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We analyze the inherent complexity of implementing Lévy’s notion ofoptimal evaluationfor the
λ-calculus, where similar redexes are contracted in one step via so-calledparallelβ-reduction. Optimal
evaluation was finally realized by Lamping, who introduced a beautiful graph reduction technology for
sharingevaluation contextsdual to the sharing ofvalues. His pioneering insights have been modified
and improved in subsequent implementations of optimal reduction. We prove that the cost of parallel
β-reduction is not bounded by any Kalmár-elementary recursive function. Not only do we establish
that the parallelβ-step cannot be a unit-cost operation, we demonstrate that the time complexity of
implementing a sequence ofn parallelβ-steps is not bounded asO(2n), O(22n

), O(222n

), or in general,
O(K `(n)), whereK `(n) is a fixed stack of̀ 2’s with an n on top. A key insight, essential to the
establishment of this non-elementary lower bound, is that any simply typedλ-term can be reduced
to normal form in a number of parallelβ-steps that is only polynomial in the length of the explicitly
typed term. The result follows from Statman’s theorem that deciding equivalence of typedλ-terms is
not elementary recursive. The main theorem gives a lower bound on the work that must be done by
any technology that implements Lévy’s notion of optimal reduction. However, in the significant case
of Lamping’s solution, we make some important remarks addressinghowwork done byβ-reduction
is translated into equivalent work carried out by his bookkeeping nodes. In particular, we identify
the computational paradigms ofsuperpositionof values and ofhigher-order sharing,appealing to
compelling analogies with quantum mechanics and SIMD-parallelism.C© 2001 Academic Press

1. INTRODUCTION

In foundational research some two decades ago, Jean-Jacques Lévy attempted to characterize formally
what anoptimally efficientreduction strategy for theλ-calculus would look like, even if the technology
for its implementation was at the time lacking. Lévy’s dual goals werecorrectness, so that such a
reduction strategy does not diverge when another could produce a normal form, andoptimality, so
that redexes are not duplicated by a reduction, causing a redundancy in later calculation [Lévy78,
Lévy80]. The relevant functional programming analogies are that call-by-name evaluation is a correct
but not optimal strategy, while call-by-value evaluation is an approximation of an incorrect but optimal
strategy. It is for this reason that implementers of call-by-name functional languages are interested
in static program analysis (for example, strictness analysis), so that the “needless work” inherent in
normal-order evaluation might somehow be controlled.

Such optimal and correct implementations were known for recursion schemas, but not ones where
higher-order functions could be passed as first-class values [Vui74]. In elaborating his notion of optimal
reduction, Lévy introduced alabeledvariant ofλ-calculus, where all subterms of an expression are
annotated withlabelsthat code the history of a computation. He proposed the idea of aredex family—
redexes in a term with identical labels in the “function” position—to identify similar redexes whose
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reduction should somehow be evaluatedat once(via a so-calledparallel β-reduction) by any efficient
scheme.

Recent research by Lamping, and independently by Kathail, has shown that there indeed exist
λ-calculus evaluators satisfying Lévy’s specification [Lam90, Kat90]. Lamping introduced a beautiful
graph reduction technology for sharingevaluation contextsdual to the sharing ofvalues. His pioneering
insights have been modified and improved in subsequent implementations of optimal reduction, most
notably by Asperti and by Gonthieret al. [Asp94, GAL92a). Lamping’ssharing nodesallow a single,
shared representation of a redex family, and thus provide a means to implement Lévy’s notion of par-
allel reduction. The varied implementations of this graph reduction framework differ in the underlying
bookkeeping technology used to control interactions between sharing nodes.

A fundamental and unresolved question about thissharing technology, proposed by Lamping and
offered in modified from by others, is to understand the computational complexity of sharing as a
function of the “real work” ofβ-reduction. In recent years, various papers [Asp96, LM96, LM97] have
begun to address this issue. this question concerningalogrithm analysisonly begs more global questions
that one can pose about theinherentcomplexity of optimal evaluation and parallelβ-reduction byany
implementation technology. In this paper, we take major steps toward resolving such global questions,
with important algorithmic insights into the relevant graph reduction technology. Specifically, we prove
that the cost of parallelβ-reduction is not bounded by any Kalmár-elementary recursive function. Not
only do we establish that a parallelβ-step is not a unit-cost operation, but also we prove that the time
complexity of implementing a sequence ofn parallelβ-steps is not bounded asO(2n), O(22n

), O(222n

),
or in general,O( f (n)), where f (n) is any fixed stack of 2’s with ann on top.

In order to make these questions and answers precise, we need to define the cost of parallel
β-reduction:

DEFINITION 1.1. Let E be a labeledλ-term that normalizes inn parallelβ-steps. Let algorithmA
be a interpreter that normalizes the unlabeled equivalent ofλ-term E in t time steps. We then say that
A implemented the n parallelβ-steps at cost t, and define thecost of a single parallelβ-stepin this
reduction ast/n.

The point of this definition is that while algorithmA need not make calculations that have anything
to do with parallel reduction, we consider the time cost of paralleβ-reduction, as implemented byA, by
assigning all of the algorithmic work done—in a completely arbitrary way—to the parallel reduction
steps. In any such assignment of work, at least one parallelβ-step must require costt/n.

A key insight, essential to the establishment of our nonelementary lower bound, is that any simply
typedλ-term can be reduced to normal form in a number of paralleβ-steps that is only linear in the
length of the explicitly typed term. The proof of this claim depends on the judicious use ofη-expansion
to control the number of parallelβ-steps. Not only doesη-expansion act as anaccounting mechanism
that allows us to see order in the graph reduction, but it also serves as a lovely sort ofoptimizerthat
exchanges the work of parallelβ-reduction for the work ofsharing. Our result then follows from
Statman’s theorem that deciding equivalence of typedλ-terms is not elementary recursive [Sta79]. We
emphasize in Statman’s theorem thegeneric simulationof time-bounded computation. In particular,
we stress the straightforward but powerful technology of [Mai92], where a functional programming
implementation ofquantifier elimination for higher-order logic over a finite base typeis employed to
simulate arbitrary Kalmár-elementary, time-bounded computation. That the decision problem for this
higher-order logic has nonelementary complexity was originally proven by Meyer [Mey74].

It is very easy to give a brief description of the proof of our lower bound, if the reader has a nodding
familiarity with sharing graphs. We define theKalmár-elementary functionsK `(n) as K0(n) = n, and
K t+1(n) = 2K t (n) [Kal 43].

MAIN THEOREM. Let `>0 be any fixed integer. Then there exists a set of explicitly typed, closed
λ-terms En: Bool, where|En| = O(n), En normalizes in O(|En|) parallelβ-steps,and the time needed
to implement the parallelβ-steps,on any first-class machine model,3 grows asÄ(K `(n)).

3 A “first-class” machine model [vEB90] is any computational model equal to the power of a Turing machine, modulo
polynomial slowdown. For example, register machines with a logarithmic cost criterion are first-class; counter machines are not.
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Proof sketch. For a fixed Turning machineM , and inputx of lengthn, consider the question, “Does
M acceptx in K `+1(n) steps?” We show how to compile this question into asuccinctsimply typed
λ-termE, where the length of the explicitly typed termE is exponential iǹ but linear inn. Sincè +1
is the fixed height of the “stack of 2’s,” the exponential factor makes no asymptotic difference: it is only
a constant. The termE reduces to the standardλ-calculus coding for “true” if and only if the answer to
the question is “yes.” The construction of the termE follows from the proof of the theorems of Statman
and Meyer.

We then demonstrate that the reduction to normal form requires only a linear (in the length ofE)
number of parallelβ-steps. Suppose that the|E| parallelβ-steps could indeed be implemented at time
costK `(|E|); we would then have shown that

DTIME[K `+1(|x|)] ⊆ DTIME[K `(|E|)].
But the time hierarchy theorem from complexity theory (See, e.g., [Hu79]) tells us that this implied
conclusion is false, since|E| is polynomial inn; at leastK `(n) time steps are necessary. Were|E|>2n,
by contrast, the containment would not be a contradiction. The bound on the number of parallelβ-steps
is proven by computing the reduction ofE using Lamping’s algorithm. We use Lamping’s technology
as acalculation devicein the proof, even though the theorem concernsany implementation of optimal
reduction. Since his graph reduction method is algorithmically correct, it lets us work out calculations
that would be virtually impossible, and certainly inscrutable, in the labeledλ-calculus.

In particular, when theλ-calculus reduction ofE is described using Lamping’s graph reduction, we
derive in only alinearnumber of graph reductions the sharing graph in Fig. 1. It looks just like the graphs
for theλ-calculas “true” of “false,” except for the linear-sized network ofsharing,bracket,croissant,
andplug nodes that for technical reasons we callthe blob. To know whether the graph codes “true” or
codes “false,” we need to know whether the wirea and plug pictured in Fig. 1 connect (respectively)
to theλx andλy parameter ports, or the other way around.Deciding how these connections are made,
either by graph reduction or by context semantics,must requireK `(n) steps, no matter how we choose
to assign the work associated with this decision problem to the individual parallel-βsteps.

That pictorial diagrams should be a mainstay of formal reasoning has not been entirely popular in
theoretical computer science: consider the following charming, but ultimately withering, comments of
Tony Hoare in his inaugural lecture at Oxford:

[P]ictures actually inhibit the use of mathematics in programming, and I do not approve of them. They may be useful
in first presenting a new idea, and in committing it to memory. Their role is similar to that of the picture of an apple or
a zebra in a child’s alphabet book. But excessive reliance on pictures continued into later life would not be regarded
as a good qualification for one seeking a career as a professional author. It is equally inappropriate for a professional
programmer. Confucius is often quoted as saying that a picture is worth then thousand words—so please never draw
one that isn’t. [Hoa85]

But as Richard Feynman and Julian Schwinger showed in the history of quantum electrodynamics, a
picturecanindeed be worth then thousand equations: Feynman was able to diagrammatically work out
calculations that seemed interminable by more formal means (see, e.g., [Dys79, Sch94]). Lamping’s

FIG. 1. The blob.
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graphs give a similarly important insight into the inherent process of optimal reduction that transcends
the particularities of his implementation technology.

From a logical and proof-theoretical perspective, the main result shows that in implementation of
optimal evaluation, almost no work is done by cut elimination, while perversely, almost all the work
is carried out by structural rules. In fact, a reinterpretation of the main theorem gives bounds on the
complexity of cut elimination in multiplicative-exponential linear logic (MELL), and in particular, an
understanding of the “linear logic without boxes” formalism in [GAL92b], since that logic is a close
analog of simply typedλ-calculas.

The lower bound characterizes the work that must be done byany technology which implements
Lévy’s notion of optimal reduction. However, in the significant case of Lamping’s solution, we can also
make some important remarks addressinghowwork done byβ-reduction is translated into equivalent
work carried out by his sharing and bookkeeping nodes. In essence, the result shows that the real
computational work being done by Lamping’s algorithm is not accomplished by the parallelβ-step,
but rather by the ancillary methodology which facilitates that operation. In particular, we identify
the computational paradigms ofsuperpositionof values4 and ofhigher-order sharing, appealing to
compelling analogies with quantum mechanics and SIMD-parallelism.

None of this means that optimal evaluation is a bad idea, or that it is inherently inefficient. The
computation theorist’s idea ofgeneric simulationis comparable with the classical physicist’s idea of
work; just as real work requires an expenditure of energy, generic simulation requires an unavoidable
commitment of computational resources. What we learn from the analysis of this paper is that the
parallelβ-step is not evenremotelyan atomic operation. Yet the proposed implementation technology
remains a leading candidate for correct evaluation without duplicating work—what we have gained is
a far more precise appreciation for what that work is. In particular, sharing is real work. We believe that
the graph reduction algorithm is still parsimonious in its careful handling of sharing, even if parallel
β-steps arenecessarilyresource-intensive.

The material in this paper is entirely self-contained and from first principles. We present in Section 2 an
explanation of the graph reduction technology and in Section 3 a description of theη-expansion method.
Section 4 shows how to describe succinctly generic elementary-time bounded computation in higher-
order logic, and how to compile expressions in this logic into short typedλ-terms—these comprising
the essence of the theorems of Statman and Meyer [Sta79, Mey74], as fundamentally reconstructed in
[Mai92]. Section 5 contains the main results of the paper. Finally, for those interested in the algorithmics
of Lamping’s technology, Section 6 describes the basic graph constructions involving sharing nodes
that allow huge computations to be simulated by so few parallelβ-steps.

2. LAMPING’S GRAPH REDUCTION TECHNIQUE

The graph reduction algorithm due to Lamping was designed for theoptimal handling ofshared
redexesin the evaluation ofλ-expressions, where “optimal” is defined in a precise but entirely per-
suasive sense. While the formal definition of optimal reduction is fairly technical, its basic idea is
not too difficult to communicate. As a motivating example, consider reduction of the untyped term
(λ f.λz.z( f M)( f N))(λx.Fx), whichβ-reduces toλz.z(F [M/x])(F [N/x]). Similar redexes in the resid-
ual copies ofF are now duplicated, where they in fact ought to be shared.

Lamping’s idea was to decompose this sharing into two components: the sharing of the singlevalue
F by two differentevaluation contexts(each corresponding to an occurrence ofF), while the “hole”x
in F [x] is simultaneously shared (or, in the interest of duality,unshared) by two differentvalues Mand
N. The crucial point is that we cannot just share expression that represent values, but must also share
contextsthat represent continuations. Moreover, sharing a context—that is, a term with one or more
holesinside—requires unsharing when existing through a hole.

4 In choosing this terminology, we recall how Shannon named his information-theoretic measure of uncertainty:

“Information” seemed to him to be a good candidate as a name, but “Information” was already badly overworked.
Shannon said he sought the advice of John von Neumann, whose response was direct, “You should call it “entropy” and
for two reasons: first, the function is already in use in thermodynamics under that name; second, and more importantly,
most people don’t know what entropy really is, and if you use the word “entropy” in an argument you will win every
time!” [Tri78].
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Lamping’s graph reduction algorithm consists of a set of local rewrite rules that can be classified
naturally into two groups. First, we have rules involving application, abstraction, and sharing, which
are responsible for implementingβ-reduction and duplication; we shall call this group of rules the
abstract system. Second, we have rules involving thecontrol nodescalledbracketandcroissant, which
are required for the correct implementation of the first set of rules.

In particular, when two sharing nodes interact, they either duplicate or annihilate each other, depending
on local information that is effectively computed by the control nodes. We can then think of the first
set of rules as requiring anoracleto discriminate the correct interaction rule between a pair of sharing
nodes; the second set of rules can be viewed as an implementation of this oracle.

We use Lamping’s graph reduction technique only as a convenient and correct tool for reasoning
about optimal reduction, and the details of the implementation of the “oracle” by the control nodes do
not play any essential role in the proof. As a consequence, we shall not discuss the details of the control
node interactions; the interested reader may consult [AG98].

2.1. Initial Translation

We shall not berate the reader with the detailed definition of the simply typedλ-calculas. Recall
simply that typesT, variablesV, and termsE are generated from the following inductive definitions:

T := o|T→ T

V := v1|v2|v3| · · ·
E := E |EE | λV : T.E

Type o is called thebase type. We suppress parentheses as much as possible, associating the arrow
constructor to the right, and (dually) application to the left. Thus typeα→ β → γ meansα→ (β →
γ ), and termEFGmeans (EF)G.

Associated with eachwell-typedλ-term is a fixed type for each of its subterms, including the term
itself; we thus writeE: τ to mean well-typed termE has typeτ . Well-typed terms are determined
according to the following simple rules: every occurrence of the same free variable has the same type;
every occurrence of a bound variablex has the same typeα as declared in thebindingλx : α . . .; every
subtermλx : α.B has typeα→ β, whenβ is the type ofB; andEF has typeβ, whenE has typeα→ β

andF has typeα.
In the optimal graph reduction technique, aλ-term is initially represented by a graph that is virtually

identical to its abstract syntax tree. Unlike ordinary graph reduction, however, we introduce two varia-
tions: an explicit node for sharing, and an explicit connection between variable occurrences (represented
by wires) and theλ-nodes that represent their respective binders. Since we work in a typed setting, we
shall label each edge of the graph with a suitable type; for brevity, we shall usually use the notationβα

instead ofα → β. We emphasize that these type annotations have no operational role in reduction of
theλ-term; like the names of the planets, they are merely an invariant that provides information to the
analyst.

For instance, the graph in Fig. 5a is the initial representation of theλ-term M = (2̄o→o2̄o), where
2̄α = λs : α → α.λz : α.s(sz) : (α → α) → α → α. The type (α→ α) → α → α is the type of
Church numerals (or iterators) forα and is usually denoted byNα.

The triangular node, referred to as asharing nodeor afan node, is used to express the sharing between
different occurrences of a same variable. All variables are connected to their respective binders; we shall
always represent this connection on the left of the connection to the body. Multiple occurrences of the
same variable are represented by a binary tree of fan nodes, where these fan nodes are the internal nodes
of the tree, and the occurrences are the external nodes (leaves) of the tree. As a consequences, only a
single wire edge, at the root of the binary tree, connects theλ-node representing a binding to the wires
representing the variable occurrences.

Each node in the graph (apply,λ, and fan) has exactly three distinguished ports where it can be
connected to other ports. One of these ports (depicted with an arrow in Fig. 2) is calledprincipal: it
is the only port where the node may interact with other nodes; see the interaction rules below. The
other ports are calledauxiliary ports. The sharing graph and the corresponding term it represents are
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FIG. 2. Nodes, ports, and their types.

well typed if and only if for each noden in the graph, the types of the edges connected ton satisfy the
constraints imposed in Fig. 2, whose interpretation should be clear.

We call the type of a node the type of its principal port. Instead of typing edges, we could equivalently
type each port of a node—adding, however, a suitable polarity. Our approach has been adopted for
essentially typographical reasons.

2.2. Reduction

We shall now illustrate the main ideas of Lamping’s optimal graph reduction technique by showing
how it works on the example term (2̄o→o2̄o). As we shall see, the rules governing interaction of sharing
nodes remain unresolved; this ambiguity is resolved by the “oracle” implemented by control nodes. But
as the details of the implementation of the oracle are unnecessary for our analysis, we omit them.

Since Lamping’s algorithm consists of a set of local graph rewriting rules, at any given stage of the
computation, we may have several reducible configurations in the graph. The choice of the next rule to
apply is then made nondeterministically. This ambiguity does not change the normal form of graphs,
since the graph rewriting system is aninteraction netin Lafont’s sense [Laf90] and satisfies a one-step
diamond property. This property implies not only confluence, but also that if a term has a normal form,
all of its normalizing derivations have the same length. In the following exegesis, we choose the next
rule according to didactic criteria and occasionally for graphical convenience.

The most important of the graph rewriting rules isβ-reduction, where (λx.M)N is replaced by
M [N/x]; see Fig. 3. In graph reduction, the substitution of a termN for the bound variablex is
simulated by connecting the variable wire to the graph representation ofN. The contractumM [N/x] is
then represented by the (instantiated) graph representation of the “procedure body”M of the function.
These reductions have nothing to do with thestructureof M andN, only with the local wiring connections
between them; as a consequence, the simulation ofβ-reduction can be expressed by the completely
local graph rewriting rule in Fig. 4. It is important to note that the reduction preserves the correct typing
of the graph—that is, it connects edges with equal type. This property is a straightforward but essential
consequence of all rewriting rules in Lamping’s algorithm.

By firing the outermostβ-redex in (̄2o→o2̄o), we derive the graph in Fig. 5b. The next redex involves
a sharedλ-expression in the function position. In ordinary graph reduction, the entire representation of
the function would be duplicated. In contrast, the optimal graph reduction technique proceeds in a lazy
fashion, duplicating the externalλ-node, but still sharing its body; see Fig. 5c. Since the binder hs been
duplicated, thus allowing the sharing of the function body between two contexts, we dually introduce
another sharing node on the edge leading from the binder to the variable, in order to “unshare” the
arguments to the function. The sharing (fan-in) and the unsharing (fan-out) come in pairs. Although

FIG. 3. β-Reduction.
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FIG. 4. Theβ-rule.

there is no operational distinction between a fan-in and a fan-out, their intuitive semantics is quite
different; in particular, one should recognize that a fan-our is always supposed to be paired with some
fan-in the graph, delimiting its scope and annihilating its sharing effect. The determination of correct
pairing between such sharing nodes is a crucial aspect of the optimal graph reduction technique, solved
by the control nodes—or alternatively, if we speak only of the abstract algorithm, the “oracle.” We
remark only that the naive oracle of labeling each sharing node in the initial graph with a nuique
identifier, to be copied when the sharing node is copied, fails to distinguish the appropriate pairs of
nodes (Fig. 6; see [Lam90]).

Again, since the body of the functionλx. M does not play any role in this reduction, it can be formally
expressed as a local interaction between a fan and aλ, as described in Fig. 7. Note that the type of fan
nodes (that is, the type of their principal port) may only decrease by the firing of this rule.

Next, by applying the fan-λ interaction rule, we get the graph in Fig. 5c. Twoβ-redexes have thus
been created: by firing each of them, we derive the graph in Fig. 8a. Then we fire the fan-λ rule, obtaining
the graph in Fig. 8b. There are no moreβ-redexes in this graph, as well as no fan-λ interactions, but we
must proceed in the duplication process with considerable caution nonetheless. In particular, the graph
rewriting rule shown in Fig. 9 is strictly forbidden in an optimal evaluation, although it is in some sense
semantically correct. The intuition proscribing the rule should be clear: since the shared application
could be involved in some redex, its duplication would imply a double execution of the redex, violating
optimal.

The only other possible interaction is between the two fans inside the dotted region. This situation
highlights another crucial point of the optimal graph reduction technique. Because these two fans in
Fig. 8b are note “paired”—the fan-in is a residual of the shared variable of2̄o, while the fan-out is
a residual of the shared variable of2̄o→o, in the process of duplicatinḡ2o—they must duplicate each
other, according to the rule in Fig. 10b. Note that the type of fan-nodes is preserved by this interaction.
Now (see Fig. 8c), we have a fan-out in front of the function-port of the application. In this case, we
can apply the rule in Fig. 11. Intuitively, this rule is correct from the point of view of optimal sharing,
since such a configuration already implies the existence of two unsharable redexes for the application.
As in the case of fan-λinteraction, the type of the sharing node strictly decreases.

FIG. 5. Graph reduction of (̄2o→o2̄o).
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FIG. 6. The duplication of abstractions.

FIG. 7. Fan-λinteraction.

FIG. 8. Graph reduction of (̄2o→o2̄o).

FIG. 9. Non-optimal duplication of the application.

FIG. 10. Fan-annihilation rule.
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FIG. 11. Fan-apply interaction.

By firing this rule twice, we derive the graphs in Fig. 12b where we have three pairs of fans interacting
with each other. In these cases, all fans are paired: they each belong to the same “duplication process”
that has now been locally completed. In this case, the obvious rule is to annihilate the paired fans,
according to Fig. 10a.

By three applications of the fan-annihilation rule, we derive the graph in Fig. 12c. The three last steps
are, respectively, a fan-λrule and twoβ-reductions; see Fig. 13. The graph in Fig. 13c is in normal
form with respect to Lamping’s algorithm; we urge the reader to understand why this graph represents
the Church integer̄4o for four. The simplest way to see why is to complete the duplication process by
applying the “forbidden” rule of duplication of the application. Alternatively, try to read-back the term
by travelling inside its structure, with the following proviso: exit a fan-out node on the same side (? or
s) that the paired fan-in node was entered.

3. THEη-EXPANSION METHOD

Given a simply typedλ-term E, we show how to construct a variantE′ that isβη-equivalent to
E, derived by introducingη-expansionsof bound variables inE. The size ofE′, and the size of the
initial sharing graph that representsE′, are larger thanE by only a small constant factor. Moreover, the
number of parallelβ-steps needed to normalizeE′ is linearly bounded by its size. As a consequence,
we demonstrate that the normal form of any simply typedλ-term can be derived in a linear number of
parallelβ-steps. In order to make these calculations more precise, we need to define what we mean by
thesizeof types,λ-terms, and graphs:

DEFINITION 3.1. We define thesize of a simple typeby structural induction:

‖o‖ = 1

‖α→ β‖ = 1+ ‖α‖ + ‖β‖.

FIG. 12. Graph reduction of (̄2o→o2̄o).
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FIG. 13. Graph reduction of (̄2o→o2̄o).

Similarly, we inductively define thesize of simply typed termas

|x| = ‖σ‖ if x has typeσ

|λx : σ.E| = 1+ |E|
|E F| = 1+ |E| + |F |.

The number|E| simply counts 1 for eachλ and apply inE, plus‖σ‖ for each variable of typeσ . Finally,
we refer to thesize[[G]] of a sharing graph Gas the number of its nodes.

The only unusual feature of this definition is that the size of a variable is given by the size of its type.
Had we instead used the more usual definitions|x| = 1 and|λx : σ.E| = 1+ ‖σ‖ + |E|, the size of
terms would be polynomially smaller, but only by a quadratic factor.

The bound we prove on the number of parallel reductions depends essentially on controlling the
duplication ofλ- and apply-nodes by sharing nodes. When a sharing node has typeα → β and faces
the principal port of either aλ-node or an apply-node, duplication creates two sharing nodes, of typesα

andβ respectively. If the value being shared by a node is the base typeo, then that sharing node cannot
interact with aλ or apply-node, since the principal ports of those nodes cannot sit on wires that are at
base type—they are functions.

As a consequence, each sharing node has acapacityfor self-reproduction that is bounded by the
size of the type of the value being shared. The idea of introducingη-expansionis to force a node
sharing a valuex of typeσ to the base typeo, by making that node duplicate components of the graph
coding theη-expansion ofx. This technique leads to an efficientaccounting mechanismwhich bounds
the duplication ofλ and apply-nodes in a graph reduction, and hence bounds the number of parallel
β-steps. In addition, it serves as a lovelyoptimizationmethod, where parallelβ-reduction is simulated
by the interaction between sharing nodesonly.

DEFINITION 3.2. Let x be a variable of typeσ . The η-expansionησ (x) of x is the typedλ-term
inductively defined onσ as

ηo(x) = x

ηα1→···→αk→o(x) = λy1 : α1. · · · λyk : αk.x
(
ηα1(y1)

) · · · (ηαk (yk)
)
.

In the graph representation, eachη-expanded variable is coded by a subgraph with two distinguished
wires that we respectively call thepositive entryand thenegative entryof the variable (see Fig. 14).
When the variable is of base typeo, this subgraph is just a wire. The graph representing anη-expanded
term has the following nice properties:
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FIG. 14. (a)η-expansion; (b)η(o→o)→o→o(x).

LEMMA 3.3. If G is the initial sharing graph representingησ (x), then[[G]] 62‖σ‖.
Proof. By induction onσ . Notice that ifσ ≡ α1 → α2 → · · ·αk → o, then [[G]] = 2k +∑
16 i 6 k[[Gαi ]], whereGαi , representsηαi (yi ).

LEMMA 3.4. Let x be a variable of typeσ, and let G be the graph representingησ (x). Then in an
optimal reduction,any sharing of G at the positive or negative entry results in a residual graph1(x),
where all copies of the sharing node5 are at base type and[[1(x)]] 63‖σ‖.

Proof. The proof is a simple induction onσ . If σ = o, the conclusion is immediate and trivial—no
reductions are possible, becauseG is just a single wire.

Supposeσ = α1 → · · · → αn → o. Then the graphG codingησ (x) has the structure depicted in
Fig. 14a, withnλ-nodes andn apply-nodes. If a sharing node is placed at thepositiveentry, that node will
duplicate thenλ-nodes; copies of the sharing node will move to the auxiliary (noninteraction) port of
the top apply-node, which has base typeo, and to thenegativeentries of the subgraphsGi representing
ηαi (yi ); see Fig. 15a. Dually, if a sharing node is placed at thenegativeentry, that node will duplicate
then apply-nodes; copies of the sharing node will move to the auxiliary port of the topλ-node, which
has base typeo, and to thepositiveentries of the subgraphsGi representingηαi (yi ); see Fig. 15b. The
lemma follows by induction on theαi .

EXAMPLE 3.5. The graph in Fig. 16 shows1(η(o→o)→o→o(x)), the duplication of the graph for
η(o→o)→o→o(x) by a single sharing node at the positive entry.

The previous lemma may be easily generalized to an arbitrary tree network of sharing nodes, or
equivalently thet-fold multiplexorsof Guerrini [Gue96]. In this case, the duplicated “skeleton” of
the sharing graph representingησ (x) is replicated for each instance of its use by thet leaves of the
multiplexor.

COROLLARY 3.6. Let1t (x) be the residual graph that results from the sharing of the graph repre-
sentingησ (x) by a binary tree of t sharing nodes. Then[[1t (x)]] 6 (2+ t)‖σ‖.

In the initial sharing graph coding aλ-termλx : σ.E, multiple references to the bound variable are
represented by exactly such a tree network of sharing nodes. This tree is connected to the (auxiliary)
parameter port of theλ-node that represents the binding. Because this parameter port is not a primary
port, no interaction is possible between the sharing nodes and theλ-node; the sharing are “stuck” until
theλ-node is annihilated in a parallelβ-reduction. We seek to control the possible node replication that
could result from such a reduction, by forcing theλ-termλx : σ.E to be applied toησ (x′). We may then

5 We chose the notation1(x) to remind the reader that the graph is defined by propagating the sharing nodes (hence the1) to
base type.
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FIG. 15. Fan propagation insideη(x).

conclude that the duplication caused by a sharing node is proportional to a fixed function of the size of
the initial term and isnot affected by the size of intermediate terms of the reduction sequence. In other
words, the duplication is amenable to control via static analysis of the initial term. These intuitions are
clarified in the following definition.

DEFINITION 3.7. LetM be a simply typedλ-term. Theoptimal rootor(M) of M is derived by replacing
every subterm of the formλx : σ.E with λx′ : σ.(λx : σ.E)(ησ (x′)), whereσ 6= o andx occurs more
than once inE. We refer to the newβ-redexes introduced by this transformation aspreliminary redexes.

It should be clear that the transformation is applied at most once to any subtermλx : σ.E. Sinceor(M)
is obtained byM by means ofη andβ-expansions, we also know thatM = βηor(M). The transformation
can be understood as duplicating, once and for all, the “skeleton” of this term that described all of its
possible uses. The relevant information about these uses is provided unambiguously by the typeσ .

FIG. 16. Duplication ofη(o→o)→o→o(x).
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DEFINITION 3.8. We define1(M) to be the sharing graph obtained fromor(M) by reducing all of
the preliminary redexes, and propagating all sharing nodes to the base type.

We emphasize the following crucial property of1(M):

LEMMA 3.9. All sharing nodes in1(M) have atomic types.

Proof. After theβ-reduction of all preliminary redexes, all sharing nodes are positioned to interact
at the positive entry of the subgraphs representingη-expanded variables. Following these essentially
structural reductions, the sharing nodes duplicate these subgraphs. Lemma 3.4 ensures that all such
sharing nodes can propagate to base type.

DEFINITION 3.10. A bound variable istrivial in a typedλ-term if it is at base typed or occurs at most
once. A typedλ-term is trivial if all of its bound variables are trivial.

LEMMA 3.11. Let F ≡ λx : σ.E be a nontrivial term where E is trivial. Then[[1(F)]] 62|F |.
Proof. Let G be the sharing graph codingor (F) ≡ λx′ : σ.F(ησ (x′)), and letG′ be drived by graph

reduction of the outermostβ-redex, representing the termλx′ : σ.E[ησ (x′)/x] (see Fig. 15).
Assumex occurst times inE, whereGE is the sharing graph representingE, so that the sharing of

ησ (x′) is represented inG′ by a tree of sharing nodes witht leaves. Since [[GE]] counts only the number
of occurrences ofλ and apply inE, it should be clear that [[GE]] 6 |E| − t‖σ‖.

The construct1(F) from G′, we need only propagate the sharing nodes into the graph representation
of ησ (x′), generating1t−1(x′) with size at most (1+ t)‖σ‖, by Corollary 3.6. Then the size of1(F) is

[[1(F)]] 61+ (|E| − t‖σ‖)+ (1+ t)‖σ‖ = 1+ |E| + ‖σ‖ = |F | + ‖σ‖.

However,‖σ‖6 |F |, since‖σ‖ just counts the contribution of one occurence ofx in F ; we then conclude
[[1(F)]] 62|F |.

THEOREM 3.12. Let F be a simply-typedλ-term. Then[[1(F)]] 6 2|F |.
Proof. The proof is just a generalization of the previous lemma. We construct1(F) by insertion

of the same preliminary redexes, reduction, and propagation of sharing nodes through the graphs
representingηα(x) over variablesx of typeα. Assume without loss of generality that the name of each
bound variable is unique; then by Lemma 3.11,

[[1(F)]] 6

|F | − ∑
x:σ

x nontrivial

µ(x)‖σ‖
+

 ∑
x:σ

x nontrivial

(1+ µ(x))‖σ‖
 6 |F | +

 ∑
x:σ

x nontrivial

‖σ‖
 ,

whereµ(x) is the number of occurrences ofx in F . Whenµ(x)>2, only µ(x) − 1 sharing nodes
are needed in the initial graph representation. Again, it is clear that

∑
x ‖σ‖6 |F |, so that [[1(F)]] 6

2|F |.
The reader may be bothered by this “linear” bound, which depends on the definition of the size

function |F |, where the occurrence of anx of type σ contributes‖σ‖ to the sum. Suppose we had
instead chosen the definition of size as

3(x) = 1

3(λx : σ.E) = 1+ ‖σ‖ +3(E)

3(E F) = 1+3(E)+3(F),

so that3(E) is the length of the explicity typed term. Since it is not hard to show that|M |63(M)2,
we would derive instead [[1(F)]] 623(F)2 as the statement of the previous theorem. The significance
of either inequality is that [[1(F)]] is only polynomial in|F |, which is a good enough bound to derive
our more important results.

As an obvious consequence of Lemma 3.9, we have the following important observation.
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THEOREM 3.13. The total number ofβ-reductions(and thus of families) in the graph normalization
of1(M) cannot exceed its initial size.

Proof. Since all sharing nodes have atomic types in1(M), they cannot interact with abstractions or
applications. As a consequence, no new application orλ-node can be created during the reduction. Since
β-reduction can only make the graphsmallervia annihilation of complementaryλ- and apply-nodes,
the total number ofβ-reductions is bounded by the initial size of the graph1(M).

If 1(M) is considered as the representation of a logical proof via the Curry–Howard analogy, with the
caveat that some sense is made offan-out, it gives a very interesting “normal” form, where a logical rules
are “below” the structural ones. This provides for some computational amusement: one can immediately
and easily remove all the logical cuts. The rest of the computation is merely structural—the annihilation
or duplication of sharing nodes.

A fundamental consequence of the bound on the number of redex families inor(M) is its strong
normalization, as well as the strong normalization ofM . This observation is a trivial corollary of a
result due to Lévy ([Lévy 78], Theorem 4.4.6):

THEOREM 3.14. Let
∑

be any finite(possibly parallel)reduction of a term M. Then any reduction∑′ relative6 to
∑

is terminating.

Since all redexes created alonganyreduction ofor(M) eventually belong to some of its families, any
reduction strategy is terminating.

THEOREM 3.15. The simply typedλ-calculus is strongly normalizing.

Even more, the bound on the reduction is, if one counts parallelβ-reduction of families, merely linear
in the length of the initial term.

4. SIMULATING GENERIC ELEMENTARY-TIME BOUNDED COMPUTATION

Now that we know that the normal form of a simply typedλ-term can be computed in a linear
number of parallelβ-steps, our goal is to construct ageneric reductionfrom the largest time hierarchy
we can manage via alogspace reduction.7 For example, if we can simulate deterministic computation
in DTIME[2n] (deterministic exponential time) in the simply typedλ-calculus, where the initialλ-term
corresponding to a computation has length bounded by a fixed polynomial inn, we may then conclude
that the parallelβ-reductioncannotbe unit cost. The reason is simple: were a parallelβ-step implemented
in unit cost, we would have shown thatPTIME equalsDTIME[2n], since an exponential-time computation
on an input of sizen can be compiled into a short (i.e., with length polynomial inn) typedλ-term, and
that term normalizes in a polynomial number of parallelβ-step to a Boolean value indicating acceptance
or rejection of the input. We would then have simulated an exponential-time computation in polynomial
time, and this conclusion contradicts thetime hierarchy theorem(see, e.g., [HU79], Section 12.3), which
asserts that polynomial time is properly contained in exponential time.8

In fact, for any integer̀ >0, we can construct generic reductions of this kind forDTIME[K `(n)].
The consequence is that the cost of a sequence ofn parallelβ-steps is not bounded by any of the
Kalmár-elementary recursive functionsK `(n). Observe that were the cost contained inO(K `(n)), then
by simulating arbitrary computations inDTIME[K `+1(n)], and requiring only polynomially manyβ-steps
(via theη-expansion method) at costO(K `(p(n))), for some polynomialp, we would have shown
thatDTIME[K `+1(n)] is contained inDTIME[K `(p(n))], which is again contradicted by the time hierarchy
theorem.

6∑′ is relative to
∑

if all redexes in
∑′ are in the same family of some redex in

∑
(see [Lévy78], Definition 4.4.1, p. 64).

7 This reductionis just a compiler that takes an arbitrary Turning machineM running in some time boundt(n) on an inputx
of sozen and produces a typedλ-terme: Bool such thate reduces to the term codingtrue iff M acceptsx in t(n) steps. The
“logspace” means that the compiler has onlyO(logn) bits of internal memory to carry out the compilation, ensuring that the
output has length polynomial inn.

8 Readers familiar with thediagonalizationtechnique from the proof of undecidability of the Halting Problem should recognize
that in exponential time, one can diagonalize over every polynomial time computation.
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4.1. Deciding Truth of Formulas in Higher-Order Logic

Rather than code directly in the simply typedλ-calculas—not always a pretty sight—we use an
equivalently powerful logical intermediate language:higher-order logic over a finite base type. The
process ofquantifier eliminationfor this logic is easily simulated by primitive recursive iteration in the
simply typedλ-calculus. The complexity of deciding truth for this logic was originally analyzed by
Meyer, and the relation of this analysis to typesλ-calculas was pointed out by Statman [Mey74, Sta79].
In what follows, we present a slight modification of the simple, short proofs of these theorems, found
in [Mai92], as well as enlarging the logical language somewhat in the interest of readability.

Let D0 = {0, 1, . . . ,b− 1} with a total ordering<0, and letDt+1= powerset(Di ). We analyze the
complexity of deciding the truth of formulas with quantification over elements ofDt , for any t >0,
using a naive interpretation. Letxt , yt , zt be variables allowed to range over the elements ofDt ; we
define theprime formulasasa <0 b,a = b,a ∈ y1 (wherea andb are either constants representing
elements ofD0 or variables ranging over elements ofD0), andxt ∈ yt+1. Now consider a formula8
built up out of prime formulas, the usual logical connectives∨,∧,→,¬, and the quantifiers∀ and∃:
is8 true under the usual interpretation?

4.2. Primitive Recursive Iteration in Higher Types

The truth of formulas in higher-order logic can be decided by compiling them into short typesλ-
terms and by using the power of primitive recursion to realize quantifier elimination and to decide the
truth of prime formulas. The primitive recursion is implemented usinglist iteration, a straightforward
programming technique that we now describe briefly. Let{x1, x2, . . . , x`} be a set ofλ-terms, each of
first-order typeα; then

L ≡ λc : α→ τ → τ.λn : τ.cx1(cx2 . . . (cx̀ n) . . .)

is aλ-term of type (α → τ → τ ) → τ → τ , for any typeτ . We abbreviate this list construction as
[x1, x2, . . . , x`]; observe that the variablesc andn abstract over the list constructorsconsandnil. In
the simply typesλ-calculas,list iteration can be used to implement primitive recursion. For example,
givenλ-termssuccand0 for zero and successor on Church numerals, the length of a list of terms of
typeα can be computed by

length≡ λL : (α→ Int→ Int)→ Int→ Int.L(λx : α.succ)0,

whereInt ≡ (v→ v)→ v→ v, andτ is set toInt in the above definition ofL.
List iteration is ideal for realizing quantifier elimination: imagine that we codeDt as aλ-term Dt

which lists all elements ofDt , each coded appropriately as aλ-term of type1t , and we have coded
a Boolean function8 as aλ-term 8̂ of type1t → Bool. Then the truth of∀xt .8(xt ) can be coded
as theλ-term Dt (λxt : 1t .AND(8̂xt )) true, and the truth of∃xt .8(xt ) can be coded as theλ-term
Dt (λxt : 1t .OR(8̂xt )) false, whereAND, OR, true, andfalse areλ-terms coding up Boolean logic.9

Observe, for example, that the latter reduces toOR (8̂e1), (OR (8̂e2) . . . (OR(8̂ek)false). . .), whereej is
aλ-term coding thej th element ofDt , 16 j 6 k = |Dt |. As we will see, the prime formulas can also
be simulated using list iteration.

4.3. Coding Elements of the Type Hierarchy

LetBool≡ o→ o→ o, and define the Boolean values and logical connectives via their usual Church
codings:

true= λt : o.λ f : o.t : Bool

false≡ λt : o.λ f : o. f : Bool

AND ≡ λp : Bool.λq : Bool.λt : o.λ f : o.p(qt f ) f : Bool→ Bool→ Bool

OR≡ λp : Bool.λq : Bool.λt : o.p(qt f ) : Bool→ Bool→ Bool

9 In fact, we need to typeDt so that it can output an Boolean value. SinceDt is a list used for primitive recursive iteration, its
output typeτ needs to be set to a typeBool coding Boolean values.
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NOT ≡ λp : Bool.λt : o.λ f : o.pft : Bool→ Bool

IF ≡ λp : Bool.λq : Bool. OR(NOT p) q : Bool→ Bool→ Bool.

Projection functions represent the elements ofD0, wherei is coded byei :

ei ≡ λx0 : o.λx1 : o. · · · λxb−1 : o.xi : ℵ ≡
b times︷ ︸︸ ︷

o→ o→ · · · → o→ o.

Using these projection functions, the total order<0 on D0 is defined by tabulation:

less0 ≡ λx :ℵ.λy : ℵ.
λt : o.λ f : o.

x(y f tt · · · t)(y f f t · · · t) · · · (y f f f · · · f )

: ℵ→ ℵ→ Bool.

Then the setD0 can be represented as the listD0 of its coded elements:

D0 ≡ λc : ℵ→ τ → τ.λn : τ.ce0(ce1 · · · (ceb−1n)) : (ℵ→ τ → τ )→ τ → τ.

We abbreviate the type ofD0 as10; in general, let1k+1 ≡ 1∗k, where for any typeα, we define
α∗ ≡ (α → τ → τ ) → τ → τ , and1 ≡ ℵ. Recall that theorder of a type is a measure of its
higher-order functionality, where order(o) = 0 and order(α→ β) = max{1+order(α), order(β)}; thus
the order of10[τ := Bool] is 3, and 1j [τ := Bool] is 2 j + 3.

Next, for each integert > 0, we define an explicitly typedλ-term Dt representingDt as alist of
(recursively defined codings of) all subsets of elements ofDt−1 in the type hierarchy. To do so, we must
introduce an explicit powerset construction to build succinct terms coding these lists. First, we define a
termdoublewhere, given an elementx :α and a list̀ :α∗∗ of lists of elements of typeα, doubleappends
` to a list derived from addingx to each list iǹ . For example, whenα ≡ Bool, double false[[ ], [ true]]
reduces to [[false], [false,true], [ ], [true]].

double≡ λx : α.λ` : (α∗ → τ → τ )→ τ → τ.

λc : α∗ → τ → τ.λn : τ.

`(λe : α∗.c(λc′ : α→ τ → τ.λn′ : τ.c′x(ec′n′)))(`c n)

double : α→ α∗∗ → α∗∗.

Notice that if aλ-term A∗ coding a list ofλ-terms of typeα has typeα∗ ≡ (α→ τ → τ )→ τ → τ

for any τ , then A∗ also has typeα∗[τ := α∗∗] ≡ (α → α∗∗ → α∗∗) → α∗∗ → α∗∗. We may then
define

powerset≡ λA∗ : (α→ α∗∗ → α∗∗)→ α∗∗ → α∗∗.

A∗double(λc: α∗ → τ → τ.λn : τ.c(λc′ : α→ τ → τ.λn′ : τ.n′)n)

powerset : ((α→ α∗∗ → α∗∗)→ α∗∗ → α∗∗)→ α∗∗.

The function ofpowerseton lists is like that ofexponentiationrealized via doubling on Church numerals,
since Church numerals are just lists havinglengthbut containing nodata.

Now we can succinctly define terms coding levels of the type hierarchy:

D1 ≡ powersetD0 : 11 ≡ (10→ τ → τ )→ τ → τ

D2 ≡ powersetD1 : 12 ≡ (11→ τ → τ )→ τ → τ

· · ·
Dk+1 ≡ powersetDk : 1k+1 ≡ (1k → τ → τ )→ τ → τ.
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In the definition ofDt+1, we useDt as an iterator, whereDt is typed as1t [τ := 1t+1] = (1t−1 →
1t+1→ 1t+1)→ 1t+1→ 1t+1.

We now give some bounds on the growth rate of|Dt | as a function oft. Note that thepureλ-term with
type informationerasedgrows only as2(t + b2), and the length of its normal form grows as2(K t (b)).
The explictly typed termDt has a greater length due to its type information; this added verboseness is
crucial when we transform terms using theη-expansion method of the previous section, and so we pay
particular attention to bounding its size.

THEOREM 4.1. If Dt : 1t as in the above typing,|Dt | = O((b+ 2t + 1)!).

Proof. While the bound on the growth rate may seem enormous, we will only be interested in cases
wheret is a constant andb = d logn

log logne, in which case|Dt | = O(n). To compute a series of upper
bounds|Dt |6dt , we define a recurrence wheredt+1 is computed fromdt . RecallDt ≡ powersetDt−1,
and that to giveDt the type1t , we take the typing ofDt−1 and assignτ the typeDt .

If Dt−1 : 1t−1[τ := 1t ], then this typing of1t−1 satisfies|Dt−1|6dt−1‖1t‖. Similarly, if

powerset: ((1t−2→ 1t → 1t )→ 1t → 1t )→ 1t ,

then as‖1t−2‖6 ‖1t‖, we know|powerset|6 p‖1t‖ for a fixed constantp independent oft . We then
conclude

|Dt | = |powersetDt−1|61+ p‖1t‖ + dt−1‖1t‖
6 (1+ p)‖1t‖+dt−1‖1t‖6 2‖1t‖dt−1= dt ,

assuming 1+ p6dt−1, which we will justify shortly. Unwinding the recurrence, we see that

|Dt | 6 2‖1t‖ · 2‖1t−1‖ · · · · ·2‖12‖ · d0

= 2t d0

∏
16 j 6 i

‖1 j ‖.

A simple calculation shows that‖1 j ‖ = 8 j + 2b+ 768(b+ j + 1); thus

|Dt |616t d0

∏
16 j6 t

(b+ j + 1)= 16t d0
(b+ t + 1)!

(b+ t)!
,

so that for larget , we have the crude but entirely satisfactory bound,

|Dt |6d0(b+ 2t + 1)!

We need only justify the assumptionp+ 16 dt−1. Note simply that we may choose, as a basis for the
recursive definition of thedt , the valued1 = max{p+ 1,‖10‖}, and that asdt = 2‖1t‖dt−1, we know
thatdt−16dt , and hencep+ 16dt , for all t >1.

It is a little surprising that|Dt | grows like the factorial oft , rather than merely exponential int. Since
powerset is the set-theoretic version of exponential, theDt are the set-theoretic versions of Church
numerals. In the closely related iterated exponential22· · · 2̄, one sees only an exponential increase in
the size of the explicitly typedλ-term as a function of the number of occurrences of2̄, due to the iterated
substitution of the formτ := τ → τ . This constant-sized substitution multiplies the size of a term by a
constant factor, and the cunulative effect is exponential. By contrast, in the substitutionsτ := 1t used
to type iterated powerset, each such substitution multiplies the size of theλ-term by a factor oft, and
the cumulative effect is like the factorial.

4.4. Coding Set Theory in theDt

There is a natural idea ofequalitybetween elements ofDt ; when these elements are themselves sets,
we can also define the idea ofsubsetand ofelementof a set. It is then straightforward to realize the
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prime formulas of higher-orer logic by using list iteration. For each integert > 0, we define termseqt ,
subsett , andmembert . Whent = 0, we define only

eq0 ≡ λx : ℵ.λy : ℵ.
λt : o.λ f : o.

x(yt f f · · · f )(y f t f · · · f ) · · · (y f f f · · · f t)

: ℵ→ ℵ→ Bool

as a basis, just as we coded<0 overD0 via tabulation.
For the inductive case of the definitions, we define1Bool

j = 1 j [τ := Bool], wich is the type of an
iterator with Boolean output, and define

membert+1 ≡ λxt : 1Bool
t .λyt+1 : 1Bool

t+1 .

yt+1
(
λyt : 1Bool

t .OR
(
eqt x

t yt
))

false

: 1Bool
t → 1Bool

t+1 → Bool

subsett+1 ≡ λxt+1 : 1Bool
t+1 .λyt+1 : 1Bool

t+1 .

xt+1
(
λxt : 1Bool

t .AND
(
membert+1xt yt+1

))
true

: 1Bool
t+1 → 1Bool

t+1 → Bool

eqt+1 ≡ λxt+1 : 1Bool
t+1 .λyt+1 : 1Bool

t+1 .(
λop : 1Bool

t+1 → 1Bool
t+1 → Bool.

AND(op xt+1yt+1)(
op yt+1xt+1

))
subsett+1

: 1Bool
t+1 → 1Bool

t+1 → Bool.

LEMMA 4.2. Theλ-terms defining membert , subsett , and eqt each have length2(t2+ b2); with type
information erased,they have length2(t + b2).

Proof. Observe how each of these terms depends on only one such other term, and how the trick
in the definition ofeqt+1 eliminates the exponential blowup that would reslult from writingsubsett+1

twice. The quadratic difference between the respective lengths of typed and untyped terms is explained
by the fact that‖1Bool

t ‖ = 2(t +b). Notice as well that coding these operations in the typedλ-calculus
produces much shorter terms than those that result from coding power-set.

The above definitions give a typedλ-calculus interpretation to all the logical formulas in our higher-
order logic, in the spirit of their standard logical meaning. The elements ofD0 are interpreted by
projection functions, with the prime formulas interpreted by the codings above. The logical connec-
tives, interpreted by their Church codings, take arguments of typeBool, producing terms of type
Bool. Quantifier elimination, as described earlier, interprets∀xt .8(xt ) as the iterated conjunction
Dt (λxt :1Bool

t .AND(8̂xt ))true, where8̂ is the interpretation of8; the complementary interpretation
of ∃xt .8(xt ) is the iterated disjunctionDt (λxt :1Bool

t .OR(8̂xt )) false.
When compiling a formula in higher-order logic into a typedλ-term, we can useλ-abstraction to

ensure that thecodefor any of the above definitions appears only once, as in an ML-like monomorphhic
let x = E in B, interpreted as (λx.B)E. We consequently have the following conclusion:

THEOREM4.3. A formula2 in higher-order logic over the finite base typeD0 = {0.1, . . . ,b−1} is ture
if and only if its typesλ-calculus interpretation̂8: Bool isβη-equivalent to true≡ λt : O.λ f : O.tBool.
Moreover,if 8 only quantifies over universesDi for i 6 t, then8̂ has order10 at most2t+ 6, and if we
also write|8| to denote the length of logic formula8, then|8̂| = O(|8|(b+ 2t + 1)!).

10By this bound, we mean that in a type derivation of8̂, for any subderivation{xi : τi } ` E : τ, the maximum order of anyτi
is 2t+ 5, and the maximum order ofE is 2t+ 6.
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4.5. EXPRESSING TIME-BOUNDED COMPUTATION IN HIGHER-ORDER LOGIC

The higher-order logic provides a nice metalanguage to describe typesλ-terms whose intuition
is even more inscrutable: the logic lets us talk about the extensional proposition, where theλ-term
embodies the intensional disposition. It only remains for us to use this logic to express Turing machine
instantaneous descriptions (IDs) of sufficient size, and to compute the transitive closure of the transition
relation between such IDs. The logical coding problems that have to be solved are straightforward,
but fun: the comendium of tricks reads like the catalog of primitive recursive functions in Gödel’s first
incompleteness theorem. Our goal is to define the formula

∃u.∃v.INITIAL (u) ∧ ∂∗(u, v) ∧ FINAL(v),

whereINITIAL (u) expresses thatucodes or desired initial configuration,FINAL(v) expresses thatv codes our
final, accepting configuration, and∂∗(u, v) expresses that the existance of a Turing machine computation
from the initial to final configurations, such that the number of steps in the computation is no more than
K `(n) on an input to the Turing machine of sizen. The variblesu, v, w must be chosen to range over a
universeDk large enough to code computations.

The formula that we construct in higher-order logic expressing an elementary-time computation will
also have the important property of beingsuccinct—it will not be much longer than the length of the
input to the Turing machine computation. To make this notion of succinctness precise, we define the
length of formulas in higher-order logic:

DEFINITION 4.4. Letv be a function mapping variables to the size of their unique representations,
where that representation is arbitrary but fixed. This function ensures that a formula withn variables
needs length at leastÄ(n logn). We then define the length{|8|} of a formula8 in higher-order logic
by structural induction:

{|xk|} = k+ v(x)

{|xk ∈ yk+1|} = 2k+ 2

{|xk = yk} = 2k+ 1

{|¬8|} = 1+ {|8|}
{|8 ◦9|} = 1+ {|8|} + {9}

◦ ∈ {∧,∨,→}
{|Qxk.8|} = k+ 1{|8|}

Q ∈ {∀, ∃}.

The formula we construct to describe an elementary-time Turing machine computation on inputx will
have lengthO(|x|).

4.5.1. Tope Contents

First, assume that the Turing machine we simulate has tape alphabet{0,1}, so that the tape contents
is just a big binary number. Since|Dt+1| = 2|Dt |, it is easy to show that each elementxt+1 ∈ Dt+1 can
be thought of as such a large integer, where theelementsof xt+1 are just thebit positionsset to 1 in its
binary encoding.

If for a suitably largek, xk+1 can be thought of as the tape contents, then a variablehk can code
the position of the tape head. To writehk ∈ xk+1 expresses that the Turing machine is reading a 1,
and hk /∈ xk+1 means the Turing machine is reading a 0. To move the tape head to the left or right
corresponds to computing successor for this representation of bounded integers: ifhk

1 andhk
2 code head

positions in successive IDs, thensucck(hk
1, h

k
2) expresses that the head moved one position to the right,

andsucck(hk
2, h

k
1) expresses that the head moved one position to the left.
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We definesucct+1 by first extending the order<0 on D0 to elements of higher universes:

xt+1 <t+1 yt+1 ≡ ∃zt .zt ∈ yt+1 ∧ zt /∈ xt+1

∧∀wt .zt <t w
t → (wt ∈ xt+1↔ wt ∈ yt+1).

(Translation:x < y if the zth bit iny is 1, but inx is 0, and the bits of higher order thanz are identical
in x andy.) Successor is then defined for eachDt as

succt (xt , yt ) ≡ xt <t yt ∧ ∀zt .xt <t zt → (yt <t zt ∨ yt =t zt ).

Now we fix the cardinality ofD0 = {0, 1, . . . ,b− 1} to facilitate the Turing machine simulation.
Since|Dt | = K t (b), we can think of an element ofDt as codingK t−1(b) bits (or binary tape cells) of
information. We henceforth takeb = d logn

log logne; note that forn>4, we have 22
b
> n. As a consequence,

|Dt+2|>K `(n) for largen, so that an element ofD`+3 codesK `(n) bits of information–enough to code
the contents of a Turing machine tape with that many cells.

4.5.2. Constants,Pairing, and Projection

To code tape contents, head position, and finite state into a single set, we need pairing and pro-
jection relations. A standard set-theoretic definition of pairing would code (ut , vt ) simply as the set
{{ut }, {ut , vt }} ∈ Dt+2. Because our simulation uses only a small number of pairs, and our universes
Dt are actually a little bigger than we need, we use their “extra room” to code pairs in a more contrived
way, but one which minimizes the size of the logical expression and its related typedλ-term.

In any universeDt , t > 0, we can define zero and a small number of constants:

zerot (s
t ) ≡ ∀bt−1bt−1 /∈ st

con1
t (st ) ≡ ∃zt .zerot (z

t ) ∧ succt (zt , st )

conm+1
t (st ) ≡ ∃zt .conm

t (ct ) ∧ succt (ct , st ).

Since integers are essentially represented as binary numbers, we can define a “shift” operator (multiply
by 2), a bitwise union, and a “spreading” function that maps the set denoting6bi 2i to that denoting
6bi 4i by inserting a 0 in between each of the bitsbi :

shiftt (x
t , yt ) ≡ ∃zt−1.zerot−1(zt−1) ∧ zt−1 /∈ yt ∧ ∀at−1.∀bt−1.succt−1(at−1, bt−1)

→ (at−1 ∈ xt ↔ bt−1 ∈ yt )

uniont (x
t , yt , zt ) ≡ ∀wt−1.wt−1 ∈ zt ↔ (wt−1 ∈ xt ∨ wt−1 ∈ yt )

spreadt (x
t , yt ) ≡ ∀zt−1.zt−1 ∈ xt ↔ (∃wt−1.shiftt−1(zt−1, wt−1) ∧ wt−1 ∈ yt ).

Now we can define a pairing function as

pair t (a
t , bt , pt ) ≡ ∃ut .∃vt .∃wt .spreadt (a

t , ut ) ∧ spreadt (b
t , vt )

∧ shiftt (v
t , wt ) ∧ union(ut , wt , pt ).

In the last definition,a andb are paired to formp, all in the same universeDt . Given that an element
of this universe only hasK t−1(b) bits, we can onlyiterate pairing11 a finite number of times; otherwise
we run out of “logical memory.” Recall, however, the definitionb = d logn

log logne; it is not hard to show
that for any fixed integerc > 0, for sufficiently largen (depending onc), K j+2(b)> cK j (n). This
essentially means that our logical formula specifying the behavior of a Turing machine can contain

11By this, we mean expressions such as
pair(a1,a2, p1) ∧ pair( p1,a3, p2) ∧ pair( p2,a4, p3) ∧ · · · ∧ pair( pt−1,ai+1, pi ).

Note that if each of theaj havem bits of information, thenpi needsj 2i bits.
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anyfixednumber of pairs, and asymptotically, the “word length” inD`+3 is big enough to support that
pairing.

In the interest of clarity, forQ ∈ {∀, ∃} we use the following abbreviations:

Q(at , bt ).8(at , bt ) ≡ Qpt .∀at .∀bt .pair t (a
t , bt , pt )→ 8(at , bt ),

(at , bt ) ∈ st+1 ≡ ∃pt .pair t (a
t , bt , pt ) ∧ pt ∈ st+1.

4.5.3. Simulating a Turing Machine

A small but suitably largeDt+1 can code the finite states of the Turing machine as an integer. To
code the tape, recall that an element ofD`+3 is big enough to codeK `(n) tape cells, so letk = ` + 2;
if uk+1, hk, sk, tk respectively code the tape contents, head position, finite state control, and time (i.e.,
the number of transition steps) for a Turing machine. We can represent all this information in a variable
zk+1 via the following tupling relation, which codes a Turing machine ID:

ID(uk+1, hk, sk, tk, zk+1) ≡ ∃vk.∃wk.∃wk+1.

pair(hk, sk, vk) ∧ pair(v k, tk, wk)

∧ singlek(wk, wk+1) ∧ pair(w k+1, uk+1, zk+1).

Note thatsinglek is defined as the injection ofak ∈ Dk into the singleton{ak} ∈ Dk+1:

singlek(ak,ak+1) ≡ ak ∈ ak+1 ∧ ∀xk.xk ∈ ak+1→ xk = ak.

Assume that the binary input to the Turing machine has lengthn, and define the setX ⊆ {0, 1, . . . ,n−
1} to be the bit positions of the input that are set to 1. Also, assume that the Turing machine head never
moves right of its initial position, and that 0 is the initial state. Let formulatapei beci ∈ uk+1 if i ∈ X,
andci /∈ uk+1 otherwise. The relation specifying the initial configuration can then be defined as

INITIAL (zk+1)

≡ ∃uk+1.∃hk.∃sk.∃tk

ID(uk+1, hk, sk, tk.zk+1) ∧ zerok(hk) ∧ zerok(sk) ∧ zerok(tk) ∧
∃ck

0.zerok
(
ck

o

) ∧ tape0 ∧
∃ck

1.succk
(
ck

0, c
k
1

) ∧ tape1 ∧ ∃ck
2.succk

(
ck

1, c
k
2

) ∧ tape2 ∧ · · ·
∃ck

n−1.succk
(
ck

n−2, c
k
n−1

) ∧ tapen−1 ∧
∀bk.ck

n−1 <k bk → bk /∈ uk+1.

Observe that constantsck
2i could be some fixed variablexk, and theck

2i+1 could beyk. This coding trick re-
duces the specification of the initial configuration to lengthO(n), where a binding∃ck

0.∃ck
1. · · · ∃ck

n−1. · · ·
would make the formula grow asÄ(n logn).

Since the Turing machine simulation runs forK `(n) steps, we need to be able to specify that number
via a succinct formula: we define the time bound as a predicateT j (u j+2), meaning thatu j+2 codes
K j (n):

T0(t2) ≡ conn
k(t2)

T j (t
j+2) ≡ ∀bj+1.bj+1 ∈ t j+2↔ T j−1(bj+1).

If HALT is the constant naming the halting state, the relation defining an accepting configuration is then

FINAL(zk+1)

≡∃uk+1.∃hk.∃sk.∃tk.ID(uk+1, hk, sk, tk, zk+1) ∧ conHALT
k (sk) ∧ T`(tk).
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Only INITIAL (zk+1) andFINAL(zk+1) have length2(n) because they code the length of the input, and the
time bound of the computation, each of which is a function ofn. (The latter could be reduced at the
expense of more complicated coding.) All the other components of the specification have lengthO(1).

The definition of the transition relationδ is equally straightforward:

δ
(
zk+1

1 , zk+1
2

) ≡ ∃uk+1
1 .∃hk

1.∃sk
1.∃tk

1 .

∃uk+1
2 .∃hk

2.∃sk
2.∃tk

2 .

ID
(
uk+1

1 , hk
1, s

k
1, t

k
1 , z

k+1
1

) ∧ ID
(
uk+1

2 , hk
2, s

k
2, t

k
2 , z

k+1
2

) ∧
succk

(
tk
1 , t

k
2

) ∧8TM
(
uk+1

1 , hk
1, s

k
1, u

k+1
2 , hk

2, s
k
2

)
.

The variableszk+1
1 andzk+1

2 code successive IDs of the Turing machine;8TM codes their relationship
as defined by the transition rules of the machine.

It remains only to define the reflexive, transitive closure ofδ:

δ∗(uk+1, vk+1) ≡ ∃ck+2.

[∀(r k+1, sk+1).

[(r k+1, sk+1) ∈ ck+2↔
r k+1 = sk+1 ∨ ∃qk+1.(r k+1,qk+1) ∈ ck+1 ∧ δ(qk+1, sk+1)]]

∧ (uk+1, vk+1) ∈ ck+2.

The constantck+2 codes the set of pairs (r k+1, sk+1) that form the transitive closure of the relation
defined byδ.

5. MAIN RESULTS

We summarize the salient features of our above coding in the following theorem.

THEOREM 5.1. Let M be a fixed Turing machine that accepts or rejects an input x ink`(|x|) steps.
Then there exists a formula8x in higher-order logic such that M accepts x if and only if8x is true.
Moreover,8x only quantifies over universesDi for i 6 `+ 4, and{|8x|} = O(|x|).

By considering the coding of this formula in the simply typedλ-calculus, using the translation
described in Sections 4.3 and 4.4, we derive the following corollary:

COROLLARY 5.2. Let M be a fixed Turing machine that accepts or rejects an input x of length n in
K `(n) steps. Then there exists an explicitly typed, closedλ-term8̂x : Bool such that M accepts x if and
only if 8̂x reduces to true≡ λt : o.λ f : o.t : Bool. Moreover,the bound variables in̂8x have order
2`+ 13,and|8̂x| = O(n).

Proof. From Theorems 4.1 and 5.1, we know the largestDt we need isD`+4, coded asλ-term
D`+4 with other 2`+ 13 and lengthO((b+ 2`+ 9)!). But recall` is a constant andb = d logn

log logne;
a straightforward calculation shows that for any fixed constantc, (b+ c)!62c+1n; observe that (b+
c)!62(b+c) log(b+c), and

(b+ c) log(b+ c) = (b+ c)

(
logb+ log

(
1+ c

b

))
6b logb+ c logb+ c+ o(1),

where

b logb+ c logb = logn− logn log log logn

log logn
+ c log logn− c log logn6 logn

since the second term dominates the third term for largen.
Finally, by abstracting over the constructions in Theorem 5.1, the length of the overall term can also

be bounded asO(n).
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Combining the last two results, we derive our most important theorem:

THEOREM 5.3 (Main Theorem). Let `>0 be any fixed integer. Then there exists a set of explicitly
typed,closedλ-terms En : Bool, where|En| = O(n), En normalizes in O(|En|) parallel β-steps,and
the time needed to implement the parallelβ-steps, on any first-class machine model[vEB90],grows as
Ä(K `(n)).

Proof. Let 8̂x be a typed, closedλ-term that reduces totrue≡ λt : o.λ f : o.t : Bool if and only if
an arbitrary, fixed Turing machineM acceptsx in K `+1(|x|) steps, where the coding of8̂x is given by
Corollary 5.2. By that Corollary and the previous Theorem 5.1, we know that the length of8̂x is O(|x|).
By Theorems 3.12 and 3.13, the number of parallelβ-steps needed to normalize8̂x is alsoO(|x|).

Suppose now that these parallelβ-steps could be implemented by an algorithm inK `(|En|) steps. We
then would derive the following contradiction: for some constantk>0,

DTIME[K `+1(|x|)] ⊆ DTIME[K `(k|x|)].

The bound on the succinctness of|En| ensures that this containment is a contradiction.

Certainly the Main Theorem has to apply to the “machine” defined by Lamping’s algorithm, since
the graph reduction operations can be easily implemented with a time complexity that is polynomial
in the number of such operations; hence the graph reduction “machine” is first-class. We derive, as
a consequence, the following bound on the number of graph reduction rules required to implement
optimal reduction:

COROLLARY 5.4. Let `> 0 be any fixed integer. Then there exists a set ofλ-terms En : Bool which
normalize in O(n) parallel β-steps,where the number of local graph interaction steps required to
normalize En, using Lamping’s graph reduction algorithm,grows asÄ(K `(n)).

In the previous corollary, the number of graph reduction steps counts not only interactions between
λ, apply, and sharing nodes, but also interactions involving thecroissantandbracketnodes used to
manage theindicesthat control the behavior of the sharing nodes. For more information on how this
index management works, see [LM96, AG98].

Finally, in renditions of optimal graph reduction rules, there is some ambiguity defining where
reduction ends, and where readback begins. For example, if a graph has no moreβ-redexes, and
thus represents a normalizedλ-term, one way to read back the term is to continue graph reduction
“nonoptimally,” allowing forbidden duplication ofλ- and apply-nodes. We may then ask: given a graph
withoutβ-redexes, how hard is it to read back the normal form?

Recall the question “Does Turing machineM acceptx in K `+1(|x|) steps?” The answer to this question
can be coded in a sharing graph that can be produced in time polynomial in|x| (we regardM and` as
fixed), where the structure of this graph is given by the “blob” in Fig. 1. As a consequence, we derive
the following corollary:

COROLLARY 5.5 (Readback Lemma).Let`>0 be any fixed integer. Then there exists a set of sharing
graphs Gn, where[[Gn]] is bounded by a small fixed polynomial in n, Gn contains noβ-redexes,the
λ-term coded by Gn has constant size,and the computational work required to read back the represented
term grows asÄ(K `(n)).

All of the above results depend on the reduction ofλ-terms, where the number of ordinaryβ-steps,
dwarfs the number of parallelβ-steps. We summarize this difference in this final corollary:

COROLLARY 5.6. Let `>0 be any fixed integer. For any normalizingλ-term E,define bE to be the
number of ordinaryβ-steps taken and PE to be the number of parallelβ-steps taken in a reduction of
E to normal form. Then there exists an infinite set ofλ-terms E where bE = Ä(K `(pE)).

Proof. Let λ-term E be theη-expanded version of̄n2̄ · · · 2̄, wherem is the Church numeral
for integerm, andn̄ is followed by ` + 3 copies of2̄. Because|E| = O(n) we know thatpE =
O(n). On the other hand,E normalizes toK `+3(n), and an ordinaryβ-step can at most square the
length of aλ-term, hencen2(bE ) =Ä(K `+3(n)), from which we derivebE = Ä(K `+1(n)); hencebE =
Ä(K `(pE)).
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The corollary answers a question raised by Frandsen and Sturtivant in [FS91], who exhibited a set
of λ-terms, whereb>5p, and conjectured that a set ofλ-terms existed whereb = Ä(2p). In [LM96] a
set of terms was constructed whereb = Ä(22p).

We remark also that the Main Theorem gives bounds on the complexity of cut elimination in
multiplicative-exponential linear logic (MELL), and in particular, an understanding of the “linear logic
without boxes” formalism in [GAL92b]. In proof nets for linear logic (see, for example, (Laf95, AG98]),
the timesandpar connectives of linear logic play essentially the same role as apply- andλ-nodes in
λ-calculus; the programming synchronization implemented by theclosurehas its counterpart in proof
net boxes. Just as Lamping’s technology can be used to optimally duplicate closures, it can be used
to optimally share boxes. Because the simply typedλ-calculus is happily embedded in multiplicative-
exponential linear logic, we get similar complexity results: small proof nets with polynomially bounded
number of cuts, but a nonelementary number of “structural” steps to resolve proof information coded
by sharing nodes.

6. SUPERPOSITION AND HIGHER-ORDER SHARING

The analysis of the previous section makes it very clear that the parallelβ-step is not evenremotely
a unit-cost operation. The workhorse of any optimal reduction engine is not the parallelβ-step, but the
bookkeeping overhead of sharing redexes. The bookkeeping must rememberwhichredexes are being so
parsimoniously shared, transmitting relevant context information between the redexes and thesanctum
sanctorumwhere parallelβ-reduction takes place.

We used Lamping’s technology as a calculating device to prove a theorem about all possible im-
plementations of optimal evaluation. However, it is worth asking the following question: what are
Lamping’s graphs doing to so cleverly encode so much sharing? We ought to get some naive, straight-
forward, algorithmic understanding of how his data structures are working. In this section, we discuss
two essential phenomena of these data structures: that ofsuperpositionand that ofhigher-order shar-
ing. Superposition is a coding trick where graphs for different values—for example,true andfalse, or
different Church numerals—are represented by a single graph. Higher-order sharing is a device where
sharing nodes can be used to code other sharing structures, allowing a combinatorial explosion in the
size of graphs. Both of these techniques are used to realize the generic simulations of the previous
section.

It is worth noting that these coding tricks were discoveredafter the proof of the nonelementary lower
bound. It was the proof of that theorem that made us realize such codingshad to exist, as opposed to
inventing graph gadgets and then trying to embed them inλ-terms. We have resisted stating theorems
in this section, instead encouraging the reader toward a more intuitive grasp of the finitary dynamics of
the graph reduction rules.

6.1. Superposition

In Fig. 17, we see a really simple, but canonical example of superimposed graphs: the coding of
true and false. Notice how the “star” sides of the sharing nodes codetrue, and the “circle” sides of

FIG. 17. Superposition of true and false.
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FIG. 18. η-Expansion of the list of Booleans.

the sharing nodes codefalse. The two values share theλ-nodes that serve as the interface to the ex-
ternal context. A curious consequence of this superposition is that, for example, we can negateboth
Boolean values at the cost usually ascribed to negating onlyoneof them: consider reducing a graph
where the function associated with an apply-node isNOT, and the associated argument is the superim-
posedtrue andfalse: theNOT function merely switches the topological position of two of the sharing
nodes.

While this coding looks compelling, it is worth asking: could such a sharing graph really occur in
reducing a term? Consider the coding ofD1 ≡ λc : Bool→ o→ o.λn : o.c true (c false n): (Bool
→ o → o) → o → o, and itsη-expanded equivalent, pictured in Fig. 18. In the unexpanded term,
there is a sharing ofc, but not a sharing of the four applications. In theη-expanded term, the coding of
c trueandc falseis shared by a single application, and the argument is exactly our superimposedtrue
andfalse. In addition, there is a sharing of (c true) (c false n) and (c false)n. Notice that the companion
argument to the superimposed values is just twoη-expansions: the “star” one, coding (c true) (c false
n), leads back into the network of applications (but on the “circle” side), while the “circle” application
leads out to the parametern.

FIG. 19. Sharing graph representations of Church numerals.
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FIG. 20. A generic Church numerical.

This example explains why SATISFIABILITY can be coded in a subexponential number of parallelβ-steps.
Consider the formula∃x.∃y.∃z.φ(x, y, z), represented by the typedλ-term

D1(λx : Bool.OR

D1(λy : Bool.OR

D1(λz : Bool.OR

(φ̂ x y z)) false)false)false.

Generalizing the above graph constructions, this kind ofλ-term essentially superimposeseveryrow of
an n-variable truth table into asingle, shared structure, so that applying a Boolean function to all 2n

rows can be done “simultaneously”.
Another beautiful example comes from Church numerals. In Fig. 19, we see two sharing graphs,

representing the Church numerals for 2 and 3, in which every application of the “successor” constructor
s is shared. Notice that these examples give us a fairly universal picture of Church numerals, where the
λs andλz serve as a uniform interface, the applications are maximally shared, and two numerals are
distinguished only by their network of sharing nodes: see Fig. 20. Now we can code a superimposed
representation of many Church numerals, by inserting more sharing nodes to serve as multiplexors and
demultiplexors leading to the correct sharing network pictured in Fig. 21.

FIG. 21. Superimposed Church numerals.
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FIG. 22. Binary counting and exponential function application.

This style of computation looks like aλ-calculus optimal evaluation implementation of SIMD (single
instruction, multiple data) parallelism. Imagine a listλc.λn.cx1 (c x2 · · · (c x̀ n) · · ·), where thexi are
Church numerals, which getsη-expanded sot hat the applications (c xi ) are all shared, via superimposed
representations of the numerals. We can then, for example, apply any integer function to each of the
numerals “simultaneously,” that is, counting parallelβ-steps, but not counting sharing interactions. The
sharing network for each numeral is like a separate processor, serving as multiple data; theλ- and
apply-nodes serve as inter-faces to the external context; the multiplexers and demultiplexers replicate
and pump the single-instruction stream (the code for, say, factorial) to each of the processors. The
real work of the computation becomescommunication, performing theη-expansion on the lists, and
communicating the function to different processors. But the actual computation associated with the
function occurs via interaction of sharing nodes only, our “parallel computation.”

6.2. Higher-Order Sharing

Superposition is only one component of the graph reduction technology that supports nonelementary
computation in a trivial number of parallelβ-steps. The other essential phenomenon ishigher-order
sharing, used to construct enormous networks of sharing nodes.

A well-understood use of sharing appears in [Asp96, LM96], where a linear number of sharing nodes
is used to simulate an exponential number of function applications, illustrated in Fig. 22.

The key idea in this construction, and in more sophisticated examples of higher-order sharing, is the
pairing of sharing nodes with wires from the “circle” to “star” sides, so that we can enter the same
graph in two different “modes.” In fact, a trivial example of the “geometry of interaction” as interpreted
in sharing graphs occurs via a simplestack semantics, where a naive version of context information
can be constructed as mere stacks of circle and star tokens. When a stack enters a sharing node at its
interaction port, the top token on the stack is popped and used to determine whether the path to follow
is along the “circle” or “star” auxiliary ports of the node. Conversely, when entering a sharing node
via its circle (respectively, star) auxiliary port, a circle (respectively, star) token is pushed on the stack.
The semantics of sharing graphs, essentially represented by this stack discipline, is preserved by graph
reduction.

FIG. 23. A simple sharing network.
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FIG. 24. How to share a sharing node.

In the left part of Fig. 22, we see a network made of 2k sharing nodes that implements a path of
length 2k using the naive stack semantics. If the stack of circle and star tokens is thought of as a binary
number, then the path corresponds to binary counting. In the second part of the figure, we use the same
construction to implement 2k applications of a functionf to an argumentx.

However, this construction merely shares an application node; to get a truly powerful network of nodes,
we need to be able to sharesharing nodesas well. The construction is indicative; the basis is described
by the simple network as in Fig. 23, where two binary trees annihilate. By linking two symmetric copies
of this construction via the marked wire, we get a “stack” of sharing nodes implementing the standard
exponential construction. This structure, used in the previous figure to share a function application, can
instead be used to share a sharing node, as illustrated in Fig. 24.

Now we can go one step further, considering anestedconstruction, where we share the sharing of
sharing nodes, ad nauseum. Figure 25 hints at how such a network of 2` sharing nodes can expand to a
network of sizeK `(1).

After these illustrative examples, we can describe the basic idea of theelementary construction(in
the sense of Kalmár). We define a sequence ofnetworks Nj , whereNj contains sharing nodes atlevels
(not to be confused withindices) 06 `6 j . Like a sharing node, every network will have one principal
port, two auxiliary ports (identified as thecircle andstar ports), and a distinguished sharing node that
we will call thecorenode. Given a sharing networkN, we will write N̄ to meanN with circle and star
exchanged on the auxiliary ports of the core node ofN.

The networkN0 is a single sharing node at level 0, which is by process of elimination the core node.
To constructNj+1, we combineNj , Nj , and a new core node at levelj + 1, attaching the principal

FIG. 25. A “nested” construction.
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FIG. 26. The generic construction of an elementary network.

ports of the core node andNj , the principal port ofNj to the circle auxiliary port of the core node, and
the star auxiliary node ofNj to the circle auxiliary node ofNj (see Fig. 26) The principal port ofNj+1

is the star external port ofN j ; auxiliary ports are the star auxiliary port of the core node, and the circle
auxiliary port ofNj . It should be clear thatNj has 2j − 1 sharing nodes. We define a naive oracle for
interactions between sharing nodes: nodes at identical level annihilate; otherwise they duplicate.

LEMMA 6.1. The network Nj (respectively,Nj ) normalizes to a complete binary tree withK j (1)
leaves. The leaves at level j are connected to sharing nodes at level j− 1 on their star(respectively,
circle) auxiliary ports;the remaining auxiliary port is connected to the primary port of the node at the
adjacent leaf,as in Fig.26.

Proof. By induction. The lemma is trivially true forj = 0. For j = i + 1, use the induction hypothesis
to normalizeNi and Ni , producing the network in Fig. 26. The two binary trees now annihilate each
other, and the two stacks ofK i (1) sharing nodes then create a complete binary tree withK i+1(1) copies
of the core node, with a complete binary tree linked to these copies at the leaves.

This kind of sharing network results from the parallelβ-reduction of theη-expanded term2 j ≡
22· · · 2̄ of j 2̄s, where2̄ is the Church numeral for 2. This term has lengthO(2 j ) because of explicit
type information that doubles for each additional2̄;2 j normalizes inO( j ) parallelβ-steps to the Church
numeral forK j (1). The exponential length is sufficient to code a copy ofNj andNj ; after normalization,
these networks expand to constructK j (1) function applications. The same computational phenomenon
is evident in the coding of the iterated powerset, though not as straightforward to describe.

7. CONCLUSIONS

We have shown in this paper that the cost of implementing a sequence ofn parallelβ-reduction steps
in the reduction of aλ-term is not bounded in general by any Kalmár-elementary functionK`(n). Given
that the parallelβ-step is one of the key ideas in optimal reduction, it makes sense to consider whether
the idea of optimal evaluation has any practical importance. Do we need a reevaluation of the idea of
optimality? There is no question that the study of optimal reduction has provided important insights and
connections among linear logic, control structures, context semantics and the geometry of interaction,
and intensional semantics, with hope of our applying its ideas as well in the area of full abstraction.
But all that taken for granted, it is irrelevant in the world of pragmatics. Is Lamping’s graph reduction
algorithm, or any of its variants, any good?

Lower bounds are fertile territory for pessimists whose only happiness in life is to show that the world
we typically think of as computable is actually intractible. But suppose we had found instead that the
parallelβ-step was indeed unit-cost, or thatn such reductions could be carried out in time polynomial
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in n. In the face of generic simulation, this would mean that there must belotsof such reduction steps.
The critic would then infer: why all this fancy new inscrutable technology to implement something that
is not much better than an ordinaryβ-step? Needless to say, there is much ground in between these two
extremes where similar pessimism could be expressed.

As we wrote in the Introduction, the computation theorist’s idea ofgeneric simulationis comparable
with the classical physicist’s idea ofwork; just as real work requires an expenditure of energy, generic
simulation requires an unavoidable commitment of computational resources. What we do learn, beyond
the shadow of a doubt, is that merely minimizing the number of parallelβ-steps is a curiosity at best,
and a worst a misleading diversion from the business of designing efficient interpreters for program-
ming languages. If there is something efficient about Lamping’s graph reduction algorithm, it must be
something else.

Along these lines, we do believe that the graph reduction algorithm has something good to say for
itself: it maximizes sharing. Furthermore, it has the potential to optimize bookkeeping (croissant and
bracket interactions) in its incremental manipulation of theboxeswhich delineate sharable values.
Optimality considerations require that similarβ-redexes are shared, but many other subexpressions are
also shared. In particular, subexpressions with the sameLévy labelare almost always shared.

This insight and intuition can be formalized more precisely in the following sense. In thelabeled
λ-calculus, the set oflabelsis made up of a countably infinite set of atomic labels (such as integers) and
closed under concatenation andunderlining. Each subterm of the initialλ-term is initially annotated with
a unique label; as reduction occurs, labels are concatenated and underlined, according to the arcane rule

(λx.E)` F → E`[x 7→ F`].

For example, in the untypedλ-calculus, we have the labeled reduction step

((λx.(x1 x2)3)4 (λx.(x5 x6)7)8)9→ ((λx.(x5 x6)7)841(λx.(x5 x6)7)842)349.

A labeledλ-term thus codes the reduction history that led to its derivation.
It can be shown that the number of interactions ofλ-nodes, apply-nodes, and sharing nodes in optimal

graph reduction is bounded by a polynomial in the number ofuniquelabels generated in a reduction
[LM97]. If we believe that label identifies a set of similar subexpressions, this result means that the
graph reduction algorithm is maximizing sharing up to a polynomial factor. This is probably a good
thing. It remains, however, to solve the unquestioned algorithmic problem ofspurious bracketing—
the explosion of so-calledbracketandcroissantnodes that implementnode indicesand the so-called
“oracle” that implements interactions between sharing nodes.

Many questions remain about the complexity of this graph technology. A complementary tight upper
bound on the number of sharing interactions is not known. It is still not know whether the cost of spurious
bracketandcroissantinteractions can be greatly reduced, or whether they are essential, even with the
optimization possible from so-called “safe nodes.” We conjecture that, with proper optimization, the
bookkeeping is polynomial in the number of fan interactions. It also remains to be seen whether theη-
expansion method could be generalized to higher-order typedλ-calculi, particularly System F [GLT89],
which might give new and constructive proofs of strong normalization for those calculi.

In summary, graph reduction for optimal evaluation presents a new technology for language imple-
mentation that is a hybrid of call-by-name and call-by-value. Its theoretical importance is unquestioned,
and its practical impact has only just begun to be considered. When Zhou En-Lai was asked to com-
ment on the importance of the French Revolution, he reportedly responded, “It’s too early to tell.” In
considering the importance of sharing graphs as a new language implementation technology, we are
encouraged to say the same thing.
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