11,728 research outputs found
The 5f localization/delocalization in square and hexagonal americium monolayers: A FP-LAPW electronic structure study
The electronic and geometrical properties of bulk americium and square and
hexagonal americium monolayers have been studied with the full-potential
linearized augmented plane wave (FP-LAPW) method. The effects of several common
approximations are examined: (1) non-spin polarization (NSP) vs. spin
polarization (SP); (2) scalar-relativity (no spin-orbit coupling (NSO)) vs.
full-relativity (i.e., with spin-orbit (SO) coupling included); (3)
local-density approximation (LDA) vs. generalized-gradient approximation (GGA).
Our results indicate that both spin polarization and spin orbit coupling play
important roles in determining the geometrical and electronic properties of
americium bulk and monolayers. A compression of both americium square and
hexagonal monolayers compared to the americium bulk is also observed. In
general, the LDA is found to underestimate the equilibrium lattice constant and
give a larger total energy compared to the GGA calculations. While spin orbit
coupling shows a similar effect on both square and hexagonal monolayer
calculations regardless of the model, GGA versus LDA, an unusual spin
polarization effect on both square and hexagonal monolayers is found in the LDA
results as compared with the GGA results. The 5f delocalization transition of
americium is employed to explain our observed unusual spin polarization effect.
In addition, our results at the LDA level of theory indicate a possible 5f
delocalization could happen in the americium surface within the same Am II (fcc
crystal structure) phase, unlike the usually reported americium 5f
delocalization which is associated with crystal structure change. The
similarities and dissimilarities between the properties of an Am monolayer and
a Pu monolayer are discussed in detail.Comment: 22 pages, 8 figure
Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry
The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS) through the reaction of NO−3 ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (americium-241) ion source which has been used previously. The results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of 1 min it is ~6×104 molecule cm−3 of H2SO4. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS
Discovery of Isotopes of the Transuranium Elements with 93 <= Z <= 98
One hundred and five isotopes of the transuranium elements neptunium,
plutonium, americium, curium, berkelium and californium have so far been
observed; the discovery of these isotopes is discussed. For each isotope a
brief summary of the first refereed publication, including the production and
identification method, is presented.Comment: To be published in Atomic Data and Nuclear Data Table
On the Convergence of the Electronic Structure Properties of the FCC Americium (001) Surface
Electronic and magnetic properties of the fcc Americium (001) surface have
been investigated via full-potential all-electron density-functional electronic
structure calculations at both scalar and fully relativistic levels. Effects of
various theoretical approximations on the fcc Am (001) surface properties have
been thoroughly examined. The ground state of fcc Am (001) surface is found to
be anti-ferromagnetic with spin-orbit coupling included (AFM-SO). At the ground
state, the magnetic moment of fcc Am (001) surface is predicted to be zero. Our
current study predicts the semi-infinite surface energy and the work function
for fcc Am (001) surface at the ground state to be approximately 0.82 J/m2 and
2.93 eV respectively. In addition, the quantum size effects of surface energy
and work function on the fcc Am (001) surface have been examined up to 7 layers
at various theoretical levels. Results indicate that a three layer film surface
model may be sufficient for future atomic and molecular adsorption studies on
the fcc Am (001) surface, if the primary quantity of interest is the
chemisorption energy.Comment: 34 pages, 9 figure
Electronic, mechanical, and thermodynamic properties of americium dioxide
By performing density functional theory (DFT) + calculations, we
systematically study the electronic, mechanical, tensile, and thermodynamic
properties of AmO. The experimentally observed antiferromagnetic
insulating feature [J. Chem. Phys. 63, 3174 (1975)] is successfully reproduced.
It is found that the chemical bonding character in AmO is similar to that
in PuO, with smaller charge transfer and stronger covalent interactions
between americium and oxygen atoms. The valence band maximum and conduction
band minimum are contributed by 2 hybridized and 5 electronic states
respectively. The elastic constants and various moduli are calculated, which
show that AmO is less stable against shear forces than PuO. The
stress-strain relationship of AmO is examined along the three low-index
directions by employing the first-principles computational tensile test method.
It is found that similar to PuO, the [100] and [111] directions are the
strongest and weakest tensile directions, respectively, but the theoretical
tensile strengths of AmO are smaller than those of PuO. The phonon
dispersion curves of AmO are calculated and the heat capacities as well
as lattice expansion curve are subsequently determined. The lattice thermal
conductance of AmO is further evaluated and compared with attainable
experiments. Our present work integrally reveals various physical properties of
AmO and can be referenced for technological applications of AmO
based materials.Comment: 23 pages, 8 figure
Adsorption and dissociation of molecular oxygen on the (0001) surface of double hexagonal close packed americium
In our continuing attempts to understand theoretically various surface
properties such as corrosion and potential catalytic activity of actinide
surfaces in the presence of environmental gases, we report here the first ab
initio study of molecular adsorption on the double hexagonal packed (dhcp)
americium (0001) surface. Dissociative adsorption is found to be energetically
more favorable compared to molecular adsorption. The most stable configuration
corresponds to a horizontal approach molecular dissociation with the oxygen
atoms occupying neighboring h3 sites, with chemisorption energies at the NSOC
and SOC theoretical levels being 9.395 eV and 9.886 eV, respectively. The
corresponding distances of the oxygen molecule from the surface and
oxygen-oxygen distance were found to be 0.953 Ang. and 3.731 Ang.,
respectively. Overall our calculations indicate that chemisorption energies in
cases with SOC are slightly more stable than the cases with NSOC in the
0.089-0.493 eV range. The work functions and net magnetic moments respectively
increased and decreased in all cases compared with the corresponding quantities
of the bare dhcp Am (0001) surface. The adsorbate-substrate interactions have
been analyzed in detail using the partial charges inside the muffin-tin
spheres, difference charge density distributions, and the local density of
states. The effects, if any, of chemisorption on the Am 5f electron
localization-delocalization characteristics in the vicinity of the Fermi level
are also discussed.Comment: 6 tables, 10 figure
- …