Objective Quality Metrics have been introduced. The

goal of these metrics is to design mathematical models that are able to predict the quality

of an image accurately and automatically. An ideal method should be able to mimic the

quality predictions of an average human observer.

Objective quality assessment methods can be classified into three categories; The first

category is full-reference image quality assessment where the undistorted, perfect qual-

ity reference image is available. The second category is reduced-reference image quality

assessment where the reference image is not fully available. Instead, some features of the

reference image are extracted and employed as side information in order to evaluate the

quality of the test image. The third category is no-reference image quality assessment,

where the reference image is not avalable.

Pixel-Based Metrics such as Root Mean Square (RMS) error or Peak Signal to Noise

Ratios (PSNR) fail to assess the perceived degree of realism since they neglect important

properties of the human visual system and �poorly predict the differences between the

images.

The philosophy used in constructing an objective image quality metrics is one of the

major criterion employed for their classification. While traditional perceptual approaches

to image quality assessment (bottom-up) are directly connected with the characteristics

of the HVS and try to simulate all the relevant components and psychophysical features

as basic building blocks, and then combine them together, the ultimate goal of the struc-

tural similarity based approaches (Top-down) is to make hypotheses about the overall

functionalities of the entire HVS and treat the HVS as a black box, where only its input-

output relationship is of concern. This section gives a overview of the general philosophy

of both metrics and introduces the most popular and widely used metrics in each cate-

gory.
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Figure 3.5: Block diagram of the general framework for the error sensitivity-based qual-

ity assessment system (Wang et al. (2004)).

3.3.1 Pixel-Based Mathematical Metrics
The two most popular pixel-base metrics are mean squared error (MSE) and peak signal-

to-noise ratio (PSNR). Assuming I is as original image and Ī as distorted image, the MSE

is then the mean of the squared differences between the gray-level values of pixels in two

pictures:

MSE =
1

XY ∑
x

∑
y

[
I(x,y)− Ī(x,y)

]2
(3.3)

for pictures of size X ×Y . The average difference per pixel is thus yielded by the root

mean squared error RMSE =
√

MSE. PSNR in decibels is defined as:

PSNR = 10log
m2

MSE
, (3.4)

where m is the maximum value that a pixel can take. Both of the methods are widely

used in image processing and coding because of their simplicity. However, neither MSE

nor PSNR correlate well with scores rated by human observers.

3.3.2 Error Sensitivity Based Image Quality Measurement
General Framework of Perceptual Quality Metrics

A great variety of quality assessment algorithms based on HVS modeling have common

computational parts (Wang et al. (2003b)) which are displayed in Figure 3.5.

Pre-processing may include spatial registration, transformation of color spaces, a

point-wise non-linearity, point spread function filtering, and CSF filtering, calibration

for display devices, alignment and light adaptation.

In some metrics, CSF Filtering may be implemented before channel decomposition

using linear filters that approximate the frequency responses of CSF during other metrics.
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Figure 3.6: Cortex transform decomposition. The diagram in the middle represents and

image in the Fourier domain divided into six spatial and six orientational bands. The

images around show content of particular bands in the spatial domain.

Other metrics implement CSF as weighting factors for channels after channel decompo-

sition.

In the HVS, one modeling strategy for frequency selective channels is channel de-
composition. To distinguish between visual stimulus in different temporal and spatial

subbands, channels are employed. In this phase, the differences between the quality

metrics are mainly in the selected filters (see Figure 3.6). Some of signal decomposition

methods which have been used are the Fourier decomposition (Mannos and Sakrison

(1974)), Gabor decomposition (Taylor et al. (1997)), local block-discrete cosine trans-

form (Watson et al. (2001)), separable wavelet transforms (Lai and Kuo (2000)), and

polar separable wavelet transforms, such as the cortical transform (Watson (1987)) and

the steerable pyramid decomposition (Teo and Heeger (1994)). In every channel, error
normalization and masking is commonly implemented. The implementation of mask-

ing in the majority of models comes in the form of a gain-control mechanism. In a

channel, the gain-control mechanism weights the error signal with a space-varying vis-

ibility threshold for that specific channel. The adjustment for the visibility threshold at

a certain point is computed based on two parameters: HVS sensitivity for that channel
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Figure 3.7: Visible Differences Predictor Model (VDP)

where the masking effects are absent and the signal energy is in the vicinity of that point.

Error pooling is the process of combining the error signals in different channels into

a single distortion/quality interpretation. The typical implementation uses Minkowski

summation (i.e. the Lp-norm) on two sets of channels to compute the model response r

r = (∑
l

∑
k
| el,k |β )1/β , (3.5)

where el,k is the normalized and masked error of k-th coefficient in the l-th channel,

and β is a constant typically having a value between 1 and 4 (Minkowski (1953)).

Visible Differences Predictor

The Visible Differences Predictor (VDP; Daly (1993)) is one of the well-known image

distortion metrics, which consists of three main components: calibration of the input

images, a human visual system (HVS) model and a method for displaying the visible

differences. Figure 4.2 shows a schematic view of VDP. The algorithm receives a pair

of images (original and compressed images), and parameters for viewing conditions as

input. The first stage is the calibration of the input images, that uses the viewing distance

and physical pixel spacing to map the visual frequencies expressed in cycles per degree
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(c/deg) to frequencies expressed digitally as a fraction of the Nyquist frequency.

In the next stage the Human visual system (HVS) is modeled i.e. the lower-order pro-

cessing of the visual system, such as the optics, retina, lateral geniculate nucleus, and

striate cortex. The human visual system (HVS) model uses processes to limit the visual

sensitivity. In the beginning, the original pixel intensities are compressed by the am-

plitude non-linearity based on the local luminance adaptation. Amplitude non-linearity

(Axy) is responsible for simulating light level adaptation by retina and is defined as

Axy = Lxy/(Lxy + c Lb
xy), (3.6)

where Lxy is the input luminance for each pixel, b is 0.63 and C is 12.6 and is expressed

in cd/m2. In this model the adaptation level for an image pixel is determined by taking

just the pixel into account. Afterwards, CSF is processed to model the variations as a

function of spatial frequency and so as to take into account the global state of luminance

adaptation, orientation, image size and eccentricity from the fovea region. The sensitiv-

ity S as a function of ρ radial spatial frequency in c/deg is modeled by the following

equation (Daly (1993))

S(ρ,θ , l, i2,d,e) = P ·min[S1(
ρ

ra · re · rθ
, l, i2),S1(ρ, l, i2)] (3.7)

where

ra = 0.856 ·d0.14 (3.8)

re =
1

1+ ke′ k = 0.24

rθ =

(
(1−ob)

2

)
cos(4θ)+

(1−ob)
2

ob = 0.78

and θ is the orientation in degrees, l is the light adaptation level in cm/m2, i2 is the

image size in visual degrees, d is lens accommodation due to distance in meter, and e
is eccentricity in degrees. The parameters ra, re and rθ model the changes in resolution

due to the accommodation level, eccentricity and orientation and P is the absolute peak

sensitivity of the CSF.

The resulting images are decomposed into the spatial frequency and orientation chan-

nels using the cortex transform introduced by Watson (1987). The cortex transform is a

multi-resolution pyramid that simulates the spatial-frequency and orientation tuning of

simple cells in the primary visual cortex. For every channel and every pixel, the global

29



Chapter 3 Perceptual Quality Metrics

contrast and elevation of the detection threshold based on masking is calculated. This

detecting threshold is then used to normalize the contrast differences between target and

mask images. The normalized differences are input into the psychometric function which

estimates the probability of detection of differences for a given channel. This estimated

probability value is summed across all channels for every pixel, and visualization of

visible differences between the target and mask images is performed. The main advan-

tage of VDP is the prediction of local differences between images, while most of the

methods, including that recently developed by (Gaddipatti et al. (1997) and Gibson and

Hubbold (1997)) do not have such a functionality and provide only a single scalar value

as a measure of difference.

While this metric is designed for low dynamic range (LDR) images, Mantiuk et al.
(2005) proposed an high dynamic range (HDR) extension of VDP, that can handle the

full luminance range visible to the human eye. The modifications improve the prediction

of perceivable differences in the full visible range of luminance and under the adapta-

tion conditions corresponding to real scene observation. The proposed metric takes into

account the aspects of high contrast vision, such as scattering of light in optics (OTF),

nonlinear response to light for the full range of luminance, and local adaptation.

DRI-VDP (Aydin et al. (2008)) presents a novel image quality metric that can compare

a pair of images with significantly different dynamic ranges. The main contribution of

the metrics is a new visible distortion concept based on the visibility of image features

and the integrity of image structure. The metric generates a distortion map that shows

the loss of visible features, the amplification of invisible features, and reversal of contrast

polarity.

Visual Discrimination Model

Another frequently used image discrimination measuring method is the Sarnoff Visual

Discrimination Model (VDM; Lubin (1995)). Figure 3.8 illustrates the overall structure

of this model. The Visual Discrimination Model acts in the spatial domain by firstly

using an approximation of the point spread function of eye’s optics, according to which

the input data are convoluted. Next, the signals are resampled to be able to reproduce the

sampling of photoreceptor in the retina. To break down the images into seven different

resolutions, VDM uses a Laplacian pyramid (Burt and Adelson (1983)). At this stage

each resolution must be one-half of the immediate higher image. Band-limited contrast

computations are then performed.

Next the selectivity of orientations in four different orientations is applied. To do this

through steerable filters of Freeman and Adelson (Freeman and Adelson (1991)), a group

of orientation filters were implemented. CSF was modelled through normalization of the

output of every frequency-selective channel by the base-sensitivity for that channel. To

implement masking, a nonlinear sigmoid is used. This is performed after convolving the

errors at each level with disk-shaped kernels. Eventually, JND (Just Noticeable Differ-

ences) map or a distance measure is calculated as the Lp-norm of the responses of the
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Figure 3.8: Visual Discrimination Model (VDM)

masks. In the visual field of an observer, the eccentricity of images is an important fac-

tor. VDM is one of the few models that appropriately takes this into account. For color

video, VDM was modified to the Sarnoff JND metric (Lubin (1995)),

J =
1

ln2

∫ 0

Vmax

√
M(V )

Mt(V )

dV
V

, (3.9)

where Vmax is the maximum spatial frequency displayed, M(V ) is the modulation transfer

function of the display and Mt(V ) is the threshold modulation transfer function of the

human visual system.

3.3.3 Structural Distortion Based Image Quality Measurement
The fundamental principle of the structural approach is that the human visual system is

highly adapted to extract structural information (the structure of objects) from the visual

scene, and therefore a measurement of structural similarity (or distortion) should provide

a good approximation of perceptual image quality.

Differently from the foregoing metrics, structural similarity based approaches account

for a more implicit perception with the assumption that the HVS is adapted for extract-

ing structural information (relative spatial covariance) from images. While the error-
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Figure 3.9: Diagram of the structural similarity (SSIM) measurement system Wang et al.
(2004).

sensitivity paradigm is a bottom-up approach, simulating the function of relevant early-

stage components in the HVS, structural similarity based image quality metrics are top-

down approaches, mimicking the hypothesized functionality of the overall HVS.

In this section, we will mainly focus on two very recent general-purpose image quality

assessment approaches, Spatial Domain Structural Similarity Index (SSIM; Wang et al.
(2004)) and Complex Wavelet Domain Structural Similarity Index (CWSSIM; Wang and

Simoncelli (2005)). These approaches are based on high-level top-down hypotheses re-

garding the overall functionality of HVS (see Wang and Bovik (2006)).

Spatial Domain Structural Similarity Index

Under the assumption that human visual perception is not built for detecting absolute,

exact intensities, instead it is adapted to help us navigate the three-dimensional space we

live in and, consequently, is highly adapted for extracting structural information from a

scene, Wang et al. (2004) introduced the Structural SIMilarity Index (SSIM).

The SSIM index is a framework for quality assessment based on the degradation of

structural information and is mostly sensitive to distortions that break down natural spa-

tial correlation of an image such as blur, blocking, ringing, and noise. The diagram of

this metric is shown in Figure 3.9.

The SSIM separates the task of measurement into three functions: Luminance l(x,y),
contrast c(x,y), and structure s(x,y). Given two images (or image patches) of x and y for

comparison, the comparison functions are evaluated as follow:
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l(x,y) =
2μxμy +C1

μ2
x μ2

y +C1
,

c(x,y) =
2σxσy +C2

σ2
x σ2

y +C2
, (3.10)

s(x,y) =
σxy +C3

σxσy +C3
,

where μx, σx and σxy are defined as follows:

μx = 1/N
N

∑
i=1

xi

σx = (1/(N −1)
N

∑
i=1

(xi −μx)
2)1/2 (3.11)

σxy = 1/(N −1)
N

∑
i=1

(xi −μx)(yi −μy)

Finally, the three similarity functions are combined to yield the general form of the

SSIM index structural similarity:

SSIM(x,y) = l(x.y)α · c(x.y)β · s(x.y)γ , (3.12)

where α ,β ,γ are positive constants used to weight each comparison function.

The SSIM method purposed by Wang et al. (2004) is a window-based algorithm that

uses a square window, moving pixel-by-pixel over the image to measure loss of correla-

tion, luminance distortion and contrast distortion locally. To evaluate the overall image

quality, a mean SSIM (MSSIM) index is calculated as follow:

MSSIM(X ,Y ) =
1

M

M

∑
i=1

SSIM(xi,yi), (3.13)

where M is the number of samples in the quality map , xi and yi are the image contents

at the i-th local window, and X , Y are the input images.

The structural similarity metric yields a result in a range of 0.0 to 1.0, where zero
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corresponds to a loss of all structural similarities and one corresponds to being an exact

copy of the original image. Images with lighting-related distortions alone yield a high

SSIM value while other distortions result in low similarities, corresponding well with the

intuitive perception of quality.

Complex Wavelet Domain Structural Similarity Index

Wang and Simoncelli (2005) proposed a new image similarity measure that was inspired

by the SSIM index algorithm. A major drawback of the spatial domain SSIM algorithm

is that it is highly sensitive to translation, scaling and rotation of images while perceptual

metrics can successfully account for contrast and luminance masking, they are quite

sensitive to spatial shifts, intensity shifts, contrast changes, and scale changes.

Wang and Simoncelli (2005) suggested to implement a structural similarity metric in

the complex wavelet domain and make it insensitive to these ”non-structured” image dis-

tortions that are typically caused by the movement of image acquisition devices, rather

than the changes in the structure of objects in the visual scene. In addition, if an appli-

cation requires an image quality metric that is unresponsive to spatial translation, this

extension of SSIM can be adopted.

Given complex wavelet coefficients cx and cy that correspond to compared image

patches x and y, the complex wavelet structural similarity (CWSSIM) is yielded by:

CWSSIM(cx,cy) =
2 | ∑N

i=1 cx,i,c∗y,i |+K

∑N
i=1 | cx,i |2 + | cy,i |2 +K

, (3.14)

where c∗ denotes the complex conjugate of c and K is a small positive constant.

The proposed method shows some interesting connections with several computational

models that have been successfully used to account for a variety of biological vision

behaviors such as those pointed out by Solomon and Pelli (1994); Pollen and Ronner

(1981); Ohzawa et al. (1990); Adelson and Bergen (1985); Schwartz and Simoncelli

(2001). However, the algorithm does not provide any information of any correspondence

between the pixels of the two compared images (a disadvantage compared to registration-

based approaches) and the method works only when the level of translation, scaling, and

rotation is small (compared to the wavelet filter size).

Brooks et al. (2008) introduced WCWSSIM, a form of CWSSIM that uses weighted

results from multiple subbands, where the weights are derived from the HVS contrast

sensitivity function. The modification can better handle local mean shift distortions.
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3.3.4 Visual Attention Models
Predicting the attentional behavior of human observers during viewing a visual scene

is the main purpose of visual attention models. A visual attention model attempts to

leverage this idea, and to direct our gaze rapidly towards objects of interest in our visual

environment where it can obtain most of the information, while paying less “attention”

elsewhere. In the HVS, attention is facilitated by a retina that has a high-resolution cen-

tral fovea and a low-resolution periphery. While visual attention guides this anatomical

structure to important parts of the scene to collect more details, visual attention models

are mainly focused on the computational mechanisms behind this guidance. Commonly,

most of the modes are not able to predict the sequential order of human fixations, but

are limited to predicting the objects of interest and their locations (Privitera and Stark

(2000); Foulsham and Underwood (2008)). Numerous VA models were encouraged

by early works such as feature integration theory by Treisman and Gelade (1980), the

neural-based architecture by Koch and Ullman (1987), or guided search by Wolfe et al.
(1989).

Especially the latter model constituted a theoretical basis for biologically plausible

models incorporating characteristics of the HVS, known as contributing to VA, such as

multiple-scale processing, contrast sensitivity, and center surround processing. Probably

the most widely used bottom-up VA model following this paradigm is the one by Itti

and Koch (2001), which is based on the neuronal architecture of the early visual system,

where multiple-scale image features are combined into a topographical saliency map (see

Figure 3.10).

Itti et al. (1998)’s basic model uses three feature channels for color, intensity, and

orientation. This model has served as a basis for later models and a standard benchmark

for comparison. This model proves to correlate with human eye movements in free-

viewing tasks (Parkhurst et al. (2002); Itti (2005)). An input image is subsampled into a

Gaussian pyramid and each pyramid level σ is decomposed into channels for Red (R),
Green (G), Blue (B), Yellow (Y ), Intensity (I), and local orientations (Oθ ). From these

channels, center-surround ’feature maps’ fl for different features l are constructed and

normalized. In each channel, maps are summed across scale and normalized again:

fl = N

(
4

∑
c=2

s=c+3

∑
c+4

fl,c,s

)
,∀l ∈ LI ∪LC ∪LO, (3.15)

LI = {I} ,LI = {RG,BY} ,LO = {0◦,45◦,90◦,135◦}

These maps are linearly summed and normalized once more to yield the ”conspicuity
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maps”:

CI = fI,CC = N( ∑
l∈LC

fl),CO = N( ∑
l∈LO

fl), (3.16)

Finally, conspicuity maps are linearly combined once more to generate the saliency

map:

S =
1

3
( ∑

k∈{I,C,O}
Ck), (3.17)

There are at least four implementations of this model: Itti and Koch (2001), Saliency

Toolbox (STB) by Walther and Koch (2006), VOCUS by VOCUS (2005), and a Matlab

code by Harel et al. (2007).
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Figure 3.10: Architecture of the model of saliency-based visual attention, adapted from

(Itti et al. (1998)).
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Chapter 4

A Perception-Based Threshold for
Bidirectional Texture Functions
In this chapter we present and discuss an experimental study on how decreasing the

texture resolution influences perceived quality of the rendered images. In a visual

comparison task, quality judgments by observers and gaze data were collected and

analysed to determine the optimal downsampling of BTF data without significant loss of

their perceived visual quality.

4.1 Introduction
To exactly simulate the correct reflection behaviour of fabrics, the paths of light within

and on the surface of the material should be computed. Given the number of individual

components of a thread, such task is computationally not feasible. Bidirectional Texture

Functions represent an alternative solution to this problem. But a severe disadvantage

of BTFs lies in the size of picture collections needed, as they contain one photograph

for each combination of viewing and illumination angles. The disadvantage is particular

acute for the purposes of real time rendering, as the entire collection of pictures needs to

be kept in the computer memory. Various past projects have therefore focussed on effi-

cient compression methods for BTFs (including reflectance models based on linear fac-

torization and pixelwise bidirectional reflection distribution functions, in short BRDFs,

which are the general reflection model from which BTFs are derived, [Filip and Haindl

(2009)].

While existing approaches are often technically well motivated, we believe that, be-

fore starting to choose how and how strongly to compress BTF data, it makes sense

to first take a step back and see how the human observer perceives and judges com-

pressed and non-compressed BTF textures in comparison tasks. Specifically, we look

at BTF-based synthetic renderings of three–dimensional objects and ask: when does us-

ing high-resolution textures make sense because the high resolution leads to a perceived

increase in texture quality? And when can one do just as well with lower resolution

textures without perceived loss in quality? In this chapter, we present and discuss an in-
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vestigation aimed at locating a robust threshold for downsampling BTF images without

loosing perceptual quality. Information about the location of such a threshold is not only

of importance to a better understanding of visual perception of textures, especially in

object comparison tasks, but also of importance for developing novel data compression

methods in synthetic rendering.

In the next section, we will review relevant related work. We will then describe our

method of experimentation, which involves a quality comparison tasks with pairs of

texturized objects of varying BTF quality levels and varying exposure times. Gaze data

was collected to aid visual comparison strategy detection. The presentation of study

results is then followed by a discussion, conclusions, and an outlook.

4.2 Previous Works
Compression methods for BTF data have been studied for many years in order to accel-

erate rendering and also in order to compress data. However, only rarely the focus was

on the perceived quality of the results of compression. Fleming et al. (2003) studied how

humans perceive reflections on surfaces, while Lawson et al. (2003) demonstrated the

importance of view changes in synthetic picture matching tasks. te Pas and Pont (2005a)

showed that differences in the microstructure of a material are hard to distinguish from

differences in the illumination, and that light source direction estimation depends on

the material’s bidirectional reflection distribution functions or BDRFs (te Pas and Pont

(2005b); Khang et al. (2006)).

Work by Pellacini et al. (2000) introduced a new light reflection model for image

synthesis based on experimental studies of surface gloss perception. Two experiments

were conducted to explore the relationships between the physical parameters used to de-

scribe the reflectance properties of glossy surfaces and perceptual dimensions of glossy

appearance. Psychophysical tests by Mcmillan et al. (2003) showed consistent transi-

tions in perceived properties between interpolate and extrapolate BRDFs in the space

of acquisition. Vangorp et al. (2007) found that object shape considerably influences

the perception of BRDF samples. Matusik (2003) psychophysically evaluated large sets

of BRDF samples, and showed that there are consistent transitions in perceived proper-

ties between different samples. The dimensionality surface of materials represented by

means of BTF was first analysed by Suen and Healey (2000), where a correlation anal-

ysis showed that BTF dimensionality increases almost linearly with elevation angles of

illumination and view. However, this study did not investigate any correlation between

BTF dimensionality and human perception.

The accurate reproduction of material structures that can be achieved by using mea-

sured BTFs was investigated in Meseth et al. (2006), while Filip et al. (2008a) performed

a psychophysical study to optimize sparse sampling of BTFs data. In a further study,

Filip et al. (2009) assessed different uniform reduced samplings of BTF data based on

azimuthal angles of view and illumination as well as on elevation angles.
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Few of the existing approaches include an investigation of the viewers gaze behavior

while viewing the rendered images. A notable exception is the work by Filip et al. (2009)

in which location, duration, and frequency of fixations were recorded. Fixation data was

used to analyze strategies of the subjects over the course of the experiment (e.g., did

locations and durations of fixations change as the study progressed? Both were found to

be the case.).

Leung and Malik (2001) presented a framework for representing textures combining

both reflectance and surface normal variations. The basic idea is to build a universal

texton vocabulary that decribes generic local features of texture surfaces. Given the

array of textons, the 3D texton model can synthesize an image at any illumination and

viewing condition.

In short, previous work focussed on the influence of light, viewing, material re-

flectance, shape, and angular sampling density of BTF data. In this contribution, we

investigate the influence on perceived image quality that the size of the individual BTF
texture pictures has, based on which a synthetic object’s texture is interpolated. This vari-

able has not been addressed previously. Our aim is to find a threshold for downsampling

BTF resolution — that is, for reducing the image size of the individual BTF textures —

without any perceived degradation in the quality of the rendered image. Similar to the

procedure by Filip et al., we will collect gaze data to aid the detection of visual strategy

and its change.

4.3 Method
In a pilot study using different self shadowing fabrics, like corduroy and wool, available

in the BTF database of the University Bonn1 we established that there are no differences

in gaze behavior or perceived quality jugments between fabrics. We therefore decided

to here focus on the corduroy dataset, which we will refer to as Cord-256, as its texture

pictures are 256x256 pixels.

We then generated two new datasets by downscaling the Cord-256 set through bilinear

interpolation to respective resolutions of 128x128 pixels (Cord-128) and 64x64 pixels

(Cord-64). For each of the three texture data sets, a three-dimensional textured model of

a sofa was rendered through the standard BTF rendering method at a screen resolution

of 1920x1084 pixels (Figure 4.1). The sofa model was oriented for display to the viewer

to present textured parts across a large range of picture depths.

We chose a sofa object model for three main reasons: first, to present an everyday

object that viewers are familiar with and instantly recognize. Second, to have an object

with a structured surface and composition (e.g., individual buttons, cushions, etc.). This

is important in order to ensure that a large set of fitting BTF pictures will be selected as

basis for the object’s texture, with widely varying illumination and viewing angles. And,

1http://btf.cs.uni-bonn.de/.
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Figure 4.1: An example of the stimuli used in our study.

third, a sofa is a type of object for which a cord texture would be commonly chosen.

4.3.1 Stimulus Pairs
Pairs of the rendered images displayed in full screen, native resolution mode were used

as experimental stimuli. Each pair consisted of a sequentially presented rendering using

two of the three texture resolutions as shown in Table 4.1. A total of 72 image pairs were

shown to test subjects.

The experiment was performed in three blocks of 24 image pairs each, between which

image exposure time was varied. Exposure time per image was either 1000, 2000, or

3000 milliseconds (ms), respectively labeled as short, medium and long test conditions.

Presentation order of the three blocks was balanced across subjects based on a Latin

square design. Our rationale behind introducing variation of image exposure time was

to test for effects it may have on comparative perceived image quality. It seems possible

that, for pairs of different images, longer exposures could lead to higher frequencies of

detecting that a difference exists.

Presentation of images in each pair was separated by 200 ms. After the presentation of

the second image in a pair, subjects had 3000 ms to make a decision about the compara-

tive image quality within the pair: was the first or second image of better visual quality?

Or were the two images of the same visual quality? Responses were given on a three-key

keyboard and were possible at any time after the start of the presentation of the second
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First Image Second Image

Cord-256 Cord-64
Cord-256 Cord-128
Cord-128 Cord-256
Cord-128 Cord-64
Cord-64 Cord-256
Cord-64 Cord-128

Table 4.1: Image pairs as experimental stimuli.

1 First image has higher quality.

2 Second image has the higher quality.

= The images have the same quality.

None Subject is not sure.

Table 4.2: Answer posibilities.

image. Subjects were also instructed that they could choose not to press any button if

they felt unsure about the comparison. Please see Table 5.2 for an overview. When

looking at the six image pairs in Table 4.1, it becomes clear that all pairs are different

and that, consequently, any judgment that a pair shows that same image quality will be

incorrect. However, subjects were not previously instructed that no same-quality pairs

would be shown. After the decision time of 3000 ms had lapsed, the next image pair was

automatically presented.

4.3.2 Experimental Setup
The images were presented on a 24-inch monitor with a resolution of 1920x1080 pixels

at a distance of 70 cm from the viewer. The screen measured 22.35x15.80 inches and

subtended approximately 33 degrees of visual angle. Due to the texture pattern, the

minimal texture detail (i.e., for the parts of the sofa at the greatest depth in the image)

had a cycle of 4 pixels, which means a subtended angle for a viewer of about 6 cycles

per minute of a degree of arc.

An SMI RED250 remote eye tracking system was used in binocular mode with 250

Hz fixation detection, in order to record subject’s fixation behavior. SMI BeGaze 2.4
software was used for subsequent analysis of gaze data.

Subjects. A total number of 20 subjects, 12 males and 8 females, participated in the

experiment. Subjects were undergraduate or graduate students or department members
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# correct # equal (incorrect) # other (incorrect) av. fix. dur. [ms] av. fix. freq.

Cord-256 / Cord-128 24 167 49 386.48 2.32

Cord-128 / Cord-256 39 156 45 398.51 2.25

Cord-64 / Cord-256 195 25 20 404.14 2.21

Cord-256 / Cord-64 193 24 23 412.01 2.20

Cord-64 / Cord-128 193 25 22 418.08 2.14

Cord-128 / Cord-64 196 19 25 407.59 2.20

Table 4.3: Frequencies of correct answers, incorrect equal-quality answers, and other

incorrect answers (accumulated over all 20 subjects; sum of answers per pair: 240);

average fixation durations and average fixation frequencies per image pair presentation.

in Computer Science or Civil Engineering, and they were not informed about the purpose

of the experiment prior to conducting it. The age of the test subjects ranged from 22 to

39 years (mean = 30.5). Subjects had normal or corrected-to-normal visual acuity.

Procedure. Test subjects were seated in front of the monitor and the eye tracker, in-

troduced to the setup and to the experimental procedure, including the answer options.

Before the start of the experiment, subjects were asked to read and sign a declaration of

informed consent. Subjects could abort the experiment at any time and were guaranteed

anonymous treatment of all collected data. They were familiarized with the used sofa

images through a preliminary test round with eight image pair comparisons, the results

of which were discarded for the subsequent analysis. Then, the subjects were calibrated

on the eye tracker and the first of the three test blocks was presented. Calibration was re-

peated before each subsequent block. Each subject needed about 30 minutes to complete

all three blocks.

4.4 Results
The section consists of two parts: an analysis of subject performance (i.e., the subjects’

ability to judge image quality differences for the six pairs of Table 4.1) and an analysis

of gaze data (locations, frequencies, and durations of fixations).

4.4.1 Subject Performance Analysis
The first three columns of Table 4.3 illustrate the numbers of correct and incorrect an-

swers given for each of the six image pairs. Incorrect answers are provided as incor-

rect equal answers and as other incorrect answers. Looking at the numbers suggests

that differences exist between the six pair conditions for numbers of correct answers. A

Friedman ANOVA confirms the existence of significant differences (χ2(2)= 41.989, p<
0.001,r = 0.952). Two groups of pair comparisons exist, irrespective of the presentation
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AFD[ms] FF

Cord-256 429.78 2.24

Cord-128 436.45 2.23

Cord-64 444.90 2.17

First Image 422.43 2.38

Second Image 493.09 2.05

First Block 375.08 2.33

Second Block 405.25 2.30

Third Block 448.71 2.02

Table 4.4: Average Fixation Duration[ms] (AFD) and Fixation Frequency (FF) for dif-

ferent image quality levels, first and second images, and for blocks.

order: as a first group, Cord-256 and Cord-128 with lower performance, as a second

group Cord-256 and Cord-64 as well as Cord-128 and Cord-64, with higher perfor-

mance. The same groups can be formed for the number of incorrect equal answers

(χ2(2) = 73.935, p < 0.001,r = 0.920). The first group has many more incorrect equal
answers than the second. A breakdown of performance and incorrect equal counts for

the three exposure duration conditions (short, medium, long) revealed no significant dif-

ferences.

In order to check for training effects, we compared numbers of correct answers for

the three blocks (first: 268, second: 274, third: 297). For each block, a total of 480

answers were collected across all 20 participants. A Friedman test revealed significant

differences between the blocks (χ2(2) = 6.195, p < 0.05,r = 0.952). A comparisons of

means shows a positive training effect.

4.4.2 Gaze Fixation Analysis
We next analyzed subjects’ gaze fixation distributions across the sofa image in order to

assess whether differences exist for different exposure durations and for different im-

age pair comparisons. Fixation counts for cells in an overlaid 16x16 grid are shown in

Figure 4.2 (upper part) for nine conditions. Fixation count patterns between any pair of

these nine conditions are significantly correlated with all r > 0.850 and p < 0.001.

Table 4.4 shows average fixation duration (AFD, in ms) and fixation frequencies (FF).

For the three BTF resolution conditions, a Friedman ANOVA shows significant dif-

ferences in FF (χ2(2) = 6.495, p = 0.039,r = 0.697) and AFD (χ2(2) = 7.777, p <
0.03,r = 0.649). AFDs decrease and FFs increase from lower to higher resolution

textures. For first and second images, a Wilcoxon test shows a significantly lower

FF on the second image (Z = 3.062, p < 0.003,r = 0.684) and a longer AFD on the

second (Z = 2.420, p = 0.025,r = 0.541). For the first, second, and third blocks we
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r p
Cord-256 Cord- 64 0.808 0.0001

Cord-128 Cord- 64 0.753 0.0001

Cord-256 Cord-128 0.015 0.0175

Table 4.5: Correlations between VDP results and fixations independently of exposure

durations and presentation order.

found an increase in AFDs (χ2(2) = 8.527, p = 0.045,r = 0.623) and a decrease in FFs

(χ2(2) = 8.954, p = 0.011,r = 0.608).

In order to check whether the subjects’ fixation location patterns were driven by visu-

ally perceivable differences between images in our BTF image pairs, we employed the

Visible Difference Predictor (VDP) (Mantiuk et al. (2005)). VDP simulates low level

human perception for known viewing conditions (in our case: a resolution of 1920x1080

pixels at an observer’s distance of 0.7m). The last row of Figure 4.2 shows the visually

perceivable differences per image pair (irrespective of presentation order) as predicted by

VDP. Correlations between VDP results and respective fixation location patterns can be

seen in Table 4.5 (as averaged over exposure durations; displayed in the columns above

each VDP result in Figure 4.2). The results confirm the two groups of image pairs found

in the subject performance analysis: (1) a weak correlation for Cord-256 and Cord-128
pairs and (2) strong correlations for the pairs within the group of Cord-256 and Cord-64
as well as Cord-128 and Cord-64. Lastly, existence of the two groups is further supported

by average fixation durations and fixation frequencies for the individual image pairs as

seen in the right-hand part of Table 4.3. AFDs in the first group are significantly lower

than in the second (χ2(2) = 73.935, p < 0.001,r = 0.920), while FFs are significantly

higher (χ2(2) = 41.989, p < 0.001,r = 0.952).

4.5 Discussion
The results show that two groups of image comparisons exist in our study. The first

group consists of comparisons between Cord-256 and Cord-128. For this group, subjects

are largely unable to perceive existing differences between the images. Instead, they

frequently judge the pair to consist of the same image. The higher average FFs and

lower AFDs in this group suggest more visual search for existing differences. The VDP

model predicts few visually perceivable differences for image pairs in this group.

The second group consists of comparisons between Cord-256 and Cord-64 as well

as between Cord-128 and Cord-64. For this group, subjects are largely able to see the

differences among the pairs. Occurrences of incorrectly labeling pairs as equal are few.

The lower FF counts and higher AFDs suggest that subjects are better able to concentrate

45



Chapter 4 A Perception-Based Threshold for Bidirectional Texture Functions

Figure 4.2: Fixation count in different test duration and responses of visual difference

predictor for tested image pairs.

on informative locations (i.e., on locations at which the images within a pair differ). The

VDP model predicts a higher number of differences which are also detectable with higher

probability.

A comparison between the fixation location patterns between the first and the second

group reveals that, irrespective of the group, subjects seem to fixate on similar locations,

and do so with similar frequencies. One conclusion is that they employ similar strategies

while inspecting image pairs of any of the six types. VDP predictions differ markedly

between the groups. We observed strong correlations between locations of predicted vi-

sually perceivable differences and observed fixation patterns only for the second group

of comparisons. We interpret this as evidence for the subjects’ ability to pick up on dif-

ferences in the second group and use information about the location of these differences

for image comparisons. A significant, albeit very weak, correlation exists for the first

group.
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When comparing AFDs and FFs between the three BTF image qualities, it seems

likely that low image quality leads to less visual search, suggesting that subjects are fast

at discerning features that hint at low quality.

AFD was lowest for the first block and then increased over the course of the exper-

iment, while the average FF decreased. This pattern is in line with the one presented

in (Over et al. (2007)) and suggests that subjects may have applied a coarse-to-fine ap-

proach during visual search. Within the first comparisons, subjects may notice locations

at which differences between images of different visual quality are located, leading to

more fixations at them. This may differ for behavioral patterns in the beginning, when

subjects spend more time carefully searching for differences among image pairs, result-

ing in shorter and a larger number of fixations.

Longer AFDs in the second image in a pair compared to the first indicate that by the

time subjects look at the second image they already have formed hypotheses about where

to look for differences.

There were no differences in performance and gaze fixation for different exposure

durations.

The main purpose of this study was to locate a threshold for robust, effective BTF

compression based on a downsampling of BTF pictures. Above the threshold, differences

between pictures are not visually perceivable by a human observer. Our results clearly

indicate that differences between Cord-256 and Cord-128 lie above such threshold, while

differences between Cord-256 and Cord-64 as well as between Cord-128 and Cord-64
lie below it. The results are very likely to apply to all self shadowing fabrics.

4.6 Conclusion
The results of our study narrowed the bracket in which the threshold is located that

separates visually perceivable differences in BTF renderings from those that are not.

Consequently, we can now suggest a perception-based criterion for downscaling BTFs.

A result for image synthesis is that, above the threshold, the lowest texture resolution

available can be used without visually perceivable degradation of image quality. This

allows to significantly reduce computer memory usage in BTF rendering.

A logical next step would be to conduct a localized search within this established

bracket, that is, between Cord-128 on one side and Cord-64 on the other, since our study

showed that observers cannot distinguish between Cord-256 and Cord-128.

In the future, we also plan to look for ability- and/or skill-dependent differences in the

ability to distinguish BTFs at different quality levels. We have already conducted pilot

studies with groups of engineers and artists (see Appendix B).

In general, there are few studies on perceptual measures of rendering algorithms. This

study is a first step in this direction.

Also, this study could open up new research insights for the field of perception of tex-

tures of real objects, especially in object comparison tasks. For example, future questions
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that can be addressed could relate to the categorization of textures in object perception,

either general or with regard to group-dependent or individual differences, to effects of

attention in object texture perception, or to effects of expertise which may be acquired

through completing series of object texture comparisons similar to the ones employed in

this study.
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Chapter 5

Low Cost Rapid Acquisition of
Bidirectional Texture Functions for
Fabrics
This Chapter will present in detail a new low cost programmable device for the rapid

acquisition of BTF datasets. The device allows to acquire BTF databases at a fraction

of the cost of available setups, and allows to experiment when a texture resolution and

sample density increase in the parameter space is not perceivable by an observer of the

renderings. Additionally it will be proved that using smaller resolution textures and

decreasing the samples in parameter space does not lead to a loss of picture quality.

5.1 Introduction
In practice, BTFs use large collections of digitally acquired pictures of a material taken

at discretely varying illumination and viewing angles. When a simulation of the material

needs to be computed for rendering, the viewing and illumination vectors are used to

pick matching textures from the collection of scanned textures, and, if the angles do not

match with angles of the corresponding textures, neighbouring textures are interpolated

at the point to be rendered.

A big disadvantage of BTFs is that state of the art measurement devices require ex-

pensive robotics setups and that the measurement process is very time consuming since

direction dependent parameters (light- and view-direction) have to be controlled accu-

rately. Otherwise the resulting data will be poor. Moreover, the size of BTF data can

range from hundreds of megabytes to several gigabytes, since in the ideal case a large

number of high resolution pictures have to be used. For real time rendering this is a big

disadvantage, since either the entire collection of pictures needs to be kept in the com-

puter memory, or computationally expensive methods have to be used to intelligently

load/unload the textures. As mentioned in Chapter 4 several authors focused on efficient

compression methods for BTF data but The focus was rarely set on the perceived quality

of the results of compression or loading/unloading mipped-mapped textures. An impor-
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tant step before starting to compress BTF data, is to see how many measured samples at

which resolution are needed to have the same perceived quality when rendered instead of

using a complete database at the highest possible resolution, or automatically degraded

texture downscalings not taking into account the final user. If the texture database is

perceptually sound, then it can be reduced in its number of texture samples.

In this chapter we present two basic improvements to the use of BTFs for rendering:

firstly we want to address the cost of BTF acquisition by introducing a flexible low cost

step motor setup for BTF acquisition allowing to generate a high quality BTF database

taken at user defined arbitrary angles. Secondly, we want to adapt the number of ac-

quired textures to the perceptual quality of the renderings, so that the database size is

not overbloated and can fit better in memory when rendered. In oder to do this, we

will use Daly’s Visual Difference Predictor (VDP;Daly (1993); Mantiuk et al. (2011)) to

prove that the reduced dataset acquired through our device does not lead to perceivable

differences for the rendered images for a viewer.

In the next section, we will introduce how we plan to reduce the BTF database. Next

the BTF measurement setup will be described in detail. Then an experimental evaluation

of the BTF acquisition setup results will be presented, proving that no perceivable differ-

ences in the renderings are made by reducing the BTF database angle steps. Finally we

will present some conclusions, and an outlook.

5.2 Reducing the Sample Density
In Filip et al. (2008a, 2009); Azari et al. (2016) the authors propose to reduce the BTF

dataset size by down-sampling resolution and view/illumination angles and proved that

perceived quality did not decrease. The outcomes could help prevent capturing redundant

images with high resolution from a sample and this will reduce the acquisition time

significantly. We propose a preprocessing step before starting to acquire the complete

database to determine the down sampling threshold. As this threshold depends on the

surface characteristics of a material, each sample should be tested individually.

The first step in the proposed preprocessing method is to generate solely samples re-

quired to texturing a section of a sphere, as shown in Table 5.1. The produced database

therefore covers a fourth of the BTF database (22*22=484 samples) as opposed to a com-

plete BTF database (81*81=6561 samples), which we will refer to as ’BTF’. In the next

step this database is down-sampled using reduced densities and resolution according to

Filip et al. (2008a, 2009); Azari et al. (2016). Four down-sampling schemes are adopted.

In the first scheme we reduced the resolution of the each texture from 265 x 256 to 128

x128: it will be referred in this Chapter to as ’BTF-R’. In order to obtain considerable

reduction of BTF dataset size we adopted two different BTF sampling schemes denoted

as A, B from Filip et al. (2009). While scheme ’A’ preserves the original sampling of

elevation angle θ but reduces the number of azimuthal samples along angle φ , scheme

’B’ reduce sampling for both angles (see Table 5.2).
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Conventional BTF Database Proposed BTF Database Rendered BTF Data

81 Samples

θ = 0◦,# φ = 1

θ = 15◦,# φ = 6

θ = 30◦,# φ = 12

θ = 45◦,# φ = 18

θ = 60◦,# φ = 20

θ = 75◦,# φ = 24

22 Samples

θ = 0◦,# φ = 1

θ = 15◦,# φ = 2

θ = 30◦,# φ = 4

θ = 45◦,# φ = 4

θ = 60◦,# φ = 5

θ = 75◦,# φ = 6

Table 5.1: Sampling of the Conventional BTF Database (left) compared with the Pro-

posed BTF Database (center) and the Rendered Full and partial sphere (right).

Scheme A (11 Samples) Scheme B (11 Samples)

θ = 0◦ ,# φ = 1 θ = 0◦ ,# φ = 1

θ = 15◦,# φ = 1 θ = 18.75◦,# φ = 1

θ = 30◦,# φ = 2 θ = 37.5◦ ,# φ = 2

θ = 45◦,# φ = 2 θ = 56.25◦,# φ = 3

θ = 60◦,# φ = 2 θ = 75◦ ,# φ = 4

θ = 75◦,# φ = 3

Table 5.2: The down-sampled schemes: A along azimuth θ , B along azimuth θ and

elevation φ angles.
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Database Number of Samples Resolution

BTF (22 x 22) 256 x 256

BTF-R (22 x 22) 128 x 128

BTF-A ( A x A ) 256 x 256

BTF-B ( B x B ) 256 x 256

BTF-C (22 x B ) 256 x 256

Table 5.3: The Proposed BTF Database (BTF) compared with the down-sampled BTF

Database using reduced resolution (BTF-R) and densities ( BTF-A, BTF-B and BTF-C).

It should be noticed that BTFs require directional sampling of both illumination (θi, φi)

and view directions (θo, φo) and in these two directions different sampling schemes can

be adopted without limiting practical usage of the data. We choose three down-sampled

BTF datasets. The first two are straightforward and down-sampled both illumination and

viewing directions in the same way, using a combination of the schemes AxA and BxB,

which we will refer to as ’BTF-A’ and ’BTF-B’. The third one used scheme B on just

view directions (’BTF-C’). Consequently, four down-sampled datasets are generated (see

Table 5.3). The samples in each databases are then used to render the sphere in order to

check the influence of down-sampling on the perceived quality. This can be done either

by using a Subjective Quality Metrics or an Objective Quality Metrics [Wang and Bovik

(2006)].

Since human beings are the users in most image-processing applications, the most

reliable way of assessing the quality of an image is by using subjective quality metrics.

Indeed, the mean opinion score (MOS), a subjective quality measure requiring human

observers, has been long regarded as the best method of image quality measurement.

However, the MOS method is expensive, and it is usually too slow to be useful in real-

world applications.

To solve the problem Objective Quality Metrics have been proposed. The goal of

these metrics is to design mathematical models that are able to predict the quality of an

image accurately and automatically. An ideal method should be able to mimic the quality

predictions of an average human observer.

One of the most popular and widely used objective quality metric based on models

of the human vision system is Daly’s Visual Difference Predictor (VDP; Daly (1993);

Mantiuk et al. (2011)). We used VDP to assess visual differences between the rendered

spheres by different down-sampling schemes and to find a compression threshold. Based

on this threshold a compressed BTF database could be acquired without capturing re-

dundant images which reduce strongly the acquiring time. To test the method introduced

above a measurement setup for the acquisition of BTF data has been built, which will be

explained in detail in the next section.
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Figure 5.1: The first BTF measurement device. The equipment consists of a personal

computer with a 24-bit RGB frame grabber, a robot arm to orient the texture samples, a

halogen bulb with a Fresnel lens which produces a parallel beam, a photometer, and a

3-CCD color video camera (not shown), Dana et al. (1997).)

5.3 Acquisition Setup
The acquisition of 2D textures is a very simple process which can be performed using

a standard 2D scanner or an off-the-shelf digital camera and image-processing software.

On the contrary, the acquisition of BTFs requires a complex and controlled measurement

environment. Since BTF acquisition can be seen as physical measurement of real-world

reflection, special attention has to be paid to device calibration and image registration.

Otherwise the measurements will contain inaccuracies which may generate visible ren-

dering artifacts.

5.3.1 Prior Works
Dana et al. (1997) built the first BTF measurement device. A robot arm is used in this

device to orient the texture sample at arbitrary orientations and the camera and light orbit

around the sample. 205 combinations of light and view directions are sampled for each

material, and more than 60 materials have been measured and published1. Due to the

sparse sampling, it is not practical to use the measured data for rendering directly.

More recently, researchers have built similar setups and provided measurements at

higher angular resolutions [Sattler et al. (2003); Koudelka et al. (2003b); Furukawa et al.
(2002); Haindl et al. (2012)]. Significantly to the gonioreflectometer for BRDFs, only

one sample is measured at a time for each lighting and viewing directions, however,

unlike the in gonioreflectometer case where one value is measured per setting, in these

newer methods each sample is a texture.

1http://www1.cs.columbia.edu/CAVE/software/curet/
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Figure 5.2: Gonioreflectometer Sketch of the proposed camera array (151 digital cam-

eras), Müller et al. (2005).

For a fast high quality acquisition of BTFs Müller et al. Müller et al. (2005) propose

an array of 151 digital still cameras mounted on a hemispherical gantry. The on-camera

flashes serve as light source. By synchronizing the cameras, 151*151=22801 images

can be captured in 151 time steps and the authors report a measurement time of about 40

minutes. In this setup no moving parts are needed. Hence, the region of interest is known

for every camera and consequently, there is no need for a time-consuming detection of

the region of interest. While this is a big improvement in terms of measurement time,

the setup is large and expensive (see Figure 5.2). Schwartz and Klein (2012) proposed

a dome setup employs eleven cameras that are mounted on an arc, providing some de-

gree of parallelism, combined with a turntable for capturing the object from all sides.

198 LED light sources are mounted on the full dome, avoiding the need for mechanical

movement for having light directions from all sides.

Later Köhler et al. (2013) presented OrcaM, a device for simultaneous acquisition,

which employs a full-spherical construction, a movable projector-camera unit, 633 in-

dividually controllable LEDs and a height-adjustable turntable with a glass carrier. The

design allows data acquisition from all possible directions in a single pass without any

user interaction.

Han and Perlin (2003)and Ihrke et al. (2012) introduced a measurement setup based

on a kaleidoscope which allows viewing a sample from multiple angles at the same time

through multiple reflections. Illumination is provided by a projector pointing into the

kaleidoscope. By selectively illuminating a small group of pixels, the light direction can

be controlled. Since there is no moving part in this setup, measurement is very fast.

However, the equipment is difficult to build and calibrate. In addition, due to multiple

reflections in the optical path, the resulting quality tends to be rather low (see Figure 5.3).

Dana and Wang (2004) proposed a setup based on a parabolic mirror. While their setup

can provide higher quality measurements than the kaleidoscope setup, they can only
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Figure 5.3: A measurement setup based on a kaleidoscope Han and Perlin , Han and

Perlin (2003).

capture a single spatial location at a time. As a result, it does not offer any acceleration

compared to the gonioreflectometer-like approaches.

The standard gonioreflectometer-like approaches allow to capture high–quality BTFs

reliably. Their drawback is the speed - several hours are needed and this makes measured

BTFs an expensive resource. Using mirrors may be a promising approach in the future,

but the quality of the measurements of current systems remains dubious. Using a camera

array sensor greatly reduces measurement times at the expense of the costs for a large

number of cameras.

Ngan and Durand (2006) propose an approach which uses sparse measurements to re-

construct a full six-dimensional Bidirectional Texture Function (BTF). The reconstruc-

tion require input images from the top view to be registered, which is easy to achieve

with a fixed camera setup. Bidirectional properties are acquired from a sparse set of

viewing directions through image statistics and therefore precise registrations for these

views are unnecessary. The technique is based on multi-scale histograms of image pyra-

mids and he full BTF is generated by matching the corresponding pyramid histograms

to interpolated top-view images. The technique cannot capture high-frequency effects

such as highly specular materials and the statistical characterization does not handle the

geometric effect of parallax but it reproduces some of its effects such as masking. The

statistical reconstruction tends to work best on materials with complex spatial structure

(e.g. wool, proposte), as the high-frequency content and the statistical variation dominate

the visual appearance(see Figure 5.4).
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Figure 5.4: Ngan and Durand (2006)’acquisition setup - both the camera and the mea-

sured target are fixed, and a handheld wireless flash is used as the light source. During

measurement, the user moves the flash source around to roughly cover all possible direc-

tions, and remotely triggers the camera shutter to take pictures.)

In the next section our proposed measurement device will be introduced in detail.

5.3.2 The Proposed Measurement Device
During the measurement the light source and the sensor are positioned at various angles

covering the entire hemisphere above a flat sample of a homogeneous material. In other

words, the system allows acquiring images from all possible angles of illumination and

of camera perspective. The proposed device (Figure 5.5) is the result of our attempts to

find a setup covering the 4 degree of freedom available in a BTF.

We set our reference coordinate as shown in Figure 5.5. The origin is placed on the

center of the sample. The sample can rotate about the x, y and z axes. While the light

can rotate about z-axis using a step motor, the camera is fixed. The camera and light are

directed to the center of the sample. The system has 4 degree of freedom and is appro-

priate for anisotropic material. To rotate the sample we decided to use a combination of

three step motors [1-3], (see Figure 5.5).

With these motions three degree of freedom are achieved ( φi, θo, φo). To reach the

additional degree of freedom θi, the light should rotate in the altitude direction. For this

reason, we mounted our light source on an axes and rotate it with a wheel which can

move with the help of the step motor number 4 (see Figure 5.5). The length of the light

radius is adjustable.

The system is composed of different parts. The main component is an Arduino Mega

2560 which is equipped with a RAMPS 1.4 board and the Marlin operating system. The

56



Chapter 5 Low Cost Rapid Acquisition of Bidirectional Texture Functions for Fabrics

Figure 5.5: The proposed setup

Arduino takes commands from a host PC and controls the motors and the remote control

of the camera. This is done by using a serial connection between the Arduino and the

host PC. The commands are transmitted as Gcodes2.

Hardware: According to the hardware producer, the relationship between the voltage

on the potentiometer and the motor current is given by,

A =
Vre f

8 ·Rs
(5.1)

where A is the motor current and Vre f is the voltage on the potentiometer: in our case

the drivers have a resistance Rs of 0.1Ω. This formula is driver specific: if another driver

is used, the values have to be updated or another formula could be necessary. The system

uses four step motors to move the sample in all directions.

We decided to choose SM42051 and E7126-0140 step motors 3. The SM42051 has

0.196 Nm torque with max rated current of 0.6 A and is used to rotate the sample around

the x and y axes, which we will refer to as S1 and S2. Because of the higher friction force

by rotating the light and sample about z axis two E7126-0140 step motors with 1.6 Nm
torque has been chosen (S3, S4). The motors are connected to the according S1, S2, S3

and S4 axes of the RAMPS 1.4 board. S1, S2 and S3 move the sample while S4 moves

the light source.

Each step motor has a 1.8◦ step resolution, Therefore in order to rotate the S1,S2

2Gcode is a control language for CNC (or Reprap) machines
3http://www.emisgmbh.de/schrittmotoren.html
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and S3 axis by 9◦, 5 steps are needed. To achieve adequate leveraging, the S4 axis is

equipped with a gear. The gear ratio is 9 : 120. Each tooth of the small gear wheel

corresponds to a 3◦ movement of the light, which is the smallest possible movement of

Z axis. To move the small gear wheel one tooth further, 22.22 motor steps are necessary.

To have a reference, the S1,S2 and S4 axes have end-stops which are triggered whenever

the corresponding axis reaches its maximum or minimum rotation (See Appendix A for

more detail).

Software: The system uses the 3D printer software Marlin as operating system. The

Marlin firmware is customized for this purpose. Therefore, the file configuration header

is changed at specific points, so that the system is connected to the host PC using a

serial connection and receives commands from that PC. As host software for the PC

Pronterface is used. After connection to the Arduino, various commands can be send to

the Arduino.

The camera is the center piece of hardware in our measurement setup. Therefore spe-

cial attention was paid to choose the camera. We selected a Nikon D750 DSLR camera,

a high-end and full format digital camera intended for professional photography. The

camera captures the material sample’s appearance at different positions in raw format at

a resolution of 6016 x 3375 pixels. A fixed length SIGMA camera lens (105 mm F/2.8)

is mounted on the camera. Via an IR Remote Control the camera’s shutter is released.

The other important piece of hardware in the measurement setup is the light source

therefore it should be selected carefully as well. The decision for a specific light source

was based on the emitter geometry and the lamp‘s photometric properties. An OSTAR-

Lighting LED Light Source [Osram GmbH].

During the Acquisition some pre- and post- processing steps are necessary to achieve

the higher texture quality , see Figure 5.6. in the next sections we will gige an overview

of this steps.

5.3.3 Low-level pre-processing
Besides a controlled environment and suitable equipment, we applied a number of stan-

dard algorithms to further increase the quality of the images that are used as input to our

measurements. These algorithms are Geometric and Colorimetric Camera Calibration.

Geometric Camera Calibration

A geometric calibration has to be applied to the camera to reduce the geometric distor-

tion caused by the optical system of the camera. Most algorithms assume that images

are acquired using a perspective projection. This is true for pinhole cameras but not nec-

essary for cameras with a lens system within the limits of physics. Especially for wide

angle lenses, a geometric correction needs to be applied to the acquired images. Geomet-

ric calibration involves the recovery of the camera’s extrinsic and intrinsic parameters.

58



Chapter 5 Low Cost Rapid Acquisition of Bidirectional Texture Functions for Fabrics

Figure 5.6: BTF acquisition steps.

While the intrinsic parameters relate the camera’s coordinate system to the idealized co-

ordinate system, the extrinsic parameters relate the camera’s coordinate system to a fixed

world coordinate system and specify its position and orientation in space. The actual

transformation of the camera’s lens system is described by its intrinsic parameters. To

measure intrinsic and extrinsic parameters several images of an object with a pattern of

square grids have been taken. The lens settings are the same as those used to capture the

actual images of the object.

To extract the feature points from the calibration images an implementation of the Har-

ris detector Harris and Stephens (1988) included in Bouguets camera calibration toolbox

Strobl et al. (2006) is used. In standard camera calibration techniques Strobl et al. (2006),

the geometry of the calibration object will be used to extract the intrinsic data such as the

focal length and radial and tangential distortion coefficients. At the next calibration step

the input images will be rectified resembling a perfect perspective projection.

Colorimetric Camera Calibration

To achieve the best possible color reproduction, the camera has to be color calibrated as

well. For a digital camera, the recorded color of an object depends on multiple factors:

the spectral response of the object, the color of the light source, the properties of the

optical system, the sensor and the image processing steps applied by the camera itself

or other software. The goal is to faithfully record the object’s color independently of

all these factors. In an ideal case, one would like to accurately measure the continuous

spectrum of the visible light. Measurement devices such as a spectrophotometer perform

a very dense sampling of the spectrum. In contrast to that, most digital camer-as record

only three color values per pixel (tristimulus values) Hunt (1995) obtained by integrat-

ing the incident spectrum with the response curve of each CCD sensor. Since different

spectral light can result in the same tristimulus values (metamerism) Luther (1927) color
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measurements done with a tristimulus device are always an incomplete representation of

the actual spectrum. In order to relate the recorded color to well defined standards, color

management systems have become a standard tool. Hereby, an image of a test target with

well known properties (the Macbeth ColorChecker) is taken and processed in the same

way as all later images. The target should ideally be a good representation of the colors

in the considered scene.

The relation between the color values of the test target patches and the color values

reported by the camera is analyzed and used as calibration data. The ICC profiles [Strobl

et al. (2006)] which is introduced by the International Color Consortium (ICC) is used

to store the calibration data. Later than the input color should be mapped to the profile

connection space (PCS), a linear standard color space. This will be done by ICC profiles.

This profile is used to convert data from the PCS into the color space of display or output

devices as well. The created color space can be used to generate color calibrated high

dynamic range images.

Radiometric Camera Calibration

In order to make BRDF measurements for each pixel, the radiance reflected to the cam-

era and the irradiance due to the source must be known. To use a digital camera to mea-

sure radiance we must characterize both the optoelectronic conversion function (OECF),

which relates the digital count reported for a pixel with the image-plane exposure, and

the flat-field response, which relates the image-plane exposure to radiance in the scene.

A calibrated reference source to measure each of these camera characteristics is used. To

measure the OECF, the camera lens is removed to expose the CCD sensor directly to the

source [Mitsunaga and Nayar (1999)]. A previously calibrated digital camera is used as

a reference. To measure the flat-field response, we remounted the lens and took a series

of exposures with the source appearing at various positions on the image plane. By fit-

ting a biquadratic function to these images, we approximated the spatial variation across

the image plane and were able to compensate for it. To determine the irradiance at each

location on the surface, we approximated the source as a single point [Mitsunaga and

Nayar (1999)]. In order for this model to be valid, the source must be small compared

to the distance to the sample, and its angular intensity distribution must be uniform. We

measured the angular distribution of the source by capturing calibrated images of a flat,

uniform surface illuminated by the LED and verified that, with an additional diffuser,

it is sufficiently uniform over the range of angles we use. To get the correct absolute

magnitude of the BRDF correct, we measured the intensity of the light source relative to

the camera’s three color sensitivities by photographing a diffuse white reference sample

a known position.

To assign a complete set of discrete reflectance values for all measured light and view-

ing directions to each texel of a two-dimensional texture some image post processing

steps should be done.
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5.3.4 Post-processing
After the measurement the raw image data is converted into a BTF representation, i.e.

the perspectively distorted images must be registered. In this representation a complete

set of discrete reflectance values for all measured light and viewing directions is assigned

to each texel of a 2D texture. Registration is done by projecting all sample images onto

the plane which is defined by the frontal view ( θ = 0,φ = 0). To be able to conduct

an automatic registration we have attached point and borderline markers to our sample

holder plate, see Figure 5.6. After converting a copy of the raw data to black-and-white

(8-bit TIFF), we use standard image processing tools, to detect the markers during the

measurement process. We restrict ourselves to the common 8-bit RGB texture format.

To take advantage of the linear part of the camera response curve, we choose the central

8-bit range of the 12-bit images. As we use a fixed focal length during one measurement,

the maximum effective resolution of the sample holder in the image is 1100 x 1100

pixels. After all transformations are carried out, we rescale all images to an equal size of

1024 x 1024 pixels, which we call normtextures (N). After this postprocessing step, the

data amount of 167 gigabytes captured by the camera CCD chip is reduced to roughly

20 gigabytes of uncompressed data. By measuring planar probes of a certain size, we

rely on the tileablility of our fabrics. Therefore, a manually chosen region of interest

(approximately 550 X 550 pixels) is cut out and resized. To create the final normtextures

(256x256 pixels in size) linear edgeblending is applied, which reduces the usual tiling

artifacts.

Noise Reduction

Another issue to increase the quality of the input images is to remove noise. At room

temperature uncooled CCD sensors can produce a significant amount of noise for expo-

sure times larger than one second. This noise seems to be due to hot pixels on the chip

which collect charge even when no light is hitting them. The effect of fixed pattern noise

for long exposures can be captured by a series of long exposed dark frame images. We

used the technique presented by Goesele et al. (2001) to reduce the fixed pattern noise.

For a sensor element j the total amount of charge Q j collected during an exposure with

exposure time T can be written as

Q j = Qlight, j +KQnoise, j +Qother, j

=
∫

T
Ilight, j(t)dt +

∫
T

KIlight, jdt +Qother, j (5.2)

=
∫

T
Ilight, j(t)dt +KT Ilight, j +Qother, j

with a single temperature-dependent constant for all sensor elements. This corre-
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sponds to a physical model of a sensor element where all charge is generated by current

sources and the current does not depend on the amount of charge already stored in the

sensor element. The dark current Inoise, j is therefore assumed to be constant over time.

Furthermore Qother, j is either much smaller than KQnoise, j, or it is compensated by other

techniques and can therefore be neglected.

The constant Qnoise, j scaled by an unknown temperature constant Ku can then be de-

termined for a given exposure time T by taking an image with no light hitting the sensor.

The accuracy can be improved by averaging several images which were taken under the

same conditions to remove random fluctuations. Such an image containing only the dark

current noise is called a noise image; an image of a scene that also contains dark current

noise is called a target image.

A cleaned image is a target image for which some dark frame subtraction has been

performed. As the amount of charge due to dark current depends on two variables (the

exposure time and the temperature), a database of noise images containing the appropri-

ate image for each combination of exposure time and temperature would be very large

and impractical even if the temperature could be controlled or measured exactly. The

algorithm uses a single noise image generated under roughly the same conditions as the

target image and than find a suitable that removes the contribution of Qnoise, j as accu-

rately as possible.

When an image is taken the amount of charge collected on each sensor element is

converted into a digital value leading to an image P with pixel values Pj . In the following

we assume that the pixel values Pj are proportional to the amount of charge Q j collected

during the exposure.

Depending on the properties of the actual camera system used this requires additional

processing steps for example to correct for the internal gamma factor setting of the cam-

era.

5.4 Experiment and Results
To generate high quality real world input data for appearance measurements a special

purpose digital photo studio has been built. Special attention was paid to carefully control

the illumination and image capturing conditions in order to be able to acquire exact data

about the surface properties of samples using readily available digital camera technology.

We set the distance of the light and camera to the sample to one meter and 
θ to 15◦.

We choose two planar samples with the size of 10 x 10 cm2, Cord-Brown and Cord-

Red (shown in Figure 5.7). 484 raw images with the resolution of 6061 x 3375 were

captured for each sample. After the measurement the raw image data are projected onto

the plane which is defined by the frontal view (φ = 0◦, θ = 0◦). To be able to conduct

an automatic registration we have attached point markers visible at the corners of the

sample holder in Figure 5.7. Consequently four down-sampled databases are generated

out of each of these two databases: BTF-A, BTF-B, BTF-C and BTF-R (as explained in
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Figure 5.7: BTF samples

section 2). For each of the five texture data sets, a three dimensional textured model of a

section of a sphere was rendered through the standard BTF rendering method [Filip and

Haindl (2009)] at a screen resolution of 1920x1084 pixels.

An objective quality metric introduced by Daly (VDP, Daly (1993); Mantiuk et al.
(2011)) has been used to assess the perceived quality differences between objects ren-

dered by complete and down-sampled databases. VDP simulates low level human per-

ception for known viewing conditions (in our case: a resolution of 1920 x1080 pixels at

an observer’s distance of 0.7m). Figure 5.9 shows the visually perceivable differences

per image pair as predicted by VDP. Each pair consisted of a rendering using BTF dataset

and one of four downsampled BTF datasets. It can be seen that there are not a signif-

icant perceivable quality differences between BTF and BTF A in both of the samples

while the Cord-Brown react more sensitive to the down-sampling by BTF B and BTF C

than BTF-Red. The last row of the Figure 5.9 shows that the resolution reduction from

256*256 to 128*128 is not perceivable in BTF-Red. According to this information for

both of the databases it is possible to reduce the number of generated samples as scheme

A without losing quality: this decrease the acquisition time to 26% of the acquisition

of complete database. Because less pictures need to be taken, the acquisition time be-

comes 4.5 hours instead of 6. In Cord-Red the captured images could have the half of

the resolution, which reduce the database size 50%.

5.5 Conclusion
In this Chapter we presented a new low cost programmable BTF database acquisition

device based on standard off the shelf components, step motors, a semiprofessional cam-
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Figure 5.8: Objects rendered by the proposed BTF and down-sampled BTF.

Figure 5.9: The responses of visual difference predictor for tested image pairs. Each pair

consisted of a rendering using BTF dataset (BTF) and one of four downsampled BTF

datasets (BTF-A, BTF-B, BTF-C and BTF-R). The colorscales indicate the probability

values.
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era and a standard LED illumination source capable of capturing high quality databases.

The device cuts the cost of existing database acquisition setup by a factor of hundreds.

Since the positions of the illumination source and the orientation of the sample to be

acquired can be chosen at will and therefore cover all four degrees of freedom of the the

parameter space, the device allows to investigate if smaller databases obtained through

undersampling the parameter space allow perceptually sound renderings which show no

perceptual difference with respect to a higher sampling of the parameters space.

Daly’s VDP results show that in our case both the texture resolution as well as a

reduction of the samples to 26% of the number of samples used in widespread databases

do not deteriorate significantly the perceived quality. Furthermore, also the time spent in

the acquisition of the database is also reduced to little more than one fourth.

The new device appears therefore to be an excellent compromise, cutting significantly

the costs in the acquisition process (to approximately 400e plus the Camera and the

lens). Moreover, its programmability allows to conceive new experiments aimed at un-

derstanding the limits at which increasing the number of samples in the database, as well

as the resolution of the acquired textures makes little sense since the observer of the

rendered objects does not perceive any differences.

In future work, we plan to use the device as a basis for new experiments aimed at

sheding a light in the relationship between high quality rendering and the perception of

observers of rendered images. This should be relevant for the Computer Graphics, Image

Processing and Image Compression communities alike.
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Chapter 6

Assessing ”Objective Image Quality
Metrics” for Compressed BTFs
This chapter explores the applicability of image quality metrics to predict levels of

perception degradation for compressed BTF textures. To confirm the validity of the

present study, the results of an experimental study on how decreasing the BTF texture

resolution influences the perceived quality of the rendered images with the results of the

applied image quality metrics are compared.

6.1 Introduction
The three-dimensional textured models rendered through the BTF rendering method are

subject to various types of distortions during acquisition, synthesis, compression and pro-

cessing. Appropriate image quality assessment schemes are useful tools for evaluating

image processing algorithms, specially algorithms designed to leave the image visually

unchanged (e.g. compression algorithms).

While assessing quality is simple for human observers, it actually involves very com-

plex psychophysical mechanisms. Due to the complexity of HVS, understanding it with

current psychophysical knowledge is nearly impossible.

The reason why popular HVS models such as ’Importance Map’ of Osberger and

Maeder (1998) and ’Saliency Map’ of Itti (2000) do not provide reliable results is

that these approaches can only simulate the early-stage processes of HVS (Wang et al.
(2002)). There have been several investigations on defining texture similarity metrics,

e.g., the work of Julesz (1962), who suggested a similarity measure based on the second-

order statistical moments. However, this promising method was questioned later by

the same author in Julesz et al. (1981) and Julész et al. (1978) as many counterexam-

ples showed the failure of the proposed similarity measure. Another method based on

the same assumption, but making use of third-order statistics was introduced in Yellott

(1993). Although this method seems to be more robust, it can only decide whether two

texture images are identical or not. This method does not provide any similarity mea-

sures, thus it is clear that an approach providing an acceptable and applicable measure of
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texture similarity is still missing .

Applications of psychophysical methods have thus far been restricted to investigations

on how surface properties and the shape of real-world materials are perceived. Padilla

et al. (2008) developed a model of perceived roughness in fractal surfaces. Ho et al.
(2008) found that roughness perception is correlated with texture contrast. Lawson et al.
(2003) showed that human performance in matching 3D shapes is lower for varying view

directions. Ostrovsky et al. (2005) pointed out that illumination inconsistency is hard to

detect in geometrically irregular scenes. Ramanarayanan et al. (2007) developed metrics

that predict the visual equivalence of rendered objects under warping and blurring of

illumination and warping of object surfaces.

Currently, the only reliable way is to compare the overall visual similarity of two

textures by independent observers in a psychophysical experiment.(Meseth et al. (2006);

Müller et al. (2003); Filip et al. (2008a,b)). However, this method is expensive, and it is

usually too slow to be useful in real-world applications. As an alternative solution, BTF

data modeling quality can be verified using objective image quality metrics.

Chapter 3 offers an overview on the general philosophy of traditional perceptual and

structural similarity based metrics and introduces the most popular and widely used met-

rics in each category.

Several studies on performance of traditional perceptual image quality models have

thus far been published (Li et al. (1998); Jackson et al. (1997); Eckert and Bradley

(1998); Wang et al. (2004); Lin and Kuo (2011); Watson et al. (2000)). In this chap-

ter, we make an attempt to validate these models with regard to predicting the visible

quality differences in images rendered by compressed and non compressed BTFs.

For an comparison of the traditional error-sensitivity and structural similarity based

approaches, two representatives from each group were selected: VDP (Daly (1993)),

VDM (Lubin (1995)), SSIM (Wang et al. (2004)) and CWSSIM (Wang and Simoncelli

(2005)).

Until now the metrics were implemented and the results obtained from the predictions

of the models were compared with each other and with the outcomes of a subjective

quality measure experiment, which involved quality comparisons with pairs of texturized

objects of varying BTF quality levels (Azari et al. (2016)). In this study, Gaze data was

collected to aid visual comparison strategy detection (explained in Chapter 4).

Although the number and range of visual quality metrics that have been proposed thus

far is large, most of them do not take into account an integral part of HVS that is assumed

to bear a major effect on the perception of overall perceived image and video quality.

This HVS property is referred to as visual attention (VA) (Allport (1989)) and consists

of higher cognitive processing deployed to reduce the complexity of scene analysis. For

this purpose, a subset of the available visual information is selected by shifting the focus

of attention across the visual scene to the most salient objects. It is because of the VA

mechanisms that HVS is able to cope with the abundant amount of visual information

that if is confronted with at any moment in time. In this chapter, the responses of the

metrics to the regions of interest (ROI) are also controlled and analyzed.
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Figure 6.1: The example of input images to the selected metrics with 256x256 pixels

resolution. Two objects (sofa and sphere) are rendered with two different BTF texture

(Cord and Pulli), in three levels of resolutions (256x256, 128x128 and 64x64 pixels).

The remainder of this chapter is structured as follows: first some instances of the pre-

dictions of the models are presented and their performance is characterized accordingly.

After discussion on the models, the detection results of metrics are compared against

each other and with the outcomes of the user study, which is then followed by a conclu-

sion and an outlook.

6.2 Measurements
To compare the traditional error-sensitivity and structural similarity based approaches,

two representatives from each group were selected. The Visible Differences Predictor

(VDP) and Visual Discrimination Model (VDM) are typical examples of an image qual-

ity metric based on error sensitivity, whereas the Structural SIMilarity index (SSIM) and

Complex Wavelet Domain Structural Similarity Index (CWSSIM) are specific examples

of a structural similarity quality measure. All of the selected methods are full-reference

metrics, i.e. the input to the selected metrics consists of two images and parameters for

viewing conditions, whereas the output is a map describing the visible differences be-

tween them. The output map defines the probability of detecting the differences between

the two images as a function of their location in images. The tested input images in-

clude computer generated three-dimensional textured models rendered through the BTF

rendering method.
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First Image (I1) Second Image (I2)

Cord-256 Cord-64
Cord-128 Cord-64
Cord-256 Cord-128
Pulli-256 Pulli-64
Pulli-128 Pulli-64
Pulli-256 Pulli-128

Table 6.1: Input image pairs.

The same sofa object model in the experimental study stimuli presented in Chapter

4 as well as one additional spherical object, which contains various angles and depth

combinations, were utilized so as to make performance and detection results comparable

with the outcomes of the experimental study.

For the texture, two cases were considered including the Cord already known from

the experimental study and Pulli, which is also available in the BTF database of the

University Bonn.

Both objects are rendered in three levels of resolutions namely: 256x256, 128x128

and 64x64 pixels, which are referred to as Cord-256 / Pulli-256, Cord-128 / Pulli-128
and Cord-64 / Pulli-64 (see Figure 6.1), respectively.

In the user study, the images were presented on a 24-inch monitor with a resolution

of 1920x1080 pixels at a distance of 70 cm from the viewer. The screen measured

22.35x15.80 inches and subtended approximately 33 degrees of visual angle. The same

conditions were employed for all metrics.

6.2.1 Detection Results and Performances
In this section both the output detection images of the image quality metrics and the

outcome of the user study are compared. The implemented metrics received pairs of

images as input (see Table 6.1). The output detection images of the metrics were then

compared and discussed.

For all the models, the following approach was employed (Myszkowski (1998)): the

numerical value of the difference between images is the percentage of pixels for which

the probability of difference detection is greater than 0.75. It is assumed that the differ-

ence can be perceived for a given pixel when the probability value is greater than 0.75

(75%), which is the standard threshold value for discrimination tasks, [Wilson (1991)].

This output value therefore ranges between 0 and 100 , where 0 means the best result (no

pixel with probability of difference detection greater than 0.75), while 100 means that all

the pixel differences are above the difference detection threshold (the worst result).

However, since we also need a single overall quality measure, we use a mean index in
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VDP VDM SSIM CWSSIM

ROI SM ROI SM ROI SM ROI SM

Cord-256 Cord- 64 0.71 0.79 0.21 0.19 0.75 0.61 0.72 0.84

Cord-128 Cord- 64 0.63 0.57 0.23 0.20 0.73 0.58 0.83 0.85

Cord-256 Cord- 128 0.013 0.011 0.19 0.21 0.15 0.12 0.35 0.47

Table 6.2: Correlation between objective image quality metrics; VDP, VDM, SSIM and

CWSSIM with ROI and saliency map (p > 0.0001).

the case of SSIM and CWSSIM models and JND for VDM. The index values fall within

a range of 0 to 1, where 1 in JND value of VDM means the worst quality, and 0 denotes

an indistinguishable difference between the input images, which is in case of SSIM and

CWSSIM mean index conversely.

Figures [6.2–6.5] present the output images of the metrics. To have a better compari-

son between metrics the results of two famous pixel-based metrics, the MSE and PSNR,

for each image pair are also presented.

Subsequently gaze fixation distributions of subjects across the sofa images were ana-

lyzed in order to assess whether differences exist for different image pair comparisons.

Fixation counts for cells in an overlaid 16x16 grid are shown in Figure 6.2 (top) for three

conditions.

In order to control the correlation between the saliency map, Regions of Interest (ROI)

and the responses of IQMs, we followed Le Meur et al. (2006) and computed a ROI

map from the subjects’ fixations . The ROI map is a probability distribution of the gaze

direction, therefore its integral is normalized to 1. Figure 7.7 (left-down) shows the ROI

map obtained from individual fixations.

To define the saliency map the algorithm proposed by Itti (2000) and Itti and Koch

(2001) was employed, with a new definition of the visual features (intensity, colour and

orientation), which is the most used in computer science, and has led to more convincing

oculometric validations (see Figure 7.7 (right-up)). The Saliency Toolbox for Matlab,

which is available online, was utilized in the present study (Walther (2006b)). Compared

to the saliency maps shown in Figure 7.7, the ROI map is smoother. The saliency map

and ROI are significantly correlated when r = 0.560 and p < 0.001.

Table 6.2 illustrates the correlation between IQM responses and ROI as well as the

correlation between IQM responses and saliency maps. As observed, the value between

each IQM for ROI and saliency map is highly correlated when r = 0.893 and p < 0.001.

The correlation coefficients between the adopted experimental subjective data set (ROI)

and IQM responses exhibit that all models, except for VDM model, exhibit a good level

of consistency with the subjective data.

In the next step, the responses of objective quality metrics to pixel depth for each

image pair and the percentage of fixation in each depth were controlled.
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Figure 6.2: The output images of four IQMs by sofa with different ’Cord’ texture reso-

lution. The color-scales on the right side indicate probability values of metrics in each

pixel. The last row presents Just Noticeable Difference (JND) values of VDM, SSIM and

CWSSIM. Additionally the MSE and PSNR, for each image pairs are also presented.
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Figure 6.3: The output images of four IQMs by sofa with different ’Pulli’ texture reso-

lution. The color-scales on the right side indicate probability values of metrics in each

pixel. The last row presents Just Noticeable Difference (JND) values of VDM, SSIM and

CWSSIM. Additionally the MSE and PSNR, for each image pairs are also presented.
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Figure 6.4: The output images of four IQMs by sphere with different ’Cord’ texture

resolution. The color-scales on the right side indicate probability values of metrics in

each pixel. The last row presents Just Noticeable Difference (JND) values of VDM,

SSIM and CWSSIM. Additionally the MSE and PSNR, for each image pairs are also

presented.
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Figure 6.5: The output images of four IQMs by sphere with different ’Pulli’ texture

resolution. The color-scales on the right side indicate probability values of metrics in

each pixel. The last row presents Just Noticeable Difference (JND) values of VDM,

SSIM and CWSSIM. Additionally the MSE and PSNR, for each image pairs are also

presented.
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Figure 6.6: Depth map (left-up) ROI map (left-down), saliency map (right-up) and fixa-

tion map (right-down)

VDP-Depth VDM-Depth SSIM-Depth CWSSIM-Depth Fixation-Depth

of the pixel of the pixel of the pixel of the pixel of the pixel

Cord-256 Cord- 64 -0,1636 -0,6961 -0,0173 -0,2872 -0.2705

Cord-128 Cord- 64 -0,1124 -0,6929 -0,0092 -0,4498 -0.2305

Cord-256 Cord-128 -0,0061 -0,6413 -0,0055 -0,5105 -0.2405

Table 6.3: Correlations between IQMs results, number of fixation and depth of the pixel

independently of presentation order. (p > 0.0001)

VDP VDM SSIM CWSSIM

Fixation location Fixation location Fixation location Fixation location

Cord-256 Cord- 64 -0.808 -0.1772 -0.498 -0.643

Cord-128 Cord- 64 -0.753 -0.1728 -0.320 -0.582

Cord-256 Cord-128 -0.015 -0.473 -0.155 -0.0617

Table 6.4: Correlations between IQMs results >75% and fixation location independently

of presentation order. (p > 0.0001)
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#equal #correct V DM SSIM CWSSIM
Cord-256 Cord- 64 49 382 0.93624 0.963 0.822

Cord-128 Cord- 64 44 383 0.89378 0.971 0.838

Cord-256 Cord-128 423 63 0.39004 0.994 0.949

Table 6.5: Frequencies of correct answers, incorrect equal-quality answers (accumulated

over all 20 subjects; sum of answers per pair: 480); and dprime value from VDM, SSIM

and CWSSIM

Table 6.3 illustrates the correlation between IQMs responses and the depth of pixels as

well as the correlation between fixation position and the depth of these pixels. The results

show a poor correlation between VDP, VDM and fixation and a significant correlation

between SSIM, CWSSIM and pixel depth.

Correlations between VDP/ VDM results (above 75%) and respective fixation location

patterns can be observed in Table 6.4. We observed strong correlations between locations

of predicted visually perceivable differences by VDP and observed fixation patterns only

for Cord-256 and Cord-64 as well as Cord-128 and Cord-64, while significant, albeit

a very poor correlation exists for VDM and fixation patterns for all image pairs. The

results show a poor correlation for SSIM and CWSSIM.

As shown by Figures 6.7-6.10, all curves react similarly to depth from quality per-

spective, but VDM is less sensitive than other metrics.

The first two columns of Table 6.5 illustrate the number of correct and equal answers

yielded for each of image pairs, and the remaining columns present the result of VDM,

SSIM and CWSSIM. The results show a significant correlation between subjects’ ability

to perceive differences between images and IQMs predictions.

To control the reaction of the metrics to different geometrical distortions the object in

the scene (sofa) was shifted without any other quality distortions and then used as a dis-

torted image. Additionally we applied the metrics to blurred, salt & pepper and Gaussian

noise contaminated images. The calculated JND and the output detection images of all

metrics are shown in Figure 6.11.

Performance

A discussion on the computational complexity of the considered metrics and the amount

of reference information that is needed to assess the quality of a test image follows in

this section. The computational complexity is measured in terms of the time required by

each of the metrics to assess the quality of a pair of images I1 and I2.

In this section, each metric has been computed over 12 pairs of images and then the

average time is determined. The metrics were run on a computer equipped with an Intel

Xeon Six-Core processor of 3.20 GHz. To allow for a fair comparison, the publicly

available Matlab implementation of each metric was used even though there might have
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Figure 6.7: The percentage of fixation in each depth and the responses of IQMs with

Sofa as object to the pixel depth between Cord-256 Cord-64 (top), Cord-128 Cord-64
(middle) and Cord-256 Cord-128 (bottom). Depth of the object between 0 and 0.9
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Figure 6.8: The responses of IQMs to the pixel depth with Sofa as object between Pulli-
256 Pulli-64 (top), Pulli-128 Pulli-64 (middle) and Pulli-256 Pulli-128 (bottom).

Depth of the object between 0 and 0.9
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Figure 6.9: The responses of IQMs to the pixel depth with Sphere as object between

Cord-256 Cord-64 (top), Cord-128 Cord-64 (middle) and Cord-256 Cord-128 (bot-

tom). Depth of the object between 0 and 0.4
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Figure 6.10: The responses of IQMs to the pixel depth with Sphere as object between

Pulli-256 Pulli-64 (top), Pulli-128 Pulli-64 (middle) and Pulli-256 Pulli-128 (bot-

tom). Depth of the object between 0 and 0.4
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Figure 6.11: Objective quality metrics responses to shifted, salt & pepper and Gaussian

noise contaminated and blurred images.

been other implementations available for some of the metrics.

The average performance of all the methods is provided in Table 6.6. SSIM, CWSSIM

and VDM have a complexity of O(N). This is due to the fact that these metrics work

in the spatial domain avoiding the expensive FFT and FFT−1 transformations. This

transformation can take up to 40% of the total execution time in VDP, and thus increase

the complexity of this model to O(NlogN) with an upper bound of O(N2) (see Li et al.
(1998)).

6.3 Discussion
The differences between the metrics are caused by stressing on different aspects of hu-

man visual perception. Nevertheless the results show that all metrics can be an appropri-

ate replacement for subjective quality measurement metrics.

The vision models have different ways to visualize the detected probability. While

VDP uses a psychometric function, which describes the relationship between the thresh-
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Total execution time (s)

Sofa Sphere

VDP 7.256 4.654

VDM 0.340 0.152

SSIM 0.282 0.134

CWSSIM 0.929 0.432

Table 6.6: Total execution time in second. All the metrics run on the same machine.

old contrasts and detection probabilities, to convert the normalized threshold contrasts

into detection probabilities, all other models make direct use of JND map and neglect the

psychometric function.

An advantage of the output map is that the nature of the difference can be observed

and this observation can be used for further rendering optimizations.

The results show a significant correlation between subjects’ ability to perceive existing

differences between the images and predictions of VDM and CWSSIM models. Based on

this investigation, it seems that VDM and CWSSIM can well predict differences between

two images.

The responses of objective quality metrics to pixel depth for each image pair shows

that all react similarly to depth but VDM is less sensitive than other metrics. Due to the

textured pattern, the texture details for the parts of the sofa from the depth of 0.3 to 0.8

have a 4 to 5 cycles per degree. HVS is most sensitive to intermediate ranges of spatial

frequencies (around 4-6 cycles/degree), and is less sensitive to spatial frequencies both

lower and higher than this. This explains why the metrics and the number of fixations

have a higher rank in these depths.

The results of this experimental study showed that two groups of image comparisons

exist. The first group consists of comparisons between Cord-256 and Cord-128. For this

group, subjects are largely unable to perceive existing differences between the images.

All models predict few visually perceivable differences for image pairs in this group.

The second group consists of comparisons between Cord-256 and Cord-64 as well

as between Cord-128 and Cord-64. For this group, subjects are largely able to see the

differences between the pairs. The models predict a larger number of differences which

are also detectable with a higher probability.

Where strong correlations were observed between locations of predicted visually per-

ceivable differences by VDP/CWSSIM and observed fixation patterns, a significant cor-

relation was also observed between subjects’ ability to perceive existing differences (the

number of correct answers) and the results of VDM and CWSSIM tests (JND).

As observed, all models, except VDM, are able to detect regions of interest in images.

This feature is promising for future research on ROI issues. The computation of VDM,

SSIM and CWSSIM does not require time consuming Fourier transformations (as VDP
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does) and they are certainly faster than that of the VDP model.

Secondly, it was observed that all metrics are highly sensitive to small translations,

scaling and rotations, which lead to high predicted peceptability values in metrics, even

though no quality differences are available in compared images. In the frequency do-

main, small translations, rotations and scalings lead to consistent phase changes. Due to

the fact that VDP works in frequency domains, it reacts with greater sensitivity to geo-

metrical distortions than other metrics (see Figure 6.11). According to Wang and Bovik

(2006), this problem can be overcome by analyzing images in complex wavelet domains

through Structural Similarity based metrics, but the results were not promising in the

case of our studies.

Another common problem shared by the models is the disregard for color perception

by HVS as well as incorporation of just the contrast sensitivity and luminance adaptation.

A promising direction in the future would be an analysis of full-colored images.

Additionally, there is a lack of no-reference perceptual picture quality metrics, since

both of the metrics are relative (full-reference). It is supposed that more work could be

done in the field of no-reference image quality assessment.

6.4 Conclusion
In this chapter, we investigated the suitability and integrity of certain image quality met-

rics, the traditional error-sensitivity and structural based, to predict levels of perceptibil-

ity for compressed BTF textures. To confirm the validity of obtained results, they were

compared with those obtained by an experimental study. In our validation experiment, it

was observed that VDM and CWSSIM can in general better predict the differences be-

tween two images. On the other hand, VDP is better able to detect the location of visible

differences in images.

Structural based IQM are able to successfully predict image quality in close agreement

with traditional error-sensitivity based IQMs.

The computation time is also another significant factor in image quality assessment,

especially so when real-time image resolution changes need to be introduced as per the

assessed quality of the rendered scene. In this scenario, all models, except VDP, prove

to be proper options. This is because VDM, SSIM and CWSSIM operate in the spatial

domain and unlike VDP, do not use the Fourier transform. However, in situations where

one needs to improve the image quality of only parts of an object, only VDP can provide

enough information on those areas requiring a higher resolution.

As observed, all models, expect VDM, are able to detect regions of interest in images.

This feature is promising for future research on ROI issues.
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Chapter 7

Visual Attention Based Image Quality
Metric
In this chapter, a method integrating visual attention awareness into existing image qual-

ity metrics will be developed. In this respect, a metric, called visual attention based

image quality metrics (VABIQM), is independently computed in different ROIs to ob-

tain quality measures for each region.

To control the validation of the proposed metrics, the results of the predictions of the

models will be compared with those of a subjective quality measure experiment, which

involves quality comparison tasks with pairs of texturized objects of varying BTF quality

levels. Finally, some conclusions are drawn in the last section.

7.1 Introduction
As observed in Chapter 6, there is still a lack of a fast pixel precise approach, providing

an acceptable and applicable measure of texture similarity.

Most of IQMs deal with distortion in all subregions or pixels in the same way. While

humans usually focus on highly salient regions in an image, our sensitivity to distortions

is significantly reduced outside of these areas. Accordingly, distortion occurring in any

other area that does not gain viewers’ attention is less annoying and may have a lower

impact on the overall perceived quality. As a consequence, integrating visual saliency

and perceptual distortion features may be crucial for improving existing IQMs.

There have been physiological and psychological evidence indicating that the human

visual system is able to select distinctive parts of images, known as salient regions, and

reduce the amount of visual data that need to be processed in detail to obtain high level

inferences (Itti and Koch (2001)).

Although visual attention is one of the essential attributes of the HVS, it is neglected

in most existing quality metrics, which is specially caused by the lack of methods with

low computational complexity for simulating the visual attention mechanism.

Another reason for the limited progress in this area is the difficulty of precisely mod-

eling visual attention, and also the fact that the mechanism of attention for image quality

judgment is not yet fully understood. Finally, studies combining visual attention and
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image distortion in a perceptually meaningful way are still limited, and hardly discuss a

generalized strategy for combining distortion visibility and saliency.

Several prior works have attempted to include human visual attention (HVA) into qual-

ity metric designing (Barland and Saadane (2006); Rao et al. (2007); Ma and Zhang

(2008); Sadaka et al. (2008); Moorthy and Bovik (2009)).

Lu et al. (2005) introduced visual attention for visual sensitivity and visual quality

evaluation. Based upon the analysis, a numerical measure to reflect the modulatory

after-effects of visual attention, called perceptual quality significance map (PQSM), was

proposed. However, the consistency of the proposed model with HVA is not sufficiently

validated.

Feng et al. (2008) proposed a metric for assessing the perceptual quality of decoded

video sequences affected by packet losses. The method weights the error on pixels in

salient regions for MSE and SSIM metrics, and is based on the saliency attention model

of Itti and Koch (2001). Unfortunately, the method is not able to exploit the characteris-

tics of human attention adequately.

Ninassi et al. (2007) proposed a saliency-based quality metric with the aid of an eye-

tracker. However, the study did not yield consistent improvements, at least for JPEG

and JPEG2000 compressed images, regarding visual saliency, as the application of eye-

tracker proved to be a time-consuming and costly practice.

Engelke and Zepernick (2010) proposed a framework to extend existing image quality

metrics with a simple VA model, based on a spatial image segmentation into ROIs and

the background. However, an extension of the framework to different types of distortions

and visual content requires obtaining both MOS and ROI coordinates from the respective

subjective experiments and also a new set of test images.

We propose an appropriate objective quality metric based on extracting visual attention

regions from images, which investigates adequately the influence of visual attention on

the perceived image quality assessment. We call it Visual Attention Based Image Quality

Metric (VABIQM). It is expected that visual saliency will offer significant benefits to

constructing objective quality metrics to predict the visible quality differences in images

rendered by compressed and non-compressed BTFs.

To show the validity of the proposed approach, the prediction results of the model are

compared with those of other metrics as well as those of our subjective quality measure

experiment, which involves quality comparison tasks with pairs of texturized objects of

varying BTF quality levels.

The remainder of this chapter is organized as follows: the next section will present the

approached metric, which is then followed by a discussion on the results of the study.

We will then presents experimental results of the proposed metric in comparison with

the subjective measurement. The final chapter concludes the study.
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7.2 A Novel Approach to Objective Image Quality
Metrics

Chapter 6 investigated the applicability of image quality metrics in predicting levels

of perception degradation for compressed BTF textures. We observed that in situations

where one needs to improve the image quality of only parts of an object, only VDP can

provide enough information on those areas that need a higher resolution.

Furthermore, VDP performs in the frequency domain, through the Fast Fourier Trans-

formation, and its inverse for frequency domain analysis (e.g. Contrast Sensitivity Func-

tion (CSF)). The advantage of frequency domain models is having a precise and contin-

uous CSF normalization; its disadvantage is its high computational time, which makes

the change of image resolution in real time based on the assessed quality of the rendered

scene not practicable.

Another major disadvantage of VDP is that it disregards color and geometric percep-

tion by the HVS, and incorporates just the contrast sensitivity and luminance adaptation.

Moreover, strong correlations between locations of predicted visually perceivable dif-

ferences by VDP and observed fixation patterns in the user study were observed. As

observed, VDP is able to detect regions of interest in the image.

Furthermore, Privitera and Stark (2000); Salvucci (2000); Ouerhani et al. (2004)

demonstrated that eye movements are tightly coupled with visual attention. Levin and

Simons (1997); O’Reagan et al. (1999) introduced change blindness, in which signifi-

cant image changes remain nearly invisible under natural viewing conditions, although

observers demonstrate no difficulty in perceiving these changes once directed at them.

This feature lets us believe that saliency plays a more significant role in the perceived

quality differences of images including computer-generated three-dimensional textured

models rendered through BTF rendering method. This is because compression artifacts

introduce similar quantization noise over the entire field of view and, on the other hand,

the focus of attention is determined primarily based on the original scene composition,

which gains the viewer attention. Therefore, consideration of visual saliency is expected

to bring about significant benefits to constructing objective quality metrics.

In the field of machine vision, the saliency-based bottom-up visual attention model

proposed by Itti et al. (1998) has been considered to be a successful neuromorphic model

that simulates the focus of attention (FOA) of human observers.

The appeal of ’SaliencyToolbox 2.1’ presented by Itti and Koch (2001) and Walther

(2006a) is the relatively straightforward manner in which it allows the input from multi-

ple, quasi-independent feature maps to be combined and yield a single output: the next

location to be attended. Feature maps are extracted from the input image at several spa-

tial scales, and are combined into three separate conspicuity maps (intensity, color and

orientation). These three maps that are encoded for saliency within these three domains

are then combined and fed into the single saliency map.

The model is limited to the bottom-up control of attention, i.e. to the control of se-
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Figure 7.1: Block diagram of approached metric; Visual Attention Based Image Quality

Metric (VABIQM).

lective attention by the properties of the visual stimulus, and does not incorporate any

top-down components, which means only the localization of the stimuli to be attended

are concerned, not their identification.

Our work mainly aims at taking advantage of this fundamental principle of the saliency

map and combining VDP and Itti’s saliency map into a unified quality metric, called

Visual Attention Based Image Quality Metric (VABIQM).

To achieve this objective, a saliency map will be generated after setting the parame-

ters and the weight of features. Depending on how fine the image is segmented by the

saliency map and the minimal and the maximal selected gray level values (0 or black for

minimum FOA and 1 or white for maximum FOA) for these areas, a ”Location Map” is

generated. The location Map can be derived solely from one of the two input images.

Then, as illustrated in Figure 7.1, VDP is applied to the areas selected by the Location

Map.

As a result of employing a Saliency map and VDP as the bottom-up approach of HVS,
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the approached VABIQM is also a bottom-up quality metric.

The model is non-intrusive, meaning that the image quality metrics are computed in-

dependently on extracted ROI images and do not need to be modified in any way.

To show the validity of the proposed approach, the prediction results of the model are

compared with those of other objective image quality metrics introduced in Chapter 6

and 3 , as well as with those of subjective quality measure experiments, which involves

quality comparison tasks with pairs of texturized objects of varying BTF quality levels.

The extensive experimental results confirm the validity of the proposed approach.

7.3 Assessing ”Visual Attention Based Image Quality
Metric”

Figurative artists spend large amounts of time engaged in practicing their skills, analyz-

ing objects, and scenes, painting, or manipulating other media to produce visual repre-

sentations. And as demonstrated in a series of studies by Winner and her colleagues,

artists might be cognitively different is that their memory for visual materials may im-

prove (Winner and Casey (1992); Sullivan and Winner (1989); Rosenblatt and Winner

(1988); Casey et al. (1990)).

To prevent subjects’ judgment of image quality from being affected by time, texture

and experience of subjects, a second eye-tracking experiment was organized (explained

in detail in Appendix B).

The issue we have investigated in the experiment concerns the testing of artists’ per-

ceptual abilities and comparing them to those of non-artists (computer scientists) in de-

tecting quality differences in objects rendered by varying BTF Quality levels. Further-

more, this study addressed the question of if exposure time and texture color affect the

judgment and comparison strategy of subjects. It is noteworthy that the subjects were

undergraduate or graduate students or department members in Public free arts and Com-

puter Science.

The results show that the outcomes of experiment explained in Chapter 4 are not af-

fected by the selected texture, exposure order, time, and selected subjects.

This section investigates the applicability of the approached image quality metric to

predict levels of perception degradation for compressed BTF textures. To confirm the va-

lidity of the present study, the output detection images of VABIQM were compared with

those of the user study and with the results of objective image quality metrics introduced

in the last chapter.

7.3.1 Measurements
All of the selected methods are full-reference metrics, i.e. the input to the selected met-

rics consists of two images and the parameters for viewing conditions, whereas the out-
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Figure 7.2: A Screenshot of the graphical user interface.

put is a map describing the visible differences between them. The output map defines

the probability of detecting the differences between the two images as a function of

their location in the images. The input images tested include computer generated three-

dimensional textured models rendered through BTF rendering method.

The same object models, textures, setup as presented in chapter 6 were selected for

making the detection results and performances comparable with the outcomes of the

experimental study and with the outputs of the introduced object image quality metrics.

A screenshot of the implementation interface is shown in Figure 7.2.

7.3.2 Detection Results
The correlation between VABIQM responses and the fixation location were controlled at

the first stage. Table 7.1 presents the correlation between VABIQM and other IQMs re-

sults (above 75%) and their respective fixation location patterns. Strong correlations were

observed between the location of predicted visually perceivable differences by VABIQM

and VDP, and fixation patterns were observed only for Cord-256 and Cord-64 as well

as Cord-128; significant, albeit weak, correlations were observed for SSIM and fixation

patterns for all image pairs in Cord-64.

Figures [7.3–7.6] present the distortion maps for selected and approached metrics.

Strong correlations could be observed between locations of predicted visually perceiv-

able differences by VABIQM and observed fixation patterns, and also between VABIQM
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VABIQM VDP VDM SSIM CWSSIM

fix. location fix. location fix. location fix. location fix. location

Cord-256 Cord- 64 -0.663 -0.808 -0.1772 -0.498 -0.643

Cord-128 Cord- 64 -0.549 -0.753 -0.1728 -0.320 -0.582

Cord-256 Cord-128 -0.001 -0.015 -0.473 -0.155 -0.0617

Table 7.1: Correlations between VABIQM/IQMs results >75% of fixation location inde-

pendently of presentation order. (p > 0.0001)

VABIQM-Depth VDP-Depth VDM-Depth SSIM-Depth CWSSIM-Depth Fixation-Depth

of the pixel of the pixel of the pixel of the pixel of the pixel of the pixel

Cord-256 Cord- 64 -0,0152 -0,1636 -0,6961 -0,0173 -0,2872 -0.2705

Cord-128 Cord- 64 -0,0065 -0,1124 -0,6929 -0,0092 -0,4498 -0.2305

Cord-256 Cord-128 -0,0036 -0,0061 -0,6413 -0,0055 -0,5105 -0.2405

Table 7.2: Correlations between IQMs results, number of fixation and depth of the pixel

independently of presentation order. (p > 0.0001)

and VDP/CWSSIM detection maps of the sofa as the study subject. Compared with this,

there is a moderate strong correlation between just VABIQM and VDP on a spherical

object (Figure 7.5 and 7.6), regardless of the selected texture.

Next, gaze fixation distributions of subjects across the sofa images were analyzed in

order to assess whether differences existed for different image pair comparisons. Fixation

counts for cells in an overlaid 16x16 grid are shown in Figure 7.3 (upper part) for three

conditions.

In order to control the correlation between the Regions of Interest (ROI) and the re-

sponses of VABIQM, the computed ROI map from the subjects’ fixations (explained in

Chapter 6) were used.

As observed, and as expected, the model is able to detect regions of interest in images

and there is a strong correlation between ROI and VABIM detection map when r = 0.687

and p < 0.001 (see Figure 7.7).

In the next step, the responses of objective quality metrics to pixel depth for each

image pair and the percentage of fixation in each depth were controlled.

Table 7.2 illustrates the correlation between IQMs responses and depth of pixels as

well as the correlation between fixation position and the depth of these pixels. The

results show a weak correlation by VABIQM and pixel depth. In Figure 7.8, it can be

seen that VABIQM reacts qualitatively similarly to VDP and depth.

VABIQM was also tested for other objects. The results show that VABIQM can be an

appropriate substitute for VDP in predicting perceptibility quality differences in objects

rendered by BTF with two ’Cord’ texture resolutions, namely Cord-256 Cord-64 (see

Figure 7.9).
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Figure 7.3: The output images of four IQMs and VABIQM by sofa with different ’Cord’
texture resolution. The color-scales on the right side indicate probability values of met-

rics in each pixel.
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Figure 7.4: The output images of four IQMs and VABIQM by sofa with different ’Pulli’
texture resolution. The color-scales on the right side indicate probability values of met-

rics in each pixel.
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Figure 7.5: The output images of four IQMs and VABIQM by sphere with different

’Cord’ texture resolution. The color-scales on the right side indicate probability values

of metrics in each pixel.
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Figure 7.6: The output images of four IQMs and VABIQM by sphere with different

’Pulli’ texture resolution. The color-scales on the right side indicate probability values

of metrics in each pixel.
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Figure 7.7: VABIQM detection map (left-up) ROI map (left-down), saliency map (right-

up) and fixation map(right-down)

95



Chapter 7 Visual Attention Based Image Quality Metric

Pixel Depth
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[%
] o

f p
ix

el
 w

ith
 IQ

M
 V

al
ue

 >
=7

5

0

5

10

15

20
Cord-256 - Cord-64

[%
] o

f p
ix

el
 w

ith
  F

ix
at

io
n 

>=
1

0

5

10

15

20

Fixation
VDP
VDM
SSIM
CWSSIM 
VABIQM

Pixel Depth
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[%
] o

f p
ix

el
 w

ith
 IQ

M
 V

al
ue

 >
=7

5

0

5

10

15

20
Cord-128 - Cord-64

[%
] o

f p
ix

el
 w

ith
  F

ix
at

io
n 

>=
1

0

5

10

15

20

Fixation
VDP
VDM
SSIM
CWSSIM 
VABIQM

Pixel Depth
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[%
] o

f p
ix

el
 w

ith
 IQ

M
 V

al
ue

 >
=7

5

0

5

10

15

20
Cord-256 - Cord-128

[%
] o

f p
ix

el
 w

ith
  F

ix
at

io
n 

>=
1

0

5

10

15

20

Fixation
VDP
VDM
SSIM
CWSSIM 
VABIQM

Figure 7.8: The percentage of fixation in each depth and the responses of IQMs and

VABIQM with Sofa as object to the pixel depth between Cord-256 Cord-64 (top), Cord-
128 Cord-64 (middle) and Cord-256 Cord-128 (bottom). Depth of the object between

0 and 0.9
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Figure 7.9: The output images of VABIQM and VDP by three different objects and

’Cord’ texture with two resolutions, namely Cord-256 Cord-64.

7.3.3 Performance
In the following, the computational complexity of the approached metric and the amount

of reference information that is needed in order to assess the quality of a test image is

discussed. The computational complexity is measured in terms of the time required by

VABIQM to assess the quality of a pair of Images, reference image (I1), and the distorted

image (I2).

It is worth to notice that image quality metrics (Saliency map and VDP) are computed

independently in VABIQM.

The Fast Fourier Transformation and its inverse raise the complexity of VDP to

O(NlogN) with an upper bound of O(N2). The saliency map algorithm has an O(N)
level of time complexity, where N is the number of pixels in a frame.

Afterwards, VDP is applied to I1 and I2. This part has a complexity of O(MlogM),
where M is the number of pixels selected by ”Location Map” which is always equal to,

or smaller than, N.

Due to the fact that the involved metrics are not computed in parallel, global computa-

tion of time is an addition, thus VABIQM time complexity is equal to O(N +(MlogM))
with the best case O(N) if limited parts of the image are selected, and worse case

O(NlogN) if nearly the entire image is selected, which is the same as applying VDP

to the whole image.

The computational complexity is measured in terms of time required by each of the
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Total execution time (s)

Sofa Sphere

VABIQM 0.984 0.645

VDP 7.256 4.654

VDM 0.340 0.152

SSIM 0.282 0.134

CWSSIM 0.929 0.432

Table 7.3: Total execution time in second. All the metrics run on the same machine.

metrics to assess the quality of a pair of images. In this step, each metric was computed

for all pairs of images and then the average time was determined. In order to allow for

a fair comparison the VABIQM is run on the same computer, which has been used in

Chapter 6. The average performance of all the methods is provided in Table 7.3.

7.4 Discussion
The results of Experimental studies show that no significant differences exist in perfor-

mance and the gaze behavior of the Artists and Computer scientists. Additionally The

outcomes of Experiments are not affected by the selected texture, exposure order, time,

and selected subjects.

The differences between VDP and saliency maps are caused by placing a different

weight on different aspects of human visual perception. Both of the aspects are taken into

consideration in VABIQM. The results show that VABIQM can be an appropriate substi-

tute for subjective quality measurement matrices and a good tradeoff between ”bottom-

up” objective image quality metric, namely VDP, and ”bottom-up” saliency map. The

approved metric possesses and combines the benefits of both models.

According to the experimental study, two groups of image comparisons exist. The

first group consists of comparisons between Cord-256 and Cord-128. For this group,

subjects were largely unable to perceive existing differences between the images. VDP

and SSIM models predicted few visually perceivable differences for image pairs in this

group, where VABIQM predicted no visible differences between the two images. This

was caused by the VDP value, which was lower than 75%.

The second group consists of comparisons between Cord- 256 and Cord-64 as well

as those between Cord-128 and Cord-64. For this group, subjects were largely able to

see the differences among the pairs. All IQMs predicted a higher number of differences

which are also detectable with a higher probability. The same result was obtained by

VABIQM.

Strong correlations could be observed between locations of predicted visually perceiv-

able differences by VABIQM and observed fixation patterns, and also between VABIQM
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and VDP/CWSSIM detection maps of the sofa as the study subject. Compared with this,

there is a moderate strong correlation between just VABIQM and VDP by sphere object

(Figure 7.5 and 7.6), regardless of the selected texture.

As observed, and as expected, the model is able to detect regions of interest in images

and there is a strong correlation between ROI and VABIM detection maps.

The responses of the objective quality metrics to pixel depth for each image pair shows

that VABIQM reacts similarly to depth and other metrics, except VDM, but VABIQM is

less sensitive than VDP. As explained in Chapter 6, the texture details for the parts of the

sofa from the depth of 0.3 to 0.8 have 4 to 5 cycles per degree, and the HVS is the most

sensitive for this intermediate range of spatial frequencies. This explains why VABIQM

and the number of fixations have a higher rank in these depths.

The results show also that VABIQM can be an appropriate substitute for VDP in pre-

dicting perceptibility quality differences in objects rendered by BTF.

In VABIQM, just those parts of the images that are selected in the Location Map were

be transformed to the frequency domain; thus, the execution time in VABIQM is less

than that in VDP, but higher than that in other metrics.

7.5 Conclusion
We presented a novel objective image quality metrics, namely VABIQM. The new ap-

proach incorporates ”bottom-up” simulation of HVS, as Saliency map and VDP are em-

ployed both as ”bottom-up” approaches of HVS. Combining these two approaches allows

the proposed method to take advantage of both approaches and to obtain more desirable

results. The experiments indicate that the proposed metric is highly correlated with sub-

jective quality rating and performs much better than the currently widely used simple

distortion metrics such as MSE and PSNR. The new metric also outperforms straightfor-

ward SSIM, CWSSIM and VDM in detecting perceivable differences. The computation

time is also another significant factor in image quality assessment, especially so when

image resolution needs to be changed in real time based on the assessed quality of the

rendered scene. This combined method also outperforms straightforward top-down VDP.

Future studies may approve the Location Map to have a more accurate segmentation. Ad-

ditionally, this method does not work for no-reference perceptual picture quality metrics,

as VDP is full-referenced. Thus, future studies should focus more on no-reference image

quality assessments.
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Conclusion
This final chapter summarizes the entire thesis, points out its achievements, and high-

lights the major contributions. It finally suggests extensions and solutions to open prob-

lems, and discusses some existing limitations that can be subject for future study.

8.1 Summary and Contributions
The main purpose of this thesis has been to delve into the use of human visual system

models in simulating graphically the fabric context. To achieve this goal, HVS mod-

els were presented considering multiple scopes and complexities designed for different

types of applications. In addition, their strongpoints for improving acquisition, render-

ing and evaluating quality and also extending its functionality were demonstrated. The

contributions of this thesis can be summarized as follows.

The central purpose of the first study, presented and described in Chapter 4 , was to lo-

cate a threshold for robust, effective BTF compression based on a downsampling of BTF

pictures. To this end, an experimental study on how decreasing the texture resolution

influences perceived quality of the rendered images has been presented and discussed. In

a visual comparison task, observers’ quality judgments and gaze data were collected and

analysed to determine the optimal downsampling of BTF data without significant loss of

their perceived visual quality.

The results of the study narrowed the threshold separating visually perceivable and

unperceivable differences in BTF renderings. Consequently, a perception-based criterion

for downscaling BTFs can now be suggested.

An observation for image synthesis is that, above the threshold (128 x 128 pixel), the

lowest texture resolution available can be used without visually perceivable degradation

of image quality. This allows to significantly reduce computer memory usage in BTF

rendering.

The objective of the study described in Chapter 5 was to present in detail a new low-

cost programmable device for the rapid acquisition of BTF datasets. The device is based

on standard off-the-shelf components, step motors, a semi-professional camera and a

standard LED illumination source capable of capturing high quality databases, which

reduces the cost of existing database acquisition setup by a factor of hundreds.
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Since the position of the illumination source and the orientation of the sample to be

acquired can be selected at will and therefore cover all four degrees of freedom of the

parameter space, the device allows to investigate if smaller databases obtained through

downsampling the parameter space allow perceptually sound renderings which show no

perceptual difference with respect to a higher sampling of the parameter space.

The new device appears therefore to be an excellent compromise, reducing signifi-

cantly the costs of the acquisition process. Moreover, its programmability allows to con-

ceive new experiments aimed at understanding the limits at which increasing the number

of samples in the database, as well as the resolution of the acquired textures, makes sense

as observers of the rendered objects do not perceive any differences.

The global aim of Chapter 6 was to investigate the applicability of groups of image

quality metrics, the traditional error-sensitivity and structural-based, to predict levels

of perception degradation for compressed BTF textures. To confirm the validity of the

present study, the outcome of an experimental study on how decreasing the BTF texture

resolution influences the perceived quality of the rendered images was compared with

the results of the applied image quality metrics. In this validation experiment, structural-

based metrics proved capable of successfully predicting image quality in close agreement

with traditional error-sensitivity based metrics.

As witnessed, there is still a lack of a rapid, but pixel precise, approach providing

an acceptable and applicable measure of texture similarity. Most of the image quality

models deal with distortion in all sub-regions or pixels equally. But humans usually

focus on highly salient regions in an image, so outside these areas our sensitivity to

distortions is significantly reduced. Accordingly, distortion occurring in any other area

that fails to gain the viewer attention is less disturbing and may have a lower impact on

the overall perceived quality. This indicates that the integration of visual saliency and

perceptual distortion features seem to be crucial for improving existing image quality

metrics.

As a consequence in Chapter 7, an appropriate objective quality metric based on ex-

tracting visual attention regions from images and adequate investigation of the influence

of visual attention on perceived image quality assessment, called Visual Attention Based

Image Quality Metric (VABIQM), has been proposed.

This new objective image quality metric incorporates ”bottom-up” simulation of the

HVS. To show the validity of the proposed approach, the results of the predictions of the

new model were compared with those of other metrics as well as those of a subjective

quality measurement experiment, which involved quality comparison tasks with pairs of

texturized objects of varying BTF quality levels.

The results clearly indicate that considering visual saliency can offer significant ben-

efits with regard to constructing objective quality metrics to predict the visible quality

differences in images rendered by compressed and non-compressed BTFs.

A combination of the two approaches allows the proposed method to take advantage of

both approaches and to obtain more desirable results. The experiments indicate that the

proposed metric is highly correlated with subjective quality rating and performs much
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better than the currently widely-used simple distortion metrics such as MSE and PSNR.

The proposed metric also outperforms straightforward existing image quality metrics at

detecting perceivable differences.

The computation time is also another significant factor in image quality assessment,

specially so when image resolution needs to be changed in real time based on the assessed

quality of the rendered scene. This combined method also outperforms straightforward

top-down VDP.

8.2 Limitations and Future Work
The findings of this thesis have shown the efficiency of exploiting HVS in acquisition

and rendering BTF textures. Actually, this conclusion may seem very obvious as the end

users of most image-generating applications are human. But we have presented solid

scientific evidence to back up this claim, and presented working solutions to graphical

simulation of fabrics related problems.

Consequently, the next step for the research in this field of study is integration of phys-

iological and psychophysical findings of the related sciences on human visual perception

into the methods of computer science. The advantages of this act will be first of all mak-

ing HVS findings more accurate and secondly identifying the specific needs of the target

method and making designs more limited but useful for human vision.

In future, we plan to use the device presented in Chapter 5 as a basis for new experi-

ments aimed at sheding a light on the relationship between high quality rendering and an

observer perception of rendered images. This can be employed in Computer Graphics,

Image Processing, and Image Compression communities alike.

According to the literature review, the common problem shared by the metrics pre-

sented in Chapter 6 of this thesis is a disregard for color perception by HVS as well

as the incorporation of just the contrast sensitivity and luminance adaptation. Thus,

conducting similar tests on colour images and incorporating colour information into the

models can be a subject for future study.

A logical next step would be to investigate further on sophisticated techniques for

image abstraction, including robust color or structure distance measures, which could be

beneficial to the approval of the Location Map introduced in Chapter 7 so as to have a

more accurate segmentation.

The proposed method is of no utility for no-reference perceptual picture quality met-

rics, as VDP is relatively full-reference. Thus, future studies may focus more on no-

referenced image quality assessments.

The next question to answer is how foveated rendering methods avoid objectionable

artifacts and achieve a quality comparable to non-foveated rendering.

We have already conducted pilot studies which let us believe that foveated rendering

improves graphical performance to achieve a quality comparable with that of standard

rendering. The results showed that the perceived quality of subjects decreases rapidly

102



Chapter 8 Conclusion

towards the periphery and this principle could be exploited by foveated rendering by

decreasing quality of the BTF pictures that end up in the user’s periphery (from 256 x

256 pixel to 64 x 64 pixel) to speed up the overall rendering process significantly.

Also of interest is to conduct a comparative study between the static and dynamic

scenes and to prove how dynamic situation affect the eye movements and quality percep-

tion. Although visual saliency has attracted the attention of researchers in the computer

vision and multimedia fields for quite a long time, most of the visual saliency-related

research works are conducted on still images. Video saliency receives much less re-

search attention, though it is becoming more and more important along with the rapidly

increasing demand of intelligent video processing.

Moreover all the subjects participated in these experiments had normal or corrected-

to-normal vision and were matched on visual acuity within the normal range. Many

factors compromise visual acuity(e.g., aging, schizophrenia) and optimal visual acuity

among healthy younger adults is better than 20/20. Therefore we ask: Do visual acuity

differences within the normal range alter visual performance? and therefore the next

issue that might addressed is to confirm if the presented results can be transferred to

other subjects outside of the normal range.

There are still many open questions for future research regarding the gaze patterns

obtained from the two image quality experiments presented in Chapters 4 and Appendix

B. In both cases, it would be of great interest to establish closer relationships between the

gaze patterns of human observers and their quality judgements during the experiment.

Such an analysis would serve to further understand the quality rating behaviour of

human observers when presented with an image content in the presence of BTF com-

pression distortions.
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Publication List
Chapter 4 - 7 are based on the following publications and they have been updated and

adapted to fit the scope of this thesis.
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Azari, B., Bertel, S., and Wuethrich, C. A. (2017). Low cost rapid acquisition on

bidirectional texture functions for fabrics. 25th International Conference on Computer
Graphics, Visualization and Computer Vision 2017, 25(2), Plzen, Czech Republic, May

28 - June 1, 2017.

Azari, B., Bertel, S., and Wuethrich, C. A. (2017). Validating Objective Image Quality

Metrics for Compressed Bidirectional Texture Functions. Poster session was presented

at the ACM Symposium on Applied Perception, SAP 2017, Cottbus , Germany, September
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Metrics for Bidirectional Texture Functions. Accepted at 26th International Conference
on Computer Graphics, Visualization and Computer Vision, WSCG 2018, Plzen, Czech
Republic, May 28 - June 1, 2018.
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The issue we have investigated in this user study concerns the testing artists’ perceptual

abilities and comparing them to those of non-artists (computer scientists) in detecting

quality differences in objects rendered by varying BTF Quality levels. Furthermore, this

study addressed the question of if exposure time and texture color affect the judgment and

comparison strategy of subjects. It is noteworthy that the subjects were undergraduate or

graduate students or department members in Public free arts and Computer Science.

Method
In this study two different self shadowing fabrics available in the BTF database of the

University Bonn 1 were selected; corduroy and wool, which we will refer to as Cord-256
and Wool-256, as their texture pictures are 256x256 pixels.

We then generated two new datasets by downscaling Cord-256 and Wool-256 sets

through bilinear interpolation to respective resolutions of 64x64 pixels (Cord-64 and

Wool-64). For each of the four texture data sets, the same sofa model as in user study

explained in Chapter 4 was rendered through the standard BTF rendering method at a

screen resolution of 1920x1080 pixels. See Table B.1 for image pairs.

Stimulus
The experiment was performed in two block of 32 images each, with 10,000 ms (10 sec)

and 2,000 ms (2 sec) exposure per image, respectively labeled as A and B test conditions.

In test A Pairs of the rendered images displayed side by side in full screen, and native

resolution mode were used as experimental stimuli (see Figure B.1), during test B the

rendered images were presented sequentially as explained in user study in Chapter 4.

Our rationale behind introducing test B was to compare the performance of Artists and

Computer scientist regardless of exposure time.

Participants were requested to look at the images in a natural way. The issue we have

investigated behind introducing long stimuli exposure time was to test the effect it may

have on the subjects’ gaze data.

After the presentation of each stimulus, subjects had 3000 ms to make a decision about

the comparative image quality within the pair: was the right or left image of better visual

1http://btf.cs.uni-bonn.de/.
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Figure B.1: An example of the stimuli used in experiment.

Left Image Right Image

Cord-256 Cord - 64
Cord-256 Wool - 64
Cord - 64 Cord-256
Cord - 64 Wool-256
Wool-256 Cord - 64
Wool-256 Wool - 64
Wool - 64 Cord-256
Wool - 64 Wool-256

Table B.1: Image pairs as experimental stimuli in eye tracker experiment.

quality? Or were the two images of the same visual quality? Responses were given on a

three-key keyboard and were possible at any time after the start of the presentation of the

stimulus. Subjects were also instructed that they could choose not to press any buttons if

they felt unsure about the comparison.

When looking at the eight image pairs in Table B.1, it becomes clear that all pairs are

different in quality and that, consequently, any judgment indicating the pairs being of the

same image quality will be incorrect. However, subjects were not previously instructed

that no same-quality pairs would be shown. After the decision time of 3000 ms had

lapsed, the next stimulus was automatically presented.

Experimental Setup
The images were presented on a 24-inch monitor with a resolution of 1920x1080 pixels

at a distance of 70 cm from the viewer.
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# correct # incorrect av. decision duration av. fixation frequency

Computer Scientist (test A) 424 216 3512.23 11.06

Artist (test A) 513 127 2958.95 10.01

Computer Scientist (test B) 485 155 1684.11 3.88

Artist (test B) 508 132 1695.35 4.17

Table B.2: Frequencies of correct answers and incorrect answers (accumulated over all

40 subjects; sum of answers: 640 for each group); average decision duration and average

fixation frequencies per image presentation.

In our laboratory setup, we used an EyeLink II eye tracker by SR Research in monoc-

ular mode and with a fixation detection of 250 Hz, in combination with an in-house eye

tracking framework to drive experiments and register data. For the analysis of eye move-

ment data, we employed the SR Research DataViewer as well as our own OpenEyes

tool.

Subjects. The subjects were separated into two groups: 20 Computer scientists (un-

dergraduate or graduate students or department members in Computer Science) and 20

Artists (undergraduate or graduate students or department members in Media art and de-

sign). They were not informed about the purpose of the experiment prior to conducting

it. Participants’ age ranged from 20 to 46 years (mean = 28.3). Subjects had normal or

corrected-to-normal visual acuity.

Results and Discussion
Table B.2 illustrates the subjects’ ability to judge image quality differences for the eight

stimuli. A comparison of means shows that both groups were largely able to see the

differences. A t-test shows that there were no significant differences between Artists’

and Computer scientists’ performance in test A (t(40) = 0.917, p > 0.05,r = 0.289) and

test B (t(40) = 0.869, p > 0.05,r = 0.321).
As shown in Figure B.2, the decision duration score in test A for Artists lies be-

tween 1077.677 to 6983.72 millisecond (Median = 2663.32) and for Computer sci-

entists between 1220.76 to 6545.33 millisecond (Median = 3471.48). A Wilcoxon

test showed no significant difference between the decision duration of the two groups

(z = −0.918, p > 0.05,r = 0.353). On the other hand, the subjects were mostly able to

answer during the first 5 seconds.

The last column of Table B.2 shows average fixation frequencies. For both groups,

a Wilcoxon test shows no significant differences in fixation frequency in test A (Z =
−0.667, p > 0.05,r = 0.156) and test B (Z =−0.264, p > 0.05,r = 0.234).

The results confirm no significant differences in performance and the gaze behavior of

the Artists and Computer scientists. We next analyzed gaze fixation frequencies of the
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Figure B.2: Decision duration in millisecond

subjects across the sofa image in order to assess whether differences exist for different

texture types, namely Cord and Wool. It was established that there were no differences in

gaze behavior or perceived quality jugments between fabrics in test A (Z =−0.505, p <
0.05,r = 0.169) and in test B (Z =−0.289, p < 0.05,r = 0.231).

Fixation counts for cells in an overlaid 7x10 grid are shown in Figure B.3 for eight

conditions. Fixation count patterns between any pair of these these conditions are signif-

icantly correlated with all r > 0.836 and p < 0.001 in test A and r > 0.914 and p < 0.001

in test B.

Additionally there was a significant behaviour between Fixation positions in user stud-

ies explained in Chapter 4 and in this section(r > 0.698 and p < 0.001). The results con-

firm that the outcomes of user study in Chapter 4 are not affected by the selected texture,

exposure order, time, and selected subjects.
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Figure B.3: Fixation count during the user study by two groups; Artists and Computer

scientists with 10 s stimuli duration in test A and 2 s in test B.
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Appendix C

Hardware used in Chapter 5

Stepper motor E7126-0140

Figure C.1: measurement of the E7126-0140.

model SM 42051

BIPOLAR RATED CURRENT 0.75 (Amp)

UNIPOLAR CURRENT 1 (Amp)

WINDING RESISTANCE 8.6 (Ohm)

BIPOLAR TORQUE 165 (Ncm)

UNIPOLAR TORQUE 130 (Ncm)

STEP ANGLE 1.8 (degree)

WEIGHT 1 (Kg)

Table C.1: Characteristics of the E7126-0140.
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Stepper motor SM 42051

Figure C.2: measurement of the SM 42051.

model SM 42051

RATED CURRENT 0.6 (Amp)

WINDING RESISTANCE 7.0 (Ohm)

BIPOLAR TORQUE 0.196 (Nm)

WEIGHT 1.8 (degree)

Table C.2: Characteristics of the SM 42051.
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Arduino mega 2560

Figure C.3: Arduino mega 2560 schematic
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RAMPS 1.4 3D Printer Controller Board
The RAMPS 1.4 3D Printer Controller Board interfaces with an Arduino compatible

Mega 2560 board and has an extra slot for a 5th stepper motor driver.

Figure C.4: RAMPS 1.4 3D Printer Controller Board schematic (copy from

http://www.achatzmediaserver.com/support/wp-content/uploads/2015/11/).
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Figure C.5: Rampswire14 (copy from http://reprap.org/mediawiki/images/e/e3)

114



Abbreviations

API Application programming interface

AFD Average Fixation Duration

ANOVA ANalysis Of VAriance

BRDF Bidirectional Reflectance Distribution Function

BSSRDF Bidirectional Surface Scattering Reflectance Distribution Function

BT F Bidirectional Texture Function

CCD Charge-Coupled Device

CSF Contrast Sensitivity Function

CWSSIM Complex Wavelet Spatial Domain Structural Similarity Index

FF Fixation Frequency

FFT Fast Fourier Transform

FOV Field Of View

HDR High Dynamic Range

HV S Human Visual System

ICC International Color Consortium

IQA Image Quality Assessment

IQM Image Quality Metrics

JND Just Noticeable Difference

LED Light Emitting Diode

LDR Low Dynamic Range

LGN Lateral Geniculate Nucleus

MOS Mean Opinion Score

MSE Mean Squared Error

MSSIM Mean Structural SIMilarity index

OECF Optoelectronic Conversion Function

PCS Profile Connection Space

PSNR Peak Signal-to-Noise Ratio

PQSM Perceptual Quality Significance Map

RGB Red, Green, Blue

RMS Root Mean Square

ROI Region Of Interest

SLR Single-lens Reflex

SM Saliency Maps

SV D Singular Value Decomposition
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Abbreviations

SNR Signal-to-Noise Ratio

SSIM Structural SIMilarity

VA Visual Attention

V DM Visual Discrimination Model

V DP Visible Differences Predictor
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