571 research outputs found

    EVA: Emergency Vehicle Allocation

    Get PDF
    Emergency medicine plays a critical role in the development of a community, where the goal is to provide medical assistance in the shortest possible time. Consequently, the systems that support emergency operations need to be robust, efficient, and effective when managing the limited resources at their disposal. To achieve this, operators analyse historical data in search of patterns present in past occurrencesthat could help predict future call volume. This is a time consuming and very complex task that could be solved by the usage of machine learning solutions, which have been performed appropriately in the context of time series forecasting. Only after the future demands are known, the optimization of the distribution of available assets can be done, for the purpose of supporting high-density zones. The current works aim to propose an integrated system capable of supporting decision-making emergency operations in a real-time environment by allocating a set of available units within a service area based on hourly call volume predictions. The suggested system architecture employs a microservices approach along with event-based communications to enable real-time interactions between every component. This dissertation focuses on call volume forecasting and optimizing allocation components. A combination of traditional time series and deep learning models was used to model historical data from Virginal Beach emergency calls between the years 2010 and 2018, combined with several other features such as weather-related information. Deep learning solutions offered better error metrics, with WaveNet having an MAE value of 0.04. Regarding optimizing emergency vehicle location, the proposed solution is based on a Linear Programming problem to minimize the number of vehicles in each station, with a neighbour mechanism, entitled EVALP-NM, to add a buffer to stations near a high-density zone. This solution was also compared against a Genetic Algorithm that performed significantly worse in terms of execution time and outcomes. The performance of EVALP-NM was tested against simulations with different settings like the number of zones, stations, and ambulances.A medicina de emergência desempenha um papel fundamental no desenvolvimento da Sociedade, onde o objetivo é prestar assistência médica no menor tempo possível. Consequentemente, os sistemas que apoiam as operações de emergência precisam de ser robustos, eficientes e eficazes na gestão dos recursos limitados. Para isso, são analisados dados históricos no intuito de encontrar padrões em ocorrências passadas que possam ajudar a prever o volume futuro de chamadas. Esta é uma tarefa demorada e muito complexa que poderia ser resolvida com o uso de soluções de Machine Learning, que têm funcionado adequadamente no contexto da previsão de séries temporais. Só depois de conhecida a demanda futura poderá ser feita a otimização da distribuição dos recursos disponíveis, com o objetivo de suportar zonas de elevada densidade populacional. O presente trabalho tem como objetivo propor um sistema integrado capaz de apoiar a tomada de decisão em operações de emergência num ambiente de tempo real, atribuindo um conjunto de unidades disponíveis dentro de uma área de serviço com base em previsões volume de chamadas a cada hora. A arquitetura de sistema sugerida emprega uma abordagem de microserviços juntamente com comunicações baseadas em eventos para permitir interações em tempo real entre os componentes. Esta dissertação centra se nos componentes de previsão do volume de chamadas e otimização da atribuição. Foram usados modelos de séries temporais tradicionais e Deep Learning para modelar dados históricos de chamadas de emergência de Virginal Beach entre os anos de 2010 e 2018, combinadas com informações relacionadas ao clima. As soluções de Deep Learning ofereceram melhores métricas de erro, com WaveNet a ter um valor MAE de 0,04. No que diz respeito à otimização da localização dos veículos de emergência, a solução proposta baseia-se num problema de Programação Linear para minimizar o número de veículos em cada estação, com um mecanismo de vizinho, denominado EVALP-NM, para adicionar unidades adicionais às estações próximas de uma zona de alta densidade de chamadas. Esta solução foi comparada com um algoritmo genético que teve um desempenho significativamente pior em termos de tempo de execução e resultados. O desempenho do EVALP-NM foi testado em simulações com configurações diferentes, como número de zonas, estações e ambulâncias

    Models for ambulance planning on the strategic and the tactical level

    Get PDF
    Ambulance planning involves decisions to be made on different levels. The decision for choosing base locations is usually made for a very long time (strategic level), but the number and location of used ambulances can be changed within a shorter time period (tactical level). We present possible formulations for the planning problems on these two levels and discuss solution approaches that solve both levels either simultaneously or separately. The models are set up such that different types of coverage constraints can be incorporated. Therefore, the models and approaches can be applied to different emergency medical services systems occurring all over the world. The approaches are tested on data based on the situation in the Netherlands and compared based on computation time and solution quality. The results show that the solution approach that solves both levels separately performs better when considering minimizing the number of bases. However, the solution approach that solves both levels simultaneously performs better when considering minimizing the number of ambulances. In addition, with the latter solution approach it is easier to make a good trade-off between minimizing the number of bases and ambulances because it considers a weighted objective function. However, the computation time of this approach increases exponentially with the input size whereas the computation time of the approach that solves both levels separately follows a more linear trend

    The heartbeat of the city

    Get PDF
    Human activity is organised around daily and weekly cycles, which should, in turn, dominate all types of social interactions, such as transactions, communications, gatherings and so on. Yet, despite their strategic importance for policing and security, cyclical weekly patterns in crime and road incidents have been unexplored at the city and neighbourhood level. Here we construct a novel method to capture the weekly trace, or "heartbeat" of events and use geotagged data capturing the time and location of more than 200,000 violent crimes and nearly one million crashes in Mexico City. On aggregate, our findings show that the heartbeats of crime and crashes follow a similar pattern. We observe valleys during the night and peaks in the evening, where the intensity during a peak is 7.5 times the intensity of valleys in terms of crime and 12.3 times in terms of road accidents. Although distinct types of events, crimes and crashes reach their respective intensity peak on Friday night and valley on Tuesday morning, the result of a hyper-synchronised society. Next, heartbeats are computed for city neighbourhood 'tiles', a division of space within the city based on the distance to Metro and other public transport stations. We find that heartbeats are spatially heterogeneous with some diffusion, so that nearby tiles have similar heartbeats. Tiles are then clustered based on the shape of their heartbeat, e.g., tiles within groups suffer peaks and valleys of crime or crashes at similar times during the week. The clusters found are similar to those based on economic activities. This enables us to anticipate temporal traces of crime and crashes based on local amenities

    Measuring and optimizing accessibility to emergency medical services

    Get PDF
    Emergency medical services (EMSs) undertake the responsibility of providing rapid medical care to patients suffering from unexpected illnesses or injuries and transferring them to definitive care facilities. This research concerns several research gaps that are associated with different EMS trips, real-time traffic conditions, improving EMS efficiency and equalities. This research aims to develop GIS-based spatial optimization methods to improve service efficiency and equality in EMS systems. Specifically, the research intends to achieve the following goals: (1) to measure spatiotemporal accessibility to EMS; (2) to improve EMS efficiency and provision through spatial optimization approaches; (3) to reduce urban-rural inequalities in EMS accessibility and coverage using spatial optimization approaches. The proposed approaches are applied in three empirical studies in Wuhan, China. To achieve the first objective, the proximity and the enhanced two-step floating catchment method (E-2SFCA) are adopted to evaluate spatiotemporal accessibility. First, the EMS travel time is estimated for the two related trips as an overall EMS journey: one is from the nearest EMS station to the scene (Trip 1), and the other is from the scene to the nearest emergency hospital (Trip 2). Then, the E-2SFCA method is employed to calculate the accessibility score that integrates both geographic accessibility and availability of EMS. Travel time is estimated by using both static road network with standard speed limits and online map service considering real-time traffic. To achieve the second objective, two facility location models are proposed to improve EMS service coverages for two-related trips (Trips 1 and 2). The first model maximizes the amount of demand covered by both ambulance coverage (EMS station – demand) and hospital coverage (demand – hospital). The second model maximizes the amount of demand that can be served by both ambulance coverage and overall coverage (EMS station – demand – hospital). To achieve the third objective, two bi-objective optimization models are developed. The two models have the same primary objective to maximize the total covered demand by ambulance. The second objective is to minimize one of the two inequality measures: one focuses on accessibility of uncovered rural people, and the other concerns the urban-rural inequality in service coverage. For the first empirical study with respect to spatiotemporal access to EMS, different spatial patterns are found for the three trips (two partial trips and the overall trip). Good accessibility to one trip cannot guarantee good accessibility to another trip. In addition, urban-rural inequalities in EMS accessibility and coverage are observed. Finally, it is observed that real-time traffic conditions greatly affect EMS accessibility, particularly in urban districts. Specifically, the accessibility of EMS becomes poor during the morning (7-9 am) and evening peak periods (5-7 pm). For the second empirical study in relation to EMS optimization involving two related trips, the results find that the first proposed model can guarantee that more demand to be covered by both ambulance and hospital coverages than the Maximum Coverage Location Problem (MCLP). The second proposed model can ensure that as many people as possible to be served by both ambulance and overall coverage than the work by ReVelle et al. (1976). For the third empirical study attempting to reduce urban-rural inequality in EMS, the results show that the first bi-objective model can improve EMS accessibility of uncovered rural demand, and the second model can reduce EMS service coverages between urban and rural areas. However, the improvement EMS inequalities between urban and rural areas leads to a cost of a decrease in the total covered population, especially in urban areas. Regarding policy implications, this research suggests that different EMS trips and traffic conditions should be considered when measuring spatial accessibility to EMS. Spatial optimization research can help improving service efficiency and reduce regional equalities in EMS systems. The work presented in this thesis can aid the planning practice of public services like EMS and provide decision support for policymakers
    corecore