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Abstract
The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear
Logic introduced by Girard has been widely explored through a denotational view reflecting the
precise ruling of resources in this language. We take a further step in this direction and apply Taylor
expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose
terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation
is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies
into Call-By-Push-Value.
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1 Introduction

Linear Logic [15] has been introduced by Girard as a refinement of Intuitionistic Logic that
take into account the use, reuse or erasing of formulas. In order to mark formulas that can be
reused or erased, Girard introduced the exponential !X and considered a linear implication
X ( Y . Following the proof/program correspondence paradigm, Linear Logic can be used to
type λ-calculus according to a chosen reduction strategy as Call-By-Name or Call-By-Value.
Abstraction terms λxM usually typed by X ⇒ Y will be typed as !X ( Y when following a
Call-By-Name evaluation strategy and by !(X ( Y ) when following a Call-By-Value strategy.
Therefore, both evaluation strategies can be faithfully encoded in Linear Logic.

Levy followed a related goal when he introduced Call-By-Push-Value [21] : having a lambda
calculus where both Call-By-Name and Call-By-Value can be taken into account. Since its
introduction this calculus has been related to the Linear Logic approach [4, 12, 6, 22, 20]. We
adopt this latest presentation which differentiates two kinds of types: positive and general
types used for typing two kinds of terms: values and general terms respectively. The marker
!I is used to transform a general type I into a value type !I which can be erased, used and
duplicated. The idea behind ! is to stop the evaluation of the terms typed by !I by placing
them into thunks (i.e. putting them into boxes).

The purpose of this article is to push further the relations between Call-By-Push-Value and
Linear Logic and to underline the resource consumption at play. For this we use syntactical
Taylor expansion, that reflects Taylor expansion into semantics. Indeed, several semantics of
Linear Logic and λ-calculus are interpreting types as topological vector spaces and terms
as smooth functions that enjoy Taylor expansion [5, 7, 8, 18]. Indeed, those functions can
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16:2 Taylor expansion for Call-By-Push-Value

be written as power series whose coefficients are computed thanks to a derivative operator.
The syntactical Taylor expansion enable the representation of terms as a combination of
approximants named resource terms.

Taylor expansion has first been introduced by Ehrhard and Regnier while they presented
the differential λ-calculus [9], they noticed that it was possible to give a syntactical version
of Taylor formula, and that this object was defined on the multilinear fragment of differential
λ-calculus. It consists in associating to a λ-term an infinite series of resource terms, that
enjoy a linearity property, in the following sense: resource calculus is endowed with an
operational semantics similar to λ-calculus, but with no duplication nor erasing of subterms
during reduction. As, in analysis analytic maps are approximated by series of monomials,
here λ-terms are approximated by series of resource terms. Taylor expansion gives a natural
semantics, where the reduction rules of resource calculus aim to identify the terms having
the same interpretation in a denotational model. In particular, the normal form of Taylor
expansion (or Taylor normal form) is a pleasant notion of approximation of normal forms
in various λ-calculi, and is strongly linked to the notion of Böhm trees, since Ehrhard and
Regnier’s seminal works [10]. This link has been extended in several direction, see e.g.
Vaux [27] for algebraic λ-calculus, Kerinec, Manzonetto and Pagani [17] for Call-By-Value
calculus, or Dal Lago and Leventis [19] for probabilistic λ-calculus. Let us also mention
two other related approachs to approximation of λ-calculus with polyadic terms instead
of resource terms [23, 24]. Taylor expansion has also been studied for the Bang Calculus,
an untyped analogue of Call-By-Push-Value, by Guerrieri and Ehrhard [13] and then by
Guerrieri and Manzonetto [16].

We propose, following that fertile discipline, a syntactical Taylor expansion for Λpv, which
is the Linear Logic-oriented presentation of Call-By-Push-Value we use (and corresponds to
Λhp in Ehrhard’s paper [12]).

A first difficulty we have to tackle, is the fact that designing a convenient resource
calculus, say ∆pv, that respects Λpv dynamics is not trivial. In particular, in a redex, the
argument is a value but is not necessary of exponential type. Then, the argument of a
resource redex shall not be necessarily a multiset, while it is always the case in Call-By-Name
and Call-By-Value resource calculi, as it ensures the reductions are linear. The semantical
reason of that phenomenon is that in a quantitative model of Λpv, all values with a positive
type are freely duplicable, thanks to the coalgebras morphisms associated to those types’
interpretation. The solution we adopt is to give a syntactical account to those morphisms in
the reduction rules, so as to ∆pv stays consistent with Call-By-Push-Value operational and
denotational semantics, while keeping the resource reduction linear.

We can then consider a Taylor expansion, as a function from Λpv to sets of terms in
∆pv, that consists of approximants. Once this framework is set, we are able to show that
the properties of Call-By-Push-Value, relative to the embeddings of various strategies of
evaluation, can be transported at the resource level.

The principal result of the paper is the simulation of Λpv reductions in full Taylor
expansion, where resource terms take coefficients in a commutative semiring. The key
ingredients for this simulation to run are intrinsic to the properties of ∆pv: the dynamics
of reduction must reflect the reduction of Λpv, and the mechanisms of the calculus must
enjoy combinatorial properties, so that the coefficients commute with the simulation. More
precisely, it means that for M,N ∈ Λpv such that M reduces to N , if Taylor expansion of M
is equal to

∑
i∈I aimi, where ai are coefficients taken in a semiring, and mi are resource terms

approximating M , then we have a notion of reduction such that
∑
i∈I aimi ⇒

∑
j∈I ajnj ,

and for each resource term n, its coefficient in the latter combination is the same as its
coefficient in the Taylor expansion of N .
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Contents of the paper

We first present (Section 2) Λpv as the starting point of our study, describing its operational
semantics, provide examples of its expressive power, and give elements of its denotational
semantics relative to coalgebras. We introduce and develop in Section 3 the resource calculus
∆pv together with its operational semantics. Then, in Section 4, we define Taylor expansion
for Λpv. First, in a qualitative way, with sets of approximants, where we show that it allows
the simulation of Λpv reductions. We also describe how the embeddings of Call-By-Name
and Call-By-Value into Call-By-Push-Value are transported at the resource level. Finally,
we introduce quantitative Taylor expansion, with coefficients, and prove the commutation
property between Taylor expansion and reduction that demonstrates that Taylor expansion
is compatible with Λpv operational semantics.

Terminology and notations

We write N for the set of natural numbers, andSk for the group of permutations on {1, . . . , k}.
For a term m, and a variable x, we denote as degx(m) the number of free occurrences of x
in m. These occurrences might be written x1, . . . , xdegx(m), while all referring to x.

Finite multisets of elements of a set X are written x = [x1, . . . , xk] for any k ∈ N, and
are functions from X to N. We use the additive notation x+x′ for the multiset such that for
all y ∈ X, (x+ x′)(y) = x(y) + x′(y). The size of x is written |x| and is equal to

∑
y∈X x(y).

We denote as X ! the set of all finite multisets of elements of X. We might write (x, . . . , x)k
for tuples or [x, . . . , x]k for multisets to denote k occurrences of the same element x.

If σ is a linear combination of terms
∑
i∈I ai ·mi, we use the notation λxσ =

∑
i∈I ai ·λxmi,

der(σ) =
∑
i∈I ai · der(mi), and σ! =

∑
k∈N

∑
i1,. . . ,ik∈I ai1 . . . aik · [mi1 , . . . ,mik ]. In

the same way, if τ =
∑
j∈J aj · nj , we write (σ, τ) =

∑
i∈I
∑
j∈J aiaj · (mi, nj). 〈σ〉τ =∑

i∈I
∑
j∈J aiaj · 〈mi〉nj . This notation corresponds to the linearity of syntactic constructors

with respect to potentially infinite sums of terms that will appear in Taylor expansion.

2 Call-By-Push-Value

2.1 Syntax and operational semantics
We consider a presentation of Call-By-Push-Value coming from Ehrhard [12], and convenient
for its study through Linear Logic semantics.
I Definition 1 (Call-By-Push-Value calculus Λpv).

Λpv : M ::= x | λxM | 〈M〉M | case(M,y ·M, z ·M) | fixx(M) | (M,M) | π1(M) | π2(M) |

M ! | der(M) | ι1(M) | ι2(M)

We distinguish a subset of Λpv, the values :

V ::= x |M ! | (V, V ) | ι1(M) | ι2(M)

Positive types: A,B ::= !I | A⊗B | A⊕B
General types : I, J ::= A | A( I | >
The typing rules are given in Figure 1 and reduction rules are given below:

〈λxM〉V →pv M [V/x] der(M !)→pv M

πi(V1, V2)→pv Vi fixx(M)→pv M [(fixx(M))!/x]
case(ιi(V ), x1 ·M1, x2 ·M2)→pv Mi[V/xi]

CSL 2020



16:4 Taylor expansion for Call-By-Push-Value

Γ, x : A ` x : A
Γ `M : I
Γ `M ! : !I

Γ, x : A `M : B
Γ ` λxM : A( B

Γ `M : A( I ∆ ` N : A
Γ,∆ ` 〈M〉N : I

Γ `M : A ∆ ` N : B
Γ,∆ ` (M,N) : A⊗B

Γ `M : A1 ⊗A2 i ∈ {1, 2}
Γ ` πi(M) : Ai

Γ `M : Ai i ∈ {1, 2}
Γ ` ιi(M) : A1 ⊕A2

Γ ` m : !A
Γ ` der(m) : A

Γ `M1 : A⊕B ∆ `M2 : I Θ `M3 : I
Γ,∆,Θ ` case(M1, y ·M2, z ·M3) : I

Γ, x : !I `M : I
Γ ` fixx(M) : I

Figure 1 Typing rules for Λpv.

We define evaluation contexts E, for all terms M,N .

E ::= [] | 〈M〉E | 〈E〉M | πi(E) | ιi(E) | (M,E) | (E,M) | case(E, x ·M,y ·N) | der(E)

and we set as an additional reduction rule E[M ] →pv E[N ] for every M,N such that
M →pv N .

2.2 An overview of denotational semantics and coalgebras
Let us give an overview of the denotational semantics of Call-By-Push-Value that justifies
the introduction of the resource calculus below. This semantics is based on the semantics of
Linear Logic that types the Call-By-Push-Value we are studying.

Let us describe briefly what is a model of Linear Logic (see [25] for a detailed presentation).
It is given by a category L together with a symmetric monoidal structure (⊗, 1, λ, ρ, α, σ)
which is closed1 and we write X ( Y for the object of linear morphisms. It has a
cartesian structure with cartesian product & and terminal object >. The category L
is equipped with a comonad ! : L → L together with a counit derX ∈ L(!X,X) and
a comultiplication digX ∈ L(!X, !!X). This comonad comes with a symmetric monoidal
structure2 from (L,&) to (L,⊗), that is two natural isomorphisms m0 ∈ L(1, !>) and
m2 ∈ L(!X ⊗ !Y, !(X & Y )).

By using isomorphisms m0 and m2; the functoriality of the comonad ! and the cartesian
structure, we can build a structure of comonoid on any !X, which enable erasing and
duplication of resources as we will see below.

erase!X ∈ L(!X, 1) split2
!X ∈ L(!X, !X ⊗ !X)

A coalgebra3 (P, hP ) is made of an object P and a morphism hP ∈ L(P, !P ) which
is compatible with the comonad structure as derPhP = Id and digPhP = !hPhP . Every
coalgebra inherits the comonoid structure of !P , that is it is equipped with: eraseP ∈ L(P, 1)
and split2

P ∈ L(P, P ⊗ P ) defined as:

eraseP : P
hP−−→ !P wP−−→ 1 split2

P : P
hP−−→ !P cP−−→ !P ⊗ !P derP⊗derP−−−−−−−−→ P ⊗ P.

1 Most model we consider are also ∗-autonomous: there is a ⊥ such that X is isomorphic to (X ( ⊥) ( ⊥
2 The two isomorphims m0 and m2 correspond to the so-called Seely isomorphisms.
3 We want the semantics we use to interpret Call-By-Push-Value to be compatible with Taylor expansion.

That is why, we have chosen to resolve the comonad using the Eilenberg-Moore resolution. The resulting
category can be not well-pointed as for example the relational model described below. Another option,
which is simpler and should be explored, is to use the Fam resolution [1].
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((i,mi), (mY ,mZ))

(i,mi) (mY ,mZ)

mi mY mZ

hP→
[
((i, x1

i ), (y1, z1)),

(i, x1
i ) (y1, z1)

x1
i y1

z1

. . . ((i, x1
k), (yk, zk))

](i, xk
i ) (yk, zk)

xk
i yk

zk

where
∑k
j=1 x

j
i = mi,

∑k
j=1 y

j = mY , and
∑k
j=1 z

j = mZ .

Figure 2 Action of the coalgebra morphism hP on a positive type.

Using similar computation, we can define splitkP ∈ L(P, P ⊗ · · · ⊗ P︸ ︷︷ ︸
k

).

Notice that the structure of comonad of ! induces a coalgebras structure on !X. Moreover,
every construction of positive type preserves the coalgebra structure. To define the coalgebraic
structure of P ⊗Q where P and Q are both coalgebras, let us first define the morphisms
µ0 ∈ L(1, !1) and µ2 ∈ L(!X ⊗ !Y, !(X ⊗ Y )) as

µ0 : 1 m0

−−→ !> dig>−−−→ !!> !(m0)−1

−−−−−→ !1

µ2 : !X ⊗ !Y m2
−−→ !(X & Y ) digX&Y−−−−−→ !!(X & Y ) !(m2)−1

−−−−−→ !(!X ⊗ !Y ) !(derX⊗derY )−−−−−−−−→ !(X ⊗ Y ).

Then, we can define hP⊗Q : P ⊗Q hP⊗hQ−−−−−→ !P ⊗ !Q µ2

−→ !(P ⊗Q). The coalgebraic structure of
the coproduct is entirely defined by the morphisms for i ∈ {1, 2}: Pi

hPi−−→ !Pi
!ini−−→ !(P1 ⊕ P2)

if the category has coproducts.
Thus, we can deduce that every positive type is interpreted as a coalgebra.

Example
The relational model is closely related to the Taylor expansion of the λ-calculus. Indeed,
every λ-term is interpreted as the set of the interpretation of the resource terms that appear
in its Taylor expansion. We can state that Taylor expansion is the syntactical counterpart of
the relational model.

Let us describe some of these constructions on the relational model of linear logic. The
category Rel is made of sets and relations. The tensor product is given by the set cartesian
product and its unit is the singleton set whose unique element is denoted ∗. The product is
given by disjoint union and the terminal object is the emptyset. Rel can be equipped with
the comonad of finite multisets. The comonadic structure of !X is

derX = {([a], a)|a ∈ X} digX = {(m, [m1, . . . ,mk])|m1 + · · ·+mk = m}.

The comonoidal structure of !X is

erase!X = {([], ∗)} split2
!X = {(m, (m1,m2))|m1 +m2 = m}.

A positive type is a finite combination of ⊕,⊗, !. For instance if P = (!X1⊕!X2)⊗(!Y ⊗!Z),
then P is a coalgebra (see Figure 2):

hP = {(((i,mi)) , (mY ,mZ)), [((i, x1
i ), (y1, z1)), . . . , ((i, xki ), (yk, zk))]|

mi = x1
i + · · · + xki ,mY = y1 + · · · + yk,mZ = z1 + · · · + zk},

CSL 2020



16:6 Taylor expansion for Call-By-Push-Value

and is equipped with the comonoidal structure:

eraseP = {(((i, []), ([], []), ∗)}
split2

P = {((i,mi), (mY ,mZ)) , ((i, (m1
i +m2

i )), ((m1
Y +m2

Y ), (m1
Z +m2

Z)))|
m1
i +m2

i = mi,m
1
Y +m2

Y = mY ,m
1
Z +m2

Z = mZ}}.

Remark that the structural morphisms are the same as those of !X but at the leaves of the
tree structure describing the formula P .

3 Resource calculus for Call-By-Push-Value

We introduce a typed resource calculus, able to simulate the operational semantics of Λpv.
The conditional construction is considered through tests of equality, and there is no explicit
fixpoint. The main difference with other resource calculi, like Call-By-Name or Call-By-Value,
is that redexes of shape 〈λxm〉n are not enough to entail Λpv reduction. Indeed, the notion
of value is too wide to be entirely captured in multisets of approximants: 〈λxM〉(V1, V2) is a
redex in Λpv, then we must be able to reduce terms like 〈λxm〉(v1, v2) in the resource setting,
while keeping it sensitive to resource consumption. We proceed so with the introduction of a
splitting operator, which allows us to duplicate a value using the structure of its positive
type.

I Definition 2 (Call-By-Push-Value resource calculus ∆pv). The syntax of types is the same
as the syntax of Λpv.

∆pv : m ::= x | 1 | 2 | λxm | 〈m〉m | (m = m) ·m | (m,m) | π1(m) | π2(m)
| [m, . . . ,m] | der(m)

We distinguish the values of the calculus:

v ::= x | 1 | 2 | [m, . . . ,m] | (v, v)

Γ, x : A ` x : A
Γ ` mi : I, i ∈ {1, . . . , k}

Γ ` [m1, . . . ,mk] : !I
Γ, x : A ` m : B

Γ ` λxm : A( B
Γ ` m : A( I ∆ ` n : A

Γ,∆ ` 〈m〉n : I
Γ ` m : !A

Γ ` der(m) : A
Γ ` m : A ∆ ` n : B

Γ,∆ ` (m,n) : A⊗B
Γ ` m : A1 ⊗A2 i ∈ {1, 2}
Γ ` πi(m) : Ai

Γ ` m : Ai i ∈ {1, 2}
Γ ` (i,m) : A1 ⊕A2

Γ ` m1 : A1 ⊕A2 ∆ ` m2 : Ai Θ ` m3 : I
Γ,∆,Θ ` (m1 = (i,m2)) ·m3 : I

Figure 3 Typing rules for ∆pv.

In order to set the operational semantics of the resource calculus just defined, we introduce
a new construction splitk. Its operational semantics is the duplication of ground values such
as integers or variables and the split of the leaves of tree structure induced by pairs and
injections, as exemplified in Figure 4. This splitting operator is the syntactical counterpart
of the semantical morphism associated to each coalgebra P interpreting a positive type:
splitkP ∈ L(P, P ⊗ · · · ⊗ P︸ ︷︷ ︸

k

) (see Section 2.2).
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⊗

⊕ ⊗

! ! !
m m′ m′′

(i,m) (m′,m′′)

((i,m), (m′,m′′)) splits into:
⊗

⊕ ⊗

! ! !
m1 m′1 m′′1

(i,m1) (m′1,m′′1 )(
( (i,m1), (m′1,m′′1 )), . . . ⊗

⊕ ⊗

! ! !
mk m′k m′′k

(i,mk) (m′k,m′′k)

, ((i,mk), (m′k,m′′k))
)

where
∑k
i=1mi = m,

∑k
i=1m

′
i = m′, and

∑k
i=1m

′′
i = m′′.

Figure 4 Splitting a value, the tree of its positive type labelled by resource components.

I Definition 3 (Split). splitk(m) is defined as a set of k-tuples of values of same shape
than m. It is defined when m is a value itself.

splitk(m) = {(m1, . . . ,mk) |
∑k
i=1mi = m}

splitk(x) = {(x, . . . , x)k}
splitk(i) = {(i, . . . , i)k} for i ∈ {1, 2}.
splitk((m,n)) = {((m1, n1), . . . , (mk, nk)) | (m1, . . . ,mk) ∈ splitk(m), (n1, . . . , nk) ∈
splitk(n)}.

We define now the reduction rules associated to ∆pv, by adding the distinguished term 0
to the calculus.
〈λxm〉n→rpv m[n1/x1, . . . , nk/xk] for degx(m) = k and all (n1, . . . , n

′
k) ∈ splitk(n).

(v = (i, v′)) · n→rpv n if v = (i, v′). (v = (i, v′)) · n→rpv 0 otherwise.
der([m1, . . . ,mk])→rpv m1 if k = 1, and der([m1, . . . ,mk])→rpv 0 otherwise.
πi((m1,m2))→rpv mi

We define evaluation contexts e, for all terms t, u of ∆pv :

e ::= [] | 〈e〉m | 〈m〉e | λxe | (e,m) | (m, e) | (e = m) · n | (m = e) · n | der(e)

and set the additional rule e[m]→rpv e[n] if m→rpv n by one of the above rules, with e[0] = 0
for all context e.

We cannot define a reduction for tests of equality that produces non values-terms, because
we would lost confluence: for example, if we allow to reduce m(π1(m1,m2) = m1) · n, then
m reduces to 0, and it reduces as well to (m1 = m1) · n, which reduces to n.

I Proposition 4 (Subject Reduction). For any terms m,n and general type I, if m : I and
m→rpv n, then n : I.

Proof. By induction on m.
If m = (πi(m1,m2)) and if n = mi, then there exist A1, A2 such that mi : Ai, and we
have m : Ai and n : Ai.
If m = der([n]), then there is a type J such that n : J , and we have [n] : !J and m : J .
If m = (v1 = (i, v2)) · n, then if n : J for some type J , then m : J .
If m = 〈λxm′〉v and n = m′[v1/x1, . . . , vk/xk] for k = degx(m′) and (v1, . . . , vk) ∈
splitk(v), then x : A, v : A,m′ : J, λxm′ : A ( J , for some types A, J . Then m : J , in
order to conclude n : J , it remains to ensure that for all i ∈ {1, . . . , k}, vi : A which is
done easily by an induction on v, and that it implies m′[v1/x1, . . . , vk/xk] : A. That last
point follows from a standard argument.
If m = e[m′] and n = e[n′] for n→rpv n

′, we conclude by induction hypothesis. J

CSL 2020



16:8 Taylor expansion for Call-By-Push-Value

We define for all k ∈ N, all variable x and m ∈ ∆pv, a set of terms fixkx(m) as follows,
with fix0

x(m) = {m[[]/x1, . . . , []/xdegx(m)]}:

fixk+1
x (m) =

{
m
[
m1/x1, . . . ,mdegx(m)/xdegx(m)

]
| ∀i ≤ degx(m) : mi ∈ (fixkx(m))!}.

4 Taylor expansion

Taylor expansion consists in taking infinitely many approximants of a given object. As analytic
maps can be understood as infinite series of polynomials that approximate it, Λpv terms can
be considered through all resource terms that are also multilinear (in the computational
sense) approximants. We first introduce a qualitative version, with sets, through which
we show a first simulation property (Proposition 9), and we prove that the embeddings of
Call-By-Name and Call-By-Value behave well at the resource level (Property 2). Then, we
introduce coefficients so as to consider full quantitative Taylor expansion. Lemma 10 ensures
that it does not lead to divergence issues through a finiteness property of antireduction.
Finally, we prove the full simulation of Λpv reduction in Taylor expansion, showing that
coefficients commute with reduction, in Theorem 17.

4.1 Definition and Simulation
I Definition 5 (Support of Taylor expansion). We define the sets of resource terms corres-
ponding to the support of Taylor expansion of Λpv:
Tpv(x) = {x} Tpv〈M〉N = {〈m〉n | m ∈ Tpv(M), n ∈ Tpv(N)}
Tpv(ιi(M)) = {(i,m) | m ∈ Tpv(M)} Tpv(der(M)) = {der(m) | m ∈ Tpv(M)}
Tpv(M !) = Tpv(M)! Tpv((M,N)) = {(m,n) | m ∈ Tpv(M), n ∈ Tpv(N)}
Tpv(πi(M)) = {πi(m) | m ∈ Tpv(M)} Tpv(fixx(M)) = {fixk

x(m) | m ∈ Tpv(M), k ∈ N}
Tpv(λxM) = {λxm | m ∈ Tpv(M)} Tpv(case(M, z1 ·N1, z2 ·N2)) = {(m = (i,m′))·ni[m′/zi]

| i ∈ {1, 2},m ∈ Tpv(M), ni ∈ Tpv(Ni),m′ ∈ ∆pv}

I Property 1. Let M ∈ Λpv, m ∈ Tpv(M), and k ∈ N. splitk(m) is defined if and only if
M is a value.

Proof. One can check that the syntax of resource terms v that are in Tpv(V ) for a value
V matchs exactly the resource values of Definition 2. It is easy to verify that splitk(v) is
always defined, and that if m ∈ Tpv(M) is not such a resource value, then splitk(m) is not
defined. J

The following corollary shows that ∆pv is consistent with Λpv in the following sense: an
approximant of a redex in Λpv is always a redex in ∆pv, and a redex in ∆pv which is an
approximant of a term in Λpv, is the approximation of a redex. This is mostly trivial, but for
redexes of shape 〈λxm〉n (respectively 〈λxM〉N), where it is a consequence of Property 1,
as stated in the following corollary:

I Corollary 6. Let 〈λxm〉n ∈ Tpv((λxM)N). There is a term m′ such that 〈λxm〉n→rpv m
′

by reducing the most external redex if and only if N is a value. Recall moreover that
(λxM)N →pv M [N/x] if and only if N is a value.

I Lemma 7. If M is a value, k ∈ N, m ∈ Tpv(M) and (m1, . . . ,mk) ∈ splitk(m) then for
all i ∈ {1, . . . , k}, mi ∈ Tpv(M).

Proof. By induction on M , using Property 1 :
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If M = x, then m = x and splitk(m) = (x, . . . , x)k. We conclude since Tpv(x) = {x}.
If M = N !, then m = [n1, . . . , nl], and for all i ∈ {1, . . . , l}, ni ∈ Tpv(N). We have
(m1, . . . ,mk) = (n1, . . . , nk) with

∑k
i=1 ni = [n1, . . . , nl]. Then, each ni is a multiset of

elements in Tpv(N), and ni ∈ Tpv(N !) = Tpv(M).
If M = (N,N ′), then m = (n, n′) for n ∈ Tpv(N) and n′ ∈ Tpv(N ′). (m1, . . . ,mk) =
((n1, n

′
1), . . . , (nk, n′k)) with (n1, . . . , nk) ∈ splitk(N) and (n′1, . . . , n′k) ∈ splitk(N ′). By

induction hypothesis, for all i ∈ {1, . . . , k}, ni ∈ Tpv(N) and n′i ∈ Tpv(N ′). Then for all i,
(ni, n′i) ∈ Tpv(N,N ′) = Tpv(M).
If M = ιj(N), then m = (j, n) for n ∈ Tpv(N) and splitk(m) = ((j, n1), . . . , (j, nk)) with
(n1, . . . , nk) ∈ splitk(n). By induction hypothesis, for all i ∈ {1, . . . , k}, ni ∈ Tpv(N).
Then for all i, (j, ni) ∈ Tpv(ιj(N)) = Tpv(M). J

The following substitution lemma is crucial to ensure that Taylor expansion is compatible
with reduction. It will be used for proving simulation, in Proposition 9.

I Lemma 8 (Substitution). Let m ∈ Tpv(M), k = degx(m), and n1, . . . , nk ∈ Tpv(N), for
M,N ∈ Λpv. We have m[n1/x1, . . . , nk/xk] ∈ Tpv(M [N/x]).

Proof. The proof is by induction on M . We only consider representative cases, the other
following by similar applications of induction hypothesis.

If M = x, then m = x, k = 1, m[n1/x1] = n1, and M [N/x] = N . Then m[n1/x1] ∈
Tpv(M [N/x]).
If M = λyM ′, then degx(M) = degx(M ′),m = λym′ for m′ ∈ Tpv(M ′). By induc-
tion hypothesis, m′[n1/x1, . . . , nk/xk] ∈ Tpv(M ′[N/x]). Since m[n1/x1, . . . , nk/xk] =
λym′[n1/x1, . . . , nk/xk], we conclude.
If M = 〈M1〉M2, then m = 〈m1〉m2 for mi ∈ Tpv(Mi), and degx(m) = l1 + l2 for
l1 = degx(m1) and l2 = degx(m2). By induction hypothesis, m1[n1/x1, . . . , nl1/xl1 ] ∈
Tpv(M1[N/x]) and m2[nl1+1/x, . . . , nl1+l2/x] ∈ Tpv(M2[N/x]). Since m[n1/x1, . . . ,

nk/xk] = 〈m1[n1/x1, . . . , nl1/xl1 ]〉m2[nl1+1/x, . . . , nl1+l2/x], and M [N/x] =
〈M1[N/x]〉M2[N/x], we conclude.
If M = M ′!, then m = [m′1, . . . ,m′l] with m′i ∈ Tpv(M ′) for all i, and degx(m) =

∑l
i=1 ki

where ki = degx(m′i). By induction hypothesis, m′i[nki−1+1/xki−1+1, . . . ,

nki−1+ki
/xki−1+ki ] ∈ Tpv(M ′[N/x]) for all i ∈ {1, . . . , l} (setting k0 = 0). Then,

M [N/x] = (M ′[N/x])!, and we can conclude as before.
In M = case(M ′, z1 ·N1, z2 ·N2), then m = (m′ = (i,m′′)) ·ni[m′′/zi] for i ∈ {1, 2},m′ ∈
Tpv(M ′), ni ∈ Tpv(Ni),m′′ ∈ ∆pv. We conclude by induction hypothesis as above. J

Notice that only the case where N is a value will be used, since the other cases do not
appear in the operational semantics.

We can finally prove the first simulation property:

I Proposition 9 (Simulation). If M →pv M
′, then for any m ∈ Tpv(M), either m→rpv 0 or

there is m′ ∈ Tpv(M ′) such that m→=
rpv m

′, where →=
rpv is the reflexive closure of →rpv.

Proof. By induction on M :
If M = πi((M1,M2)) and M ′ = Mi, then m = πi((m1,m2)) for mi ∈ Tpv(Mi). We
conclude since M →pv Mi and m→rpv mi.
If M = der(N !) and M ′ = N , then m = der([n1, . . . nk]), with ni ∈ Tpv(N) for all
i ∈ {1, . . . , k}. We conclude since M →pv N and m →rpv n1 if k = 1 and m →rpv 0
otherwise.
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If M = fixx(N) and M ′ = N [(fixx(N))!/x], then it is easy to verify that Tpv(M) =
Tpv(M ′), using Lemma 8 and unfolding the definition of Taylor expansion of fixpoint. We
need a reflexive reduction for this case.
If M = (λyN)V and M ′ = N [V/y], then m = 〈λyn〉v for n ∈ Tpv(N) and v ∈ Tpv(V ). By
Property 1, splitk(v) is defined for any k ∈ N, then m→rpv n[v1/yf(1), . . . , vk/yf(k)] for
degy(n) = k and (v1, . . . , vk) ∈ splitk(v). By Lemma 7, for all i ∈ {1, . . . , k}, vi ∈ Tpv(V ),
and by the substitution Lemma 8, n[v1/y1, . . . , vk/yk] ∈ Tpv(N [V/y]).
If M = case(ιi(V ), x1 ·M1, x2 ·M2) and M ′ = Mi[V/xi], then, m = ((i, v) = (j, n)) ·
mi[v/xi] for i, j ∈ {1, 2}, v ∈ Tpv(V ), n ∈ ∆pv,mi ∈ Tpv(Mi). Either m →rpv 0, either
(i, v) = (j, n) and in this case m→rpv mi[n/xi] = mi[v/xi]. By the substitution Lemma 8
we conclude, since we have M →pv Mi[V/xi] and mi[v/xi] ∈ Tpv(Mi[V/xi]).
If M = E[N ] and M ′ = E[N ′], then we can easily show that there is a resource context e
such that m = e[n] and n ∈ Tpv(N). By induction hypothesis, either n→rpv 0, and then
e[n] = 0, or there exists n′ such that n →rpv n

′ and n′ ∈ Tpv(N ′). We can easily adapt
the substitution Lemma to conclude e[n′] ∈ Tpv(E[N ′]). J

4.2 Embeddings of CBV and CBN
Call-By-Push-Value is known to subsume both Call-By-Name and Call-By-Value strategies.
In particular, the two strategies can be embedded into Λpv. If we consider simply typed
λ-calculus4 Λ, we set two functions ()v, ()n : Λ → Λpv, defined in Table 5. We do not
consider here calculi with products, or other constructors, in order to focus in a simple
setting on the relation between exponentials and strategies of reduction (see Ehrhard and
Tasson’s work [14] for more developments). Our embeddings ensure e.g. the following
property: ((λxM)N)v →pv (M [N/x])v if and only if N is a variable or an abstraction, and
((λxM)N)n →pv (M [N/x])n for any M,N .

From the Taylor expansion point of view, let T n and T v be, respectively, usual Call-By-
Name expansion, and Call-By-Value expansion (first defined by Ehrhard [11]). We can check
the correctness of our construction of ∆pv and Tpv with respect to those embeddings, using
T n and T v defined in Table 2. The first one is defined on ∆n, which is the original Ehrhard
and Regnier’s resource calculus [9], and the second one on ∆v, a Call-By-Value resource
calculus, introduced by Ehrhard [11]. Both are described in Table 1.

Table 1 Call-By-Name and Call-By-Value resource calculi.

∆n ∆v

m,n ::= x | λxm | 〈m〉n m,n ::= [x1, . . . , xk] | [λxm1, . . . , λxmk] | 〈m〉n

〈λxm〉[n1, . . . , nk]→ m[n1/xf(1), . . . , nk/xf(k)] 〈[λxm]〉[n1, . . . , nk]→ m[n1/xf(1), . . . , nk/xf(k)]
if k = degx(m) andf ∈ Sk if k = degx(m) andf ∈ Sk

I Property 2. For any pure λ-term M ∈ Λ, E(Tpv((M)v)) = T v(M) and E(Tpv((M)n)) =
T n(M), where E is the function that erases all the derelictions (that do not exist in ∆n nor
in ∆v) in a set of terms.

4 We do not make types explicit, since the translation works in the same way with pure λ-calculus (e.g
when translated in Linear Logic proof nets). But since the target calculus is typed, this restriction is
necessary
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Table 2 T v : Λ→ P (∆v) and T n : Λ→ P (∆n).

Call-By-Name Taylor expansion Call-By-Value Taylor expansion
T n(x) = {x} T v(x) = {x}!

T n(MN) = {〈m〉n | m ∈ T n(M), n ∈ T n(N)!} T v(MN) = {〈m〉n | m ∈ T v(M), n ∈ T v(N)}
T n(λxM) = {λxm | m ∈ T n(M)} T v(λxM) = {[λxm1, . . . , λxmk] | mi ∈ T v(M)}

Figure 5 Both translations are functions from Λ to Λpv.

Call-By-Name translation Call-By-Value translation
(x)n = der(x) (x)v = der(x)!

(MN)n = 〈Mn〉(Nn)! (MN)v = 〈der(M)〉N
(λxM)n = λxMn (λxM)v = (λxMv)!

Proof. The proof consists in a simple examination of the definitions. Let us start with
Call-By-Value constructions: The variable case is immediate since Tpv(xv) = {der(x)}!, and
T v(x) = {x}!. Tpv((λxM)v) = {[λxm1, . . . , λxmk] | k ∈ N,mi ∈ Tpv(Mv)}, we conclude
since by induction hypothesis, E(Tpv(Mv)) = T v(M) and T v(λxM) = {[λxm′1, . . . , λxm′l] |
l ∈ N,m′i ∈ T v(M)}. The application case is managed with a similar argument with
induction hypothesis, and with the fact that E(〈der(M)〉N) = 〈E(M)〉E(N).

For Call-By-Name, we only consider the application case (the other being straightfor-
ward): Tpv((MN)n) = {〈m〉n | m ∈ Tpv(Mn), n ∈ Tpv(Nn)!}. By induction hypothesis,
E(Tpv(Mn)) = T n(M) and E(Tpv(Nn)) = T n(N), and we can conclude. J

Together with the simulation property of Tpv (Property 9), Property 2 proves that Call-
By-Push-Value subsumes both Call-By-Name and Call-By-Value strategies, and that remains
valid at a resource level.

4.3 Finiteness
The following lemma ensures that one can consider a quantitative version of Taylor expansion
Tpv, and extend the resource reduction to an infinite and weighted setting. The conditions of
validity of this result have been widely studied in non uniform settings, Linear-Logic proof
nets, or various strategies of reduction [2, 3, 26, 27]. This is necessary for proving Lemma 15
that state that coefficients remain finite under reduction.

I Lemma 10 (Finiteness of antireduction). Let n ∈ ∆pv and M in Λpv. {m ∈ Tpv(M) |
m→=

rpv n} is finite.

(sketch). We do not detail the proof, since we can adapt the first author’s work [2] for PCF.
The idea is to extend Ehrhard and Regnier’s original proof [10], defining a coherence relation
on resource terms in a way Tpv(M) is always a maximal clique for this relation. In particular,⋃
k∈N fixkx(m) must be a clique.
Then, it remains to show that the reduction preserves coherence, and that if m,m′ are

coherent, and both reduce to n, then m = m′. We conclude that there cannot be several
distinct resource terms in Tpv(M) reducing to a common term. J

4.4 Taylor expansion with coefficients
In the remainder of this section, we will consider infinite linear combinations of resource terms.
Those terms will take coefficients in an arbitrary commutative semiring S with fractions: a
semiring in which every natural number k 6= 0 ∈ N admits a multiplicative inverse, written
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1
k . For a combination ϕ =

∑
i∈I ai ·mi ∈ S∆pv , and for a resource term m ∈ ∆pv, we denote

by (ϕ)m the coefficient of m in ϕ, that correspond to
∏
mi=m ai.

All the constructors of ∆pv are linear, in the sense that we can write e.g.
λx
(∑

i∈I ai ·mi

)
=
∑
i∈I ai · λxmi, (see Introduction for those notations). This allows

us to give the definition of full Taylor expansion with coefficients as follows:

I Definition 11 (Full Taylor expansion). Let S be any commutative semiring with fractions.
We define quantitative Taylor expansion, which is a function ()∗ : Λpv → S∆pv , and consists
in linear combinations of elements in Tpv.

x∗ = x.
(λxM)∗ = λxM∗

(〈M〉N)∗ = 〈M∗〉N∗
((M,N))∗ = (M∗, N∗)
(ιi(M))∗ = (i,M∗)
(πi(M))∗ = πi((∗M))
case(M,x1 ·N1, x2 ·N2)∗ =

∑
i∈{1,2}

∑
r∈∆pv

((M∗) = (i, r)) · (Ni[M/xi])∗

(M !)∗ =
∑
k∈N

1
k! [M

∗, . . . ,M∗]k
(der(M))∗ = der(M∗)

Taylor expansion of fixpoints is defined inductively. We set a combination fixx(M)∗k for all
k ∈ N, which corresponds to k unfoldings of M in x, as a quantitative version of the sets
fixkx(m) of Definition 5.

(fixx(M))∗0 = (M [[]/x])∗

(fixx(M))∗k+1 =
∑

m∈Tpv(M)

∑
−→
m∈(fixk

x(M))!

(M∗)m
degx(m)∏
i=1

((fixx(M))∗k)!
mi
·

m[m1/x1, . . . ,mdegx(m)/xdegx(m)]

and we set (fixx(M))∗ =
∑
k∈N (fixx(M))∗k.

We also need to give a quantitative version of the splitting operator, in order to make
one step-reduction commute with quantitative Taylor expansion defined above.

I Definition 12 (Quantitative split). We define for all k ∈ N and all resource value v the
weighted finite sum splitk+(v) as follows : if v ∈ {1, 2} or v = x, then splitk+(v) = (v, . . . , v)k.

If v = m, then splitk+(v) =
∑

m1+. . .+mk=m

|m|!
|m1|!. . . |mk|!

· (m1, . . . ,mk). If v = (v1, v2), then

splitk+(v) is defined as following, setting −→v i = (vi,1, . . . , vi,k) :∑
(v1,1,. . . ,v1,k)

∈|splitk
+(v1)|

∑
(v2,1,. . . ,v2,k)

∈|splitk
+(v2)|

(
splitk+(v1)

)
−→v 1

(
splitk+(v2)

)
−→v 2
· ((v1,1, v2,1), . . . , (v1,k, v2,k))

We now introduce a reduction rule that takes into account the coefficients of definition 12.

I Definition 13 (Quantitative resource reduction →rpv+). Let m ∈ ∆pv and k = degx(m).

〈λxm〉v →rpv+

∑
(v1,. . . ,vk)∈∆k

pv

(
splitk+(v)

)
(v1,. . . ,vk)

m[v1/x1, . . . , vk/xk]

If m→rpv n by reducing a redex of another shape than 〈λxm〉n, then we also set m→rpv+ n.
Notice that if m→rpv+

∑k
i=1 ai · ni, then for all i ∈ {1, . . . , k} such that ai 6= 0, we have

m→rpv ni.
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I Definition 14 (Reduction between combinations). We define a reduction ⇒⊆ S∆pv × S∆pv .
Given a family of resource terms (mi)i∈I and a family of finite sums of resources terms
(νi)i∈I such that for all i ∈ I, and for all n ∈ |νi| the set {j ∈ I | mj →=

rpv+ n} is finite.
In that case, we set

∑
i∈I ai ·mi ⇒

∑
i∈I ai · ni as soon as mi →=

rpv ni for all i ∈ I.

I Lemma 15. Let M ∈ Λpv with M∗ =
∑
i∈I ai · mi and ϕ =

∑
i∈I ai · νi such that

mi →=
rpv+ νi for all i ∈ I. Then, for all i ∈ I and for all n ∈ |νi|, n has a finite coefficient in

ϕ.
In other words, the reduction ⇒ is always defined on Taylor expansion.

Proof. This is an immediate consequence of Lemma 10 and Definition 13. J

I Lemma 16. Let m ∈ ∆pv, with degx(m) = k, and V a value of Λpv.∑
v∈Tpv(V )

∑
(v1,. . . ,vk)

∈splitk(v)

(V ∗)v
(
splitk+(v)

)
(v1,. . . ,vk)

·m[v1/x1, . . . , vk/xk]

=
∑

(v1,. . . ,vk)
∈Tpv(V )k

k∏
i=1

(V ∗)vi ·m[v1/x1, . . . , vk/xk]

Proof. The proof is by induction on V .
If V is a variable, then all the coefficients (V ∗)vi

are equal to 1, and the result is trivial.
If V = N !, then we want to establish the following, for any k ∈ N:

∑
n

∈Tpv(N)!

∑
(n1,. . . ,nk)

∈splitk(n)

(
splitk+(n)

)
(n1,. . . ,nk)

|n|∏
i=1

(N∗)ni

1
|n|! ·m[n1/x1, . . . , nk/xk]

=
∑

(n1,. . . ,nk)
∈Tpv(N !)k

1
|n1|!. . . |nk|!

k∏
i=1

|ni|∏
j=1

(N∗)ni,j
·m[n1/x1, . . . , nk/xk]

Where for all i ≤ k, ni = [ni,1, . . . , ni,|ni|].

This equation is verified by looking at the definition of splitk+.
(
splitk+(n)

)
(n1,. . . ,nk)

is

equal to |n|!
|n1|!. . . |nk|! , which is enough to simplify the above equation and conclude this

case.
If V = (V1, V2). Then we want to establish:∑

(v1,v2)
∈Tpv((V1,V2))

∑
(u1,. . . ,uk)

∈splitk((v1,v2))

(V1, V2)∗(v1,v2)

(
splitk

+((v1, v2))
)

(u1,. . . ,uk)
·m[u1/x1, . . . , uk/xk]

=
∑

(u1,. . . ,uk)
∈Tpv((V1,V2))k

k∏
i=1

(V ∗1 )v1,i

k∏
j=1

(V ∗2 )v2,j ·m[u1/x1, . . . , uk/xk]

Where (u1, . . . , uk) = ((v1,1, v2,1), . . . , (v1,k, v2,k)), for (vi,1, . . . , vi,k) ∈ splitk(vi).

CSL 2020
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By induction hypothesis, we have for i ∈ {1, 2}:∑
vi∈Tpv(Vi)

∑
(vi,1,. . . ,vi,k)

∈splitk(vi)

(V ∗i )vi

(
splitk+(vi)

)
(vi,1,. . . ,vi,k)

·m[vi,1/x1, . . . , vi,k/xk]

=
∑

(vi,1,. . . ,vi,k)

∈Tpv(Vi)k

k∏
j=1

(V ∗i )vi,j ·m[vi,1/x1, . . . , vi,k/xk]

Which allows us to conclude this case since ((V1, V2)∗)(v1,i,v2,j) = (V ∗1 )v1,i × (V ∗2 )v2,j and(
splitk+((v1, v2)

)
(u1,. . . ,uk)

=
∏2
i=1

(
splitk+(vi)

)
(vi,1,. . . ,vi,k)

The case V = ιi(V ′) is proved in the same way by induction hypothesis. J

I Property 3. (M [N/x])∗ =

∑
m∈Tpv(M)

∑
(n1,. . . ,nk)∈Tpv(N)k

(M∗)m
k∏
i=1

(N∗)ni ·m[n1/x1, . . . , nk/xk]

where k = degx(m).

Proof. Easy induction on M . J

We can finally state the main result of this section and of the paper: Theorem 17
establishes the simulation of Λpv operational semantics in Taylor expansion with coefficients.

I Theorem 17. Let M,M ′ ∈ Λpv, if M →pv M
′, then M∗ ⇒M ′∗.

Proof. We use Proposition 9, and verify that it extends to full Taylor expansion, keeping all
coefficients in the right place.

If M = 〈λxN〉V and M ′ = N [V/x], then M∗ =∑
n∈Tpv(N)

∑
v∈Tpv(V )

(N∗)n(V ∗)v · 〈λxn〉v

⇒
∑

n∈Tpv(N)

∑
v∈Tpv(V )

∑
(v1,. . . ,vk)

∈splitk(v)

(N∗)n(V ∗)v
(
splitk+(v)

)
(v1,. . . ,vk)

· n[v1/x1, . . . , vk/xk]

=
∑

n∈Tpv(N)

∑
(v1,. . . ,vk)∈Tpv(V )k

(N∗)n
k∏
i=1

(V ∗)vi
· n[v1/x1, . . . , vk/xk]

The last equality is obtained by Lemma 16, and is equal to N [V/x]∗ by Property 3.
If M = case((ιi(V ), x1 ·M1, x2 ·M2)) and M ′ = Mi[V/xi], then M∗ =∑

j∈{1,2}

∑
r∈∆pv

((i, V )∗ = (j, r)) ·N∗j [V ∗/xj,1, . . . , V ∗/xj,k]

⇒ N∗i [V ∗/xi,1, . . . , V ∗/xi,k]

Which is equal to (N [V/x])∗ by Property 3.
If M = der(N !) and M ′ = N , then we verify immediately (der(N !))∗ = der((N !)∗) =
der((N∗)!) = N∗, since der([n1, . . . , nk])→rpv 0 if k 6= 1.
If M = fixx(N), then, M∗ = (M [(fixxM)!/x])∗. Property 3 and an examination of the
definition of Taylor expansion of fixpoint is sufficient to verify this point.
The projections rules are obtained by a straightforward application of the definitions. J
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5 Conclusions

We have introduced a new resource calculus reflecting Call-By-Push-Value resource handling
and based on Linear Logic semantics. We have then defined Taylor expansion for Call-By-
Push-Value as an approximation theory of Call-By-Push-Value encounting for resources.
Then, we have shown that it behaves well with respect to the original operational semantics:
Taylor expansion with coefficients commutes with reduction in Λpv. For future work, three
directions shall be explored:

The calculus can be extended in order to define inductive and coinductive datatypes.
Integers, for instance, could be defined by adding to our syntax (): 0 = ι1(), k + 1 = ι2(k),
and all integers defined in this way have the type ι = (1⊕ ι). The successor suc can then
be defined as the second injection. Then, if x has no free occurrence in N1, the term
case(M,x ·N1, y ·N2) is an adequate encoding of an “if zero” conditional If(M,N1, y ·N2)
(where the value to which M evaluates is passed to the following computation).
The coinductive datatype of streams can also be defined: let A be a positive type,
SA = !(A⊗ SA) is the type of lazy streams of type A (the tail of the stream being always
encapsulated in an exponential, the evaluation is postponed). We can construct a term
of type SA ( ι( A which computes the k-th element of a stream:

fixf (λxλy(If(y, π1(der(x)), z · 〈der(f)〉π2〈der(x)〉z)))

and a term of type !(ι( A) ( SA:

fixf
(
λg
(
der(g)0, 〈der(f)〉(λx〈der(g)〉suc(x))!))

which builds a stream by applying inductively a function to an integer. There are other
classical constructions, such as lists, that can be constructed with these ingredients. For
a more detailed presentation, see Ehrhard and Tasson’s work [14]. We have good hope
that this kind of extensions can be incorporated in our resource driven-constructions.
Extend our constructions in a probabilistic setting, to fit with existing quantitative
models like probabilistic coherence spaces. Indeed Lemma 10, which is crucial to define
reduction on quantitative Taylor expansion, strongly relies on the uniformity of the
calculus, i.e we use the fact that all resource terms appearing in the Taylor expansion of
a Call-By-Push-Value term have the same shape (there is a correspondance between their
syntactic trees). The extension seems highly non trivial. But, Dal Lago and Leventis’
recent work [19] might be a starting point.
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