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Abstract 

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip 

of a device such as scalpel. Any errors in the motion of the hand make microsurgical 

procedures difficult and involuntary motions such as hand tremors can make some 

procedures significantly difficult to perform. This is particularly true in the case of 

vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological 

tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to 

precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this 

thesis, a novel handheld device (AID) is described for compensation of physiological tremor 

in the hand. MEMS-based accelerometers and gyroscopes have been used for sensing the 

motion of the hand in six degrees of freedom (DOF). An augmented state complementary 

Kalman filter is used to calculate 2 DOF orientation. An adaptive filtering algorithm, band-

limited multiple Fourier linear combiner (BMFLC), is used to calculate the tremor 

component in the hand in real-time. Ionic Polymer Metallic Composites (IPMCs) have been 

used as actuators for deflecting the tool-tip to compensate for the tremor.  

Keywords 

microsurgery, physiological tremor, active handheld device, inertial measurement unit, 

tremor modeling, Kalman filter, adaptive filtering technique, Ionic Polymer Metallic 

Composites (IPMCs)  
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Chapter 1  

1 Introduction 

Human tremor is an involuntary motion of body part(s) that is associated with both 

healthy individuals and individuals having movement disorders. For individuals suffering 

with movement disorders, tremor leads to degrading the quality of life. Mundane tasks 

such as lifting a cup are significantly difficult for such individuals. Essential tremor, 

Parkinson's disease and cerebellar lesion are the leading cause of movement disorders. 

Tremor in healthy individuals is known as physiological tremor. It puts a limitation on 

positional accuracy of tasks requiring motion in sub-millimeter range.  

Physiological tremor is intrinsic to all healthy individuals. It degrades the performance of 

procedures which require micromanipulation such as military targeting, photography and 

microsurgery. In the latter, even small amounts of tremor can be fatal for the patient. A 

high degree of positional accuracy (in the range of microns) is required to effectively 

perform such tasks.  

There are various approaches for compensating tremor. These include medication or 

surgical procedures depending on the severity of the tremor and the side-effects 

associated with each treatment modality. Pharmacological treatments have varying 

success in reducing the tremor and surgical approaches are invasive, costly and can 

impose harmful side-effects. In addition, various assistive devices such as external 

damping devices, prosthetic devices, telerobotic systems or active handheld devices exist 

which suppress pathological tremor or cancel or filter out physiological tremor. External 

damping devices, prosthetic devices and telerobotic systems suffer from bulky size, high 

cost and less user acceptance. On the other hand, active handheld devices have 

advantages such as portability, low cost and high user acceptance. 

A hand-held device for active tremor cancellation is a promising solution; however, it is 

difficult to implement due to various strict constraints on weight, size, frequency range 

and stroke of actuators. Overcoming these constraints involves the right combination of 

actuators and sensors. Conventional actuators and sensors cannot be used as they are 
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relatively heavy and bulky in size for small and compact applications. Smart materials, 

particularly, Ionic Polymer Metallic Composites (IPMCs) present a viable solution as 

they can be manufactured in small sizes and are light in weight along with the capability 

to produce high speed cyclic motion. IPMCs, however, have certain limitations, such as 

low force output, which must be resolved before they can be effectively employed as 

actuators.   

Thus, the goal of this thesis project was to develop an active hand-held device which can 

measure and compensate for physiological tremor in the surgeon’s hand during 

microsurgery and enhance the accuracy of performing a microsurgical procedure.    

1.1 Tremor 

Tremor is defined as a rapid back-and-forth undesired movement of a body part. It is 

intrinsic to all humans, both healthy and those having movement disorder as a 

pathological symptom [1].  

1.1.1 Sources of Tremor 

Motion of any body part is produced by muscles. Muscles are connected to the central 

nervous system through reflex loops. Muscles contain muscle spindles which are made 

up of fibers sensitive to changes in length. Whenever there is a change in length, they 

produce a signal which is fed to the reflex loops. Reflex loops carry the signals from the 

muscle spindles to the central nervous system where they are processed and signals are 

sent back to the muscles using the reflex loops. 

Figure 1.1 shows the influence of the central nervous system on the muscles through 

these loops. In [1] and [2], it was reported that tremor has three sources: mechanical, 

reflex and central oscillations.  
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Figure 1.1: Influence of central nervous system on a limb [2] (Copyright © 1998 

Movement Disorders Society) 

1.1.1.1 Mechanical oscillations 

Any movement is physically produced by the joints and the muscles. A joint is a 

mechanical structure which obeys the rules of physics [2]. Muscles have been modeled as 

three-element mechanical structures, each comprising of a neural input processor, springs 

and internal damping. A mechanical system oscillates at its resonant frequency under the 

action of any disturbance. In the human body, one such disturbance occurs due to blood 

ejection during cardiac systole [2]. The pulsatile perturbations cause the joints to oscillate 

at a frequency governed by the following equations [1] [2]: 
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where K is the stiffness of the joint, I is the inertia of the joint and J is the moment of 

inertia of the joint. It is evident from the above equations that the mechanical component 
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of tremor is highly dependent on the mechanical properties of the bones, muscles and soft 

tissues. It can be inferred from the above equations that the frequency of mechanical 

component will change under an external load on the body part [1] [2].  

1.1.1.2 Reflex oscillations 

Reflex loops are divided into 2 types: peripheral loops and central loops. Peripheral loops 

run from muscle fiber to the spinal cord and back. Central loops run from the periphery 

of the spinal cord to the supraspinal levels including the brainstem, the cerebellum, the 

basal ganglia and the cerebral cortex [2]. These loops run over time with certain time 

delays. Reflex oscillations occur in reflex loops if the loops are under-damped and the 

frequency of such oscillations is the inverse of the double time delay [1] [2]. When the 

frequencies of mechanical oscillations and reflex oscillations are equal, they are 

augmented to a single frequency known as the mechanical reflex [2]. Reflex oscillations 

are independent of the mechanical properties of the body. However, if the body part is 

under any external load, it increases the loop delay which reduces the frequency of the 

reflex oscillations [1].  

1.1.1.3 Central oscillations 

Central oscillations are produced due the neural activity pertaining to the properties of 

individual neuron, neuronal networks or a combination of both. It follows a rhythmic 

behavior [2]. Central oscillations are independent of the mechanical properties of the 

body and are not affected by external loading of the body part [1].  

1.1.2 Tremor Classification 

The cause of tremor is either physiological or pathological. Physiological tremor is 

intrinsic to all humans [3]. Pathological tremor is either idiopathic or occurs secondary to 

a disorder such as a brain tumor, alcohol or drug withdrawal or multiple sclerosis [4]. 

Unlike physiological tremor, it is a nonlinear and non-stationary movement [5] [6]. In 

most cases, a study of the amplitude is sufficient to differentiate between physiological 

and pathological tremors [7]. Tremor has been classified in different ways. In [3], it was 

classified as rest or action tremor. Action tremor was further divided into postural, 
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isometric and kinetic tremor. The clinical point of view uses the classification of: rest, 

postural and kinetic tremors [5]. These three types of tremor are collectively known as 

action tremors.  

Table 1.1: Classification of tremor and associated diseases [5] 

Type Tremor Frequency (Hz) Diseases associated 

Rest 3 - 6 

Parkinson's disease 
Drug-induced Parkinsonism 

Stroke 
Posttraumatic tremor 

Postural 4 - 12 

Essential tremor 
Physiological tremor 
Cerebellar diseases 
Multiple sclerosis 

Posttraumatic tremor 
Metabolic diseases 

Kinetic <5 
Cerebellar Lesion 
Essential tremor 
Multiple sclerosis 

Rest tremor occurs when a body part is maintained at rest (e.g., resting the hand on a 

table). It usually disappears during voluntary movements of the limbs [5] [6] [8]. 

However, in [9], the authors reported that it may also be present with lower amplitude 

during posture and movement. It usually originates at the distal end and extends to the 

proximal end of the body parts [8]. It has also been reported that it may increase with 

mental stress or contralateral motion [5]. Frequency of rest tremor ranges from 3 to 6 Hz. 

The most common disease associated with rest tremor is Parkinson's disease (PD). 

 

Figure 1.2: Parkinsonian Tremor in a patient [5] (Copyright © 2008 Morgan and 

Claypool) 
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Postural tremor occurs while maintaining a position against gravity (e.g., holding a cup). 

The frequency of postural tremor varies between 4 and 12 Hz. Kinetic tremor occurs 

during any kind of limb movement. Undesired motion due to kinetic tremor is 

perpendicular to the direction of the desired motion. Essential tremor (ET) is the most 

typical cause of postural and kinetic tremor. Cerebellar lesions also account for these two 

tremors. Physiological tremor has also been considered to be a peculiar form of postural 

tremor [5] [6]. Figure 1.3 shows drawings of Archimedes' spiral by 2 patients suffering 

from essential tremor. 

 

Figure 1.3: Essential tremor in 2 patients (a) with mild ET (b) with severe ET [5] 

(Copyright © 2008 Morgan and Claypool) 

In addition to the above mentioned types of tremor, there are various other forms of 

tremor. These include isometric tremor, psychogenic tremor, task-specific tremor, 

dystonic tremor, Holmes' tremor, cortical tremor, orthostatic tremor, palatal tremor and 

tremor after a peripheral nerve injury [5]. Isometric tremor occurs during contraction 

against stationary objects. Psychogenic tremor may be continuous or intermittent with 

varying frequency and amplitude and is a combination of rest, postural and kinetic 

tremor. Task-specific tremor occurs during given actions (e.g., writing). Dystonic tremor 

is an extreme case of postural or kinetic tremor or occurs in a body part suffering from 

dystonia. Holmes' tremor (or midbrain tremor) predominantly affects proximal segments 

and has a frequency of less than 4.5 Hz. It occurs at rest and increases during movement 

and goal-directed tasks. Cortical tremor is a characteristic of a rare disorder, familial 

cortical myoclonic tremor. Orthostatic tremor occurs at higher frequencies ranging 

between 13 and 18 Hz and mainly affects the legs and the trunk. Palatal tremor occurs at 
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the soft palate with a frequency range from 0.3 to 100 Hz (usually 1.5 to 3 Hz). It may 

affect the eyes, face, larynx, neck, shoulder and diaphragm. Tremor after a peripheral 

nerve injury occurs due to a lesion in the peripheral nervous system.   

1.1.3 Treatments of tremor 

Pathological tremor such as essential tremor, Parkinson's disease and other types of 

movement disorders make simple everyday tasks such as eating or holding a cup 

significantly difficult for individuals experiencing tremor with high amplitudes. This 

degrades the quality of life and causes social embarrassment. In extreme cases, 

individuals such as artists or surgeons are forced to quit their jobs [10]. Treatment for 

attenuating tremor can be categorized into three categories - pharmacological treatment, 

surgical treatment and external assistive devices. The treatment is chosen based on the 

severity of tremor and the side-effects associated with each treatment.     

1.1.3.1 Pharmacological treatment 

Medication is the first choice of treatment for those reporting movement disorders. 

Postural essential tremor can be reduced by primidone or propranolol [4] [5]. Ethanol is 

used as a clue for the diagnosis of essential tremor and not as a treatment due to adverse 

effects. Essential tremor in limbs is generally treated with β-blockers (propranolol). 

Drugs such as topiramate have been shown to improve functionalities affected by 

essential tremor such as writing or speaking [5]. Parkinson's disease is generally treated 

by dopamine agonists such as levodopa, pramipexole or ropinirole [4] [5]. 

Pharmacological treatment has varying success in abating tremor and side-effects of 

drugs can be severe. For instance, β-blockers may cause reduced blood pressure, 

confusion, dizziness or drowsiness [5]. The side-effects associated with dopamine agents 

are memory impairment, hallucinations, dry mouth, urinary difficulties and blurred vision 

[4]. 

1.1.3.2 Surgical treatment 

The surgical approach is followed for individuals exhibiting a high degree of tremor or in 

cases where medication was found to be ineffective. The two most prominent surgical 
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treatments for suppressing tremor are thalamic deep brain stimulation (DBS) and 

radiofrequency thalamotomy. 

 

Figure 1.4: Representation of Deep Brain Stimulation (DBS) [11] (Copyright © 

Brown University) 

DBS, shown in Figure 1.4, is a reversible procedure which involves implantation of a 

brain pacemaker which stimulates specific parts of the brain [5] [11]. Radiofrequency 

thalamotomy is an invasive procedure involving ablating certain portions of thalamus. 

While DBS is usually a safe procedure, however, side-effects such as permanent 

neurologic deficit, infections, depression, cognitive impairment, mania or behavior 

changes are still associated. It has also been reported in some studies that patients treated 

with DBS have higher suicidal rates. Patients treated with thalamotomy may develop 

side-effects such as aphasia, partial visual field deficit or speech disturbance [5]. The 

most serious risk with both the procedures is intracranial hemorrhage which may cause 

stroke leading to permanent weakness or death. 

Gamma knife (γK) radiosurgery is an alternative approach in treating Parkinson's disease 

or essential tremor in patients who are not fit for radiofrequency thalamotomy or DBS. 

Unlike radiofrequency thalamotomy or DBS, it is a minimally invasive procedure. 
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However, side-effects such as delayed neurological deficit or patients developing 

complex disabling movement after γK thalamotomy are still present [5].  

1.1.3.3 Assistive Devices 

Patients with severe uncontrollable tremor who cannot be treated with medication or 

surgery due to high risks are treated using external assistive devices, prosthetic devices, 

or devices employing human-computer interaction.  

The MIT damped joystick [12] and Neater eater [13] are the examples of external devices 

which suppress tremor to assist users in controlling an electronic wheel chair and in 

eating respectively. These devices implement a grounded force-feedback system and 

reduces tremor by viscous dampers.  

 

Figure 1.5: Neater Eater [13] (Copyright © Neater Solutions) 

Unlike stationary and passive systems such as MIT damped joystick and Neater Eater, the 

DRIFT project (WOTAS) is a prosthetic device for suppressing tremor in upper limb by 

actively controlling the forces [14] [15] [16] as shown in Figure 1.6. One of the main 

drawbacks of passive systems is that the dissipative force also restricts patient's voluntary 

motion. User comfort is also an issue as significant forces are applied to the user [16]. 

Wearable prosthetic and external devices require improvements in terms of appearance, 

size, shape, cosmetics and functional aspects [5].  
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Figure 1.6: WOTAS device for the upper limb [14] (Copyright © 2007, IEEE) 

In systems employing human-computer interaction, motion from the affected area is 

recorded and filtered using a digital filtering algorithm in real time to compute the tremor 

in the signal. A computer mouse, developed by IBM R&D [17], uses an adapter between 

the mouse and the computer which estimates the tremor acting on the mouse and provides 

smooth motion of the mouse on the screen. Micron, shown in Figure 1.7, is an active 

hand-held microsurgical device developed at Carnegie Mellon University which uses an 

adaptive filtering algorithm to compensate for hand tremor during microsurgery [18]. 

 

Figure 1.7: Micron, an active hand-held device for tremor cancellation [18] 

(Copyright © The Robotics Institute, Carnegie Mellon University) 
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1.2 Physiological Tremor 

Unlike pathological tremor, physiological tremor is inherent in all humans. It is an 

involuntary, approximately rhythmic and roughly sinusoidal movement. It is composed of 

two distinct oscillations namely mechanical reflex and a central neurogenic component 

superimposed upon a background of irregular fluctuations in muscle force and limb 

displacements [19] [20]. The mechanical reflex component is the larger of the two 

oscillations. It is produced by irregularities in the motor-unit firing and by the force of the 

blood entering the body part during cardiac systole [21] [22].  

Since physiological tremor has a mechanical reflex component which is dependent on the 

elasticity and inertia of joints, the characteristics of physiological tremor is highly 

dependent on the body parts [19]. For instance, the frequency of tremor in the elbow 

ranges from 3 to 5 Hz. On the other hand, tremor in the metacarpophalangeal joint has a 

frequency as high as 17 to 30 Hz. Table 1.2 shows the frequency of tremor associated 

with different body parts. As the frequency depends on the inertia of the joint, it is 

evident that the frequency of physiological tremor decreases when an inertial load is 

added to the limb.  

Table 1.2: Tremor in different body parts [21] [23] [24] [25] [26] [27] 

Bodily Region Tremor Frequency (Hz) 

Wrist 8-12 

Elbow 3-5 

Body (Standing position) 1.5 

Ocular (Eye) 35-40 

The amplitude of the physiological tremor increases while maintaining a position, for 

instance while standing. It is also age dependent: elderly persons tend to have more 

physiological tremor [5]. Mental stress increases the amplitude of physiological tremor; 

however, it reduces the frequency of the oscillations [28]. It is amplified by anxiety, 

fatigue and mental stress. Various metabolic conditions such as thyrotoxicosis or 

hypoglycaemia and drugs such as amiodarone, cinnarizine, antithistamine, nicotine or 

donezepil enhance physiological tremor. Under these situations, it is called enhanced or 

exaggerated physiological tremor [5]. 
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1.2.1 Areas affected by Physiological Tremor 

Physiological tremor is benign for everyday tasks such as walking, drinking or eating. 

However, any task requiring fine muscle control is susceptible to physiological tremor. 

Particularly, areas such as military targeting, optical instruments (e.g., cameras) and 

microsurgery are affected by physiological tremor and the performance is significantly 

degraded due to the involuntary motions.   

1.2.1.1 Military Targeting 

Physiological tremor creates a problem during tasks such as targeting or range-finding. 

During combat, soldiers experience high level of stress due to incoming fire, loud noises, 

fear of death and uncertainty. It has been reported that soldiers experience rapid breathing 

and increased heart beat (300 beats per minute). These factors amplify physiological 

tremor making it significantly more difficult for soldiers to aim at a target. This results in 

decreasing the chances of survival for the soldiers, mission success and civilian lives 

[29]. Conventionally, these problems are addressed by extensive training given to the 

soldiers which includes physical conditioning to build physical strength and stamina, 

mental conditioning to control psychological effects and marksmanship training which 

trains soldiers to control breathing, assume and maintain a steady position and properly 

squeeze the trigger. During actual combat, even the best trained soldiers exhibit some 

level of physiological tremor leading to performance degradation. Various techniques 

have been implemented to compensate for tremor. One such technology is the Inertial-

Reticle System (IRS) [30], shown in Figure 1.8, developed at the Army Research 

Laboratory (Aberdeen Proving Ground MD). It uses a video screen to locate the target. 

The system tracks the motion of the rifle using inertial sensors and automatically fires 

when the target is aligned with the barrel of the rifle. The system is expensive and 

extremely bulky, thus lacking portability.  

The INertially Stabilized Rifle (INSTAR) [29] developed by Intelligent Automation 

employs piezoceramic materials and cancels tremor in 1 degree of freedom. INSTAR 

lacks practical application because it is not robust due to the use of piezoceramic 

materials. 
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Figure 1.8: Inertial Reticle System (IRS) on Remington 700 Sniper Rifle [30] 

(Copyright © 1996 Army Research Lab, USA) 

1.2.1.2 Optical Instruments 

The quality of images from instruments such as still cameras, video cameras or 

binoculars are vulnerable to physiological tremor. Camera shake due to tremor can cause 

blurring of images. In the case of photography, effectively exposing a film (or digital 

sensor in case of a digital camera) to take a photograph depends on the shutter speed, 

aperture (which is a function of a focal length) and film (or digital sensor) sensitivity 

(ISO). Blurred images are common in images taken with slower shutter speeds or with 

telephoto lenses. In videos, blurring might appear in individual frames or the tremor 

might have a cumulative effect over time causing frame-to-frame jitter.  

Canon patented an image stabilization technology in 1976 entitled "Image stabilizing 

optical system having a variable prism" [31]. Canon also commercially introduced image 

stabilization enabled lenses in 1995. Currently, various digital single lens reflex cameras 

(DSLRs), video cameras, binoculars and point-and-shoot cameras use image stabilization 

technology to reduce image blur. 

Most of the cameras use MEMS-based gyroscopes to measure motion in two axis, pitch 

and yaw. There are two types of technologies to cancel hand tremor: lens-based or body-

based. Nikon and Canon use lens based technology. In the lens-based cancellation, lens is 

moved orthogonally to the optical axis of the lens using an electromagnetic linear motor 
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or voice coil as shown in Figure 1.9. In body-based stabilization, the sensor is moved to 

compensate for the motion of the camera as shown in Figure 1.10. 

 

Figure 1.9: Lens-based Image Stabilization using voice coils in a Nikon lens [32] 

(Copyright © Nikon) 

 

Figure 1.10: Body-based Image Stabilization in Konica Minolta camera [33] 

In video cameras, digital image stabilization is used which shifts the image by a certain 

number of pixels in real-time using an adaptive motion computation scheme instead of 

shifting the lens or the image sensor [34].  
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The image stabilization technology in the cameras reduces tremor in the range of ±1
o
. It 

assists in taking hand-held photographs at much slower shutter speeds [35]. 

 

Figure 1.11: (Left) Image blur without image stabilization; (Right) Sharp image 

with image stabilization by Canon 

1.2.1.3 Medical 

Surgical procedures which require precise positioning or micromanipulation of tool-tip 

are always vulnerable to physiological tremor. The imprecision in positioning the tool-tip 

makes microsurgical procedures such as ophthalmological, orthopedic, microvascular, 

neurological and inner ear surgery difficult and makes some procedures impossible. One 

such procedure is vitreoretinal surgery which involves removing tissues as thin as 20 µm 

from the retina. Another example is intraocular cannulation which includes inserting a 

micropipette into 100 µm retinal vein and delivering anticoagulants to treat occlusions. 

Both of these procedures are difficult to perform without tremor cancellation [36] [37].  

The accuracy of microsurgical procedures depends on the experience of the surgeons and 

the dexterity of the surgeon's hands. Conventionally, surgeons use an operating 

microscope to visualize surgical instruments along with resting their arm and wrist [38]. 

It has also been reported that surgeons control their sleep and caffeine intake and/or take 

beta-blockers prior to surgery to reduce tremor amplitude [39] [40]. 

In [41], the authors reported that the root-mean-square (rms) amplitude of a tool-tip 

during vitreoretinal surgery was 24 µm, 22 µm and 20 µm along the x, y and z axis 

respectively as shown in Figure 1.12.   
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Figure 1.12: Amplitude of a physiological tremor during vitreoretinal microsurgery. 

(a) X axis. (b) Y axis. (c) Z axis [41] (Copyright © 2002, IEEE) 
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1.3 Tremor Cancellation Technologies in Ophthalmology 

Various technologies exist for micromanipulation of microsurgical devices which assists 

surgeons to accurately position the tool-tip during ophthalmological microsurgery. The 

most prominent technologies are Robot Assisted Microsurgery (RAMS), Steady-hand 

Robotic System (SHR) and Micron.  

1.3.1 Robot Assisted Microsurgery (RAMS) 

RAMS was developed by researchers at Jet Propulsion Lab in 1994 [42] [43] [44] [45] 

[46]. It is a dual-arm 6 degrees of freedom (DOF) master-slave telerobotic system as 

shown in Figure 1.13. 

 

Figure 1.13: Robot Assisted Microsurgery (RAMS) [44] (Copyright © 2006 Springer 

Berlin/Heidelberg) 

The actuation mechanism is a revolute-joint and cable-driven double-jointed mechanism 

having all the joints decoupled. Five of the 6 DOF have zero backlashes and the sixth has 
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about 20 µm. The torso can achieve 165 degrees of motion while both the shoulder and 

elbow have a full 360 degrees of motion. The wrist has 180 degrees of pitch and yaw 

with 540 degrees of roll. It is 25 cm long in full extension and 2.5 cm in diameter. The 

base of the robot is 17.75 cm long and 12 cm in diameter. The entire robot weighs 5.5 lbs. 

The motor/encoder unit can be removed from the base which allows for sterilization of 

robot.  

A graphical user interface (GUI) is offered on a UNIX workstation which also hosts a 

VxWorks real-time control environment. A Delta Tau Data Systems PMAC board on 

VME chassis directly reads the robot sensor outputs and drives the motors to control the 

six axes of the robot. A MC 68040 board, installed in VME chassis, implements the 

VxWorks-based kinematic & joint controls. The GUI is based on X Windows and 

OSF/Motif Libraries. It offers various control modes which a user can select.  

 

Figure 1.14: RAMS System [46] (Copyright © 1997, IEEE) 

In preliminary experiments, the tip of the slave robot was reported to achieve a repeatable 

relative positioning of 25 µm [42] [43] [44]. In a simulated eye microsurgery procedure, 
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RAMS was found to successfully remove 0.015 inch diameter particles from a simulated 

eyeball [46]. A pilot study was conducted to compare the performance of RAMS against 

manual instrument positioning [47]. The study consisted of three groups of subjects: 7 

second year medical students, 7 ophthalmology surgeons and 9 robotics engineers. It was 

found that RAMS increased the time of positioning the tool. Medical students and 

engineers were found to perform better with the use of RAMS. However, surgeons did 

not have a significant advantage using the system. In [48] and [49], the authors reported 

that the RAMS workstation occupies 35% of the operating table as compared to 10 to 

15% in human-assisted procedures and takes longer set-up time. The surgeons also need 

training to operate the system [49]. In a feasibility study reported in [50], the authors 

tested the use of RAMS in microvascular anastomosis in neurosurgery by performing 

carotid arteriotomies in 10 rats by RAMS as well as conventional microsurgical 

techniques. The precision, technical quality and error rate of telerobotic surgery were 

found similar to the conventional microsurgery. It was also reported in [50] that the 

procedures conducted with RAMS were longer in duration than with conventional 

procedures. 

1.3.2 Steady Hand Robotic System 

A Steady Hand Robotic System (SHR) was developed by researchers at Johns Hopkins 

University [51] [52]. In this system, the tool is held simultaneously by the operator's hand 

and the robot arm. The robot provides a tremor-free positional control of the tool by 

augmenting the force exerted by the user on the tool and by the tool on the environment. 

Figure 1.15 shows the first prototype of the Steady Hand Robot [51]. It is a 7 DOF 

manipulator consisting of an XYZ translation base for coarse positioning, a shoulder 

having two rotational DOF, instrument insertion and rotational stages. A positional 

accuracy of 10 µm was achieved with the prototype as reported in [51]. In [53], various 

experiments were described to test the performance of the Steady-hand Robot in 

positioning and following straight lines and curves. Lines and curves were followed 

autonomously, unassisted (direct user control) and in augmented mode (user and robot) 

by detecting lines and curves through an endoscopic camera mounted on the robot.  
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Figure 1.15: First prototype of the Steady Hand Robot [51] (Copyright © 1999, 

SAGE Publications) 

The authors in [53] reported that the accuracy in following the lines and curves in 

augmented and autonomous mode was improved with the use of the Steady-hand Robot. 

In [54], the authors tested the ability of humans to position a 10-0 microsurgical needle to 

250, 200 and 150 µm accuracy using the Steady-hand Robot. Similar to the experiments 

in [53], the accuracy was compared in three modes: unassisted, augmented and 

autonomous. It was reported that the success rate improved from 43% in unassisted mode 

to 79% in augmented mode and 96.5% in autonomous mode for 150 µm holes. In [52], it 

was reported that the first prototype was not a useful clinical system due to various 

limitations, particularly having a bulky mechanism near the patient which rendered the 

system ergonomically inconvenient for surgeons. 

An improved prototype of the Steady Hand Robot (SHR) was reported in [52]. It consists 

of 4 parts: XYZ mechanism, roll mechanism, tilt mechanism and tool holder. The XYZ 

translation assembly is formed by using off-the-shelf motorized micrometer stages from 

New England Affiliated Technologies (NEAT), Lawrence, MA. A single axis Z stage 

(NEAT: LM-400) is mounted orthogonal to a dual axis X-Y table (NEAT: XYR-6060) to 

form an XYZ mechanism. The positional resolution is less than 2.5 µm with a stroke of 

100 mm along each axis. The roll mechanism is achieved by incorporating a rotary table, 
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B5990TS from Velmex Inc. The range of motion is ±180 degrees with repeatability of 1 

arc-second. Figure 1.16 and 1.17 shows the prototype of the SHR as reported in [52]. 

 

Figure 1.16: Prototype of the SHR as reported in [52] (Copyright © 2007, IEEE) 

The tilt mechanism is a slider crank mechanism and is attached to the roll mechanism 

using a carbon fiber tube. It consists of a high precision lead screw from Newport 

Corporation, a DC Maxon motor (RE 16), planetary gearhead (GP 16 A) and Digital MR 

Encoder. The range of motion of the tilt mechanism is ±30 degrees relative to the vertical 

tool position. The tilt mechanism also hosts a force sensor, NANO-17 from ATI 

Industrial Automation. The tool holder can hold various tools required during 

microsurgery such as forceps, needle and scissors. 

 

Figure 1.17: Tilt mechanism of the second prototype of SHR [52] (Copyright © 

2007, IEEE) 
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In [52], the authors tested the SHR for vein cannulation on chicken embryos and reported 

that an experienced user of the robot cannulate ~80 µm vein in under a minute using the 

SHR. During freehand (i.e., simply holding the tool without the help of the robot) 

cannulation by an experienced user, significant damage to the vein and the surrounding 

tissue was reported. The system also enabled maintaining the cannulation for an 

indefinite time as compared to the finite length of time for freehand cannulation. 

1.3.3 Micron 

The Micron [18], developed at Carnegie Mellon University, is an active hand-held 

device. The instrument senses its own motion, filters between voluntary and involuntary 

motions, and deflects its tip to compensate for the involuntary part of the motion. 

Figure 1.18 shows the first prototype of the Micron [55] [56] [57] [58]. It is 210 mm long 

with an average diameter of 22 mm and weighs 170 g. Three gyroscopes (Tokin Corp., 

CD-16D) and three tri-axial accelerometers (Crossbow Technology Inc., CSXL02LF3) 

have been used for motion sensing in six DOF. A nonlinear adaptive noise canceling 

algorithm, Weighted-frequency Fourier Linear Combiner (WFLC) [59], and a cascaded 

neural networks algorithm with extended Kalman filtering have been employed to 

calculate the erroneous motion by filtering the signals from the sensors. Three 

piezoelectric stacks, each with seven piezoelectric elements (TS 18-H5-202, Piezo 

Systems Inc.) forms the actuator module.  

 

Figure 1.18: First prototype of the Micron [58] (Copyright © 2003, IEEE) 
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In [55] [56] [57] [58], the maximum tip displacement and velocity was reported to be 560 

µm and 11.2 µm/µs in x & y axes and 100 µm and 2 µm/µs in z axis respectively. In [56] 

and [57], the authors tested the performance of the Micron in canceling tremor in 1-D 

(axial) and 3-D. The device was attached to a testbed oscillator which simulated tremor in 

the hand and an optical tracking system, ASAP [60], was used to measure the motion of 

the instrument tip. In 1-D cancellation tests described in [56] and [57], it was reported 

that the Micron reduced the average erroneous motion from 50.6 µm p-p at 9Hz to 27.7 

µm p-p, representing a reduction of 45.3% and from 51 to 25 µm p-p, a reduction of 51% 

in similar 1-D tests conducted in [58]. In 3-D tests, a reduction of 37.2% in 10 trials was 

reported in [56], 34.3% in 10 trials in [57] and 34% in 12 trials in [58]. 

 

Figure 1.19: Prototype of the Micron as reported in [61] (Copyright © 2004, IEEE) 

Further improvements in the work of [58] were reported in [61]. In this work, the authors 

modified the design and reduced the number of piezoelectric elements from 21 to 3. 

Figure 1.19 shows the prototype reported in [61]. This prototype weighs less than 100g. It 

is 180 mm long and has an average diameter of 20 mm with a diameter of 16 mm at the 

grasping section. The sensing unit consists of three dual-axis accelerometers (Analog 

Devices ADXL 203) and a three-axis magnetometer (Honeywell HMC-2003). 

Augmented state Kalman filtering algorithm has been used for tracking the orientation of 

the device and the tremor is estimated using WFLC. In [61], the prototype was tested in 
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tracking 3-D motion. The authors reported a reduction of 51.9% over 10 trials in tracking 

3-D motion of rms amplitude 24.7 µm at 9 Hz using the Micron. In [62], the authors 

reported a flexure based manipulator module to increase the stroke of piezoelectric 

actuators in the Micron. The maximum stroke of the flexure-based manipulator was 

reported to be 350 µm along the x-axis, 425 µm along the y-axis and 80 µm along the z-

axis. The rms error in tracking a sinusoidal waveform along the x-axis was reported to be 

6.5 µm and the rms error in 3D tracking was reported to be 12.1 µm in [62]. 

In [63] and [64], the authors presented a new prototype of the Micron. This prototype 

consists of a tip manipulator with four LEDs and a custom optical tracking system, ASAP 

[60]. The manipulator is composed of piezoelectric bender actuator (Thunder TH-10R, 

Face Technologies) with a range of motion of approximately 0.5 mm axially and 1.8 mm 

transversely. The optical tracking system consists of position-sensitive detectors (PSDs) 

to detect the four LEDs mounted on the handle and the manipulator to measure the 

position of the tool-tip in six DOF. Tremor is calculated based on the information from 

the optical tracking system and compensated for by the manipulator. The user 

manipulates the device by visualizing the tip under a stereo operating microscope or 

through a 3D computer display. Figure 1.20 shows the prototype reported in [64].   

 

Figure 1.20: Prototype of the Micron as reported in [64] (Copyrights © 2009, IEEE) 

In [65] and [66], the authors tested the performance of the prototype of the Micron as 

reported in [63] and [64] for retinal photocoagulation procedure. Two scenarios were 

compared: aided and unaided. In the aided scenario, the Micron actively targeted the 

location and fired the laser automatically based on the information from the stereo 



25 

 

cameras (which tracked the finder beam and the target) and ASAP (which tracked the tip 

and pose of the Micron). In the unaided scenario, clinician targeted the location and fired 

the laser. It was reported that the accuracy of laser photocoagulation increased with the 

assistance of the Micron and the duration of the procedure was reduced. The success rate 

in cannulating veins of diameter 40-60 µm was reported to be higher with the use of the 

Micron as compared to unaided cannulation [67]. 

 

Figure 1.21: Prototype of the Micron as reported in [68] (Copyright © 2010, IEEE) 

In [68], the Micron was tested for micromanipulation of cells. The authors reported that 

the accuracy of micromanipulating the cells increased when the Micron was used. 

However, the size of manipulator and the range of its motions were found to be the 

limitations in micromanipulation tasks.  

1.4 Thesis Outline and Organization 

In the research reported in this thesis, a novel handheld device, AID, has been developed 

for active compensation of physiological tremor in the hand that is light in weight, 

compact in size and cost effective. The primary issue of a handheld device for active 

tremor cancellation lies in its implementation. The device must be able to sense the hand 

motion, calculate the tremor and produce a sufficient amount of actuation at required 



26 

 

frequencies to cancel the tremor component in the hand motion, yet remain light weight 

so as to reduce fatigue resulting from holding the instrument for prolonged periods during 

the procedure. It is necessary that it be compact and similar in design to the current 

standard microsurgical instruments to give surgeons a sense of familiarity.  

One of the most important aspects of an active tremor cancellation system is zero phase 

shift. The hand motion is composed of desired motion and involuntary motion (tremor). 

The device should sense the motion, differentiate between the desired motion and the 

erroneous motion and estimate the tremor component followed by producing an equal but 

opposite motion at the tool-tip. MEMS based accelerometers and gyroscopes have been 

employed to sense hand motion in six DOF because they are compact in size and light in 

weight. However, the disadvantage of using rate grade gyroscope and MEMS based 

accelerometers is the notorious integration drift due to the noise present in the sensor 

signals. Therefore, an augmented state complementary Kalman filter has been developed 

to calculate real-time 2 DOF orientation of the device by fusing the gyroscope and the 

accelerometer signals. A zero-phase adaptive filter, Band-limited Multiple Fourier Linear 

Combiner (BMFLC) algorithm, has been implemented to calculate the tremor component 

in the hand motion. To avoid the integration drift in calculating the position of the needle 

tip, the acceleration has been analytically double integrated inside the BMFLC algorithm 

using the rhythmic nature of the tremor.  

In Chapter 2, we present the selection procedure of the sensors followed by presenting an 

algorithm to sense physiological tremor in 3 DOF using tri-axial accelerometer and 

gyroscopes. This chapter also includes a brief literature review on orientation tracking 

using Kalman filtering technique followed by describing the proposed augmented state 

complementary Kalman filter. The last section of the Chapter 2 presents various adaptive 

filtering techniques followed by describing the band-limited multiple Fourier linear 

combiner algorithm (BMFLC) that has been employed to filter the tremor component. 

Since the device must be light in weight and compact in size, conventional actuators such 

as electrical, hydraulic or pneumatic are difficult to use because they are heavy and their 

performance degrades for compact applications. Smart materials, particularly Ionic 
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Polymer Metallic Composites (IPMCs) provide a good solution because they can be 

easily manufactured, can actuate with high frequencies along with sufficient stroke to 

cancel tremor and are light in weight. Chapter 3 presents the selection process of the 

actuators followed by development of an open-loop controller to drive the IPMC 

actuator.   

Chapter 4 presents the design of the hand-held device, AID, and a description of all the 

hardware and software components of AID followed by presenting an overview of the 

system.  

Chapter 5 presents the experimental set-up to test AID and its subsystems. Various 

experiments have been conducted and results have been discussed to validate the 

effectiveness of the AID in compensating tremor.  

Finally, Chapter 6 provides concluding remarks followed by a brief discussion of ideas 

for future work to improve the system.  
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Chapter 2  

2 Design of Sensing System of AID 

This chapter describes the design of the sensing system of the AID. Section 2.1 presents 

the system requirements of the sensing system and the selection procedure for the 

sensors. Section 2.2 provides a description of the inertial measurement unit (IMU) 

incorporated in the current implementation. The kinematics of the device to calculate the 

tremor at the needle tip are presented in Section 2.3. A zero-phase adaptive filtering 

technique, Band-limited Multiple Fourier Linear Combiner (BMFLC) has been used to 

estimate the tremor component in the sensed motion of the device. Section 2.5 presents 

various adaptive filters followed by a description of BMFLC. An augmented state 

complementary Kalman filter has been used to calculate 2 DOF orientation of the device 

and is presented in Section 2.4.  

2.1 Sensing System Requirements 

The most important aspect of the sensing system is that it should accurately detect small 

changes in motion incurred due to the physiological tremor. Therefore, it should have a 

high resolution and bandwidth higher than the frequency of the physiological tremor. The 

sensing module should also be light in weight and small in size so that it can be easily 

accommodated in a compact hand-held device. Moreover, the sensing system should not 

be affected by other electronic or surgical equipment. Since tremor in the hand is 

approximately sinusoidal with frequency ranging from 8-12 Hz, we assume it to be a 

perfect sinusoidal function with frequency 12 Hz and amplitude 70 µm peak-to-peak to 

define the system requirements. Based on this, the sensing system should meet the 

following the specifications: 

 Resolution: ~7 µm (10% of 70 µm) 

 Bandwidth: ≥13 Hz 

 Sampling rate > 840 Hz 
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2.1.1 Sensor Selection 

Motion tracking sensors can be categorized into two kinds: externally referenced and 

internally referenced. Externally referenced sensors include external active sources and 

receivers to track motion. Typically, they work using electromagnetic (EM), infrared 

(IR), radio frequency (RF), ultrasound (US), etc. The performance specifications, 

resolution, size and weight of some of the externally referenced sensors are shown in 

Table 2.1. 

Table 2.1: List of externally referenced motion tracking systems 

System 
Aurora 

(NDI) 

Polaris 

(NDI) 

laserBIRD 2 

(Ascension) 

Fastrak 

(Polhemus) 

Liberty 

(Polhemus) 

Type EM IR IR EM EM 

Accuracy 

(deg) 
0.2/0.3 - 0.5 0.15 0.15 

Accuracy 

(µm) 
700/480 350 700 710 710 

Resolution 

(deg) 
- - 0.05 0.026 0.0004 

Resolution 

(µm) 
- - 100 58.42 1.4 

Sampling 

Rate (Hz) 
40 60 240 120 240 

Weight (gm) 0.7 < 10 40  9.1 9.1 

Size (mm) 9 x Ø0.8 Ø6 100 x 90 x 40 
22.8 x 28.2 x 

15.2 

22.8 x 28.2 x 

15.2 
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Internally referenced sensors are self-contained and do not require interaction with 

external sources or receivers. Typically, these sensors use an inertial measurement unit 

(IMU), which is composed of accelerometers and gyroscopes that measure the motion in 

6 DOF. With known initial conditions, IMU can calculate linear velocity, angular 

velocity, position and orientation of the body. The performance specifications, resolution, 

size and weight of some of the gyroscopes and accelerometers are shown in Table 2.2 and 

2.3 respectively. 

Table 2.2: List of gyroscopes 

Model 
GG 1320AN 

(Honeywell) 

CG- L53 

(Tokin) 

IDG 500 

(InvenSense) 

MLX 90609 

(Melexis) 

Class Navigation Rate Grade Rate Grade Rate Grade 

Type Ring Laser Piezoelectric  MEMS MEMS 

No. of axes 1 1 2 1 

Range (deg/s) ±450 ±90 ±500/110 ±75/150/300 

Noise@15 Hz 0.813 deg/h 1.4 deg/s 0.4 deg/s  0.116 deg/s        

Bias Stability 0.0035 deg/h - - - 

Sampling Rate 2 kHz (max) > 1 kHz > 1 kHz >1 kHz 

Size (mm) 45 x Ø88 6 x 10 x 2.5 4 x 5 x 1.2 10.6 x 10.6 x 2.9 

Weight (gm) 454 1 < 1 1 

Since the specifications of gyroscopes and accelerometers are defined in deg/s and g 

(gravity acceleration) respectively, we need to convert the required specifications of our 

sensing system to equivalent units of an IMU in order to compare the sensors. Since we 

have assumed tremor to have a sinusoidal profile having frequency (f) 12 Hz and 

amplitude (A) 70 µm p-p, we can write displacement due to tremor as:  
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 )2sin()( ftAtd   (2.1) 

Other inertial quantities such as velocity, acceleration and angular velocity can be derived 

using equation 2.1 and are shown in Table 2.4.  

Table 2.3: List of accelerometers 

Make 
ADXL 335 

(Analog Devices) 

CXL02TG3 

(Crossbow) 

Model 4332-020   

(Measurement 

Specialties) 

8395A2 

(Kistler) 

Type 
Capacitive  

MEMS 

Capacitive 

MEMS 

Capacitive 

MEMS 

Capacitive 

MEMS 

No. of axes 3 3 3 3 

Range (g
1
) ±3 ±2 ±2 ±2 

Noise (mg) 
1.16 rms             

@ 15 Hz 

0.3 rms       

@ 15 Hz 
0.08 

0.09 rms       

@ 15 Hz 

Sampling Rate 

kHz 
> 1 >1 > 1 > 1 

Size (mm) 4 x 4 x 1.45 28 x 56 x 36 
34.5 x 34.5 x 

31.2 

21.6 x 21.6 x 

22.1 

Weight (gm) < 1 110 < 100 30 

Using the maximum value specified in Table 2.4, the required specifications for the 

inertial measurement unit are: 

                                                 

1
 g is the gravity force sensed by the accelerometer 
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 Acceleration: 4.05 mg 

 Angular Velocity: 0.3 deg/s 

Table 2.4: Inertial quantities of motion due to tremor 

Inertial 

Quantity 
Function Maximum Value 

Velocity )2cos(.2.)( ftfAtv   mm/s28.5max v  

Acceleration )2sin()2.()( 2 ftfAta   mg 56.40mm/s94.387 2

max a  

Angular 

Velocity
2
 

Dtvt /)()(   deg/s 02.3/maxmax  Dv  

All the externally referenced sensors listed in Table 2.1 except Liberty (Polhemus) have 

resolution lower than the required resolution of 7 µm. Although Liberty Polhemus has the 

necessary resolution, the maximum sampling frequency of the system is 240 Hz which is 

less than the required sampling frequency needed for our sensing system. Hence, 

externally referenced sensors are not suitable for our application.   

For accelerometers and gyroscopes, output noise floor limits the resolution of the sensors. 

The noise in the gyroscopes, Honeywell GG 1320AN and Tokin CG-L53 listed in Table 

2.2, is much higher than 0.3 deg/s; therefore, they cannot be selected for our application. 

The noise in the MEMS-based rate grade gyroscopes, Invensense IDG 500 and Melexis 

MLX90609 listed in Table 2.2, is close to or lower than 0.3 deg/s. They are more 

applicable for a hand-held device because they are small and light in weight compared to 

a navigation grade gyroscope (Honeywell GG1320AN). The specifications of all the 

accelerometers listed in Table 2.3 match the required specifications of our sensing 

system. ADXL 335 has been chosen since it is light and small in size. 

                                                 

2
 D is the distance between the needle tip and the instrument center of mass. Although, it is unknown, it is 

assumed to be 100 mm in order to compare and select the gyroscopes. 
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2.2 Inertial Measurement Unit (IMU) 

The IMU for the device is composed of a dual-axis gyroscope (IDG 500), a single axis 

gyroscope (MLX 90609) and a triple axis accelerometer (ADXL 335) as shown in Figure 

2.1.  

 

Figure 2.1: IMU boards. (L) Board containing IDG 500 and ADXL 335, (R) Board 

containing MLX 90609 

 

Figure 2.2: Sensor module containing IMU boards 

The IMU boards also contain capacitors that limit the bandwidth of the sensors to 50 Hz. 

The IMU boards are attached to the sensor module as shown in Figure 2.2 and the sensor 

module is located at the distal end of the device as shown in the Figure 2.3. 
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Figure 2.3: The sensor module in the AID is located at the distal end 

2.3 Sensing Kinematics 

This section presents the kinematics of the device to calculate the 3 DOF position of the 

needle tip due to tremor using the sensor measurements. 

We attach a body frame {B} at the location of tri-axial accelerometer as shown in Figure 

2.4 such that the sensing axes of the accelerometer are coincident with the principal axes 

of the body frame, XB, YB and ZB. We also attach a gyro frame {G1} and {G2} at the 

location of the dual-axis gyroscope (IDG 500) and single gyroscope (MLX 90609) 

respectively such that the sensing axes of the IDG 500 and MLX 90609 are coincident 

with the principal axes of {G1} and {G2} respectively. Note that the axes ZG1, XG2 and 

YG2 are not shown in Figure 2.4 since IDG 500 only measures angular velocity about XG1 

and YG1 and MLX 90609 only measures angular velocity about ZG2. Also, note that ZG2, 

XG1 and YG1 axes are opposite in direction to that of ZB, XB and YB respectively. We also 

attach a frame {S} at the "non-tremulous" location of the needle tip. The orientation of 

{S} is the same as that of {B}. 
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Figure 2.4: Kinematic representation of AID 

The total acceleration (
ay ) sensed by the triple-axis accelerometer, ADXL 335, is 

composed of inertial acceleration of the body ( AB ) and gravity sensed by the 

accelerometer ( GB
): 

 GAy BB

a   (2.2) 

 T

z

B

y

B

x

BB aaaA ][
 

(2.2a) 

where ,x

B a y

B a and z

B a  are inertial accelerations in the XB, YB and ZB axes respectively.  

The angular velocity of the device with respect to {B} can be written as: 
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  Tz

B

y

B

x

BB    (2.3) 

where ,x

B y

B and 
z

B  are the angular velocities about the XB, YB and ZB axes 

respectively. 

The dual axis gyroscope, IDG 500, measures the angular velocity about the XG1 and YG1 

axes: 

  Ty

G

x

GG  111   (2.4) 

The single axis gyroscope, MLX 90609, measures the angular velocity about the ZG2 

axis: 

 
z

GG  22   (2.5) 

Since the XG1, YG1 and ZG2 axes are in opposite direction to the directions of XB, YB and ZB 

axes respectively and the angular velocity is an intrinsic property of a rigid body, the 

angular velocity of the device with respect to {B} is given by: 

 
x

B  = )( 1

x

G  , y

B  = )( 1

y

G   and z

B  = )( 2

z

G   (2.6) 

At t = 0, the principal axes of frame {B} are assumed to be coincident with the principal 

axes of the world coordinate system {W}. 

2.3.1 3 DOF Tremor at the Needle Tip 

The aim of this section is to calculate the tremor at the tip of the needle that can be used 

as an input to the manipulator controller (described in Chapter 3). The accelerometer 

signals are composed of low frequency voluntary signals (< 1 Hz), gravity (<1 Hz), 

tremor (8 - 12 Hz) and noise (>15 Hz). Since there is a difference in the frequencies and 

only tremor component is of interest, other components need to be filtered out from the 

accelerometer measurements. One way is to pass the accelerometer signal through a 

normal band-pass filter such as a Butterworth filter with a pass-band of 7-13 Hz. 
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However, conventional filters change the phase of the input signal that obstructs the 

purpose of true real-time tremor compensation. Therefore, zero-phase adaptive band-pass 

filters such as the Band-limited Multiple Fourier Linear Combiner (BMFLC) [69] have 

been used to filter the tremor. Section 2.5 presents a detailed explanation of such filtering 

algorithms. 

The conventional method to calculate tremor at the needle tip is to calculate the position 

of the needle tip with respect to the world coordinate frame {W} using kinematic 

relationships and then filter the tremor component using adaptive filters such as BMFLC. 

In this approach, first the orientation is calculated using gyroscopes. Using the 

orientation, the gravity component from the accelerometer signals is then removed to 

calculate the effective acceleration. The effective acceleration of the body frame {B} with 

respect to the world frame {W} can be written as: 

 GyRA W

aB

WW   (2.7) 

where GW

 is the gravity vector with respect to the frame {W} and is given by 

 Tg 100 . g is the gravity constant and is equal to 9.804 m/s
2
. B

W R  is the rotation 

matrix which describes the orientation of the body frame {B} with respect to the world 

frame {W}. 

The velocity of {B} with respect to {W}, in the discrete-time format, can be calculated by 

integrating the effective acceleration of the body frame: 

 TAVV k

W

kB

W

kB

W  1,,  (2.8) 

where T is the sampling time. Integrating equation (2.8), we get the position of {B} with 

respect to {W}: 

 TVPP kB

W

kB

W

kB

W

,1,,    (2.9) 

The position of needle tip with respect to {W} can be written as: 
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where tip

B P  is the position of the needle tip with respect to the body frame {B}. tip

W P  is 

sent to BMFLC to estimate the position of the needle due to tremor.  

One of the issues with this approach is that the errors in calculating the position of the 

needle tip grow quadratically after double integration (equations 2.8 - 2.10) due to the 

noise in accelerometer signals [70]. Since the motion of the tremor is rhythmic, the 

integration drift in calculating the position can be avoided by analytically double 

integrating the effective acceleration ( AW ) inside the BMFLC as proposed in [70].  

It can be noticed from the above equations that 3 DOF orientation of the device should be 

known for calculating AW
. The 3 DOF orientation can be calculated by integrating the 

angular velocity measured using the gyroscopes. However, due to the noise in the 

gyroscope signals, the error in orientation grows linearly using this approach. Gyroscopes 

are seldom used alone in calculating orientation due to the integration drift. A 

complimentary sensor is used to calculate the orientation and the data is fused using a 

Kalman filter to compensate for the integration drift and correct the orientation calculated 

using the gyroscopes. The orientation can also be calculated using a tri-axial 

accelerometer. However, the estimation of orientation using a tri-axial accelerometer is 

noisy and vulnerable to vibrations and it only provides 2 DOF orientation. To calculate 

the orientation in 3 DOF, generally, a tri-axial magnetometer is used along with a tri-axial 

accelerometer and a tri-axial gyroscope. The measurements from these three sensors are, 

then, fused by the Kalman filter to provide a drift-free estimation of the orientation. The 

problem associated with this approach is that it makes the orientation estimation process 

computationally inefficient due to a larger size of the state vector of the Kalman filter and 

requires a tri-axial magnetometer.  

In [71], the authors presented an algorithm to calculate tremor in which calculation of the 

orientation of the device is not required to sense the physiological tremor in 3 DOF. 3 
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MEMS based dual-axis accelerometers are used in the sensing module.  Figure 2.5 shows 

the working of the algorithm.  

First, accelerometer readings are sent through a low pass filter (LPF) which filters the 

low frequency components such as voluntary motion, gravity and jerks. The output from 

the LPF is subtracted from the original input (respective accelerometer reading) to obtain 

acceleration due to tremor, noise and residual low frequency acceleration. It was shown 

that this step is not the same as using a high-pass filter. Unlike a high-pass filter which 

produces a phase lead, the phase of the output signal obtained from the subtraction of the 

LPF output with the original input remained the same. However, an offset in magnitude 

compared to tremor was reported. The output of the subtraction is sent to BMFLC to 

estimate acceleration of the body frame due to tremor. Acceleration of the needle tip due 

to tremor is calculated using kinematic equations. Using the rhythmic nature of tremor, 

the position of needle tip due to tremor is calculated by analytical double-integration. 

 

Figure 2.5: Algorithm as reported in [71] to calculate tremor (Copyright © 2009, 

IEEE) 

The following section describes the proposed algorithm to calculate the physiological 

tremor using the sensed motion from the tri-axial accelerometer and the gyroscopes.   
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2.3.1.1 Algorithm for calculating real-time physiological tremor 

The algorithm is similar in approach to the one reported in [71] with the following 

modifications: (1) instead of using three dual-axis accelerometer to sense the motion, the 

IMU presented in Section 2.2 has been used, (2) the gravity factor from the accelerometer 

measurements has been removed using 2 DOF orientation and (3) the orientation has 

been estimated using an augmented state Kalman filter. The tremor component in the 

sensed motion has been calculated using the BMFLC and is defined with respect to the 

frame {S}. Figure 2.6 shows the block diagram of the proposed algorithm to calculate the 

physiological tremor in the hand.   

 

Figure 2.6: Block diagram of the proposed algorithm to calculate physiological 

tremor. 

First, the raw data from the IMU is sent to the measurement model, described in 

Appendix A, to form acceleration vector ay (in m/sec
2
) and gyroscope vector 

gy  (in 
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rad/sec). To avoid integration drift in calculating orientation, an augmented state 

complementary Kalman filter has been developed and is presented in Section 2.4. The 

Kalman filter provides a drift-free orientation by fusing the accelerometer and gyroscope 

signals (
ag yy and  ). Using the orientation, the gravity vector ( GB ) is computed and the 

gravity component in the accelerometer measurements is removed to calculate the 

effective acceleration as shown in equation 2.11. The effective acceleration with respect 

to {B} can be written as: 

 GyA B

a

B   (2.11) 

 GRyA W

B

W

a

B 1)( 

 

(2.11a) 

AB
 is composed of the acceleration at the body frame {B} due to the voluntary motion, 

the tremor, the residual gravity and the accelerometer noise. As mentioned is the previous 

section, B

W R  is the rotation matrix that describes the orientation of body frame {B} with 

respect to world frame {W}. The Z-Y-X Euler angle notation has used to describe the 

rotation matrix since the sensors rotate with the device. It is given by [72]: 
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(2.12a) 

where  sin,cos  sc  and so on.   and,  (roll, pitch and yaw) represent Euler 

angles which are defined as angular rotations about XB, YB and ZB respectively. In a 

vector form, the Euler angles can be written as: .][ T  

Considering that GW is given by  Tg 100 and the inverse of the rotation matrix is its 

transpose, equation 2.11a becomes: 
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It is clear from equation 2.13 that removing the gravity factor from the accelerometer 

measurements only depends on 2 DOF orientation, θ and ϕ. The acceleration at the needle 

tip with respect to {S} is composed of the acceleration of the device at {B}, centripetal 

acceleration and tangential acceleration: 

 
tip

BB

tip

BBBBS PPAA   )(  (2.14) 

where 
B
Ptip is given by  T19.000 and B is the angular acceleration vector and is 

given by  Tz

B

y

B

x

B  . For microsurgical procedures, the centripetal acceleration 

term ( 2B ) is very small and can be ignored. Therefore, equation 2.14 becomes: 
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Equation 2.15 can be written as: 
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 (2.16) 

AS is composed of the acceleration at the needle tip due to voluntary motion, tremor, 

residual gravity and accelerometer noise. In [71], the authors reported that the BMFLC 

produces inaccurate results if the magnitude of the frequency components outside the 

pass-band is larger compared to the magnitude of the frequency components within the 

pass-band. Since the magnitude of the acceleration due to the voluntary motions can be 

larger than the magnitude of the acceleration due to tremor, AS  is first sent to a fourth-

order low pass filter (LPF) with a cut-off frequency of 4 Hz. The output of the LPF is 

subtracted from its original input ( AS ) as shown in Figure 2.6. This step removes the 
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acceleration due to the voluntary motions and the residual gravity factor without 

changing the phase of the signal and provides acceleration due to tremor, residual low 

frequency components and the accelerometer noise ( AS ~
). AS ~

 is sent to the BMFLC 

which estimates the acceleration of the needle tip with respect to {S} due to the tremor. 

The position of the needle tip due to the tremor with respect to {S} is calculated by 

analytical double integration inside the BMFLC algorithm using the rhythmic nature of 

tremor and is described in Section 2.5.2. 

It is clear from equations 2.13 and 2.16 that the orientation in 2 DOF (θ and ϕ) and the 

angular acceleration about XB and YB axes ( x

B and y

B ) are required to calculate the 

acceleration at the needle tip with respect to {S}. The angular acceleration is calculated 

using the angular velocity measured by the gyroscopes: 

 

T

ki

B

i

B

ki

B 1,,

,





  (2.17) 

where i = x and y. The orientation in 2 DOF is estimated using an augmented state 

complementary Kalman filter and is presented in Section 2.4. Since the gyroscopes suffer 

with bias drift, the angular velocity measured using the gyroscopes drifts over time. The 

proposed Kalman filter models for the bias and provides the un-biased angular velocity 

about XB and YB axes ( x

B̂ and y

B̂ ). It is composed of the angular velocity due to the 

voluntary motions, the involuntary motions, residual bias and the noise. The angular 

velocity provided by the Kalman filter is, first, sent to a fourth order LPF with a cut-off 

frequency of 4 Hz. The output of the LPF is subtracted from its original input (the 

angular velocity provided by the Kalman filter) as shown in Figure 2.6. This step 

removes the angular velocity due to the voluntary motions and the residual bias without 

changing the phase of the signal and provides angular velocity ( x

B~ and y

B~ ) that only 

contains components due to the tremor, residual low frequency components and the 

noise. This is used to calculate the angular acceleration about XB and YB axes using 

equation 2.17. 
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2.4 Orientation using gyroscopes and accelerometers 

2.4.1 Literature Review 

Extensive research has been conducted to calculate orientation during human body 

movements using inertial sensors. Depending on the type and number of sensors used, a 

few studies were focused on tracking orientation in 3 DOF, while others on 2 DOF. This 

section presents a brief literature review on the related work.  

In [73], the authors reported 2 commercial sensing modules to track orientation in 3 DOF. 

Both were composed of a triad of accelerometers, a triad of rate gyroscopes and a triad of 

magnetometers to track head mounted displays. Orientation was calculated using a 

complementary separate bias Kalman filter [74]. The filter relied solely on gyroscopes to 

estimate orientation during body movements and the drift was corrected only during 

stationary periods using accelerometers and magnetometers. The state vector contained 

orientation errors and bias errors. However, the gyro bias was not explicitly modeled. The 

process and measurement error covariance matrices were calculated by experimental 

tweaking.  

The authors in [75] presented a 9 DOF sensing module called MARG to track orientation 

in 3 DOF. MARG is composed of a triple axis magnetometer, a triple axis gyroscope and 

a triple axis accelerometer. A quaternion-based complementary filter was used to 

calculate the 3 DOF orientation. In [76], the complementary filter was replaced with a 

quaternion-based extended Kalman filter. Further improvements to this were reported in 

[77] and [78]. A reduced-order Gauss-Newton method was used to obtain the quaternion 

to make Kalman filter computationally efficient. In [79], the authors replaced the 

reduced-order Gauss Newton method by two algorithms named- QUEST [80] and 

Factored Quaternion Algorithm [81] [82], that take a set of accelerometer and 

magnetometer measurements to calculate the quaternion. The covariance matrices were 

obtained through experimental observations. Lag and overshoots were reported in [79] 

during fast motion. 

Using triple axis gyroscopes and a triple axis accelerometer, authors in [83] [84] [85] 

presented a complementary Kalman filter for estimating orientation in 3 DOF. The 
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accelerometer was used to correct for the drift in roll and pitch. The drift in yaw was 

corrected using a kinematic human body model and the gyro bias was modeled as a 

Gauss Markov process. The authors in [86] incorporated magnetometers and extended the 

work described in [84] to compensate for drift in yaw and magnetic disturbances. This 

significantly improved the orientation estimates in comparison to no compensation for 

magnetic disturbances or using gyroscopes only. Further improvements to this work were 

reported in [87] and [88]. 

The authors in [89] presented a sensing module that eliminated gyroscopes and used six 

accelerometers and magnetic sensors to calculate complete 3 DOF orientation. In [90], 

the authors presented a quaternion-based Kalman Filter. The TRAID algorithm [80], 

which uses both accelerometer and magnetometer measurements, was used to obtain the 

orientation. The noise characteristics of the sensors were determined using Allan variance 

analysis. The process covariance matrix was obtained using a scaled unscented 

transformation and the measurement covariance matrix was derived analytically.  

In [91], the authors presented a Kalman filter to estimate orientation in 2 DOF (roll and 

pitch) by using a triple axis gyroscope and a triple axis accelerometer. Two Kalman 

filters were used, one for motion during low acceleration and the other during high 

acceleration. A switching mechanism, which detected acceleration, was used to drive the 

corresponding Kalman filter. Moreover, the gyro bias was not modeled in this work.   

In the current implementation of AID, we have employed an augmented state 

complementary Kalman filter to estimate 2-DOF orientation ( and  ) and is presented 

in the following section.      

2.4.2 Augmented State Complementary Kalman Filter 

An augmented state complementary Kalman filter has been designed to estimate 2 DOF 

orientation of the device (   & ) by fusing gyroscope and accelerometer signals. The 

flowchart showing the working of the Kalman filter is shown in Figure 2.7.   is the 

orientation vector containing  and  , and b is a vector containing the gyro biases. A hat 

on top denotes an estimate, a minus superscript denotes an apriori estimate and a plus 
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superscript denotes an estimate corrected by the Kalman filter. A term without a hat 

denotes an actual value.  

 

Figure 2.7: Block diagram of the augmented state complementary Kalman filter 

The orientation is estimated by both gyroscopes and tri-axial accelerometer, each with 

some amount of error. The orientation estimated using the gyroscopes is used as 

reference. The orientation estimated using the gyroscopes suffers from integration drift 

and the orientation estimated using the tri-axial accelerometer is noisy and vulnerable to 

vibrations. The difference in orientation estimates (
  kka

ˆˆ
, ) is used as an input for the 

Kalman filter to estimate the orientation and bias errors (
 kk b ,,   & ˆ
 ). These errors are 

then used to correct the orientation estimated using the gyroscope and the gyro biases 

respectively. 

2.4.2.1 Sensor Model 

The signal measured by the tri-axial accelerometer ( ay ) is modeled as a sum of inertial 

acceleration ( AB
), gravity ( GB ) and white Gaussian noise ( av ): 
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where 
T

zayaxaa yyyy ][ ,,,  and 
T

z

B

y

B

x

BB aaaA ][ .
 

The signal measured by the dual-axis gyroscope (
g

G y1 ), IDG 500, is modeled as a sum of 

angular velocity ( 1G ), slowly varying gyro bias ( b ) and white Gaussian noise (
g

G v1 ): 
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G

xg

G

g

G vvv ,

1

,

11  .  

The gyro bias (b) is modeled as a realization of a first order Gauss-Markov process 

driven by white Gaussian noise ( bw ): 

 
kbkk wbb ,1  

 (2.20) 

where  Tybxbb www ,, .The signal measured by the single-axis gyroscope ( g
G y2 ), 

MLX 90609, is modeled as a sum of angular velocity ( 2G ), a constant gyro bias ( 0b ) 

and white Gaussian noise (
g

G v2 ): 
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G
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G vby ,

2
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,

2    (2.21) 

where z

GG  22  . The initial bias for the gyroscopes is obtained during the calibration 

of the IMU and is presented in Appendix A. The white Gaussian noises va, 
G1

vg, 
G2

vg and 

wb are assumed to be non-correlated. The angular velocity of the device with respect to 

{B} can be written as: 

  Tz

B

y

B

x

BB    (2.22) 
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Since the principal axes of gyro frames {G1} and {G2} are opposite in direction to the 

direction of the principal axes of the body frame {B}, the angular velocity with respect to 

{B} can be written as: 

  Tz

G

y

G

x

GB  211 
 

(2.23) 

  Tz

BBB  
 

(2.23a) 

Using equations 2.23 and 2.19, B  can written as: 
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where    Ty

G

x

GT

y

B

x

BB  11  . 

2.4.2.2 State Space Model 

A complementary Kalman filter works on a state-space model that describes the 

relationship between input (difference in orientation estimate) and states (orientation and 

bias errors). Such a filter operates on the errors in predicting the 2 DOF orientation (ϕ and 

θ) and gyro biases (bx and by).  

The discrete state-space model used by the filter to estimate the orientation and gyro bias 

errors is given by: 

 
kkkk xAx   1,,
 (2.25) 

 
kkkk xHz   ,,  (2.26) 

Equation 2.25 is the process model and equation 2.26 is the measurement model. x  is 

the error state vector and A is the state propagation matrix. z  is the measurement vector 

and H is the measurement matrix. k is the zero mean Gaussian white process noise with 

covariance .kQ  k  is the zero mean Gaussian white measurement noise with covariance 

kR . In the following sections, we derive the process and measurement models. 
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2.4.2.3 Process Model 

The relationship between angular velocity (  Tz

B

y

B

x

BB   ) of the device and 

the rate of change of Euler angles (  T   ) is given by: 

 BL  (2.27) 

where L is a transformation matrix given by: 
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Equation (2.27) can be written as: 
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Equation (2.28) is a set of differential equations. The Euler method has been selected to 

solve equation 2.28. Therefore, in discrete-time format,  can be updated using: 

 TL k

B

kkk 11    (2.29) 

where T is the sampling time. Equation (2.29) calculates all the three Euler angles. Since 

only ϕ and θ are required for the algorithm presented in the previous section, we define a 

2 DOF orientation vector: 

  T  (2.30) 

The transformation matrix L can be reduced to a 2x3 matrix in order to calculate   and : 
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  can be updated using: 
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Equation 2.33 can also be written as: 
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Using equation 2.23a, equation 2.34 can be written as: 
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Using equations 2.19, 2.21 and 2.23, equation 2.35 becomes: 
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Using the gyro bias model in equation (2.20), equation (2.36) can be rewritten as: 
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vg in equation 2.37a is given by  Tg
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. f in equation (2.38) is a non-

linear function that relates vector   at time step k to the vector   at previous time step k-

1.  
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Consider augmenting the orientation vector ( ) and the bias vector (b) using equation 

(2.37) and (2.20): 
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where I2x2 is 2x2 identity matrix. 02x2, 02x1 and 02x3 are 2x2, 2x1 and 2x3 zero matrices 

respectively. Equation 2.39 can be written in a state-space format as: 
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Equation (2.40) defines the actual state propagation equation for state kx . kw is the zero 

mean Gaussian white noise with covariance kQ
~

. It should be noted that kx  is the actual 

state vector.  

Since the values of 
kbw ,
 and 

kgv ,
 are unknown, kx can be estimated by keeping them zero 

in equations 2.19, 2.20 and 2.21 and then using equation 2.40. The gyro bias in the dual-

axis gyroscope, IDG 500, is estimated using equation 2.20 by keeping wb,k as zero: 
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The angular velocity vector ( 
k

B̂ ) is estimated by keeping white noise 
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vg,k as zero in 

equation 2.24: 
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k is estimated using the following equation: 
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Using equations 2.19, 2.20, 2.21, 2.41 and 2.42, equation 2.43 can be written as:  
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(2.45) 

Consider augmenting the orientation vector ( ̂ ) and the bias vector ( b̂ ): 

 
)(

0

ˆ

0

ˆ

ˆ

ˆ

0

ˆ

ˆ

ˆ

0,

2

12

1
,

1

22

1

1

1

2222

122 by
J

y
TJ

bI

TJI

b
kg

G

x

k
kg

G

x

k

k

k

xx

kx

k

k 






 








 
















 

































 (2.46) 

Equation (2.46) can be written in a state space format as: 
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

kx̂  is the predicted state vector and 

1
ˆ

kx  is the corrected estimate of the state at time k-1. 

2.4.2.3.1 Error State Vector
 
 

In order to obtain a complementary Kalman filter, an error state vector is selected which 

is defined as the difference between the actual state vector and the predicted state vector: 

 
kk xxx ˆ  (2.48) 
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 (2.48a) 

where  is the error in predicting Euler angles and b is the error in predicting gyro 

biases, bx and by. 

2.4.2.3.2 Discrete Error State Equation  

Since f is a non-linear function, the linearized error dynamics for the orientation vector at 

time step k can be obtained by linearizing the orientation vector about equation 2.43 to 

obtain: 
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 (2.49) 

where the state transition matrix is given by: 
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A and bA are the Jacobian matrices of partial derivatives of f with respect to and b 

respectively: 
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where   kkkkkk tsc  ˆtanˆ,ˆsinˆ,ˆcosˆ and so on. 

2.4.2.3.3 Process Noise Covariance Matrix 

k is the zero mean Gaussian white process noise with covariance .kQ The process noise 

covariance matrix is given by: 
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2

, xg , 
2

, yg
 
and

2

, zg are the variance of 
G1

vg,x, 
G1

vg,y and 
G2

vg,z respectively. 
2

, xb and
2

, yb  

are the variance of wb,x and wb,y, respectively. 

2.4.2.4 Measurement Model 

To estimate the inclination using an accelerometer, the accelerometer data is first 

normalized (Appendix A). The normalized accelerometer data can be written as: 

  Tnz
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n
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Since, the accelerometer also measures gravity, 
W

B Z can be written as: 
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Using equation 2.53, the inclination angles estimated using the accelerometer is given by: 
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In vector form, they can be written as: 

 T

aaa ]ˆˆ[ˆ     (2.55) 

2.4.2.4.1 Measurement Vector 

The measurement vector is selected as the difference between the angles calculated using 

the accelerometer (equation 2.55) and those through Euler integration (equation 2.43): 

   kkakz ˆˆ
,,  (2.56) 
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2.4.2.4.2 Discrete Measurement Equation 

The discrete measurement equation is given by: 

 
kkk Hxz   ,,
 (2.57) 

where  is measurement noise vector. Since the measurement vector only contains the 

orientation errors and not the bias errors, the measurement matrix (H) is given by: 

  2222 0 xxIH   (2.58) 

2.4.2.4.3 Measurement Noise Covariance Matrix 

k is the zero mean Gaussian white measurement noise with covariance .kR The 

measurement noise covariance matrix is given by: 
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where 2

 and 2

  
are the variance of calculating 

a̂ and 

a̂ .    

2.4.2.5 Kalman Filter 

2.4.2.5.1 Predict 

Using equation (2.49), the error state is predicted as: 

 
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  1,,
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kkk xAx   (2.60) 

The projected error covariance is given by: 
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2.4.2.5.2 Update 

The Kalman gain is obtained using: 
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 1)ˆ(ˆ~   k

T

kkk

T

kkk RHPHHPK  (2.62) 

The updated error state vector is given by: 

 )ˆ(
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ˆˆ
,,,,

  kkkkk xHzKxx   (2.63) 

Equation (2.63) calculates an optimal solution of the error state vector. The updated error 

covariance is given by:  

   kkkk PHKIP ˆ)
~

(ˆ  (2.64) 

The predicted state vector is corrected using the following equation:  

   kkk xxx ,
ˆˆˆ
  (2.65) 

Equation (2.65) calculates an optimal value of the orientation and the gyro bias.  

2.4.2.5.3 Kalman Filter Initialization 

The initialization process sets the initial states and covariances and is run once at the 

start.  

i. At k = 0, a  and θa are calculated using the tri-axial accelerometer and used to 

initialize the orientation vector ( 0 ).   

ii.  The initial state vector ( 0x ) is initialized using 0b and 0 . 

iii.  The initial error state vector (
0,x ) is set to  T0000 . 

iv.  The initial error covariance matrix ( 0P ) is set to 1000 I where I is a 4x4 identity 

matrix. 

v.  The values of variances 
222

,

2

,

2

,

2

,

2

, and  ,,,,,   ybxbzgygxg  are set to 3.3e
-5

,  

3.7e
-5

, 1.5e
-5

, 1e
-6

, 1e
-6

, 7.6e
-3

 and 1e
-2

 respectively.  
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2.5 Filtering Tremor from Sensed Motion 

2.5.1 Introduction 

The aim of this section is to estimate the position of the needle tip due to tremor               

(
tremor

S P ) by filtering the tremor component from acceleration, AS ~
and output a negated 

tremor motion to the manipulator system as control input ( PC ).  

 )( tremor

SC PP   (2.66) 

The conventional filtering techniques such as the Butterworth filter cause a phase change 

and, thus, cannot be realized for a real-time modeling of physiological tremor. A zero-

phase adaptive filter is required to effectively estimate physiological tremor in real-time. 

An adaptive filter adapts to the variations in frequency and amplitude of the input signal 

by adjusting its parameters online according to a learning algorithm. One of the popular 

techniques of adaption is the least mean squares (LMS) algorithm. As physiological 

tremor is roughly periodic and approximately sinusoidal in nature, a Fourier series model 

is applicable. The following sections provide a brief overview of Fourier series based 

zero-phase adaptive filtering algorithms.  

2.5.1.1 Fourier Linear Combiner (FLC) 

If the frequency of the input signal is known, the Fourier Linear Combiner (FLC) 

algorithm [92] [93] can be used to model the input signal. The FLC is inherently zero 

phase and has an infinite null [94]. The reference signal is generated by a truncated 

Fourier series model in which the adaptive filter weights are the Fourier coefficients. 
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The LMS algorithm is used to update the filter weights. FLC can be written as: 
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where 
T

Mk kk
www ][ 21  and 

T

Mk
kk

xxx ][ 21  are the adaptive weight vector and 

reference input vector respectively. ks is the input signal, M is the number of harmonics 

in the model,  is an adaptive gain parameter. The algorithm can be viewed as an 

adaptive notch filter with the width of the notch being directly proportional to .  

2.5.1.2 Weighted-Frequency Fourier Linear Combiner (WFLC) 
Algorithm 

The FLC algorithm cannot be used to estimate tremor because it only adapts to an input 

signal of known frequency. The authors in [59] and [95] presented an algorithm named, 

Weighted-frequency Fourier Linear Combiner (WFLC), which is an extension to the 

FLC, in order to adapt to the input signal of unknown frequencies and amplitude. In 

contrast to FLC, WFLC also adapts to the frequency of time varying reference signals. 

WFLC can be written as: 
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(2.74) 

k0 adapts to the unknown frequency of the input signal and kw estimates the amplitude 

and phase of the input signal.  and 0 are adaptive gain parameters of amplitude and 

frequency respectively. In Micron, a combination of WFLC and FLC has been employed 
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to filter the tremor. The amplitude of the input signal is estimated by using kx from 

WFLC as the reference input vector in FLC and updating a new set of adaptive weights, 

kŵ  as shown in the following equations: 
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 where 
T

Mk kk
www ]ˆˆ[ˆ

21  . While WFLC can adapt to the changes in frequency of the 

input signal, it was reported in [69] that the performance is degraded by the presence of a 

modulated signal. In the case of fast variations in frequency in the input signal, the 

algorithm never gets stabilized and the estimation of the input signal is inaccurate. Also, 

high frequency noise can change adaptive vectors and thus influence the output of 

WFLC.  

To overcomes the limitations of WFLC, the authors in [69] and [70] presented an 

algorithm named, Bandlimited Multiple Fourier Linear Combiner (BMFLC) which 

adapts to multiple frequencies.  

2.5.2 Bandlimited Multiple Fourier Linear Combiner (BMFLC) 
Algorithm 

BMFLC [69] [70] is a zero-phase lag adaptive filter which estimates the input signal of 

unknown multiple frequencies and amplitude. A frequency band is selected with f0 as the 

lower cut-off frequency and f as the upper cut-off frequency. The frequency band is 

divided into a finite number of divisions L = (f - fo)G. G (≥ 1) is the scaling number 

describing the step-size of the series as shown in Figure 2.8.  

The unknown signal is estimated by forming the following series: 
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Figure 2.8: BMFLC frequency band and divisions [69] (Copyright © 2007, IEEE) 

The LMS algorithm is employed to update the weights ar and br. BMFLC can be written 

as follows: 
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where 
T

Lk kk
www ][ 21  and 

T

Lk
kk

xxx ][ 21  are the adaptive weight vector and 

reference input vector respectively. ks is the input signal and  is adaptive gain 

parameter. G can be increased depending on the rate of change of frequency in the input 

signal to enhance the accuracy of estimation.  

A comparison between the performance of WFLC and BMFLC was reported in [69]. The 

following input signal was used for both the algorithms: 

 )2(cos5.2)2(sin5.3 21 tftfsk    (2.81) 

The amount of compensation and rms error in adapting to modulated signals using 

WFLC and BMFLC is shown in Table 2.5. 
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Table 2.5: Comparison of WFLC and BMFLC [69] 

f1 f2 WFLC BMFLC 

Error 

(rms) 

Compensation 

(%) 

Error 

(rms) 

Compensation 

(%) 

8 8 0.0135 98.7 0.117 96.16 

8 8.2 0.5 84.22 0.117 96.16 

8 8.6 0.56 81.5 0.116 96.17 

8 9 0.765 75.06 0.116 96.17 

8 10 1.22 59.83 0.116 96.19 

6 12 2.33 23.48 0.124 95.91 

Table 2.5 clearly shows that the performance of BMFLC is better in adapting to a 

modulated signal compared to WFLC. Therefore, we have implemented BMFLC to 

estimate the tremor component in the sensed motion of the tool-tip. 

Since the frequency of physiological tremor ranges from 8 Hz to 12 Hz, f0 is chosen as 7 

Hz and f as 13 Hz with G as 10 so that the resolution is 0.1 Hz. Each element of the 

acceleration vector at the needle tip with respect to {S} ( AS ~
) is sent as an input (sk) to 

the BMFLC. The acceleration at the needle tip with respect to {S} due to tremor is given 

by: 
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where ki

T

kiitremor

S xwA
k ,,,   (i = x, y and z). The position of the needle tip with respect to 

{S} due to tremor is found by analytically double integrating 
tremor

S A  and is defined as: 
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where ki

T

kiditremor

S xwP
k ,,,,   and (i = x, y and z). The weight for tremor position vector is 

given by:   
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Chapter 3  

3 Design of Actuation System of AID 

The chapter presents the design of the actuation system for the Accuracy Improvement 

Device (AID). Section 3.1 discusses the system requirements of the actuation system. A 

selection procedure for the actuators is presented in Section 3.2 in which three smart 

materials- electroactive ceramics (EAC), shape memory alloy (SMA) and ionic polymer 

metallic composite (IPMC), are compared and IPMC is selected. Section 3.3 presents a 

review on IPMCs followed by a description of the IPMC-based actuator incorporated in 

the actuator system of the AID in Section 3.4. The last section, Section 3.5, presents the 

controller for the IPMC-based actuator.  

3.1 System Requirements 

In the AID, the tremor is compensated by manipulating the needle-tip in the opposite 

direction to that of the tremor in real-time. Thus, the goal of the manipulator module is to 

make the needle tip dynamically track a motion profile that is the negative of the motion 

profile of the tremor (
tremor

S P ).  

It was reported in [96] that roughly 75% of the forces measured during retinal 

microsurgery were less than 7.5 mN with a maximum of 30 mN as shown in Figure 3.1.  

 

Figure 3.1: Measured forces during retinal microsurgery as reported in [96]. (Left) 

30 seconds force trace; (Right) percentage of force ranges (Copyright © 2006, 

Springer Berlin/Heidelberg) 
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We again consider tremor having a sinusoidal profile with 8-12 Hz frequency and 70 µm 

peak-to-peak amplitude to set the system requirements for the manipulator module. The 

following are the specifications for the actuator: 

 Actuator resolution: ≤ 7 µm 

 Actuation bandwidth: > 13 Hz 

 Actuation force: > 30 mN 

 Actuator stroke: ≥ 140 µm 

The actuators must also be light and small in size so that a compact manipulator can be 

designed. Moreover, the actuators must require low power for actuation. 

3.2 Actuator Selection 

With the system specifications in mind, this section reviews the conventional actuators 

and the smart materials to identify a potential actuator for the manipulator module of the 

AID. 

3.2.1 Conventional actuators vs. Smart Materials based Actuators 

Figure 3.2 shows a graph between the specific actuation stress and the actuation strain for 

various actuators. Figure 3.3 shows a graph between the blocked stress and the maximum 

actuation strain for various smart material based actuators. It is evident from Figure 3.2 

that hydraulic and pneumatic systems provide the highest specific energy among all the 

actuators. However, they require bulky equipments such as compressors or pumps which 

increase the size and the weight of the system. The leakage of fluid in hydraulic systems 

also poses a serious concern for a medical device.  

Although conventional electrical actuators such as solenoids, moving coil transducers or 

voice coils do not have leakage problems and produce high levels of strain, they do 

produce significantly less actuation stress compared to smart-material based actuators 

such as piezoelectric or shape memory alloys (SMA) or ionic metallic polymer composite 

(IPMC) as shown in Figures 3.2 and 3.3. 
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Thus, it can be inferred that smart materials can produce the same amount of work as 

conventional actuators, but with much less weight thereby allowing the hand-held device 

to be lighter in weight.  

 

Figure 3.2: Specific actuation stress vs. actuation strain for various actuators [97] 

(Copyright © 1997, The Royal Society) 

Since the size of the actuator is also a design parameter, we now compare the 

conventional actuators and the smart materials based on volumetric power. Figure 3.4 

shows a graph of the power output per unit volume versus efficiency for various 

actuators. It shows that smart materials such as piezoelectric and SMA can produce 

higher levels of power per unit volume at the same efficiency compared to solenoids, 

moving coil transducers or pneumatic systems. This also illustrates that the smart 

materials can produce the same level of power as conventional actuators, but with less 

volumes which allows actuators to be incorporated in a small and compact hand-held 

systems. Since the actuators for a hand-held device must be compact and light in weight 

and smart materials can produce the same amount of work with smaller size and weight 

as compared to conventional actuators, smart materials present a viable solution for a 

hand-held device. The following section presents a comparison between various smart 
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materials and the selection of the most suitable smart material based actuator for our 

application.  

 

Figure 3.3: Blocked Stress vs. max strain for various smart material actuators [98]  

 

Figure 3.4: Power output per unit volume vs. efficiency for various actuators [97] 

(Copyright © 1997, The Royal Society) 
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3.2.2 Smart Materials 

Smart materials can be defined as materials that adapt to a change in the physical 

environment such as electrical, thermal, magnetic, chemical, pH or light environment. 

Three smart materials: electroactive ceramic (EAC), SMA and IPMC have been selected 

as potential actuators for the AID and compared based on stroke, bandwidth, force, 

weight, size, and power requirements. Table 3.1 compares the three actuators on the basis 

of actuation displacement, force, reaction speed, density, drive voltage and fracture 

toughness.  

Table 3.1: Comparison of IPMC, SMA and EAC [99] 

Properties EAC SMA IPMC 

Strain 0.1-0.3% <6% >3% 

Force (MPA) 30-40 ~700 10-30 

Density (g cm
-3

) 6-8 5-6 2-2.5 

Reaction Speed µs to s s to min µs to s 

Drive Voltage (V) 50-800 NA 0.1-7 

Fracture 

Toughness 

Fragile Elastic Resilient, Elastic 

EACs (electrostrictor and piezoelectric ceramics) produce mechanical strain in response 

to an externally applied electrical signal. The maximum strain shown by piezoelectric 

actuators such as lead zirconate titanate (PZT) is 0.12-0.18% which is significantly lower 

than the strain shown by IPMCs. EACs have a high actuation bandwidth (upto 1 MHz) 

[100]. Although EACs can be actuated at the required bandwidth and have necessary 

stroke (with mechanical amplification) and actuation force, the disadvantages are the high 

voltage requirement and the higher weight compared to IPMCs as shown in Table 3.1. 

Moreover, the striction capability of IPMCs can be as high as two orders of magnitude 
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more than EACs [99]. EAC materials are also brittle, and therefore require special 

packaging and protection. They also exhibit hysteresis upto 10-15% [100]. 

Shape memory alloys (SMAs) such as Nitinol exhibit a phenomenon, the shape memory 

effect, which is referred to as the ability to return to the original shape or size from a 

deformed shape or size under the action of a thermal procedure [101]. SMAs show high 

level of strain and actuation force as shown in Table 3.1 and Figure 3.3. However, the 

response time, and thus, the bandwidth is significantly lower than IPMCs as shown in 

Table 3.1.  

Considering the strain, stroke and actuation bandwidth, IPMCs were selected as the 

actuation modality for the AID. The following section provides a detailed description of 

IPMCs. 

3.3 Ionic Polymer Metallic Composite (IPMC) 

3.3.1 Brief History 

Although polymer-metal composites were developed in 1939 by precipitation of colloidal 

silver on prepared substrates, IPMCs were developed in early 1990s as solid electrolyte 

fuel cell membranes [102]. The authors in [103] reported the actuation capabilities of 

IPMCs while the authors in [104] showed that the IPMCs could be used as vibration 

sensors/dampers. Since then, several researchers have worked towards improving the 

actuation and sensing capabilities of IPMCs. 

IPMC is an electroactive polymer (EAP) that shows a relatively large deformation in 

response to an electrical activation. EAPs are materials that show change in shape and 

size under an electrical stimulation [102]. EAPs are divided into two categories: 

electronic and ionic. Electronic EAP materials are driven by an external electric field or 

Coulomb forces. They require a high voltage (>100 V) and exhibit large forces. They 

include piezoelectric, electrostrictive and ferroelectric polymer materials. Dielectric 

polymers also fall under this category [102]. Ionic EAP materials work on the basis of 

ion/molecule migration in the polymer in response to an external electric field. They 

require a low voltage (<5 V) and show lower actuation force compared to electronic EAP 
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materials. They include ionic polymer gels, IPMCs, conductive polymers, carbon 

nanotubes and electrorheological fluids [102].   

3.3.2 Actuation Mechanism of IPMC 

IPMC consists of a thin strip of perfluorinated ionomer (Nafion
TM

 or Flemion
TM

) plated 

with a noble metal such as gold or platinum on both sides. When an electric field is 

applied across the metal plates, the IPMC bends towards the anode due to the molecular 

transportation from the movement of cations and water molecules coupled to the cations 

as shown in Figure 3.5 [105] [106]. Thus, the actuation of an IPMC is caused due to the 

imbalance of water density in the IPMC.  

 

Figure 3.5: Actuation Mechanism of IPMCs [105] (Copyright © 2003, Elsevier) 

3.3.3 Characteristics of IPMC  

The actuation characteristics of IPMC are influenced by various factors such as the 

magnitude of voltage, its frequency, its waveform and film shape and size. When a direct 

voltage is applied across the thickness of an IPMC film, it bends towards the anode. The 

amount of displacement is directly proportional to the input voltage. An IPMC film 

creates vibratory motion when an alternating voltage is applied [107]. In the case of an 

alternating voltage, the displacement is directly proportional to the input voltage and 

inversely proportional to the frequency of the input voltage [107]. The authors in [105] 

reported the effect of waveforms and frequencies of the input voltage on the actuation 

characteristics as shown in Figures 3.6, 3.7 and 3.8.  
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Figure 3.6: Response of IPMC under various waveforms. (a) square wave; (b) 

sinusoidal wave; (c) triangular wave [105] (Copyright © 2003, Elsevier) 
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Figure 3.7: Displacement generated and current consumed by IPMC under various 

waveforms. (a) square wave; (b) sinusoidal wave; (c) triangular wave [105] 

(Copyright © 2003, Elsevier) 
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Figure 3.8: Power consumption by IPMC. (a) power consumption per cycle of 

waveform; (b) power consumption per unit displacement [105] (Copyright © 2003, 

Elsevier) 
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Figure 3.9: Force generated by IPMC under various waveforms [105] (Copyright © 

2003, Elsevier) 

Figures 3.6, 3.7, 3.8 and 3.9 [105] show the actuation characteristics of an IPMC strip of 

dimensions 20 mm (L) x 5 mm (W) under three waveforms- square, sinusoidal and 

triangular. It can be seen from Figure 3.6 that the displacement is higher for higher input 

voltages. As the frequency of the input signal increases, the amount of displacement 

decreases. Figure 3.6 also shows that the amount of displacement generated by the square 

input is slightly more than that generated by the sinusoidal or triangular inputs, but the 

difference is not significant [105]. Figure 3.7 shows that there is no apparent relationship 

between the displacement and the square input voltage. On the other hand, there exists a 

linear relationship between displacement and sinusoidal input voltage and a pseudo linear 

relationship between displacement and triangular input voltage. Figure 3.8 shows that the 

power consumed is highest for square wave inputs and lowest for triangular input. Figure 

3.9 shows that force generated by the IPMC actuator is almost the same as for each 



74 

 

waveform. It also shows that the force is inversely proportional to the frequency of the 

input voltage: higher the frequency, lower the force. The actuation characteristics also 

depend on the dimensions of the IPMC film. It is intuitive that a longer IPMC film 

produces larger displacements. The thickness of the IPMC film also plays an important 

role. A thicker film produces higher actuation force but lower displacement compared to 

a thinner film.  

3.4 IPMC-based Actuator for AID 

Considering the actuation requirements, a donut shaped actuator was designed with an 

outer diameter of 15 mm, an inner diameter of 5 mm and a thickness of 1 mm. The IPMC 

actuator has been manufactured by Environmental Robotics Inc (ERI)
3
. Figure 3.10 

shows the donut shaped actuator. It can be seen in Figure 3.10 that the shape of the IPMC 

actuator is irregular - the outer circumference of the actuator is not concentric with the 

inner circumference of the actuator. The irregularity in the shape deteriorates the amount 

of displacement by the IPMC and decreases the accuracy of motion.  

 

Figure 3.10: Donut-shaped IPMC actuator compared to a Canadian quarter 

3.5 Controller for IPMC Actuator 

The aim of this section is to develop a controller for the IPMC actuator which calculates 

the amount of voltage ( VC ) necessary to drive the actuator to deflect the needle tip. In 

                                                 

3
 Environmental Robots Inc (ERI) is one of the few companies that manufacture custom IPMCs. ERI was 

the only company that we were able to obtain IPMC actuator in the required shape for our application. 

However, there were irregularities in the shape of the IPMC actuator fabricated by ERI.  
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the previous chapter, the control input ( PC
) for the controller is formed using the 

position of the needle tip due to tremor (
tremor

S P ) and is governed by the following 

equation: 

 )( tremor

SC PP    (3.1) 

As presented in Chapter 2, the position of the needle tip (
tremor

S P ) is sinusoidal, thus, the 

control input ( PC
) is also sinusoidal. From the previous section, we have seen that the 

displacement is almost linear to the voltage input if the input is sinusoidal. Therefore, an 

open-loop controller has been designed for the AID as shown in Figure 3.11.  

 

Figure 3.11: Open-loop controller for AID 
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Since there exists a linear relationship between the desired trajectory and the input 

voltage in the case of sinusoidal input as presented in the previous section, the following 

conversion of the displacement to voltage can be used: 

 
k

C

k

C PKV    (3.2) 

The control input ( PC
) is converted to voltage ( VC

) by multiplying it with a 

transformation factor (K). The limiter block shown in Figure 3.11 limits the voltage to 

±3.6 V. This is added as a safety feature for the IPMC actuator because Environmental 

Robots Inc. specified the maximum input voltage as ±3.75 V. The output of the limiter is 

sent to an amplifier, UPMC 2405 (Quanser Consulting). The gain by the amplifier is set 

to 1. The output of the amplifier is sent to the IPMC based manipulator module which 

deflects the tip of the needle. The design of the manipulator module is presented in 

Chapter 4. The value of K is 85715 and is obtained by applying sinusoidal voltage input 

to the IPMC based manipulator module with different frequencies and amplitudes and 

observing the displacement of the needle-tip.  

The advantage of the open controller is its simplicity in the implementation. However, 

the limiting factor is its inaccuracy of motion tracking under the action of disturbances 

such as higher forces at the needle-tip. The performance of the AID with the proposed 

controller is tested for compensating vibratory motions. The results are presented in 

Chapter 5.  
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Chapter 4  

4 Accuracy Improvement Device: System Integration 

This chapter describes the complete system of the AID. Section 4.1 presents the design of 

the AID instrument followed by a description of the system hardware and software in 

Section 4.2. 

4.1 AID: Hand-held Instrument 

Figure 4.1 shows the prototype of the AID. It weighs 23.56 gm and is 192 mm long 

(including the needle). The AID can be divided into three parts: sensor module, 

manipulator module and body. The following sections describe these three parts in detail.  

 

Figure 4.1: Accuracy Improvement Device (AID). The user holds the device using 

the body to which the sensor module and the manipulator module are attached. The 

sensor module, located at the distal end, contains the inertial sensors that sense the 

motion of the device in 6 DOF. The manipulator module, located at the proximal 

end, deflects the needle tip to compensate for the physiological tremor   
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4.1.1 Body 

The body of the AID, shown in Figure 4.2, is where the user holds the device. It is a shaft 

and is made hollow so that the wires from the manipulator module can reach the distal 

end of the device. It is 122 mm long with an inner diameter of 6 mm and an outer 

diameter of 10 mm. The body is made of ABS thermoplastic and is fabricated using the 

rapid prototyping system, Dimension Elite 3D Printer (Stratasys). 

 

Figure 4.2: (Top) Body of the AID; (Bottom) The reduction of the diameter across 

the ends of the body. The outer surface of the ends mates with the inner surface of 

the shafts of the sensor module and the manipulator module.  

4.1.2 Sensor Module 

The sensor module of the AID, shown in Figure 4.3, contains the inertial sensors that 

sense the motion of the device in 6 DOF. It has two slots and a hollow shaft and is 

located at the distal end of the device. It measures 25 mm x 28 mm x 23.6 mm (without 

the shaft). The upper slot (near the distal-most end of the device) is used for fixing the 5-

DOF IMU board that consists of a triple-axis accelerometer (ADXL 335) and a dual-axis 

gyroscope (IDG 500) and the lower slot is used for fixing the board containing the single-

axis gyroscope (MLX 90609). 
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Figure 4.3: (Left) The sensor module of the AID showing the slots for the sensors 

and the shaft; (Right) The sensor module of the AID with the sensor boards fixed in 

the slots.  

The shaft is 10 mm long with an outer diameter of 10 mm and inner diameter of 8.1 mm. 

It is hollow so that the wires from the manipulator module can reach the distal end 

through the body. The inner surface of the shaft mates with the outer surface of one end 

of the body and fixes the sensor module to the body as shown in Figure 4.1. The sensor 

module is designed such that the longitudinal axis of the shaft (or of the body) coincides 

with the center of the triple-axis accelerometer (ADXL 335). 

4.1.3 Manipulator Module 

The manipulator module of the AID, shown in Figure 4.4, is an IPMC based manipulator 

which deflects the tip of the needle to compensate for the physiological tremor. In the 

current implementation of the device, the manipulator module is designed to deflect the 

needle tip in 1 DOF only. The manipulator module has a diameter of 27 mm and a 

thickness of 13.3 mm (without the shaft and the needle). The manipulator module can be 

divided into three parts: needle holder, actuator and actuator holder. The manipulator 

module incorporates a donut-shaped IPMC actuator having an inner diameter of 5 mm, an 

outer diameter of 15 mm and a thickness of 1 mm as shown in Figure 4.5. 
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Figure 4.4: Manipulator Module of the AID 

 

Figure 4.5: Donut shaped IPMC actuator compared to a Canadian quarter 

Figure 4.6 shows the CAD rendering of the needle holder (shown in grey) attached on the 

IPMC actuator (shown in gold). The IPMC actuator is squeezed between two ring-shaped 

copper electrodes (shown in dark brown) which provide the necessary voltage to drive 

the actuator. Figure 4.6 shows the location of the needle holder and the electrodes with 

respect to the IPMC actuator in the manipulator module. The electrodes are attached to 

the actuator holder (not shown in Figure 4.6).  

Figure 4.7 shows the components of the needle holder. The part at the bottom of Figure 

4.7 has a hole to which the needle is attached as shown in Figure 4.8.  
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Figure 4.6: CAD rendering of the needle holder attached on the IPMC actuator. The 

needle is shown in silver. The parts in grey are the needle holder. The IPMC 

actuator is shown in gold. The ring-shaped electrodes are shown in dark brown. The 

one close to the needle tip is the outer electrode and the one away from the needle 

tip is the inner electrode. The direction of motion of the needle is also shown. 

 

Figure 4.7: Components of the needle holder 
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The needle holder is attached to the IPMC actuator as shown in Figure 4.9.  

 

Figure 4.8: Needle holder with the needle 

 

Figure 4.9: Needle holder attached on the IPMC actuator 

The IPMC actuator is driven using two ring-shaped electrodes as shown in Figure 4.6. 

Figure 4.10 shows the inner and the outer electrode. The thickness of both the electrodes 

is 1 mm. 

 

Figure 4.10: Electrodes that drive the IPMC actuator. (Left) Inner electrode (away 

from the needle tip); (Right) Outer electrode (near the needle tip) 
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The inner electrode has an outer diameter of 14 mm and an inner diameter of 12 mm. The 

outer electrode has an outer diameter of 15 mm and an inner diameter of 13 mm. An 

extension with a hole of diameter 1mm is provided to attach wires to the electrodes. The 

inner electrode is attached to the inner actuator holder and the outer electrode to the outer 

actuator holder as shown in Figure 4.11. 

 

Figure 4.11: Actuator holder with electrodes. (Left) Inner actuator holder; (Right) 

Outer actuator electrode 

The inner actuator holder, shown in Figure 4.12, has an outer diameter of 27 mm, an 

inner diameter of 12 mm and is 10 mm thick. It also contains the shaft that attaches the 

manipulator module with the proximal end of the body. The shaft is 10 mm long with an 

outer diameter of 10 mm and inner diameter of 8.1 mm. A slot of 1 mm thickness and 14 

mm diameter at the front face of the inner actuator holder is incorporated so that the inner 

electrode can be attached.  

The outer actuator holder, shown in Figure 4.13, has an outer diameter of 27 mm, an 

inner diameter of 13 mm and a thickness of 3 mm. It contains a slot of 1 mm thickness 

and 15 mm diameter which is used to attach the outer electrode.  
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Figure 4.12: Inner actuator holder. (Left) CAD Rendering; (Right) Fabricated part 

 

Figure 4.13: Outer actuator holder. (Left) CAD Rendering; (Right) Fabricated part 

The needle holder is attached on the IPMC as shown in Figure 4.9. The electrodes are 

attached to the actuator holders as shown in Figure 4.11. The IPMC with the needle 

holder is placed between the inner actuator holder and the outer actuator holder. The two 

actuator holders are fixed together using three M1 fasteners to assemble the manipulator 

module as shown in Figure 4.4. The manipulator module is attached to one end of the 

body using the shaft in the inner actuator holder. The sensor module is attached to the 

other end of the body to completely assemble the AID.  
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One of the advantages of the AID is that the length and diameter of the gripping can be 

changed to enhance the comfort in using the device by changing the dimensions of the 

body since it does not contain any actuator or sensors.  

4.2 The AID: System Hardware and Software 

Figure 4.14 shows the overview of the complete system of the AID. The blocks inside the 

dashed lines in Figure 4.14 are executed in the host computer.  

 

Figure 4.14: Overview of the complete system of the AID 

The host computer is a Pentium 4 2.8 GHz 3 GB RAM desktop computer with Windows 

XP Professional as the operating system. ADC and DAC in Figure 4.14 stand for analog-

to-digital converter and digital-to-analog converter respectively. The converter is a 

Sensoray 626 (Sensoray, Co. Inc.) data acquisition board. Sensoray 626 is a PCI bus card 

with 16 16-bit differential analog input channels and 4 14-bit analog output channels. The 
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software is programmed using Simulink and Matlab on the host computer. A real-time 

hardware-in-the-loop environment is created using QuaRC (Quanser) [108]. 

The 6 DOF motion of the device is sensed by the sensor module as described in Chapter 

2. The voltage output of the sensors is sent to the host computer via the ADC. This 

contains 3-DOF accelerometer readings ( va ) and 3-DOF gyroscope readings (
gvy ,

) 

which are sent to the measurement model (described in Appendix A) where the 

accelerometer readings are converted to units of m/sec
2
 and the gyroscope readings are 

converted to units of rad/sec and are stored in ya and yg respectively. The acceleration      

( ay ) is then normalized as described in Appendix A. The normalized acceleration (
n

B A ) 

and the angular velocity (
gy ) are fused together to calculate the Euler angles ( ) using 

the augmented state complementary Kalman filter as described in Section 2.4, Chapter 2. 

The effective body acceleration ( AB
) is calculated by removing the gravity factor from 

the acceleration sensed by the accelerometer using the orientation provided by the 

augmented state complementary Kalman filter. The Kalman filter also provides un-biased 

angular velocity ( ˆB ). The low frequency voluntary motions and the residual bias is 

removed from ˆB  using the low pass filtering technique presented in Chapter 2. The 

angular acceleration ( B ) is calculated from angular velocity ( ~B ) that only contains 

angular velocity due to tremor, residual low frequency components and the noise. The 

acceleration of the needle-tip ( AS
) is calculated by applying the kinematic relationships 

as described in Section 2.3.1.1, Chapter 2. The low frequency voluntary motions and the 

residual gravity is removed from AS
 using the low pass filtering technique. The 

acceleration of the needle tip due to tremor (
tremor

S A ) is estimated using the Band-limited 

Multiple Fourier Linear Combiner (BMFLC) algorithm as described in Section 2.5. The 

position of the needle tip due to tremor (
tremor

S P ) is calculated by analytically double 

integrating the acceleration of the needle tip due to tremor as described in Section 2.5.2. 

The negative of 
tremor

S P forms the control input ( PC
) and is sent to the IPMC controller. 

The controller computes the amount of voltage ( VC ~
) necessary to actuate the IPMC 

actuator to deflect the needle tip by PC
. This voltage is sent to an amplifier (UPM 2405- 
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Quanser) via the DAC (Sensoray 626). The output of the amplifier is sent to the IPMC 

actuator which drives the manipulator and deflects the needle tip to compensate for the 

physiological tremor.  
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Chapter 5  

5 Experimental Validation and Results 

This chapter presents the experimental set-up for testing the device and its sub-systems 

followed by a discussion of the results. Section 5.1 describes the experiments conducted 

to test the proposed augmented state complementary Kalman filter (ACKF) to compute 

the orientation. Section 5.2 presents the physiological tremor in the hand calculated using 

the AID. Section 5.3 presents the experimental design to test the AID in compensating 

vibrations in 1 DOF.  

5.1 Kalman Filter 

This section presents the experimental design to test the proposed ACKF followed by an 

analyses of the results.   

5.1.1 Experimental Design 

The experimental setup consists of a precision motor rotary stage, T-RS60A (Zaber 

Technologies). Figure 5.1 shows the experimental set-up. The sensor module of the AID 

(marked as 'S' in Figure 5.1) is fixed on the rotary stage (marked as 'R' in Figure 5.1). The 

experimental setup allows to change the pitch ( ) by rotating the sensor module about YB 

axis with various angular velocities ( y

B ).  

Four sets of experiments were conducted. The amplitude of rotation (
pp ) and the 

angular velocity ( y

B ) for each set is listed in Table 5.1. The angular velocity of 3 deg/s 

is chosen for two sets since the maximum angular velocity encountered during hand-held 

motion was 3.02 deg/s as previously explained in Chapter 2. The angular velocity of 10 

deg/s was also chosen for two sets to test the effects of higher angular velocities on the 

calculation of angles by ACKF. The amplitude of rotation (
pp ) was also varied to test 

the effects of the amplitude on ACKF. For each set, the experiment was conducted for 3 

min at a sampling frequency of 500 Hz. 



89 

 

Table 5.1: Amplitude and angular velocity for 4 sets 

Set pp  (deg) 
y

B (deg/s) 

1 60 ±3 

2 60 ±10 

3 90 ±3 

4 90 ±10 

 

Figure 5.1: Experimental set-up for testing the proposed ACKF. The sensor module, 

marked as 'S', is mounted on a motor rotary stage, marked as 'R'.  

The turning motion was started after 5 seconds during which time the sensor module was 

left to rest at its original horizontal position ( 0  ). After reaching the peaks, the 
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module was left idle before turning in the opposite direction. The motion allowed to test 

for any overshoots in the calculation of the angles by the ACKF. The following quantities 

were measured in the experiments:  

 the roll ( ̂ ) and the pitch (
̂ ) using the ACKF 

 the roll (


a̂ ) and the pitch (


a̂ ) using the tri-axial accelerometer 

 the predicted gyro rate or the angular velocity (


y

B̂ ) using the ACKF 

  the predicted gyro rate or the angular velocity ( y

B ) calculated when the bias is 

kept constant, i.e., .1 kk bb  

5.1.2 Results and Analyses  

Figure 5.2 shows the pitch (
̂ ) and the roll (

̂ ) calculated using the augmented state 

complementary Kalman filter for set 2. Figure 5.3 shows the pitch ( 

a̂ ) and the roll ( 

a̂ ) 

calculated using the tri-axial accelerometer for set 2. 

 

Figure 5.2: Pitch ( ̂ ) and roll (
̂ ) using the ACKF for set 2 
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Figure 5.3: Pitch ( 

a̂ ) and roll (


a̂ ) using the tri-axial accelerometer for set 2 

It is clear from Figure 5.3 that the angles, 

a̂  and 


a̂  are noisy. Overshoots in 

a̂  and 



a̂ can also be seen at the starting of the rotary motion after the resting state at the peaks. 

As shown in Figure 5.2, the proposed ACKF provides overshoot-free angles ( ̂ and
̂ ) 

that does not incorporate the noise from the accelerometers or gyroscopes. Similar results 

were obtained for other sets. Figure 5.4 shows ̂ for a period of 0-2 second.  

 

Figure 5.4: Pitch ( ̂ ) using the ACKF for a time period of 0-2 s for set 2 
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Figure 5.5 shows 
̂ for a period of 0-1 second. Figure 5.4 and 5.5 shows that ̂

converges in 0.8 seconds (or 400 iterations) and ̂  converges in 0.5 seconds (or 250 

iterations). The settling time for other sets are listed in Table 5.2.  

 

Figure 5.5: Roll (
̂ ) using the ACKF for a time period of 0-1 s for set 2 

Figure 5.6 and 5.7 shows the un-biased angular velocity (


y

B̂ ) provided by the ACKF 

and the angular velocity ( y

B ) when the bias was kept constant respectively. 

 

Figure 5.6: Angular velocity (


y

B̂ ) calculated using the ACKF for set 2 
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Figure 5.7: Angular velocity ( y

B ) when the bias was kept constant for set 2 

Figure 5.7 shows that y

B  drifts when the module is in motion and the mean is non-zero 

during the time instants when the module is idle after completing positive rotations. As 

shown in Figure 5.6, the ACKF provides a drift-free and corrected angular velocity,


y

B̂ . 

Similar results were obtained for other sets. Figure 5.8 shows


y

B̂  for a time period of 0-

1 second. It shows that


y

B̂
 
converges in approximately 0.4 seconds (or 200 iterations). 

 

Figure 5.8: Angular velocity using the ACKF for a time period of 0-1 s for set 2 
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The root mean squared (rms) errors in calculating  and  and the settling times in  ,

and 

y

B̂
 
using the ACKF for the four sets are listed in Table 5.2. The rms errors in 

calculating the angles are always less than 0.1
0
. The errors in calculating and are 

slightly higher for higher amplitudes of rotations as shown in Table 5.2. It is clear from 

the figures and Table 5.2 that the proposed ACKF quickly converges and provides a 

reduced noise drift-free calculation of the angles that have high accuracy and are free 

from overshoots.  

Table 5.2: RMS Errors and settling times in calculating  and   

Set rms,  
rms,  

Settling Time 
̂

 

Settling Time 
̂

 

Settling Time 


y

B̂
 

1 (30-3) 0.05390 0.04380 0.5 s 0.5 s 0.2 s 

2 (30-10) 0.05550 0.05180 0.8 s 0.5 s 0.4 s 

3 (45-3) 0.06020 0.09530 0.6 s 0.5 s 0.3 s 

4 (45-10) 0.06690 0.07850 0.6 s 0.6 s 0.3 s 

The error in measuring the angular velocity, when the bias is kept constant, is shown in 

Figure 5.7. The errors occur due to the bias drift associated with the gyroscopes. This 

emphasizes on the need for modeling the gyro bias in the Kalman filter for effective 

calculation of the orientation. The ACKF proposed in Chapter 2 models the gyro bias and 

provides a drift-free and corrected angular velocity as shown in Figure 5.6.   

5.2 Physiological Tremor in Hand 

This section presents the experimental design to test the algorithm presented in Chapter 2 

in sensing the physiological tremor in the hand followed by analyses of the results.  

5.2.1 Experimental Design 

In this experiment, the user held the device in his hand with the wrist and the elbow 

resting on the table as shown in Figure 5.9. The user was asked to keep the device as 

steady as possible, i.e., not to produce any motion voluntarily. The experiment was 
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carried out for 90 seconds with a sampling frequency of 500 Hz. The tremor in the user's 

hand was measured in 3 DOF with respect to the body frame {B} and the steady frame 

{S} using the algorithm proposed in Chapter 2. Fast Fourier transforms (FFTs) were 

carried out on the sensed accelerations and the calculated displacements using the 

BMFLC, with respect to {B} and {S}. The FFTs were obtained to identify the frequency 

components in the sensed motion, particularly to identity the frequency of the 

physiological tremor and the amount of attenuation by the BMFLC.   

 

Figure 5.9: User holding the AID 

5.2.2 Results and Analyses 

Figures 5.10, 5.11 and 5.12 shows the single-sided frequency spectrum of ( AB ~
) i.e., the 

acceleration with respect to {B} after filtering out the low frequency (< 4 Hz) 

components using the low pass filtering technique presented in Chapter 2. 

 

Figure 5.10: Single-sided frequency spectrum of x

Ba~   
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Figure 5.11: Single-sided frequency spectrum of y

Ba~  

 

Figure 5.12: Single-sided frequency spectrum of z

Ba~  

Figures 5.10, 5.11 and 5.12 clearly show that AB ~
 is composed of the acceleration due to 

physiological tremor, residual low frequency components and noise. The figures also 

show that the frequency of the physiological tremor ranges from 8 to 12 Hz. Figure 5.13 

shows the displacement due to tremor for a period of 7 seconds in the principal axes of 

the frame {B}. Figure 5.14 shows the displacement of the needle tip due to tremor for a 

period of 7 seconds with respect to the principal axes of the frame {S}. Figure 5.15 shows 

the single-sided frequency spectrum of the displacement due to tremor with respect to the 

principal axes of {B}. Figure 5.16 shows the single-sided frequency spectrum of the 

displacement due to tremor at the needle tip with respect to the principal axes of {S}.  
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Figure 5.13: Displacement due to tremor with respect to {B}. (Top) XB axis; 

(Middle) YB axis; (Bottom) ZB axis 
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Figure 5.14: Displacement due to tremor at the needle tip with respect to {S}. (Top) 

Xs axis; (Middle) YS axis; (Bottom) ZS axis 

The pass-band frequency for the adaptive filter, BMFLC, is 7-13 Hz. Comparing Figure 

5.10 and Figure 5.15, it is clear that the BMFLC adapts to the 7-13 Hz frequency band. 
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Figure 5.15: Single-sided frequency spectrum of displacement due to tremor with 

respect to {B}. (Top) XB axis; (Middle) YB axis; (Bottom) ZB axis 

The displacement due to tremor contains negligible amount of the components outside of 

the pass-band as shown in Figure 5.15 and 5.16. 
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Figure 5.16: Single-sided frequency spectrum of displacement of the needle tip due 

to tremor with respect to {S}. (Top) XS axis; (Middle) YS axis; (Bottom) ZS axis 
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5.3 Tremor Compensation 

This section presents the experimental design followed by an analysis of the results for 

testing the AID for compensating vibrations in 1 DOF. 

5.3.1 Experimental Design 

A parallel-plate capacitive sensing method was used to measure the amount of tremor 

compensation achieved by the AID. The method includes measuring the capacitance 

between two conducting parallel plates as shown in Figure 5.17.  

 

Figure 5.17: A parallel-plate capacitor 

The relationship between the capacitance and the distance between the plates is given by: 

 

d

Ak
C 0  (5.1) 

where k is the relative permittivity of the dielectric material between the plates, ε0 is the 

permittivity of space, A is the area of the plate, C is the capacitance and d is the distance 

between the plates. Vibrations between the two plates can be calculated by keeping one 

of the plates fixed and vibrating the other plate and measuring the capacitance. The 

capacitance can, then, be converted to the displacement using equation 5.1.  

In the experiment, the AID was attached to a precision motor linear stage (marked as 

'LS'), TLSM 50A (Zaber Technologies), as shown in Figure 5.18. The set-up allowed 

vibrating the AID along YS axis (the axis is shown in Figure 5.18). A copper plate was 
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attached to the manipulator of the AID (marked as 'M') and another plate was kept fixed 

(marked as 'F') and kept parallel to the plate attached to the manipulator of the AID as 

shown in Figure 5.18. The plates were made up of copper and the area of the plates was 

600 mm
2
. The weight of plate attached to the AID (plate M) was 5.5 gm which was 

significantly heavier than the needle holder (the weight of the needle holder was 0.7 gm).  

 

Figure 5.18: Experimental set-up for testing amount of compensation using the AID 
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The capacitance between these two plates was measured using PICOCAP evaluation kit 

(Acam) [109]. Four sets of experiments were carried out. The frequency, the peak-to-

peak (p-p) amplitude and the rms value of the sinusoidal input to the linear stage for each 

set are listed in Table 5.3. The experimental set-up allowed testing the effects of different 

frequencies and amplitudes of vibration on the amount of tremor compensation by the 

AID. The compensation was started at ten seconds.  

Before starting the experiments, the two plates (M and F) were kept at a known distance 

(dinitial). The linear stage was vibrated with the frequencies and the magnitudes listed in 

Table 5.3. The capacitance was measured using PICOCAP evaluation kit at a sampling 

frequency of 391 Hz. The manipulator of the AID gives angular motion to the plate 'M'. 

Since the magnitude of the motion was very low, the errors due to the angular motion in 

the measurement of the capacitance were also low and, thus, were not accounted for in 

the experiments.  The measured capacitance was converted to displacement using eq. 5.1 

and the initial distance (dinitial) between the plates was subtracted to calculate the 

displacement due to the vibration created by the linear stage (LS).  

Table 5.3: Frequency, amplitude and rms value of the input to the linear stage 

Set 
Freq. of input 

(Hz) 
Amplitude (p-p) 

 (µm) 
RMS of input to LS 

(µm) 

1 8 80 28.28 

2 10 75 26.52 

3 12 80 28.28 

4 12 100 35.35 

5.3.2 Results and Analyses 

Figure 5.19 shows the displacement of the copper plate fixed on the manipulator of the 

AID calculated using the capacitive method for set 2. The displacement before ten 

seconds is the uncompensated vibration of the plate while the displacement after 10 

seconds is the compensated vibration of the plate.  
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Figure 5.19: Displacement of the plate fixed on the manipulator of the AID 

measured using the capacitive method for set 1.  

Figure 5.19 clearly shows that the AID compensates from the vibrations after ten 

seconds. The rms of the displacement using the capacitive method (CM) due to the 

vibration before and after the compensation was calculated to measure the amount of 

compensation by the AID.  Table 5.4 lists the frequency and the rms value of the input to 

LS, the rms value of the vibration calculated by the AID, the rms value of the vibration 

before the compensation using CM ( LSP ), the rms value of the vibration after the 

compensation using CM  ( AIDP ) and the amount of compensation by the AID for each set 

of the experiments.  

Table 5.4: Amount of compensation by AID for each set of experiment 

Set 

Freq. of 
input to 

LS 
(Hz) 

RMS of 
input 

vibrations 
to LS 
(µm) 

RMS of 
vibration 
using the 

AID 
(µm) 

RMS of 
vibration 

before 
compensation 

using CM 
(µm)

 

RMS of 
vibration 

after 
compensation 

using CM 
(µm)

 

Amount of 
compensation 

(%) 

1 8 28.28 23.69 25.45 7.393 70.95 

2 10 26.52 22.09 24.7 7.217 70.78 

3 12 28.28 23.63 26.84 10.5 60.87 

4 12 35.35 29.2 33.81 14.81 56.19 

The amount of compensation in percentage was calculated using: 
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100x(%)on Compensati

LS

AIDLS

P

PP 
  (5.2) 

Comparing the results of Sets 1 and 3 from Table 5.3, it is clear that when the rms value 

of the input vibrations was kept constant and the frequency was increased from 8 Hz to 

12 Hz, the amount of compensation was reduced. Although the accuracy of sensing the 

vibrations by the AID was similar for both cases, the amount of compensation by the AID 

was less in the case of higher frequency. The reason is that the displacement by the IPMC 

actuator is lower for higher frequencies as presented in Chapter 3. In Sets 3 and 4, the 

frequency of the input vibration was kept constant and the amplitude of the vibration was 

increased from 28.28 µm (rms) to 35.35 µm (rms). It is clear from Table 5.3 that the 

amount of compensation by the AID was higher in the case of lower amplitude. 

Although, the accuracy of sensing the vibrations by the AID for both the cases was the 

same (the attenuation in sensing the vibrations by the AID is 16.4% for Set 3 and 17.39% 

for Set 4), the amount of compensation was lower in Set 4 as compared to Set 3. 

Therefore, it can be concluded that the limiting factor in achieving higher compensation 

is the IPMC actuator. 

Figure 5.20 shows the input to the IPMC actuator calculated by the AID.  

 

Figure 5.20: Input to the IPMC actuator calculated by the AID 
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As it can be seen from Figure 5.20, the peak-to-peak input voltage to the IPMC was 

approximately 3.2 V for Set 1. Since the controller limits the voltage to ±3.6 V, it is clear 

that the IPMC was driven by an input voltage that was close to the maximum rated 

voltage. As listed in Table 5.3, the amount of compensation for Set 1 was 70.95%. This 

also concludes that the limiting factor in achieving higher compensation is the IPMC 

actuator. However, in the experiments, a copper plate that weighed 5.5 gm was attached 

to the manipulator instead of a lighter needle holder. Since the displacement of the IPMC 

actuator decreases for higher loads, higher amount of compensation can be achieved in 

compensating tremor using the needle because of its light weight. 

Comparing Set 1 and 2, it is clear that when the amplitude of the vibration was reduced 

from 28.28 µm (rms) to 26.52 µm (rms) and the frequency of the vibrations was 

increased from 8 Hz to 10 Hz, there is negligible effect on the amount of compensation 

by the AID. It is evident from Table 5.3 that the AID compensates for the vibrations: the 

amount of compensation depends on the frequencies and the amplitudes of the vibrations. 
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Chapter 6  

6 Conclusion & Future work 

This chapter presents concluding remarks including a statement of the key contributions 

of the thesis and a discussion of the limitations of the system. This is followed by a 

presentation of some ideas for improving the performance of the system.  

6.1 Conclusion 

As discussed in Chapter 1, the involuntary motions in the hand due to the physiological 

tremor can have a significant deteriorating effect on the performance of microsurgical 

procedures such as vitreoretinal microsurgery or intraocular cannulation. The chapter 

presented an overview of the previous technologies developed to compensate for the 

involuntary motions followed by a brief description of active compensation of the 

physiological tremor using a handheld instrument. In the thesis, system design and 

experimental results were presented for a novel active handheld device, AID, that senses 

the physiological tremor in the hand and compensates for it. In the thesis, compensation 

in only 1 DOF has been considered by deflecting the tool-tip appropriately. 

The sensing system for the device was presented in Chapter 2. It incorporates MEMS 

based tri-axial accelerometer and gyroscopes to sense the motion of the hand in 6 DOF. 

The challenge was to filter the physiological tremor in real-time from the sensed hand 

motion, which has low signal-to-noise ratio. An algorithm was presented that estimates 

the physiological tremor in the sensed motion. Since gyroscopes, which suffered from 

drifting bias, were used, the challenge was to estimate the angular motion of the hand 

accurately. The orientation tracking was implemented using an augmented state 

complementary Kalman filter. Since the orientation calculated using the gyroscopes 

suffers from integration drift due to the noise and the orientation calculated using the tri-

axial accelerometer is noisy and is susceptible to vibrations, the proposed Kalman filter 

fuses these two measurements to provide a drift-free and reduced-noise estimation of the 

orientation. The physiological tremor was estimated using a zero-phase adaptive filtering 

algorithm, band-limited multiple Fourier linear combiner (BMFLC) [70].   
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Ionic polymer metallic composite (IPMC) material was chosen as the actuator to deflect 

the needle-tip of the device because of its lower voltage requirement, light weight, 

compact size and the ability to be fabricated in any size and shape. This was discussed in 

Chapter 3 and an open-loop controller was presented in the chapter to drive the IPMC 

actuator.  

The design, specifications, hardware and software components for the tremor 

compensation (AID) were described in Chapter 4. The validation of the AID was carried 

out via a number of experiments whose results were presented in Chapter 5. 

6.2 Thesis Contributions 

The major contributions of the thesis can be summarized as follows: 

1. Development of a novel handheld device for active compensation of physiological 

tremor in the hand that is relatively inexpensive, light in weight (weighs 23.56 

gm) and compact in size. 

2. Design and implementation of an IPMC based 1 DOF manipulation system. To 

the author's knowledge, IPMC actuators have not been utilized for tremor 

compensation to date.  

3. Design and implementation of an algorithm to measure the physiological tremor 

in 3 DOF using MEMS based tri-axial accelerometer and gyroscopes. 

6.3 Future work 

The prototype of the AID presented in the thesis has not yet reached its full design and, 

therefore, has not yet realized its full potential in terms of compensating for physiological 

tremor in the human hand. As a result of the difficulty encountered in obtaining 

appropriately designed IPMC actuators, the design of the AID was limited to a 1 DOF 

manipulation and, thus it can only compensate for physiological tremor in 1 DOF. A 

complete 3 DOF manipulation system needs to be designed which will allow 

compensating for the tremor in all three degrees of freedom. Nevertheless, based on the 

results presented in the thesis, the current prototype has demonstrated the feasibility of 
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using IPMC actuators for active tremor compensation. Compared to other smart-material-

based actuators such as piezoelectric, the use of IPMCs allow the design of a device that 

is light in weight, compact in size and cost effective. More engineering effort will be 

required to perform 3-DOF manipulation using IPMCs. A 3-DOF system could also 

allow the incorporation of other surgical tools such as forceps. As presented in the thesis, 

the current prototype employs an open-loop controller for the IPMCs. A more 

sophisticated closed-loop controller can be designed to enhance the motion tracking 

capability and, thus, increase the amount and robustness of the compensation.  

As presented in Chapter 5, the current prototype of the AID was tested for compensating 

vibrations composed of single frequencies (ranging from 8 Hz to 12 Hz). Therefore, the 

device needs to be tested for compensating for modulated vibrations containing multiple 

frequencies. The device has not yet been tested for compensation during handheld 

conditions. For this, a more sophisticated experimental setup is necessary to assess the 

effectiveness of the AID in compensating for actual physiological tremor in the hand. 

More comprehensive experimental methods such as using optical tracking of the needle-

tip will also be required for this purpose. 

One of the limitations of the system is that the software is programmed using Matlab and 

QuaRC running on a Windows PC. This only allows a soft real-time implementation of 

the algorithm. A better solution is to use a real-time operating system such as QNX that 

allows true real-time implementation of hardware-in-the-loop environments. 

In terms of comfort in using the AID, the cables from the sensor module restrict the 

motion of the hand somewhat because of their high stiffness. This can be addressed by 

using softer cables or re-designing the sensor module with wireless communication with 

the host computer. 

Although, the thesis focuses on compensating the physiological tremor for a surgical 

device, the concept of tremor compensation using IPMCs can be applied in areas that 

require micromanipulation such as handheld photography. The proposed augmented state 

complementary Kalman filter can be utilized in human body orientation tracking. With 
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tweaking of the parameters and the filter model, it can also be utilized in aerospace and 

robotic applications where 2 DOF orientation is required.  
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Appendix A: Calibration and Measurement Model for Inertial 
Measurement Unit 

This section presents the calibration process and the measurement model of the inertial 

measurement unit (IMU) used in the AID. The calibration process measures the scale 

factors, axes misalignments and biases of the tri-axial accelerometer (ADXL 335), the 

initial offset and the sensitivity of the dual-axis gyroscope (IDG 500) and the single-axis 

gyroscope (MLX 90609). Figure A.1 shows the set-up for calibrating the IMU. It consists 

of two precision motor rotary stages, T-RS60A (Zaber Technologies). The sensor module 

is attached to rotary stage '2' and rotary stage '2' is mounted on rotary stage '1' as shown 

in the Figure A.1. 

 

Figure A.1: Set-up for the IMU calibration process. The two rotary stages are 

marked as '1' and '2' and the sensor module is marked as 'S'. 
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In matrix form, the output of the tri-axial accelerometer can be written as: 
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where av represents the raw output of the tri-axial accelerometer (in volt), ya,g represents 

the acceleration in units of g
4
 and ba represents the corresponding biases. The off-

diagonal elements of matrix M
~

represents the axes misalignments and sa,i (i = x,y,z) 

represents the scale factors. The goal of the section is to convert the signals measured 

using the tri-axial accelerometer in units of volt (av) to acceleration in units of m/s
2
. Since 

the accelerometer measures the g-force, the signals from the accelerometer in units of 

volt are, first, converted to acceleration in units of g using equation A.2 and, then, to 

acceleration in m/s
2
 using equation A.3. For this purpose, the twelve unknowns in 

equation A.2 needs to obtained using the calibration process. The acceleration in units of 

m/s
2
, ya, can be obtained using the following equation: 
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Equation A.2 can be written as:  
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4
 Accelerometers sense the g-force acting on each of the axis. 
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gv aMa   (A.5) 

The aim of the calibration process is to find the 12 unknown elements of matrix M so that 

the acceleration measured by the tri-axial accelerometer can be calculated in units of 

m/s
2
. Six static known positions are used to calibrate the accelerometer and find the 

matrix M using the least squares method. These positions are shown in Figure A.2 and 

are listed in Table A.1. At each position, the raw data (in units of volt) is recorded. Since 

the position are known and the accelerometer measure the g-force, the ideal accelerations 

in units of g are known for each position and are listed in Table A.1. 

 

Figure A.2: Six positions in the body coordinate frame {B} 
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The precision motor rotary stages shown in Figure A.1 are used to achieve these positions 

accurately. The sensor module is leveled using a digital level having an accuracy of 0.1
0
. 

Table A.1: The ideal accelerations in the body coordinate frame in six positions in 

units of g 

Position ag, x ag, y ag, z 

1 0 0 1 

2 0 0 -1 

3 0 1 0 

4 0 -1 0 

5 1 0 0 

6 -1 0 0 

For each position, the ideal accelerations (in units of g) can be written as: 
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A matrix (Ag) containing the six vectors of ideal accelerations is formed such that: 
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At each position, the raw output of the tri-axial accelerometer is measured for 10s at a 

sampling frequency of 500 Hz. Then, the data for each axis is averaged and stored in a 

vector. The six vectors containing the averaged raw output of the tri-axial accelerometer 

at six positions can be written as: 
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A matrix (Av), containing these six vectors, is formed such that: 
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  6,5,4,3,2,1, vvvvvvv aaaaaaA   (A.7) 

The matrix M is obtained by least-squares method: 

 1).(.  T

gg

T

gv AAAAM  (A.8) 

With the knowledge of the matrix M, the acceleration measured by the tri-axial 

accelerometer av (in volts), at any instant of time, can be converted to ya (in units of m/s
2
) 

using the equation A.1 and A.3.  

The normalized acceleration vector ( n

B A ) is obtained using the acceleration in the units 

of g (ya,g). Since the vector, ya,g  is composed of the acceleration in the units of g, n

B A  

simply limits the upper limit to +1 and lower limit to -1 for each element of the vector, 

ya,g.  

The gyroscope has been modeled as shown in the following equation: 

 byg
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1 is a vector containing the gyro rates measured by 
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zyx ][   is a vector containing the angular 

velocities (in rad/s) and
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 is a vector containing the gyro biases (in 

rad/s). The raw output of the gyroscopes can be written in a vector form as: 
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The sensitivity of the gyroscopes (sg) can be written as: 
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The elements of yg are calculated using the following equation: 
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where i = x, y and z. The initial bias of the gyroscopes b0 (in rad/s) can be written as: 
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The aim of the calibration process for gyroscopes is to find the six unknowns - gyro bias 

(b0) and the sensitivity (sg) of the three axes. The initial bias of the gyroscopes bv,0 (in 

volt) can be written as: 
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The raw output of the two axes of the dual-axis gyroscope, IDG 500 and the raw output 

of the gyroscope, MLX90609 are recorded at a sampling frequency of 500 Hz by keeping 

the IMU idle for 10s. The data of each axis is then averaged and stored in the vector, b0,v.  

Each element of the vector, sg, is calculated by rotating the sensor module about the 

corresponding axis by known angular velocity ( known ) using the rotary stages for 10s and 

recording the raw output of the corresponding axis of the gyroscope. The data is then 

averaged (
vgy ,

 ) and the sensitivity of that axis is calculated using the following equation: 
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where i = x, y and z. The initial bias (in rad/s) is obtained using the following equation: 
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