501 research outputs found

    Robotic Assisted Microsurgery (RAMS): Application in Plastic Surgery

    Get PDF

    Development of a Novel Handheld Device for Active Compensation of Physiological Tremor

    Get PDF
    In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation of physiological tremor in the hand. MEMS-based accelerometers and gyroscopes have been used for sensing the motion of the hand in six degrees of freedom (DOF). An augmented state complementary Kalman filter is used to calculate 2 DOF orientation. An adaptive filtering algorithm, band-limited Multiple Fourier linear combiner (BMFLC), is used to calculate the tremor component in the hand in real-time. Ionic Polymer Metallic Composites (IPMCs) have been used as actuators for deflecting the tool-tip to compensate for the tremor

    Micro-motion controller

    Get PDF
    Micro-motions in surgical applications are small motions in the range of a few millimeters and are common in ophthalmic surgery, neurosurgery, and other surgeries which require precise manipulation over short distances. Robotic surgery is replacing traditional open surgery at a rapid pace due to the obvious health benefits, however, most of the robotic surgical tools use robotic motion controllers that are designed to work over a large portion of the human body, thus involving motion of the entire human arm at shoulder joint. This requirement to move a large inertial mass results in undesirable, unwanted, and imprecise motion. This senior design project has created a 2-axis micro-motion “capable” platform, where the device studies the most common linear, 2-D surgical micro-motion of pinched human fingers in a damped and un-damped state. Through a system of printed and modeled parts in combination with motors and encoders a microsurgical controller was developed which can provide location-based output on a screen. Mechanical damping was introduced to research potential stability of micro-motion in any surgeon’s otherwise unsteady hand. The device is to also serve as a starter set for future biomedical device research projects in Santa Clara University’s bioengineering department. Further developments in the microsurgical controller such as further scaling, addition of a third axis, haptic feedback through the microcontroller, and component encasing to allow productization for use on an industrial robotic surgical device for clinical applications

    Design and realization of a master-slave system for reconstructive microsurgery

    Get PDF

    A robotic microsurgical forceps for transoral laser microsurgery

    Get PDF
    Purpose: In transoral laser microsurgery (TLM), the close curved cylindrical structure of the laryngeal region offers functional challenges to surgeons who operate on its malignancies with rigid, single degree-of-freedom (DOF) forceps. These challenges include surgeon hand tremors, poor reachability, poor tissue surface perception, and reduced ergonomy in design. The integrated robotic microsurgical forceps presented here is capable of addressing the above challenges through tele-operated tissue manipulation in TLM. Methods: The proposed device is designed in compliance with the spatial constraints in TLM. It incorporates a novel 2-DOF motorized microsurgical forceps end-effector, which is integrated with a commercial 6-DOF serial robotic manipulator. The integrated device is tele-operated through the haptic master interface, Omega.7. The device is augmented with a force sensor to measure tissue gripping force. The device is called RMF-2F, i.e. robotic microsurgical forceps with 2-DOF end-effector and force sensing. RMF-2F is evaluated through validation trials and pick-n-place experiments with subjects. Furthermore, the device is trialled with expert surgeons through preliminary tasks in a simulated surgical scenario. Results: RMF-2F shows a motion tracking error of less than 400 μm. User trials demonstrate the device’s accuracy in task completion and ease of manoeuvrability using the Omega.7 through improved trajectory following and execution times. The tissue gripping force shows better regulation with haptic feedback (1.624 N) than without haptic feedback (2.116 N). Surgeons positively evaluated the device with appreciation for improved access in the larynx and gripping force feedback. Conclusions: RMF-2F offers an ergonomic and intuitive interface for intraoperative tissue manipulation in TLM. The device performance, usability, and haptic feedback capability were positively evaluated by users as well as expert surgeons. RMF-2F introduces the benefits of robotic teleoperation including, (i) overcoming hand tremors and wrist excursions, (ii) improved reachability and accuracy, and (iii) tissue gripping feedback for safe tissue manipulation

    Microsurgery robots: addressing the needs of high-precision surgical interventions

    Get PDF
    Robots can help surgeons perform better quality operations, leading to reductions in the hospitalisation time of patients and in the impact of surgery on their postoperative quality of life

    Robot assisted stapedotomy ex vivo with an active handheld instrument

    Get PDF
    Micron is a fully handheld active micromanipulator that helps to improve position accuracy and precision in microsurgery by cancelling hand tremor. This work describes adaptation, tuning, and testing of the Micron system for stapedotomy, a microsurgical procedure performed in the middle ear to restore hearing that requires accurate manipulation in narrow spaces. Two end-effectors, a handle, and a brace (or rest) were designed and prototyped. The control system was adapted for the new hardware. The system was tested ex vivo in stapedotomy procedure comparing manually-performed and Micron-assisted surgical tasks. Tremor amplitude was found to be reduced significantly. Further testing is needed in order to obtain statistically significant results regarding other parameters dealing with regularity of the fenestra shap

    Optical coherence tomography-based consensus definition for lamellar macular hole.

    Get PDF
    BackgroundA consensus on an optical coherence tomography definition of lamellar macular hole (LMH) and similar conditions is needed.MethodsThe panel reviewed relevant peer-reviewed literature to reach an accord on LMH definition and to differentiate LMH from other similar conditions.ResultsThe panel reached a consensus on the definition of three clinical entities: LMH, epiretinal membrane (ERM) foveoschisis and macular pseudohole (MPH). LMH definition is based on three mandatory criteria and three optional anatomical features. The three mandatory criteria are the presence of irregular foveal contour, the presence of a foveal cavity with undermined edges and the apparent loss of foveal tissue. Optional anatomical features include the presence of epiretinal proliferation, the presence of a central foveal bump and the disruption of the ellipsoid zone. ERM foveoschisis definition is based on two mandatory criteria: the presence of ERM and the presence of schisis at the level of Henle's fibre layer. Three optional anatomical features can also be present: the presence of microcystoid spaces in the inner nuclear layer (INL), an increase of retinal thickness and the presence of retinal wrinkling. MPH definition is based on three mandatory criteria and two optional anatomical features. Mandatory criteria include the presence of a foveal sparing ERM, the presence of a steepened foveal profile and an increased central retinal thickness. Optional anatomical features are the presence of microcystoid spaces in the INL and a normal retinal thickness.ConclusionsThe use of the proposed definitions may provide uniform language for clinicians and future research

    State of the art of robotic surgery related to vision: Brain and eye applications of newly available devices

    Get PDF
    Raffaele Nuzzi, Luca Brusasco Department of Surgical Sciences, Eye Clinic, University of Torino, Turin, Italy Background: Robot-assisted surgery has revolutionized many surgical subspecialties, mainly where procedures have to be performed in confined, difficult to visualize spaces. Despite advances in general surgery and neurosurgery, in vivo application of robotics to ocular surgery is still in its infancy, owing to the particular complexities of microsurgery. The use of robotic assistance and feedback guidance on surgical maneuvers could improve the technical performance of expert surgeons during the initial phase of the learning curve. Evidence acquisition: We analyzed the advantages and disadvantages of surgical robots, as well as the present applications and future outlook of robotics in neurosurgery in brain areas related to vision and ophthalmology. Discussion: Limitations to robotic assistance remain, that need to be overcome before it can be more widely applied in ocular surgery. Conclusion: There is heightened interest in studies documenting computerized systems that filter out hand tremor and optimize speed of movement, control of force, and direction and range of movement. Further research is still needed to validate robot-assisted procedures. Keywords: robotic surgery related to vision, robots, ophthalmological applications of robotics, eye and brain robots, eye robot
    • …
    corecore