641 research outputs found

    Sequentiality vs. Concurrency in Games and Logic

    Full text link
    Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.Comment: 35 pages, appeared in Mathematical Structures in Computer Scienc

    An application of parallel cut elimination in multiplicative linear logic to the Taylor expansion of proof nets

    Get PDF
    We examine some combinatorial properties of parallel cut elimination in multiplicative linear logic (MLL) proof nets. We show that, provided we impose a constraint on some paths, we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into another sum of nets, while keeping coefficients finite. We moreover show that our constraints are stable under reduction. Our approach is motivated by the quantitative semantics of linear logic: many models have been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut elimination is essentially multiplicative. We moreover show that the set of differential nets that occur in the Taylor expansion of an MELL net automatically satisfies our constraints. Interestingly, our nets are untyped: we only rely on the sequentiality of linear logic nets and the dynamics of cut elimination. The paths on which we impose bounds are the switching paths involved in the Danos--Regnier criterion for sequentiality. In order to accommodate multiplicative units and weakenings, our nets come equipped with jumps: each weakening node is connected to some other node. Our constraint can then be summed up as a bound on both the length of switching paths, and the number of weakenings that jump to a common node

    Taylor expansion for Call-By-Push-Value

    Get PDF
    The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear Logic introduced by Girard has been widely explored through a denotational view reflecting the precise ruling of resources in this language. We take a further step in this direction and apply Taylor expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies into Call-By-Push-Value

    A type-assignment of linear erasure and duplication

    Get PDF
    We introduce LEM\mathsf{LEM}, a type-assignment system for the linear λ \lambda -calculus that extends second-order IMLL2\mathsf{IMLL}_2, i.e., intuitionistic multiplicative Linear Logic, by means of logical rules that weaken and contract assumptions, but in a purely linear setting. LEM\mathsf{LEM} enjoys both a mildly weakened cut-elimination, whose computational cost is cubic, and Subject reduction. A translation of LEM\mathsf{LEM} into IMLL2\mathsf{IMLL}_2 exists such that the derivations of the former can exponentially compress the dimension of the derivations in the latter. LEM\mathsf{LEM} allows for a modular and compact representation of boolean circuits, directly encoding the fan-out nodes, by contraction, and disposing garbage, by weakening. It can also represent natural numbers with terms very close to standard Church numerals which, moreover, apply to Hereditarily Finite Permutations, i.e. a group structure that exists inside the linear λ \lambda -calculus.Comment: 43 pages (10 pages of technical appendix). The final version will appear on Theoretical Computer Science https://doi.org/10.1016/j.tcs.2020.05.00

    Normalizing the Taylor expansion of non-deterministic {\lambda}-terms, via parallel reduction of resource vectors

    Full text link
    It has been known since Ehrhard and Regnier's seminal work on the Taylor expansion of λ\lambda-terms that this operation commutes with normalization: the expansion of a λ\lambda-term is always normalizable and its normal form is the expansion of the B\"ohm tree of the term. We generalize this result to the non-uniform setting of the algebraic λ\lambda-calculus, i.e. λ\lambda-calculus extended with linear combinations of terms. This requires us to tackle two difficulties: foremost is the fact that Ehrhard and Regnier's techniques rely heavily on the uniform, deterministic nature of the ordinary λ\lambda-calculus, and thus cannot be adapted; second is the absence of any satisfactory generic extension of the notion of B\"ohm tree in presence of quantitative non-determinism, which is reflected by the fact that the Taylor expansion of an algebraic λ\lambda-term is not always normalizable. Our solution is to provide a fine grained study of the dynamics of β\beta-reduction under Taylor expansion, by introducing a notion of reduction on resource vectors, i.e. infinite linear combinations of resource λ\lambda-terms. The latter form the multilinear fragment of the differential λ\lambda-calculus, and resource vectors are the target of the Taylor expansion of λ\lambda-terms. We show the reduction of resource vectors contains the image of any β\beta-reduction step, from which we deduce that Taylor expansion and normalization commute on the nose. We moreover identify a class of algebraic λ\lambda-terms, encompassing both normalizable algebraic λ\lambda-terms and arbitrary ordinary λ\lambda-terms: the expansion of these is always normalizable, which guides the definition of a generalization of B\"ohm trees to this setting

    Full Abstraction for the Resource Lambda Calculus with Tests, through Taylor Expansion

    Full text link
    We study the semantics of a resource-sensitive extension of the lambda calculus in a canonical reflexive object of a category of sets and relations, a relational version of Scott's original model of the pure lambda calculus. This calculus is related to Boudol's resource calculus and is derived from Ehrhard and Regnier's differential extension of Linear Logic and of the lambda calculus. We extend it with new constructions, to be understood as implementing a very simple exception mechanism, and with a "must" parallel composition. These new operations allow to associate a context of this calculus with any point of the model and to prove full abstraction for the finite sub-calculus where ordinary lambda calculus application is not allowed. The result is then extended to the full calculus by means of a Taylor Expansion formula. As an intermediate result we prove that the exception mechanism is not essential in the finite sub-calculus

    Graphical Representation of Canonical Proof: Two Case Studies

    Get PDF

    Parallel Beta Reduction Is Not Elementary Recursive

    Get PDF
    AbstractWe analyze the inherent complexity of implementing Lévy's notion of optimal evaluation for the λ-calculus, where similar redexes are contracted in one step via so-called parallel β-reduction. Optimal evaluation was finally realized by Lamping, who introduced a beautiful graph reduction technology for sharing evaluation contexts dual to the sharing of values. His pioneering insights have been modified and improved in subsequent implementations of optimal reduction. We prove that the cost of parallel β-reduction is not bounded by any Kalmár-elementary recursive function. Not only do we establish that the parallel β-step cannot be a unit-cost operation, we demonstrate that the time complexity of implementing a sequence of n parallel β-steps is not bounded as O(2n), O(22n), O(222n), or in general, O(Kl(n)), where Kl(n) is a fixed stack of l 2's with an n on top. A key insight, essential to the establishment of this non-elementary lower bound, is that any simply typed λ-term can be reduced to normal form in a number of parallel β-steps that is only polynomial in the length of the explicitly typed term. The result follows from Statman's theorem that deciding equivalence of typed λ-terms is not elementary recursive. The main theorem gives a lower bound on the work that must be done by any technology that implements Lévy's notion of optimal reduction. However, in the significant case of Lamping's solution, we make some important remarks addressing how work done by β-reduction is translated into equivalent work carried out by his bookkeeping nodes. In particular, we identify the computational paradigms of superposition of values and of higher-order sharing, appealing to compelling analogies with quantum mechanics and SIMD-parallelism

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Gluing resource proof-structures: inhabitation and inverting the Taylor expansion

    Get PDF
    A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing (and deciding in the finite case) those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure, through a rewriting system acting both on resource and MELL proof-structures. We also prove semi-decidability of the type inhabitation problem for cut-free MELL proof-structures
    corecore